
Imagined Speech EEG-based BCI Using Dynamic 

Mode Decomposition 

 

MTech. Thesis 

 

 

 

By 

 

Akah Precious Chiemena 

 

 

 

 

 

 

 

DEPARTMENT OF ELECTRICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

JUNE 2023



Imagined Speech EEG-based BCI Using Dynamic 

Mode Decomposition 

 

 

A THESIS 

 

Submitted in partial fulfillment of the 

requirements for the award of the degree 

of 

Master of Technology 

 

 

 

by 

Akah Precious Chiemena 

 

 

 

 

DEPARTMENT OF ELECTRICAL ENGINEERING 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

JUNE 2023



 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

CANDIDATE’S DECLARATION 

I hereby certify that the work which is being presented in the thesis entitled Imagined speech EEG-based 

BCI using dynamic mode decomposition in the partial fulfillment of the requirements for the award of the 

degree of MASTER OF TECHNOLOGY and submitted in the DEPARTMENT OF ELECTRICAL 

ENGINEERING, Indian Institute of Technology Indore, is an authentic record of my own work carried 

out during the time period from July 2021 to June 2023 of MTech. Thesis submission  under the supervision 

of Prof. Ram Bilas Pachori, Indian Institute of Technology, Indore. 

The matter presented in this thesis has not been submitted by me for the award of any other degree of this or 

any other institute. 

 

                                                                                                                                      15:06:2023 

                                                                                                      Signature of the student with date 

                                                                                                      (AKAH PRECIOUS CHIEMENA) 

---------------------------------------------------------------------------------------------------------------------------- 

This is to certify that the above statement made by the candidate is correct to the best of my knowledge. 

 

 

Signature of the Supervisor of  

M.Tech. thesis #1 (with date) 

  

  (Prof. Ram Bilas Pachori)                  

----------------------------------------------------------------------------------------------------------------------------

AKAH PRECIOUS CHIEMENA has successfully given his MTech. Oral Examination held on the     

12TH May, 2023.                                       

Signature(s) of Supervisor(s) of MTech. thesis                  Convener, DPGC    

Date:                                                Date:                                                

 

Signature of PSPC Member #1          Signature of PSPC Member #2          

Date:                                    Date:    

   

-----------------------------------------------------------------------------------------------------------------------------                               

16.06.2023

16.06.2023

June 16, 2023

16/06/2023

16/06/2023



ACKNOWLEDGEMENTS 

Firstly, I would like to express my sincere gratitude to my supervisor Prof. Ram Bilas Pachori for his 

continuous support and valuable guidance. His guidance helped me through my work. I have been able 

to push myself beyond my expectations with his excellent supervision and encouragement.  

 

I would like to thank my PSPC members Dr. Sanjram Premjit Khanganba ,Dr. Nitya Tiwari, Dr. 

Swaminathan and Dr. Amod C. Umarikar  for their insightful comments and suggestions towards my 

research. I sincerely acknowledge IIT Indore and ICCR for supporting my M.Tech. program through the 

scholarship provided. 

 

Last but not least, my work would not have been possible without the encouragement of my parents, my 

beloved wife, Dr. Ali, Lt. Col. Atomode, Dr. Paul Enenche, Apostle Joshua Selman, Prof. Sadiq Thomas, 

Prof. Dili Dogo and Ms. Trupti Rathod. My heartfelt gratitude goes to Dr. Pradeep Chauddhary, Vivek 

Kumar Singh, Shailesh Bhalerao and distinguished members of the signal and analysis research 

laboratory whose tremendous support has helped me to s stay positive. 



DEDICATION 

 

This thesis is dedicated to my Lord and personal savior, Jesus Christ. 

                              



 

Abstract 

To aid individuals with speech impairments, the research aims to decode imagined speech from non-

stationary EEG signals using brain-computer interfaces (BCIs). The proposed method combines 

multichannel EEG signals with time-frequency representations (TFRs) based on Hilbert spectral 

analysis of modes decomposed by dynamic mode decomposition (DMD). The imagined 

electroencephalogram (EEG) signals of six imagined speech commands (Up, Down, Left, Right, 

Upward, and Downward) from 15 subjects sampled at 1024 Hz were measured using a six-concatenated 

channel standard physiological signal system; the signal was filtered to remove artifacts between 2 and 

40 Hz using a finite impulse response pass-band filter. The proposed method employs a convolutional 

neural network (CNN) model that takes TFRs as input images to decode the imagined speech 

commands.  

The parameters of the model are optimized to achieve the best performance in decoding speech 

commands. In a comparison with the multi-fast and adaptive empirical mode decomposition method, 

the proposed method utilizing DMD achieves significantly improved decoding accuracy. EEG signals 

are decoded with an accuracy of 70% for six classes of imagined speech commands. DMD and CNN 

are integrated in the proposed method to extract dynamic information from imagined speech EEG 

signals, represented as spatial modes and their instantaneous frequencies (alpha and beta). 

Integrating EEG signals with imagined speech commands improves decoding accuracy and provides 

practical methods for extracting meaningful information from them. It is concluded that individuals 

with speech stimulation challenges can benefit from the Imagined Speech EEG-based BCI system as a 

communication facilitation tool. The study proposes a novel approach to decoding imagined speech 

from multichannel EEG signals that combines DMD, TFRs, and CNN. We have implemented subject-

independent and subject-interdependent BCI models to demonstrate that alpha and beta bands improved 

the decoding accuracy of imagined speech better than other frequency bands and the results are better 

than those presented in the literature, and we have determined that EEG-based BCIs can be useful for 

individuals with speech impediments. 

 Keywords: Dynamic mode decomposition, electroencephalogram, brain computer interfaces, time 

frequency representations and convolutional neural network  
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Chapter 1 

Introduction 

The introduction of the study provides an overview of the research area and sets the context for the 

investigation. It begins by highlighting the significance of brain-computer interfaces (BCIs) in enabling 

direct communication between the human brain and external devices [66, 71-75], particularly for 

individuals with speech impairments. The introduction emphasizes the limitations of traditional 

communication methods for individuals with speech disabilities and the potential of BCIs to bridge this 

gap. It highlights the use of electroencephalography (EEG) as a non-invasive and accessible modality 

for capturing neural activity associated with speech production [51-54]. 

Furthermore, the introduction discusses the challenges involved in decoding imagined speech commands 

from EEG signals due to their complex and dynamic nature. It highlights the need for advanced signal 

processing and machine learning techniques to extract relevant information and translate it into 

actionable commands [55, 59]. To address these challenges, the study proposes the utilization of dynamic 

mode decomposition (DMD) as an efficient extraction technique of imagined signal components with 

convolutional neural networks (CNNs) as a classification model [38]. The introduction provides a brief 

overview of DMD and its applications in analyzing complex, non-linear systems, as well as the 

effectiveness of CNNs in learning and recognizing patterns in high-dimensional data. 

Additionally, the introduction outlines the objectives of the study, which include developing a novel BCI 

system for imagined speech decoding, investigating the efficacy of DMD in extracting informative 

features from EEG signals, and evaluating the performance of the CNN-based classification model. By 

providing this comprehensive introduction, the study establishes the rationale for the research, highlights 

the gaps in existing literature, and presents the specific goals and methodologies that will be employed 

throughout the investigation. This sets the stage for the subsequent sections of the thesis, where the 

research problem, methodology, results, and discussion are elaborated upon in detail. 
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1.1 Background and Motivation 

The background and motivation for the thesis stem from the need to develop effective communication 

technologies for individuals with speech impairments. Traditional methods of augmentative and 

alternative communication have limitations, and there is a growing interest in utilizing BCIs to provide 

a direct means of communication. BCIs that decode imagined speech from EEG signals hold great 

potential in this regard. 

The motivation behind this thesis lies in addressing the challenges associated with decoding imagined 

speech from non-stationary EEG signals. The existing methods for decoding imagined speech often 

struggle with the complexity and variability of EEG signals, which limits their accuracy and usability. 

Therefore, there is a need for innovative approaches that can extract meaningful information from EEG 

signals and decode imagined speech commands more accurately. 

The thesis aims to explore the use of DMD as a novel technique for analyzing EEG signals in the context 

of imagined speech [12]. DMD offers a unique advantage in capturing dynamic spectral information 

from EEG signals by decomposing them into spatial modes and their associated instantaneous 

frequencies. By integrating DMD with advanced machine learning techniques such as CNNs, it is 

anticipated that the proposed BCI system can achieve improved accuracy and reliability in decoding 

imagined speech commands [53]. 

The successful development of an imagined speech EEG-based BCI using DMD has the potential to 

significantly enhance the quality of life for individuals with speech impairments. By providing a direct 

and efficient means of communication, this technology can empower individuals to express themselves 

more effectively and engage in various social and professional interactions. Moreover, the utilization of 

DMD in decoding imagined speech holds promise for advancing the field of BCIs by introducing a novel 

approach that extracts valuable information from imagined speech EEG signals and improves the overall 

performance of BCI systems. 

1.2 Research Problem and Objective  

The research problem addressed in the thesis boarders on the challenge of accurately decoding imagined 

speech from EEG signals. Existing methods for decoding imagined speech have limitations in terms of 

accuracy and robustness, hindering their practical application in real-world scenarios. Therefore, there 
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is a need to develop an innovative approach that can effectively extract and interpret meaningful 

information from EEG signals related to imagined speech commands [60-72]. 

The primary objective of this thesis is to investigate the feasibility and effectiveness of utilizing DMD 

in the context of EEG-based BCIs for decoding imagined speech. DMD offers the potential to capture 

the dynamic nature of EEG signals by decomposing them into spatial modes and their associated 

instantaneous frequencies. By integrating DMD with advanced machine learning techniques such as 

CNNs [38,41], the objective is to develop a robust and accurate system that can decode imagined speech 

commands from EEG signals. 

Furthermore, the thesis aims to evaluate and compare the performance of the proposed DMD-based BCI 

approach with existing methods in terms of decoding accuracy, computational efficiency, and usability, 

Comparative analysis will be conducted to demonstrate the advantages and potential of the DMD-based 

approach in improving the overall performance of EEG-based BCIs for imagined speech [53]. 

Ultimately, the research objectives of this thesis are to contribute to the advancement of EEG-based BCIs 

for imagined speech [68-70] and provide a reliable and efficient communication tool for individuals with 

speech impairments, by addressing the research problem and achieving the stated objectives, this thesis 

seeks to pave the way for future developments in the field, leading to improved communication 

assistance for individuals with speech limitations. 

1.3 Significance of the Study 

The study holds significant importance in the field of BCIs and communication assistance for individuals 

with speech impairments [64]. The findings and contributions of this research have several key 

implications. 

Firstly, the proposed DMD-based approach has the potential to significantly enhance the decoding 

accuracy of imagined speech from EEG signals. By leveraging the dynamic nature of EEG signals 

through DMD, the system can capture and interpret the intricate patterns associated with imagined 

speech commands [55]. This improvement in accuracy opens up new possibilities for developing more 

reliable and effective BCIs that can accurately translate the intentions of individuals with speech 

limitations into meaningful commands. 
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Secondly, the integration of DMD with advanced machine learning techniques which includes CNN, 

will not only enhances decoding accuracy but also improves the overall performance of EEG-based 

BCIs. The combination of these methods provides a robust framework for extracting relevant information 

from EEG signals and translating it into actionable commands. This has practical implications for 

individuals with speech impairments, as it offers a reliable and efficient means of communication that 

can potentially improve their quality of life [53]. 

Furthermore, the study contributes to the growing body of knowledge in the field of BCIs and 

neurorehabilitation. By exploring the use of DMD and its integration with existing techniques, the 

research expands the understanding of how EEG signals can be effectively utilized for decoding 

imagined speech. The insights gained from this study can inspire further advancements and innovations 

in the development of BCIs, not only for imagined speech but also for other applications in 

neurorehabilitation and assistive technologies. 

In conclusion, the significance of this study lies in its potential to improve the accuracy and usability of 

EEG-based BCIs for imagined speech, offering a promising solution for individuals with speech 

impairments. The findings and contributions of this research have the potential to shape the future of 

communication assistance technologies, facilitating better interaction and integration for individuals with 

speech limitations [101,102]. 

1.4 Thesis Structure 

The following outline outlines the organization of the thesis: 

1. Introduction: This section provides an overview of the research topic and introduces the motivation 

and significance of the study [70,101]. It outlines the objectives, research questions, and scope of the 

thesis, setting the context for the subsequent chapters. 

2. Review of past works and problem formulation: This chapter reviews the existing literature on EEG-

based imagined speech BCIs, highlighting the limitations and challenges in current approaches. It 

identifies the research gap and formulates the problem statement that the thesis aims to address. The 

chapter also discusses relevant concepts, theories, and methodologies used in the field.3. Imagined 

speech EEG-based BCI framework: This chapter delves into the theoretical foundations and conceptual 

framework of the imagined speech BCI. It explores the cognitive processes involved in generating 
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imagined speech signals and provides an overview of the EEG-based BCI paradigms used for decoding 

speech intentions. The chapter discusses the different approaches and methodologies employed in 

imagined speech BCIs, including signal processing techniques, namely, dynamic mode decomposition 

(DMD) for efficient extraction of signal modes, feature extraction technique and classification. 

4. Experimental protocol: This chapter describes the experimental setup and methodology used in the 

study. It outlines the data collection process, including the participant selection criteria, EEG recording 

procedures, and experimental tasks for generating imagined speech signals. The chapter also discusses 

the pre-processing steps and data preparation for input into the DMD algorithm. 

5. Results and analysis: This chapter presents the findings of the study and provides a detailed analysis 

of the results. It discusses the performance metrics, such as classification accuracy and decoding 

accuracy, obtained from the EEG-based imagined speech BCI using DMD. The chapter also compares 

the results with existing methods and discusses the significance and implications of the findings. 

6. Conclusion and scope for future work: The final chapter concludes the thesis by summarizing the key 

findings and contributions of the research. It discusses the implications of the study in the field of EEG-

based imagined speech BCIs and highlights the limitations and challenges encountered during the 

research. The chapter also provides recommendations for future research directions, suggesting areas for 

further exploration and improvement in the field. 

Basically, the thesis structure outlined above ensures a logical progression of ideas and analysis, starting 

from the introduction and literature review, moving through the methodology and results, and concluding 

with a discussion of the implications and potential for future work. 
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Chapter 2 

Review of Past Works and Problem Formulation 

The literature review section of the research on imagined speech EEG-based BCI using DMD, provides 

a comprehensive overview of existing studies and research works relevant to the field. It serves as a 

foundation for understanding the current state of knowledge and identifying gaps in the literature. This 

section begins by discussing the significance of EEG signals in diagnosing neurological and 

physiological disorders and emphasizes the importance of extracting relevant features for accurate 

detection. The limitations of traditional methods such as Fourier transform (FT) in analyzing non-

stationary EEG signals are highlighted, leading to the exploration of alternative techniques such as time-

frequency representations and wavelet transform (WT) [2,30, 5-6]. The introduction of empirical mode 

decomposition (EMD) as a data-driven approach to analyses non-linear and non-stationary signals is 

discussed, along with its advantages over other decomposition techniques [21]. Additionally, the section 

mentions the successful application of various signal decomposition methods in classification and 

prediction problems, indicating their potential in the context of imagined speech decoding. Overall, the 

literature review sets the stage for the subsequent methodology and contributes to the development of a 

comprehensive understanding of the research area. 

2.1 Review on Imagined Speech BCI 

Neural signals possess temporal, spatial, and spectral characteristics that hold valuable information for 

diagnosing various neurological and physiological disorders [102]. The extraction of features from 

various neurological responses is a significant research area, as the choice of features directly impacts 

the performance of detection [78]. In literature, several methods have been proposed for the decoding of 

imagined speech EEG signal from various databases [80-81]. Traditionally, the Fourier transform (FT) 

has been widely used to analyze EEG signals and generate spectral features. However, the FT assumes 

stationarity in the signal, which is not applicable to non-stationary real-world signals like EEG. 

Furthermore, the FT lacks time information [103]. 

To address these limitations, contemporary methods based on time-frequency representations have been 

developed. One of such method is the short-time Fourier transform (STFT), which examines local signal 
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characteristics using a window [84]. However, the STFT's use of a fixed window-based filter which 

restricts simultaneous improvement in time and frequency resolutions. WT overcomes this issue by 

employing multiple filters with varying bandwidths, enabling multi-resolution analysis [4-7]. The WT 

first utilizes a window encompassing the entire signal to extract low frequencies, resulting in good time 

resolution. It then translates and scales the window to capture higher frequency information, achieving 

improved frequency resolution [8]. Despite these advantages, the WT still struggles with computational 

efficiency to enhance both time and frequency resolutions simultaneously and to obtain high-resolution 

information in both domains, a large number of wavelet coefficients need to be computed and analyzed. 

This can result in a significant computational burden, especially for long-duration signals or high-

resolution analyses [9]. 

To overcome these difficulties, the EMD algorithm was introduced as a means of examining signals that 

are both non-stationary and non-linear [12]. EMD is a data-oriented technique that breaks down the 

signal into intrinsic mode functions (IMFs), which represent a finite number of oscillations. These IMFs 

are not predefined basis functions; instead, they adhere to specific criteria: (i) the count of extrema and 

zero-crossings must either be equal or differ by no more than one, and (ii) the mean of the envelope 

formed by local maxima and minima is zero at any given point. EMD provides several advantages, 

including adaptive scales, the ability to separate oscillations based on data, and local multi-resolution 

analysis. In contrast, the WT examines signals on a global level using predetermined filter scales [21]. 

Various methods for signal decomposition, such as WT, STFT, EMD, variational mode decomposition 

(VMD) [10], singular value decomposition (SVD) [26], synchro squeezing transform (SST) [29], and 

their variations [8-23], have been effectively employed in classification and prediction tasks. 

These techniques have demonstrated their effectiveness in capturing relevant features from EEG signals, 

aiding in accurate classification and prediction tasks. In recent years, there has been growing interest in 

the use of multi-resolution analysis (MRA) for decoding imagined speech [56]. MRA involves 

decomposing speech signals into multiple levels of resolutions, allowing for more precise analysis of the 

various components of the signal [104]. 

The existing approaches have shown the promise of improving the accuracy of decoding imagined 

speech, and several studies have been conducted to investigate its effectiveness. In [101] an automated 

recognition of imagined commands from EEG signals using multivariate fast and adaptive empirical 

mode decomposition-based method for decomposition of multichannel EEG signals into modes to 
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compute slope domain entropy and L1-norm features from six-EEG channels using k-nearest neighbor 

(KNN) to actualize an average accuracy of 60.72% was proposed [9, 86]. Studies have shown that EMD 

can extract features from EEG signals of participants imagining speaking different vowel sounds and 

different words, which can then be used to decode the intended speech from the EEG signals. The 

extracted features were used to accurately classify the imagined vowel sounds with a high degree of 

accuracy and to decode the intended words with a high degree of accuracy [53-59]. Recent studies have 

explored the decoding of imagined hand movements using EEG signals and demonstrated the feasibility 

of reconstructing hand trajectories accurately [60-62]. Furthermore, authors in [6] investigated the neural 

basis of imagined speech production and proposed a framework for decoding speech-related information 

from EEG signals and employed feature extraction techniques and machine learning algorithms to 

classify the imagined speech commands.  

In [89], authors have used classification framework based on independent component analysis (ICA) 

was used to decode imagined speech from EEG signals, achieved an accuracy rate of 76%. In [88] it 

emphasizes the importance of selecting appropriate ICA algorithms and parameters for different types 

of data, while another review article discusses the challenges of interpreting the results of ICA-based 

analyses. It is observed that, ICA has shown promise as a tool for decoding imagined speech signals. 

However, further research is needed to address the limitations of this technique and improve its accuracy 

and reliability. Similarly, the work done in [101], have focused on the classification of imagined speech 

syllables using EEG signals. They employed a combination of spatial filtering methods and pattern 

recognition algorithms to achieve accurate classification results. Furthermore, in [90] a discriminative 

neural pattern analysis approach for decoding speech-related information from EEG signals was 

proposed. Their study provided insights into the neural mechanisms underlying imagined speech and 

demonstrated the potential of EEG-based BCIs for speech communication [55]. 

Furthermore [102], proposed a transfer learning in imagined speech EEG-based BCIs, authors have 

explored the characteristic units (i.e., code words) of the EEG associated with the words of an initial 

vocabulary from 14-EEG channels using CNN and achieved an accuracy of 68.9%. In, the work of [38], 

proposed a multi-kernel learning approach to classify imagined speech tasks based on EEG signals. 

Similarly, their study demonstrated the effectiveness of this approach in achieving high accuracy in 

imagined speech decoding, highlighting the importance of advanced classification techniques in EEG-

based BCIs [101]. 
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[37] presents optimized layers to improve CNN generalization and transfer learning for imaginary speech 

decoding from EEG signals with positive correlations on the target 18-EEG channels subject's data, with 

a CNN with an average accuracy of 39.09% [44].  Using wavelet transform (CWT) to generate a three-

dimensional tensor, the authors of [76,104] investigated tensor decomposition in EEG. The tensor is 

subjected to parallel factor analysis (PARAFAC), and the components are ordered and labelled for 14-

EEG and parallel factor analysis. 

The use of deep neural networks (DNN) for decoding imagined speech from EEG signals was studied in 

[105,106]. This study proposed a novel deep learning architecture and achieved promising results in 

decoding imagined speech commands accurately. A recent study demonstrated that deep learning 

techniques can be combined with EEG-based brain-computer interfaces (BCIs) to decode imagined 

speech. Another study, published in [107], presented a new way to decode vowel imagery patterns from 

EEG signals using deep capsule neural networks. In order to identify relevant features of the EEG signal 

related to vowel imagery patterns, they used CNN and computed the number of convolutional kernels 

using entropy techniques. An accuracy of 78.57% was achieved with the proposed method. In addition, 

a direct speech BCI based on EEG was introduced in [78]. Combining a sequence-mapped real transform 

(SMRT) with MFCC/LPCC features and an artificial neural network (ANN) was utilized in this 

system. With an improved accuracy of 73.37%, the system was able to improve its performance. 

In a recent study by [67], a method called Fourier-Bessel series expansion-based empirical wavelet 

transform (MFBSE-EWT) was proposed for computing EEG spectral and temporal complexity. This 

approach was used by the authors to extract features from the EEG data. In a separate study conducted 

by [105] in 2021, imagined speech was decoded from EEG signals. A common spatial pattern (CSP) 

algorithm was used to extract features from EEG data. A neighborhood component analysis (NCA) 

technique was then used to select the most discriminative features. Stacking ensemble learning enabled 

researchers to achieve a 51.90% accuracy rate in their decoding task. The authors of [41], achieved 70.4% 

accuracy from a 64-channel EEG recording. In this work, random forest (RF) and support vector 

machines (SVM), were used for classification of imagined speech using six phonetically distributed 

words and features extracted from decomposed bands using a discrete wavelet transform (DWT) [5]. 

 In [9], EEG-Based multiword imagined speech classification has been employed on Persian words, 

frequency spectrum resolution for 19 EEG channel using binary support vector machine (SVM). 

Furthermore, the wavelet transform has been combined with other machine learning techniques, which 
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includes (SVM) and deep learning, to improve the decoding performance. In [41], a deep CNN was 

trained on wavelet-transformed EEG signals to decode imagined speech, with an accuracy of 92%.  

The effectiveness of STFT in decoding imagined speech has been further demonstrated in recent studies. 

For instance, in a recent study by [83] STFT has been used in combination with convolutional neural 

networks (CNN) to decode imagined speech achieving high accuracy, while in [2,84], the authors 

propose the use of STFT and SVM to classify imagined speech with high accuracy. MRA was used in 

conjunction with a deep learning algorithm to decode imagined speech from EEG signals in a study by 

[14]. It was found that MRA significantly improved decoding accuracy, with an overall classification 

accuracy of 83.9%. Using MRA to analyze the EEG signals of speakers imagining different phonemes 

was also reported in [104]. Based on the results of the research, it was determined that MRA was able to 

accurately distinguish between phonemes with an average accuracy of 73.9%. Furthermore, MRA can 

also be applied to fMRI data. An analysis of speech imagining signals using MRA was conducted in 

[106]. Researchers discovered that MRA could be used to decode imagined speech from fMRI data by 

identifying brain regions associated with different words. 

Canonical polyadic decomposition (CPD), Tucker decomposition (TD), and parallel factor analysis-2 

have all been proposed for imagined speech decoding. Every technique has its strengths and weaknesses, 

and the choice of technique depends on the nature of the data and the specific decoding task [101]. 

Recently, deep learning models have been explored for decoding imagined speech. In certain scenarios, 

these models may outperform traditional tensor decomposition techniques due to their ability to integrate 

multiple sources of information. Researchers explored how DMD can be used to decode imagined speech 

from intracranial electrocorticography (ECoG) signals, demonstrating its feasibility and effectiveness in 

capturing speech-related neural patterns. These findings provide valuable insight into DMD's application 

in EEG-based imagined speech decoding [23]. Furthermore, the authors in [23], investigated the 

possibility of   using DMD spectral moments and sub band-powers spectrum for the analysis of EEG 

signals. Experimental results show that the higher order DMD spectral moments and sub band-power 

features outperformed the analogous spectral features, calculated from traditional power spectrum.  

Collectively, these studies contribute to the body of knowledge on imagined speech decoding using EEG-

based BCIs. They provide valuable insights into the methodologies, techniques, and algorithms used in 

this field. The literature review section establishes a comprehensive understanding of the existing 

literature, identifies research gaps, and synthesizes and analyzes these related research works. A review 
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of the existing methods reveals that some improvements can be made regarding parameter selection, 

improper decomposition, and mode mixing. Therefore, the research proposal uses DMD for the decoding 

of imagined speech in order to overcome the challenges listed above. Finally, the choice of decoding 

technique is determined by the nature of the data and the particular task at hand [86].

 

Figure 1: Generalized architecture of EEG-based BCI system.  

2.2 EEG-Based Brain Computer Interface (BCI) Architecture  

In the research work, an imagined speech EEG-based BCI architecture is proposed to enable individuals 

with speech impediments to communicate through imagined speech commands. The BCI architecture 

consists of several key components working in harmony. Firstly, the EEG signal acquisition module 

captures the electrical activity of the brain using electrodes placed on the scalp, specifically targeting 

cortical areas related to language processing [59]. The acquired EEG signals are then pre-processed to 

remove noise and artifacts, ensuring the reliability of subsequent analysis [80]. The next component 

involves the stimulus presentation and task instructions, where visual cues or prompts are presented to 

the users to imagine specific speech commands. 

These imagined speech commands are decoded from the EEG signals using a combination of DMD and 

CNN models [55]. The DMD method extracts dynamic information from the EEG signals [3], while the 

CNN model utilizes time-frequency representations and spatial features to classify the imagined speech 

commands. The classification results are analyzed, and evaluation metrics are employed to assess the 

accuracy and performance of the BCI system. Conclusively, the proposed EEG-based BCI architecture 

provides a framework for decoding imagined speech commands and holds the potential to enhance 

communication for individuals with speech impairments. 
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2.3 Paradigms for EEG-Based BCIs 

The literature review on paradigms for EEG-based BCIs explores the diverse approaches and 

methodologies employed in the field of EEG-based BCIs [4]. EEG-based BCIs utilize 

electroencephalography (EEG) signals to establish direct communication between the human brain and 

external devices or applications [60].  

This section provides an overview of the major paradigms used in EEG-based BCIs, including motor 

imagery, P300, steady-state visually evoked potentials (SSVEPs), and hybrid paradigms [4,35]. Motor 

imagery paradigms involve users imagining specific motor actions, which can be decoded from EEG 

signals to control external devices or perform tasks. P300 paradigms focus on detecting and classifying 

P300 event-related potentials, which are neural responses elicited by rare or target stimuli, to enable 

users to make selections or commands. SSVEP paradigms utilize the brain's response to visual stimuli at 

specific frequencies to achieve high-speed and accurate communication.  

Hybrid paradigms combine multiple paradigms to enhance the performance and versatility of EEG-based 

BCIs [90-100]. The literature review examines the advantages, limitations, and recent advancements in 

each paradigm, providing insights into their suitability for different BCI applications. It also highlights 

the challenges faced in EEG signal processing, feature extraction, and classification techniques within 

each paradigm. By synthesizing the existing literature, this review sets the foundation for the proposed 

research on EEG-based BCIs and paves the way for the development of more effective and robust BCI 

systems [101]. 

2.4 Challenges and Limitations 

EEG-based BCIs, including imagined speech BCIs, face several challenges and limitations that need to 

be addressed for their successful implementation. One of the main challenges is the variability and noise 

present in EEG signals. EEG recordings can be affected by various factors such as muscle artifacts, eye 

movements, and environmental interference, which can degrade the signal quality and affect the accuracy 

of decoding. Another challenge is the individual variability in EEG patterns and brain activity, making 

it necessary to develop personalized models and algorithms for each user. One approach to improving 

the accuracy of decoding imagined speech is the application of signal processing algorithms and deep 
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neural network to identify patterns in the EEG signals [25]. However, these algorithms require large 

amounts of training data and may not be effective for all individuals.   

Additionally, the non-stationarity of EEG signals poses a challenge as the brain activity and EEG patterns 

can change over time, requiring adaptive and robust signal processing techniques. Furthermore, the low 

spatial resolution of EEG limits the ability to precisely localize brain activity and may lead to challenges 

in accurately decoding specific neural processes. Additionally, the usability and user experience of EEG-

based BCIs need to be improved to ensure user acceptance and engagement.  

Factors such as system complexity, training requirements, and cognitive load can impact the usability 

and practicality of these systems. Finally, the translation of imagined speech BCIs from controlled 

laboratory environments to real-world applications and daily-life settings presents its own set of 

challenges, including the need for robustness, reliability, and portability. Addressing these challenges 

and limitations is crucial for advancing the field of EEG-based BCIs and unlocking their full potential 

in enabling communication and control for individuals with speech impairments. 

Expanding the application of EEG-based brain-computer interfaces (BCIs) to include the decoding of 

imagined speech is crucial because speech plays a vital role in connecting individuals with society. 

However, there are limitations in utilizing external speech stimulation for certain individuals due to 

medical conditions. Therefore, decoding imagined speech directly from EEG signals becomes important. 

Nonetheless, this task is challenging due to the intricate nature of EEG signals and the significant 

variability observed between individuals [100]. Additionally, there is often overlap between the signals 

generated by different types of imagined speech, making it difficult to distinguish between them. One 

approach to improving the accuracy of decoding imagined speech is to use advanced signal processing 

algorithms (DMD) and deep neural network to identify patterns in the EEG signals. Finally, the DMD 

enhances the decomposition level, feature extraction quality and ultimately improves the accuracy of the 

EEG based BCI system. 
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        Chapter 3 

Imagined Speech EEG Based BCI Framework 

The methodology section of the research work on imagined speech EEG-based BCI using DMD provides 

a detailed description of the experimental approach and data analysis techniques employed in the study. 

This section aims to outline the step-by-step process followed to achieve the research objectives. It begins 

by discussing the data collection process, including the acquisition of EEG signals from the participants. 

The pre-processing steps, such as artifact removal and signal normalization, are then described to ensure 

the quality and reliability of the data. Next, the feature extraction methods utilized to extract relevant 

information from the EEG signals are explained [100]. 

In the feature extraction techniques such as time-frequency analysis using Hilbert spectral analysis or 

multichannel EEG signal fusion. The classification model, such as a CNN architecture, employed for 

decoding the imagined speech is discussed, along with the training and optimization procedures. 

Furthermore, the evaluation metrics used to assess the performance of the classification model and the 

analysis of the results are presented [38]. The methodology section serves as a roadmap for conducting 

the study and provides a comprehensive understanding of the techniques and procedures employed to 

investigate imagined speech decoding using dynamic mode decomposition [101]. 

3.1 Concept and Significance 

EEG-based imagined speech BCIs have gained significant attention due to their potential to provide a 

direct communication pathway for individuals with speech impairments [106]. The concept behind these 

BCIs lies in the ability to decode and interpret the neural activity associated with imagined speech 

processes. By leveraging EEG signals, which capture the electrical activity of the brain, it becomes 

possible to detect and classify the user's intended speech commands solely based on their brain activity. 

This concept holds great significance as it opens up possibilities for individuals who are unable to 

communicate verbally to regain their ability to express themselves. EEG-based imagined speech BCIs 

offer a non-invasive and portable solution that can be customized to the specific needs and capabilities 

of each user. By enabling direct brain-computer communication, these BCIs have the potential to 

enhance the quality of life and social interaction for individuals with speech impairments. Furthermore, 
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the development of such BCIs not only addresses the immediate needs of speech-impaired individuals 

but also contributes to the broader field of neuroscience and neuroengineering. The research and 

technological advancements in EEG-based imagined speech BCIs lead to a deeper understanding of the 

neural mechanisms underlying speech production and cognition, paving the way for future innovations 

in the field of BCI [7,12]. 

3.2 State-of-the-Art Techniques 

The state-of-the-art techniques for decoding imagined speech from neural signals involve a combination 

of advanced signal processing, machine learning, and neural network approaches. Here are some notable 

techniques in this field: 

1. Deep Learning Models: Convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

and their variants have been widely used for imagined speech decoding. These models leverage the 

power of deep learning to learn complex patterns and representations from neural data [105]. 

2. Electroencephalography (EEG) Analysis: EEG signals have been extensively used for decoding 

imagined speech. Various feature extraction techniques, such as common spatial patterns (CSP), event-

related desynchronization / synchronization (ERD/ERS), and power spectral density (PSD) analysis, are 

employed to extract discriminative features from EEG signals [85]. 

3. Functional Near-Infrared Spectroscopy (fNIRS): fNIRS measures changes in blood oxygenation levels 

in the brain and has been employed to decode imagined speech. Similar to EEG, feature extraction 

techniques are applied to fNIRS signals to extract informative features for classification [90-92] 

4. Hybrid Approaches: Some approaches combine multiple modalities, such as EEG and fNIRS, to 

leverage the complementary information provided by different neural signals. Hybrid models aim to 

enhance the accuracy and reliability of imagined speech decoding [91]. 

5. Transfer Learning: Transfer learning techniques have been explored to improve the performance of 

imagined speech decoding models. Pre-trained models on large speech datasets or related tasks are fine-

tuned on imagined speech data to leverage the learned representations. It’s important to note that the 

field of imagined speech decoding is still evolving, and new techniques and advancements continue to 
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emerge. The performance and effectiveness of these techniques may vary depending on factors such as 

the quality of neural data, experimental setup, and specific application requirements. 

3.3 Proposed Methodology 

The methodology employed in the study of imagined speech EEG-based BCI using DMD, involves a 

series of steps to decode imagined speech commands from non-stationary EEG signals. The researchers 

proposed a novel approach that combines DMD, time-frequency analysis using Hilbert spectral analysis, 

and a CNN architecture.  

 

Figure 2: Block diagram of proposed DMD based MI-EEG classification framework. 

The data collection and pre-processing phase involved acquiring multichannel EEG signals from 15 

subjects while they performed imagined speech tasks [81]. The EEG signals were then pre-processed, 

including artifact removal techniques, to ensure the quality and reliability of the data. Next, DMD method 

was applied to extract dynamic information from the EEG signals. DMD is a powerful technique for 

decomposing complex signals into spatial modes and their corresponding instantaneous frequencies [17]. 

This step allowed for the identification of specific patterns and features related to imagined speech 

commands. To capture the time-frequency information of the EEG signals, time-frequency analysis using 

Hilbert spectral analysis was performed [24]. This analysis provided a comprehensive representation of 

the EEG signals in the time and frequency domains, enabling the extraction of relevant features for 

decoding imagined speech. The extracted features from DMD and time-frequency analysis were then 

combined using TFR averaging to compute multichannel EEG signal. This averaging process aimed to 

enhance the discriminative power of the features and improve the accuracy of decoding imagined speech 

commands [16]. 
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Moreover, a CNN architecture was employed as a classification model. The CNN took the fused features 

as input and was trained and optimized to effectively decode the imagined speech commands. The model 

parameters were fine-tuned to achieve the best performance and accuracy [10,45]. Furthermore, 

methodology was evaluated using various evaluation metrics, such as accuracy, precision, and recall, to 

assess the effectiveness of the proposed approach in decoding imagined speech. Comparative analysis 

with existing methods was also conducted to demonstrate the superiority of the proposed method [7,86]. 

Conclusively, the methodology presented in this study offers a comprehensive and innovative approach 

for decoding imagined speech commands from EEG signals. It combines advanced signal processing 

techniques, such as DMD and time-frequency analysis, with a powerful CNN architecture, leading to 

improved accuracy and potential applications in brain-computer interfaces for individuals with speech 

impediments. 

3.4 Dynamic Mode Decomposition (DMD) 

This chapter provides an in-depth introduction to DMD, as a method that allows for the decomposition 

of complex, high-dimensional data into a set of coherent spatio-temporal modes. This chapter explores 

the fundamental principles and applications of DMD in various fields, highlighting its relevance and 

potential in solving complex problems. It discusses the underlying mathematical foundations of DMD, 

its advantages over traditional analysis methods, and its ability to capture dynamic behavior and extract 

dominant coherent structures from data. The chapter sets the stage for the subsequent chapters, where 

the application of DMD in specific contexts and its integration into novel frameworks will be explored 

in detail. 

3.4.1 Overview of DMD 

An overview of DMD is provided as a fundamental component of the proposed methodology [53]. DMD 

is a data-driven technique that has gained popularity in various scientific domains for its ability to analyse 

and extract meaningful information from high-dimensional and time-varying data [49]. The overview of 

DMD begins by introducing the underlying principles of the algorithm. DMD operates on the assumption 

that the data can be represented by a linear dynamical system. It decomposes the data into a set of spatial 

modes, which capture the spatial patterns or structures, and their associated temporal dynamics, which 
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describe how these spec patterns evolve over time [4]. The DMD algorithm is model-free, meaning it 

does not require any prior assumptions about the system or knowledge of its underlying dynamics [9]. 

The thesis discusses the key steps involved in applying DMD to MI-EEG signals. These steps include 

constructing the data matrix from the pre-processed EEG data, performing a singular value 

decomposition (SVD) on the data matrix to obtain the spatial modes and temporal dynamics, and 

reconstructing the data using the DMD modes. Additionally, techniques for selecting the appropriate 

DMD modes and reducing noise or artifacts in the data are also explored.  

Figure 3: Operational view of DMD algorithm.  

The work emphasizes the significance of DMD in the context of EEG-based BCIs for decoding imagined 

speech. By leveraging DMD, the proposed methodology aims to act relevant features from the EEG 

signals that are indicative of the imagined speech commands. These features can provide valuable 

insights into the brain patterns associated with speech processing, ultimately enhancing the accuracy and 

reliability of the decoding process. In the operational view above, To begin, data is collected from the 

system. Then, two large matrices, Y and Y', are created. The DMD method assumes that Y' is 

approximately equal to FY. Subsequently, the eigen decomposition of F is performed. This process 

results in obtaining spatial and temporal DMD modes, along with their coefficients or initial values. The 

DMD technique generates two spatial modes represented by hyperbolic functions for nonlinear 

coefficients, as well as two frequency modes represented by cosine functions. It is important to note that 

these modes can be complex numbers, but in this case, only the real part is visualized [87]. 
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3.4.2 DMD System Modeling  

Assuming the imagined speech stimuli is a continuous time dynamic system, the system can be described 

using its observed variable in EEG signals [82]: 

                       
𝑑𝑦

𝑑𝑡
│(𝑡,𝑦0,𝑡0)  = 𝜓(𝑦(𝑡, 𝑦, 𝑡0), 𝑡) ; 𝑡 ∈ ℝ                                (5.1) 

Where,  𝑦0 = initial state,   𝑡0 = initial time,  𝑦(𝑡, 𝑦, 𝑡0)  = dynamic system, ∀𝑡 ∈ ℝ  corresponding to 

motion and (𝑦0, 𝑡0) = stationary point during t the imagined speech. 

The EEG signals obtained from a single channel are represented as data vectors of length T. However, 

in the Dynamic Mode Decomposition (DMD) algorithm, data matrices of size n × m are processed. 

To convert the EEG channel data into an n × m size data matrix, EEG data of length m recorded from 

n different channels are utilized [31]. Here, n denotes the number of EEG segments used, and m 

represents the length of the data samples referred to as "snapshots". In this study, we introduce two 

distinct approaches, which are shown below, to obtain n × m dimensional brain signal data matrices 

of Y. 

1. For the EEG-based dynamic mode decomposition single channel approach, we begin with a single-

channel EEG signal denoted as Y = [Y₁ Y₂ ... Yₜ₋₁] with a length of T samples. From this signal, we 

select M epoch-long non-overlapping EEG segments. Among these segments, we construct (n × m) 

EEG data matrices for each individual channel. In our specific experiments, we choose EEG segments 

that are 4000 epochs long (equivalent to 4 seconds) with no overlap, resulting in n = 35 snapshots. 

This process is repeated for all channels present in the EEG dataset [3]. 

2. For the Multi-channel EEG-based Dynamic Mode Decomposition (MDMD) approach, we construct 

(N × M) EEG data matrices by combining M epochs of N different EEG channels. In this particular 

analysis, we create concatenated EEG data matrices of size 35 × 4000 (n × m) by combining the data 

from six EEG channels: , C3, C4,F3, F4, P3, and P4. This results in a total of 6 × 35 × 4000 EEG data 

matrices. The EEG data is collected from the six channels for each of the fifteen subjects, 

encompassing a total of 24,000 epochs for the six imagined speech commands (Forward, Backward 

Up, Down, Left, and Right,). 
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For accurate capture of neurological activity dynamics, the number of measurements must be 

sufficient in comparison to the number of time points. The number of measurements (n) should be at 

least twice the number of time points (m), also known as snapshots [35]. With the original data matrix 

Y, a data augmentation process creates an augmented data matrix Y of size (k × l). Creating a Hankel 

matrix is the basis of augmentation, according to [2,33]. A matrix with dimensions K = 35 and L = 

1000 was created in our experiments. With the augmented EEG data matrix, two new data matrices 

can be constructed: Y of size k + (l-1) and Y' aug, which is the time-shifted version of Y. 

 As the signal 𝑦[𝑛] is segmented into overlapping snapshots {𝑌1, 𝑌2,𝑌3, … 𝑌𝑚−1, 𝑌𝑚} as 𝑦[𝑛] changes 

with respect to time, were, 𝑌𝑖 = [𝑦(𝑖)  𝑦(𝑖 + 1) …  𝑦(𝑘 − 𝑖 + 1)][67]. 

These portions of the signal are utilized to produce two 𝑝 × (𝑚 − 1)  raw data Hankel matrices 𝑌 

and 𝑌 ′which is expressed as: 

𝑌 = [𝑌1 𝑌2  . .  . 𝑌𝑚−1]                                                                     (5.2) 

𝑌 ′ =  [𝑌2 𝑌3  . .  . 𝑌𝑚]                                                                       (5.3) 

Since the recorded signals are discrete values at specific time points, Y𝑘  (𝑘𝛥𝑡)  is bounded by 𝛥𝑡,   

and the behaviour of the dynamic system is characterized by 

𝑌𝑘+1 = Ϝ (𝑌𝑘).                                                                                        (5.4) 

While obtaining an analytical expression for Ϝ is challenging, we can approximate the dynamics 

linearly,  Y𝑘+1 ≈ F𝑌𝑘 from the signal recorded [13].  

It is possible to compute the eigenvalues and eigenvectors of the best-fit linear operator using the 

DMD algorithm 𝑌𝑘+1 to 𝑌𝑘 ;  expressed as: 

Y ′ ≈ 𝐹𝑌                                                                                                     (5.5) 

The operator T can be mathematically defined through the following expression:  

F= argmin F ∥ Y ′ − FY ∥ ϝ =𝑌 ′𝑌 †.Where, ∥. ∥ ϝ  depicts A pseudo-inverse operation based on the 

Frobenius norm. Segmentation of signals 𝑌𝑘 ⊂  ℝ𝑛, 𝑛2  in  the operator matrix 𝐹  is the number of 

elements and estimating its eigenvectors and eigenvalues may be difficult. 
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3.4.3 DMD Algorithm Stages  

A comprehensive exploration of DMD for EEG signals is presented. DMD is utilized as a powerful tool 

to analyse the EEG data and extract meaningful information related to imagined speech commands. This 

high-level paragraph provides an overview of the application of DMD specifically for EEG signals in 

the context of the proposed BCI system [36]. 

The application of DMD for EEG signals involves several key steps. Firstly, the raw EEG signals are 

acquired using specialized equipment and electrode placements. The signals are then pre-processed to 

remove artifacts, noise, and irrelevant components. Following pre-processing, the EEG data is organized 

into a suitable matrix format for DMD analysis. The DMD algorithm is applied to this matrix to extract 

the spatial modes and associated temporal dynamics [12]. 

The thesis highlights the significance of DMD in capturing the underlying patterns and dynamics present 

in the EEG signals. By decomposing the EEG data into spatial modes, DMD enables the identification 

of distinct patterns related to specific cognitive processes or mental tasks, such as imagined speech. The 

temporal dynamics obtained from DMD provide valuable insights into the temporal evolution and 

synchronization of brain activity associated with speech processing. 

Moreover, the thesis explores the optimization of DMD parameters and techniques to enhance the 

accuracy and reliability of decoding imagined speech commands from EEG signals. This includes the 

selection of relevant DMD modes and the integration of additional feature extraction methods to further 

improve the decoding performance [25]. 

By leveraging DMD for EEG signals, the proposed BCI system aims to decode the imagined speech 

commands with high accuracy and efficiency. The extracted spatial modes and temporal dynamics 

obtained from DMD serve as crucial input features for subsequent classification algorithms, facilitating 

the identification and interpretation of the user's intended speech commands as shown in the steps below. 

In the DMD, the significant eigenvalues and eigenvectors are computed without computing the matrix 

operator. DMD algorithm involves the following stages: 
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Step 1: To evaluate the singular value decomposition, select and retain only the r most significant 

eigenvalues, along with their corresponding eigenvectors, according to the criteria given.; 

𝑌 ≈ 𝑈̃ 𝛴̃𝑉̃                                                                                      (5.6) 

In which,  𝑈̃ ∈ ℂ𝑛×𝑟,     𝛴̃ ∈ ℂ𝑟×𝑟 𝑎𝑛𝑑   𝑉  ̃ ∈ ℂ𝑚×𝑟  𝑟 ≤  𝑚.  

Step 2: The computation of the approximation matrix F can be accomplished by utilizing the pseudo-

inverse of matrix Y in the following manner:  

F =Y ′Y † = Y ′ V 𝛴̃−1 Ũ∗                                                                   (5.7) 

The following procedure will allow us to focus only the r significant eigenvalues and eigenvectors of T: 

𝐹̃ = 𝑈̃∗ 𝐹  𝑈̃ = 𝑈̃∗ 𝑌 ′ 𝑉̃ 𝛴̃−1                                                              (5.8) 

Step 3: Matrix spectral decomposition of  T̃  can be expressed as follows: 

𝐹̃𝑊 = 𝑊𝛬                                                                                          (5.9) 

Step 4:  Using the following equation, we can acquire DMD modes: 

𝜙 = 𝐹 ′ 𝑉̃ 𝛴̃−1 𝑊                                                                                   (6.0) 

As a result, the modes correspond to the eigenvectors of matrix F is given as 𝛬  [46]. 

Dynamic mode decomposition, can be utilized to represent signals in terms of a data-adaptive spectral 

decomposition, which can be expressed as follows:  

𝒳̂ = 𝜙𝛬𝑘−1𝜓 =  ∑ 𝜙𝑖𝜆𝒾
𝑘−1𝜓𝑗

𝑟
𝑖=1                                                            (6.1) 

In which, 𝜙𝑖  is the 𝑖𝑡ℎ  column vector of matrix 𝜙 ,𝜆𝑖  represents the  𝑖𝑡ℎ  diagonal elements of  the 

diagonal matrix 𝛬,   and the mode of amplitude 𝑏 is evaluated  as 𝜓 = ϕ†x1 . 𝒳̂  depicts the diagonal 

averaging operation is not typically performed as part of the DMD algorithm. The diagonal function, on 

the other hand, takes an input matrix and extracts its diagonal elements 𝒳̂ and evaluates a mode vector 

using diagonal averaging. The reconstructed trajectory matrix 𝑥(𝑘) is Hankelized, in order to ensure that 

anti-diagonal elements are equalized. For k by matrix 𝒳̂,the Hankelisation operator ℍ is defined as,  
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ℍ𝒳̂ = 𝒳̃ = [

𝑥̃1 𝑥̃2 ⋯ 𝑥̃𝐿

𝑥̃2 𝑥̃3 ⋯ 𝑥̃𝐿+1

⋮ ⋮ ⋱ ⋮
𝑥̃𝑘 𝑥̃𝑘+1 ⋯ 𝑥̃𝑘+𝑙−1

]                                                 (6.2) 

The desired or reconstructed time-series or elementary components can be expressed as follows:: 

 ℜ(𝑥̃𝑘) =  
1

𝑛𝑢𝑚(𝐷𝑘)
 ∑ 𝒳̃𝑚,𝑛𝑚,𝑛∈𝐷𝑘

                                                                                 (6.3) 

Here k is the index of the time series, ℜ(. ) Is the real part of  𝑥̃𝑘 , 𝑛𝑢𝑚(. ) Is the number of combinations 

of  (𝑚, 𝑛), 𝑚 + 𝑛 = 𝑘 + 1 𝑎𝑛𝑑 𝐷𝑘  is given by {(𝑚, 𝑛): 1 ≤ 𝑚 ≤ 𝐾, 1 ≤ 𝑛 ≤ 𝐿, 𝑚 + 𝑛 = 𝑘 +

1}[40,101]. 

This process finally provides an exact expansion of the elementary components or decomposed modes  

𝑧𝑥𝑖

𝑑𝑒𝑐[𝑛] into the number of components to extract  𝑟 that satisfies as follows: 

𝑧𝑥𝑖

𝑑𝑒𝑐[𝑛] = ∑ 𝒳̃𝑟
𝑘=1                                                                                      (6.4) 

Overall, the utilization of DMD for EEG signals in the proposed BCI system offers a promising approach 

for decoding imagined speech. The thesis presents a detailed exploration of the application of DMD to 

EEG data, emphasizing its effectiveness in capturing the complex dynamics of brain activity associated 

with speech processing and its potential contribution to the development of advanced EEG-based 

communication assistance tools. 

3.5 Feature Extraction from DMD modes 

DMD has proven to be a valuable technique for feature extraction in imagined speech BCIs. Imagined 

speech BCIs aim to decode a person's intended speech by analysing their EEG signals, without the need 

for actual vocalization [88]. DMD provides a data-driven approach for extracting discriminative features 

from EEG signals, which can then be used to classify different imagined speech tasks. 

In the context of imagined speech BCIs, DMD can extract relevant temporal and spectral features from 

the EEG signals that capture the neural activity associated with speech production [36]. By decomposing 

the EEG signals into a set of spatial and temporal modes, DMD identifies the dominant oscillatory 
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patterns and their associated frequencies related to imagined speech. These patterns can capture the 

neural signatures of phonemes, syllables, or even whole words. 

The extracted DMD features can be further processed and used as inputs for classification algorithms, 

such as SVMs or CNNs [6]. By training these classifiers on labelled EEG data from different imagined 

speech tasks, the BCI system can learn to recognize and differentiate between different speech-related 

intentions. This enables users to control external devices or communicate using only their thoughts. 

The use of DMD for feature extraction in imagined speech BCIs offers several advantages. First, DMD 

is a data-driven method, meaning it adapts to the specific characteristics of the individual's EEG signals, 

making it more personalized and accurate. Second, DMD captures both temporal and spectral 

information, providing a comprehensive representation of the underlying neural dynamics involved in 

imagined speech. Lastly, DMD allows for real-time analysis, making it suitable for online BCI 

applications. 

Conclusively, the application of DMD for feature extraction in imagined speech BCIs holds great 

potential for improving the accuracy and usability of these systems. By harnessing the power of DMD, 

researchers and engineers can enhance the performance of imagined speech BCIs and pave the way for 

new methods of communication and control for individuals with speech-related impairments [10]. 
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Figure 4: Decomposed modes for Forward class from F-3 channel EEG signal of the subject S01. 

3.5.1 Time-Frequency Representation using Hilbert Spectrum Analysis  

In [73], the time-frequency analysis using Hilbert spectral analysis is employed as a powerful tool for 

capturing the temporal and frequency characteristics of EEG signals during the decoding of imagined 

speech commands [10]. This high-level paragraph provides an overview of the time-frequency analysis 

techniques utilized in the proposed BCI system. Time-frequency analysis aims to reveal how the 

frequency content of the EEG signals changes over time, providing valuable insights into the dynamic 

nature of brain activity during the imagined speech tasks [17]. Hilbert spectral analysis is a widely used 

method for time-frequency analysis, capable of extracting time-varying spectral information from non-

stationary signals [71]. 

The EEG signals recorded during the imagined speech tasks are decomposed into their constituent 

frequency components using techniques such as wavelet transforms or STFT [22]. The Hilbert transform 

is then applied to each frequency component to obtain the instantaneous amplitude and phase information 
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at each time point [66]. By combining the amplitude and phase information, time-frequency 

representations (TFRs) are derived, which provide a detailed and dynamic characterization of the EEG 

signals [115]. These TFRs reveal the temporal evolution of spectral power across different frequency 

bands, capturing the changes in neural activity associated with different stages of speech processing.  

The TFRs are particularly effective in capturing event-related spectral changes, such as the modulation 

of alpha and beta frequency bands during the generation of imagined speech commands. Furthermore, 

the TFRs derived from Hilbert spectral analysis are integrated with the spatial modes obtained from 

DMD, enhancing the representation of imagined speech commands. The combination of spatial 

information from DMD and temporal-frequency information from Hilbert spectral analysis provides a 

comprehensive and informative feature representation for decoding imagined speech commands. 

By leveraging time-frequency analysis using Hilbert spectral analysis, the proposed BCI system aims to 

capture the dynamic nature of brain activity during the generation of imagined speech commands. The 

TFRs derived from this analysis offer valuable insights into the temporal and frequency characteristics 

of the EEG signals, enabling effective discrimination and classification of different speech commands.  

To obtain the Dynamic Mode Decomposition Time-Frequency Representation, the instantaneous energy 

(IE) and instantaneous frequency (IF) of the decomposed modes are computed and represented in the 

time-frequency plane [11]. This can be accomplished using the Hilbert transform separation algorithm 

(HTSA) in the following manner:1. Compute the analytical signal 𝑧𝑥𝑖

𝑑𝑒𝑐[𝑛] of the decomposed modes of 

the DMD algorithm 𝜙𝑖
𝑑𝑒𝑐[𝑛]  is computed as follows: 

𝑧𝑥𝑖

𝑑𝑒𝑐[𝑛] = 𝜙𝑖
𝑑𝑒𝑐[𝑛]  +𝑗ℋ{𝜙𝑖

𝑑𝑒𝑐[𝑛] } = 𝑎𝑖 [𝑛]𝑒+𝑗𝜓𝑖[𝑛]                            (6.5) 

Where, ℋ= Hilbert spectrum operation, 𝜓𝑖[𝑛] = unwrapped instantaneous phase of the signal, 𝑎𝑖 [𝑛] = 

amplitude envelope. 

2. The IE of the signal 𝜙𝑖
𝑑𝑒𝑐[𝑛] is obtained from the expression: 

𝑒𝑖 [𝑛] = |𝑧𝑥𝑖

𝑑𝑒𝑐[𝑛]|
2

=  𝑎𝑖
2 [𝑛]                                                              (6.6) 

3. The IF of the signal 𝜙𝑖
𝑑𝑒𝑐[𝑛] can be derived from the expression as follows:  
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𝑓𝑖[𝑛] = 
𝑓𝑠

2𝛱
(∠𝜙𝑖

𝑑𝑒𝑐[𝑛])
′
 = 

𝑓𝑠

2𝛱
(𝜓𝑖[𝑛] − 𝜓𝑖[𝑛 − 1])                                 (6.7) 

4. The IE (𝑒𝑖  [𝑛])  and IF (𝑓𝑖[𝑛])  parameters of the decomposed modes (𝜙𝑖
𝑑𝑒𝑐[𝑛]∀𝑖 ∈ [1 … 𝐼])  are 

expressed in the time-frequency plane is given as, 

Y[𝑛, 𝛺] = ∑ 𝑌𝑖[𝑛, 𝛺]𝐼
𝑖=1                                                                            (6.8)                    

Y𝑖[𝑛, 𝛺] = 𝑒𝑖 [𝑛]𝛿 [𝛺 –  
2𝛱

𝑓𝑠
𝑓𝑖[𝑛]]                                                          (6.9) 

                            TFDMDMD =  1

𝑁
∑ (Y𝑖[𝑛, 𝛺])𝑁

𝑖=1                                                           (7.0) 

Where , 𝛿[. ] = Dirac delta function, after obtaining the Y𝑖[𝑛, 𝛺] matrix, 

 Y[𝑛, 𝛺] = Hilbert spectrum TFDMDMD = average TFD-DMD modes of N-channel 

The time-frequency representations of imagined speech EEG data were computed for each subject in 

order to identify speech-related brain activities. The TFR of each trial was calculated using a Hilbert 

transform and then averaged across all trials. Among the five subjects, we specifically plotted the TFRs 

of subjects 2 and 5, which exhibited distinct patterns in the gamma frequency range. As depicted in 

Figure 4, the power of the alpha and beta frequency bands (10-30 Hz) was analysed for six different 

imagined commands: Up, Down, Left, Right, Backward, and Forward [98].       

3.5.2 Average Time Frequency Representation Computation  

Multichannel EEG signal TFR averaging is significant in enhancing   spectral resolution; improving the 

quality of the EEG data. TFR averaging involves the computation of time-frequency representations, 

such as spectrograms or scalograms, for each individual EEG channel. These representations capture the 

dynamic changes in spectral content over time for each channel [74].  

By the time-frequency representations across multiple channels, a more robust and reliable 

representation of the underlying brain activity is obtained. TFR averaging aims to minimize the effects 

of noise and artifacts, enhance the signal-to-noise ratio, and reveal consistent spectral patterns across the 

multichannel EEG signals. The resulting averaged TFR provides valuable insights into the neural 

dynamics associated with imagined speech, enabling more accurate and reliable decoding of speech-rela 
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from the EEG signals. With the aid of multichannel EEG signal TFR averaging, the thesis aims to 

enhance the overall performance of the imagined speech EEG-based BCI system and enhance its 

usability as a n aid for individuals with speech impairments [10, 92]. 

TFR averaging enhances the spectral resolution of EEG signals by averaging the time-frequency 

representations obtained from individual EEG channels. In TFR averaging, the time-frequency 

representations, such as spectrograms or scalograms, are computed separately for each EEG channel. 

These representations capture the changes in spectral content over time for each channel. To improve 

the spectral resolution, impede the f noise and artifacts, the time-frequency representations of multiple 

channels are averaged together. 

The averaging process combines the spectral information from different channels to create a more robust 

and accurate representation of the underlying brain activity. By integrating the individual time-frequency 

representations, TFR averaging aims at enhancing the signal-to-noise ratio and reveal consistent spectral 

patterns across multiple channels. 

TFRMDMD =  1

𝑁
∑ (Y𝑖[𝑛, 𝛺])𝑁

𝑖=1                                                                        (7.1) 

Where TFRMDMD  is average of the TFR-DMD modes from N-channel. 

The time-frequency analysis using Hilbert spectral analysis combined with multichannel EEG signal 

averaging serves as a crucial step in extracting and representing the relevant neural information 

underlying imagined speech. By applying Hilbert spectral analysis to the multichannel EEG signals, the 

temporal and spectral dynamics of brain activity can be captured with high resolution. 

 This analysis technique allows for the extraction of time-varying frequency components that are 

indicative of the imagined speech process. Additionally, by averaging the time-frequency representations 

across multiple EEG channels, the thesis aims to enhance the signal quality, reduce noise and artifacts, 

and improve the reliability of the extracted features. The multichannel EEG signal averaging process 

helps to mitigate channel-specific variations and reinforces the shared spectral patterns related to 

imagined speech across the different channels. 

The resulting TFRs provide valuable insights into the spatio-temporal dynamics of the neural activity 

associated with imagined speech, enabling more accurate and robust decoding of the speech commands. 
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Through the integration of time-frequency analysis using Hilbert spectral analysis and multichannel EEG 

signal averaging, this thesis aims to advance the understanding and decoding of imagined speech for the 

development of effective EEG-based BCI systems for communication assistance [14]. 

 

Figure 5: The TFR plots of subject S01 for (a) Right, (b) Left, and (c) Up commands. 

 

Figure 6:  The TFR plots of subject S01 for (a) Forward, (b) Backward, and (c) Down commands. 
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             3.6 Classification framework modeling   

The classification of imagined speech involves the utilization of convolutional neural networks (CNNs). 

CNNs are a specific type of neural network architecture, which can be considered as a specialized case of 

convolutional feed forward neural networks. In CNNs, the convolutional layers are composed of neurons 

arranged in a rectangular grid. It is important to note that for the proper functioning of these layers, the 

previous layer must also be in the form of a rectangular grid. Within a convolutional layer, each neuron 

receives inputs from a specific rectangular section of the previous layer. Notably, the weights assigned to 

this rectangular section are shared among all neurons within the convolutional layer. This weight sharing 

property ensures that the same features can be detected across different spatial locations, enabling the 

CNN to efficiently capture local patterns or characteristics in the input data. 

1. Convolutional layer: The convolutional layer performs image convolution on the previous layer by 

applying convolution filters specified by the weights. Furthermore, each convolutional layer can consist 

of multiple grids, where each grid takes inputs from all grids in the previous layer. It is possible to use 

different filters for each grid, allowing the convolutional layer to capture diverse features from the input 

data. 

Mathematically, when performing a discrete convolution (x*w)(a) on functions x and w, it is more 

realistic to assume that the parameter t is discrete due to the nature of image sensors. Assuming this, we 

can define the discrete convolution as follows: 

(x ∗ w)(a) =  ∑ x(t)w(t − a)a                          (7.2) 

To compute the discrete convolution at position a, we sum up the products of corresponding elements 

from x and w, taking into account all valid values of t within the defined range. This process captures 

the relationship between the input functions and generates the convolution result. By acknowledging the 

discrete nature of image sensors and using this definition of discrete convolution, we can accurately 

represent the convolutional operations involved in digital image processing. 

Where a runs over all values in the space. In deep learning, usually x is a multidimensional array of data 

convolved with a Gaussian function w, and the kernel w involves learnable parameters and usually has 

finite support. 
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Equation 7.2, which defines the convolution operation, is dimension-independent. However, in our case, 

we are using Time-Frequency Representations as the input data, which can be thought of as 2-

dimensional images. Consequently, in the proposed method, we will be employing 2-dimensional 

convolutions. This means that we will be applying convolutional operations specifically designed for 2-

dimensional data to process and extract relevant features from the TFRs: 

(𝐼 ∗ 𝐾)(𝐼, 𝐽) =  ∑ ∑ 𝐼(𝑚, 𝑛, 𝑗 − 𝑛) 𝐾(𝑚, 𝑛)𝑛𝑚             (7.3) 

Considering the fact that the support of  K  is finite, the priori infinite sum is now infinite. 

2. Max-Pooling: Max-pooling is a technique commonly used after convolutional layers in deep 

learning. It involves extracting small rectangular blocks from the preceding convolutional layer and 

subsampling them to generate a single output for each block. Various methods exist for performing 

pooling, including taking the average, the maximum value, or using a learned linear combination of 

the neurons within the block. In our case, we will exclusively employ max-pooling layers, which 

select the maximum value within each pooled block. 

 

3. ReLU: This nonlinearity is defined as follows:  

ReLU = max (0, 𝑥) , 𝑥 ∈ ℝ.                                        (7.4) 

It is easy to see that ReLU(x)′= 1 for x > 0 and then ReLU(x)′ =  0 for x < 0.  The ReLU (Rectified 

Linear Unit) nonlinearity is known to promote faster convergence when compared to sigmoid or tanh 

nonlinearities. It is particularly effective in convolutional neural networks (CNNs) when combined 

with carefully chosen weight initialization strategies and learning rates. ReLU activation functions 

are widely used due to their ability to eliminate the vanishing gradient problem and efficiently model 

complex patterns in the data, contributing to improved training speed and overall performance. 

4. SoftMax: The SoftMax nonlinearity is a specialized activation function that differs from the general 

nonlinearities mentioned previously. It is specifically designed for multi-class classification tasks. 

The SoftMax function takes a vector of real numbers as input and transforms it into a probability 

distribution over multiple class. It computes the exponentiation of each element in the input vector 

and normalizes the results to ensure they sum up to 1. This normalization allows the SoftMax 

function to assign probabilities to each class, indicating the likelihood of an input belonging to a 
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particular class. The SoftMax nonlinearity is commonly used as the final layer in neural networks for 

multi-class classification problems. It is defined as: 

softmax(𝑥𝑖) ≔
exp (xi) 

∑ exp (𝑥i) 
n
j=i

  x ∈ ℝn                     (7.5) 

to a probability vector of length n, a vector 𝑥 ∈ ℝ𝑛 is mapped. Therefore, the nonlinearity is applied in 

the classification tasks, next to the fully connected layer with n outputs for  n classes 

4. Pooling layers are essential components in convolutional neural networks (CNNs) that effectively 

reduce parameters and computations, leading to improved efficiency and mitigating overfitting risks. 

Two widely used types of pooling layers are max pooling and average pooling. In max pooling, each 

rectangular neighbourhood around a point (i, j) (or (i, j, k) for 3D data) in the input feature map identifies 

and retains the maximum value, discarding the remaining values. Conversely, average pooling calculates 

the mean value within each neighbourhood. A common configuration for max pooling involves a stride 

of 2 and a kernel size of 2. This operation divides the feature map into a regular grid of square or cubic 

blocks with a side length of 2. Within each block, the pooling layer selects the maximum or average 

value for each input feature. Pooling operations are frequently employed in CNNs to reduce the spatial 

dimensions of the feature map. However, it is worth noting that comparable outcomes can be achieved 

by using 3 × 3 convolutions with a stride of 2, particularly when working with 2D data. This alternative 

approach presents an option for spatial dimension reduction in the network. 

5. The fully connected layer is an integral part of neural networks, where the number of input dimensions 

is denoted as "n" and the number of output dimensions is denoted as "m". The layer output is determined 

by two key parameters: the weight matrix W, which has m rows and n columns and belongs to the set of 

real numbers (R), and the bias vector b, which belongs to the set of real numbers (R) and has a dimension 

of m. Given an input vector x from the set of real numbers (R) with a dimension of n, the output of the 

fully connected layer FC with an activation function f can be expressed as follows: 

𝐹𝐶(𝑥) : =  𝑓 (𝑊𝑥 +  𝑏)  ∈  𝑅𝑚                                                (7.6) 

In the given formula, Wx represents the matrix product of the weight matrix W and the input vector x. 

The activation function f is then applied component-wise to the resulting vector. 



33 
 

 

Fully connected layers are frequently employed as the last layers in classification tasks, particularly in 

conjunction with convolutional neural networks (CNNs). In such cases, one or two fully connected layers 

are typically added on top of the CNN. To achieve this, the output of the CNN is flattened and treated as 

a single vector. This arrangement enables the fully connected layers to receive the extracted features 

from the CNN and generate predictions based on them. Another context where fully connected layers 

find utility is in various autoencoder architectures. In these scenarios, FC layers are often connected to 

the latent code in both the encoder and decoder paths of the network. This configuration facilitates the 

learning and reconstruction of the input data by the network.When working with CNNs, it is worth noting 

that applying a convolution filter with a kernel size of 1 to a feature map with n channels is equivalent 

to employing a fully connected layer with m outputs at each point in the feature map, where m represents 

the number of output channels. This approach allows for efficient transformation of information across 

the feature map. 

            3.7 Implementation of classification framework  

The CNN architecture was proposed by [46, 96] as a type of feedforward artificial neural network that 

mimics neurons in the visual cortex region of the brain. Specifically, it is used for supervised deep-

learning tasks in image recognition. To classify imagined EEG signals, we used CNN to classify two-

dimensional Time-Frequency Representations (TFRs). Below is a description of the classification 

procedure. To begin with, we went through all the imagined speech commands to gather a collection of 

TFRs. The model was then evaluated on the remaining 20% of images, selecting each label at random. 

There are fifteen layers in our CNN architecture, as outlined in Table 5. We briefly describe each layer 

while providing hyperparameters and learnable parameters. 

a) Image input layer: There are 656 pixels of height, 875 pixels of width, and 3 pixels of RGB channels 

in the input images. This layer subtracts the mean of each image after propagation. 

b) 1st Convolution layer: An 8x3 convolutional filter (CF) is used in the first convolutional layer to 

process the input image. At the borders of the image, there is no padding applied, and the stride in both 

vertical and horizontal directions is set to 1. Initial weights and biases are set to zero using the glorot 

function. 
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c) Batch Normalization layer: During batch normalization, the input channel values are normalized by 

subtracting the mean from the variance (σ). For avoiding division by zero, a small epsilon (ε) is added 

to the variance. A mini-batch of normalization is performed on each input channel. 

d) ReLU layer: This layer is based on the normalized batch layer and is subjected to the threshold 

operation in ReLU. 

e) Max pooling layer: In this layer, the image dimension is reduced by dividing it into rectangular regions 

(pools) and selecting the maximum value in each region. Pool size is one, the stride is two. 

f) 2nd Convolution layer: We introduce a second convolutional layer after the max pooling layer that has 

16 CFs of size 3×3. The remaining parameters remain unchanged from the first convolution layer. In 

addition to the convolution layer, batch normalization, ReLU, and maximum pooling layers are added 

afterward 

g) 3rd, 4th, 5th, and 6th Convolution layers: The model includes four additional convolutional layers, 

each with 32, 64, 120, and 256 clocks of size 3x3. As with the previous convolutional layers, 

hyperparameters and learnable parameters follow a similar pattern. Each of these convolutional layers is 

followed by batch normalization and ReLU layers. 

h) Fully connected layer: For classification, this layer combines the features learned from the preceding 

layers. Using the glorot function, the initial weights are calculated, and the bias is set to zero. In this case, 

there are six classes to be classified, so the output size corresponds to that. 

i) SoftMax layer: After the fully connected layer, the SoftMax activation function generates six-class 

classification probabilities. 

j) Classification layer: As a result of the SoftMax function, this layer assigns one of six classes to the 

output. In order to assign classes, the cross-entropy loss function is used. We present a CNN architecture 

for classifying time-frequency representations (TFRs) of imagined EEG signals in this section. Each 

layer in the architecture has its own hyperparameters and learnable parameters. Convolutional neural 

networks start with an image input layer, followed by layers such as batch normalization, ReLU, and 

max pooling. The pattern repeats for multiple convolutional layers, increasing the number of filters in 

each layer as the number of layers increases. In the final layer, the learned features are consolidated for 
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classification using a fully connected layer. The output probabilities are generated by a SoftMax layer, 

and the class labels are assigned by a classification layer. 

The CNN architecture described here is specifically designed to process Time-Frequency 

Representations (TFRs) as 2D images and accurately classify them into one of six imagined speech 

command classes. The configuration and hyperparameters of the network have been carefully optimized 

to improve its learning and classification capabilities, particularly when dealing with TFRs effectively. 

The objective of utilizing this CNN architecture in the thesis is to enhance the accuracy and reliability 

of the EEG-based brain-computer interface (BCI) system for imagined speech recognition. By 

combining TFRs obtained through Dynamic Mode Decomposition (DMD) with the CNN model, the 

thesis aims to achieve precise identification and classification of different imagined speech commands. 

This technological advancement holds great potential in providing effective communication assistance 

for individuals with speech impairments. 
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Chapter 4 

Experimental Protocol 

The experimental protocol for EEG-Based BCIs, specifically for Imagined speech EEG-based BCI using 

DMD, involves several key components and procedures to elicit the imagined speech task. 

Firstly, in our work, we have employed the dataset Correto dataset [80], the participants are provided 

with specific instructions and cues, such as imagining saying certain words or sentences silently. These 

instructions may vary depending on the specific goals of the study or the intended application of the BCI 

system. The EEG signals are recorded continuously during the imagined speech task, typically at a high 

sampling rate to capture fine temporal details.  

A cohort of participants, comprising individuals with or without speech-related impairments, is recruited 

for the study, ensuring ethical considerations and obtaining informed consent from all participants 

beforehand [12]. Throughout the experiment, the participants are comfortably seated in a controlled 

environment, aiming to minimize external disturbances. Electrodes are positioned on the scalp following 

the international 10-20 system or an appropriate electrode placement scheme [16]. These electrodes are 

subsequently connected to an EEG amplifier or acquisition system, facilitating the capture of brain's 

electrical activity [31]. To refine the collected EEG data, preprocessing techniques such as filtering, 

artifact removal algorithms, and signal denoising methods are employed to eliminate noise, artifacts, and 

other undesirable signals. 

Subsequently, the preprocessed EEG data is divided into segments known as epochs, which correspond 

to specific time intervals or tasks. These epochs serve as the basis for extracting features utilizing the 

Dynamic Mode Decomposition (DMD) algorithm or other applicable signal processing methods. By 

applying the DMD algorithm, the EEG signals are decomposed into modes that capture the relevant 

temporal and spectral characteristics associated with imagined speech. These extracted DMD features 

are then utilized to train a classification model, such as a convolutional neural network (CNN), with 

suitable configuration of machine learning parameters. The training process involves establishing a 

mapping between the DMD features and the corresponding imagined speech tasks or intentions, resulting 

in a model capable of classifying new EEG data based on learned patterns [6, 69]. The performance of 
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the Brain-Computer Interface (BCI) system is subsequently assessed using diverse metrics such as 

accuracy, precision, recall, or information transfer rate. 

The EEG-Based Brain-Computer Interface (BCI) setup employing Dynamic Mode Decomposition 

(DMD) for imagined speech encompasses several key components and procedures. These include 

participant recruitment, electrode placement, execution of imagined speech tasks, acquisition of EEG 

data, preprocessing, feature extraction using DMD, training of a classification model, and evaluation of 

performance [12]. This comprehensive setup offers a systematic framework for examining the viability 

and efficacy of the proposed BCI system in decoding imagined speech intentions from EEG signals [7, 

110]. 

4.1 Brain waves (EEG) 

In many research work the investigation of different brain wave patterns and their correlation with 

imagined speech has been found for the classification of imagined speech analysis. By studying the 

specific brain wave frequencies and their variations during imagined speech tasks, researchers can gain 

a deeper understanding of the neural mechanisms underlying speech production and representation. 

 

Figure 7: EEG plot for imagined speech command Up for the subject S01 using EEGLAB. 
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Considering the role of alpha, beta, theta, and gamma waves, among others, in the context of imagined 

speech can provide valuable insights into the neural processes involved and inform the design of more 

precise and accurate decoding algorithms.  

Exploring the dynamic changes in brain wave patterns over time and their relationship with the quality 

of imagined speech decoding is an important avenue for further research. Investigating the temporal 

dynamics of brain waves during the production of different speech sounds or the transition between 

speech commands can shed light on the time-varying nature of imagined speech representations. This 

knowledge can be leveraged to improve the temporal resolution and decoding performance of EEG-

based BCIs. 

Moreover, brain waves exhibit variations based on the level of activity within different regions of the 

cerebral cortex and can undergo significant changes during wakefulness, sleep, and coma. In some cases, 

brain wave patterns recorded in EEG recordings may appear irregular, lacking a distinct and specific 

pattern. Brain waves can be broadly categorized into five types based on their frequencies: Delta waves 

(0.4-4 Hz), which are commonly observed in sleeping adults, premature infants, or individuals with 

subcortical lesions. In adults, delta waves tend to be prominent in the frontal region, while in children, 

they are more prevalent in the posterior region. Theta waves (4-8 Hz) are often observed in children and 

adults experiencing emotional stress or individuals with deep midline disorders, and they are typically 

localized in the parietal and occipital regions. Alpha waves (8-13 Hz) are present during a relaxed and 

resting state but are not typically observed during sleep. They are predominantly seen in the occipital 

region. Beta waves (13-30 Hz) manifest during active, busy, or mentally engaged states, including 

periods of concentration or anxious thinking. They are commonly found in the frontal and parietal 

regions. Gamma waves (26-100 Hz) are associated with specific cognitive or motor functions. 

In our research, we employed the Dynamic Mode Decomposition (DMD) method on recorded EEG data 

samples related to imagined speech. We extracted the original signal components using DMD and further 

obtained the rhythms mentioned above. Figure 7 illustrates the representation of EEG waves from an 

openly accessible database depicting an imagined command [80]. 

 EEG signals are decomposed into spatial-temporal modes, capturing the underlying rhythmic activities 

in the brain. The DMD modes are ranked based on their eigenvalues, with larger eigenvalues indicating 

dominant rhythms. These modes represent different frequency components, such as alpha, beta, theta, 
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and gamma waves. The selected modes can be used to reconstruct the original EEG signals or analyze 

specific frequency components of interest. 

4.2 Data Acquisition  

The acquisition of EEG signals is a critical step in the development of imagined speech-based Brain-

Computer Interface (BCI) systems. This stage involves capturing the electrical activity of the brain using 

specialized electrodes and amplification equipment, as described in the openly accessible database 

utilized in this research [80]. The EEG acquisition process begins by carefully preparing the subject and 

creating a comfortable and relaxed environment to minimize external interferences. Ag-AgCl cup 

electrodes are then attached to specific scalp locations based on the internationally recognized 10-20 

system, ensuring consistent and standardized electrode placement across all subjects. 

To ensure accurate and reliable signal acquisition, conductive paste is applied between the electrodes 

and the scalp. This facilitates good electrical contact, enabling the detection of subtle electrical potentials 

generated by the brain during imagined speech tasks. No electrode cap is used to avoid introducing 

additional impedance that could affect the quality of the acquired signals. The placement of the electrodes 

is strategically chosen to target cortical areas associated with language processing while minimizing 

interference from muscle activity related to speech production. For reference and ground, electrodes 

positioned on the left and right mastoids are utilized, respectively. 

For capturing the EEG signals, a high-quality analogue amplifier is employed. The amplifier provides 

multiple channels, allowing for simultaneous recording of signals from specific electrode positions. In 

this thesis, six channels (F3, F4, C3, C4, P3, and P4) are selected to capture the relevant neural activity 

associated with imagined speech commands [80]. The amplified EEG signals are then converted into a 

digital format using an analogue-to-digital converter board, ensuring accurate representation of the 

electrical activity. The signals are sampled at a high-rate of 1024 Hz, enabling the capture of detailed 

temporal information necessary for subsequent analysis and decoding processes. 
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Figure 8: International 10-20 EEG electrode map.  

The database was built using a custom protocol to ensure consistent testing conditions. Approximately a 

meter away from the LCD screen, which displayed visually described target words, participants sat 

comfortably in chairs. Participants wore headphones that provided an auditory stimulus corresponding 

to the intended word. In order to minimize intra-subject variation, data were collected during a single 

recording session per participant. The words used in this study were meticulously chosen from 

dictionaries. A dictionary of Spanish words represented potential commands associated with external 

device control in a BCI system. Up, down, right, left, forward, and backward are some of the command 

words [80]. 

The EEG signals were recorded in two different situations: during imaginary speech and during spoken 

speech. The choice of both modes was deliberate in order to facilitate future research aimed at identifying 

EEG patterns that distinguish between overt and covert speech. The EEG signals were recorded only in 

the imaginary speech mode, but the audio signals were also collected in the voice talk mode. Each 

participant performed 50 trials per word, with 40 trials allocated to imaginary speech mode and 10 trials 

allocated to pronounced speech mode. 
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Figure 9:  Sequence time course for the recording of one imagined stimulus command. 

The experimental setup involved the presentation of target stimuli in a sequential manner, consisting of 

four predefined intervals of durations as depicted in Figure 9. Here is a description of these intervals: 

In the ready interval (2 seconds), the subject is informed that the rest period has ended and a new cue 

will be presented soon. In this interval, the target word is visually and acoustically presented to the 

subject. An image indicates either the imagined or spoken word is to be imagined or pronounced in this 

stage. The task is performed throughout the entire 4-second interval for vowel words. To indicate when 

to imagine or pronounce a command word, a sequence of three audible clicks is introduced. In order to 

minimize artifacts in the recorded signals, this step is crucial for distinguishing imagined speech from 

pronounced speech. 

An interval of rest (4 seconds) allows the subject to move, swallow, or blink, providing a break from 

task-related activities. We utilized fixed duration windows to facilitate pre-processing and feature 

extraction techniques, simplifying the recording process and ensuring consistent analysis. In order to 

maximize recording time, all words in the selected vocabulary were randomly presented twice in each 

block. The duration of blocks with vowel stimuli was 2 minutes, while the duration of blocks with 

command words was 2.43 minutes. To maintain focus during the extended recording process, regular 

breaks were incorporated. It took approximately 3.5 hours for both groups to repeat each word fifty 

times. 

The EEG signal acquisition stage is crucial as it directly impacts the quality and fidelity of the acquired 

data. By employing standardized electrode placement, high-quality amplification, and precise sampling, 

this thesis aims to capture reliable and informative EEG signals to successfully implement the proposed 

DMD-based decoding framework. 
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4.3 EEG Signal Preprocessing 

The accurate removal of artifacts from EEG signals is crucial to ensure the reliability and quality of the 

recorded data [93]. Various techniques are employed to effectively identify and mitigate artifacts that 

may contaminate the EEG recordings during the experimental sessions. One commonly encountered 

artifact in EEG signals is muscular activity, which can originate from facial movements, jaw clenching, 

or other muscle-related activities. To address this, careful attention is paid to electrode placement to 

minimize the proximity to muscles involved in speech production. Additionally, visual scrutiny of the 

recorded signals is performed, and any registers containing muscular artifacts within the 

Imagine/pronounce interval are marked for elimination.  

The removal of these artifacts is crucial as they can obscure the underlying EEG patterns or introduce 

noise that affects subsequent analysis. Another type of artifact that is considered is electrode-related 

artifacts, such as electrode pops or saturation artifacts. These artifacts can be caused by electrode 

impedance changes or saturation of the amplifier due to excessive signal amplitudes. Similar to muscular 

artifacts, registers containing such artifacts within the Imagine/Pronounce interval are identified and 

marked for elimination. Blinking artifacts are also taken into consideration during artifact removal. 

While blinking can introduce noise in the recorded EEG signals, techniques like independent component 

analysis (ICA) can be employed to separate these artifacts from the signal of interest. Therefore, instead 

of erasing the registers with blinking artifacts, they are identified for further analysis and artifact removal 

procedures. 

In our study, we pre-processed the EEG signals prior to analysis. Within the frequency range of 2 Hz to 

40 Hz, a digital band-pass filter was applied. Using finite impulse response (FIR) filters with orders of 

372 and 1204, we were able to achieve this goal [37, 58]. The selection of FIR filters was based on their 

desirable characteristics of introducing minimal distortion through linear phase and maintaining a 

constant group delay. We adjusted the signals by shifting them to the left without losing any signal 

content to address the group delay introduced by the FIR filters, which totaled 788 samples. A separate 

notch filter was no longer required as the noise at 50 Hz was effectively reduced by 60 dB by this 

adjustment [51]. 

Furthermore, we applied a Butterworth low-pass filter with a cut-off frequency of 10 kHz to the voice 

signals in order to improve the quality of the filtered data. In this way, the characteristics of the filtered 
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EEG recordings were further enhanced. To preserve only the signals captured during the 

imagine/pronounce interval, we segmented the recordings to retain only the relevant parts. By discarding 

irrelevant portions of the recordings, it was possible to analyze the intervals more accurately. 

As a result, EEG signals obtained from specific channels (F3, F4, C3, C4, P3, and P4) corresponding to 

a particular stimulus instance are concatenated into a vector in accordance with the prescribed order [8]. 

Three additional labels were added to the vector to provide supplementary information, including mode 

(imagine), stimulus code, and blinking artifacts. The result was a matrix consisting of rows representing 

EEG signals recorded during distinct imagined intervals. For the audio recordings, the matrix was 

constructed using a similar method. A vector containing voice signals from one channel, however, had 

only two labels added. In the EEG matrix, the first label represents the stimulus, while the second label 

indicates the row where the synchronized EEG signals are stored.  

Table 1: Imagined speech database description 

 

 

 

 

 

 

 

The record of a word is made up of 24,576 samples corresponding to the EEG channels and three 

additional samples that indicates the modality, stimulus, and the presence of ocular artifacts. In the 

EEG.mat files, each row corresponds to a recording with the six concatenated channels and three labels 

whose order corresponds to the label as shown in the Table 1. 

By employing appropriate artifact removal techniques, the thesis aims to enhance the quality and 

reliability of the EEG signals captured during the imagined speech tasks. This ensures that the subsequent 

Channels Samples Modality Stimulus Artifact 

F3 1:4096 1. Imagined 

2. Pronounced 

1. Up 1. No artifact 

present 

2. Artifact 

present F4 4097:8192 2. Down 

C3 8193:12288 3. Forward 

C4 12289:16384 4. Backward 

P3 16385:20480 5. Right 

P4 20481:24576 6. Left 
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analysis, including DMD, is performed on clean and artifact-free data, leading to more accurate and 

robust decoding of imagined speech commands [90]. 

 

4.4 Extraction of modes using DMD 

The DMD process begins with the division of the data into two sequential snapshots. These snapshots 

are then decomposed using Singular Value Decomposition (SVD) to obtain left and right singular vectors 

and singular values. In order to reduce the dimensionality of the data, the singular values and their 

associated vectors are truncated to generate a low-rank approximation. After this, the low-rank 

approximation is mapped to its time-shifted counterpart in order to estimate a linear operator. We obtain 

the estimated linear operator using the Moore-Penrose pseudo-inverse. Finally, the estimated linear 

operator undergoes eigen decomposition to acquire eigenvalues and eigenvectors. 

                     

Figure 10: Decomposed modes for Forward class for F-3 channel of subject S10. 

Finally, the dynamic modes are computed by applying the eigenvectors to the data. These modes 

represent the spatial patterns or coherent structures, while the eigenvalues determine their temporal 
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dynamics. Overall, DMD provides insights into the underlying dynamics of complex systems and can 

be used for analysis, modelling, and prediction. Figure 10 describes the extracted bands of the imagined 

command forward for the subject S10, at 4 seconds of sampling frequency of 1024 Hz depicting the 

original signal and the DMD modes. Each mode is displayed in a separate subplot. 

 

4.5    Feature Extraction 

In the context of EEG-Based BCIs for imagined speech, rhythm extracted from DMD as features has 

provides a powerful method for analysing EEG signals and extracting relevant features that capture the 

dynamic characteristics of the brain activity associated with imagined speech [53]. The feature extraction 

process using DMD begins by acquiring EEG data from the user during the imagined speech tasks. The 

DMD algorithm is applied to the pre-processed EEG data. DMD decomposes the signals into a set of 

dynamic modes that represent the underlying oscillatory patterns and their temporal dynamics. These 

dynamic modes capture the different frequency components and their associated time dynamics in the 

EEG signals. 

The DMD algorithm plays a crucial role in identifying the significant dynamic modes that contribute the 

most to the imagined speech tasks. These dynamic modes represent the key features in the EEG signals 

that reflect the user's intentions and cognitive processes associated with imagined speech. The TFRs are 

then extracted from these dynamic modes, serving as the features for the EEG-Based BCI system. TFR 

provides a detailed representation of time-varying spectral characteristics of EEG signals, enabling more 

detailed analyses of imagined speech-related brain activity. 

DMD features are fed into a classification model, such as a support vector machine (SVM) or deep neural 

network, to recognize and classify imagined speech tasks. The classification model learns the patterns 

and relationships between the DMD features and the corresponding speech tasks, enabling accurate 

decoding and identification of the user's intended speech commands [4,95]. By utilizing DMD as a 

feature extraction technique in EEG-Based BCIs for imagined speech, the system can effectively capture 

the dynamic nature of the brain activity involved in speech generation. This approach enhances the 

accuracy and robustness of the BCI system, enabling more reliable and precise decoding of the user's 

imagined speech intentions. 
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           4.5.1 Time-Frequency Representation using Hilbert Spectrum Analysis 

This section discusses the utilization of Hilbert spectral analysis in EEG-based DMD imagined speech 

BCI systems to achieve accurate time-frequency representation (TFR). The following steps outline the 

procedure: 

1. TFR Computation: EEG signals recorded during imagined speech tasks are decomposed using the 

DMD method to extract the constituent frequency components. 

2. Hilbert Transform: Each frequency component of the EEG signals undergoes the Hilbert transform, 

yielding instantaneous amplitude and phase information at each time point. This step captures both 

temporal and frequency characteristics. 

3. TFR Derivation: By combining the amplitude and phase information obtained from the Hilbert 

transform, TFRs are derived. These TFRs provide a detailed and dynamic characterization of the 

EEG signals, capturing the temporal evolution of spectral power across different frequency bands. 

4. Event-Related Spectral Changes: TFRs are particularly effective in capturing event-related spectral 

changes, such as the modulation of alpha and beta frequency bands during the generation of 

imagined speech commands. These spectral patterns offer insights into the neural activity 

associated with different stages of speech processing. 

5. Integration with DMD: The TFRs derived from Hilbert spectral analysis are integrated with the 

spatial modes obtained from Dynamic Mode Decomposition (DMD), enhancing the representation 

of imagined speech commands. This combination of spatial information from DMD and temporal-

frequency information from Hilbert spectral analysis provides a comprehensive feature 

representation. 

TFRs are useful for discriminating and classifying EEG signals during imagined speech because 

they provide insight into their temporal and frequency characteristics. It enables effective 

discrimination and classification of different speech commands, which contributes to the 

development of EEG-based BCI systems for imagined speech. 

A Hilbert spectral analysis is also incorporated into the EEG-based imagined speech BCI system 

to capture its temporal and frequency dynamics. The derived TFRs provide detailed insights into 

the spectral changes associated with imagined speech, and their integration with DMD enhances 

the representation of speech commands. The TFRs in Figure 11 illustrate the effectiveness of this 
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approach in decoding imagined speech from EEG signals for subject S01. EEG-based imagined 

speech decoding with this approach shows promising robustness and generalizability.

Figure 11:  TFRs of subject S01 for six imagined speech commands: (a) Up, (b) Left, (c) Down, 

(d) Right, (e) Forward, and (f) Backward.  
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4.5.2 Average TFR Computation across Channels 

The following is a step-by-step summary of the process for average TFR computation: 

Step 1: Time-Frequency Representation (TFR) computation: TFR averaging aims to enhance the spectral 

resolution and improve the quality of EEG data by computing time-frequency representations for each 

individual EEG channel. These representations capture dynamic changes in spectral content over time. 

Step 2: Individual TFR computation: Spectrograms or scalograms are computed separately for each EEG 

channel, representing the time-varying spectral content of the signals. 

Step 3: Averaging across channels: The time-frequency representations obtained from multiple channels 

are averaged together. This averaging process combines spectral information from different channels to 

create a more robust representation of the underlying brain activity. 

Step 4: Enhancing signal-to-noise ratio: TFR averaging aims to reduce the effects of noise and artifacts 

by enhancing the signal-to-noise ratio. By integrating the individual time-frequency representations, 

consistent spectral patterns across channels are revealed. 

Step 5: Improved spectral resolution: The averaging process enhances the spectral resolution of the EEG 

signals, providing a clearer representation of the underlying neural activity associated with imagined 

speech. 

Step 6: Extracting relevant neural information: The averaged TFRs serve as valuable insights into the 

spatio-temporal dynamics of the neural activity related to imagined speech. These TFRs capture the 

relevant information necessary for the accurate and reliable decoding of speech-related commands. 

The combination of time-frequency analysis and multichannel EEG signal averaging aims to improve 

the overall performance of EEG-based BCI systems for imagined speech. This enhancement enhances 

the usability of the system as a communication assistance tool for individuals with speech impairments. 

By following these steps, the process of TFR averaging helps to extract and represent the relevant neural 

information underlying imagined speech, improving the overall performance and usability of EEG-based 

BCI systems for communication assistance. 
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For class Up 

 

(a) 

 

(b) 

Figure 12:  TFRs of subject S01 for Up command from (a) channels F3, F4, C3, C4, P3, P4, and (b) 

the computed average TFR across the channels. 
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For class Left 

 

(a) 

 

(b) 

Figure 13:  TFRs of subject S01 for Left command from (a) channels F3, F4, C3, C4, P3, P4, and (b) 

the computed average TFR across the channels. 
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For class Down 

 

(a) 

 

(b) 

Figure 14:  TFRs of subject S01 for Down command from (a) channels F3, F4, C3, C4, P3, P4, and 

(b) the computed average TFR across the channels. 
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                                                                      For class Right 

 

(a) 

 

(b) 

Figure 15:  TFRs of subject S01 for Right command from (a) channels F3, F4, C3, C4, P3, P4, and 

(b) the computed average TFR across the channels. 
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For class Forward 

 

(a) 

 

 

(b) 

Figure 16:  TFRs of subject S01 for Forward command from (a) channels F3, F4, C3, C4, P3, P4, and 

(b) the computed average TFR across the channels. 
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For class Backward 

 

 
                    (a) 

 

 
(b) 

Figure 17:  TFRs of subject S01 for Backward command from (a) channels F3, F4, C3, C4, P3, P4, 

and (b) the computed average TFR across the channels. 
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          4.6 Convolution Neural Network (CNN) Modelling 

The development of a classification model is a crucial aspect of the EEG-based BCI system designed to 

decode and classify imagined speech commands from EEG signals. The classification model serves as 

the bridge between neural activity patterns and meaningful speech commands. To ensure accurate 

classification, various machine learning and pattern recognition techniques are explored and evaluated. 

The model utilizes the features extracted from the time-frequency representations of the EEG signals, 

which capture the dynamic neural patterns associated with imagined speech. These features are used as 

inputs to the classification model, which undergoes supervised learning to train and optimize its 

performance. Specifically, convolutional neural networks (CNN) are tested and optimized for the task 

of classifying imagined speech. The classification model aims to achieve high accuracy, robustness, and 

real-time performance to enable effective communication through the EEG-based BCI system. By 

developing a reliable and accurate classification model, the goal is to empower individuals with speech 

impairments to express themselves using their imagined speech commands, thereby enhancing their 

quality of life and communication abilities. 

         4.6.1   Convolutional Neural Network Architecture 

In this project, a convolutional neural network (CNN) architecture is introduced and developed for 

classifying imagined speech commands from EEG signals. CNNs are deep learning models known for 

analysing complex patterns in multidimensional data, such as images or, in this case, time-frequency 

representations of EEG signals. It is designed to capture and learn hierarchical features from the input 

data, allowing it to distinguish subtle differences and variations in neural activity associated with 

different imagined speech commands. There are several layers in this architecture, including 

convolutional layers, pooling layers, and fully connected layers. As the convolutional layers process the 

input data, they extract local features and capture spatial information across time-frequency 

representations. As a result of the pooling layers, the extracted features are reduced in dimensionality 

while the most significant information is preserved. The final classification is performed by the fully 

connected layers, which combine the extracted features. 

To train the CNN architecture, a large dataset of labelled EEG signals is utilized, and the model 

parameters are optimized through backpropagation. During backpropagation, the model learns from the 
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training data and adjusts its internal weights and biases to minimize the classification error. The proposed 

CNN architecture aims to achieve high accuracy, robustness, and generalizability in decoding imagined 

speech commands from EEG signals. Its effectiveness lies in enabling effective communication through 

the EEG-based BCI system by accurately classifying the user's intended speech commands. 

          4.6.2     CNN Model Training and Optimization 

The training and optimization phase of the proposed system is a crucial step in achieving accurate and 

reliable classification of imagined speech commands from EEG signals. This process involves training 

the CNN architecture using labelled EEG data and iteratively adjusting the model's parameters to 

maximize classification accuracy. Backpropagation, an optimization algorithm, is employed to compute 

the gradients of the loss function with respect to the model's weights and biases. These gradients are then 

used to update the model's parameters using gradient descent or a variant like the Adam optimizer. 

Training datasets are usually divided into training and validation subsets to prevent overfitting. Training 

subsets are used to update parameters, while validation subsets are used to monitor the model's 

performance. The optimization process requires fine-tuning the hyperparameters of the CNN 

architecture, such as the learning rate, batch size, and regularization techniques. It is important to find 

the right balance between model complexity and generalization ability. 

Training and optimization require iterative adjustments, parameter tuning, model evaluation, and 

validation. Decoding imagined speech commands from EEG signals requires a lot of time and effort, but 

is crucial for high classification accuracy, robustness, and reliability. Using the proposed system, 

imagined speech commands can be accurately classified while avoiding overfitting and underfitting the 

CNN architecture. As a result of successfully completing this process, a BCI based on EEG is able to 

decode imagined speech commands effectively. 
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Figure 18: DMD-CNN based classification framework for decoding imagined speech commands. 

In our study, the DMD-CNN approach outperformed conventional EEG-based BCI classification 

methods, with an average classification accuracy exceeding 70% across all subjects for imagined 

command stimuli. DMD-CNN demonstrated notable advantages over conventional methods in terms of 

training time reduction, making it highly suitable for real-time applications. An image input layer, a 

convolutional layer, a batch normalization layer, a rectified linear unit, a max-pooling layer, a fully-

connected layer, and a soft-max layer are all crucial components of the CNN architecture used in this 

approach. 

As the first component of the neural network, the image input layer defines the dimensions of the input 

images. In the convolutional layer, a user-defined filter size is applied to the input image, generating 
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feature maps that are used as inputs for subsequent layers. Normalizing the data samples through the 

batch normalization layer enhances learning efficiency and facilitates faster learning. A rectified linear 

unit removes redundancy while preserving essential information by applying a threshold operation to the 

input data. In the max-pooling layer, the maximum value within each window is considered in order to 

reduce the size of the feature maps. 

From the max-pooling layer, the fully-connected layer establishes connections between neurons, with 

the output corresponding to the number of classification classes. Using the soft-max layer, outliers are 

reduced and classification is enhanced by applying the soft-max function to the input data. Depending 

on the input size, the number of layers in a CNN can be adjusted, and not all layers need to be included. 

Although deeper networks can achieve better learning, they require more computational time. This 

classifier eliminates the need for preprocessing and feature extraction, which is one of its notable 

advantages. 

Using a minimal number of layers and efficiently tuning the network parameters, we aimed to optimize 

the classification performance. The block diagram in Figure 16 shows the implementation of CNN 

classifiers for our investigation. The input images had dimensions of [656 × 875 × 3] for the image input 

layer. A total of six convolutional layers were employed, each containing eight filters of size 8, 16, 32, 

64, 128, and 256, along with the same padding. Each convolutional layer is followed by a batch 

normalization, a rectified linear unit, and a max-pooling layer. Using a stride of 2 and a filter size of 2 

were used in the max-pooling layer. 

Furthermore, the CNN classifier was implemented using a fully-connected layer, a soft-max layer, and 

a classification layer. We used a learning rate of 0.001 along with a maximum number of epochs and 

batch sizes of 40 and 256. Our training set of TFR images consisted of 80%, while our test set consisted 

of 20%. A classification accuracy of 71.99% was achieved for DMD-TFR images using CNN classifiers. 

Previous studies have proposed various methods for sleep stage classification. 

Finally, the CNN classifier classified six imagined speech commands based on an averaged DMD-TFR 

image calculated from different TFR trials for an EEG epoch. DMD-TFR images were classified with 

70% accuracy. It took CNN 0.0192 seconds to classify one TFR image. In the experiments, an Intel Core 

i7 processor with a speed of 3.60 GHz and 32 GB of memory was used in a Dell 5820 Precision Tower. 
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The project was implemented with MATLAB 2023a and Windows 8. Our proposed DMD approach is 

compared with existing methods in Table 3 to determine classification accuracy. 

4.6.3 Imagined Speech Classification  

The classification stage of the study focuses on accurately categorizing the decoded imagined speech 

commands using the extracted features. To achieve this, a CNN architecture is employed as the 

classification model. This architecture is specifically designed to effectively learn and recognize patterns 

in the fused features obtained from DMD and time-frequency analysis. These features capture important 

information related to the imagined speech commands, including temporal dynamics and frequency 

characteristics. 

During the training and optimization phase, the CNN architecture undergoes a process where labeled 

training data, consisting of fused features and their corresponding speech commands, is used. The model 

adjusts its internal parameters through backpropagation to effectively map input features to the 

appropriate speech command categories. To enhance classification performance, optimization 

techniques like regularization methods and hyperparameter tuning are applied. These techniques mitigate 

overfitting and improve the model's ability to generalize to unseen data. 

Following training and optimization, the CNN model is evaluated using a separate dataset to measure its 

accuracy in correctly classifying imagined speech commands. The classification results are then analyzed 

and compared with existing methods to validate the effectiveness of the proposed approach. The CNN 

architecture's superiority, coupled with the distinctive features extracted through DMD and time-

frequency analysis, is evident through higher accuracy and improved decoding performance of imagined 

speech commands. 

The CNN architecture's specific configuration, including the number of hidden layers, pooling layers, 

and activation dimensions, can be found in Table 5. For training, the adaptive moment estimation (Adam) 

optimizer is utilized, with customized settings for gradient decay factors, learning rate, and the number 

of epochs. During training, a mini-batch size of 32 observations is employed, and a total of 1200 

iterations are conducted. To prevent consecutive epochs from discarding the same data, the training and 

validation data are shuffled before each epoch. L2 regularization, with a weight decay factor of 0.0001, 

is incorporated to address overfitting concerns. 
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The network's performance is then assessed by evaluating the accuracy and classification time of the test 

data. Throughout training, the validation data, representing 20% of the total data, is utilized to monitor 

the network's performance after every 30 iterations. In this particular network configuration, no gradient 

clipping is implemented. The accuracy and classification time of the test data serve as essential indicators 

for evaluating the network's performance. 
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Table 2: CNN model Optimized Hyperparameters 
 

Layer type Activations ` Learnable 

parameters 

Remarks 

Image input 875 × 656 × 3 normalization: 
zerocenter 

⋯ 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑎𝑔𝑒 𝑠𝑖𝑧𝑒: 875
× 656 × 3 

Convolutional block 1     

2D-convolutional 437 × 327 × 8 filter size: [3,3] 
 no. of filters ∶ 8  
 Stride:[1] 

         

Weight
∶ 3 × 3 × 6 

Bias ∶ 1 × 1 × 8 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 8,3
× 3 × 3 

Batch normalization  437 × 327 × 8 𝜀: 0.00001 Offset ∶ 1 × 1 × 8 

Scale ∶ 1 × 1 × 8 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠:
8 

Relu 437 × 327 × 8 ⋯ ⋯  

2D-max pooling 219 × 164 × 8 filter size: [2 × 2]        
Stride:[1] 

 

⋯  

Convolutional block 2     

2D-convolutional 110 × 82 × 16 filter size: [3,3] 
 no. of filters ∶ 16 

 Stride:[1] 

 

Weight
∶ 3 × 3 × 8 

Bias ∶ 1 × 1 × 16 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 16,3
× 3 × 8 

Batch normalization  110 × 82 × 16 𝜀: 0.00001 Offset
∶ 3 × 3 × 16 

Scale
∶ 1 × 1 × 16 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 16 

Relu 110 × 82 × 16 ⋯ ⋯  

2D-max pooling 55 × 41 × 16 filter size: [2 × 2]        
Stride:[1] 

 

⋯  

     

Convolutional block 3     

2D-convolutional 28 × 21 × 32 filter size: [3,3] 
 no. of filters ∶ 32 

 Stride:[2] 

 

Weight
∶ 3 × 3 × 16 

Bias: 1 × 1 × 32 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 32,3
× 3 × 16 

Batch normalization  28 × 21 × 32 𝜀: 0.00001 Offset
∶ 1 × 1 × 32 

Scale: 1 × 1 × 32 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 32 

Relu 28 × 21 × 32 ⋯ ⋯  

2D-max pooling 14 × 11 × 32 filter size: [2 × 2]        
Stride:[2] 

 

⋯  

     

Convolutional block 4 
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2D-convolutional 7 × 6 × 64 filter size: [3,3] 
 no. of filters ∶ 64 

 Stride :[2] 

 

Weight 
∶ 3 × 3 × 32 

Bias ∶ 1 × 1 × 64 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 64,3
× 3 × 32 

Batch normalization  7 × 6 × 64 𝜀: 0.00001 Offset
∶ 1 × 1 × 64 

Scale: 1 × 1 × 64 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 64 

Relu 7 × 6 × 64 ⋯ ⋯  

2D-max pooling 4 × 3 × 64 filter size: [2 × 2]        
Stride:[2] 

 

⋯  

Convolutional block 5     

2D-convolutional 2 × 2 × 128 filter size: [3,3] 
 no. of filters ∶ 128 

 Stride:[2] 

 

Weight ∶ 3 × 3 ×
64 

Bias
∶ 1 × 1 × 128 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 128,3
× 3 × 64 

Batch normalization  2 × 2 × 128 𝜀: 0.00001 Offset
∶ 1 × 1 × 128 

Scale
∶ 1 × 1 × 128 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 128 

Relu 2 × 2 × 128 ⋯ ⋯  

2D-max pooling 1 × 1 × 128 filter size: [2 × 2]        
Stride:[2] 

 

⋯  

Convolutional block 6     

2D-convolutional 1 × 1 × 265 filter size: [3,3] 
 no. of filters ∶ 256 

 Stride:[1] 

 

Weight 
∶ 3 × 3 × 128 

Bias
∶ 1 × 1 × 265 

 

𝑛𝑜. 𝑜𝑓 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛: 265,3
× 3 × 128 

Batch normalization  1 × 1 × 265 𝜀: 0.00001 Offset ∶ 6 × 265 

Scale ∶ 6 × 1 

 

𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠: 265 

Relu 1 × 1 × 265 ⋯ ⋯  

     

Fully connected 6 × 1 output size: 6 Weight
∶ 1 × 1 × 265 

Bias
∶ 1 × 1 × 265 

 

Fully 

connected 

layers: 6 

   875 × 656 × 3  

SoftMax 6 × 1 875 × 656 × 3   

     

Classification output ⋯ loss function 

∶ cross entropyex 

 Output 

size: 6 
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Chapter 5 

Results and Discussion 

In this section, we present a comprehensive evaluation of the proposed DMD-TFA-CNN method and 

discuss the results of the experiments based on the collected EEG data. The evaluation aims to provide 

a thorough analysis of the system's performance and effectiveness. To evaluate the system's ability to 

decode and classify imagined speech commands from EEG signals, key metrics, such as classification 

accuracy, are used. The results are organized and presented in tables, along with statistical analysis, 

offering a comprehensive overview of the system's performance across different subjects and 

experimental conditions. 

The analysis goes beyond the surface-level results and delves deeper into the obtained outcomes. It 

identifies potential patterns, trends, and variations in the classification performance, allowing for a more 

detailed understanding of the system's behaviour. Moreover, the results are compared and contrasted 

with existing methods such as EWT and EMD methods. This comparative analysis sheds light on the 

strengths and limitations of the proposed system, highlighting its potential for real-world applications. 

Overall, the Results and Analysis section provides valuable insights for further improvements and future 

research directions in the field of imagined speech EEG-based BCIs. It serves as a foundation for 

building upon the proposed method and advancing the state-of-the-art in this domain. 

5.1 Mean Square Error (MSE) Performance Analysis 

The performance evaluation of the TFR from DMD modes has been quantitatively measured by 

computing the mean square error (MSE). The MSE is expressed as follows: 

MSE =
1

𝑃𝑄
∑ ∑(TF1(𝑓, 𝑡) − TF (𝑓, 𝑡))2

𝑄

t=1

𝑃

f=1

                                            (7.1) 

The total number of frequency points and time instants in the TF plane are denoted by P and Q, 

respectively. In this study, the synthetic multi-component signals are used to validate the effectiveness 
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of the proposed DMD method in decomposing signals into modes in the TF plane. The TF1 and TF 

represent the expected and obtained TF representations of these signals [5]. 

To assess the performance of the proposed DMD method, the mean squared error (MSE) is calculated 

for each case and compared with the MSE values obtained from the EMD and EWT methods [4,7]. 

Figure 19 illustrates the comparison of MSE values among the three methods. The synthetic multi-

component AM signal [5] is considered for this analysis: 

𝑥(𝑡) = ∑ 0.2(1 + 0.2Sin(4π𝑡)Cos(2π𝑓𝑖𝑡))                                                   (7.2)

3

𝑖=1

 

Where three different sinusoidal components are considered with: Frequency: f1 = 50 Hz, f2= 150 Hz, 

f3= 200 Hz 

The signal components in the frequency domain are separated by certain intervals. Throughout the 

experiments, the signal duration remains fixed at 1 second, and the sampling frequency is set to 1kHz 

[5]. Table 3 presents the mean square error (MSE) values obtained from the comparative analysis of 

different methods, including DMD, EMD, and EWT. These MSE values serve as indicators of accuracy 

and performance when applied to the time-frequency analysis of non-stationary signals [4]. 

The results indicate that DMD achieves the lowest MSE value among the methods considered, 

suggesting its superior performance in capturing the underlying dynamics and extracting relevant 

features from EEG-based data. This signifies that DMD effectively preserves essential information while 

minimizing reconstruction errors, thereby enhancing time-frequency resolution. In contrast, both EMD 

and EWT exhibit higher MSE values in comparison to DMD, indicating relatively higher reconstruction 

errors. While EMD and EWT possess their own advantages and applications, the elevated MSE values 

imply that they may not be as effective in capturing intricate details and patterns present in the EEG 

signals utilized in this study [36].The comparative analysis of MSE values underscores the potential of 

DMD as a promising technique in EEG-based BCI applications. Its ability to accurately represent and 

extract meaningful features from EEG signals can contribute to improved performance and reliability in 

decoding imagined speech. These findings emphasize the significance of selecting appropriate feature 

extraction methods in EEG-based BCI systems and further highlight the potential of DMD in advancing 

the field of imagined speech BCI research. 
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Table 3: Comparison of the MSE values of multi-component amplitude modulated signal for different 

cases using DMD, EMD and EWT methods. 

MSE DMD EMD EWT 

First signal component 3.2383e-04 0.0379 0.0654 

Second signal component 1.6247e-04 0.0469 0.0921 

Third signal component 

 

2.9383e-04 

 

0.0535 

 

0.0922 

 

From Table 3, comparing the MSE values of multi-component amplitude modulated signals using DMD, 

EMD, and EWT methods, we can draw the following conclusions: 

1. DMD Method: The MSE values for the first, second, and third signal components using the DMD 

method are 3.2383e-04, 1.6247e-04, and 2.9383e-04, respectively. 

2. EMD Method: The MSE values for the first, second, and third signal components using the EMD 

method are 0.0379, 0.0469, and 0.0535, respectively. 

3. EWT Method: The MSE values for the first, second, and third signal components using the EWT 

method are 0.0654, 0.0921, and 0.0922, respectively. 

Based on the MSE values, the DMD method achieves the lowest MSE values among the three methods 

for all three signal components. This indicates that DMD provides better reconstruction accuracy for the 

multi-component amplitude modulated signals compared to EMD and EWT methods. The EMD method 

has higher MSE values compared to DMD for all three signal components, suggesting relatively less 

accurate reconstruction. The EWT method shows the highest MSE values among the three methods for 

all three signal components, indicating the least accurate reconstruction. Therefore, the DMD method 

outperforms both EMD and EWT methods in terms of reconstruction accuracy for the multi-component 

amplitude modulated signals analysed in this study. Furthermore, the TF representation in Fig. 20 above 

derived from the multi-component AM signal, for three different frequency components, using EMD, 
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EWT, and DMD methods and a comparative analysis of the methods shows that, the proposed DMD 

clearly represents all the components in the TF plane. 

 

Figure 19:  Plots of (a) mono-components and multi-component AM input signal, and (b-d) 

extracted modes using EMD method, EWT method, and DMD method, respectively. 
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Figure 20: Plots of (a) TFRs of input nonstationary AM signal, (b) EMD based TFR (c) EWT based 

TFR, and (d) DMD based TFR. 
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5.2 DMD Performance Analysis for imagined speech EEG 

signals 

In this investigation, we examine the efficacy of the DMD technique proposed for decomposing signals 

into modes within the time-frequency (TF) domain. To validate its performance, we utilize synthetic 

multi-component signals referred to as TF1 and TF, where TF1 represents the expected TF representation 

and TF represents the obtained TF representation [5]. By employing synthetic multi-component signals, 

we aim to evaluate the effectiveness of the proposed DMD method. The evaluation involves estimating 

the mean squared error (MSE) and comparing it with the performance of the EMD and EWT methods 

[4,7]. The comparison of MSE results for the DMD method, EMD, and EWT is illustrated in Figure 19. 

Specifically, we focus on analyzing the AM (amplitude-modulated) signal as a specific type of synthetic 

multi-component signal [5]. The AM signal is represented mathematically for this purpose.

 

Figure 21: Plots of decomposed modes of an imagined speech signal using DMD method. 
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For evaluating the performance of DMD on real EEG signals we have employed real EEG data from an 

open access database for six imagined commands across all channels [80]. In Table 5, the extracted 

average TFRs, for six imagined speech classes across fifteen subjects is represented. Upon analysing the 

data, it is observed that the number of TFRs varies across imagined speech command classes and subjects 

. For example, subject S04 has the highest number of TFRs for the Backward command (189), while 

subject S06 has the lowest number (48). Similarly, subject S010 has the highest number of TFRs for the 

Right command (172), while subject S06 has the lowest number (64). Overall, the extracted average 

TFRs range from 100 to 1977 across the six imagined speech command classes. These numbers reflect 

the variability in the data obtained from different subjects and highlight the importance of subject-

specific characteristics in EEG-based imagined speech BCI systems. 

Table 5: Extracted average TFRs across 15 subjects for 6 imagined speech command. 

Subjects Imagined speech command classes 

 Backward Down Forward Left Right Up 

S01 84 84 100 60 88 84 

S02 172 144 148 144 136 156 

S03 132 144 102 158 132 100 

S04 189 156 160 117 136 164 

S05 112 88 116 104 116 100 

S06 48 48 68 60 64 68 

S07 136 156 152 152 156 160 

S08 164 156 148 144 148 140 

S09 156 160 148 156 148 136 

S010 128 148 124 128 172 140 

S011 148 152 104 120 136 112 

S012 112 120 120 100 84 132 

S013 156 148 171 111 173 136 

S014 116 128 100 108 124 112 

S015 124 116 128 116 116 124 

 1977 1948 1889 1778 1929 1848 
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Therefore, when performing a data analysis, it is observed that the number of TFRs varies across subjects 

and imagined speech command classes. For example, subject S04 has the highest number of TFRs for 

the Backward command (189), while subject S06 has the lowest number (48). Similarly, subject S010 

has the highest number of TFRs for the Right command (172), while subject S06 has the lowest number 

(64). Overall, the extracted average TFRs range from 100 to 1977 across the six imagined speech 

command classes. These numbers reflect the variability in the data obtained from different subjects and 

highlight the importance of subject-specific characteristics in EEG-based imagined speech BCI systems. 

This information provides insights into the amount of data available for each subject and each imagined 

speech command class. It aids in understanding the distribution and variability of TFRs, which are crucial 

for subsequent analysis, feature extraction, and classification tasks in imagined speech BCIs based on 

EEG. 

As shown in Table 5 provides the number of epochs obtained from the imagined speech EEG signals for 

six different classes, along with the average number of extracted TFRs for each class. The imagined 

speech classes include Up, Down, Left, Right, Forward, and Backward. For each class, a total of 4000 

epochs were collected from the EEG signals. These epochs represent specific instances of the imagined 

speech commands and serve as the basis for analysis and classification. Upon extracting the TFRs from 

the EEG signals, the average number of TFRs obtained varied for each class. The class Up yielded an 

average of 1848 TFRs, Down had an average of 1948 TFRs, Left had an average of 1778 TFRs, Right 

had an average of 1929 TFRs, Forward had an average of 1889 TFRs, and Backward had an average of 

1977 TFRs. 

These numbers provide insights into the amount of data available for each imagined speech class and the 

corresponding TFRs extracted from the EEG signals. The variation in the average number of TFRs 

suggests potential differences in the characteristics and complexity of the imagined speech commands. 

This information is valuable for understanding the dataset used in the study and serves as a foundation 

for further analysis and classification tasks. It highlights the importance of having a substantial number 

of epochs and extracted TFRs to ensure reliable and accurate results in EEG-based imagined speech BCI 

systems. 
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Table 5: Number of epochs obtained from the imagined speech EEG signals corresponding six different 

classes. 

Imagined speech command Number of epochs Average extracted TFRs 

Up 4000 1848 

Down 4000 1948 

Left 4000 1778 

Right 4000 1929 

Forward 4000 1889 

Backward 4000 1977 

Furthermore, the evaluated performance of DMD-TFA, has been conducted for 6-classes of imagined 

speech EEG signal, which demonstrated in Fig. 22 

 

 

 Figure 22: Plot of obtained TFR for (a) Up, (b) Down, (c) Right, (d) Left, (e) Forward, and  (f) 

Backward classes using DMD method. 
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5.3 Classification Performance using CNN 

To evaluate the performance of various deep networks and classifiers, our experiments were conducted 

on a computer system with specific specifications: an Intel® Core™ i7-9750H CPU with a base 

frequency of 2.6 GHz (up to 4.5 GHz in high-performance mode), an NVIDIA GeForce RTX 2060 

GPU, and 16 GB of RAM. The simulations were performed using MATLAB [108]. For assessing the 

CNN model's performance, it was trained on two-dimensional time-frequency representation (TFR) 

images that encompass joint time-frequency features. Table 4 presents the comparative average 

accuracies for different classes. The average accuracies were calculated for the imagined speech 

commands, including Up, Down, Left, Right, Forward, and Backward, as well as the accuracy for all 

six classes combined. The highest achieved accuracy across all classes was 70.99% [14]. The 

performance of the proposed model can be summarized as follows: 

The DMD method was evaluated for classifying six different classes of imagined speech stimuli using 

TFR images derived from DMD of EEG signals. The TFR images corresponding to different classes, 

as shown in Table 4, were utilized for TFR image classification using a CNN classifier. The CNN 

model consists of various components, including the image input layer, convolutional layer, batch 

normalization layer, rectified linear unit, max-pooling layer, fully connected layer, and soft-max layer 

[2]. The number of layers in the CNN can be adjusted based on the input size, and it is not necessary 

to include all layers in the network. In this study, the network parameters were efficiently tuned, and 

the minimum number of layers was employed to reduce computational time. Figure 16 illustrates the 

block diagram of the implemented CNN network. 

The classification employed a learning rate of 0.01, with a maximum of 40 epochs and a batch size of 

256. For training and testing the classifier, 70% and 30% of the TFR images were used, respectively. 

The highest achieved accuracies for TFR classification were reported as 70.90% and 71.99%, 

respectively. The classification performance of the imagined speech task is presented in terms of 

accuracy percentages for different classes [16]. Accuracy serves as a metric to evaluate the 

classification model's effectiveness in accurately identifying the intended speech commands based on 

EEG signals. For the left-right classification task, an accuracy of 70.90% was achieved, indicating 

successful differentiation between left and right speech commands with relatively high accuracy. 
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Similarly, for the up-down classification task, an accuracy of 68.98% was obtained, demonstrating the 

model's ability to differentiate between these speech commands. 

In the forward-backward classification task, an accuracy of 70.01% was achieved, indicating accurate 

classification of the intention to move forward or backward based on the EEG signals. Finally, the 

overall classification accuracy for all classes combined was reported as 71.99%, representing the 

overall performance of the model in distinguishing between all the imagined speech commands.These 

results, as shown in Table 4, highlight the potential of the EEG-based BCI system using DMD for 

accurate and reliable classification of imagined speech commands. The achieved accuracy percentages 

demonstrate the feasibility of utilizing EEG signals to accurately decode and classify the intended 

speech commands.  

Table 4: Imagined speech classification performance. 

Classification task Accuracy (%) 

 Right versus Left 70.90 

 Down versus Up 68.98 

Backward versus Forward  70.01 

All classes 71.99 

Table 4 presents the extracted average TFRs across 15 subjects for six different imagined speech 

command classes. The subjects are denoted as S01 to S015, and the imagined speech commands include 

Backward, Down, Forward, Left, Right, and Up. The Table 4 provides the average number of TFRs 

obtained for each subject and each imagined speech command class. The values represent the quantity 

of TFRs extracted during the analysis. 
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Fig 23:  Data loading process for extraction of CNN feature in training phase for six imagined speech 

commands.  
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5.4 Comparison with Existing Techniques 

A comparison of different methods employed for classifying imagined speech commands is illustrated 

in Table 6. This comparison showcases the feature extraction techniques, classifiers, and accuracy rates 

associated with each method [41]. The inclusion of existing methods in Table 6 serves as a benchmark 

for evaluating the performance of the proposed approach, which utilizes DMD-TFRs and a CNN 

classifier. 

Table 6: comparative analysis of imagined speech classification methods to the existing methods 

References Classes Feature extraction 

techniques 

Classifier Accuracy 

Correto et 

al. [80] 

Classification of six 

imagined command 

class 

Discrete wavelet 

transforms domain 

energy features  

SVM 17.46% 

Dash et al. 

[58] 

Classification of 

seven phonemic 

prompts and four 

words  

Slop domain L1-

norm  

SVM Phonemes:20% 

Pair of words: 

44% 

Cooney et 

al. [37] 

Classification of 

imagined vowels 

and commands  

Learnable features 

CNN layers 

10-deep 

based deep 

CNN model 

19.81% 

Dasalla et 

al. [52] 

Binary classification 

of vowels, short, and 

long words  

Common spatial 

filter 

RVM Vowels: 49% 

Shortwords: 

50.1% 

Long words: 

66.2% 

Paul et al. 

[109] 

Classification of 

three Hindi words 

[10] 

AR coefficients, 

Hjorth parameters 

and sample entropy 

SVM 63% 

 Proposed work DMD-TFRs CNN 70.47% 

 

The study conducted a comparative analysis of different methods used for classifying imagined speech 

commands using EEG signals. The researchers explored various techniques for extracting features and 

employed different classification algorithms to improve accuracy. In previous works [80], discrete 

wavelet transform (DWT) was used to extract energy features in the domain, and support vector 



76 
 

 

machines (SVM) were employed for classification. The achieved accuracy for classifying six imagined 

command classes was reported as 17.46%. Similarly, in [58], the focus was on classifying phonemic 

prompts and words using an SVM classifier, with accuracy rates of 20% for phonemes and 44% for word 

pairs [37]. In [37], learnable features were extracted using CNN layers, and a deep CNN model with 10 

layers was used for classification. The accuracy achieved for classifying imagined vowels and commands 

was 19.81%. These previous works [80, 58, 37] reported relatively lower accuracy rates. 

To address this, Dasalla et al. [52] achieved improved accuracy by employing binary classification of 

vowels, short words, and long words using common spatial patterns (CSP) for feature extraction and a 

relevance vector machine (RVM) as the classifier. The accuracy rates were reported as 49% for vowels, 

50.1% for short words, and 66.2% for long words [82]. In addition, features such as autoregressive (AR) 

coefficients, Hjorth parameters, and sample entropy were extracted, and an SVM classifier was used. 

The accuracy achieved for classifying three Hindi words was 63%. Furthermore, in [109], the 

multivariate fast and adaptive empirical decomposition-based method (MFAEMD) was employed for 

feature extraction, and dictionary learning (DL) was used for classification of six imagined command 

classes. The accuracy obtained for classifying imagined vowels and commands was reported as 60.72%. 

To improve upon these previous studies, the proposed work utilized DMD-TFRs for time-frequency 

representation-based feature extraction and a CNN classifier. The achieved accuracy for classifying 

imagined speech commands was 70.47%. These results indicate that the proposed method surpasses the 

accuracy of existing methods [58, 37, 80, 82, 109], demonstrating its effectiveness in classifying 

imagined speech commands. This comparative analysis underscores the significance of the proposed 

approach based on DMD-TFRs and CNN, highlighting its potential as a robust and accurate method for 

EEG-based imagined speech classification. The improved accuracy achieved in this study contributes to 

the existing research in EEG-based BCI systems and opens avenues for further advancements in this 

field. 
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Chapter 6 

Conclusion and Scope for Future Work 

The utilization of the DMD-based feature extraction method has demonstrated its effectiveness in 

capturing the temporal dynamics and frequency characteristics of EEG signals associated with imagined 

speech. The EEG-based imagined speech BCI using DMD has shown promising results in decoding 

imagined speech tasks. In terms of reconstruction accuracy for multi-component amplitude modulated 

signals, the DMD method outperforms the EMD and EWT methods as indicated by the lower MSE 

values. The DMD method achieves superior reconstruction accuracy with the lowest MSE values for all 

signal components compared to the EMD and EWT methods. On the other hand, the EMD method 

exhibits relatively less accurate reconstruction with higher MSE values, while the EWT method shows 

the least accurate reconstruction with the highest MSE values. Therefore, based on the MSE values, the 

DMD method is concluded to provide better reconstruction accuracy for multi-component amplitude 

modulated signals in this study. 

The developed DMD-based classification framework has been found effective and robust for decoding 

imagined speech from EEG signals, outperforming existing approaches. In the proposed work, DMD-

TFRs were used for feature extraction, and a CNN classifier was employed. The achieved accuracy for 

the classification of imagined speech commands was 70.47%. These results demonstrate the superiority 

of the proposed method in terms of accuracy, highlighting its effectiveness in classifying imagined 

speech commands. The combination of DMD-based feature extraction and classification techniques has 

provided a reliable and powerful approach for extracting meaningful information from EEG signals 

related to imagined speech. The system has demonstrated its potential for real-world applications, 

including communication aids and neurorehabilitation. 

In future research, the efficiency of the EEG-based imagined speech BCI can be enhanced for clinical 

practices, including communication aids and neurorehabilitation. This can be achieved by exploring 

advanced signal processing techniques, optimizing classification models, and integrating other 

modalities or features to improve overall performance. Additionally, investigating the generalizability 

of the system across larger populations and different demographic groups would provide valuable 

insights into its scalability and applicability in diverse user populations. 
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In conclusion, the EEG-based imagined speech BCI using DMD holds significant potential for advancing 

the field of neurorehabilitation and communication aids. By addressing the mentioned aspects and 

continuously refining the system's capabilities, future research can contribute to the development of more 

accurate, reliable, and user-friendly BCI systems for decoding imagined speech, ultimately improving 

the quality of life for individuals with communication impairments. 

6.1 Summary of the Study 

In summary, this study focused on developing an effective and robust system for decoding imagined 

speech from EEG signals using DMD. By employing signal processing techniques, feature extraction 

with DMD, and classification models, the study successfully extracted meaningful information and 

accurately classified the intended speech from the brain signals. 

The results of the study demonstrated the feasibility and effectiveness of the proposed approach. The 

DMD-based feature extraction method proved to be highly effective in capturing the temporal dynamics 

and frequency characteristics of the EEG signals associated with imagined speech. The classification 

models, trained on these extracted features, achieved high levels of accuracy in decoding the intended 

speech. 

The study also highlighted the potential applications of the EEG-based imagined speech BCI, such as 

communication aids and neurorehabilitation. The system's ability to interpret and translate imagined 

speech into actionable commands has significant implications for individuals with speech impairments, 

providing them with a means to communicate and interact with their environment. 

Furthermore, the study discussed the challenges and limitations associated with the proposed approach, 

including variations in EEG signals among individuals and the need for further optimization and 

generalization of the system. These findings underscore the importance of ongoing research and 

development in the field of EEG-based BCIs, with a focus on addressing these challenges and improving 

the system's robustness and usability. 
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Overall, this study contributes to the advancement of EEG-based BCIs for decoding imagined speech 

and highlights the potential of DMD as a reliable feature extraction method. The findings lay the 

groundwork for future research in this area, paving the way for more accurate, dependable, and user-

friendly BCI systems for imagined speech communication. 

6.2 Contributions and Findings 

The study on EEG-Based imagined speech BCI using DMD has made significant contributions and 

generated important findings. Firstly, it has demonstrated the feasibility and effectiveness of employing 

DMD as a feature extraction method to capture the temporal and spectral characteristics of EEG signals 

associated with imagined speech. This contribution addresses the challenges posed by non-stationarity 

and non-linearities in EEG data and provides a robust approach for extracting relevant features. 

Secondly, the study has developed and evaluated a classification model based on the extracted DMD 

features, achieving high accuracy in decoding imagined speech from EEG signals. This finding 

highlights the potential of EEG-based BCIs in translating brain signals into meaningful speech 

commands, which can have profound implications for individuals with speech impairments. 

Furthermore, the study has explored the application of multichannel DMD techniques in the proposed 

EEG-Based imagined speech BCI, particularly in the context of communication aids and 

neurorehabilitation. By demonstrating the system's ability to decode imagined speech and translate it 

into actionable commands, the study opens up new possibilities for enhancing communication and 

interaction for individuals with limited speech capabilities. 

The findings of the study contribute to the broader field of EEG-based BCIs by showcasing the 

effectiveness of DMD as a feature extraction method and its potential for decoding imagined speech. 

The study not only advances our understanding of the underlying mechanisms of imagined speech in 

EEG signals but also provides practical insights for developing more accurate and user-friendly BCI 

systems. 
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In summary, the contributions and findings of this study highlight the promise of EEG-Based imagined 

speech BCI using DMD, setting the stage for future research and development in the field. These findings 

have the potential to significantly impact the lives of individuals with speech impairments by offering 

new avenues for communication and improving their quality of life. The study extends the application 

of the DMD method and explores the perspective of single-channel EEG-based DMD for decoding 

imagined speech from multichannel EEG signals. 

The main contributions of the thesis can be summarized as follows: 

a) The thesis presents an experiment for the EEG-based classification of six imagined commands using 

a single-channel-based DMD approach, employing a Hankelization and diagonal averaging procedure. 

The analysis of imagined signals is conducted for six brain regions. 

b) From the imagined EEG signals of six channels, the thesis evaluates the instantaneous energy and 

frequency using Hilbert transform, and extracts features such as Hilbert spectrum of intrinsic mode 

functions and time-frequency representations (TFRs). A novel multichannel DMD method is proposed, 

simultaneously evaluating the mean of all extracted TFRs from the six channels and fifteen subjects for 

six different imagined speech classes. 

c) The thesis proposes a deep CNN architecture trained on TFR features (2-D images) of six classes. The 

experimental performance indicates that the alpha and beta bands are better suited for classifying 

imagined speech features compared to other EEG frequency bands. 

6.3 Future Research Directions 

Future research directions for EEG-Based imagined speech BCI using DMD have been identified, 

providing valuable insights and suggesting areas for further investigation. Firstly, there is a need to refine 

the DMD algorithm and explore variations of the method to improve its performance in extracting 

relevant features from EEG signals. This may involve adjusting parameter settings, exploring alternative 

decomposition algorithms, or incorporating other signal processing techniques to enhance the accuracy 

and robustness of feature extraction. 

 



81 
 

 

Secondly, future studies should involve larger and more diverse datasets to evaluate the generalizability 

of the proposed BCI system. Collecting EEG data from a broader population, including individuals with 

different speech impairments and varying cognitive abilities, will allow for a comprehensive assessment 

of the system's performance across various user groups. Real-time and online experiments can also 

provide insights into the system's usability and reliability in practical scenarios. 

Furthermore, the integration of other machine learning algorithms and techniques can be explored to 

improve the classification accuracy and response time of the imagined speech BCI. Deep learning 

approaches, such as convolutional neural networks (CNNs) or recurrent neural networks (RNNs), can be 

investigated to capture complex temporal patterns in EEG signals and enhance the system's ability to 

decode imagined speech. 

Additionally, the combination of multiple modalities, such as EEG and electromyography (EMG), can 

be studied to provide complementary information and improve the overall accuracy and robustness of 

the BCI system. The integration of other physiological signals or neuroimaging techniques, such as 

functional near-infrared spectroscopy (fNIRS) or functional magnetic resonance imaging (fMRI), can 

offer valuable insights into the underlying neural mechanisms of imagined speech and further enhance 

the performance of the BCI. 

Lastly, there is a need to develop user-friendly and wearable EEG devices that are suitable for long-term 

use and can be seamlessly integrated into daily life activities. Improving the comfort, ease of use, and 

accessibility of EEG acquisition systems will facilitate the widespread adoption of EEG-Based imagined 

speech BCIs and make them more practical for real-world applications. 

In conclusion, future research in EEG-Based imagined speech BCI using DMD should focus on 

improving the accuracy, usability, and generalizability of the system. This can be achieved through the 

refinement of feature extraction methods, the expansion of datasets, the exploration of advanced machine 

learning techniques, the integration of multiple modalities, and the improvement of EEG acquisition 

device usability. These research directions will contribute to the advancement and practical 

implementation of imagined speech BCIs, ultimately enhancing communication and interaction for 

individuals with speech impairments. 
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