
FAULT ANALYSIS OF AUTHENTICATED
ENCRYPTION SYSTEMS

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree

of
Master of Technology

by

Lt Col O P Mishra

CENTER FOR ELECTRIC VEHICLE AND
INTELLIGENT TRANSPORT SYSTEMS,

INDIAN INSTITUTE OF TECHNOLOGY,
INDORE

MAY 2023

INDIAN INSTITUTE OF TECHNOLOGY

INDORE

CANDIDATE'S DECLARATION

 I hereby certify that the work which is being presented in the thesis entitled FAULT

ANALYSIS OF AUTHENTICATED ENCRYPTION SYSTEMS in the partial fulfillment of

the requirements for the award of the degree of MASTER OF TECHNOLOGY and submitted

in the Center for Electric Vehicle and Intelligent Transport Systems, Indian Institute of

Technology Indore, is an authentic record of my own work carried out during the time period

from Jun 2022 to May 2023 under the supervision of Dr Bodhisatwa Mazumdar, Associate

Professor, PhD Coordinator, Department of Computer Science and Engineering, Indian

Institute of Technology Indore.

 The matter presented in this thesis has not been submitted by me for the award of any other

degree to this or any other institute.

 (Lt Col O P Mishra)

 This is to certify that the above statement made by the candidate is correct to the best of
our knowledge.

(Dr. Bodhisatwa Mazumdar)

 Lt Col O P Mishra has successfully given his M.Tech. Oral Examination held on May 18, 2023.

Signature(s) of Supervisor(s) of M.Tech. thesis Convener, DPGC
Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2
(Prof. Abhijeet Ghosh) (Prof. Neminath Hubbali)
Date: Date:

06-06-2023

06-06-2023

08/06/23 09-06-2023

i

ACKNOWLEDGEMENT

My deep gratitude goes firstly to my supervisor, Dr. Bodhisatwa Mazumdar, who expertly

guided me throughout my two years of Master of Technology. I was fortunate to have an advisor

who offered me the constant motivation and productive support that preceded this work to attain

this form. I would also like to thank my PSPC members, Prof. Abhijeet Ghosh and Prof.

Neminath Hubbali for their continuous inputs for the advancement of this project.

A very special thanks to my batchmates Mr. Maitreya Jain (M Tech. scholar), Mr. Vivek

Paliwal (M Tech. scholar), and Mr. Prashant Mall (M Tech. scholar) for their moral support and

supportive environment for the completion of the project. I am also thankful to Prof. Srivathsan

Vasudevan, IIT Indore.

I want to extend my deepest appreciation and admiration to my beloved parents Shri
Yashodhar Mishra and Mrs Kunti Mishra for their invaluable blessings and unwavering support
throughout my M Tech project. I am truly grateful to my Wife, Shashi Mishra whose constant
encouragement has boosted my spirits and kept me motivated. I would also like to express my
heartfelt thanks to all those who have provided assistance, whether directly or indirectly, during this
project.

With Regards,

Lt Col O P Mishra

ii

iii

iv

v

Abstract

This project report presents the implementation and analysis of the GIFT cipher, a

lightweight symmetric encryption algorithm, using the Python programming language. The GIFT

cipher has gained significant attention in the field of cryptography due to its impressive security

features and efficient performance.

The report begins with an overview of the GIFT cipher's structure and operation,

highlighting its key components such as the Substitution-Permutation Network (SPN) and the

Feistel-like structure. The Python implementation of the GIFT cipher is discussed in detail, covering

the encryption and decryption processes along with the generation of round keys.

Furthermore, a comparative analysis is conducted to showcase the advantages of the GIFT

cipher over its competitors. The key benefits of the GIFT cipher include:

▪ Lightweight Design: The GIFT cipher is specifically designed to be highly efficient on

resource-constrained devices such as low-power microcontrollers and Internet of Things

(IoT) devices. It offers a balance between security and computational requirements,

making it ideal for lightweight applications.

▪ Strong Security: Despite its lightweight nature, the GIFT cipher provides a high level of

security. It offers resistance against various cryptographic attacks, including differential

and linear attacks. The careful design choices in GIFT's round function and key schedule

contribute to its robustness.

▪ Fast Execution: The GIFT cipher demonstrates remarkable speed in both software and

hardware implementations. Its compact design and efficient algorithms enable quick

encryption and decryption operations, making it suitable for real-time applications and

systems with limited processing power, as in Smart and Connected Vehicles.

▪ Minimal Memory Footprint: GIFT requires relatively low memory resources, making it

well-suited for devices with limited storage capacity. This characteristic makes it a viable

choice for embedded systems and lightweight cryptographic applications.

The report concludes with a discussion on potential future research and improvements for

the GIFT cipher, as well as its applications in various domains requiring lightweight and secure

encryption. Overall, the GIFT cipher proves to be a promising solution for achieving a balance

between security and efficiency in lightweight cryptographic systems.

vi

vii

TABLE OF CONTENTS

S No CONTENTS PAGE No

Chapter 1: Ciphers: A Detailed Overview

1. 1.1. Introduction

2. 1.2. Origin of Ciphers

3. 1.3. Initial Developments

4. 1.4. Need for Ciphers

5. 1.5. Use Case Scenarios

6. 1.6. Latest Trends

Chapter 2: Light Weight Ciphers: A Detailed Overview

7. 2.1. Introduction

8. 2.2. Origin of Lightweight Ciphers

9. 2.3. Initial Developments

10. 2.4. Need for Lightweight Ciphers

11. 2.5. Use Case Scenarios

12. 2.6. Latest Trends

13. 2.7. Conclusion

Chapter 3: Light Weight Ciphers in Electric Vehicles and Intelligent
Transportation Systems.

14. 3.1 Introduction

15. 3.2 Employment of Lightweight Cipher

3.2.1 Secure Communication
3.2.2 Authentication and Access
Control
3.2.3 Secure Firmware Updates

viii

3.2.4 Data Privacy and
Confidentiality
3.2.5 Resource Efficiency
3.2.6 Standardization Efforts

Chapter 4: GIFT CIPHER and Optimization.

16. 4.1 Introduction

17. 4.2 Improvements in GIFT Cipher

18. 4.3 Specifications

19. 4.4 Round function

4.4.1 Initialization
4.4.2 SubCells
4.4.3 PermBits
4.4.4 AddRoundKey
4.4.5 Key schedule and round
constants

20. 4.5 Modification of GIFT Cipher

4.5.1 Introduction
4.5.2 Contribution
4.5.3 GIFT Block Cipher

4.5.3.1 Sbox of GIFT Block
Cipher

4.5.3.2 Permutation of GIFT
Block Cipher

4.5.3.3 AddRoundkey of
GIFT Block Cipher

4.5.3.4 Constant XOR of
GIFT Block Cipher

4.5.3.4 Keyschedule of GIFT Block
Cipher

21. 4.6 Quantum Gates and Algorithm

4.6.1 Quantum Gates
4.6.2 Quantum Circuit for GIFT

Block Cipher
4.6.3 Sbox of GIFT Block Cipher
4.6.4 Modification to existing sbox:
4.6.5 Permutaiton of GIFT Block

Cipher
4.6.6 Keyschedule of GIFT Block

Cipher

ix

Chapter 5: Implementation of GIFT CIPHER in Python

22. 5.1 Encryption
5.1.1. Adding of the Round Key.
5.1.2. Adding the Round Constant.
5.1.3. Updating the Key.

23. 5.2 Decryption
5.2.1. Inverse permutation and Sbox

implementation

24. 5.3 Control Function

25. 5.4 Running and Output

26. 5.5 Stage by Stage Output

Chapter 6: Future Scope of Work

Bibliography

x

LIST OF FIGURES

Fig 1: Illustrates 2 Rounds of GIFT -64

Fig 2: Encryption process of GIFT block cipher

Fig 3: CNOT gate and Toffoli gate

Fig 4: Logical-OR quantum gate

Fig 5: Quantum circuit for Sbox of GIFT block cipher.

xi

LIST OF TABLES

Table 1: Performance of GIFT vis-à-vis others

Table 2: Performance of GIFT vis-à-vis others

Table 3: Specifications of GIFT Sbox GS

Table 4: Bit permutation used in GIFT-64

Table 5: Bit permutation used in GIFT-128

Table 6: Permutation of GIFT-64 bit

Table 7: Round Constants

xii

ALGORITHMS

Algorithm 1: Software-oriented implementation of GIFT Sbox

Algorithm 2: Hardware-oriented implementation of GIFT Sbox

Algorithm 3: Quantum circuits for Sbox of GIFT block cipher

Algorithm 4: Quantum circuit for AddRoundkey of GIFT-64/128 block cipher

Algorithm 5: Quantum circuits for AddRoundkey of GIFT-128/128 block cipher

Algorithm 6: Quantum circuits for constant XOR of GIFT-n/128 block cipher

1

Chapter 1: Ciphers- A Detailed Overview

1.1. Introduction
Ciphers play a crucial role in the field of cryptography, which is the practice of secure
communication in the presence of adversaries. A cipher is an algorithm or method used to encrypt
and decrypt messages, transforming plaintext (readable form) into ciphertext (unreadable form) and
vice versa. Throughout history, ciphers have been used to protect sensitive information, maintain
privacy, and ensure secure communication between individuals or organizations. This document
explores the origin, initial developments, need for ciphers, use case scenarios and the latest trends
in the field.

1.2. Origin of Ciphers
The use of ciphers dates back thousands of years. Ancient civilizations, such as the Egyptians and
Greeks, employed various encryption techniques. One of the earliest known ciphers is the Caesar
cipher, named after Julius Caesar, who used it to communicate with his generals. The Caesar cipher
involves shifting each letter in the plaintext by a fixed number of positions in the alphabet. For
instance, with a shift of 3, "HELLO" would become "KHOOR."

1.3. Initial Developments

Over time, more sophisticated ciphers were developed to enhance security. One notable
development was the invention of the polyalphabetic cipher by Leon Battista Alberti in the 15th
century. This cipher used multiple alphabets and variable substitution, making it more resistant to
frequency analysis attacks.

The 19th century witnessed the emergence of mechanical cipher machines like the Enigma machine,
which was famously used by the German military during World War II. These machines utilized
complex rotors and electrical circuits to perform encryption and decryption operations.

The development of computers in the 20th century revolutionized cryptography. Symmetric-key
ciphers like the Data Encryption Standard (DES) and Advanced Encryption Standard (AES) were
introduced, along with asymmetric-key ciphers like the RSA algorithm. These algorithms formed
the basis for modern cryptographic systems.

1.4. Need for Ciphers: Ciphers serve several critical purposes in today's digital world:

1.4.1 Confidentiality

Ciphers ensure the confidentiality of information by encrypting it. Only authorized
individuals possessing the correct decryption key can transform the ciphertext back into its
original plaintext form. This is crucial for protecting sensitive data such as personal
information, financial transactions, and classified government communications.

2

1.4.2 Integrity

Ciphers can also provide integrity by enabling the detection of any unauthorized
modifications to the encrypted data. Cryptographic hash functions, which generate fixed-
size unique outputs (hashes) for variable-size inputs, are often used in conjunction with
ciphers to ensure the integrity of messages.

1.4.3 Authentication

Ciphers play a role in authentication mechanisms. Digital signatures, which are created
using asymmetric-key ciphers, allow the recipient to verify the sender's identity and ensure
the message's integrity. This is particularly important in electronic transactions and secure
communication between parties.

1.4.4 Non-Repudiation

Non-repudiation refers to the ability to prove that a message was sent or received by a
particular party, preventing them from denying their involvement. Ciphers contribute to
non-repudiation by providing digital signatures and ensuring that messages cannot be
tampered with or forged.

1.5. Use Case Scenarios Ciphers find applications in various domains:

1.5.1 Secure Communication

Ciphers are extensively used for secure communication over the internet. Secure protocols
like Transport Layer Security (TLS) and Secure Shell (SSH) utilize ciphers to encrypt data
transmitted between clients and servers. This ensures that sensitive information, such as
passwords, credit card details, and personal messages, remains confidential.

1.5.2 Data Storage

Ciphers are crucial in protecting stored data, such as databases, file systems, and cloud
storage. Encryption algorithms like AES are employed to encrypt data at rest, safeguarding
it from unauthorized access even if physical storage devices are compromised.

1.5.3 Military and Government Applications

Ciphers have always been integral to military and government operations. They are used for
secure communication between military personnel, intelligence agencies, and diplomats.
Ciphers ensure the secrecy and integrity of classified information critical for national
security.

3

1.5.4 Financial Transactions

Ciphers are extensively employed in financial systems to secure online banking, electronic
funds transfer, and digital currency transactions. The use of encryption guarantees the
confidentiality and integrity of financial data, preventing unauthorized access and fraud.

1.6. Latest Trends

Cryptography and ciphers continue to evolve, driven by advancements in computing power and
emerging threats. Some notable trends include:

1.6.1 Quantum Cryptography

The advent of quantum computing poses a potential threat to traditional encryption
algorithms. Quantum cryptography, which relies on the principles of quantum mechanics,
aims to develop cryptographic systems that are resistant to quantum attacks. Techniques
such as quantum key distribution (QKD) offer the promise of secure key exchange over
insecure channels.

1.6.2 Homomorphic Encryption

Homomorphic encryption allows computations to be performed directly on encrypted data
without requiring decryption. This emerging field of cryptography has significant
implications for secure data processing, enabling confidential computations on sensitive
data while maintaining privacy.

1.6.3 Post-Quantum Cryptography

Post-quantum cryptography focuses on developing cryptographic algorithms that are
resistant to attacks by both classical and quantum computers. As quantum computers
become more powerful, post-quantum cryptographic algorithms aim to ensure the long-term
security of encrypted data.

1.7. Conclusion

Ciphers have a rich history and continue to play a crucial role in ensuring the confidentiality,
integrity, authentication, and non-repudiation of digital information. They find applications in
secure communication, data storage, military operations, and financial transactions. As technology
advances, new challenges and trends such as quantum cryptography, homomorphic encryption, and
post-quantum cryptography drive the development of more secure and robust ciphers, enabling us
to protect sensitive information in an ever-evolving digital landscape.

4

Chapter 2: Light Weight Ciphers: A Detailed Overview

2.1 Introduction
Lightweight ciphers are cryptographic algorithms specifically designed to provide secure and
efficient encryption for resource-constrained devices. These devices often have limited processing
power, memory, and energy capabilities. Lightweight ciphers aim to strike a balance between
security and efficiency, making them suitable for low-power devices such as IoT devices, embedded
systems, and wireless sensors. This chapter provides a comprehensive overview of lightweight
ciphers, including their origin, initial developments, need, use case scenarios, and latest trends.

2.2 Origin of Lightweight Ciphers
The need for lightweight ciphers emerged with the proliferation of resource-constrained devices
that require cryptographic protection. The field of lightweight cryptography gained prominence in
the early 2000s when researchers recognized the limitations of traditional cryptographic algorithms
for such devices.

2.3. Initial Developments

The initial developments in lightweight ciphers focused on designing algorithms that provided
strong security while minimizing computational overhead and memory requirements. Notable early
lightweight ciphers include:

2.3.1 Skipjack

Skipjack is a symmetric-key block cipher developed by the National Security Agency (NSA)
in the 1990s. It was intended for use in the Clipper chip, a controversial government
encryption initiative. Skipjack was designed to be efficient on 16-bit microcontrollers and
had a 64-bit block size.

2.3.2 RC5

RC5 is a block cipher developed by Ronald Rivest in the mid-1990s. It is known for its
flexibility and simplicity, making it suitable for resource-constrained devices. RC5 supports
variable block sizes, key sizes, and number of rounds, allowing customization based on
specific requirements.

2.3.3 Simon and Speck

Simon and Speck are a family of lightweight block ciphers developed by the National
Security Agency (NSA) in 2013. They are designed to provide high performance and
security with a small code footprint. Simon and Speck offer various block and key sizes,
allowing customization for different applications.

5

2.4. Need for Lightweight Ciphers

The need for lightweight ciphers arises from the limitations of resource-constrained devices. These
devices often have restricted computational power, memory, and energy resources, making
traditional cryptographic algorithms impractical. The specific needs for lightweight ciphers include

2.4.1 Security

Resource-constrained devices still require secure communication and data protection.
Lightweight ciphers provide a solution by offering cryptographic algorithms that are
specifically designed to balance security and efficiency in constrained environments.

2.4.2 Efficiency

Lightweight ciphers aim to optimize performance on low-power devices. They prioritize
efficient encryption and decryption operations to minimize computational overhead,
memory usage, and energy consumption.

2.4.3 Scalability

Many lightweight ciphers offer customizable parameters such as block size, key size, and
number of rounds. This scalability enables their adaptation to different resource constraints,
allowing for flexibility in deployment across a wide range of devices.

2.5. Use Case Scenarios

Lightweight ciphers find applications in various domains where resource-constrained devices
require secure communication and data protection. Some common use case scenarios include:

2.5.1 Internet of Things (IoT) Devices

Lightweight ciphers are essential for securing communication between IoT devices, which
often operate with limited resources. They enable secure data exchange and ensure the
privacy and integrity of sensitive information transmitted within IoT ecosystems.

2.5.2 Embedded Systems

Embedded systems, such as microcontrollers and smart cards, often have stringent
constraints on processing power and memory. Lightweight ciphers provide secure
encryption for these devices, allowing them to protect sensitive data in applications such as
smart grids, automotive systems, and medical devices.

6

2.5.3 Wireless Sensor Networks

Wireless sensor networks rely on lightweight ciphers to secure communication between
sensor nodes. These networks are commonly deployed in environments where resources are
scarce, such as environmental monitoring, industrial automation, Smart and Connected
Vehicles and surveillance systems.

2.6. Latest Trends

The field of lightweight cryptography continues to evolve to address emerging challenges and
advancements in technology. Some notable trends in lightweight ciphers include:

2.6.1 Hardware Acceleration

To further enhance the efficiency of lightweight ciphers, there is a growing trend of utilizing
hardware acceleration techniques. Hardware accelerators, such as dedicated cryptographic
co-processors or Field-Programmable Gate Arrays (FPGAs), can offload cryptographic
operations, improving performance and reducing energy consumption.

2.6.2 Post-Quantum Lightweight Cryptography

As the field of post-quantum cryptography advances, efforts are being made to develop
lightweight cryptographic algorithms that are resistant to attacks by both classical and
quantum computers. These algorithms aim to ensure the long-term security of lightweight
devices in the post-quantum era.

2.6.3 Standardization Efforts

Standardization bodies, such as the National Institute of Standards and Technology (NIST),
are actively involved in the evaluation and selection of lightweight cryptographic
algorithms. Ongoing standardization efforts aim to provide industry-wide guidelines and
recommendations for the implementation of lightweight ciphers.

2.7. Conclusion

Lightweight ciphers have emerged as a crucial component of cryptographic solutions for resource-
constrained devices. Their focus on security, efficiency, and scalability makes them ideal for
applications in IoT, embedded systems, and wireless sensor networks. As technology advances,
trends like hardware acceleration, post-quantum lightweight cryptography, and standardization
efforts continue to shape the field, ensuring the availability of secure and efficient encryption
solutions for lightweight devices in the evolving digital landscape.

7

8

Chapter 3: Light Weight Ciphers in Electric Vehicles and Intelligent

Transportation Systems

3.1 Introduction:
 The implementation of lightweight ciphers in the domain of electric vehicles (EVs) and intelligent
transportation systems (ITS) plays a crucial role in ensuring the security and privacy of data
transmitted and stored within these systems.

3.2 Employment of Lightweight Ciphers: Here is an elaboration on how lightweight ciphers are
employed in these domains:

3.2.1 Secure Communication:

Lightweight ciphers are utilized to secure communication channels in EVs and ITS. EVs
often rely on wireless communication protocols for vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communication. Lightweight ciphers are employed to encrypt data
transmitted over these channels, protecting it from unauthorized access and ensuring
confidentiality. Lightweight ciphers are used to encrypt data transmitted over wireless
communication protocols in EVs and ITS, such as Dedicated Short-Range Communications
(DSRC) or Cellular Vehicle-to-Everything (C-V2X). These ciphers ensure that the data
exchanged between vehicles, infrastructure components, and control centers remains
confidential and protected from eavesdropping or unauthorized access.

Lightweight ciphers provide secure encryption and decryption operations with optimized
computational efficiency, allowing real-time communication between vehicles and
infrastructure.

3.2.2 Authentication and Access Control:

 Lightweight ciphers are used to establish secure authentication and access control
mechanisms in EVs and ITS. They help verify the identity of vehicles, users, and
infrastructure components, preventing unauthorized access to critical systems and data.
Lightweight ciphers play a vital role in securing processes such as key exchange, digital
signatures, and secure bootstrapping. Lightweight ciphers play a vital role in establishing
secure authentication and access control mechanisms in EVs and ITS.

They are used for verifying the identity of vehicles, users, and infrastructure components
during the establishment of secure communication channels. Lightweight ciphers ensure that
only authorized entities can access and interact with the systems, mitigating the risk of
unauthorized vehicle entry or malicious control.

9

3.2.3 Secure Firmware Updates:

 Lightweight ciphers are employed to ensure the integrity and authenticity of firmware
updates in EVs and ITS. These systems require regular software updates to enhance
performance, fix vulnerabilities, and introduce new features. Lightweight ciphers provide
encryption and digital signatures to verify the integrity and authenticity of firmware updates,
preventing malicious modifications. EVs and ITS components often require firmware
updates to enhance functionality, fix vulnerabilities, or introduce new features. Lightweight
ciphers are used to secure these firmware updates by providing encryption and digital
signatures. Encryption ensures that the firmware is transmitted securely, protecting it from
interception and tampering. Digital signatures verify the integrity and authenticity of the
firmware, ensuring that it has not been modified by unauthorized entities.

3.2.4 Data Privacy and Confidentiality:

Lightweight ciphers are essential for maintaining data privacy and confidentiality in EVs
and ITS. These systems generate and process vast amounts of sensitive data, including
location information, driver behavior, and vehicle diagnostics. Lightweight ciphers encrypt
this data, preventing unauthorized access and preserving privacy. EVs and ITS generate and
process a wide range of sensitive data, including location information, vehicle diagnostics,
driver behavior, and personal identifiable information (PII). Lightweight ciphers are utilized
to encrypt this data, preserving privacy and ensuring confidentiality. By encrypting the data
at its source, sensitive information remains protected even if it is intercepted or accessed by
unauthorized parties.

3.2.5 Resource Efficiency:

Resource-constrained devices, such as EVs and ITS components, often have limited
processing power and energy resources. Lightweight ciphers are designed to be
computationally efficient, minimizing the computational overhead and energy consumption
while providing adequate security. This ensures that the implementation of encryption does
not significantly impact the overall system performance. EVs and ITS components often
have limited processing power, memory, and energy resources. Lightweight ciphers are
designed to be computationally efficient, minimizing the impact on system performance
while still providing adequate security.

These ciphers employ lightweight cryptographic algorithms and optimizations, such as
reduced key sizes, streamlined operations, and optimized implementations, to ensure that
encryption and decryption operations can be performed efficiently within the resource
constraints of the systems.

3.2.6 Standardization Efforts: Standardization bodies, such as the Institute of Electrical
and Electronics Engineers (IEEE), International Organization for Standardization (ISO), and
the National Highway Traffic Safety Administration (NHTSA), actively participate in
defining cryptographic standards and guidelines for secure implementations in EVs and ITS.

10

These standards often consider lightweight cryptographic algorithms to meet the specific
resource constraints of these systems.

3.2.6.1 Standardization bodies, such as the Institute of Electrical and Electronics
Engineers (IEEE), International Organization for Standardization (ISO), and the
National Highway Traffic Safety Administration (NHTSA), actively contribute to
the development of cryptographic standards and guidelines for secure
implementations in EVs and ITS.

3.2.6.2 These standards often consider the specific resource constraints of EVs and
ITS components, including lightweight cryptographic algorithms as viable options.

3.2.6.3 The standardization efforts ensure interoperability, compatibility, and the
adoption of secure cryptographic practices in the domain, promoting trust and
reliability in EVs and ITS systems.

3.3 Conclusion: By implementing lightweight ciphers in EVs and ITS, the domain benefits from
enhanced security, privacy, and integrity of the systems and data. It enables secure communication,
protects against unauthorized access and data tampering, and ensures efficient utilization of system
resources.

11

Chapter 4: GIFT CIPHER and Optimization.

4.1 Introduction.
 The design strategy and improvements made to the PRESENT cipher, resulted in an enhanced
version called GIFT. GIFT is a simplified and efficient design that outperforms ciphers like SIMON
and SKINNY, making it one of the most energy-efficient ciphers available. The design of GIFT
addresses the weaknesses of parent PRESENT related to linear hulls.

The implementation of lightweight ciphers in electric vehicles (EVs) and intelligent transportation
systems (ITS) is crucial due to the growing demand for secure communication and authentication
in these domains. Previous works in this field have presented the need for lightweight cryptography
in constrained devices and the limitations of existing cryptography standards like AES and SHA-2.
Lightweight algorithms such as PRESENT, PHOTON, and SPONGENT have been included in ISO
standards.

Comparing lightweight primitives is a complex task, considering the diverse range of use cases,
from passive RFID tags to battery-powered devices and low-latency applications. The importance
of area minimization and the throughput/area ratio as key criteria for lightweight encryption. The
range of platforms to consider for research and development is wide, from tiny RFID tags to
powerful ARM processors and high-end servers.

The analysis of the PRESENT cipher, showcases its developer’s inspiration from SERPENT and
specifically designed for lightweight hardware implementations. Noticeable weaknesses of
PRESENT are related to the clustering of linear trails and the creation of powerful linear hulls.
Since the publication of PRESENT, there has been significant advances in security analysis and
primitive design including the NSA's proposed ciphers SIMON and SPECK, and the introduction
of the tweakable block cipher SKINNY.

Although SIMON and SKINNY have advantages in terms of efficiency, PRESENT is still
recognized as an elegant design. However, it has not benefited from recent advancements in the
research community. There was a need to revisit the design of PRESENT, leveraging the advances
in construction and cryptanalysis to push it to its limits, doing so has resulted in the improved GIFT
cipher. The enhanced GIFT cipher due to its focused approach to handle challenges in
implementation in EVs and ITS has been thus chosen as the Cipher to work upon further.

4.2 Improvements in GIFT Cipher.

PRESENT Cipher has a major drawback - the linear hulls. The security of PRESENT primarily
relies on its Sbox, as the diffusion layer consists only of a bit permutation. While the PRESENT
Sbox exhibits excellent cryptographic properties, it is relatively expensive. To address this, GIFT
is designed so that the bit permutation in conjunction with the Difference Distribution Table
(DDT)/Linear Approximation Table (LAT) of the Sbox, allows to remove the constraint of a
branching number of 3. This innovative approach, which intricately combines the linear layer and
the Sbox in a Substitution-Permutation-Network (SPN) cipher, is new in GIFT Cipher.

By eliminating the constraint, a more cost-effective Sbox is created for GIFT, which significantly
reduces both the size and speed of the cipher compared to PRESENT. Table 1 and 2 illustrates the
performance of GIFT vis-à-vis others.

12

Table 1: Performance of GIFT vis-à-vis others

Table 2: Performance of GIFT vis-à-vis others

In terms of security, GIFT provides a robust bound against simple differential and linear attacks. A
comprehensive analysis using state-of-the-art cryptanalysis techniques has proven GIFT’s
improvements.

GIFT is available in two versions:

• GIFT-64 - 128-bit key with a 64-bit block size
• GIFT-128 - 128-bit key with a 128-bit block size.

The sole distinction between these versions lies in the bit permutation, which is modified in GIFT-
128 to accommodate twice as many state bits compared to GIFT-64.

4.3 Specifications

GIFT-64-128 is a 28-round SPN cipher whereas GIFT-128-128 is a 40-round SPN cipher. GIFT
can be represented in three different formats. However, conventional 1D representation is adopted,
similar to that of PRESENT, where the bits are arranged in a row.

13

4.4 Round function: The round function of GIFT consists of three stages: SubCells, PermBits, and
AddRoundKey, which can be metaphorically compared to the process of wrapping a gift. Firstly,
the SubCells step places the content inside a box. Then, the PermBits step represents wrapping a
ribbon around the box. Lastly, the AddRoundKey step ties a knot to secure the content. The details
have been described for GIFT-64, and the implementation has been completed for GIFT-128.

Fig 1: Illustrates 2 Rounds of GIFT -64

Initialization. The cipher takes in a n-bit plaintext bn−1 bn−2... b0 as the cipher state S, where n = 64,
128 and b0 being the least significant bit. The cipher state can also be expressed as s many 4-bit
nibbles.

S = w s−1||w s−2||...||w0, where s = 16, 32. The cipher also receives a 128-bit key K = k7||k6||...||k0 as
the key state, where ki is a 16-bit word.

SubCells. Both versions of GIFT use the same invertible 4-bit Sbox, GS. The Sbox is applied to
every nibble of the cipher state.

wi ← GS(wi), ∀i ∈ {0, ..., s − 1}.

The action of this Sbox in hexadecimal notation is given in Table 3

Table 3: Specifications of GIFT Sbox GS

PermBits. The bit permutation used in GIFT-64 and GIFT-128 are given in Table 4 and 5
respectively. It maps bits from bit position i of the cipher state to bit position P(i).

14

Table 4: Bit permutation used in GIFT-64

The action of this Sbox in hexadecimal notation is given in Table

Table 5: Bit permutation used in GIFT-128

AddRoundKey. This step consists of adding the round key and round constants. An n/2-bit round
key RK is extracted from the key state, it is further partitioned into 2 s-bit words RK = U||V = u

s−1...u0||v s−1...v0, where s = 16, 32 for GIFT-64 and GIFT-128 respectively.

 For GIFT-64, U and V are XORed to {b4i+1} and {b4i} of the cipher state respectively.

b4i+1 ← b4i+1 ⊕ ui , b4i ← b4i ⊕ vi , ∀i ∈ {0, ..., 15}.

 For GIFT-128, U and V are XORed to {b4i+2} and {b4i+1} of the cipher state respectively.

b4i+2 ← b4i+2 ⊕ ui , b4i+1 ← b4i+1 ⊕ vi , ∀i ∈ {0, ..., 31}.

For both versions of GIFT, a single bit “1” and a 6-bit round constant C = c5c4c3c2c1c0 are XORed
into the cipher state at bit position n − 1, 23, 19, 15, 11, 7 and 3 respectively

 bn−1 ← bn−1 ⊕ 1,

15

 b23 ← b23 ⊕ c5, b19 ← b19 ⊕ c4, b15 ← b15 ⊕ c3,

b11 ← b11 ⊕ c2, b7 ← b7 ⊕ c1, b3 ← b3 ⊕ c0.

 Key schedule and round constants. The key schedule and round constants are the same for both
versions of GIFT, the only difference is the round key extraction. A round key is first extracted
from the key state before the key state update.

 For GIFT-64, two 16-bit words of the key state are extracted as the round key RK = U||V.

U ← k1, V ← k0.

 For GIFT-128, four 16-bit words of the key state are extracted as the round key RK = U||V

U ← k5||k4, V ← k1||k0.

 The key state is then updated as follows,

 k7||k6||...||k1||k0 ← k1 ≫ 2||k0 ≫ 12||...||k3||k2,

 where ≫ i is an i bits right rotation within a 16-bit word.

The round constants are generated using the same 6-bit affine LFSR as SKINNY, whose state is
denoted as (c5, c4, c3, c2, c1, c0). Its update function is defined as:

(c5, c4, c3, c2, c1, c0) ← (c4, c3, c2, c1, c0, c5 ⊕ c4 ⊕ 1).

 The six bits are initialized to zero, and updated before being used in a given round. The values of
the constants for each round are given in the table below, encoded to byte values for each round,
with c0 being the least significant bit.

4.5 MODIFICATION OF GIFT CIPHER

4.5.1 Introduction: Cryptographic algorithms play a vital role in ensuring the security of
transmitted and received data between IoT devices. However, many IoT devices possess limited
computing power, memory, and resources, making it challenging to implement cryptographic
algorithms on such devices. Lightweight cryptography algorithms are designed to efficiently utilize
available resources, enabling effective operation on devices with restricted capabilities. Design of
quantum gates for GIFT symmetric key cryptography have been devised and implemented. One of
the most important factors when evaluating quantum circuits is optimizing the number of qubits.
When designing quantum circuits, new qubits are allocated to temporal storage or new values.

16

However, by using an on-the-fly approach to recycle the initially allocated qubits until the
encryption is finished an efficient Sbox quantum is implementation.
The GIFT implementation have been evaluated using the IBM ProjectQ framework, a quantum
computer emulator (https://github.com/ProjectQFramework/ProjectQ, accessed on 10 May 2021).
IBM ProjectQ uses a variety of quantum compilers that allow developers to simulate quantum
computers or draw quantum circuits. Among them, the resource counter compiler, which is a
quantum resource estimator, measures quantum resources by analyzing qubits, quantum gates, and
circuit depth. Compared with quantum implementation results of other block ciphers GIFT quantum
circuits’ results were commendable.

4.5.2 GIFT Block Cipher

 The GIFT block cipher is a symmetric key cryptography using the Substitution Permutation
Network (SPN) method. In the GIFT block cipher, each round performs four steps: Sbox,
Permutation, AddRoundKey and Constant XOR. The encryption operation of GIFT block cipher is
described in Figure 2.

 4.5.2.1 Sbox of GIFT Block Cipher

The n-bit block (n = 64, 128) is split into 4 bits and becomes the input value of the 4-bit
Sbox.

 Fig 2: Encryption process of GIFT block cipher

17

4.5.2.2 Permutation of GIFT Block Cipher

In the permutation, GIFT-64/128 replaces the P64(i)-th bit of block B with the i-th bit of
block B. Details on the permutation of GIFT-64/128 are shown in Table 6. In this paper,
detailed Table on permutation of GIFT-128/128 is omitted. Permutation Table of GIFT-
128/128 is at https://link.springer.com/chapter/10.1007/978-3-319-66787-4_16/tables/5

Table 6: Permutation of GIFT-64 bit

4.5.2.3 AddRoundkey of GIFT Block Cipher

In the GIFT-64/128 block cipher, k0 and k1 (32-bit total) are selected from the key (K = k7,
..., k0). k0 and k1 are used as U and V of the round key as follows, RK = U||V = u15...u0||v15...v0
(U = k1, V = k0). The round key is exclusive-ORed with the block B, where U is XORed to
b4i+1 and V is XORed to b4i.

b4i+1 ←− b4i+1 ⊕ ui , b4i ←− b4i ⊕ vi , i = 0, ..., 15

In the GIFT-128/128 block cipher, k0, k1, k4, and k5 (64-bit in a total) are selected from the
key K. k0, k1, k4 and k5 are used as U and V of the round key as follows, RK = U||V =
u31...u0||v31...v0 (U = k5||k4, V = k1||k0). The round key is XORed to the block B, where U is
XORed to b4i+2 and V is XORed to b4i+1

. b4i+2 ←− b4i+2 ⊕ ui , b4i+1 ←− b4i+1 ⊕ vi , i = 0, ..., 31

4.5.2.4 Constant XOR of GIFT Block Cipher

Round constants C given in Table 7 are used in GIFT-64/128 and GIFT-128/128 block
ciphers. Single bit and round constants (C = c5c4c3c2c1c0) are XORed to block B as in
Equations below.

bn−1 ←− bn−1 ⊕ 1,

b23 ←− b23 ⊕ c5, b19 ←− b19 ⊕ c4, b15 ←− b15 ⊕ c3,

b11 ←− b11 ⊕ c2, b7 ←− b7 ⊕ c1, b3 ←− b3 ⊕ c0.

18

Table 7: Round Constants

4.5.2.5. Keyschedule of GIFT Block Cipher

 In GIFT-64/128 and GIFT-128/128 block ciphers, the Keyschedule updates key (K = k7, ...,
k0) and extracts the round key from the updated key K. The Keyschedule is shown in
Equation above. The notation (≫ i) denotes a right rotation operation (i-bit).

4.5.3. Quantum Gates and Algorithm

 4.5.3.1 Quantum Gates

 To perform the work of classical gates, quantum gates should be implemented. CNOT gate
and Toffoli gate are the most commonly used in quantum circuits. The CNOT gate receives
two qubits and XOR the first qubit to the second qubit (i.e., CNOT (a, b) −→ a = a, b = a ⊕
b). This gate stores the XOR result of the two input qubits in the second qubit. The quantum
circuit of CNOT gate is shown in Figure 3 (left). The Toffoli gate is more expensive and
complex than the CNOT gate. Three qubits are input to the Toffoli gate, and the AND result
of the first and second qubits is XORed to the third qubit (i.e., Toffoli (a, b, c) −→ a = a, b
= b, c = c ⊕ (a · b). The quantum circuit of Toffoli gate is shown in Figure 3 (right). The
notation (·) indicates AND operation

Fig 3: CNOT gate (left) and Toffoli gate (right)

The logical-OR quantum gate is composed of a combination of of Toffoli gate and X gate,
as shown in Figure 4. The X gate operates on a single qubit and performs a NOT operation.
In the logical OR quantum gate, a and b (input qubits) are changed (0 to 1, 1 to 0) by the X
gate (i.e., Quantum OR (a, b, c) −→ a = ∼ a, b = ∼ b, c = c ⊕ (a ∨ b). To return to the
original a or b, reversible gate must be performed by executing the X gate once more. The
OR quantum gate (reversible) is shown in Figure 4. The notation ∨ represents logical-OR
operation

Fig 4: Logical-OR quantum gate

19

4.5.4. Quantum Circuit for GIFT Block Cipher

In the presented GIFT−n/128 quantum circuit, only (n+128)-qubits are allocated respectively to
assign plaintext (n-bit) and key (128-bit). Therefore, it is optimized without additional qubits. All
operations, including AddRoundkey, Sbox, Permutation, Constant XOR, and Keyschedule, were
optimized in terms of quantum resources

4.5.4.1 Sbox of GIFT Block Cipher

The creator of the GIFT block cipher introduced two variations of the Sbox. One version is
specifically designed for efficient software implementation, while the other version is
tailored for optimal hardware implementation. Detailed processes are given in Algorithms
1 and 2 for software-oriented and hardware-oriented, respectively. Comparing these two
Sboxes, the hardware-friendly Sbox offers more advantages over the software-friendly Sbox
when it comes to quantum circuits.

 Algorithm 1: Software-oriented implementation of GIFT Sbox

 Input: 4-bit input x(x3, x2, x1, x0) (before entering Sbox).

Output: 4-bit output x(x3, x2, x1, x0) (after performing Sbox)

 1: x1 ← x1 XOR (x0 AND x2)

 2: t ← x0 XOR (x1 AND x3)

 3: x2 ← x2 XOR (t OR x1)

 4: x0 ← x3 XOR x2

 5: x1 ← x1 XOR x3

 6: x0 ← NOT x0

 7: x2 ← x2 XOR (t AND x1)

 8: x3 ← t

 9: return x(x3, x2, x1, x0)

In the software-friendly Sbox operation (see Algorithm 1), the input and output of operations
are different (e.g., x0 = x3 XOR x2). Qubits in quantum computers must be initialized to zero
to overwrite the new value. In order to initialize a qubit to zero, the same value must exist
in another qubit. The Algorithm 1 is designed as a quantum circuit. Since the new value
cannot be overwritten (e.g., x0 ← x3 XOR x2, we have to allocate a new qubit and also
allocate an additional qubit for temporary storage. On the other hand, we can see that in the
hardware-oriented Sbox design of Algorithm 2, the input and output of the operation are
always the same.

20

Algorithm 2: Hardware-oriented implementation of GIFT Sbox

Input: 4-bit input x(x3, x2, x1, x0) (before entering Sbox).

 Output: 4-bit output x(x3, x2, x1, x0) (after performing Sbox).

 1: x1 ← x1 XNOR (x0 NAND x2)

 2: x0 ← x0 XNOR (x1 NAND x3)

 3: x2 ← x2 XNOR (x0 NOR x1)

 4: x3 ← x3 XNOR x2

 5: x1 ← x1 XNOR x3

 6: x2 ← x2 XNOR (x0 NAND x1)

 7: return x(x0, x2, x1, x3)

4.5.4.2 Modification to existing SBox:

Therefore, we were able to optimize the quantum circuit by choosing a hardware friendly
Sbox. The resulting value can be stored in qubits that are entered into the operation. For
example, the quantum circuit for line 4 of Algorithm 2 corresponds to lines 9 and 10 of
Algorithm 1. The operation continues on x3 without allocating additional qubits. Therefore,
no additional qubits are used and an optimized 4-qubit Sbox quantum circuit can be
implemented. The implementation of GIFT Sbox quantum circuit is described in Algorithm
3.
The NOT operation is performed twice on lines 1, 2, 3 and 6 of the Algorithm 2. Two NOT
operations cancel each other. The arrangement of input and output qubits is altered in
Algorithm 3. It can be performed with one Swap gate on x0, x3. As mentioned earlier, Swap
gates are not considered quantum resources. Quantum circuit for Sbox of GIFT block cipher
is described in Figure 5.

Algorithm 3: Quantum circuits for Sbox of GIFT block cipher
 Input: 4-qubit input x(x3, x2, x1, x0) (before entering Sbox).
 Output: 4-qubit output x(x3, x2, x1, x0) (after performing Sbox).
 1: x1 ←− Toffoli (x0, x2, x1)
 2: x0 ←− Toffoli (x1, x3, x0)
 3: x0 ←− X (x0)
 4: x1 ←− X (x1)
 5: x2 ←− Toffoli (x0, x1, x2)
 6: x2 ←− X (x2)
 7: x0 ←− X (x0) (reverse)
 8: x1 ←− X (x1) (reverse)
 9: x3 ←− CNOT (x2, x3)
 10: x3 ←− X (x3)
 11: x1 ←− CNOT (x3, x1)

21

 12: x1 ←− X (x1)
 13: x2 ←− Toffoli (x0, x1, x2)
 14: return x(x0, x2, x1, x3

Figure 5. Quantum circuit for Sbox of GIFT block cipher.

 4.5.4.3 Permutation of GIFT Block Cipher

After the Sbox operation, the permutation of Table 4 is performed. Similar to the
permutation of PRESENT block cipher, bit position changes can be made using Swap gates
and are not counted as quantum resources. Therefore, by relabeling the qubits, the
permutation of GIFT block cipher can be done without quantum resources.

4.5.4.3 AddRoundkey of GIFT Block Cipher

In the AddRoundkey operation, the round key RK (n/2-bit) is XORed to the block B (n/2-
bit). The XOR operation can be done with the CNOT gate. At this time, the result of qubit
should be B. The AddRoundkey of GIFT-64/128 and GIFT-128/128 block ciphers are
similar, only the number of bits is different. In the GIFT-128/128 block cipher, double the
CNOT gates are used compared to the GIFT-64/128 block cipher. Quantum circuits for
Addroundkey of GIFT-64/128 and GIFT-128/128 block ciphers are shown in Algorithm 4
and Algorithm 5, respectively.

Algorithm 4: Quantum circuit for AddRoundkey of GIFT-64/128 block cipher

Input: 64-qubit block B(b63, ..., b0), 32-qubit round key RK(rk31, ...,rk0).

Output: 64-qubit block B(b63, ..., b0) after AddRoundKey.

 1: for i = 0 to 15 do

 2: b4i ←− CNOT (rki , b4i)

 3: b4i+1 ←− CNOT (rki+16, b4i+1)

 4: end for

 5: return B(b63, ..., b0)

22

Algorithm 5: Quantum circuits for AddRoundkey of GIFT-128/128 block cipher

 Input: 128-qubit block B(b127, ..., b0), 64-qubit round key RK(rk63, ...,rk0).

 Output: 128-qubit block B(b127, ..., b0) after AddRoundKey. 1: for i = 0 to 31 do

2: b4i+1 ←− CNOT (rki , b4i+1)

 3: b4i+2 ←− CNOT (rki+32, b4i+2)

 4: end for

5: return B(b127, ..., b0)

4.5.4.4 Constant XOR of GIFT Block Cipher

The round constant C in Table 5 and the single bit are XORed to block B. Since the constant
C for each round is already set, we performed X gates on b23, b19, b15, b11, b7, and b3 only
for positions where bit of C is one. When the round constant C is 3 in round 2, c0 and c1 are

1. Therefore, the X gate (b3) and X gate (b7) are performed. For a single bit, an X gate is
always performed on bn−1. In this way, no qubits are used for Constant XOR. Moreover,
CNOT gates are not used; only X gates are used. The implementation of the GIFT-n/128
constant XOR quantum circuit is described in Algorithm 9

Algorithm 6: Quantum circuits for constant XOR of GIFT-n/128 block cipher

 Input: bn−1, b23, b19, b15, b11, b7, b3 of n-bit block B.

Output: bn−1, b23, b19, b15, b11, b7, b3 of n-bit block B after Constant XOR.

1: b23, b19, b15, b11, b7, b3 ←−X (b23, b19, b15, b11, b7, b3) according to round constant C (c5,
c4, c3, c2, c1, c0)

 2: bn−1 ←− X (bn−1)

 3: return bn−1, b23, b19, b15, b11, b7, b3

 4.5.4.5 Keyschedule of GIFT Block Cipher

In GIFT, the state of the key is updated after the round key is used, which is shown in
Equation. The Keyschedule of PRESENT block cipher uses Sbox and round i, while the
GIFT only changes the bit positions of key K. It can be done using only Swap gates, and
using the method of relabeling qubits does not require quantum resources.

23

Chapter 5 : Implementation of GIFT CIPHER in Python

5.1 Encryption
The File upon running asks for a Message to be encrypted.

Ask For a message to be encrypted in string format and convert it in Binary format. Calculate
number of blocks require to encrypt complete massage.

Defining function for removing extra symbols like 0X

Define default 128 bit encryption Key. Option to set new key given.

Array for permutation in Encryption and Decryption

Array for Round Constant

24

Encryption function definition takes input text, Key and No of rounds as input and returns cipher
text as output.

SBox and Permutation Implementation.

Adding of the Round Key.

Adding the Round Constant.

25

Updating the Key.

26

5.2 Decryption

Defining Decryption function which takes cipher text, Encryption key and Number of Rounds as
input and gives recovered text massage as output.

First Generate key for all rounds.

Use Same or Different Key for Decryption.

27

28

Inverse permutation and Sbox implementation.

29

5.3 Control Function

5.4 Running and Output

Enter Text Message upon Prompted with options. Programme runs, shows all steps and gives
Output.

30

5.5 Stage by Stage Output is as under

After S_box = 0x11633d383a3541f63f9c963d3839413e
perm val = 0x935bb9d136df4257996919236324f32
Add round key = 0x8b35999f136ff62579b6919034324d38
updated Key after 0 = 0x13451452000000000000000000a30f95

After S_box = 0x27cfdddeac3ee34f9d73dad1c6c460c2
perm val = 0xad9e1764fd6718ca6fa6fd465ce9f9c0
Add round key = 0x2d9e1764dd4718e86fa6df647cebfb4a
updated Key after 1 = 0xc028f950134514520000000000000000

After S_box = 0x40d8a9360069a2823eb30e369587e76b
perm val = 0xd182330e870aa4d34a42ba360a3876df
Add round key = 0x5186334a830aa0d74a46be360e3c7e17
updated Key after 2 = 0xc028f9501345145200000000

After S_box = 0xfa23cc6b2c1bb1096b6378c318c598a9
perm val = 0x6c98640820233ac8bea1efd9bf59311b
Add round key = 0xa898640820637ac8fae5afddbb5db993
updated Key after 3 = 0xc028f95013451452

128 bit cypher = 0xa898640820637ac8fae5afddbb5db993
After S_box = 0x33416f383c9d91963d3e384e663f3c94
perm val = 0x2f9198f133ed766e5893bf2916586074
Add round key = 0xad91baf333ef746e58b3bf2b1458627e
updated Key after 0 = 0x13451452000000000000000000a30f95

After S_box = 0xb0da7beccc8e9638f27c7e47a6f23498
perm val = 0x9ecbf639afc066aa7da15f6182cea5e4
Add round key = 0x1ecbf6398fe066887da17d43a2cca76e
updated Key after 1 = 0xc028f950134514520000000000000000

After S_box = 0xa857e3cd2e81332290ba906cb455b938
perm val = 0x1e2298196fa38463e48335599952aada
Add round key = 0x9e26985d6ba38067e48731599d56a212
updated Key after 2 = 0xc028f9501345145200000000

After S_box = 0xd843d2f037bc21398629cafdd0f3b4a4
perm val = 0x47b9af5008f30c8ef5100c719a63fbbe
Add round key = 0x83b9af5008b34c8eb1544c759e677336
updated Key after 3 = 0xc028f95013451452

128 bit cypher = 0x83b9af5008b34c8eb1544c759e677336
After S_box = 0x9d91963d3e38413e3341696d63f6416c
perm val = 0x1bbd2c7c942537f591925c64df621322
Add round key = 0x99bd0e7e942735f591b25c66dd621128
updated Key after 0 = 0x13451452000000000000000000a30f95

31

After S_box = 0xdd701898d649cfefda74f5330034aa42
perm val = 0x59ee7512180d4342d95ed30ee0dfaf28
Add round key = 0xd9ee7512382d4360d95ef12cc0ddada2
updated Key after 1 = 0xc028f950134514520000000000000000

After S_box = 0xd889fa4c2406c310df8ea455100b0b4
perm val = 0x826596419d02961e8948cc114e87690a
Add round key = 0x26196059902921a894cc8114a8361c2
updated Key after 2 = 0xc028f9501345145200000000

After S_box = 0x143ad31fdd14d4ab2d6552aa6b2c3a54
perm val = 0x9f5c0ee3055878763393c38d69cf7220
Add round key = 0x5b5c0ee30518387677d783896dcbfaa8
updated Key after 3 = 0xc028f95013451452

128 bit cypher = 0x5b5c0ee30518387677d783896dcbfaa8
After S_box = 0x3d91323f94416d3091353f303f38963a
perm val = 0x1b0513bbb60353309358199353d6b66e
Add round key = 0x990531b9b60151309378199151d6b464
updated Key after 0 = 0x13451452000000000000000000a30f95

After S_box = 0xdd1fca7d731afac1dc92addafa037636
perm val = 0xdff65967543a8b26bc3dbeb3db09cc96
Add round key = 0x5ff65967741a8b04bc3d9c91fb0bce1c
updated Key after 1 = 0xc028f950134514520000000000000000

After S_box = 0xfee3fd3996ab271675c0d5dae71758a5
perm val = 0x6da34d74a387b97cf9325729fff44cd3
Add round key = 0xeda74d30a787bd78f9365329fbf0441b
updated Key after 2 = 0xc028f9501345145200000000

After S_box = 0x80b960c1b9297092edc3fc4de7e166a7
perm val = 0x94854c668a3ab6be0493ed42b1b0ddf7
Add round key = 0x50854c668a7af6be40d7ad46b5b4557f
updated Key after 3 = 0xc028f95013451452

128 bit cypher = 0x50854c668a7af6be40d7ad46b5b4557f
After S_box = 0x963d3e3841c4c4416a919441c4c1c4cc
perm val = 0xbb44704c42d0a08c19448544f60d1ddc
Add round key = 0x3944524e42d2a28c19648546f40d1fd6
updated Key after 0 = 0x13451452000000000000000000a30f95

After S_box = 0xcd66f4686404b425ad362f63e610ae03
perm val = 0x4c40127252667322e501ae0aee4fe7cd
Add round key = 0xcc40127272467300e5018c28ce4de547
updated Key after 1 = 0xc028f950134514520000000000000000

After S_box = 0x5561a49494639c118f1a254258608f69
perm val = 0x4101b04a1e0013015079a6dc7cfdc42f

32

Add round key = 0xc105b00e1a001705507da2dc78f9cce7
updated Key after 2 = 0xc028f9501345145200000000

After S_box = 0x5a1f7118ab11a91ff190b40592ed5589
perm val = 0xfd3950ac4337b6c9b18a115110998db5
Add round key = 0x393950ac4377f6c9f5ce5155149d053d
updated Key after 3 = 0xc028f95013451452

128 bit cypher = 0x393950ac4377f6c9f5ce5155149d053d

 Comp cypher = 30047106906995635369549049904120582641697434560489595202401
227146995786237613827672488024572040202697410457047936152492055568745425763
42105115199250565274838986022630642586000644923558712902973

 ------------------- Decryption part --------------------
updated Key after 0 = 0x13451452000000000000000000a30f95
updated Key after 1 = 0xc028f950134514520000000000000000
updated Key after 2 = 0xc028f9501345145200000000
updated Key after 3 = 0xc028f95013451452
-------- Decryption Round 3 Starting ----------
Key used = 0xc028f9501345145200000000
Bits after Xoring = 0xec98640820233ac8bea1efd9bf59b993
Inv Add round key = 0x6c98640820233ac8bea1efd9bf59311b
perm val = 0xfa23cc6b2c1bb1096b6378c318c598a9
After S_box = 0x5186334a830aa0d74a46be360e3c7e17
-------- Decryption Round 2 Starting ----------
Key used = 0xc028f950134514520000000000000000
Bits after Xoring = 0x5182330e870aa4d34a42ba360a387e57
Inv Add round key = 0xd182330e870aa4d34a42ba360a3876df
perm val = 0x40d8a9360069a2823eb30e369587e76b
After S_box = 0x2d9e1764dd4718e86fa6df647cebfb4a
-------- Decryption Round 1 Starting ----------
Key used = 0x13451452000000000000000000a30f95
Bits after Xoring = 0x2d9e1764fd6718ca6fa6fd465ce9f948
Inv Add round key = 0xad9e1764fd6718ca6fa6fd465ce9f9c0
perm val = 0x27cfdddeac3ee34f9d73dad1c6c460c2
After S_box = 0x8b35999f136ff62579b6919034324d38
-------- Decryption Round 0 Starting ----------
Key used = 0xa30f954d142145
Bits after Xoring = 0x8935bb9d136df4257996919236324f3a
Inv Add round key = 0x935bb9d136df4257996919236324f32
perm val = 0x11633d383a3541f63f9c963d3839413e
After S_box = 0x46696e616c2054657374696e67206f
Final Testing o
updated Key after 0 = 0x13451452000000000000000000a30f95
updated Key after 1 = 0xc028f950134514520000000000000000
updated Key after 2 = 0xc028f9501345145200000000
updated Key after 3 = 0xc028f95013451452
-------- Decryption Round 3 Starting ----------
Key used = 0xc028f9501345145200000000
Bits after Xoring = 0xc7b9af5008f30c8ef5100c719a637336
Inv Add round key = 0x47b9af5008f30c8ef5100c719a63fbbe
perm val = 0xd843d2f037bc21398629cafdd0f3b4a4
After S_box = 0x9e26985d6ba38067e48731599d56a212
-------- Decryption Round 2 Starting ----------
Key used = 0xc028f950134514520000000000000000

33

Bits after Xoring = 0x9e2298196fa38463e48335599952a252
Inv Add round key = 0x1e2298196fa38463e48335599952aada
perm val = 0xa857e3cd2e81332290ba906cb455b938
After S_box = 0x1ecbf6398fe066887da17d43a2cca76e
-------- Decryption Round 1 Starting ----------
Key used = 0x13451452000000000000000000a30f95
Bits after Xoring = 0x1ecbf639afc066aa7da15f6182cea56c
Inv Add round key = 0x9ecbf639afc066aa7da15f6182cea5e4
perm val = 0xb0da7beccc8e9638f27c7e47a6f23498
After S_box = 0xad91baf333ef746e58b3bf2b1458627e
-------- Decryption Round 0 Starting ----------
Key used = 0xa30f954d142145
Bits after Xoring = 0xaf9198f133ed766e5893bf291658607c
Inv Add round key = 0x2f9198f133ed766e5893bf2916586074
perm val = 0x33416f383c9d91963d3e384e663f3c94
After S_box = 0x6620456e63797074696f6e2f44656372
f Encyption/Decr
updated Key after 0 = 0x13451452000000000000000000a30f95
updated Key after 1 = 0xc028f950134514520000000000000000
updated Key after 2 = 0xc028f9501345145200000000
updated Key after 3 = 0xc028f95013451452
-------- Decryption Round 3 Starting ----------
Key used = 0xc028f9501345145200000000
Bits after Xoring = 0x1f5c0ee3055878763393c38d69cffaa8
Inv Add round key = 0x9f5c0ee3055878763393c38d69cf7220
perm val = 0x143ad31fdd14d4ab2d6552aa6b2c3a54
After S_box = 0x26196059902921a894cc8114a8361c2
-------- Decryption Round 2 Starting ----------
Key used = 0xc028f950134514520000000000000000
Bits after Xoring = 0x26596419d02961e8948cc114e876182
Inv Add round key = 0x826596419d02961e8948cc114e87690a
perm val = 0xd889fa4c2406c310df8ea455100b0b4
After S_box = 0xd9ee7512382d4360d95ef12cc0ddada2
-------- Decryption Round 1 Starting ----------
Key used = 0x13451452000000000000000000a30f95
Bits after Xoring = 0xd9ee7512180d4342d95ed30ee0dfafa0
Inv Add round key = 0x59ee7512180d4342d95ed30ee0dfaf28
perm val = 0xdd701898d649cfefda74f5330034aa42
After S_box = 0x99bd0e7e942735f591b25c66dd621128
-------- Decryption Round 0 Starting ----------
Key used = 0xa30f954d142145
Bits after Xoring = 0x9bbd2c7c942537f591925c64df62132a
Inv Add round key = 0x1bbd2c7c942537f591925c64df621322
perm val = 0x9d91963d3e38413e3341696d63f6416c
After S_box = 0x797074696f6e206f6620474946542043
yption of GIFT C
updated Key after 0 = 0x13451452000000000000000000a30f95
updated Key after 1 = 0xc028f950134514520000000000000000
updated Key after 2 = 0xc028f9501345145200000000
updated Key after 3 = 0xc028f95013451452
-------- Decryption Round 3 Starting ----------
Key used = 0xc028f9501345145200000000
Bits after Xoring = 0x14854c668a3ab6be0493ed42b1b0557f
Inv Add round key = 0x94854c668a3ab6be0493ed42b1b0ddf7
perm val = 0x80b960c1b9297092edc3fc4de7e166a7
After S_box = 0xeda74d30a787bd78f9365329fbf0441b
-------- Decryption Round 2 Starting ----------
Key used = 0xc028f950134514520000000000000000

34

Bits after Xoring = 0xeda34d74a387b97cf9325729fff4445b
Inv Add round key = 0x6da34d74a387b97cf9325729fff44cd3
perm val = 0xfee3fd3996ab271675c0d5dae71758a5
After S_box = 0x5ff65967741a8b04bc3d9c91fb0bce1c
-------- Decryption Round 1 Starting ----------
Key used = 0x13451452000000000000000000a30f95
Bits after Xoring = 0x5ff65967543a8b26bc3dbeb3db09cc1e
Inv Add round key = 0xdff65967543a8b26bc3dbeb3db09cc96
perm val = 0xdd1fca7d731afac1dc92addafa037636
After S_box = 0x990531b9b60151309378199151d6b464
-------- Decryption Round 0 Starting ----------
Key used = 0xa30f954d142145
Bits after Xoring = 0x9b0513bbb60353309358199353d6b666
Inv Add round key = 0x1b0513bbb60353309358199353d6b66e
perm val = 0x3d91323f94416d3091353f303f38963a
After S_box = 0x697068657220496d706c656d656e7461
ipher Implementa
updated Key after 0 = 0x13451452000000000000000000a30f95
updated Key after 1 = 0xc028f950134514520000000000000000
updated Key after 2 = 0xc028f9501345145200000000
updated Key after 3 = 0xc028f95013451452
-------- Decryption Round 3 Starting ----------
Key used = 0xc028f9501345145200000000
Bits after Xoring = 0x7d3950ac4337b6c9b18a11511099053d
Inv Add round key = 0xfd3950ac4337b6c9b18a115110998db5
perm val = 0x5a1f7118ab11a91ff190b40592ed5589
After S_box = 0xc105b00e1a001705507da2dc78f9cce7
-------- Decryption Round 2 Starting ----------
Key used = 0xc028f950134514520000000000000000
Bits after Xoring = 0xc101b04a1e0013015079a6dc7cfdcca7
Inv Add round key = 0x4101b04a1e0013015079a6dc7cfdc42f
perm val = 0x5561a49494639c118f1a254258608f69
After S_box = 0xcc40127272467300e5018c28ce4de547
-------- Decryption Round 1 Starting ----------
Key used = 0x13451452000000000000000000a30f95
Bits after Xoring = 0xcc40127252667322e501ae0aee4fe745
Inv Add round key = 0x4c40127252667322e501ae0aee4fe7cd
perm val = 0xcd66f4686404b425ad362f63e610ae03
After S_box = 0x3944524e42d2a28c19648546f40d1fd6
-------- Decryption Round 0 Starting ----------
Key used = 0xa30f954d142145
Bits after Xoring = 0x3b44704c42d0a08c19448544f60d1dd4
Inv Add round key = 0xbb44704c42d0a08c19448544f60d1ddc
perm val = 0x963d3e3841c4c4416a919441c4c1c4cc
After S_box = 0x74696f6e203232204170722032303233
tion 22 Apr 2023

 Recovered Text = Final Testing of Encyption/Decryption of GIFT Cipher Imp
lementation 22 Apr 2023

35

Chapter 6: Future Scope of Work

The GIFT cipher has already demonstrated its potential as a lightweight encryption algorithm with
strong security properties. However, there are several areas that offer promising avenues for future
research and development. The potential future scope of work on the GIFT cipher includes:

▪ Cryptanalysis: Despite its security features, further analysis of the GIFT cipher's resistance
against advanced cryptanalysis techniques would be beneficial. Researchers can explore
different attack scenarios and assess the cipher's robustness. This can help in identifying
potential vulnerabilities and refining the cipher's design.

▪ Hardware Implementations: While the GIFT cipher has shown efficient performance in
software implementations, exploring its hardware implementations can lead to even faster
and more energy-efficient encryption and decryption processes. Designing dedicated
hardware architectures optimized for GIFT can unlock its full potential in resource-
constrained devices.

▪ Side-Channel Analysis: Conducting side-channel analysis on the GIFT cipher can evaluate
its resistance against side-channel attacks, such as power analysis and timing attacks. This
research can contribute to developing countermeasures and ensuring the cipher's security
in practical scenarios.

▪ Standardization: GIFT cipher standardization can help establish it as a recognized
encryption algorithm in the industry. Collaborating with cryptographic communities and
organizations to evaluate and potentially standardize the GIFT cipher can increase its
adoption and facilitate interoperability.

▪ Lightweight Protocol Integration: Integrating the GIFT cipher into lightweight cryptographic
protocols, such as those used in IoT and wireless sensor networks, can further enhance the
security and efficiency of these systems. Research can focus on exploring the compatibility
and performance of GIFT within different lightweight protocol frameworks.

▪ Post-Quantum Security: With the advent of quantum computing, there is a growing need
for post-quantum secure algorithms. Investigating the post-quantum security properties
of the GIFT cipher and exploring its potential as a lightweight post-quantum encryption
solution can be an interesting direction for future research.

▪ Cryptographic Implementations: Evaluating the GIFT cipher's implementation on different
platforms and programming languages can provide insights into its portability,
performance, and ease of integration. This includes exploring implementations on
embedded systems, mobile devices, and specialized hardware.

By focusing on these areas of research, the future work on the GIFT cipher can further strengthen
its security, optimize its performance, and expand its applicability in various domains requiring
lightweight and secure encryption.

36

Bibliography

1. Author(s): Jang, Jae-Hyun; Hong, Seokhie; Lim, Jongin

Title: Quantum Resource Estimation for Lightweight Block Ciphers

Book Title: Cryptology and Network Security

Editor(s): Nguyen, Phong Q.; Oswald, Elisabeth; Rangasamy, Jayavardhana

Publisher: Springer International Publishing

Year: 2017

Page range: 315-333

URL: https://link.springer.com/chapter/10.1007/978-3-319-66787-4_16

2. Singh, Simon -. “‘The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography.’” Simon Singh, May , simonsingh.net/cryptography/cipher-challenge/.

3. Joyner, David. “Historical Cipher Machines and Much More.” Crypto Museum, “Ciphers” -
Crypto Museum, Feb. 2004, cryptomuseum.com/.

4. Computer Security Division, Information Technology Laboratory, et al. “Lightweight
Cryptography: CSRC.” CSRC, D. A. Kucuk and S. Zeadally, May 2017,
csrc.nist.gov/Projects/Lightweight-Cryptography.

5. BUEREN, GERALDINE VAN. Childhood Abused: Protecting Children against Torture, Cruel,
Inhuman and Degrading Treatment... and Punishment. ed., ROUTLEDGE, 2020.

6. Banik, Subhadeep, et al. “GIFT: A Small Present.” Lecture Notes in Computer Science, Springer
Science+Business Media, 2017, pp. 321–45. https://doi.org/10.1007/978-3-319-66787-4_16.

7. Jang, Kyungbae, et al. “Efficient Implementation of PRESENT and GIFT on Quantum
Computers.” Applied Sciences, vol. 11, no. 11, MDPI, May 2021, p. 4776.
https://doi.org/10.3390/app11114776.

