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Abstract  

 

This MTech. thesis presents multiple approaches for crowd 

counting in single images using deep learning models. The research 

investigates multiple techniques to improve the accuracy of crowd 

counting, with a particular focus on high-density crowd images 

where existing models often yield suboptimal results.  

The frequency domain approach was employed to provide compact 

and effective supervision for the network. By transforming the 

density map into the frequency domain using Fast Fourier 

Transform (FFT), global spatial information was incorporated 

without relying on external algorithms. This approach enabled the 

network to leverage frequency-based representations for crowd 

counting.  

A classification-based strategy was pursued to address the 

challenges of high-density crowd images. The dataset was divided 

into three density groups, and separate models were trained for each 

group. A classifier was then employed to select the appropriate 

model for a given input. Although initial results from this approach 

were unsatisfactory due to the limitations of existing models, further 

improvements were achieved by adopting a multi-scale architecture. 

Multiple regression heads were incorporated in parallel, akin to the 

MCNN model, and dilated convolution kernels were employed to 

reduce the additional parameters introduced by the extra layers. This 

modification resulted in a more robust and stable model capable of 

better crowd-counting performance.  

Additionally, self-supervised training techniques were explored to 

enhance the model’s capabilities further. Autoencoding was 

employed, wherein the model learned to encode the input into a 

lower-dimensional representation by utilizing the same input for 

supervision. This allowed the model to capture salient features and 
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patterns within the data. Furthermore, rotation prediction was 

employed, where the model learned to estimate the angle of rotation 

applied to an input. By leveraging self-supervised pre-training and 

multitasking, the model acquired a deeper understanding of the 

underlying structure of the data. Overall, quality questions will be 

seen while this problem is being solved, motivating one to find the 

answers. 
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  Chapter 1  

                    Introduction 

 

 

 
This chapter introduces the crowd analysis field, emphasizing the 

significance of crowd counting and analysis in computer vision and 

image processing. The motivation behind selecting a crowd-

counting project for this master's thesis is outlined, highlighting the 

research advancements, cross-domain applications, and the 

opportunity to gain insights into deep learning models. The major 

contribution of the thesis, focusing on improving crowd-counting 

accuracy through innovative approaches, is presented. The chapter 

concludes by providing an overview of the organization of the 

remaining sections of the thesis. 

      1.1 Introduction to the field of crowd analysis 

 

Crowd counting and crowd analysis are essential research areas in 

computer vision and image processing. They involve estimating the 

number of people in a crowd and analysing their behaviour, 

movement patterns, and interactions. This field has seen significant 

advancements in recent years due to its broad applications in various 

domains, such as crowd management, surveillance, urban planning, 

and event organization.  

The development of crowd-counting techniques has gained traction 

due to several reasons. Firstly, the abundance of surveillance 

cameras and the availability of large-scale image and video datasets 

have provided researchers with comprehensive data to train and 

evaluate crowd-counting algorithms. Additionally, the increasing 

need for efficient crowd management, security, and safety measures 

in public spaces has fuelled the demand for accurate and real-time 

crowd analysis systems. By accurately estimating crowd sizes and 
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understanding their dynamics, authorities can take proactive 

measures to ensure public safety, prevent stampedes, manage 

traffic, and optimize resource allocation.  

Several research advancements have been made in the field of 

crowd-counting. Traditional methods often relied on handcrafted 

features and simple density estimation techniques. However, with 

the emergence of deep learning, convolutional neural networks 

(CNNs) have revolutionized crowd counting by achieving state-of-

the-art performance. These deep learning models leverage their 

ability to learn complex patterns and spatial dependencies from 

large-scale datasets, enabling more accurate crowd estimation. 

Recent developments in crowd counting also involve exploring 

novel techniques such as attention mechanisms, multi-scale 

analysis, and generative adversarial networks (GANs). Attention 

mechanisms allow models to focus on relevant regions in an image, 

leading to better counting accuracy. The multi-scale analysis 

involves extracting features at multiple scales to capture different 

crowd density levels. GANs, on the other hand, can generate 

synthetic crowd images to augment training datasets and improve 

the robustness of crowd-counting models. Numerous projects 

depend on crowd counting and analysis research. Here are a few 

examples: 

• Crowd management and safety: Public venues like 

stadiums, train stations, and airports use crowd-counting 

systems to monitor and manage large gatherings, prevent 

overcrowding, and ensure the safety of individuals.  

• Traffic monitoring and optimization: Traffic authorities 

employ crowd-counting techniques to estimate the number 

of pedestrians at busy intersections or public transport hubs. 

This information aids in optimizing traffic flow and 

designing efficient transportation systems. 
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• Event planning: Organizers of events like concerts, 

festivals, and rallies use crowd analysis to estimate 

attendance, plan logistics, and allocate resources 

effectively. 

• Security and surveillance: Crowd counting algorithms are 

crucial in surveillance systems to detect and track 

suspicious activities, identify anomalies, and ensure public 

safety in crowded areas.  

• Urban planning: Crowd analysis assists city planners in 

understanding the movement patterns of pedestrians, 

identifying congested areas, and designing public spaces 

that accommodate large crowds efficiently.  

In conclusion, crowd-counting and analysis have witnessed 

significant advancements due to the availability of data, the 

need for crowd management, and the emergence of deep 

learning techniques.  

 

1.2 Motivation  

 

The remarkable advancements and continuous research in this field 

have played a pivotal role in selecting a crowd-counting project for 

this master's thesis. The abundance of high-quality work and the 

active exploration of cutting-edge models and innovative ideas by 

numerous researchers have sparked significant interest. 

Additionally, the potential application of crowd-counting 

techniques in diverse domains, including cell counting in tissues, 

agricultural crop estimation, and object detection problems, has 

strongly motivated this project. 

• Research advancements: The field of crowd counting has 

made substantial progress, with researchers continuously 

pushing the boundaries of what is possible. By working on 

this project, the aim is to tap into the wealth of existing work 
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and benefit from the latest advancements in the field. The 

abundance of research literature and the constant flow of 

new models and techniques provide strong motivation to 

contribute to this area's growing body of knowledge. 

• Cross-domain applications: Crowd counting techniques 

have demonstrated their versatility and potential for 

adaptation in various domains. The skills acquired during 

this project can be seamlessly transferred to other areas, 

such as cell counting in tissue samples or estimating 

agricultural crop yields. This multidisciplinary nature of 

crowd-counting research broadens the scope of its 

applications. It encourages exploration beyond the 

immediate domain, providing an opportunity to contribute 

to diverse scientific and practical challenges. 

• Deep learning insights: Undertaking a crowd-counting 

project offers us a valuable opportunity to gain in-depth 

knowledge of deep-learning models and their inner 

workings. Exploring these models' different components 

and working blocks provides a solid foundation for 

understanding the principles underlying their success. From 

convolutional neural networks (CNNs) to attention 

mechanisms, this project will allow us to grasp these 

advanced models' intricacies, facilitating the application of 

similar techniques to various other computer vision 

problems. 

• Loss functions and model training: Crowd counting 

projects explore different loss functions and model training 

methodologies explicitly tailored for counting tasks. 

Understanding the nuances of these techniques is crucial for 

achieving accurate and robust crowd estimation. Through 

this project, the aim is to gain expertise in selecting 

appropriate loss functions, exploring novel training 

strategies, and optimising model performance. Such 
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knowledge is transferable to other deep learning 

applications, providing a comprehensive skill set to tackle 

various computer vision challenges. 

 

1.3 Major contribution 

 

This MTech thesis focuses on multiple approaches to improve 

crowd counting accuracy in high-density crowd images. A 

frequency domain approach was introduced by utilizing Fast 

Fourier Transform (FFT) to incorporate global spatial information. 

A classification-based strategy with a multi-scale architecture and 

self-supervised training techniques enhanced the model’s 

performance. 

 

1.4 Organization of the thesis 

 

The rest of this thesis is organized as follows:  

Chapter 2 presents the literature survey consists of different state-

of-the-art techniques for crowd counting.  

Chapter 3 presents the proposed methods.  

Chapter 4 presents the results and discussion of the proposed 

methods in depth.  

Chapter 5 includes the conclusion and scope of the future work of 

this thesis. 
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Chapter 2  

                 Literature survey 

  

 

2.1 Introduction  

 

Crowd counting is a vital task that plays a crucial role in numerous 

real-world applications. It involves estimating the number of 

individuals in a crowd or gathering by analysing visual data such as 

images or videos. This field has garnered significant attention due 

to its relevance in public safety, event management, transportation 

planning, and urban infrastructure design.  

Accurate crowd counting provides valuable insights for situational 

awareness, resource allocation, and crowd management. It aids in 

ensuring public safety during large-scale events, optimizes 

transportation systems, and enhances public spaces’ efficiency. 

Moreover, it enables a better understanding of crowd dynamics, 

crowd behaviour analysis, and the impact of various factors on 

crowd movements.  

However, crowd counting poses several challenges due to the 

inherent complexities associated with crowded scenes. Factors such 

as occlusions, varying crowd densities, perspective distortion, and 

scale variations make accurate counting a non-trivial task. 

Traditional manual counting methods are labour-intensive, time-

consuming, and prone to errors, necessitating the development of 

automated and reliable crowd-counting techniques.  

In recent years, computer vision and deep learning advancements 

have revolutionized the crowd counting field. Deep learning 

models, particularly convolutional neural networks (CNNs), have 

demonstrated superior performance in accurately estimating crowd 

counts from visual data. These models learn to extract intricate 
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patterns and features from images or videos, enabling them to 

handle complex crowd scenes more effectively.  

This literature survey section will provide a comprehensive 

overview of crowd-counting methods, encompassing traditional 

approaches and the latest state-of-the-art methods. Additionally, 

relevant aspects such as crowd-counting datasets, evaluation 

metrics, and loss functions will be explored. This comprehensive 

examination will enable a deeper understanding of crowd-counting 

techniques’ evolution and current landscape.  

Traditionally, two main approaches have been employed for crowd 

counting: detection-based and regression-based. In crowded scenes 

with severe occlusions, the accuracy of the detection-based 

approach, which utilizes computer vision techniques to identify 

individual objects, heads, or body parts and determine their total 

count in an image, tends to decline. This method also incurs the 

highest labelling cost, requiring complete identification and 

outlining of each object. Conversely, the regression-based approach 

takes a different approach by directly estimating the count by 

establishing a relationship with the characteristics of the image. This 

method is more accurate than the detection-based approach in 

crowded scenes. However, it has limitations regarding spatial 

information and interpretability, which restrict its applicability in 

localization studies. Regression-based methods do not require 

annotating individual objects, resulting in a lower annotation cost as 

only the total object count needs to be provided. Recently, a 

contemporary deep learning technique known as density map 

estimation has emerged as a promising solution for crowd counting. 

This method has proven to achieve impressive accuracy in crowded 

scenes while retaining spatial information regarding the distribution 

of individuals. Unlike the detection-based approach, density map 

estimation only necessitates indicating the locations of people’s 

heads, thereby striking a balance in labelling cost between the 

detection-based and regression-based approaches. By 

understanding these crowd counting approaches’ characteristics and 



17 
 

annotation requirements, researchers and practitioners can make 

informed decisions when selecting the most suitable method for 

their specific application. This comprehensive overview sets the 

stage for further exploration and advancements in crowd counting.  

 

2.2 Traditional methods 

 

The overview shows that traditional methods primarily rely on a 

total count approach. These approaches utilize image processing 

techniques to identify hand-crafted features. e.g., Z. Lin et al. [1] 

introduced an approach for detecting and segmenting humans 

simultaneously. They combined local part-based and global shape-

template-based methods to achieve this. Then they used support 

vector machines (SVMs) [2] classifiers to separate 

human/nonhuman patterns. Lin et al. [3] introduced a method for 

recognizing head-like contours and estimating crowd size. Their 

approach involved extracting the featured area of the head-like 

contour using the Haar wavelet transform. Subsequently, a support 

vector machine was employed to classify these featured areas as 

either the contour of a head or something else. Nevertheless, when 

it comes to images with dense crowds, the accuracy of these 

methods noticeably diminishes due to various challenges like 

occlusions, low resolution, perspective effects, and more. 

Regression-based methods have gained popularity over detection-

based approaches because they can estimate the total count from 

images or image patches. Instead of focusing on specific body parts 

or shapes, these methods utilize global features like texture, 

foreground, and gradients. This enables them to provide estimates 

of the total count at the image or patch level. Ke Chen et al. [4] used 

low-level imagery features from each local cell region, including 

local foreground, edges and texture features. They proposed using 

local rather than global features, which lack local context 

information and information sharing among these local regions. 
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Dalal et al. [5] presented a method that utilizes grids of Histograms 

of oriented gradient (HOG) descriptors. This approach incorporates 

several key elements, including fine-scale gradients, fine orientation 

binning, relatively coarse spatial binning, and high-quality local 

contrast normalization. As demonstrated in their work, these 

components contribute to the method’s effectiveness. While 

regression-based methods effectively address challenges like 

occlusions, low resolution, and perspective effects, they often 

exhibit poor performance when dealing with high-density crowd 

images. 

 

 2.3 Density map estimation  

 

Density estimation refers to using a CNN model to predict the 

density map of a crowd scene, going beyond simply predicting the 

head count. The density map provides the total headcount and 

additional location information about the crowd scene. By 

generating a density map, the model captures a finer level of detail 

regarding the distribution and density of individuals within the 

scene. This richer information can be valuable for various 

applications in crowd analysis and understanding crowd behaviour. 

As this is the modern deep learning-based method, much research 

has been done and is still ongoing. To cover all aspects of the 

literature survey, it was divided into subparts focusing on network 

architectures, loss functions, and training methods. Before diving 

deep into the world of these classical models, let us first understand 

what a density map is. How are they created? Moreover, what are 

their pros and cons? To generate density maps, dot-annotated 

ground truths are utilized. Each object within an image is annotated 

with a single dot typically placed on the person’s head. However, 

these sparse dot maps make it challenging to train neural networks 

effectively. Therefore, a conversion transforms these dot maps into 

density maps. For instance, let us consider xi as a pixel representing 
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the head position, which can be represented by the delta function 

δ(x−xi). The delta function is convolved to generate the density map 

with a Gaussian kernel Gσ, resulting in a smooth distribution of 

values indicating the head density across the image. This 

convolution operation helps generate a more informative and 

continuous density map from the sparse dot annotations.  

        

                            𝑌 =  ∑ (δ(𝑥 − 𝑥𝑖). 𝐺𝜎)𝐾
𝑖=1                                        (2.1) 

                        

K represents the total number of annotated points corresponding to 

the total headcount. The integral of the density map provides an 

estimation of the total headcount by summing up the values across 

the entire map. The σ values of the Gaussian kernels used in density 

map generation are typically fixed [6]. However, this fixed approach 

does not account for scale variations in different images, limiting its 

effectiveness. To address this, adaptive methods were proposed. 

These adaptive approaches calculate the value of based on the 

average distance to the K-nearest neighbouring head annotations. 

This allows for a lower degree of Gaussian blur for dense crowd 

regions and a higher degree for regions with sparse density. Another 

variation involves taking the average of the three nearest neighbours 

to determine the value of σ. This adaptive approach helps capture 

the variations in crowd density across different image regions. The 

images below illustrate the concept of using adaptive values and the 

resulting density maps. 
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                        Figure 2.1: Fixed σ of the Gaussian kernel [27] 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure 2.2: The σ is equal to the distance to the nearest neighbour. [27] 
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Figure 2.3: The σ is computed as the average of the distances to the 

three nearest neighbours, divided by 10. [27] 

 

2.3.1 Network architectures 

Different deep neural network models used for crowd counting were 

analysed and classified into three categories: single-column, multi-

column, and hybrid designs. Although some similarities exist with 

other CNN models, understanding the unique architecture of these 

models is crucial for accurate crowd counting. 

 

Single-column models: These are characterized by a sequence of 

cascaded convolution layers arranged in a single column. The 

general structure is as follows: 

 

                               Figure 2.4: Single-column model [31] 

 

Zhang et al. introduced the Crowd CNN [7] model, which consists 

of three convolutions (Conv) layers with distinct kernel sizes (7 × 

7, 7 × 7, and 5 × 5). These Conv layers are then followed by three 
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fully connected (FC) layers. The model takes 72 patches cropped 

from an image as input and produces a density map of size 18 × 18 

as the output. The model’s performance is assessed using the UCF 

CC 50 [8] dataset with an MAE of 467.0 and MSE of 498.5. 

Compact single-column models exhibit reduced accuracy when 

applied to dense images. Additionally, they encounter challenges in 

handling scale variations within images. 

 

Multi-column models: 

 

  

Figure 2.5: Multi-column model [31] 

 

Multi-column approaches are preferred due to their ability to learn 

features that can detect multi-scale variations and are independent 

of perspective. Zhang et al. [9] proposed the first multi-column 

CNN (MCNN), an architecture consisting of three CNN layers. 

Each column within the MCNN has different receptive fields and 

generates a density map that matches the shape of the ground truth 

map. The outputs from each column are combined by concatenation 

to get the density map finally. Notably, MCNN can process images 

of any size, making it versatile in its application. The model’s 

performance is assessed using the UCF CC 50 and Shanghaitech A 

and B dataset. MSE and MAE for part-A are 173.2 and 110.2, 

respectively. For part B, MSE and MAE are 41.3 and 26.4, 

respectively. On UCF CC 50, the MAE and MSE are 377.6 and 

509.1, respectively. Sindagi et al. introduced a simpler two-column 

network called cascaded multi-task learning (CMTL) [10]. This 
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architecture enables simultaneous prediction of images’ density 

map and counts density. In the two-column setup, the first is 

designed to estimate a high-level prior, such as the total headcount, 

while the second is dedicated to estimating the density map. By 

jointly training these two columns, the CMTL model aims to 

improve the accuracy of crowd-counting tasks. Liu et al. propose a 

Decide-Net [11] designed for simultaneous detection and density 

estimation. Decide-Net comprises three columns, each performing 

a distinct task. In the proposed architecture, the first column, Reg-

Net, employs a 5-layer CNN to predict the density map in cases 

where the target density map is unavailable. The second column, 

Det-Net, utilizes the Faster R-CNN network [12] to predict 

bounding boxes and generate a density map based on the detections. 

Lastly, the third column, Quality-Net, takes the density maps 

generated by Reg-Net and Det-Net and predicts the final density 

map. This three-column setup enables a comprehensive approach to 

density map estimation by leveraging different techniques and 

combining their outputs. This multi-column architecture enables 

Decide-Net to estimate the count and density maps effectively. 

Multi-column models have the potential to handle scale variations. 

Although multi-column models can effectively handle object scales, 

their adaptability is limited by the number of columns they contain. 

While multi-scale models can mitigate scale variations, they often 

require higher computational resources, increasing computational 

costs. Therefore, there is a trade-off between the model’s ability to 

handle scale variations and the computational efficiency of the 

approach. This is because multiple columns need to be trained in 

parallel, resulting in increased computational requirements. 

 

Mixed models: This network architecture combines the advantages 

of single and multi-column models. It incorporates specialized 

multi-path or multi-column modules into a single-column network; 

this architecture effectively addresses the limitations of both 

approaches. It enables improved detection of multi-scale features 
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while minimizing the increase in model size. This allows for 

improved detection of multi-scale features without significantly 

increasing the model size. 

 

Figure 2.6: Mixed model [31] 

 

The first crowd-counting model to adopt this architecture was the 

multi-scale CNN [13], proposed by Zeng et al. MSCNN is a single-

column CNN network that incorporates three multi-scale blobs. 

These MSBs draw inspiration from the Inception model [14] and 

consist of a naive Inception module. These MSBs allow MSCNN to 

capture multi-scale information effectively and improve its 

performance in crowd-counting tasks. The MSB incorporates Conv 

filters of varying sizes, including 3 × 3, 5 × 5, 7 × 7, and 9 × 9, to 

capture information at different scales. 

 

 

                                   Figure 2.7: MSB blob 

 

Cao et al. proposed a little different multi-scale module called 

SANet [15] 



25 
 

 

                                 Figure 2.8: SANet module 

 

Models with transfer learning: Compact crowd-counting models 

often experience a decline in accuracy when applied to high-density 

scenes. Transfer learning has emerged as a promising approach to 

address this issue and enhance the performance of crowd models in 

densely populated areas. By leveraging pre-trained models or 

knowledge from related tasks, transfer learning enables the model 

to benefit from prior learning experiences and generalize well to 

challenging scenarios with high crowd density. 

 

                    Figure 2.9: Models with Transfer Learning 

 

Li et al. proposed a CSR-Net [16] which utilizes the initial ten layers 

of the VGG-16 model, which is pre-trained on the ImageNet dataset 

[17], as the front-end convolutional neural network (CNN). CSR-

Net employs dilated convolutions in its back-end CNN, unlike 

traditional pooling operations, resulting in an all-convolutional 

network with larger receptive fields. This architectural choice 

facilitates easier training. Additionally, transfer learning is 

commonly employed in various architecture types, including single-
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column, multi-column, and encoder-decoder models, to leverage 

pre-existing knowledge and improve performance.  

 

Transformer-based models: Transformer models, known for their 

self-attention mechanisms, have achieved impressive natural 

language and speech processing results. This success has sparked 

interest in the computer vision field, leading to their application in 

various vision tasks. 

 

                                 Figure 2.10: Vision transformer 

 

Liang et al. proposed Trans-Crowd [18], a pure transformer 

architecture that is employed for crowd-counting tasks. Initially 

sized at (1152x768), each image is divided into six fixed-size 

patches of (384x384). These patches are then flattened into 

sequences, and then they are passed through the encoder of the 

Vision transformer (ViT) model [19], which has been pre-trained on 

the ImageNet dataset [17]. Then the output is given to a regression 

head which predicts the total count. Tian et al. proposed CCTrans 

[20], a transformer-based model designed for density map 

prediction. CCTrans shares the same input pipeline as the previous 

module but employs a distinct model architecture. It utilizes Twins 

[21] as the backbone feature encoder, transforming the 1D output 

into 2D feature maps. These feature maps are up sampled to 1/8 of 
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the input patch size and passed through regression heads to generate 

density maps. 

 

2.3.2 Learning approaches  

 

Current SOTs in crowd density estimation predominantly rely on 

point-level supervision, which involves fully supervised learning. 

While this approach yields highly reliable and accurate results, it 

demands costly annotations. All the models observed until this point 

have been trained in a fully supervised manner. To make crowd-

counting more cost-effective, some studies have investigated the use 

of weakly supervised learning methods. These methods leverage 

total headcount annotations, which are more affordable and easier 

to obtain. In recent advancements, transformer models have been 

introduced to enable weakly supervised learning. These models 

automatically capture semantic information from crowd images 

using their self-attention mechanism. An example is the Trans-

Crowd model [18], which is built upon the ViT architecture [19]. 

Trans-Crowd exclusively relies on count-level supervision to 

predict the crowd count, showcasing the potential of transformer 

models in weakly supervised crowd-counting tasks. 

 

2.3.3 Loss function 

 

Loss functions play a crucial role in crowd counting, significantly 

impacting the performance of image-based crowd-counting 

systems. Pixel-wise L2 loss focuses on the individual pixel values 

and does not consider the spatial relationships or contextual 

information between pixels. It treats each pixel independently and 

assigns equal importance to all pixels in the density maps. However, 

pixelwise L2 loss may only partially exploit the position 

information or the spatial structure present in the ground truth data. 

It does not consider the relationships between neighbouring pixels 
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or the global context of the crowd. So, to address these limitations, 

alternate loss functions have been proposed, such as Bayesian loss 

[22] introduced by Ma et al., which takes a different approach. 

Instead of generating a density map, it uses the ground truth dot 

map, which represents the positions of individuals in the crowd, to 

calculate class conditional distributions (CCD) for each position. 

The CCD provides information about the likelihood of a person 

being present at a specific location within the image. They used a 

simple pre-trained VGG19 backbone and three convolutional 

layered regression head network architectures. Wang et al. proposed 

a DM-count model [23] which uses OT loss. The traditional pixel-

wise L2 loss only considers the corresponding pixel in the ground 

truth. In contrast, the Optimal Transport (OT) loss considers the 

influence of nearby pixels based on their distances. The OT loss 

addresses the global optimization problem by considering the 

transport of all pixels, utilizing the position information of the 

ground truth for more precise supervision. However, using the OT 

loss requires external algorithms, such as the Sinkhorn algorithm 

[24], to extract spatial information from the ground truth, which can 

be computationally inefficient. Shu et al. proposed Chf-Loss [25] as 

Extracting global spatial information without the aid of external 

algorithms, such as the Sinkhorn algorithm [24] for the OT loss, can 

be challenging. However, by transforming the finite measure into 

the frequency domain, the spatial information becomes 

hierarchically organized within a compact range around the origin, 

and they use characteristic functions to do that. Literature survey 

table for sot results-take it from any survey paper 
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2.4 Datasets  

 

NWPU-crowd: This NWPU dataset [26] has 5109 images which 

contain 2,133,375 annotated instances, and labels are both point and 

box. The advantages of this dataset are presence of negative samples 

as they refer to instances or regions within an image that does not 

contain the object of interest. Including negative samples in the 

dataset helps the deep learning model to discriminate between the 

object of interest and other irrelevant parts of the image. Fair 

evaluation could be achieved by ensuring that the dataset covers a 

wide range of scenarios and that the annotations are accurate and 

consistent, as it is essential while objectively comparing the 

performance of different models and techniques. High-resolution 

images as it allows the model to capture more intricate features, 

leading to more accurate and nuanced predictions.  

JHU crowd: This dataset [27] has 4372 images which contain 1.51 

million annotations with an average resolution of 1430x910. The 

dataset contains numerous images that incorporate weather-related 

degradations and variations in illumination, presenting a highly 

challenging dataset. It offers labels at the head level, including dots, 

approximate bounding boxes, and blur-level, as well as image-level 

labels indicating scene type and weather conditions.  

UCF-QNRF: This dataset [28] contains 1535 images with 

1,251,642 annotated instances with an average resolution of 

2013x2902. The advantage of this dataset is that it contains 

buildings, vegetation, sky and roads usually present in realistic 

captured scenarios. This makes the dataset more realistic and 

challenging. Also, it is very diverse in terms of image resolutions, 

perspectives and crowd density. Also, it contains images from all 

parts of the world.  

UCF-CC-50: This dataset [8] has 50 images with 63,974 annotated 

instances with an average resolution of 2101x2888. It contains 

images of a highly dense crowd, ranging between 94 to 4543. The 
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small size and high density make it more challenging. 

Shanghaitech part A and part B: Part A of this dataset [9] contains 

482 images (300 for training, 182 for testing) and high-density 

crowds collected from the Internet. Part B contains 716 images (400 

for training, 316 for testing) and is captured from busy streets in 

urban areas of Shanghai. The average resolution of images in 

Shanghaitech part A 589x868 pixels. The scenes in part B are less 

crowded than those in part A. 

 

2.5 Evaluation metrics  

 

Mean absolute error (MAE): MAE measures the average absolute 

difference between the predicted and actual counts of individuals in 

a crowd. It provides a straightforward understanding of the average 

magnitude of the prediction errors. A lower MAE indicates better 

accuracy in estimating the crowd count. MAE is useful for 

interpreting the model’s overall performance regarding absolute 

count errors. 

 

                              MAE = 
1

𝑁
∑ |𝐶𝐼𝑖

𝑝𝑟𝑒𝑑
− 𝐶𝐼𝑖

𝑔𝑡|𝑁
𝑖=1                   (2.2) 

 

Mean squared error (MSE): MSE calculates the average squared 

difference between the predicted and actual counts of individuals. 

MSE penalizes larger errors more severely than MAE due to the 

squaring operation. It provides a measure of the average squared 

magnitude of the prediction errors. MSE is particularly useful for 

assessing the model’s performance regarding the variance or spread 

of errors. Lower MSE indicates better precision and less variability 

in the prediction errors. 

 

                                MSE = 
1

𝑁
∑ |𝐶𝐼𝑖

𝑝𝑟𝑒𝑑
− 𝐶𝐼𝑖

𝑔𝑡|
2

𝑁
𝑖=1                    (2.3) 

                                           N = Number of test images 

 𝑪𝑰𝒊
𝒑𝒓𝒆𝒅

= 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 𝒓𝒆𝒔𝒖𝒍𝒕𝒔, 𝑪𝑰𝒊
𝒈𝒕

= 𝒈𝒓𝒐𝒖𝒏𝒅 𝒕𝒓𝒖𝒕𝒉𝒔 



31 
 

2.6 Conclusion  

 

Based on the comprehensive analysis, it is evident that researchers 

have primarily focused on addressing two major challenges in 

developing crowd-counting models: scale variation and the scarcity 

of high-quality labelled data. Scale variation refers to the ability of 

the models to estimate counts in images with varying crowd 

densities accurately. Additionally, the lack of efficient ground truth 

labelling methods has posed difficulties in providing reliable 

supervision for these models. These challenges have driven the 

exploration of innovative techniques to tackle scale variation and 

improve the quality and availability of labelled data for more 

accurate crowd counting. 
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Chapter 3  

                  Proposed framework 

 

 

3.1 Crowd counting in the frequency domain 

 

In the Chf-loss [25] paper, the authors proposed a novel approach 

by utilizing the characteristic function to transform the density map 

into the frequency domain. This innovative technique offers 

computational benefits compared to previous state-of-the-art loss 

functions like OT loss and p2p loss, which require complex 

algorithms to calculate the distance matrix for determining global 

relationships in the context of global optimization problems. 

Furthermore, the authors argue that a compact representation of the 

ground truth is more conducive to the learning process of deep 

learning models than a sparse representation.  

 

                                         Figure 3.1: Chf-loss [25] 

 

The Fast Fourier Transform (FFT) was employed to compute the 

frequency response of the predicted and ground truth density maps, 

inspired by their characteristic function. Subsequently, the L1 loss 

was utilized to calculate pixel-wise differences between the two, 
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allowing for accurate quantification of the loss in the predicted 

density map. 

 

                                           Figure 3.2: Fft-loss 

 

3.1.1 Network architecture 

 

 

                                     Figure 3.3: FFT-model 

 

To ensure stable results during the experiments, the cascaded-mtl 

(CMTL) model was used as the base model. Its consistent 

performance and reliability made it an ideal choice for the research. 

Further details are given in results and discussions. 

 

 



35 
 

3.2 Classification approach  

 

The motivation behind adopting this approach lies in overcoming 

the scaling problem in crowd counting. The scaling problem refers 

to the substantial variations in crowd sizes observed within a single 

scene and across different scenes. The importance of effectively 

addressing the scaling challenges is acknowledged and understood. 

The focus is on developing a method or technique to handle these 

challenges and provide a solution that can accurately estimate crowd 

counts, irrespective of the encountered scale variations. 

 

3.2.1 Introduction  

 

The scaling problem in crowd counting was addressed by opting for 

an alternative approach rather than relying on multi-channel bulky 

models. Instead, a classifier was explored to determine the most 

suitable model for a given image based on its density, specifically 

the number of people present. The densities were categorized into 

three groups: low density (less than 50 people), medium density 

(between 50 and 500 people), and high density (above 500 people). 

Initially, three different models were separately pre-trained using 

this dataset. Subsequently, the entire dataset was divided by passing 

each image through the corresponding model to determine the best-

performing model for each image. So, the data is segregated model-

wise. A classifier was then trained on this segregated data to predict 

a given image's appropriate model (model 1, model 2, or model 3). 

 

3.2.2 Network architecture  

 

The base model utilized in this study is identical to the model 

employed in the dm-count study, which consists of a pre-trained 

VGG16 network and a simple three-layer regression head. For 
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classification tasks, the Resnet-50 network was employed. So, the 

overall network after combining all these blocks is as follows: 

 

                            Figure 3.4: Initial pre-training stage 

 

 

                            Figure 3.5: Classifier training stage 
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                                    Figure 3.6: Final stage 

 

In the first stage, separate training was conducted for each model 

according to the density class. In the second stage, a classifier was 

trained using the labels obtained with the assistance of three pre-

trained models named M1, M2, and M3 from stage one. 

Subsequently, a classifier was trained based on these labels, 

resulting in three trained models and a classifier. Data is passed 

through this pipeline during testing, initially going through the 

classifier and then to the selected model to obtain the final 

estimation. The classifier acts like a switch here. 
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3.3 Multiscale model approach  

 

An additional column with a different kernel size (5x5) was 

introduced to the existing setup to achieve distinct receptive fields. 

While keeping all other factors unchanged, improved results were 

observed compared to the base model for both the JHU and SHA 

datasets. The primary objective was to enhance the performance 

specifically for high-density data in the JHU dataset. As this dataset 

provided sufficient data for training and validation, concerns about 

overfitting were less prominent. However, the Shanghaitech dataset 

presented a challenge due to its limited availability of training data. 

To address this, experiments were conducted by freezing specific 

layers of the VGG16 backbone network to optimize the results in 

this context. 

 

3.3.1 Network architecture 

 

 

          

                                  Figure 3.7: Base-model 
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                                       Figure 3.8: Vgg-16 

 

As shown below, an additional layer with a kernel size 5x5 was 

attached to the network architecture. This layer was designed to 

capture extra-scale features. The output of this layer was then 

concatenated and fed into the density map estimation layer, which 

had a kernel size of 1x1.  

 

                               Figure 3.9: multiscale model 1 

 

By incorporating additional layers into the network, its size and the 

number of parameters grew larger. However, a technique called 

dilation convolution was employed to mitigate this increase. This 

approach involved using sparse kernels, effectively expanding the 

receptive field without adding more parameters or computational 
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load. To illustrate, by employing a kernel size 3x3 (requiring nine 

parameters) and a dilation rate of 2, the receptive field achieved was 

equivalent to that of a standard 5x5 convolutional kernel. 

 

                                  Figure 3.10: multiscale model 2 

 

 

 

                                Figure 3.11: Dilated convolution [16] 
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3.4 Self supervised approach 

In transfer learning, a model is typically first trained on a large 

dataset and a complex task, such as image classification on a vast 

image dataset. This initial training helps the model learn general 

features and representations useful for various tasks. The learned 

knowledge is transferred or adapted to a new, smaller dataset or a 

different but related task. Transfer learning can be explained in fine-

tuning, pretraining, and linear probing.  

• Pretraining: Pretraining refers to training a model on a 

large dataset and a specific task that is typically unrelated to 

the target task. This is commonly done using unsupervised 

learning or self-supervised learning techniques. For 

example, in computer vision, a model can be pretrained on a 

large dataset of images by solving a proxy task such as 

predicting the relative positions of image patches. The goal 

of pretraining is to learn general representations and features 

that capture helpful information from the data. 

• Fine-tuning: Fine-tuning takes a pre-trained model and 

further trains it on a smaller, task specific dataset related to 

the target task. The pre-trained model’s weights are used as 

initial weights for the new model, and the model is then 

trained on the target task’s data. The model’s parameters are 

adjusted or updated during fine-tuning to adapt to the new 

task. This process allows the model to refine its learned 

representations and adapt them to the target task. 

• Linear probing: Linear probing, also known as linear 

evaluation, is a technique used to evaluate the quality of 

learned representations in a transfer learning scenario. After 

the pre-trained model has been fine-tuned on the target task, 

a linear classifier or an external neural network is added to 

the pre-trained model’s frozen layers. The new classifier is 

then trained using the target task’s labelled data. The 
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purpose of linear probing is to assess the transferability and 

quality of the learned representations by measuring the 

performance of the linear classifier on the target task. It 

helps evaluate how well the pre-trained model has captured 

relevant, valuable information for the specific target task.  

 

Transfer learning offers several benefits, including: 

• Reduced training time: By utilizing pre-existing 

knowledge, transfer learning can significantly reduce the 

time and computational resources required for training 

models on new tasks. 

• Improved performance: Transfer learning allows models 

to start with a strong foundation of knowledge, which often 

leads to better performance on the target task, especially 

when the new dataset is limited. 

• Effective generalization: Models trained with transfer 

learning can better generalize patterns and features learned 

from the source task to the target task, even when the two 

tasks are not identical. Pre-training a model on a large 

dataset and a complex task allows it to learn generic features 

and representations applicable to various related tasks. 

These features capture low level patterns and high-level 

concepts often transferable across different domains.  

After gaining a basic understanding of transfer learning, let us 

discuss the approach to self-supervised learning employed in this 

study. So instead of relying on human-labelled data, self-supervised 

learning leverages the abundant unlabelled data that is often easier 

to obtain. The key idea is to design pretext tasks that require the 

model to learn valuable representations or predictive patterns from 

the data. These learned representations can then be transferred to 

downstream tasks or fine-tuned for specific tasks where labelled 

data is scarce or expensive.  
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Self-supervised learning can be implemented in various ways, and 

some popular methods include:  

• Contrastive learning: Contrastive learning aims to 

maximize the similarity between similar examples and 

minimize the similarity between different examples. It trains 

the model to distinguish positive pairs (similar examples) 

from negative pairs (dissimilar examples) in the latent space. 

By doing so, the model learns representations that capture 

relevant information about the data.  

• Generative models: Generative models, such as 

autoencoders or generative adversarial networks (GANs), 

are used in self-supervised learning. These models are 

trained to reconstruct the input data from a compressed 

representation. By learning to reconstruct the original data, 

the models implicitly learn meaningful representations that 

capture the underlying structure of the data.  

 

3.4.1 Network architecture  

 

For this case, a task known as "image inpainting" or "patch 

prediction" was utilized. This task aims to train the model to fill in 

the missing patches based on the surrounding context of the image. 

By removing random patches from an image and asking the model 

to predict the missing content, information about the image's 

structure and context is implicitly provided to the model. The model 

needs to understand the spatial relationships and dependencies 

between different parts of the image to make accurate predictions. 

The model, training process, and inspiration were obtained from 

Kaiming He et al.'s masked autoencoder [29]. The VIT backbone 

was pre-trained in a self-supervised manner on the crowd-counting 

database. The data comprises several training datasets, as more data 

is needed to observe improved or better results. Unlabelled data 

available on the Internet will be utilized for this purpose. 
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                               Figure 3.12: Masked autoencoder [29] 

 

Another method being explored is multi-tasking, as it has 

demonstrated improved results in other fields, as proven by Liang 

et al.'s Supervised MAE [30]. 

 

 

                                  Figure 3.13: supervised MAE [30] 
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                              Figure 3.14: Multitask model. 
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Chapter 4  

                 Results and discussion  

 

 

4.1 Frequency domain analysis  

 

The Shanghaitech-A dataset was utilized for this study.  

The MAE and MSE values obtained for the model are nearly the 

same as the base model. Here the β value indicates the contribution 

of frequency loss Lf in the model’s training. 

 

 

                                                  Table 4.1 

 

The research aimed to enhance the model's ability to learn specific 

patterns within density maps by incorporating additional frequency 

maps for supervision. However, a difference in approach existed 

between the work conducted and the main paper that was 

referenced. The main paper utilized a characteristic function with 

mathematical properties that enable quantitative counting and 

supervision based on the ground truth and predicted frequency 

maps. In contrast, the same level of quantitative count supervision 
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could not be achieved using the frequency map obtained through 

Fast Fourier Transform (FFT) due to the inability to accurately 

determine the count from it. 

 

4.2 Classification approach 

 

 

                                             Table 4.2 

 

For this analysis, the JHU-crowd dataset was used. Upon examining 

the Mean Squared Error (MSE) and Mean Absolute Error (MAE) 

values, it becomes apparent that the model's performance is 

significantly poorer than the base model. The reasons for these 

results are as follows. First, this model has so many dependencies 

that the whole model comprises four sub models: three density 

estimation models for each class and one classifier model. To get 

better results, all of them need to perform well. The classifier is not 

efficient, and the reason for that is it might be tough to find the 

distribution for the data of each class as some models trained on low 

density gave good results on some of the high-density images and 

so it might be difficult for regular single column model to capture 

this diverse nature. So, Res-Next-50 or other multi-column models 

should have been used to capture multi-scale information. 

Additionally, the models trained on high-density images yielded 

inferior results, possibly due to using the same network architecture 

for all classes without adjusting their receptive fields. Therefore, 

experiments were initiated to enhance the individual models, 

particularly those trained on high-density data. 
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4.3 Multiscale analysis  

 

Multiscale model 1: Results for JHU-high and JHU-full are given 

below. Both metrics have shown improvement compared to the base 

model. Notably, the significant improvement in MSE suggests 

enhanced generalization, robustness, and stability of the model in 

dealing with outliers. 

 

 

 

 

                                                Table 4.3 

 

 

 

                                                Table 4.4 

 

In the case of the Shanghaitech-A dataset, certain pre-trained layers 

of VGG16 were frozen to address the overfitting issue. 

 

 

 

 

 

 

                                                    Table 4.5 
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Multiscale model 2: Improved MSE for JHU-full and 

Shanghaitech-A says that the extra column with dilated convolution 

improves the stability and generalization capability of the model. 

 

 

                                                   Table 4.6 

 

 

                                                   Table 4.7 
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4.4 Self-supervised  

 

Initially, a task was attempted where the model encodes the input 

into a lower-dimensional representation. This multitasking 

approach was applied to JHU-high-density data. 

 

  

 

                                                Table 4.8  

 

Although the results obtained are satisfactory, there is a need for 

improved stability. Stability refers to consistently reproducing these 

results on the same dataset and achieving favourable outcomes on 

other datasets. The experimentation phase is underway, exploring 

various adjustments to hyperparameters, incorporating self-learning 

tasks, and employing other approaches to enhance stability. 
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Chapter 5  

            Conclusion and future work  

 

 

5.1 Conclusions  

 

Crowd counting faces challenges in handling complex scenarios 

where current models struggle. Developing lightweight models for 

real-time operation and training is crucial to ensure practical 

implementation. These efficient and fast models enable real-time 

crowd analysis. Achieving good generalization across diverse 

crowd distributions is vital for accurate counting. Overcoming the 

limitations in data annotation and addressing these challenges will 

drive the advancement of crowd-counting techniques, enabling 

more accurate and efficient crowd analysis in real-world 

applications.  

 

5.2 Future works  

 

There are several exciting directions for advancing crowd counting. 

Firstly, refining contextual information and exploring more 

informative features such as spatial layout, crowd dynamics, and 

environmental factors can enhance accuracy. Additionally, 

leveraging self-supervised and weakly supervised training 

techniques with transformers can improve performance. Creating 

comprehensive datasets, incorporating domain adaptation methods, 

and exploring hybrid models combining transformers with other 

techniques are promising future research avenues. These 

advancements will contribute to more robust and generalized 

crowd-counting systems with crowd management, security, and 

urban planning applications. 
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