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Abstract 

 
The optimum selection of base station (BS) around the mobile vehicle is important for 

establishing communication links in the mm-Wave-based communication systems to get 

a reliable and low latency link between them. 

 

For selecting the best BS, each BS performs a handshake with the mobile vehicle, using 

the ray tracing method power loss is calculated between them and the best BS is 

selected. 

 

In this research, we have investigated the best base station out of the 3 BSs we have 

considered in our system model using Ray tracing method and RSSI values and further 

compared it with that calculated using machine learning (ML) model. 

 

We have also applied federated learning (FL) algorithms to our ML model to reduce the 

communication overhead and to preserve the privacy of the user. Different FL 

algorithms are compared based on various parameters in our model to get the test 

accuracy of these algorithms, where the simulation results shows the accuracy achieved 

using these algorithms. 
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CHAPTER 1 

 
Introduction 

 
There has been a rapid development in the sector of autonomous vehicles (AV) and their 

communication with the environment. Autonomous vehicles eliminate the need for human 

intervention by using sensors to learn about the environment around them and to attentively 

navigate around. Driver-less cars eliminate driver error and can reduce fatal accidents to up to 

90%. 

AVs collect large quantities of light detection and ranging (LiDAR) data and global positioning 

system (GPS) data while interacting with the environment for monitoring the movement of AV 

and ensuring safety. This sensor data collected from AV can be shared using mm-Wave 

communications using the pre-eminent technology of 5G, i.e., ultra reliable and low latency 

communication (URLLC). 

Machine learning (ML) is one of the widely used technology in this research for learning 

diverse characteristics of both the vehicle and the environment for establishing communication 

links and choosing the optimum base station (BS) for this mobile device. Convolutional neural 

network (CNN) model is preferred where the wireless environment is complex and evolving 

due to CNN’s ability to learn diverse data with good accuracy. 

Federated learning (FL) is one of the emerging technologies which helps in preserving user 

privacy and meanwhile keeping the communication overhead to its minimum. Here the training 

takes place across multiple decentralized edge devices (vehicles) rather than on the central 

server. So, they learn the shared model while preserving the training data simultaneously. Thus 

in this way, the data is kept private, and the communication overhead is reduced. 

In this project, we present a novel method for selecting the best BS from multiple BSs around 

the vehicle while keeping track of traffic conditions. A CNN architecture is proposed along 

with the development of the dataset (LiDAR and GPS). Further, two FL algorithms are applied 

to this model and different parameters of the model are compared for analysis. 
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1.1 Problem Statement 

 
The problem statement revolves around selecting the best BS as determined by the power of 

received beams among all possible choices. The best BS is to be selected from multiple BSs 

by leveraging the sensor data and keeping track of traffic. The proposed model is trained to 

leverage LiDAR and positional data for best beam selection. For realistic calculation of 

communication parameters, simulation is performed using ray tracing, LIDAR, and GPS. We 

use an open-source robotic simulator - Webots and SUMO as our traffic simulator, followed 

by pre-processing and coupled with MATLAB for the generation dataset. Also, received signal 

strength indicator (RSSI) values have been calculated for comparison with the raytracing 

method. 

 
 

Machine learning is being used in vehicular networks. ML is used for learning diverse 

characteristics of both the vehicles and the environment at different positioning to learn the 

model better and thus supporting the establishment of communication links for AV. Majority 

of ML models use centralized learning, but there is a drawback of using ML, which is that it 

increases communication overheads, and issue of privacy of the user stays. 

With the evolution of mobile edge computing, federated learning (FL) is an emerging 

technology that helps in fortifying user privacy and takes advantage of user participation, 

where the training takes place across multiple decentralized edge devices (vehicles). They 

learn a shared model while preserving the training data simultaneously. Thus, in this way, the 

data is kept private, and the communication overhead is reduced. 

Summarizing, in our model a novel method is approached for selecting the best BS from 

multiple BSs within 100 meters range from a vehicle while keeping track of traffic conditions. 

A CNN architecture is proposed along with the development of the dataset (LIDAR and GPS) 

and the dataset pre-processing technique for the data-driven BS selection. Further, 

implementing FL on multiple BSs is considered instead of single BSs, which is more practical 

in 5G deployment. Two FL approaches are applied and compared, which shows outstanding 

results in reducing overall data size as the data transferred from vehicle to BSs is considerably 

reduced. Furthermore, FL is implemented on the same dataset to analyze LIDAR-based model 

robustness. 
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1.2 Thesis Outline 

 

 
Chapter 1 has given a basic introduction to the need for AV, development in the sector of 

V2I, and the objective of the work in brief. 

 
 

The remaining contents are organized as follows: 

 

 
Chapter 2: This chapter contains a review of past work done in the domain of AV using 

LIDAR data, and RT and it widely describes the problem statement. 

 
 

Chapter 3: This chapter provides background and details about the fundamentals used further 

in the thesis. Section 3.1 discusses the system model used, section 3.2 describes the 

propagation model, section 3.3 covers all the fundamentals of DL and section 3.4 introduces 

Federated Learning to this work. 

 
 

Chapter 4: This chapter covers a description of the generation of the environment and the 

generation of the dataset where RT and LiDAR dataset generation is explained in detail. 

 
Chapter 5: This chapter provides details about the different proposed approaches. 

 
 

Chapter 6: This chapter covers experimental results and discussions of the proposed results. 

 
 

Chapter 7: In this chapter, conclusions are made, and a discussion on the possibility of future 

work is presented. 
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CHAPTER 2 

 

Review of Past Work and Problem Formulation 

2.1 Literature Survey 

 

To assess the overall dynamic environment of the AV, various studies have been proposed in 

the literature. Many researchers worked on different beam selection strategies for the AV. Also 

generating datasets that are spatial consistent and are time-evolving is important to assess the 

ML techniques. To complement the CNN, FL is further used in beam selection to reduce the 

complexity of the system. 

 
 

Klautau et al. (2018) present a methodology for generating channel data in 5G mm-Wave 

scenarios. The goal is to make it easier to investigate ML- based problems related to the PHY 

of 5G mmWave MIMO. The proposed methodology simplifies the production of data in 

complex (and potentially realistic) mobility scenarios by continuously invoking a traffic 

simulator and a ray-tracing simulator. The generated datasets are highly valuable when spatial 

consistency and time evolution are required to evaluate the ML technique. In the current 

situation, creating propagation channel data is a realistic solution to reduce data scarcity while 

reaping the benefits of RT precision. For example, RT can handle 5G needs like spatial 

consistency, which classical stochastic modeling has struggled with. Simulated datasets 

actually complement, data from measurements, which can be used to develop and validate 

simulated data and statistical channel models when new information becomes available. 

Experiments with DL for beam- selection in vehicle-to-infrastructure (V2I) mmWave 

communications are also shown as actual examples of use for the obtained datasets. Because 

the current amount of data is limited, investigating the performance of specific DL 

architectures is beyond the scope of this research. Instead, the goal is to 
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demonstrate the flexibility provided by the data generation methodology. This methodology 

can be used in applications other than V2I, as well as to generate datasets for ML problems 

such as classification, regression, clustering, and time-based sequence recognition. 

 
 

Furthermore, (Klautau et al., 2019) proposed LiDAR-based beam selection in mm-Wave 

communication systems. Sensor data can be used to reduce the overhead of link configuration 

in mm-Wave communication systems. LiDAR is a high-resolution mapping and positioning 

sensor widely utilized in autonomous driving. They constructed a distributed architecture to 

reduce the overhead of the mm-Wave beam selection process. It assumes that the BS 

broadcasts its location over a low-frequency control channel and that the connected vehicle 

handles all processing. The vehicle estimates a set of M candidate beam pairings using its 

LiDAR data, its own position, and the broadcasted BS position, which are communicated to 

the BS via the control channel. The BS then trains the recommended beam pairs, and the best 

beam is selected for data transmission. They employed ML to tackle two major issues in the 

LIDAR-assisted mm-Wave system. Created a predictor to determine whether the channel is 

LoS or NLoS. Because beam selection is easier in the LoS setting, LoS detection is beneficial. 

Also, DL was employed with a neural network that is trained to perform top-M classification 

based on LoS and NLoS state estimates. 

 
 

As suggested by (Mashhadi et al., 2021), FL can reduce the complexity. The transmission of 

LIDAR measurements from connected vehicles to the BS to assemble a centralized dataset for 

offline training would incur a significant communication overhead. Federated training helps 

in minimizing communication overhead. 

 
 

The sensor data collected from AV can be shared using mm-Wave communication in 5G 

(Gonzalez-Prelcic et al., 2017). The BS selection is done for the AV's journey through the city. 
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Multihop cellular network is conventionally used as the strategy for BS selection (Marathe et  

al., 2008). Leveraging the side information like GPS coordinates, LiDAR data can reduce the 

communication overhead (Tran et al., 2019). LiDAR is a sensor mounted on the AVs used for 

obstacle detection and better beam selection in V2I communications for the LoS and NLoS 

transmissions (Klautau et al., 2019), (Hua et al., 2019). 

 
2.1 Problem formulation 

 

AVs can reduce fatal accidents significantly by up to 90% by eliminating driver error with the 

reduction in travel time as traffic congestion decreases and lane capacity increases (Litman, 

2017). The sensor data collected from AV can be shared using mm-Wave communications 

which are considered a pre-eminent technology in 5G. Inspired by the wide- ranging application 

of ML, which includes image processing, finance, economics, and so on, it is projected as one 

of the most powerful technologies in 5G and beyond networks (Jiang et al., 2017), (Klaine et 

al., 2017). The problem statement revolves around intelligently selecting the best BS for AVs 

using sensor data in the urban area. Using communication information can be complex, time- 

consuming, and costly. Hence, leveraging the side information like GPS coordinates, and 

LiDAR data can reduce the communication overhead (Tran et al., 2019). Due to the short 

wavelength of mm-Wave and high directional beamforming, the MIMO systems are highly 

vulnerable to link blockage. Switching to an unblocked direction, and selecting the best BS is 

an effective solution to overcome blockage and restore communication links. 

 
 

The ML-based communication systems have the potential to improve communication 

algorithms in terms of reliability, generality, latency, and energy efficiency. Modern ML 

techniques have recently achieved breakthroughs in many different domains along with 

communication systems (Yangli-ao Geng et al., 2019). 

 

Inadequate system models: Signal processing algorithms in communication systems have rigid 

foundations in statistics and information theory. These algorithms are optimized for 

mathematically convenient models such as linear, stationary, and gaussian statistics, but not for 

real systems with many imperfections and non-linearities. ML-based communications system 
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does not require a rigidly defined model for representation and transformation of information 

and can be easily optimized in an end-to-end manner for a real system with harsh realistic 

effects. 

 
 

Parallelization gains of NNs: NNs are universal function approximators (Hornik et al., 1989). 

Since the execution of NNs can be highly parallelized using data, there is some hope that 

“learned” algorithms can be executed significantly faster and at a lower energy cost than 

manually “programmed” counterparts. Specialized hardware for ML applications. ML-based 

communication systems optimize end-to-end system performance. 

 
 

Limiting functional block structure: Conventionally communications systems are represented 

through a chain of multiple independent processing blocks; each executing a well-defined and 

isolated function (e.g., coding, modulation, channel estimation, equalization). However, it is 

not clear that individually optimized processing blocks achieve the best possible end-to- end 

performance. In fact, we are introducing artificial barriers and constraints to efficiency. For 

example, we do not necessarily care how well we can estimate the channel with a given scheme, 

or how well anyone’s independent function works, rather we seek to optimize end-to-end 

system metrics jointly with overall components. A learned end-to-end communications system 

will likely not possess such a well-defined block structure as it is trained to achieve only the 

best end-to-end performance. 

 
 

The mm-Wave communication is the modern efficient tool for leveraging the sensor data to 

reduce the communication link configuration overhead. The intricacy and poor results obtained 

in beam selection using communication motivate us to use DL. The data set generation using 

ray- tracing techniques and a LiDAR sensor is described. Applied FL where the BS broadcasts 

its position to all nodes and uses LiDAR data as a dataset to predict the best station using DL 

technique. 
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CHAPTER 3 

 
Background 

A citywide map is imported from OpenStreetsMaps organization (OSM.org) in the form of 

OSM files and 3D world is created using Webots software using this map. Traffic is generated 

in this map using simulation for urban mobility (SUMO) software. 

In this 3D world, 60 vehicles are taken into consideration where each vehicle has mounted 

LIDAR and GPS on the front, rear and at the center of the vehicle to get accurate positioning 

data out of it. LIDAR is a sensor mounted on the AVs for obstacle detection and better beam 

selection in V2I communications for the LoS and NLoS transmissions. GPS coordinates are 

used to get the longitudes and latitudes of each vehicle at different time instants. 

Raytracing of this model is performed where 1 vehicle and 3 BSs around it is considered, 

where BS acts as a transmitter and vehicle acts as a receiver. Raytracing is performed using 

the SBR method using mm-wave communication. The strength of power beam is calculated 

among the 3 beams signals and the best base station is selected based on the highest beam 

power. 

This outputs data generated by all the 60 vehicles at different time instants are Timestamp, 

Name, Model, GPS, speed, Lidar, BS and this is further used in our model. 

Labels are generated out of ray tracing which is further compared with ML model to get the 

accuracy of the model. 

Further, Federated learning algorithms are applied to this model which helps in minimizing 

communication overhead by training the model at the client side. 

From previous works we get the system model and propagation model on which the data is 

being generated. In addition to that the CNN based inception model on which the federated 

learning models are being applied. 
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3.1 System model 

 
For 5G mm-Wave MIMO channels, ray tracing is a promising simulation approach. It provides 

accurate results but the computational cost increases exponentially with the maximum allowed 

number of reflections and diffractions. Also, for good Ray tracing accuracy, the scenario 

should have detailed specifications (geometry, material, and size) of buildings, and vehicles 

which makes it a site-specific simulation (Klautau et al., 2018). We consider a simple yet 

effective and scalable system model for simulating real-time traffic and analyzing the 

communication system. An open-source robotics simulator, webots, and SUMO is used as the 

traffic simulator, coupled with MATLAB to assess communication characteristics using 

accurate ray tracing. As shown in Fig. 1, the system model consists of one vehicle and three 

BSs, which are within 100 meters range of the target vehicle in a downtown model of Rosslyn, 

Virginia as it is heavily urbanized. Friis equation is used to find the ideal power received (Prx) 

in dB at an antenna from basic information about the transmission and is given as 

 

 

 

 

𝑷𝒓𝒙 = 𝑷𝒕𝒙 + 𝑮𝒕𝒙 + 𝑳𝒕 

(1) 
 

 

where 𝑮𝒕𝒙and 𝑮𝒓𝒙 are transmitted antenna gain and receive antenna gain respectively in dB. 

PtX is the power gain of the transmitting antenna in dB. 

Pt is the total power loss in dB. 
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Figure 1: System model 
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3.2 Propagation model 

 
Propagation factors such as reflection, scattering, diffraction, refraction, absorption, and 

atmospheric particles affect the transmitted signals in wireless communication. The 

propagation model facilitates the prediction of propagation loss and attenuation occurring in 

the signal traveling through the environment. The path loss includes free-space losses and 

reflection losses. The ray tracing model used in this simulation computes multiple propagation 

paths. The model learns the LOS path by launching rays from transmitter to receiver. 

If the ray does not interact with any surface before reaching the receiver, then it is a LOS 

transmission. The SBR method is used for NLOS transmission as the computational 

complexity increases linearly with the number of reflections while in the image method for 

NLOS, computational complexity increases exponentially with the number of reflections, 

which makes the SBR method faster than the image method. The model calculates losses using 

Fresnel equation for each reflection. In the SBR method, many rays are launched from the 

geodesic sphere as they are approximately uniformly spaced, centered at Tx. The method 

traces every ray from the Tx. The implementation used here considers only reflections. When 

the ray hits a flat surface, the ray reflects according to the law of reflection. When the ray hits 

the edge of a surface, the ray produces diffracting rays based on the law of diffraction. For 

every launched ray, the Rx is surrounded by a sphere, called a reception sphere, whose radius 

is proportional to the angular separation of the launched rays and the distance the ray travels. 

If the ray intersects the sphere, then the model considers the ray a valid path from Tx to Rx. 

The model calculates losses using a Fresnel equation for each reflection. The power losses 

include free-space path losses (FSPL) and reflection losses (RLs). 

 

TPL = FSPL + RL 

(2) 
 

Reflection Loss (RL): As the ray interacts with the surface at some angle, and RL is calculated 

using Fresnel’s equation. The Ray Tracing model computes RL by using the reflection matrix 

computations. For the current simulation, the materials are considered perfect reflectors; hence 

reflection loss is equal to zero. 
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Free-space path loss (FSPL): The FSPL in the far-field of the Tx in dB is given as follows: 
 

 
𝑭𝑺𝑷𝑳 = 𝟐𝟎𝒍𝒐𝒈(( 

𝟒𝝅𝒓 

𝝀  
)) 

 
 

 
(3) 

 

where r is the distance between Tx and Rx antenna and λ is the wavelength. Although the 

mm-Wave signals experience higher attenuation in FSPL and shadowing, 5G networks use 

highly directional phased antenna arrays and beamforming technology to achieve sufficiently 

high antenna gains. 

 

 

 
 

Figure 2 - SBR Method 

 

 

 

 

 

3.3 Deep Learning 

 
As a three- or more-layered neural network, DL is a subset of ML. DL enables systems to 

cluster data and produce incredibly precise predictions through a combination of data inputs, 

weights, and biases. These elements work together to efficiently identify, categorize, and 

describe things in data. The capacity of DL to manage large volumes of data has shown it to 

be a very beneficial technology. The dataset's train-valid-test split is a technique for evaluating 

the DL model's performance. The DL model uses the training dataset, which is a set of data, 

to figure out and fit the parameters. Validation dataset is a set of data that is used to give an 
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unbiased evaluation of a model that has been fitted to the training dataset while optimizing the 

model hyperparameters. A test dataset is a collection of data that is used to offer an unbiased 

evaluation of a final model that has been fitted to the training dataset. 

 

3.3.1 Convolutional Neural Network 

 
CNN stands for convolutional neural network that is designed to approximate human vision 

and is a type of neural network. CNN falls under the category of DNN used to evaluate visual 

imagery in deep learning. It employs a technique known as convolution, which is a 

mathematical operation on two functions that yields a third function that expresses how the 

shape of one is influenced by the shape of the other. Multiple layers of artificial neurons make 

up CNNs. Artificial neurons are mathematical functions that calculate the weighted sum of 

various inputs and produce an activation value as a result. The basic structure of CNN is 

shown in Fig 2. When data is fed into a CNN, each layer generates several activation 

functions, which are then passed on to the next layer. Typically, the first layer extracts basic 

features. This information is passed on to the next layer, which is responsible for detecting 

more complicated features. It can detect even more complicated traits as we proceed further 

into the network. Feature extraction is the primary function of a convolutional layer. The 

output of the convolutional layer is then fed to the DNN for training. The classification layer 

generates a set of confidence scores (numbers between 0 and 1) based on the activation map 

of the final convolution layer, which indicates how likely the input is to belong to a class. The 

pooling layer is responsible for shrinking the convolved feature's spatial size. By lowering the 

size, the computational power required to process the data is reduced. Average pooling and 

max pooling are the two types of pooling. 

 
 

Figure 3 - General CNN architecture 
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3.3.2 Inception Model 

 
The Inception V3 is a DL model for image classification that uses CNN, it was developed by 

a team at Google. It helps in avoiding overfitting when multiple deep learning layers are 

being used. The Inception model is made up of multiple Inception modules. Convolutions of 

various sizes are used to capture various sizes of information in the input. Inception has a 

lower computational cost than VGGNet or its higher-performing successors. This has allowed 

Inception networks to be used in big data scenarios, where large amounts of data must be 

processed at a low cost or where memory or processing power is fundamentally constrained, 

such as in mobile vision situations. 

 

 
3.3.3 Deep Learning Model using LIDAR data 

 
The proposed CNN architecture is given in Fig. 3 . The input to this CNN model is a feature 

map of [10,240,240], which is fed into the initial convolution layers. The initial convolution 

layers feature a high kernel (two (13,13) and two (7,7)) sizes to reduce sparsity in the LiDAR 

data while also reducing the vector size at the same time. Later, Google’s Inception- inspired 

model architecture is used to not only expand the network in depth but also in width. It 

provides a novel architecture to reduce the computational cost while keeping the accuracy 

intact. The model contains four inception blocks whose output is passed to the filter 

concatenation layer, which concatenates all the output in the filter dimension. This renders the 

output channel four times that of the convolution output channel. 

Dropouts are also added to our model for preventing overfitting with a value of 0.2 i.e., 20% 

of neurons are nullified towards the next layer and leaves unmodified all others. 

 
Finally, there are another convolution layers (two (7,7) and two (3,3) kernels) to reduce again 

the dimension of the model followed by a linear layer to convert the vector to the required 

dimensions. Finally, the output of the linear layer is passed through a softmax layer to compute 

the given probabilities. The output vector is of dimension (1,3), denoting the probability of 

selection of the best BS out of the 3. To efficiently train the model, cross-entropy loss has been 
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used coupled, shown in equation 5 with Adam Optimizer tuned with weight decay of 1 × 10−4. 

and learning rate of 3.63 × 10−4. 

 

 

 

 

 

 
Figure 4 - LiDAR CNN model with Inception block. 

 

 
 

3.4 Federated Learning 

 
Federated learning is a machine learning setting where multiple entities (clients) collaborate 

in solving a ML problem, under the coordination of a central server. Each client’s raw data is 

stored locally and not exchanged or transferred, instead the local clients and the central server 

only communicate through the model parameters to achieve the learning objective. So, the 

data stays on the devices only (here vehicles) and need not transferred to the central server. 
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It starts from the server side by either initializing the model randomly or the model is pre- 

trained on some data that is publicly available. A copy of this model is sent to the devices 

where it is updated using the data present on the device. After the local training on the devices, 

the updates are sent to the server. All the updates from the client side are aggregated on the 

server side to obtain an improved model. Now, in the second round, these updates are sent to 

the devices where the data is trained on this model and further these updates are again sent to 

the server. 

This happens for ‘N’ communication rounds till the model can intelligently predict the desired 

output. 

To summarize, federated learning enables clients (customer’s computing devices) to 

collaboratively learn a shared prediction model while keeping all the training data on device, 

decoupling the ability to do machine learning from the need to store the data in the cloud. 

This approach stands in contrast to traditional centralized machine learning techniques where 

all the local datasets are uploaded to one server as well as to more classical decentralized 

approaches which often assume that local data samples are identically distributed. 

Federated learning enables to build a common, robust machine learning model without sharing 

data, thus addressing critical issues such as data privacy, data security, communication 

overheads. 

FL has become popular because of the following reasons, a) privacy of client’s data is 

preserved, b) the data size is reduced as models are shared, c) latency of the model is improved, 

and d) we get a better battery life. 
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Figure 5 - Basic structure of Federated Learning 
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CHAPTER 4 

 
Data Generation 

 
We use an open-source robotics simulator, Webots, and SUMO as our traffic simulator, 

coupled with MATLAB, to assess communication characteristics using accurate time ray 

tracing. Fig. 2 shows the data generation process used to generate the data sets as used in the 

previous work. 

 

 

 
 

Figure 6 - Data Generation Process 
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4.1 Simulation 

The map of the city is then used to generate the dataset. We used the data generation process 

as in Fig. 6. A portion of the city, which was to be used for simulation, was selected, and 

imported from openstreetmaps.org. Different locations are tested for BSs, they are compared 

according to the amount of LiDAR samples generated by different arrangements of BSs in the 

same simulation time. Three base stations are selected within a 100-meter radius of each other 

as in Fig. 1 according to system model pro- posed in the previous work. The base stations will 

be at an altitude of 5m above the ground. A 3D model of the world is generated in Webots and 

traffic is generated in the simulation using SUMO. 

 
 

Webots is an open-source robotic simulator that simulate a 3D model of the city from the OSM 

files. Simulation for Urban Mobility (SUMO) is used to realistically simulate the traffic. The 

trips and the vehicles are generated randomly with SUMO. 

 

 

 

 

Figure 7 - A vehicle in the 3D model of the world 

 

 
In Fig. 7, we can see the LIDAR sensor on the roof of the vehicle. Each vehicle consists of a 

LIDAR sensor and three GPS sensors that are simulated using standard LiDAR and GPS 

models in Webots. Velodyne HDL 64E is the LiDAR sensor used with a range of up to 120 
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meters. The LiDAR sensor was mounted on the vehicle’s roof, and the GPS was mounted at 

the front, center, and rear for efficient retrieval of the vehicle’s orientation. Standard GPS and 

LiDAR models are used are used to simulate the working of the sensors. The Velodyne HDL 

64E is a 64-layer LiDAR with a range of up to 120 meters and a field of view of 360 degrees 

which returns 4500 points per layer per scan. The model of the Velodyne HDL 64E contains 

a gaussian noise with a standard deviation of 0.02 meters and a rotating head. We also consider 

that GPS is mounted on the vehicle and is devoid of any noise or errors. 

 

 
4.2 Preprocessing 

Data collection is followed by data pre-processing, which includes quantization and the 

removal of irrelevant points. Data is quantized with step size of with step size of 

1.0 in x-plane and z-plane, and 0.5 in y-plane. We also remove the points around the car in 

pre-processing. As the antenna is of height 5m in y-plane and its range is 120m in x-plane and 

z-plane, the quantization results in input array size of [10,240,240]. The total samples are then 

divided in the ratio of 8:1:1 for training, validation, and testing. 

 

 
4.3 Ray Tracing 

The next thing that must be done is MATLAB ray tracing, which finds the propagation path 

and losses effectively. This helps in choosing the best base station for a vehicle, thereby 

generating data labels. 
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Figure 8 - Ray Tracing for LOS and NLOS communication between vehicle and base station 

 

 
The transmitter taken is a 4 × 4 uniform rectangular arrays (URA) with element spacing of 0.1 

meters in both X and Y directions. As shown in Fig. 8, the antenna is located at an altitude of 

5m surface of the building or terrain with a transmitted frequency of 60GHz at 1W. The ray 

tracing model used in this simulation computes multiple propagation paths. The model learns 

the LoS path by launching rays from transmitter to receiver. If the ray does not interact with 

any surface before reaching the receiver, then it is a LoS transmission. If the rays interact with 

any surface, then it is NLOS path and SBR method is used. Ray tracing with the Shooting and 

Bouncing Rays (SBR) method is used as the propagation model. In medium angular 

separation, rays have an angular separation in the range [0.4956, 0.5923] measured in degrees 

so that the model launches 163,842 rays. The maximum number of reflections considered is 

2, with both building material (buildings and vehicles) and terrain material as a perfect 

reflector. The same can be generalized to different cities. 
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4.4 Datasets 
 

 

 
 

 

Figure 9 - Ray Tracing between vehicle and base station for Rosslyn 

 

 
A 15k dataset of Rosslyn is used that is the previously created dataset. For bigger data set of 

40k samples we have simulated a 3D world with traffic in Webots and SUMO to get the 

LIDAR data. The simulation time was increased to collect more samples. The location of the 

base stations was kept the same as the previous data set. Preprocessing is done on this data for 

quantization and removal of irrelevant points. Ray Tracing was done using MATLAB to 

generate data labels for the dataset as shown in Fig. 9. The rays of different colors show 

different intensity of power beams from base stations to vehicle. 
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Figure 10 - Ray Tracing between vehicle and base station for NewYork city. 

 

 

 
 

A portion of the city that has to simulated is selected and imported. Three base stations are 

selected that are within 100m radius of one another. Different locations in the city are tested 

for BSs but they are selected depending on the traffic at the selected location. Then a 3D world 

was simulated in Webots and SUMO to get the LIDAR data. Preprocessing is done on this 

data for quantization and removal of irrelevant points. 

Ray Tracing was done using MATLAB to generate data labels for the dataset as shown in Fig. 

10. For comparison between 2 cities, 15k samples of Rosslyn city & New York city are 

compare. 



24 
 

 

 
 

4.5 RSSI 

 

 
In telecommunications, received signal strength indicator (RSSI) is a measurement   of 

the power present in a received radio signal. 

RSSI value can be used as a measurement of how well a receiver can “hear” a signal from 

sender. The reporting range of RSSI value varies from 0 to -120 dBm (0 best, -120 worst). 

In    an    IEEE    802.11    system,    RSSI    is    the    relative    received signal    strength in  

a wireless environment, in arbitrary units. RSSI is an indication of the power level being 

received by the receiving radio after the antenna and possible cable loss. Therefore, the greater 

the RSSI value, the stronger the signal. Thus, when an RSSI value is represented in a negative 

form (e.g. −100), the closer the value is to 0, the stronger the received signal has been. 

Typically, RSSI is a measure of dBm, which is ten times the logarithm of the ratio of the power 

(P) at the receiving end and the reference power (Pref). Power at the receiving end is inversely 

proportional to the square of distance. Hence RSSI could potentially be used as an indicator 

of the distance at which the sending mote is located from the receiving mote. When data from 

many such neighboring motes are combined, the location of the sending mote can be judged 

with reasonable accuracy. 

RSSI and distance have a relationship which is derived as follows. As mentioned previously, 

RSSI is defined as ten times the logarithm of the ratio of power of the received signal and a 

reference power (e.g., 1mW). i.e., RSSI α 10 log P/Pref. This would mean that RSSI α log P. 

It is known that power dissipates from a point source as it moves further out and the 

relationship between power and distance is that power is inversely proportional to the square 

of the distance travelled. 

In other words, RSSI α log(1/distance²). Simplifying this relationship further we can conclude 

that RSSI α (–log distance). 

The distance in this equation is found using the haversine equation which considers the latitudes 

and longitudes of the position of vehicle and base station which is further used to find the RSSI 

values from each BS. 
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The distance in this equation is calculated using the haversine formula which considers the 

latitudes and longitudes of the vehicle and base stations. 

Haversine formula can be expressed as follows: 

 
𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆(𝜽) = (𝒔𝒊𝒏 

𝜽
)𝟐 (4) 

𝟐 

 

 

The central angle haversine can be computed as follows using equation 4 - 
 

𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆(
𝒅

) = 𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆(𝒍𝒂𝒕 
𝒓 

𝒉𝒂𝒗𝒆𝒓𝒔𝒊𝒏𝒆(𝒍𝒐𝒏𝒈𝟐 − 𝒍𝒐𝒏𝒈𝟏) 

− 𝒍𝒂𝒕𝟏 ) + 𝒄𝒐𝒔(𝒍𝒂𝒕𝟏 ) ∗ 𝒄𝒐𝒔(𝒍𝒂𝒕𝟐) ∗ 
 
 
 

(5) 
 

 

where lat1 & lat2 are the latitudes of the two points. long1 & long2 are the longitudes of the 

two points. d is the distance between the two coordinates, r is the radius of the earth. 

𝟐 
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CHAPTER 5 

 
PROPOSED APPROACH 

5.1 Deep learning model using LIDAR sensor data. 
 

 

 

 

LiDAR gives more accurate realistic 3D data of the surroundings compared to GPS, so we 

apply the proposed CNN architecture on LiDAR data, as shown in Fig. 11. 

The initial convolution layers feature a large kernel (two (13, 13) and two (7, 7)) sizes to 

reduce sparsity in the LIDAR data while also reducing the vector size at the same time. Later, 

Google’s Inception-inspired model architecture is used to not only expand the network in 

depth but also in width. It provides a novel architecture to reduce the computational cost for 

the same accuracy. The proposed model contains four inception blocks whose output is 

passed to the filter concatenation layer, which concatenates all the output in the filter 

dimension. This renders the output channel four times that of the convolution output channel.  

Finally, there are other convolution layers (two (7, 7) and two (3, 3) kernels) to reduce the 

dimension of the model again, followed by a linear layer to convert the vector to the required 

dimensions. The output of the linear layer is passed through a softmax layer, where the output 

of softmax layer computes the probabilities for all the BS based on the training data. The size 

of the output vector depends on the number of surrounding BSs, in our case (1,3). 

Also, it can be modeled based on the number of BSs. 

Finally, the proposed model chooses the highest probability output as the best BS. We compute 

the accuracy over the testing dataset, where the predicted BS is compared with the true values 

(actual label) generated by the ray tracing tool (MATLAB). 

× To efficiently train the model, the cross-entropy loss has been used,  with the optimizer being 

Adam, tuned with weight decay of 1×10−4. and learning rate of 3.63×10−4.. The proposed 

model achieved state-of-the-art accuracy of 71.64% with 30 communication rounds and 

automatic mixed-precision set to 16 floating bits. 



 

 

 
 

 

Figure 11 - The proposed LIDAR inception-based CNN model. 

 

 
 

5.2 Federated learning on deep learning model 

 
Using CNN on LiDAR achieves good accuracy for BS selection; however, it incurs a huge 

communication overhead during the transmission of data from the vehicle to BS while posing 

a significant security risk. Therefore, we propose to use FL, which aims to predict a realistic 

model which accounts for the local data without sharing it with the server. FL helps the CNN 

model gain experience from a vast range of data located at different sites. The vehicles use 

federated averaging (FedAvg), where a global model is sent to the vehicles from the BS for 

each round, and the vehicles perform batch gradient descent updates based on their local 

datasets. Also, we verified the results using FedProx (a modified version of FedAvg) and 

observed the same results. Let θ be the we
v 
ights of the model used in training and V  be the 

number of vehicles present, with N being the overall number of vehicles. Therefore, θi 

represents weights of the model allocated to the vehicle v at i communication round, where 
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each communication round represents an aggregation of weights of different vehicles using 

average at the BSs and synchronizing them. Algorithm 1 represents the training loop for 

federated learning for n communication rounds between the BS and vehicles. FedProx, differ 

in line 6 in Algorithm 1, where BS selects a subset of vehicles and optimizes the loss function 

with the proximal term 𝛍 (∥ 𝜃 − 𝜃 
𝟐 

weights and µ is the scaling factor. 

∥)𝟐   , where θt is global weights and θ is the client 

 

 

The local updates of the trained model of each device are sent to the×global server, where it is 

aggregated with other device updates to improve the global model, as shown in Fig. 13. The 

updated global model is then used to train the local devices for the next round. The following 

results are computed using the mean aggregation method for aggregating the updates. We train 

the CNN classifier using the cross- entropy loss function with an Adam optimizer with an 

initial learning rate of 1×10−3. and a batch size of 64. The models are trained for three epochs 

per data set, with 10 communication rounds. 

 

 
 

 

 

Figure 12 - FL Algorithm of our model 

𝐭 
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Figure 13 - Process of FL 
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5.2.1 Federated Learning Algorithms on our model 

 
Using CNN on LiDAR data achieves good accuracy for BS selection, however it incurs a huge 

communication overhead during the transmission of data from the vehicle to BS while also 

posing a significant security risk. Thereby, we propose to use FL which aims to predict a 

realistic model which accounts for the local data without sharing it with the server. In FL, global 

and client models are defined and are synchronized. A copy of global model is sent to the clients 

where the model is updated using the data on each device. This is done by performing stochastic 

gradient descent (SGD) for ‘e’ epochs on the client side. After the local training is done on the 

clients, the updates are sent to the server. All the updates from the client side are aggregated 

and the process continues for ‘n’ communication rounds till an improved model is obtained. 

On the server side, after improving the model the accuracy of the model is checked. The 

vehicles use federated averaging (FedAvg), In fedavg, each client has its own data which is 

being identically distributed. And so, the number of local epochs considered is the same for all 

the clients. Also, another algorithm known as fedProx has been applied on the same model to 

observe different set of results. In fedprox, we generalize fedavg by allowing for variable 

amounts of work to be performed locally across clients based on their available systems 

resources. proximal term is added to the local subproblem to effectively limit the impact of 

variable local updates. 

 

Let θ be the weights of the model used in training and V be the number of vehicles present, 

with N being the overall number of vehicles. Therefore, θi represents weights of the model 

allocated to the vehicle V at i communication round, where each communication round 

represents an aggregation of weights of different vehicles using average at the BSs and 

synchronizing them. Algorithm 1 represents the training loop for federated learning for n 

communication rounds between the BS and vehicles. FedProx, differ in line 6 in Algorithm 1, 

where BS selects a subset of vehicles and optimizes the loss function with the proximal term, 

𝛍 (∥ 𝜃 − 𝜃 
𝟐 

∥)𝟐 , as shown in the Algorithm 2, 

where where θt is global weights and θ is the client weights and µ is the scaling factor. 

. 

𝐭 
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Figure 14 - FedProx Algorithm 
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CHAPTER 6 

 
Results and Discussions 

 
Federated learning algorithms are applied of 4 datasets i.e., 15k samples of Rosslyn city, 15k 

samples of New York city and 40k samples of Rosslyn city and 40k samples of New York 

city. 

Hyper parameter tuning is performed to get a comparison between different parameters. 

Following are the comparisons on our model for Rosslyn city of 40k samples– 

 

1) Comparison based on number of inception layers on our CNN model for 30 

communication rounds on fedprox algorithm. 

1.A) 2 inception layers - The accuracy is 71%. 

1.B) 3 inception layers - The accuracy is 71.16%. 

1.C) 4 inception layers - The accuracy is 70.93%. 

 

 
The below graph shows the comparison between different inception layers applied to our CNN 

model. 

 

Table 1 - Comparison based on number of inception layers 
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2) Comparison based on number of communication rounds applied to our federated learning 

algorithms (Fedavg & Fedprox). Here the inception layers are fixed to 4. 

 
2.1) Fedprox Algorithm 

 
 

2.1.A) For 20 communication rounds the accuracy is 68.98%. 

2.1.B) For 30 communication rounds the accuracy is 70.93%. 

2.1.C) For 40 communication rounds the accuracy is 70.39%. 
 

Table 2 - Comparison based on the number of communication rounds (FedProx). 

 

 
2.2) Fedavg Algorithm 

 
 

2.2.A) For 20 communication rounds the accuracy is 68%. 

2.2.B) For 30 communication rounds the accuracy is 70.9%. 

2.2.C) For 40 communication rounds the accuracy is 68.98%. 
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Table 3 - Comparison based on the number of communication rounds (FedAvg). 

 

 
3) Comparison based on different federated learning algorithms for 15k dataset and 40k 

dataset of Rosslyn city. 

 

 

Table 4 - Comparison based on the algorithm used. 
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4) Comparison based on two different cities i.e., Rosslyn and New York for 15k samples of 

data – 

 

 

Table 5 - Comparison based on different cities for 15k samples. 
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5) Comparison based on different optimizers used on fedavg algorithm and fedprox algorithm 

– 
 

Table 6 - Comparison based on different optimizer. 

 

 
6) Comparison based on different cities used on fedavg algorithm and fedprox algorithm for 

40k samples - 

 

A) Fedprox 
 

 

Table 7 - Comparison based on different cities for fedprox algorithm. 
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Table 8 - Comparison based on different cities of 40k samples. 

 
 

B) Fedavg 
 

Table 9 - Comparison based on different cities for fedavg algorithm. 
 

Table 10 - Comparison based on different cities of 40k samples. 
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7) RSSI Results 

RSSI values from the three base stations to the vehicle is calculated using the given formula 

using GPS coordinates. 

 

RSSI= 𝑷𝑶-(20*log10(4*pi*distance/wavelength)) 

 
 

where Po is an empirical constant and it's value is set to 31.0 dBm. 

 
 

(6) 

 

and distance is calculated using the haversine formula mentioned in equation 4 and 5, where 

the latitudes and longitudes of the vehicle and base station is taken into consideration for 

calculating the distance. 

The accuracy based on RSSI values of the three base stations with respect to every vehicle on 

the model has occurred to be 37%. 



39 
 

 

Chapter 7 

 
Conclusion and Future work 

 
This work presents a methodology to realistically and accurately simulate the data 

for BS selection. A scheme for BS selection is proposed that leverages LiDAR data 

in CNN to reduce the BS search overhead and achieve greater accuracy. Introducing 

FL to the CNN model further reduces the communication overhead as the data 

transferred to the BS is reduced significantly with a slight loss of accuracy. 

 

Two FL algorithms are applied on this system model and compared with variations 

in parameters like the number of communication rounds, change in the number of 

inception layers, change in location, and the training data size. It shows some 

outstanding results which has been depicted in the tables. 

 

The existing model will be strengthened by increasing the complexity of the 

communication environment and introducing techniques such as beam selection and 

beamforming as part of future work. Also, the system will be updated to handle the 

handover of the vehicle signal from one BS to another BS. 
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