
ENCODED ENCRYPTION AND

BIOMETRICS FOR HIGH-LEVEL

SYNTHESIS BASED HARDWARE

SECURITY AGAINST IP PIRACY AND

FRAUD IP OWNERSHIP

MS (Research) THESIS

By

Bharath Kollanur

DISCIPLINE OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
MAY 2023

ENCODED ENCRYPTION AND BIOMETRICS

FOR HIGH-LEVEL SYNTHESIS BASED

HARDWARE SECURITY AGAINST IP PIRACY

AND FRAUD IP OWNERSHIP

A THESIS

Submitted in fulfilment of the
 requirements for the award of the degree

of

Master of Science (Research)

by

Bharath Kollanur

DISCIPLINE OF COMPUTER SCIENCE AND

ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY

INDORE
MAY 2023

 INDIAN INSTITUTE OF TECHNOLOGY
 INDORE

 CANDIDATE’S DECLARATION

 I hereby certify that the work which is being presented in the thesis
entitled ENCODED ENCRYPTION AND BIOMETRICS FOR HIGH-
LEVEL SYNTHESIS BASED HARDWARE SECURITY AGAINST
IP PIRACY AND FRAUD IP OWNERSHIP in the fulfilment of the
requirements for the award of the degree of MASTER OF SCIENCE
(RESEARCH) and submitted in the DISCIPLINE OF COMPUTER
SCIENCE AND ENGINEERING, Indian Institute of Technology
Indore, is an authentic record of my own work carried out during the time
period from August 2021 to May 2023 under the supervision of Dr Anirban
Sengupta, Associate Professor, IIT Indore.
 The matter presented in this thesis has not been submitted by me
for the award of any other degree of this or any other institute.

 Signature of the student with date
BHARATH KOLLANUR

--
 This is to certify that the above statement made by the candidate is
correct to the best of my/our knowledge.

 Signature of the Supervisor of MS (Research) thesis (with date)
 DR ANIRBAN SENGUPTA
--
K BHARATH has successfully given his MS (Research) Oral

Examination held on JULY 3 2023.

Signature of Chairperson (OEB) Signature(s) of Thesis Supervisor(s)
with date with date

Signature of Convener, DPGC Signature(s) of head of Discipline
with date with date
--

03/07/2023

ACKNOWLEDGEMENTS

 Completing a thesis is a challenging and demanding journey that

requires perseverance, hard work, and support from many individuals. As I

look back at my journey, I am grateful to the many people who have played

a significant role in making this accomplishment possible.

Firstly, I would like to express my deepest gratitude to my thesis advisor,

Prof Anirban Sengupta, for their guidance, patience, and support

throughout my research journey. Their insightful feedback, constructive

criticism, and expertise have been invaluable in shaping the direction and

scope of my work. I am grateful for the opportunities and challenges they

provided me and their unwavering encouragement and support during good

and difficult times.

I would like to thank my lab seniors, Mr. Rahul Chaurasia and Mr. Aditya

Anshul, for their invaluable guidance, mentoring, and support during my

research journey. Their expertise and dedication to their work have been a

constant source of inspiration for me, and I have learned so much from

their vast knowledge and experience. Their continuous encouragement and

motivation have been instrumental in shaping my research work and career

goals. I would also like to extend my gratitude to my lab senior, Dr.

Mahendra Rathor, who has passed out from our lab. Their invaluable

contributions, advice, and support have played a signification role in

shaping my research journey. Their experiences, insights, and guidance

have been a valuable asset, and I am grateful for their continuous support

and encouragement.

 I would also like to thank the members of my thesis committee,

Prof Abhishek Srivastava, Prof Somaditya Sen, Prof Somnath Dey, Prof

Neminath Hubballi, and Prof Aniruddha Singh Kushwaha, for their

i

valuable feedback, critical evaluation, and insightful suggestions. Their

expertise and guidance helped me navigate through the complexities of the

research process and provided me with the necessary guidance to produce

a quality thesis. I would like to express my heartfelt thanks to the faculty

and staff of the Computer Science and Engineering department at IIT

Indore for providing me with a stimulating and supportive environment to

pursue my research work. I am grateful for the resources, infrastructure,

and opportunities provided to me by the department, which have been

instrumental in shaping my research journey.

 I am also deeply grateful to my family and friends for their love,

encouragement, and unwavering support throughout my academic journey.

Their patience, understanding, and motivation have been the driving force

behind my success. I particularly acknowledge my parents, Raja Kumar

and Manjula, and my brother, Dr. Charan, for their endless support,

encouragement, and belief in me. I am also grateful to Vaishnavi and

Shibani Das for their love, encouragement, and unwavering support.

 Lastly, I would like to express my gratitude to all the individuals

who have helped me in various ways during my research journey,

including my peers, colleagues, and other professionals who have provided

me with their valuable insights, support, and assistance.

 Completing this thesis has been a challenging but rewarding

experience, and I am grateful to everyone who has contributed to my

journey.

ii

ABSTRACT

 This thesis presents two novel methodologies for securing

intellectual property (IP) core designs against hardware security threats.

The first methodology is a quadruple-phase watermarking technique for

securing hardware IP cores during high-level synthesis (HLS). In contrast,

the second methodology explores unified biometrics with an encoded

dictionary for the hardware security of fault-secured digital signal

processing (DSP) intellectual property (IP) core designs.

 The first methodology addresses the issue of IP piracy and

ownership infringement that poses a significant threat to the security of

authentic IP vendors. The proposed quadruple-phase watermarking

technique employs graph portioning, encoding tree, and eightfold mapping

to generate a robust watermarking signature. The signature is embedded at

four stages of HLS, including scheduling, register binding, resource

binding, and interconnect binding, to ensure high-quality hardware security

constraints. The results demonstrate a considerable decrease in the

probability of coincidence and a higher level of tamper tolerance compared

to the state-of-the-art techniques without incurring a significant design cost

overhead.

 The second methodology focuses on the hardware security of fault-

secured digital signal processing (DSP) intellectual property (IP) core

designs against IP piracy. The methodology exploits scheduled and

allocated DSP design using a behavioural synthesis process to generate a

fault-secured DSP IP core. The proposed technique embeds encoded

unified biometric-based hardware security constraints into the design to

provide a detective control mechanism against IP piracy. This results in the

generation of protected fault-secured DSP designs against IP piracy,

ensuring the safety of end consumers against pirated and unreliable designs

iii

by isolating them before integration into the system-on-chips of consumer

electronics (CE) systems.

 Overall, both methodologies address the critical issue of IP piracy

and ownership infringement that sabotage the revenue and reputation of

genuine IP vendors. The proposed techniques provide a higher level of

security with a low probability of coincidence and high tamper tolerance

without incurring significant design cost overhead. These methodologies

pave the way for more robust and secure IP designs, thereby ensuring the

safety and security of end consumers.

iv

LIST OF PUBLICATIONS

• Mahendra Rathor, Aditya Anshul, K Bharath, Rahul Chaurasia, Anirban

Sengupta, “Quadruple Phase Watermarking during High-Level Synthesis

for Securing Reusable Hardware IP Cores”, Elsevier Journal on

Computers and Electrical Engineering, Volume 105, January 2023,

108476

• Aditya Anshul, K Bharath, Anirban Sengupta, “Designing a Low Cost

Secured DSP Core Using PSO-DSE Driven Steganography for CE

Systems”, Proceedings of 8th IEEE International Symposium on

Smart Electronic Systems (IEEE – iSES), India, Dec 2022, pp. 95-100,

doi: 10.1109/iSES54909.2022.00030

v

vi

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . xi

NOMENCLATURE . xiii

ACRONYMS . xiv

Chapter 1: Introduction 1

1.1 Overview . 1

1.2 Evolution of IP Core Design . 3

1.3 The Advantages of Third-Party IP Core Suppliers 5

1.4 Security Concerns and Piracy Issues of Reusable IP Cores in the

 Global SoC Supply Chain . 6

1.5 Safeguarding Intellectual Property: An Examination of Available IP

 Protection Methods . 8

1.6 Background on High-Level Synthesis . 11

1.7 Organisation of the Thesis . 16

Chapter 2: Review of Past Work and Problem Formulation 17

Chapter 3: Quadruple phase watermarking during high-level synthesis

 for securing reusable hardware intellectual property cores 25

3.1 Overview of the proposed approach . 27

3.2 Partitioning of Scheduled Data Flow Graph (SDGF) 31

3.3 The proposed signature generation process . 32

Chapter 4: Signature embedding and detection process in the

 quadruple phase watermarking approach during high level

 synthesis 39

4.1 The proposed signature embedding process 39

vii

4.2 Embedding constraints in the scheduling phase (phase-1) 41

4.3 Signature detection in the proposed watermarking approach 51

Chapter 5: Exploring Unified Biometrics with Encoded Dictionary

 for Hardware Security of Fault Secured IP Core Designs 55

5.1 Proposed hardware security methodology for securing fault-secured

 DSP IP core . 57

5.2 Generating transient fault secured DSP designs 61

5.3 Multimodal biometric signature generation . 65

Chapter 6: Unified biometric signature generation using expandable

 encoded dictionary and signature embedding and detection

 process 75

6.1 Proposed Expandable Encoded Dictionary . 76

6.2 Embedding unified biometric signature of IP vendor into the

 design . 78

6.3 Detection of pirated design using the proposed methodology 82

6.4 Security properties of encoded dictionary-based unified biometrics . 83

Chapter 7: Results and Discussion/Analysis 87

7.1 Results and analysis of the proposed quadruple phase watermarking

 approach . 87

7.2 Results and analysis of the proposed unified biometric-driven

hardware

 security methodology . 95

Chapter 8: Conclusions and Scope for Future Work 101

REFERENCES 105

viii

LIST OF FIGURES

3.1 Flow diagram of proposed quadruple-phase watermarking

 approach . 29

3.2 Abstract view of the proposed quadruple-phase watermarking

 approach . 30

3.3 Scheduled Data Flow Graph (SDFG) of FIR core with partitions P1,

 P2, and P3. 33

3.4 Proposed encoding tree used or encoding partitions of SDFG 34

3.5 Traversal details of operations in the partition of SDFG along the

 proposed encoding tree . 35

4.1 Post-embedding scheduling constraints in the partition of the

 SDFG . 42

4.2 CIG of partition of SDFG post-embedding scheduling

 constraints . 43

4.3 CIG of partition of SDFG post-embedding register binding

 constraints . 44

4.4 Post-embedding register binding constraints in partition 45

4.5 Embedding of constraints in interconnect binding phase, on RTL. . 46

4.6 SDFG of partition post-embedding signature generated from

 partition . 47

4.7 (a) Pseudo code of the embedding process . 49

4.7 (b) Signature generation and embedding flow of proposed quadruple

 phase watermarking approach . 50

4.8 SDFG of partition post-embedding signature generated from

 partition . 52

4.9 SDFG of FIR core after embedding a watermark 53

4.10 Signature detection using the proposed approach for authentic IP

 verification . 54

5.1 Overview of the proposed methodology . 58

P1

P2

P2

P2

P2

P2 S1

P1

P3 S2

P2

ix

5.2 Screenshot of the hardware security tool demonstrating the successful

 generation of fault-secured DMR design of 8-point IDCT DSP

 core . 63

5.3 Fault-secured scheduled IDCT filter design (pre-embedding security

 constraints) . 64

5.4 Screenshot of hardware security tool corresponding to the facial

 image with the vendor-selected feature set on the display panel . . . 68

5.5 Screenshot of hardware security tool corresponding to the palmprint

 image with the vendor-selected feature set on the display panel . . . 70

5.6 Screenshot of hardware security tool corresponding to the fingerprint

 image with minutiae points on the display panel 72

6.1 Screenshot of hardware security tool corresponding to the encoded

 unified biometric signature . 77

6.2 Fault-secured scheduled IDCT filter design (post-embedding security

 constraints) . 80

6.3 Screenshot of hardware security tool corresponding to the hardware

 security constraints . 81

7.1.1 Variation in Pc due to embedding watermark during different

 phases . 91

7.1.2 Security (in terms of Pc)-cost tradeoff for various benchmarks . . . 93

7.1.3 Partitioning-cost trade-off for IIR filter core for signature

 size=32 . 94

x

LIST OF TABLES

4.1 Mapping triads in the signature into the hardware security

 constraints . 40

4.2 Watermarking constraints for embedding in the partition 51

5.1 Signature generation corresponding to the facial features 66

5.2 Signature generation corresponding to the palmprint features 69

5.3 Signature generation corresponding to fingerprint minutiae points . 72

6.1 Encoded dictionary for 3-bits (N=3) (expandable up to encoding

 rules) . 77

6.2 Register allocation table for pre-embedding unified biometric

 signature into the design . 81

6.3 Register allocation table for pre-embedding unified biometric

 signature into the design . 82

7.1.1 Probability of coincidence (Pc) analysis of proposed approach w.r.t.

 related approaches [11,12,15] . 90

7.1.2 Comparison of PC of the proposed approach with [40, 17] 90

7.1.3 Tamper tolerance () analysis of proposed approach w.r.t. related

 approaches [11], [12], [15] . 92

7.1.4 Design cost pre and post-embedding of the proposed watermark . . 94

7.2.1 Comparison of of proposed unified biometrics approach w.r.t

 related works [11], [17] . 96

7.2.2 Comparison of of proposed unified biometrics approach w.r.t

related works [26], [28] . 97

7.2.3 Comparison of of proposed unified biometrics approach w.r.t

 related works [11], [17] . 98

7.2.4 Comparison of of proposed unified biometrics approach w.r.t

 related works [26], [28] . 98

P3

2N

TP

Pbc

Pbc

T T

T T

xi

7.2.5 , TT of the proposed approach corresponding to varying signature

 size for 8-point DCT application . 98

7.2.6 Comparison of the design cost pre and post-embedding encoded

 dictionary-based unified biometric signature 99

 7.2.7 Implementation run time of the proposed security methodology

 corresponding to different benchmarks (fault-secured)100

Pbc

xii

NOMENCLATURE

 — Partition of the Scheduled Data Flow Graph (SDFG)

 — Signature generated from the partition

 — Hash digest.

 — Vendor

 — Control step in the SDFG

Ti — Storage variables

Ri — Registers

 — Adder of jth vendor

 — multiplier of jth vendor

 — Transient fault strength

 — Resource constraints

 — ‘X’ represents the number of hardware units and ‘a’

 represents the type of hardware resource.

 — Original unit

 — Duplicate unit

Ci — Control step in SDFG

Vi — Storage variables

CN — Crossing number

 — Probability of coincidence

 — Tamper tolerance

 — Design cost

 — Design area

 — Design latency

 — Probability of coincidence of the fault secured DSP

 — Tamper tolerance of the fault-secured DSP design

 — Design cost of the fault-secured DSP design

Pi

Si Pi

HDi

Vi

σi

Aj
i

Mj
i

Tc

Rc

X Ra

NOG

NDP

Pc

T p

Ct

AH

Lh

Pbc

T T

Dc(st
n)

xiii

ACRONYMS

DSPs — Digital Signal Processors

DSP — Digital Signal Processing

VHDL — Very High-Speed Integrated Circuit Hardware Description

 Language

FPGAs — Field Programmable Gate Arrays

ASICs — Application-Specific-Integrated-Circuits

CPU — Central Processing Unit

IP — Intellectual Property

HLS — High-Level Synthesis

IoT — Internet of Things

SoC — System-on-Chip

IP-XACT — Intellectual Property Core Provider’s Group

SIP — Silicon Intellectual Property

CE — Consumer Electronics

CFE — Computational Forensic Engineering

HDL — Hardware Description Language

RTL — Register-Transfer Level

DFG — Data Flow Graph

CFG — Control Flow Graph

CDFG — Control/Data Flow Graph

DSE — Design Space Exploration

PUFs — Physically Unclonable Functions

CED — Concurrent Error Detection

DMR — Dual Modular Redundancy

EM — Electromagnetic

FU — Functional Unit

IC — Integrated Circuit

SDFG — Scheduled Data Flow Graph

FIR — Finite Impulse Response

xiv

ET — Encoding Tree

Opn — Operation

CIG — Coloured Interval Graph

SEU — Single-Event Upsets

IDCT — Inverse Discrete Cosine Transform

FFT — Fast Fourier Transform

CN — Crossing Number

DCT — Discrete Cosine Transform

JPEG — Joint Photographic Experts Group

IIR — Infinite Impulse Response

MPEG — Moving Picture Experts Group

xv

Chapter 1

Introduction

1.1 Overview

 Digital Signal Processors (DSPs) are specialized processors

designed to perform mathematical operations on real-time signals quickly

and efficiently, typically used in various real-time applications. DSPs

enhance sound and speech quality in audio and speech processing, while in

telecommunications, they process signals for communication systems; in

RADAR, LIDAR, and sensors, DSPs are used to process signals for

various applications such as navigation, mapping, and object detection. In

image and visual processing, they are used to enhance the image and video

quality, while in neural network processing, they are used to perform real-

time inferencing of deep learning models. DSPs can be found in a variety

of devices, ranging from consumer electronics such as mobile phones to

satellites and military communications. The widespread use of DSP

technology highlights its importance in enabling advanced capabilities in

consumer electronics. The first DSP was created by Texas Instruments and

was famously used in the child’s toy “The Speak & Spell” in the late

1970s. The DSP in the toy was used for speech processing, which allowed

the toy to recognise and produce speech sounds. This marked the

beginning of the widespread use of DSPs in consumer electronics, and

since then, DSPs have become an essential component in many different

fields and applications.

 Digital Signal Processing (DSP) algorithms are crucial for a variety

of applications such as image and audio processing, compression, and de-

noising, as mentioned earlier. These algorithms require high performance

and low power consumption, which can be achieved through hardware

1

acceleration. One way to achieve hardware acceleration is by using

reusable intellectual property (IP) cores. An IP core, or Intellectual

property core is a pre-designed and pre-verified block of digital logic that

can be easily integrated into a larger system to perform specific functions.

IP cores are designed to be reused in multiple applications, allowing

designers to save time and resources while achieving high performance and

low power consumption. Reusable IP cores are typically designed in a

standard digital design language, such as Very High-Speed Integrated

Circuit Hardware Description Language (VHDL) or Verilog, and can be

implemented on Field Programmable Gate Arrays (FPGAs) or Application-

Specific-Integrated-Circuits (ASICs).

 The CPU (Central Processing Unit) and a reusable DSP IP Core are

both components used in digital signal processing (DSP) applications, but

they have some key differences. A CPU is a computers main processor that

executes instructions and performs data processing. It is designed to

perform a wide range of tasks and can be programmed to perform DSP

algorithms, but it is not optimized for DSP processing. The CPU is a

general-purpose processor that can handle a wide range of tasks, but its

processing speed and power consumption for DSP algorithms can be

relatively slow compared to dedicated DSP hardware. On the other hand, a

reusable DSP IP Core is a predesigned and pre-verified block of digital

logic that is optimized specifically for DSP processing. It can be integrated

into larger systems and provides faster processing speeds and lower power

consumption compared to CPU-based implementation of the same DSP

algorithm. A reusable DSP IP Core is designed to perform a specific DSP

function and can be optimized for high performance and low power

consumption, making it a better choice for DSP applications than a

general-purpose CPU.

2

 Reusable IP cores offer several advantages over traditional

software-based implementations of DSP algorithms. In hardware, they can

be implemented in parallel, which eliminates the overhead of software-

based processing. IP cores are optimized for low power consumption,

which is important for battery-powered devices or applications that need to

minimize power consumption. Another advantage of reusable IP Cores is

their ease of integration into larger systems. IP Cores can be used as

building blocks for larger systems, reducing design time and increasing

design reliability. This allows designers to focus on the overall system

design rather than on implementing individual DSP algorithms. With the

growing demand for high-performance and low-power computing systems,

reusable IP cores will likely become increasingly widespread in the future.

1.2 Evolution of IP Core Design

 The evolution of IP (Intellectual Property) core design has been

driven by the increasing complexity of integrated circuits and the need for

more efficient and cost-effective design methods. IP Core design is a

methodology for creating reusable blocks of digital logic that can be used

in the design of integrated circuits. Over the past several decades, IP Core

design has evolved to meet the changing needs of chip designers and the

wider electronics industry. The early days of IP Core design were

characterized by the use of hardware description languages such as VHDL

and Verilog. Designers would use these languages to create digital logic

circuits from scratch, using a combination of manual design and simulation

tools. While this approach was effective for relatively simple circuits, it

became increasingly time-consuming and complex as integrated circuits

became more complex. In response to these challenges, IP Core design

began to evolve towards a more automated and efficient approach. The

introduction of High-Level Synthesis (HLS) tools allowed designers to

describe the functionality of a digital logic circuit using a high-level

3

programming language, such as C or C++, rather than hardware description

languages. This reduced the time and effort required to create digital logic

and improved the quality and reliability of the final product, as HLS tools

used advanced algorithms to generate optimized digital logic.

 The increasing importance of low-power and energy-efficient

design has also played a key role in the evolution of IP Core design. Many

IP Cores are now designed specifically to minimize power consumption,

and their use in a design can help reduce the system's overall power

consumption. This is especially important for battery-powered mobile

devices, where power consumption is a critical consideration. The rise of

the Internet of Things (IoT) and the increasing demand for connected

devices have led to a growth in the use of IP Cores for embedded systems.

IP cores are being used to address the need for high performance, low area,

minimum cost, and timely operation in many embedded systems,

especially in mobile phones, where low power consumption and high

performance are critical requirements. Another key development in IP Core

design was the introduction of platform-based design. Platform-based

design enables designers to reuse common components and systems across

multiple applications, reducing development time and cost and improving

the quality and reliability of the final product. This approach also allows

for easier integration of IP Cores from different sources, making it easier

for designers to access a wide range of high-quality, reusable IP Cores.

 Further, the growing demand for IP Cores led to the development of

IP Core libraries that could be easily integrated into a larger System-on-

Chip (SoC) design. These libraries allowed designers to quickly and easily

access a range of IP Cores, speeding up the design process and reducing

the time to market for a product. The development of IP Core libraries was

a significant milestone in the evolution of IP Core design, as it allowed

designers to take advantage of pre-existing IP Cores and focus on the

4

overall system design. The evolution of IP Core design has also led to the

development of IP Core standards, such as the Intellectual Property Core

Provider’s Group (IP-XACT) standards. IP-XACT provides a standardized

format for describing IP Cores, making it easier for designers to integrate

IP Cores from different vendors into a larger SoC design. The

standardization of IP cores has also enabled the creation of IP Core

exchange platforms, such as the Silicon Intellectual Property (SIP) Core

Exchange, where designers can easily access and compare IP Core from

different vendors.

1.3 The Advantages of Third-Party IP Core
Suppliers

IP Cores are supplied by third-party IP vendors for several reasons:

1. Specialist expertise: IP vendors specialise in designing and developing

specific IP Cores, allowing them to focus on the latest technological

advancements and provide their customers with high-quality, reliable

IP Cores.

2. Cost-effectiveness: Designing IP cores from scratch is a time-

consuming and resource-intensive process. By outsourcing this work to

third-party IP vendors, companies can take advantage of the lower

costs associated with specialised design teams and reduce the time and

effort required to bring a product to market.

3. Time-to-market: IP vendors have a pre-existing library of IP Cores,

which can be used to speed up the development process and reduce the

time to market for a product.

4. Risk reduction: IP Cores are thoroughly tested and validated before

they are made available to customers, reducing the risk of design bugs

and improving the quality and reliability of the final product.

5. Scalability: IP vendors have the resources and expertise to scale up the

production of IP cores as demand increases, enabling customers to take

advantage of economies of scale and reduce costs.

5

 In summary, IP Cores are supplied by third-party IP vendors

because they offer a cost-effective solution that reduces design time and

risk, and improves quality while allowing companies to focus on the

overall system design. By outsourcing IP Core development to specialist

vendors, companies can take advantage of the latest technology

advancements and bring their products to market more quickly.

1.4 Security Concerns and Piracy Issues of
Reusable IP Cores in the Global SoC Supply
Chain

 The integration of Intellectual Property (IP) Cores in System-on-

Chip (SoC) [1] design has become a standard practice in the consumer

electronics (CE) industry. The use of IP Cores supplied by third-party IP

vendors [2] maximizes design productivity and minimizes design time.

These hardware IP cores are designed to perform specific functions and are

often reused in various electronic designs. The increasing reuse of IP Cores

has brought to the forefront of the security concerns and IP piracy issues

that arise from the global SoC supply chain. The reuse of IP Cores is

driven by several benefits, including reduced development time and cost,

improved design quality, and reduced risk. However, this increased reuse

of IP cores leads to risks like copying and piracy. IP Cores can represent

many man-years of design, research, and verification testing; therefore, it

is essential to protect this investment. If IP Cores are not properly secured,

they can easily be copied and used without authorization, resulting in

significant financial losses for the original IP Core developer.

 One of the primary security concerns in the global SoC supply

chain is the potential for IP Core tampering. Tampering with IP Cores can

take many forms, including unauthorized modifications, insertion of

malicious code, or unauthorized copying. This can lead to significant

6

security breaches, particularly if the IP Cores are used in critical systems

such as those found in the aerospace, defence, or medical industries.

Another security concern in the global SoC supply chain is the potential for

IP Core counterfeiting. Counterfeit IP Cores can be difficult to detect and

can have serious consequences for the end user. Counterfeit IP Cores may

not perform as intended, contain malicious code, or may not comply with

industry standards. This can lead to significant safety and security risks and

financial losses for the end user [2, 3, 4, 5].

 Another major concern is the infringement of the licensing

agreement through the utilization of the IP Core in multiple products with

only a single license obtained. This is a common occurrence, as IP core

providers often sub-license other IP Cores for inclusion in their designs,

and once a design has completed testing and verification, it is tempting to

reuse it in additional products. This poses a significant threat to the original

IP owner, as their investment in the design and development of the core is

not protected. In addition to the threat of license violations, there is also the

risk of direct piracy, where fraudulent means or reverse engineering may

allow the direct theft or copying of the IP for reuse without permission. In

such cases, the adversary may even claim the IP to be their own, making it

difficult for the original IP owner to prove ownership and protect their

investment. Unauthorized duplication and distribution of IP Cores can lead

to significant financial losses for the owners and undermine their

competitive advantage in the market.

 Intellectual Property (IP) Cores are critical components in the

design of silicon chips and play a crucial role in the electronics industry.

These cores contain valuable technology, trade secrets, and propriety

information that are the result of extensive research and development

efforts. Protecting IP Cores from securing concerns and piracy issues is

7

vital to ensure companies’ financial stability and competitiveness in the

chip industry.

1.5 Safeguarding Intellectual Property: An
Examination of Available IP Protection Methods

 The use of IP protection mechanisms is critical in ensuring the

protection of IP Cores from security concerns and piracy issues. The

different protection mechanisms provide different levels of protection

based on the design abstraction levels. A comprehensive IP protection

strategy can be achieved by combining these mechanisms. Understanding

the different protection mechanisms and their benefits is crucial for

companies in the chip design industry, as it can help them to better protect

their valuable IP assets. Some well-known IP Protection mechanisms

widely used in various consumer electronics (CE) products include

watermarking, IP metering, Computational Forensic Engineering (CFE),

and patents and copyrights.

Watermarking

 The insertion of additional watermarking constraints is a widely

used method for protecting Intellectual Property (IP) Cores in recent years.

This method is implemented during the architectural synthesis stage of IP

design, specifically in the register allocation or scheduling step. In this

process, a coloured interval graph is used to represent the storage variables

and their overlapping lifetimes. By adding additional edges between the

nodes of the graph as watermarking constraints, the storage variable is

forced to be stored in distinct registers, thus increasing the security of the

signature. The watermarking scheme requires a signature detection process

which is done in two steps: reverse engineering and signature verification.

Reverse engineering involves obtaining a sample of the product suspected

of using the IP illegally and sending it to a specialist laboratory for analysis

and reverse engineering. Signature verification involves comparing the

8

detected signature with the original signature to confirm the presence of

the IP in the product. This method of IP protection offers a secure and

reliable way to protect the IP from security concerns and piracy issues,

ensuring that the owner's rights are protected.

IP Metering

 IP metering is a technique used by IP vendors to control and

monitor the usage of their intellectual property (IP) Cores. IP metering

aims to ensure that IP vendors receive fair compensation for their work and

to prevent the unauthorized or illegal use of their IP. IP metering is

performed by assigning a unique identifier to each unit of the IP Core. This

identifier can be created through a variety of methods, including different

configurations during architectural synthesis or programmable hardware

elements. The unique identifier acts as a meter that records the usage of the

IP and enables the IP vendor to enforce royalties for each unit sold.

Hardware and software metering are techniques used to protect IP cores

from piracy and illegal use. Hardware metering is employed in situations

where the design company does not have control over the number of copies

being made by the silicon foundry. In the case of software IP Core vendors,

the number of uses of the soft core can be metered to ensure that the user is

not making unauthorized copies. This is achieved through the use of

hardware/software locks and license agreements. Hardware metering is

performed by making a small portion of the design programmable during

configuration time. This small portion is configured in a unique way for

each manufactured chip, allowing the manufacturer to determine the

number of units (or batches of units) produced. On the other hand, software

metering involves tracking the number of uses of the software IP Core by

the user through the use of license agreements.

 IP metering is an important tool for IP protection, as it helps to

ensure that IP vendors are properly compensated for their work. This not

9

only protects their investment in the development of the IP Core but also

incentivizes further innovation and investment in the field. In addition to

enforcing royalties, IP metering also provides IP vendors with a level of

control and monitoring over the usage of their IP. This helps to prevent

piracy and unauthorized use, ensuring that IP vendors’ rights are protected

and safeguarding their investment in the development of the IP Core.

Computational Forensic Engineering (CFE)

 Computational Forensic Engineering (CFE) involves the collection

of features and statistics of a given IP design, which can be analyzed to

determine the likelihood of a specific entity having created it. In the next

phase, the collected features and statistics are extracted to determine the

unique characteristics of the design. The extracted features are then

clustered and compared to a pool of algorithms used to solve the same

optimization problem to identify the algorithm that has been used to create

the IP design. Finally, the results are validated to ensure the accuracy and

reliability of the findings. The use of CFE helps in identifying the entity

responsible for creating a particular IP design, thereby providing a way to

enforce IP rights and prevent piracy issues.

Patent and Copyright

 A patent serves as a form of intellectual property protection that

gives the inventor the exclusive right to prevent others from making, using,

selling, and importing the patented invention for a specified number of

years. This helps the inventor to protect their innovations and prevent

others from profiting from their work without their permission. Obtaining a

patent requires a thorough examination process, including a search for

prior art, to determine the novelty and non-obviousness of the invention.

The process of obtaining a patent can be time-consuming and expensive,

but it can also provide valuable protection and exclusivity for the

inventor’s ideas.

10

 Copyright is a form of legal protection provided to creators of

original works for authorship, such as litter, dramatic, musical, artistic, and

certain other intellectual works. It gives the creator the exclusive right to

control the use and distribution of the work for a limited period. Copyright

protection applies to works that are fixed in a tangible form of expression,

such as a book, a painting, or a software program. The owner of the

copyright has the exclusive right to reproduce the work, distribute copies,

and create derivative works based on the original. Infringement of

copyright can lead to legal action under civil law.

1.6 Background on High-Level Synthesis

 High-level synthesis (HLS) [2], [5] is the process of automatically

translating a high-level hardware description language (HDL) specification

into a register-transfer level (RTL) description, which can be used to

implement the design on a specific hardware platform. The goal of HLS is

to reduce the time and effort required to design complex hardware systems

by allowing designers to describe the system at a higher level of

abstraction and then automatically generate the low-level hardware

implementation. HLS has become increasingly important in the field of

digital design as the complexity of modern hardware systems has grown

dramatically. The use of HLS can significantly reduce the time-to-market

and development costs of such systems by enabling designers to quickly

explore and evaluate a large number of design alternatives and optimize

their designs for different performance metrics such as power

consumption, area, and latency.

Design Entry Phase:

 The design entry phase is the initial stage of the high-level

synthesis process. In this phase, the designer defines the high-level system

specification, which consists of the functional behaviour of the system and

11

the constraints on the system’s resources. The input to this phase is a high-

level language description of the system’s behaviour, such as C or

MATLAB, and the constraints on the system’s resources, such as the area,

power, and execution time. The design entry phase begins with the

conversion of the high-level language description into a data flow graph

(DFG). The DFG represents the data dependencies among the system’s

operations. Each node in the DFG represents an operation, and the edges

represent the data dependencies between the operations. The DFG provides

a high-level representation of the system’s behaviour.

 In addition to the DFG, the designer also creates a control flow

graph (CFG) in the design entry phase. The CFG represents the control

flow of the system, i.e., the sequence of operations executed by the system.

The CFG provides a high-level representation of the system’s control

behaviour. The designer combines the DFG and CFG into a control/data

flow graph (CDGF) in the design entry phase. The CDFG is a unified

representation of the system’s control and data flow behaviours. The

CDFG consists of nodes that represent operations and edges that represent

both data and control dependencies.

High-level design phase

 The high-level design phase is a critical stage in the high-level

synthesis, where a behavioural description of the system is transformed

into an optimized register transfer level (RTL) design. The objective of the

high-level design phase is to determine the most efficient way to

implement the functionality of the system while satisfying the constraints

specified by the user. During this phase, the system is modelled as a set of

data flow graphs (DFGs) and control flow graphs (GFGs) that capture the

computational and control aspects of the system. These graphs are used to

analyze the system and identify the optimal way to implement the

12

functionality of the system. The high-level design phase can be divided

into three main steps: scheduling, resource allocation, and binding.

• Scheduling:

 The scheduling step determines the order in which the operations in

the DFG will be executed. The goal of scheduling is to minimise the

number of clock cycles required to execute the operations while satisfying

any timing constraints specified by the user.

• Resource allocation:

 Resource allocation is the process of determining which hardware

resources (such as functional units, registers, and buses) will be used to

implement the operations in the DFG. The goal of resource allocation is to

minimise the overall cost of the system while satisfying any resource

constraints specified by the user.

• Binding:

 Binding is the process of assigning each operation in the DFG to a

specific hardware resource. The goal of binding is to minimise the critical

path delay of the system while satisfying any timing constraints specified

by the user.

 In addition to these three steps, the high-level design phase may

also include optimization techniques. Optimization techniques play a

crucial role in High-level synthesis (HLS) to improve the quality of the

synthesized hardware design. Optimization techniques help to achieve

design objectives such as minimum area, maximum speed, and low power

consumption while satirizing the constraints and goals of the design. Some

of the commonly used optimization techniques in HLS are:

• Design Space Exploration (DSE): DSE is the process of exploring the

design space of a system to find an optimal implementation that satisfies

the design objectives such as minimum area, maximum speed, and low

power consumption. DSE allows the designer to explore different trade-

offs between design objectives and select the best possible solution.

13

• Loop unrolling and Pipelining: Loop unrolling is a technique used to

improve the performance of a loop by executing multiple iterations of the

loop in parallel. Pipelining is another technique used to improve the

performance of a design by breaking it down into smaller stages and

executing them in parallel. Both techniques help to improve the

throughput of a design.

• Data path optimisation: Data path optimisation is the process of

optimising the data path of a design to improve its performance. It

involves optimising the number and type of functional units used, the

number and type of registers used, and the interconnect between the

functional units and registers.

• Control path optimisation: Control path optimisation is the process of

optimising the control path of a design to improve its performance. It

involves optimising the control logic used to generate the control signals

that drive the functional units and registers.

• Power optimisation: Power optimisation is the process of optimising the

power consumption of a design. It involves minimising the dynamic

power consumption by reducing the switching activity in the design and

minimising the static power consumption by reducing leakage currents.

 Overall, the high-level design phase is a critical step in the high-

level synthesis that determines the optimal way to implement the

functionality of the system while satisfying the constraint specified by the

user. By using a combination of scheduling, resource allocation, binding,

and optimization techniques, high-level synthesis tools can produce

optimized RTL designs that meet the performance, power, and area

requirements of the system.

RTL generation phase:

 RTL (Register Transfer Level) generation is the final phase of the

High-level synthesis process, where the synthesized hardware design is

14

transformed into an RTL implementation. The RTL implementation is a

low-level hardware description that can be used to generate a physical

implementation of the design. In this phase, the control and data path

structures of the design are synthesized and integrated to produce a

complete RTL description. The RTL generation process involves the

conversion of the synthesized CDFG (Control/Data flow graph) to RTL-

level structural description. The CDFG contains all the information about

the design, including the operation, data dependencies, control flow, and

resource allocation information. This information is used to generate an

RTL description that is compatible with the target technology and the

design constraints. The RTL implementation is then verified using

simulation and synthesis tools.

The RTL generation process typically involves the following steps:

1. Datapath and Control Path Synthesis: In this step, the hardware

resources such as registers, memories, and arithmetic units required

for the design are identified and allocated. The datapath and control

path structures are then synthesised by mapping the operations of the

CDFG to the hardware resources.

2. RTL Netlist Generation: Once the datapath and control path

structures are synthesised, an RTL netlist is generated that describes

the hardware implementation of the design. The RTL netlist is a

structural description of the design that includes information about

the hardware components, their connectivity, and the timing

constraints.

3. Verification: The RTL implementation is then verified using

simulation and synthesis tools. The simulation is done to verify the

correctness of the design functionality and the timing constraints.

Synthesis tools are used to check the design against the target

technology libraries and constraints.

4. Optimisation: Finally, the RTL implementation is optimized to

improve its performance, power consumption, and area utilisation.

15

Various optimisation techniques such as logic restructuring, clock

gating, and retiming are applied to the RTL implementation to

improve its efficiency.

 The RTL generation phase is a critical step in the High-level

synthesis process as it provides a complete hardware implementation of the

design that can be used for further verification, testing, and physical

implementation. The accuracy and quality of the RTL implementation have

a significant impact on the final performance, power consumption, and

area utilization of the design. Therefore, it is important to ensure that the

RTL implementation is optimized, verified, and meets all the design

requirements before proceeding to the physical implementation phase.

1.7 Organisation of the Thesis

 This thesis is organised into eight chapters. Chapter 2 describes the

related works regarding the proposed approaches, chapter 3 and 4

discusses the proposed quadruple-phase watermarking methodology,

chapter 5 and 6 discuss the proposed unified biometrics with an encoded

dictionary for hardware security of fault-secured IP core designs, chapter 7

presents the results of the proposed methodologies, demonstrating a

significant decrease in the probability of coincidence and a higher level of

tamper tolerance compared to previous techniques, without incurring

significant design cost overhead. Finally, chapter 8 concludes the thesis,

summarising the proposed methodologies' contributions and their impact

on the field of IP security in chip designs.

16

Chapter 2

Review of Past Work and Problem
Formulation

 Hardware IP watermarking techniques have been a popular form of

IP protection techniques for securing data-intensive hardware co-

processors used in consumer electronics-based industry, but their (earlier

approaches) effectiveness depends on various factors such as the type of

watermarking technique used, and the potential attacks that the

watermarking technique can withstand. Therefore, the development of

effective hardware IP watermarking techniques requires a clear

understanding of the strengths and limitations of existing techniques and

the identification of potential vulnerabilities or attacks that could

compromise their effectiveness. In this section, we highlight the need for

further research into the development of hardware IP watermarking

techniques to enable the effective protection of valuable IP assets in the

chip design industry against hardware security threats.

Prior works:

 Various hardware security techniques have been proposed for

protecting combinational/sequential circuits and complex DSP circuits

using IP watermarking. One approach proposed by Cui et al. [6] employed

a constraint-based watermarking scheme where closed cones are

modulated to embed security constraints at the logic level. Another

approach by Cui and Chang [7] employed template substitution-based

watermarking, where specific cells are replaced with equivalent templates

in the library. To protect combinational circuits, watermarking is usually

employed during the combination logic synthesis phase of the design

process. For securing sequential circuits, a watermarking scheme has been

proposed where the output of transitions of the state transition graph is

17

used to embed signature bits [8]. Cellular automata-based FSM

watermarking schemes have also been proposed by Karmakar and

Chattopadhyay [9, 10] to secure IP cores. However, these watermarking

schemes [6, 7, 8, 9, 10] have been proposed at the combinational/

sequential logic synthesis level and do not target the security of complex

DSP circuits.

 Other watermarking schemes [11-15, 16] have targeted the security

of DSP circuits, including an approach proposed by Sengupta and Rathor

[16], where a watermark is employed in a DSP circuit during the early

floor planning stage at the physical level. Some of the watermarking

approaches such as [41], [13] are utilised at the lower levels of abstraction,

such as at the gate level. When operating at the gate level, a vendor

signature may be incorporated into the design using either (ⅰ) the netlist

and bit stream of an IP design as proposed in D. Ziener et al. [41], or (ⅱ)

during the in-synthesis process of design like approaches by Le Gal and

Bossuet [13] implanted during the in-synthesis phase of the HLS process

of DSP designs. However, since both of these approaches embed the

signature at a lower level, they are not appropriate for complex DSP cores,

and the insertion of the signature results in significant overhead on the

system. As a result, alternative techniques have been developed that target

insertion of the signature at a higher abstraction level such as the

architecture level. For instance, a watermarking technique involves

implanting a secret mark at algorithmic synthesis, which can be

accomplished using various methods, including (ⅰ) multi-variable signature

encoding rules for IP core protection [15], [42], (ⅱ) multi-variable

signature watermarking at three different phases of architectural synthesis

(the scheduling phase, the hardware allocation phase, and the register

allocation phase). Koushanfar et al. [13] and Hong and Potkonjak [14]

embedded signatures during the register binding phase of the HLS process,

and Sengupta and Bhadauria [15] secured DSP circuits using a four-

18

variable signature to embed watermark during the register biding phase of

the HLS process. A seven-variable signature embedded during the three

phases (scheduling, register binding and FU binding) of HLS was used by

Sengupta et al. [12], and (ⅲ) encoding the author’s signature by adding a

set of design and timing constraints to the design [11], [14]. Castillo et al.

[40] introduced a technique for IP watermarking at the hardware

description language (HDL) design level, aimed at safeguarding IP cores.

The authors in [40] employed a secure signature extraction methodology

integrated with minimal system modification in their approach. In their

work, they also utilised a tool to discover diverse input patterns that yield

the same output, and this is where the signature block is located. However,

these watermarking schemes use a signature that is converted into security

constraints using the designer’s encoding rules, the goal of watermarking is

thwarted when an attacker possesses knowledge of the selected signature

and encoding rules.

 In addition to the watermarking techniques, an IP core

steganography scheme [17] has been proposed that embeds vendors’ steno-

constraints into the DSP design to secure them against IP piracy. However,

these constraints are also replicable by the attacker. The proposed

quadruple-phase watermarking approach overcomes this limitation by

generating a robust author’s signature through a novel mechanism of graph

partitioning, eight-variable encoding using an encoding tree, and hashing.

The signature is embedded during four different phases of the HLS process

to achieve high-quality watermarking, with a low probability of

coincidence, in contrast to the related approaches of securing DSP circuits.

A qualitative comparison of the proposed approach with different existing

techniques is presented in Chapter 7.

 Prior methods used for securing hardware IP cores include IP

watermarking [18, 10, 11], [7, 13, 19, 20, 21, 22, 8] stenography [17], [23]

19

hardware authentication using physically unclonable functions (PUFs)

[24], [25] unimodal palmprint biometrics [26], unimodal facial biometrics

[27], and unimodal fingerprint biometrics [28]. Rai et al. [18] used a

hardware watermarking technique based on polymorphic inverter designs

using reconfigurable technologies. Koushanfar et al. [11] presented a

hardware watermarking technique that embeds the generated watermark

signature into the design. Gal and Bossuet [13] presented an IP

watermarking included in high-level synthesis based on mathematical

relationships between numeric values. Shayan et al. [19] used a

watermarking technique inspired by a stealthy hardware trojan. Kuai et al.

[20] developed a combined locking and watermark gin technique based on

finite-state machines. Kean et al. [21] presented the approach of the

embedding watermark by creating specific electromagnetic (EM)

information. Becker et al. [22] presented a side-channel-based watermark

gin that relies on side-channel information to embed the watermark.

 To provide multi-cycle transient fault resiliency at the behavioural

level, some authors in [43, 44, 45] have adopted a concurrent error

detection (CED) approach. Specifically, they use dual modular redundancy

(DMR) logic to duplicate the control data flow graph (CDFG) operations

and impose specific hardware allocation rules to provide detection ability.

However, the approach presented in [44] differs from that in [43, 45] in

terms of advanced resiliency rules. In [43], at least two distinct hardware

units are required for assignment to sister operations of the original and

duplicate unit in DMR, whereas this is not necessary for [44]. In [44], even

a single hardware module of a particular type can provide transient fault

resiliency, making the approach more robust and cost-effective. Multiple

transient faults have received very little attention because they were rear in

past technologies. The focus was only on memory, not hardware modules.

However, approaches, such as [46], have focused on multiple transient

faults using a simulation-based technique. Specifically, [46] used

20

simulation to estimate the size of multiple transients resulting from a single

radiation strike and their impact on the gate output for different gate input

combinations. Furthermore, [47] focused on modelling transient fault

propagation once a fault occurs at the gate output inside a logic circuit. The

proposed fault-secured design in the unified biometric hardware security

approach simultaneously tackles multi-cycle transient and multi-transient

fault resiliency at a higher behavioural/architectural level.

 Additionally, Sengupta and Rathor [17] presented a steganography

approach that generates the steno-mark based on secret design data,

encoding rule, and chosen threshold value to be embedded into the design.

Rathor and Sengupta [23] presented hardware steganography using switch-

based key-driven hash chaining. However, all of these methods are

vulnerable to an adversary such as, in the case of watermarking, if an

adversary manages to access the decoding combination of encoding digits,

signature size, and encoding rule, they can easily replicate and reuse it to

evade the IP piracy detection process. Similarly, in the case of

steganography, if an adversary manages to decode the entropy threshold,

stage keys, and encoding rule, they can also evade IP piracy detection by

replicating the stego-mark. The proposed unified biometric-driven

hardware security methodology, on the other hand, uses a unified

biometric-driven encoded signature to incapacitate an adversary, unlike

prior works which have only used a secret signature scheme. Moreover,

none of the previous methods exploited the expandable encoded dictionary

technique on top of unified biometric-driven hardware security

methodology to enhance the security of IP cores, unlike the proposed work.

Additionally, methods based on PUFs have been suggested by Zalivaka et

al. [24] and Lao et al. [25] for the authentication of IP. These methods

provide a security primitive for FPGA/system-on-chip bitstream and

device authentication. Although these works have demonstrated their

efficiency against such devices, they do not focus on the security of DSP

21

cores against IP piracy and false claims of ownership, unlike the proposed

methodology.

 Sengupta et al. [26, 27, 28] introduced biometric-based methods

that use unique biometric features to create a digital signature. For

instance, a contact-based high-resolution palmprint image acquisition

system is presented in [48], a palmprint feature generation and expatriation

using DSP algorithms and principal component analysis is presented in

[49], and a multimodal palm biometric system was implemented on FPGA

[50]. Furthermore, a high-resolution palmprint authentication system based

on the pore feature was presented in [51]. Although these palmprint

biometric approaches [48, 49, 50, 51] are used for the identification/

recognition of persons during authentication, however, palmprint

biometrics has never been employed for the security of DSP cores so far.

 Additionally, some approaches like [52] involve cryptography to

encrypt palmprint, face and signature images using advanced hill cypher

techniques or analyse features present in palmprint and palm vein images

using contourlet transform [53]. While cryptographic digital signature-

based techniques (such as those proposed in [54]) are effective, there exist

some differences between the proposed unified biometric approaches when

compared with cryptographic digital signatures, such as the generation

process of cryptographic digital signatures [54] is complex and involves

several steps, making it cumbersome.

 In contrast, the proposed unified biometric approach is simple yet

highly secure as they rely on natural biometric features to provide

uniqueness and also the encoded expandable dictionary, without the need

for complex security-enhancing steps in between and also the process of

generating cryptographic digital signatures [54] relies on a casing

algorithm that involves multiple intermediate steps to produce a hash or

22

digest. This algorithm requires knowledge and storage of multiple hash

buffers and additive constants, as well as complex word computation

functions, and round computation functions (including condition, rotation,

summation, and majority functions), all of which contribute to the

complexity of the process. In contrast, the proposed unified biometrics

approach provides uniquely secure constraints with minimal complexity. In

the proposed unified biometric approach, in the case of the palmprint

approach, the palm image is divided into a specific grid size, and nodal

points are created based on the palm features. The final signature is

generated by concatenating the palm features. Similarly, the facial

biometric approach generates facial nodal points and concatenates them to

form the facial signature. The fingerprint biometric approach preprocesses

the captured fingerprint impression to extract minutiae points, and then

combines the coordinates of minutiae points, crossing number value, and

angle magnitude to generate the fingerprint signature.

 However, these approaches do not provide protection against IP

piracy for fault-secured DSP design, unlike the proposed unified biometric

approach. Moreover, the proposed unified biometric approach combines

palmprint, facial and fingerprint biometrics to create a unified biometrics

signature for embedding into the design. Our proposed methodology

utilises the expandable encoded dictionary technique to achieve enhanced

security. We can tailor the proposed unified biometrics signature to select

the biometric signature strength and combination. This offers several times

higher security with a lower probability of coincidence and higher tamper

tolerance than recent state-of-art approaches. Therefore, our proposed

approach provides robust security for fault-secured designs with minimal

design cost overhead.

23

24

Chapter 3

Quadruple phase watermarking during
high-level synthesis for securing reusable

hardware intellectual property
 cores

 The watermarking approach is a robust hardware security technique

to protect IP cores from hardware threats like IP counterfeiting, cloning,

and ownership infringement. Watermarking refers to the process of

embedding a unique signature, also known as a watermark, into the design

of the IP core. The signature serves as a way to identify the IP core's origin

and authenticity and can detect unauthorised copies or modifications. In

these watermarking approaches [11, 12, 13, 14, 15] for securing IP cores,

the designer or vendor usually determines the signature and its encoding

rules. The signature is then transformed into security constraints based on

the encoding rules provided. Nevertheless, if the signature and encoding

rules are compromised by an adversary, the watermark becomes vulnerable

to attacks and can no longer provide the intended level of security against

hardware security threats. Given this situation, the adversary can

fraudulently claim IP ownership or may try to evade the IP counterfeit

detection process. This limitation of watermarking approaches, where the

signature can be compromised by an adversary, can be overcome by

generating the signature rather than using a signature directly provided by

the IP vendor. By using a robust process to generate the signature, the

watermark can be made more secure and resistant to attacks, providing a

higher level of protection for the IP core and this would hinder the

attacker’s malicious effort of decoding the signature and claiming it for

wrong purposes such as IP piracy and claiming IP ownership.

25

 We proposed a novel watermarking technique for DSP-based IP

cores where the signature is generated through a robust process and

covertly embedded into the design during the four phases of the high-level

synthesis (HLS) process viz. Scheduling, Register Binding, Functional

Unit (FU) binding, and Interconnect binding. By embedding the signature

into the design during the four phases of the HLS process, the watermark

becomes more resistant to attacks and also ensures that the signature is not

only present in the design but also deeply ingrained in the internal

workings of the IP Core, making it more difficult for an adversary to

exactly reproduce the signature.

Threat Model:

 The increasing use of reusable hardware IP cores in IC design flow

has made them susceptible to the threats such as IP piracy and fraudulent

claim of IP ownership. In the case of IP piracy, an adversary may illegally

pirate or imitate the hardware IP core without the knowledge and consent

of the original IP vendor or designer [29, 17]. This type of piracy can occur

in various scenarios, but one common situation is when a third-party

design house is contracted to develop a design on behalf of a client, the

client may provide the design house with proprietary information, such as

the functional description of the IP core, and expect that the design house

will keep the information confidential and use it only for the intended

purpose. However, an adversary within the third-party design house may

attempt to use the proprietary information for their benefit, such as by

copying the design of the IP core and selling it to others without the

knowledge or consent of the original IP vendor or designer. This can result

in financial losses for the IP vendor or designer, as well as damage to their

reputation. In the case of a fraudulent claim of IP ownership, an adversary

may unlawfully claim ownership of the intellectual property (IP), despite

not having any legal rights to the IP core [11]. For example, an adversary

working for a third-party design house could claim ownership of an IP core

26

that they did not create or license, and then use that IP core in the

development of a consumer product that competes with the original

owner's product. The adversary may be motivated by a desire to profit from

the product without having to pay royalties to the true owner of the IP core.

Another example of a fraudulent IP ownership claim in the case of an IP

core could be a situation where a competitor falsely claims that they own

the IP core and sues the true owner for infringement of their IP rights. This

type of scenario could result in the true owner of the IP core losing

valuable time and resources defending against a frivolous lawsuit,

potentially leading to financial losses and damage to their reputation.

 A quadruple-phase IP watermarking scheme has been proposed to

counteract the potential threats of IP piracy and fraudulent claims of IP

ownership within the Integrated Circuit (IC) design flow process. By

implanting the signature into the IP design during the High-Level Synthesis

(HLS) process, the proposed scheme enhances the robustness of the

watermark and provides a higher strength of ownership proof and also

enhances the tamper tolerance of the watermark by deeply embedding the

signature constraints into the IP design during the four phases of the HLS

process: scheduling, register binding, functional unit binding, and

interconnect binding.

3.1 Overview of the proposed approach

 The proposed quadruple-phase watermarking approach is outlined

in Fig. 3.1. Fig. 3.1 depicts the steps involved in generating and embedding

a unique signature into the target DSP application. The proposed approach

requires the following inputs such as (ⅰ) algorithmic representation of the

target DSP application to be secured, (ⅱ) designer-selected encoding tree,

(ⅲ) module library, (ⅳ) resource constraints, and (ⅴ) mapping rules.

Initially as shown in Fig. 3.1, the DSP application's algorithmic

27

representation is converted into an equivalent form of a data flow graph

(DFG). This DFG is then scheduled and resource allocated using resource

constraints and a module library provided by the designer. Then, the

scheduled and resource-allocated data flow graph (SDFG) is divided into a

specified number of partitions, denoted as ’N'. Further, in the proposed

watermarking approach, the first partition () of the SDFG is encoded to

create the signature (), which is then embedded into the second partition

() of the SDFG and later the encoding of the partition () with the

embedded signature is used to generate the next signature () which is

then embedded into the next partition (). This process is repeated for

subsequent partitions of the SDFG.

 By using this chain-like process, the author's signature is generated

and embedded into the design of the provided DSP application. The

signature generation and embedding process details are discussed in this

chapter and the next chapter respectively. To produce the ith signature from

the ith partition of the SDFG, the partition is converted into

alphanumeric characters using the proposed encoding tree (ET). Later,

these alphanumeric characters are given as input to the SHA-512 algorithm

to generate the corresponding hash digest (). The resulting 512-bit

hash is then truncated to the designer-specified size of the bitstream, which

is used to create the signature . The truncated bitstream is represented as

3-bit triads, with each triad representing a single digit in the author's

signature. Using the combination of triads in the signature, each triad is

mapped to its corresponding security (watermarking) constraints using the

proposed eightfold mapping. This mapping allows the signature to be

embedded into the design in such a way that it will be difficult to remove

or modify the watermarking constraints without impacting the functionality

of the design. The proposed mapping rules map signature triads (or

signature digits) into four types of design constraints viz. scheduling,

register biding, FU binding and interconnect binding. The constraints that

P1

S1

P2 P2

S2

P3

Pi

HDi

Si

28

Fig. 3.1 Flow diagram of proposed quadruple phase watermarking

approach

29

Inputs
Module Library

Resource
Constraints

Encoding Tree

Constraints
mapping rules

Algorithmic
Description of input

DSP application

Scheduled, allocated, and binded DFG

Signature (), where Si 1 ≤ i ≤ N − 1

Signature constraints implanted scheduled DFG

Datapath and controller synthesis

RTL of DSP Core secured with proposed quadruple phase watermark

Implant
watermarking

constraints into
during four phases

of HLS

P2

P2 P3 PN

Implant
watermarking

constraints into
during four phases

of HLS

P3

Implant
watermarking

constraints into
during four phases

of HLS

PN
.

Mapping of signature () into watermarking constraints
using proposed eightfold mapping rule

Si

Compute hash digit
() of encoded

digits of
HD1

P1

Compute hash digit
() of encoded

digits of
HD1

P2

Compute hash digit
() of encoded

digits of
HD1

PN−1

P1 P2 PN−1

Encode partition using proposed encoding tree where Pi
1 ≤ i ≤ N − 1

correspond to the ith signature are embedded into the (i+1)th partition of

the SDFG during four phases of the High-Level Synthesis (HLS) design

process. This process is repeated for all signature segments up to ,

which is embedded into the Nth partition of the SDFG. After embedding

the entire signature into the design during the HLS process, the datapath

synthesis phase is executed to generate the Register Transfer Level (RTL)

datapath with the embedded watermark.

 The details of the proposed watermarking scheme are divided into

two parts as shown in Fig. 3.2, the signature generation phase and the

signature embedding phase. The signature generation phase will be

discussed in this chapter and the signature embedding phase will be

discussed in the next chapter.

Fig. 3.2 Abstract view of the proposed quadruple-phase watermarking

approach

The proposed quadruple-phase watermarking approach is explained

thoroughly and demonstrated using an 8-point Finite Impulse Response

SN−1

30

RTL of secured DSP IP
core

Signature generation
process

Signature embedding
process

SDFG, Encoding tree,
Constraint mapping

rules

(FIR) core in separate subsections. The demonstration of the watermarking

scheme on the FIR core serves to illustrate how the watermarking process

can be applied to a specific design, providing a clear and tangible example

of each step involved in the process. This approach helps to offer a more

comprehensive and practical understanding of the proposed watermarking

scheme.

3.2 Partitioning of Scheduled Data Flow Graph
(SDGF)

 In the proposed watermarking approach, an author’s signature is

generated by encoding a specific partition of the SDFG, referred to as the

“ith” partition. The signature is then inserted into the next partition, which

is the “(i+1)th” partition of the SDFG. The process is repeated for all

partitions, with “i” varying from 1 to “N-1”, where “N” represents the total

number of partitions in the SDFG. For the partitioning of SDFG to be

effective in watermarking, certain requirements must be satisfied, such as

(i) the smallest possible partition should contain at least two connected

nodes of the graph to facilitate more meaningful encoding and embedding

of constraints, (ii) there should be a minimum of two partitions of the

graph for the proposed approach to be applicable, (iii) the first partition

should be the smallest, as the constraints are not embedded in this partition,

but it is used to derive the signature for the subsequent partition, and

finally (iv) the number of partitions should vary based on the size of the

target application (in terms of the number of operations) to enable effective

watermarking. It is important to note that the partitioning of the Scheduled

Data Flow Graph (SDFG) is not in any way linked to the circuit

partitioning. The motivation behind the partitioning of SDFG is to improve

the robustness of watermarking.

 The proposed method of partitioning the scheduled data flow graph

plays a significant role in augmenting the strength of the signature. As a

P1

31

result of the partitioning, the complexity of determining the exact signature

is increased by a significant factor for an attacker, this is because an

attacker would require the knowledge of the partition location, the total

number of partitions of the SDFG, and the partition encoding to deduce the

signature. In addition, the partition of the graph containing the embedded

signature also participates in generating the next signature. This process

makes the generated watermarking constraints highly robust, and it

becomes challenging for an attacker to decode it.

 The details of the SDFG partitioning mechanism on an FIR core are

as follows, the scheduled data flow graph (SDFG) of FIR is scheduled

from the DFG using the resource constraints of 3 adders and 2 multipliers

as shown in Fig. 3.3. The integration of micro 3PIPs from various vendors

is a common practice in the case of hardware IP core designs. In our

demonstration, we utilise two vendors () to allocate Functional Units

(FU) within the hardware IP core designs. Using the two vendors allocation

scheme, the operations in the SDFG are allocated to the respective

functional units as shown in Fig. 3.3. Adders are represented with the letter

‘A’, and the multipliers are represented with ‘M’. The subscript for a

functional unit represents the instance number, while the superscript

represents the vendor number denoted as follows or , where ‘i’

represents the instance number, ‘j’ represents the vendor number of the

functional unit. Registers R1-R8 are being utilised to execute storage

variables T0-T30 within the design. The scheduled data flow graph SDFG

that was generated has been separated into three partitions (P1, P2, and P3)

based on the designer’s choice, as illustrated in Fig. 3.3.

3.3 The proposed signature generation process

 The proposed approach generates a final signature, which is a

distinct representation made by combining several segments denoted as

V1, V2

Aj
i Mj

i

32

Fig. 3.3 Scheduled Data Flow Graph (SDFG) of FIR core with partitions

P1, P2, and P3. (note: dashed lines indicate the partitions and the different

colour bars indicate registers for primary and intermediate storage

variables)

‘ ’, ‘ ’, ‘ ’, and so on in a linked manner. The total number of partitions

in the SDFG is denoted by N. Each segment contributes to the overall

signature, with subsequent segments being generated in a chained fashion.

S1 S2 S3

33

The process of generating the signature involves three generic steps. These

steps include:

(1) Encoding of partitions using the proposed encoding tree (ET):

 Each partition of a scheduled data flow graph (SDFG) of a DSP IP

core is encoded into alphanumeric digits using the proposed encoding tree

ET which is presented in Fig. 3.4. The proposed encoding tree has three

levels. The nodes of the encoding tree in each level indicate various

information associated with the operations in the design. At level 0 the root

node is associated with the operation (opn) number. At level 1 there are

two nodes, each indicating the control step and output register numbers,

respectively. Level 2 consists of four nodes with two nodes associated with

the input register number, and the other two with operation type, and

vendor number respectively.

Fig. 3.4 Proposed encoding tree used for encoding partitions of SDFG

34

Partition of the scheduled DFGPi

Encoded digits of the partition Pi

Opn#

Control
step (C)#

Output
register #

Left input
register#

Operation
type

Right input
register#

Vendor
number

V L S I 1 5 n m

Even

Even

Even Even

Even

Odd

OddOdd

1 2Odd
‘*’ or ‘/‘ ‘+’ or ‘-‘Odd

Finally, the last level of the encoding tree consists of leaves, which are

alphanumeric digits chosen by the designer. To generate alphanumeric

digits (encoded digits) for a partition of SDFG, each opn# in the given

partition is traversed through the encoding tree. As each opn# is traversed

through the encoding tree, the design information associated with the

operation is used to determine which alphanumeric character it should be

encoded into. The possible characters include { ‘V’, ‘L’, ’S’, ‘I’, ‘1’, ‘5’,

’n’, ‘m,). The length of the encoding is determined by the number of opn#

in the partition. Each opn# is encoded individually, resulting in a series of

alphanumeric characters that together form the encoded number for that

particular partition.

 Below, we describe the encoding of the partition of SDFG

(shown in Fig. 3.3) using the proposed encoding tree. The partition has

six operations, so the length of the encoding will be six. By considering the

first operation (opn #1), which has odd parity and odd output

Fig. 3.5. Traversal details of operations in the partition of SDFG

along the proposed encoding tree

P1

P1

P1

35

Opn #1 Opn #2 Opn #3 Opn #9 Opn #10 Opn #17

Output

 Reg #R1

EvenOdd EvenOdd Odd Odd

Odd Odd Odd Odd Even Odd

Output

 Reg #R3

Output

 Reg #R1

Output

 Reg #R1

Control

 Step #C2

Control

 Step #C1

Vendor

 num #1

1 1 Even

Vendor

 num #2

Vendor

 num #1

Right inp

 Reg #R2

Left inp

 Reg #R2

Right inp

 Reg #R2

Even 2 Even

n S m n V S

register# (R1) and is assigned to vendor number 1. Hence it is encoded into

’n’ through traversal of the encoding tree which is shown in Fig. 3.4,

similarly, the second operation (opn #2) has even parity, and it is in control

step #1 which is odd, and its right input register# (R2) is even. Hence it is

encoded into “S” through the traversal of the encoding tree. The traversal

details of all the operations of the partition are shown in Fig. 3.5. The

final encoding of the partition of SDFG using the proposed encoding

tree is “nSmnVS” as shown in Fig. 3.5.

(2) Calculating hash digest of encoded digits:

 To calculate the hash digest () of encoded digits, generated

from the partition , the SHA-512 hash function is used. First, the encoded

digits of each partition of SDFG are provided as input to the SHA-512

hash function, then the hash function will transform the encoded digits into

the 512-bit hash digest . The final hash of the overall encoded digits is

highly intricate for an attacker.

 Now for calculating the hash digest of encoded digits, generated

from the partitions of SDFG as shown in Fig. 3.3. The final encoding of the

partition is “nSmnVS”, now these alphanumeric characters are provided

as input to the SHA-512 hash function which will transform the encoded

digits into a hash digest () “98adb4b082e02d3d3bb5bd3

ae8048e02378086da72b6dcebf8dc11f35f2b262b71b0f92ca3e40ef462c614

f0b7947cdbbb238bb0fe8de1859db04a4e89d187df” which are represented

in the hexadecimal format for convenience.

(3) Forming author’s signature:

 The overall signature is the concatenation of all the segments ()

where each hash digest () is truncated into a segment , and the length

of the segment is equal to three times of designer's chosen size. Further, the

truncated bitstream is represented in the form of triads, where each triad

P1

P1

HDi

Pi

Pi

HDi

P1

HD1

Si

HDi Si

36

represents a signature constraint. The final signature embedded in the

design is the concatenation of its different segments ()

generated from the encodings of partitions () of SDFG

respectively. Hence, the author’s signature W is represented as follows:

Where N indicates the total partitions and indicates the signature

generated using the encoding of the ith partition of SDFG followed by

hashing using SHA-512.

 For calculating the segment from the hash digests

generated from the encoding of the partition of SDFG shown in Fig.

3.5. Assuming that the IP designer has truncated the obtained hash-bit

stream of into 48 bits, therefore there are 16 triads for the segment

(for the sake of brevity). Further, an IP designer can select a signature of

varying lengths (scalable) and depending on which no of triads can be

increased. For example, in the case of 72 hash-bit stream of there will

be 24 triads, therefore the more the size of the hash-bit stream, the more

the no of triads, which subsequently enables the generation of more

security constraints for robust hardware security against IP piracy. Further,

this segment of signature is represented in the form of triads, therefore

there will be 16 triads in each signature. The segment (size =16 triads)

from the encoding of the partition of SDFG (Fig. 3.5) is as follows:

“100-110-001-010-110-110-110-100-101-100-001-000-001-011-100-000”.

 In this chapter, we discussed the signature generation process of the

proposed quadruple-phase watermarking approach as shown in Fig. 3.2.

We also demonstrated the signature generation process using an example

DSP IP core of FIR digital filter. In the next chapter, we will further discuss

the signature embedding process of the proposed watermarking scheme as

shown in Fig. 3.2, and also the signature detection mechanism using the

proposed approach for authentic IP verification.

S1, S2, , SN−1

P1, P2, , PN−1

W = &N−1
i=1 Si

Si Si

S1 HD1

P1

HD1 S1

HD1

S1

S1

P1

37

38

Chapter 4

Signature embedding and detection
process in the quadruple phase

watermarking approach during high-level
synthesis

 In the previous chapter, we discussed the signature generation

process of the proposed quadruple-phase watermarking approach as shown

in Fig. 3.2, in this chapter we discuss the signature embedding process and

then the signature detection mechanism using the proposed approach for

authentic IP detection.

4.1 The proposed signature embedding
process

 In the signature embedding process each segment of the signature

from one partition of the SDFG is embedded into the next partition of the

SDFG during the four phases of the HLS process based on the mapping

rule provided in Table. 4.1. The signature generated from the proposed

signature generation process is in the form of triads. As shown in Table.

4.1, each triad is mapped into a watermarking constraint using a mapping

rule, since there are only eight possible combinations of the triads which

are “000”, “001”, “010”, “011”, “100”, “101”, “110”, and “111”, we have

eight sets of rules and each rule is associated with a single triad. The

constraints corresponding with the triad “011” are embedded into the

scheduling phase (phase-1) of the HLS process, and the constraints

corresponding with the triads “000”, “001”, and “010” are embedded into

the register binding phase (phase-2) of the HLS process, the constraints

corresponding with the triads “100”, and “101” are embedded into the

Functional Unit (FU) binding phase of the HLS process (phase-3), and

finally, the remaining constraints corresponding to the triads “110”, and

39

“111” are embedded into the interconnect binding phase (phase-4) of the

HLS process.

 From the last chapter, the signature generated from the partition

 of the SDFG of an FIR filter (shown in Fig. 3.2) is:

“100-110-001-010-110-110-110-100-101-100-001-000-001-011-100-000”.

There are a total of 16 triads in the generated signature , where each triad

is mapped into a hardware security constraint using the mapping rule

shown in Table. 4.1, then embedded into any one of the four phases of the

HLS. For example, the first triad “100” of the signature is mapped into a

security constraint and embedded into the FU binding phase of HLS,

similarly, other triads are mapped into a security constraint, and embedded

into any one of the four phases of the HLS, the details of the embedding

process of security constraints in different phases of HLS are explained in

the subsequent sections.

S1

P1

S1

40

Table. 4.1 Mapping triads in the signature into the
hardware security constraints

Mapping into hardware security
 (watermarking hardware security constraints)

“000”

“001”
“010”
“011”

“100”
“101”
“110”

“111”

Embed an edge between (even, even) node pair in Coloured
Interval Graph (CIG).
Embed an edge between (odd, odd) node pair in CIG.
Embed an edge between (odd, prime) node pair in CIG.
Move an operation of non-critical path with highest
mobility into immediate next control step (C).
Bind vendor-1 to even opn and vendor-2 to odd opn.
Bind vendor-1 to odd opn and vendor-2 to even opn.
Assign odd register to the ‘right’ input of FU and even
register to the ‘left’ input of FU.
Assign odd register to the ‘left’ input of FU and even
register to the ‘right’ input of FU.

Triads

4.2 Embedding constraints in the scheduling phase
(phase-1)

 During this phase, the constraints corresponding to the triad “011”

are embedded into the scheduling phase of the HLS process. To implant the

constraints (triad “011”), rescheduling of operations is performed during

the scheduling phase. The rescheduling of operations during the scheduling

phase is performed as follows, the operation with the highest mobility of a

non-critical path is moved into the next immediate control step of the

SDFG. While rescheduling, the operations with the highest operation

number are scheduled first, and the operations with the lowest operation

number are scheduled last, the constraints are applied in the order of

decreasing order of operation numbers.

 Below, we describe how the signature generated from the

partition of SDFG from the previous chapter is embedded into the

scheduling phase of HLS in the partition . The no of triads of type “011”

in the signature (generated in Chapter 3) is only one, so there is only one

security constraint that will get embedded into the partition of the

SDFG shown in Fig. 3.3, in the scheduling phase of the HLS. The

partitioning post embedding of the security constraints generated from

the partition is shown in Fig. 4.1.

 There are three operations which are in the non-critical path each

having a mobility of one control step in the partition of the SDFG, since

each operation has the same mobility we choose the operation with the

highest operation number i.e, opn #13, as evident from Fig. 4.1, the opn

#13 is moved from the control step #4 to control step #5. The post-

embedding of security constraints generated from the partition into the

partition is shown in Fig. 4.1.

S1

P1

P2

S1

P2

P2

P1

P2

P1

P2

41

Fig. 4.1 Post-embedding scheduling constraints in the partition of the
SDFG (shown in Fig. 3.3)

✦ Embedding constraints in the register binding phase (phase-2)

 Post embedding constraints in the scheduling phase, the constraints

corresponding to the triads “000”, “001”, and “010” are embedded into the

register binding phase of the HLS using a coloured interval graph (CIG)

framework. To achieve this, a CIG is created for the respected partition of

the SDFG in which the scheduling constraints are embedded. A CIG [30] is

a graphical representation of how the storage variables (Ti) are bound to

the registers (Ri) in the design. The CIG consists of nodes and edges that

indicate the lifetime of the storage variables and where they overlap in the

design. The security constraints for the triads “000”, “001”, and “010” are

represented by the constraint edges based on the mapping rule shown in

P2

42

A1
1 A2

1

M1
1 M2

1

A1
1

M1
1A1

1

A1
1

T11 T12

T18 T19

T20

T25

T26

T27

R4 R5

R5R4

R5

R4R3

R1

R1

R1

4 5

11 12

13

18

19

20

R1

1σ

2σ

3σ

4σ

5σ

6σ

Table. 4.1. By embedding these constraint edges into the CIG, local

alterations are made to the register binding of the storage variables, as a

result, the storage variables are bound to registers based on the imposed

constraints.

Fig. 4.2 CIG of partition of SDFG post-embedding scheduling
constraints

 As shown in Fig. 4.2, a CIG is created from the SDFG of partition

. From the signature , the number of triads of type “000” is two, so

there are two security constraints associated with this triad, the mapping

rule associated with this triad is to embed an edge between (even, even)

node pairs. The number of triads of type “001” is three, therefore there are

two security constraints generated from this type of triad from the

signature . As shown in the mapping rule table, the mapping rule

associated with this triad is to embed an edge between (odd, odd) node

pairs in the CIG. Similarly, the number of triads of type “010” is one, and

one security constraint is generated from this type of triad from the

signature . The mapping rule associated with this triad is to embed an

edge between (odd, prime) node pairs in the CIG. These constraint edges

are inserted one by one into the CIG. It is important to recognise that when

two nodes have the same colour, they cannot be connected by an edge.

P2

P2 S1

S1

S1

43

T11

T18 T25

T12

T26

T27

T19

T20

This is because two storage variables cannot occupy the same register

simultaneously. Among all the constraint edges generated from the triads

using the mapping rule table the two possible constraint edges between the

(even, even) node pairs are (T12, T26) and (T12, T20). First, we insert an

edge between the node pair (T12, T26), both of the nodes are of different

colours, so there is no need to alter the colours of the nodes because of no

conflict between them. Later, we insert an edge between the node pair

(T12, T20), and there is a conflict between the node pairs because of the

same colour, so we need to alter the colours of the node. To resolve the

conflict, we can change the colour of node T20 from green (R5) to cyan

(R6). Next, the three possible constraint edges between the (odd, odd) node

pairs are (T11, T27), (T11, T25) and (T19, T27). All of the node pairs are

in a different colour, therefore there is no conflict after inserting an edge

between them, so there is no need to alter the colours of the nodes. Finally,

one of the possible constraint edges between the node pairs is (T11, T19).

Fig. 4.3 CIG of partition of SDFG post-embedding register binding
constraints

Note: Red-coloured edges denote constraint edges

P2

44

T11

T18
T25

T12

T26

T27

T19

T20

There is a conflict while inserting an edge between the node pair (T11,

T19), both the colours of the nodes are of the same colour, so to resolve

this conflict we need to alter the colours of any one of the nodes. For

example, the colour of node T11 is changed from cyan (R4) to magenta

(R6) in the CIG post embedding the register binding constraints as shown

in Fig. 4.3.

Fig. 4.4 Post embedding register binding constraints in partition

✦ Embedding constraints in the FU binding phase (phase-3)

 Next, the security constraints linked to the triads “100” and “101”

are embedded into the design in the functional unit binding phase of the

HLS process by associating an operation with the specific vendor’s

functional unit (FU) determined from the mapping rule as shown in Table.

P2

45

A1
1 A2

1

M1
1 M2

1

A1
1

M1
1A1

1

A1
1

T11 T12

T18 T19

T20

T25

T26

T27

R4 R5

R5R4

R4

R6R3

R1

R1

R1

4 5

11 12

13

18

19

20

R1

1σ

2σ

3σ

4σ

5σ

6σ

4.1. A constraint is embedded by binding an opn to the corresponding FU

unit of a specific vendor. In the signature generated from the partition

of SDFG (as shown in Fig 3.3), there are four security constraints which

are of triad type “100” and one security constraint of triad type “101”.

From the mapping rule from Table 4.1, security constraints of type “100”

are embedded into the functional unit (FU) of the HLS process by binding

vendor-1 to even operation and vendor-2 to odd operation. Similarly, the

security constraints of type “101” are embedded into the functional unit

(FU) of the HLS process by binding vendor-1 to odd operation and

vendor-2 to even operation. Based on the FU binding constraints from the

signature , the opns are assigned to the respective FU of a specific

vendor number as shown in Fig. 4.6 (highlighted using the red colour of

FU).

Fig. 4.5 Embedding of constraints in interconnect binding phase, on RTL

✦ Embedding constraints in the interconnect binding phase (phase-4)

 The security constraints corresponding to the triads “110′′ and “111′′

are embedded in interconnect binding phase of the HLS design process. To

embed a constraint, a specific register with even or odd parity is assigned

S1 P1

S1

46

Connectivity between R6 output
and adder input before
embedding constraints.

0 1

0 1 2 0 1 2

R6

+A1
1

….. …..

0 1

0 1 2 0 1 2

R6

+A1
1

Connectivity between R6 output
and adder input before
embedding constraints.

….. …..

to either the left or right input of the functional unit based on the mapping

rule shown in the Table., the output registers are then chosen in increasing

order of their associated operation number to embed the constraints one by

one. An example of how this affects the RTL circuit is depicted in Fig. 4.5,

where the interconnect binding constraint for the triad “101” resulted in

register R6 (with even parity) being assigned to the left input of the adder

unit after the constraints were embedded.

Demonstration of embedding signature into partition :

 Using the proposed encoding tree (shown in Fig. 3.4), the SDFG of

the partition (shown in Fig. 4.6) is encoded into the alphanumeric

characters “VmmSnLnL”. Then, these alphanumeric characters are first

Fig. 4.6 SDFG of partition post-embedding signature generated from
partition .

S2 P3

P2

P2 S1
P1

47

A1
1 A2

1

M2
1 M1

1

A2
1

M1
1A1

1

A1
1

T11 T12

T18 T19

T20

T25

T26

T27

R4 R5

R5R4

R4

R6R3

R1

R1

R1

4 5

11 12

13

18

19

20

R1

1σ

2σ

3σ

4σ

5σ

6σ

transformed into a 512-bit hash digest. Further, the obtained hash bit

stream is truncated to 33 (= 11 * 3) bits based on the designer-chosen size

11 of the signature . The signature (size = 11 triads) is

“100-101-010-001-001-000-110-110-011-010-010”. Once the signature

is generated from the partition (shown in Fig. 4.6), the triads of the

signature are mapped into the hardware security constraints using the

mapping table (shown in Table. 4.1). These hardware security constraints

are embedded during the four phases of the HLS process. The details of the

constraints to be embedded are shown in Table. 4.2. From Table 4.2, the

security constraints corresponding to the triad “011” are embedded during

the scheduling phase of the HLS process, by shifting operation #16 from

control step #5 to #6 in the SDFG of the partition (shown in Fig. 4.8).

 Post embedding security constraints in the scheduling phase, now

the security constraints corresponding to the triads “000”, “001” and “010”

are embedded during the register binding phase. Initially, a CIG is created

from the partition , then based on the security constraints of the register

binding phase listed in Table 4.2, constraint edges are inserted one by one

into the CIG. No two nodes (storage variables) with an edge connecting

them can have the same colour (register) in a CIG because two storage

variables cannot share the same register, so after implanting the edges

derived from the security constraints of the register binding phase,

alteration of node colours (registers) takes place if at all required to resolve

the conflict raised between any two nodes.

 The signature constraints represented by the triads “100” and “101”

(as listed in Table 4.2) are embedded into the partition during the FU

binding phase. Based on the FU binding constraints, the operations are

assigned to the respective FU of a specific vendor number, which is

highlighted using the red colour (shown in Fig. 4.8). The signature

constraints represented by triads “110” and “111” (listed in Table. 4.2) are

S2 S2

S2

P2

P3

P3

P3

48

embedded into partition during the interconnect binding phase. Based

on the interconnect binding constraints, the registers are assigned to

specific inputs of FUs, which are highlighted using red arrows in Fig. 4.8.

Thus, all the signature constraints generated from the partition are

successfully embedded into the partition of SDFG (shown in Fig. 4.8)

during the four phases of the HLS process.

 (a)

P3

P2

P3

49

(b)

Fig. 4.7 (a) Pseudo code of the embedding process, (b) Signature
generation and embedding flow of proposed quadruple phase

watermarking approach.

Further, the algorithmic representation of the embedding process is

depicted in Fig. 4.7(a). The signature generation and embedding process of

50

Signature generation process Signature embedding process
(During four phases (scheduling,
register binding, FU binding and

interconnect binding) of HLS

Encode the signature embedded
partition using ETP2

Calculate Hash digest () of
encoded digits of .

H D2
P2

Truncate the to the
designer chosen # of triads.

H D2

Map different triads of signature
() into watermarking

constraints using proposed
eightfold mapping rule.

S1

Embedding watermarking
constraint into partition
during scheduling, register
binding, FU binding and

interconnect binding
phases of HLS

P2

Encode the Partition using
proposed encoding tree (ET)

P1

Calculate Hash digest ()
of encoded digits of .

HD1
P1

Truncate the to the designer
chosen number of triads.

H D1

Encode the signature embedded
partition using ETPN−1

Calculate Hash digest ()
of encoded digits of .

H DN−1
PN−1

Truncate the to the
designer chosen # of triads.

H DN−1

Map different triads of signature
() into watermarking
constraints using proposed

eightfold mapping rule.

SN−1

Embedding watermarking
constraint into partition
during scheduling, register
binding, FU binding and

interconnect binding
phases of HLS

PN

Map different triads of signature
() into watermarking

constraints using proposed
 eightfold mapping rule.

S2

Embedding watermarking
constraint into partition
during scheduling, register
binding, FU binding and

interconnect binding
phases of HLS

P3

Signature
(S1)

Signature
(S2)

Signature
(SN−1)

. .

the proposed quadruple-phase watermarking approach is demonstrated in

Fig. 4.7(b).

Table. 4.2 Watermarking constraints for embedding in the partition .

 Using the first partition, the signature is generated and then it is

embedded into the next partition during the four phases of the HLS

process, and again it is used to generate the signature . This generated

signature is embedded into the partition . This process continues (as

shown in Fig. 4.7) up to N-1 partitions and finally, the signature is

embedded into the last partition (N is the number of partitions). The

final DFG of the FIR core (shown in Fig. 3.3) after embedding the security

constraints using the proposed quadruple-phase watermarking approach is

shown in Fig. 4.9.

4.3 Signature detection in the proposed watermarking

approach

 The designer's signature must be identified in the design to detect

and prevent IP piracy and false claims of IP ownership. There are two

P3

S1

P2

S2

S2 P3

SN−1

PN

51

scenarios based on the threat model: (i) ensuring that only genuine IPs are

integrated into systems and (ii) preventing IP misuse and fraudulent claims

Fig. 4.8 SDFG of partition post-embedding signature generated from
partition .

of IP ownership. In the first scenario, the signature is detected in the SoC

design stage to prevent IP counterfeiting. In the second scenario, the

P3 S2
P2

52

M2
1

A 1
2

M2
1

M1
1

A1
1 A 1

2

A1
1

A1
1

A1
1

T13

T14 T15

T21

T22

T23

T28

T29

T30

R6

R7

R8

R7

R3

R1

R1

R1

6

7 8

14

15

16

21

22

23

2σ

3σ

4σ

5σ

6σ

7σ

8σ

9σ

R6 R7 R8

R1

R2

author's signature is detected in the hardware IP core under test in

specialised IP courts to resolve ownership conflicts. The signature

Fig. 4.9 SDFG of FIR core after embedding watermark.

detection process involves converting the signature triads into security

constraints using mapping rules and embedding them into various design

phases, including scheduling, register binding, FU binding, and

interconnect binding. Inspection of these constraints in the controller HDL

file and datapath HDL file of the design can determine if the true vendor's

signature is present in the design. If the signature is detected, the IP design

is considered authentic, and if not, it is likely counterfeit. Using this

53

approach to detect the proposed robust watermark in designs can ensure

the use of secure and reliable hardware in computing systems. Fig. 4.10

illustrates this process.

Fig. 4.10 Signature detection using the proposed approach for authentic IP

verification

54

Chapter 5

Exploring Unified Biometrics with
Encoded Dictionary for Hardware Security

of Fault-Secured IP Core Designs

 Digital signal processing (DSP) intellectual property (IP) cores are

an integral part of many consumer electronic (CE) devices, including

smartphones, cameras, and IoT-enabled devices. These hardware IP cores

perform critical tasks such as audio processing/filtering and image/video

processing etc. Therefore, in such critical situations, ensuring the proper

operation/functionality of DSP hardware IP cores against the occurrence of

faults is very important. However, these DSP hardware IP cores are

vulnerable to faults caused by single-event upsets (SEU). These faults can

be triggered by alpha particles (due to the uranium and thorium impurities

in the system-on-chip while packaging [31]), electromagnetic interference,

or noise. With transistors' increasing complexity and speed, multi-cycle

transient faults manifested from SEU have become a major concern for

DSP hardware IP cores. To mitigate the risks associated with SEU faults,

fault-secured DSP hardware IP cores are used in many data-intensive

applications [32, 33, 34, 35]. However, the integration of third-party IP

vendors in the modern CE system design process makes the fault-secured

DSP hardware IP cores vulnerable to IP piracy threats [36], [37]. An

adversary present in the third-party design house may attempt to pirate the

design illegally without the knowledge of the genuine designer. Pirated

fault-secured DSP cores can lead to the loss of confidential information,

safety and integrity risks, and other potentially serious consequences [38].

 It is crucial to verify the authenticity against piracy of a fault-

secured hardware IP core supplied by an untrustworthy third-party vendor

before integrating it into a CE system. The reason is, an adversary may

55

attempt to replicate the embedded secrets mark of an authentic IP core and

embed it into fake, unreliable IP cores to evade piracy detection (in case

the embedded security mark is vulnerable). Such pirated fault-secured IP

cores undergo little to no quality checks and testing, posing a significant

risk to end consumers in terms of safety hazards. To combat this issue, our

proposed unified biometric-driven hardware security methodology offers a

robust detective control mechanism that provides digital evidence for the

authentication of genuine IPs. This methodology comprises multiple

security parameters that actively enable robust unified biometrics signature

generation, making it impossible for an adversary to relocate and

reproduce the secret signature. By safeguarding end consumers from

unreliable CE systems with pirated IP cores, our proposed work provides

assured detection and isolation of pirated fault-secured IP DSP designs

from the design chain, ensuring the safety of CE systems through proactive

validation techniques. Furthermore, this approach alleviates any concerns

for end consumers using fake unreliable CE systems, as the trustworthiness

of the hardware IP cores has been ensured at the system integration level of

the design cycle. Mass production of authentic CE systems using our

proposed methodology will also lead the sustained goodwill and reputation

for the product and manufacturer in the market.

Threat Model:

 The focus of the proposed approach is to safeguard fault-secured

DSP IP designs from potential hardware threats such as 'IP piracy’ and

‘Evading pirated IP detection processes’.

1. IP piracy:

 One of the major challenges faced by the designers/vendors of DSP

IP cores is the threat of IP piracy, which can occur at any stage of the IC

design process. An adversary in a third-party design house may illegally

pirate the original IP core during the design process, leading to serious

implications in terms of hardware security threats. To address this problem,

56

the proposed methodology provides a seamless detection mechanism for

pirated DSP IP cores. This is made possible due to the embedded hardware

security constraints in the IP core design based on encoded dictionary-

driven unified biometrics signature. With the help of embedded hardware

security constraints, the detection of pirated IP cores becomes easier for the

original IP vendor (having all the knowledge of security parameters).

Therefore, allowing the designers/vendors to take proactive measures to

prevent potential IP infringement.

2. Evading pirated IP detection processes

 While the detection of pirated IP cores is crucial, the proposed

methodology also addresses another important issue - security against

evading the detection process. An adversary may attempt to evade the IP

piracy detection process by intending to copy the original signature into the

fake IP core. This can lead to the creation of a fake IP core that appears to

be genuine but is an infringement of intellectual property rights. The

presented security methodology thwarts such attempts by making or

regenerating the original biometrics signature difficult. This is due to

several intricate security features such as the biometric feature generation

process, expandable encoded dictionary rules to select hybrid biometrics

signature and encoding rules for secret security constraints generation. As a

result, an attacker fails to copy and implant the original security mark in

the pirated IP core, ensuring the authenticity of the IP and the safety of the

end consumer.

5.1 Proposed hardware security methodology for

securing fault-secured DSP IP cores

 The proposed approach is a hardware security methodology that

uses biometric information such as palmprint, facial, and fingerprint data

and an encoded dictionary to safeguard the fault-secured DSP IP core

designs against IP piracy. This approach can also be applied to regular DSP

57

IP core designs. The proposed technique takes into account several inputs,

including the data flow graph (DFG) of the DSP application, resource

constraints, the module library, and biometric information (palmprint,

facial, fingerprint information) of the original IP designer. The outcome of

this methodology is a protected and fault-secured DSP IP core, which

utilises multimodal biometrics and an encoded dictionary. The process of

generating a protected fault-secured DSP IP core design involves four main

processing blocks: 1) Fault-secured DSP design block, 2) Multimodal

biometrics signature block, 3) Encoded dictionary block and 4) Security

constraints embedding block.

Fig 5.1 Overview of the proposed methodology

 As shown in Fig. 5.1, The first processing block, the fault-secured

DSP design block, is responsible for generating a fault-secured schedule

58

Encoded dictionary of
IP designer

Hardware security
constraints
embedding

Fault-secured DSP
design generation

algorithm

Mutlitmodal
biometric signature

generation

DFG, module
libraries and

resource constraints

Palmprint, facial and
fingerprint biometric of

IP designer

IP
designer
specified
dictionary
size (N).

Protected RTL
datapath

using a scheduling algorithm and also allocates the registers to the design

using a register allocation algorithm by taking inputs such as the data flow

graph (DFG), module library, and resource constraints. This processing

block ensures that the design is free from faults or vulnerabilities. The

second processing block, the multimodal biometrics signature generation

block, generates a unified biometric binary template as digital evidence for

the IP designer. This block accepts captured images of the IP designer’s

palmprint, facial, and fingerprint biometrics and produces a binary

template for subsequent processing blocks. The generated binary template

is unique to the designer and serves as a form of digital identification.

 The third processing block, the encoded dictionary block, produces

secret security constraints using the unified biometric binary template. The

security constraints are generated based on the selected strength and

combination using the designer-created encoded dictionary for embedding.

The number of security constraints embedded into the design can be

increased by choosing more biometric features, followed by their

respective encoding. The IP vendor can vary the strength of embedded

security information by varying the number of features of their multimodal

biometrics. The size of the encoded dictionary determines the exact set of

security constraints and the encoded bits selected by the IP vendor.

 The fourth processing block, the security constraints embedding

block, generates a secured register transfer level (RTL) datapath using

behavioural synthesis. This block accepts the generated fault-secured

scheduled design and encoded dictionary-based unified biometric signature

of the IP designer as input. It embeds the security constraints into the

design and creates a secured RTL datapath that protects the design against

IP piracy. Thus, the proposed methodology offers a comprehensive and

effective approach to protecting fault-secured DSP IP core designs against

hardware IP piracy. The flow of the proposed methodology in terms of the

59

four processing blocks is shown in Fig. 5.1. In this chapter, we are going to

discuss the processing blocks which are highlighted in the blue colour box

as shown in Fig. 5.1, and in the next chapter, we are going to discuss the

remaining two processing blocks which are highlighted in the red colour

box as shown in Fig. 5.1.

 In this proposed approach, the process of IP piracy detection is

carried out by comparing the extracted security constraints from the DSP

RTL design being tested with the original pre-stored biometric image-

driven unified digital template-based secret security constraints. A

successful 100% match between the two results in the design being

deemed genuine, while a mismatch indicates that the design is likely

pirated. This approach enables the detection of fake/pirated DSP IPs in the

design chain, thereby achieving detective control. Furthermore, the

matching process does not require the true IP vendor to recapture their

multimodal biometric information. Instead, the original pre-stored

biometric image-driven unified digital template of the true IP vendor is

used for matching during the detection process. The biometric feature

dimensions, its respective digital template, and associated security

constraints can be accurately recomputed from the pre-stored palmprint,

facial, and fingerprint images for successful IP piracy detection. As a

result, factors such as injury marks, grease on the finger and palm, camera

variation in resolution, and differences in cropping size have no impact on

the proposed IP piracy detection process.

 For demonstrating the proposed unified biometrics with the

encoded dictionary for hardware security of fault-secured IP core designs,

we are going to use the DSP application inverse discrete cosine transform

(IDCT) 8-point core as an example DSP IP core application and also a

hardware security tool is developed based on the proposed hardware

security approach. The hardware security tool has three panels, an input

60

panel, a status bar and an output panel. The input panel is used the provide

the inputs to the tool such as resource constraints, module libraries,

biometric information, value, and the encoded dictionary code. The

status bar is used to highlight the current status of the proposed approach,

for example, if the user provided all the inputs required to generate the

scheduled DMR design the status bar associated with the DMR design gets

highlighted in orange colour (shown in Fig. 5.2). The output panel consists

of buttons which are used to display the intermediate and final results of

the proposed approach. In the subsequent sections using the hardware

security tool, we are going to discuss the first two processing blocks with

detailed insights into the techniques used and their roles in achieving the

overall goal of securing the fault-secured DSP IP core designs against IP

piracy.

5.2 Generating transient fault-secured DSP
designs

 Generating a fault-secured design for a DSP application involves

taking the application's data flow graph (DFG), a module library

containing details of the available hardware units, and the transient fault

strength (Tc) as inputs. A dual modular redundant (DMR) design is first

constructed based on the DFG of the DSP application. This involves

duplicating the operations of the original unit to create a sister unit, which

is then designated as the DMR design of the DSP application. The

generated DMR design is then scheduled using input resource constraints,

represented as 𝑅𝑐 = { , }, where ‘ ’ represents the

number of hardware units and ‘ ’ represents the type of hardware resource.

The LIST scheduling algorithm is employed to schedule the DMR design.

After obtaining the scheduled DMR design (), the Tc-cycle fault

security rules are applied to the design.

Tc

X R1 X R2 X Ra X

a

SDFGDMR

61

The three fault security rules that are applied to the DMR design are as

follows:

1. Allocate operations (opn) of the scheduled DMR design to distinct

operators based on availability, such that opn (S) ε and opn (S')

ε , where and represent the original and duplicate units,

respectively.

2. If distinct operators are not available, keep the same assignment for

S' as S in such that 𝑡(S′) − 𝑡(S) > Tc.

3. If condition 2 is not met, push S' (and its successors) ε one

control step below, and repeat the process until the condition is

satisfied.

If any of the three rules are violated, it can result in transient fault hazards

between similar operations assigned to similar hardware units, which can

lead to incorrect functionality. To resolve these hazards, the affected

operations (and their successors) are pushed to the duplicate unit in later

control steps, ensuring that the interval between (S) ε and (S’) ε

is not less than Tc. Note: The above-listed fault security rules are sufficient

to safeguard the design against transient faults emanating from single-

event upsets (SEU). This is because the above fault security rules also

consider the transient fault strength of varying size (Tc = 1, 2 etc.,) which

mitigates the impact of worst-case pulse widths (temporal effect) due to

multi-cycle transient fault using Tc = 2.

 The details for generating a fault-secured IDCT 8-point DSP IP

core using the hardware security tool are as follows; initially, we need to

load the DSP application core design (in our case IDCT 8-point DSP core)

into the hardware tool along with the module libraries. Later on, designer-

specified resources are provided such as resource constraints, and the

strength of fault () to the hardware tool (for the sake of demonstration we

are considering resource constraints as 1-adder, 2-multipliers and the

strength of fault = 2). Once the inputs are provided to the hardware

NOG

NDP NOG NDP

NDP

NDP

NOG NDP

Tc

Tc

62

security tool their respective buttons are enabled in the input panel of the

hardware security tool (shown in Fig. 5.2).

 In our case, an 8-point IDCT DMR design is created from the

inputs provided to the hardware security tool and then scheduled using the

LIST scheduling algorithm, where R1 to R16 are the required registers, V0

to V45 are the storage variables used for storing the intermediate values,

C1 to C15 are the control steps required to schedule the DMR design and

M1, M2 are the multipliers and A1 is the adder as shown in Fig. 5.3. The

status bar (shown in Fig. 5.2) of the hardware security tool shows the status

of the DMR design highlighted with orange colour once the DMR design is

created.

Fig. 5.2 Screenshot of the hardware security tool demonstrating the

successful generation of fault-secured DMR design of 8-point IDCT DSP

core

63

 Then the design is subjected to the -cycle fault security rules, which

ensure that operations are allocated to distinct hardware units based on

Fig 5.3 Fault-secured scheduled of IDCT filter design (pre-embedding

security constraints)

availability and that any violations are resolved by pushing operations in

the duplicate unit to later control steps In our example, multiplier operators

are allocated distinctively in original and duplicate units of the DMR

Tc

64

design, and since we are restricted to using only one adder (resource

constraints provided in the input) in a control step, both the original and

duplicate unit in the DMR design of IDCT 8-point DSP core have the same

adder operator units Therefore the difference between the control steps of

the respective hardware units in the original and duplicate unit in the DMR

design should be greater than the strength of the fault (), in our

demonstration (shown in Fig. 5.3) the difference between the control steps

of the same adder operators in the original and duplicate units is 7 which is

greater than the = 2, so there is no need to push the adder operation into

the next control step. Following these rules generates the fault-secured

scheduled DMR design of the 8-point IDCT DSP IP core (shown in Fig.

5.3). Once the fault-secured 8-point IDCT DSP IP core is generated

successfully, the hardware security tool's status bar is highlighted in orange

(shown in Fig. 5.2).

5.3 Multimodal biometric signature generation

 The proposed unified biometric-driven hardware security

methodology involves the integration of three biometric techniques:

palmprint biometric [56], facial biometric [57], and fingerprint biometric

[58]. Further, for generating the security signature, the biometric

information belonging to palmprint, facial and fingerprint can be obtained

from the same IP vendor. Further, the biometric information can also be

obtained from different IP vendors in case the legal rights of the design

belong to more than one IP vendor, for embedding into the design for

hardware security. The proposed approach demonstrates the security of

fault-secured design against IP piracy using the biometric information from

different IP vendors. In the case of palmprint and facial biometrics, nodal

point features and in the case of fingerprint minutiae feature points (ridge

ending and ridge bifurcation) are exploited for generating multimodal

biometric signature. The process of generating the digital signature

Tc

Tc

65

corresponding to each biometric using the hardware security tool is

discussed in detail below:

Generating facial signature:

 The process of generating a facial biometric signature begins by

capturing the facial image of the IP designer using a high-resolution

imaging device. The captured image is then provided as input to the

hardware security tool by enabling the load facial biometric image button

in the input panel (shown in Fig. 5.4). The captured facial image is then

subjected to a specific grid size and spacing. Once the grid is applied,

nodal points are designated on the facial image based on the IP designer's

chosen facial feature set. A total of 18 nodal points (P1 to P18), marked in

red (as shown in Fig. 5.4 output display panel) are designated to determine

the facial features. The coordinate points associated with the 18 points are

P1 (240, 120), P2 (240, 250), P3 (170, 280), P4 (310, 280), P5 (130, 285),

P6 (205, 285), P7 (275, 285), P8 (345, 285), P9 (105, 325), P10 (375, 325),

P11 (240, 360), P12 (195, 375), P13 (220, 375), P14 (265, 375), P15 (290,

375), P16 (185, 440), P17 (305, 440) and P18 (240, 520). After the nodal

points are designated, a facial image with all the facial features are

generated by the hardware security tool (shown in the output display panel

of Fig. 5.4), where each feature is represented as the distance between the

Table. 5.1 Signature generation corresponding to the facial features

66

Facial features Feature
dimension

Binary
 representation

HFH
IPD
BOB
IOB
OB

WNR
WF
HF

WNB
NB

OCW

130
140
215
70
75
110
270
400
45
95
120

10000010
10001100
11010111
1000110
1001011
1101110

100001110
110010000

101101
1011111
1111000

(P1) → (P2)
(P3) → (P4)
(P5) →(P8)
(P6) → (P7)
(P5) → (P6)
(P2) → (P11)
(P9) → (P10)
(P1) → (P18)
(P13) → (P14)
(P12) → (P15)
(P16) → (P17)

Naming
convention

two nodal points (shown in Table. 5.1). In the facial biometric image, a

total of 11 facial features have been marked, as shown in Table. 5.1. The IP

designer selected facial feature sets are HFH (Height of forehead), IPD

(Inter-pupillary distance), BOB (Bio ocular breadth), IOB (Inter ocular

breadth), OB (Ocular breadth), WNR (Width of the nasal ridge), WF

(Width of the face), HF (Height of the face), WNB (Width of the nasal

bridge), NB (Nasal breadth) and OCW (Oral commissure width). Each of

these features is then processed to derive their binarised information. To

derive the binarised information, the first step is to determine the feature

dimension corresponding to each facial feature using the Manhattan

distance. This results in a decimal value corresponding to each feature

which represents the magnitude of each feature, it is transformed into its

binarised form. The feature dimension and its binary representation of the

facial features are shown in Table. 5.1.

 Finally, the binarised signature of each facial feature is

concatenated to generate the facial biometric signature. The concatenation

order can be decided by the IP designer to generate the desired facial

biometric signature combination.

Generating palmprint signature:

 The first step in generating a palmprint signature in the proposed

approach is to capture the palmprint biometric of the IP vendor using a

high-quality and high-resolution digital camera. Then the captured image is

provided to the hardware security tool as input by enabling the load

palmprint biometric image button in the input panel of the hardware

security tool (shown in Fig. 5.5). The captured image is then subjected to a

67

Fig. 5.4 Screenshot of hardware security tool corresponding to

 the facial image with the vendor-selected feature set on the display panel

specific grid size and spacing to enable the generation of precise nodal

points and the coordinates of palmprint features on the palmprint image.

Next, nodal points are generated based on the feature set selected by the IP

designer. There are a total of 25 nodal points. The coordinate points

associated with the nodal points are P1 (350, 5), P2 (300, 30), P3 (415, 50),

P4 (350, 110), P5 (285, 130), P6 (415, 160), P7 (495, 170), P8 (350, 220),

P9 (285, 230), P10 (415, 245), P11 (495, 265), P12 (285, 320), P13 (350,

325), P14 (495, 335), P15 (415, 355), P16 (230, 390), P17 (495, 405), P18

(70, 470), P19 (180, 480), P20 (495, 490), P21 (120, 495), P22(165, 520),

P23 (405, 520), P24 (285, 650) and P25 (350, 650). Each palm feature is a

measure of the respective distance between the two nodal points, marked in

red (shown in the output display panel of Fig. 5.5). Subsequently, an image

of the palm with the IP designer’s selected palm feature is generated by the

68

Table. 5.2 Signature generation corresponding to the palmprint features

hardware security tool as shown in Fig. 5.5. There are a total of 19 palm

features (shown in Table. 5.2) selected by the IP designer which are DL

(Distance between the start of the life line and end of the life line), DHL

(Distance between datum points of head line and life line), WP (Width of

palm), LP (Length of palm), DFF (Distance between the first consecutive

intersection points of forefinger), DSF (Distance between the second

consecutive intersection points of forefinger), DTF (Distance between third

consecutive intersection points of forefinger), DFM (Distance between first

consecutive intersection points of middle finger), DSM (Distance between

second consecutive intersection points of the middle finger), DTM

(Distance between third consecutive intersection points of middle finger),

DFR (Distance between first consecutive intersection points of ring finger),

DSR (Distance between second consecutive intersection points of ring

finger), DTR (Distance between third consecutive intersection points of

ring finger), DFL (Distance between first consecutive intersection points of

the little finger), DSL (Distance between second consecutive intersection

69

Fig. 5.5 Screenshot of hardware security tool corresponding to the

palmprint image with the vendor-selected feature set on the display panel

points of the little finger), DTL (Distance between third consecutive

intersection points of the little finger), DFT (Distance between first

consecutive intersection points of thumb finger), DST (Distance between

second consecutive intersection points of thumb finger) and DTT (Distance

between stardust point and the third intersection point of thumb). This

image contains all the necessary details to generate the palmprint signature.

To do so, we first determine the feature dimensions of all the selected

features using Manhattan distance as shown in Table. 5.2. Next, each

feature is transformed into its corresponding binarised form (shown in

Table. 5.2) and finally, by concatenating the binarised information of each

palm feature, the palmprint signature is generated. However, the IP

designer can choose from several signature combinations based on

different concatenation orders.

70

Generating fingerprint signature:

 To generate a fingerprint signature, the first step is to capture the

impression of the fingerprint using an optical scanning device. This

fingerprint image is used as input to the security tool by loading it into the

hardware security tool by clicking the load fingerprint biometric image

button as shown in Fig. 5.6. The captured image then undergoes pre-

processing, which involves three sub-processes. The first sub-process is

image enhancement using Fast Fourier Transform (FFT) to magnify and

reconnect the broken ridges, enhancing image quality.

 The second sub-process is binarization, where the image is

represented with only two intensity levels (‘0’ for low and ‘255’ for high)

by comparing with the threshold intensity of pixels. The third sub-process

is thinning, which reduces the thickness of ridge lines to one-pixel width.

After pre-processing, the thinned image is used to extract minutiae points,

the unique features that define an IP designer’s fingerprint. Minutiae points

are the locations where ridge lines end abruptly (termed ridge ending,

shown in red in the output display panel image (d) of Fig. 5.6) and where a

ridge line bifurcates into branches (termed as ridge bifurcation, shown in

blue in the output display panel image (d) of Fig. 5.6). Each minutiae point

is then represented in its corresponding binary form as shown in Table. 5.3,

which dictates the signature corresponding to each minutiae point. The

output of the hardware security tool gives the images of the outputs of each

sub-processes (shown in the output display panel of Fig. 5.6) along with

the signature for each minutiae point consisting of coordinates (x, y),

crossing number (CN) value, minutiae (’n’), and ridge angle in degrees

(‘ ’) (shown in Table. 5.3). Finally, a digital template is obtained by

concatenating the signatures of each minutiae point. The number of

minutiae points and concatenation order can be adjusted by the IP designer

to derive a fingerprint signature of the desired strength.

θ

71

Table. 5.3 Signature generation corresponding to fingerprint minutiae

points

Fig. 5.6 Screenshot of hardware security tool corresponding to the

fingerprint image with minutiae points on the display panel

72

 The multimodal biometric signature is generated by concatenating

the individual signatures of each biometric using the encoded dictionary.

The following are the individual biometric facial, palmprint and fingerprint

signatures generated using the hardware security tool. The facial biometric

signature is “10000010100011001101011110001101001011110111010000

111011001000010110110111111111000” (83bits), the palmprint signature

is “10000100111101100001110100011110101111000110110011

110101110000101101000101...........10101011100001010001 111” (253

b i t s) a n d t h e f i n g e r p r i n t b i o m e t r i c s i g n a t u r e i s

“1011111010110111100010100010111011101110011111110

110110110111101................100101011010100111110111 1” (350 bits). In

the next chapter, we are going to discuss the encoded dictionary block and

security constraints embedding block (shown in Fig. 5.1). A unified

biometric signature is generated from the encoded dictionary block using

proposed encoded dictionary rules. This unified biometric signature is

converted into hardware security constraints and embedded into the

scheduled fault-secured DSP IP design using the security constraints

embedding block. In the next chapter, we also discuss the detection of

pirated designs using the proposed methodology.

73

74

Chapter 6

Unified Biometrics signature generation
using expandable encoded dictionary and

signature embedding and detection
process

 The proposed methodology introduces a novel approach to protect

fault-secured hardware IP core designs against IP piracy using a unified

biometric-driven hardware security system with an encoded dictionary.

This methodology is based on the concept of exploiting unified biometrics

to extract hardware security constraints and enable detective control

against the use of pirated IP cores. The proposed approach unifies an IP

vendor's palmprint, facial and fingerprint biometric signatures to generate a

unique and non-replicable hybrid feature set that is used to produce an

invisible unified biometric security mark. The proposed approach also

includes an expandable encoded dictionary that adds additional layers of

security to the generation of unified biometric-driven secret security

constraints for embedding into the design.

 In the previous chapter, we discussed the generation of biometric

signatures of palmprint, facial and fingerprint and also demonstrated it

using a DSP IP core (i.e., IDCT 8-point DSP IP core) with the help of the

hardware security tool which is designed based on the proposed approach.

In this chapter, we will discuss the expandable encoded dictionary and its

significance, the generation of unified biometric-driven secret security

constraints, and the embedding process of security constraints into the

design. For demonstration purposes, we are going to continue with the

example IDCT 8-point DSP IP core which we used in the previous chapter

and the hardware security tool is used to generate the unified biometric

signature using the proposed expandable encoded dictionary and also to

75

generate the secret hardware security constraints from the unified

biometric signature.

6.1 Proposed Expandable Encoded Dictionary

 The proposed methodology for protecting fault-secured DSP IP

core designs against IP piracy includes an encoded dictionary block that

plays a crucial role in generating the final signature to be embedded in the

design. The encoded dictionary is created by the IP designer and consists

of encoding rules and encoding bits, it is designed to accept the generated

unified biometrics signature and select the final signature to be embedded

with the designer-selected strength and combination. The encoded

dictionary is expandable, and the size can be adjusted based on the need of

the designer. The encoding rules corresponding to encoding bits can be

created to generate a unique combination of unified biometrics signatures

of various strengths. In Table. 6.1, an example of an encoded dictionary is

shown, which displays eight different encoding rules for selecting a unique

combination of unified biometrics signature of 75-bit signature strength

(signature chosen for demonstration). An IP designer can choose the target

unified biometrics signature of the desired strength and combination based

on the selection of the encoding bits. Once the designer has selected the

signature, it is embedded into the target design. The details of the signature

embedding process are discussed in the next subsection.

 Considering, an IP designer has chosen an encoded unified

biometric signature with encoding bits as “001”, by selecting it in the input

panel of the hardware security tool (shown in Fig. 6.1). Once encoding bits

are selected from the input panel, based on the rule associated with the

encoding bits as shown in the Table. 6.1, the final encoded unified

biometric signature is generated. In our case, the rule associated with the

encoding bit “011” is to concatenate the first even 25 bits of all three

76

Table. 6.1 Encoded dictionary for 3-bits (N=3) (expandable upto

encoding rules)

Fig. 6.1 Screenshot of hardware security tool corresponding to the

encoded unified biometric signature

2N

77

(palmprint, facial and fingerprint) biometric signatures (The generation of

all three biometric signatures is described in the previous chapter and we

are going to use the biometric signatures generated in the previous chapter

for generating the encoded unified biometric signature). As shown in the

output panel of Fig. 6.1, the final encoded unified biometric signature

consists of 75 bits and is represented by the following binary sequence:

“001011100111011001101010100000010111100110011111000110011100

000010101011111”. The sequence contains 36 zeros and 39 ones. Then, the

resulting multimodal biometric signature is incorporated into the target

design. Further details regarding the embedding process of the signature

are discussed in the following section.

6.2 Embedding unified biometric signature of IP
vendor into the design

 To safeguard the fault-secured DMR design from IP piracy, the IP

designer embeds an encoded dictionary-based unified biometric signature

into the target design which is also fault secured. The first step in the

process of embedding the signature is generating hardware security

constraints corresponding to the biometric signature. The hardware security

constraints are generated based on the encoding rule specified by the IP

designer and the DFG of the fault-secured DMR design schedule. The

number of storage variables in the DFG dictates the number of security

constraints formed based on the encoding rule. For example, if the

signature bit ‘0’ corresponds to embedding security constraints between

even-even storage variable pairs (Vx, Vy), then the resulting security

constraints for 36 zeros of the biometric signature are V(0, 2), V(0, 4), V(0,

6), V(0, 8), V(0, 10), V(0, 12), V(0, 14), V(0, 16), V(0, 18), V(0, 20), V(0,

22), V(0, 24), V(0, 26), V(0, 28), V(0, 30), V(0, 32), V(0, 34), V(0, 36),

V(0, 38), V(0, 40), V(0, 42), V(0, 44), V(2, 4), V(2, 6), V(2, 8), V(2, 10),

V(2, 12), V(2, 14), V(2, 16), V(2, 18), V(2, 20), V(2, 22), V(2, 24), V(2,

26), V(2, 28), V(2, 30). Similarly, if the signature bit ‘1’ corresponds to

78

embedding security constraints between odd-odd storage variable pairs of

the scheduled DFG, then the resulting security constraints for 39 1’s of the

biometric signature are V(1, 3), V(1, 5), V(1, 7), V(1, 9), V(1, 11), V(1,

13), V(1, 15), V(1, 17), V(1, 19), V(1, 21), V(1, 23), V(1, 25), V(1, 27),

V(1, 29), V(1, 31), V(1, 33), V(1, 35), V(1, 37), V(1, 39), V(1, 41), V(1,

43), V(1, 45), V(3, 5), V(3, 7), V(3, 9), V(3, 11), V(3, 13), V(3, 15), V(3,

17), V(3, 19), V(3, 21), V(3, 23), V(3, 25), V(3, 27), V(3, 29), V(3, 31),

V(3, 33), V(3, 35), V(3, 37). As shown in Fig. 6.3, the hardware security

constraints are generated and displayed on the output display panel of the

hardware security constraints after clicking the button “Generate hardware

security constraints” in the input panel. Then these hardware security

constraints are embedded into the target design during the resister

allocation phase of behavioural synthesis to minimise the design overhead.

 In the next step, the designer constructs the register allocation table

comprising the details of storage variables, control steps, and register

allocation information for the unprotected fault-secured DMR design. The

designer then feeds the generated hardware security constraints and

register allocation information as input to the security constraints

embedding block, which outputs the unified biometric signature-protected

RTL datapath of the fault-secured design. Local alterations are made

among the registers to accommodate the security constraints, as per the

distinct register assignment rule. If any security constraint is not adjustable

amongst the available registers, a new register is allocated. The register

allocation table of fault-secured IDCT-8 point DSP IP core before

embedding the hardware security constraints is shown in Table. 6.2, as

evident there are sixteen control steps (C0 - C15), sixteen registers (R1 -

R16) and 46 storage variables (V0 - V45). After embedding the hardware

security constraints generated from the dictionary-encoded unified

biometric signature, local alterations take place in the register allocation

table to resolve the raised conflict between any of the two registers. For

79

example in the control step C1, because of the hardware security constraint

(V0 - V16) both the storage variables cannot have a single register (colour)

Fig. 6.2 Fault-secured scheduled IDCT filter design (post-embedding

security constraints)

hence a conflict has been raised. To resolve this conflict local alterations

take place between the storage variables V16 and V17, now V16 is

assigned to register R2 (Blue) and V17 is assigned to register R1 (Red).

Similarly, the designer embeds all the security constraints by making local

alterations, and the resultant register allocation information is presented in

80

Fig. 6.3 Screenshot of hardware security tool corresponding to the

hardware security constraints

Table. 6.2 Register allocation table for pre-embedding unified biometric

signature into the design

81

the Table. 6.3. The storage variables marked in red represent the local

alteration performed after embedding the encoded dictionary-based unified

biometrics signature (shown in Table. 6.3). Thus, the embedding of all the

security constraints is performed to protect the fault-secured DMR design

against IP piracy. The final fault-secured scheduled IDCT 8-point design

post-embedding with encoded dictionary-based unified biometric signature

is shown in Fig. 6.2.

Table. 6.3 Register allocation table for pre-embedding unified biometric

signature into the design

6.3 Detection of pirated design using the
proposed methodology

The proposed approach for piracy detection involves regenerating

security constraints from register allocation information of the target RTL

design, followed by matching the extracted secret constraints with the

original security constraints of the true IP designer. The multimodal

biometric information of the IP vendor does not need to be recaptured

during the matching process, as the original pre-stored biometric

information is used instead. The biometric features dimensions, digital

82

template, and associated security constraints can be accurately recomputed

from the pre-stored images, making the detection process independent of

recapturing biometric information. If a 100% match is found between the

extracted security constraints and the original pre-stored unified hardware

security constraints, the design is considered genuine; otherwise, it is

considered to be a pirated design.

The proposed technique ensures that an adversary cannot evade the

piracy detection process by regenerating the exact unified biometric

security constraints the security parameters are unknown to them. The IP

vendor does not need to store their digital template (secret hardware

security constraints), and the captured biometrics are safely stored in a

secure vault. Even if the pre-stored biometric images of the IP vendor are

leaked to an adversary, the exact regeneration of the digital template and its

respective secret hardware security constraint is not possible without

knowledge of the security parameters.

6.4 Security properties of encoded dictionary-
based unified biometrics

The proposed methodology includes multiple security parameters

for the generation of unified biometric security constraints and their

embedding into the target design. These parameters enhance the overall

security of the target DSP design against IP piracy. The security parameters

include:

๏ Non-replicability:

The proposed methodology incorporates security measures that

make it impossible for an adversary to replicate the naturally unique

biometrics-driven secret hardware security constraints. This sets it apart

from non-biometric approaches like hardware watermarking and

steganography, which generate arbitrary security constraints. The use of

palmprint, facial and fingerprint features to generate a unique biometric

signature further complicates matters for adversaries attempting to embed a

83

fake IP and evade piracy detection. The robustness of the proposed unified

biometrics-driven signature makes it highly challenging for an adversary to

regenerate. This is because the security parameters required for

regeneration are unknown and inaccessible to them. The following are the

security parameters:

‣ Grid size/spacing: After capturing the palmprint, facial and

fingerprint biometric, it is subjected to a specific grid size and

spacing for generating the biometric information accurately.

The details of the original grid size are not known to an

adversary.

‣ The number of biometric features and their concatenation order

used for a signature generation: An adversary is not aware of

the total number of palm features selected for palmprint

biometric, facial features selected for facial biometric, and the

number of minutiae points selected for fingerprint biometric in

the generation of the unified biometric driven signature.

Additionally, the feature concatenation order used for

generating the digital template is unknown to an adversary.

‣ Encoding rule: The original encoding rule used for generating

the secret security constraints corresponding to the unified

biometric-driven signature is not known to an adversary. This

encoding rule is a key factor in ensuring the uniqueness and

non-replicability of the generated security constraints, making it

difficult for an adversary to regenerate the same constraints for

embedding into a fake IP and evading piracy detection.

‣ Encoded dictionary bit size and applied encoding rule: The

details of the encoded dictionary, including the size of the

encoding bits (N), coded data bits (2N), and the encoding rules

used to derive the unified biometric signature bitstream that is

embedded into the design, are all unknown to an adversary.

Therefore, the security constraints generated using multiple parameters and

encoding rules are unknown to an adversary, making it highly difficult for

them to replicate the original security constraints embedded into the

84

design. This ensures that the IP piracy detection process is robust and an

adversary cannot evade it.

๏ Robustness against the compromising of biometric image data:

 Even if an adversary gains access to the stored original multimodal

biometric images, they would not be able to regenerate the exact unified

biometric signature that was embedded into the design. This is because

they would not know the specific grid size and spacing used for generating

the biometric information, the total number of features selected for each

biometric, the feature concatenation order chosen for generating the digital

template, the original encoding rule used for generating the secret security

constraints, and the details of the encoded dictionary such as the size of

encoding bits and coded data bits. Without this information, an adversary

cannot replicate the original unified biometric signature, making it

impossible to evade the IP piracy detection process.

๏ Robustness against key-based attacks:

 The proposed unified biometric approach for DSP design security

does not depend on secret keys for its operation, unlike other hardware

security approaches such as digital signature and hardware steganography.

The security is achieved through the use of a unified biometric signature

that is generated from the palmprint, facial and fingerprint biometric

information of the IP vendor. This signature is unique and highly robust,

making it difficult for an adversary to replicate or regenerate. The approach

incorporates several security parameters that are unknown to an adversary,

making it highly challenging for them to evade the piracy detection

process.

๏ The unified biometric-driven signature proposed here offers a higher

level of resistance to tampering and a lower probability of coincidence,

thereby providing strong protection against tampering attempts and

enabling the detection of counterfeit IP cores.

85

86

Chapter 7

Results and Discussion/Analysis

7.1 Results and analysis of the proposed
quadruple phase watermarking approach

 The proposed approach was subjected to a thorough analysis of its

security and design cost. To evaluate its security, two measures were used

— the probability of coincidence and tamper tolerance ability. These

measures help to determine the effectiveness of the proposed approach in

detecting and resisting malicious attacks or attempts to alter the data. The

design cost of the proposed approach was analysed in terms of trade-offs

between cost and partitioning, and the cost overhead as compared to the

baseline design. A 15 nm open-cell library [39] was used to calculate the

design cost. This library is a commonly used resource for designing

integrated circuits and offers a range of design options and optimisation

techniques.

 The proposed approach was implemented and tested on various

Digital Signal Processing (DSP) benchmarks. The discrete cosine

transform (DCT) core, for example, is a DSP algorithm used in the Joint

Photographic Experts Group (JPEG) compression process to convert image

data from the spatial domain to the frequency domain. Similarly, finite

impulse response (FIR) and infinite impulse response (IIR) filters are DSP

algorithms used for noise cancellation or denoising to improve signal

quality in telecommunication. The experimental results of the proposed

approach were evaluated to assess its efficiency and effectiveness in

securing data. The implementation run time (or time overhead) of the

proposed approach was found to be around 2.5 ms, indicating that it could

be implemented relatively quickly. Furthermore, the proposed approach

87

was found to be amenable to other DSP and multimedia applications. This

is because these applications also have algorithmic descriptions, and their

corresponding intellectual property (IP) can be designed using the high-

level synthesis (HLS) process. Hence, the proposed security algorithm can

easily be employed to secure such IPs, making it a useful tool for securing

a wide range of applications.

Security analysis:

 The proposed approach provides security by incorporating a strong

signature or digital watermark into the design to facilitate authentic IP

verification. The quality of the watermark, which is essentially the strength

of the digital evidence embedded into the design and the strength of the

proof of IP ownership, is evaluated in terms of a metric called the

probability of coincidence (). This metric helps to measure the

effectiveness of the watermarks by assessing the probability of

coincidence, which is a measure of how difficult it is for an attacker to

create a false watermark that matches the original one. The is given as

follows:

 (1)

In equation (1), the first, second, third, and fourth terms represent the

probability of coincidence () with respect to register binding, function

unit (FU) binding, interconnect binding, and scheduling phases,

respectively. In the first term, ‘c’ and ‘f1’ represent the number of colours

or registers in the coloured-interval-graph (CIG) pre-embedding register

binding constraints and the number of constraint edges, respectively. In the

second term, ‘K’, ‘U(Zi)’, and ‘f2’ represents the number of types of FU

resources, the number of instances of FU type Zi, and the number of FU

binding constraints, respectively. In the third term, ‘f3’ represents the

number of interconnect binding constraints, and in the fourth term, ‘f4’

Pc

Pc

Pc = (1 −
1
c

) f 1 * (
1

πK
i=1U(Zi)

) f 2 * (
1
2

) f 3 * π f4
j=1(

1
μ(xj)

)

Pc

88

represents the number of scheduling constraints. The symbol ‘ ’

represents the mobility of operation ‘ ’ which is subject to the imposition

of the jth scheduling constraint, and ‘ ’ indicates the corresponding

operation.

 Table. 7.1.1 presents the value of achieved using the proposed

watermarking technique for varying signature sizes. Tables. 7.1.1 and 7.1.2

compare the value obtained using the proposed approach with the

related approaches [40, 11, 12, 15, 17] for the same signature size. The

tables show that the proposed approach achieves lower values than the

related works. This is because the proposed watermarking constraints are

embedded into the form of different phases of the high-level synthesis

(HLS) process, unlike the related approaches. The low value obtained

using the proposed approach indicates a high quality of the embedded

watermark and a higher strength of digital evidence embedded into the

designs for IP ownership verification or piracy detection. Additionally, Fig.

7.1.1 shows the variation in of the proposed approach with varying

numbers of embedding phases. The figure demonstrates that the value

gradually decreases as the number of embedding phases increases. Further,

the strength of the watermark is evaluated based on its ability to withstand

tampering, which is measured by a metric known as tamper tolerance (),

as defined below:

 (2)

 where Q and L are variables that represent the number of variable

types and the length of encoding, respectively, with both being set to eight

in the proposed approach. B denotes the total number of bits in the

signature and M represents the number of mapping rules, also set to eight

μ(xj)

xj

xj

Pc

Pc

Pc

Pc

Pc

Pc

TP

TP = QL * 2B * M

89

in the proposed approach. The length of encoding (L) depends on the

design size, while the total bits in the signature (B) depend on the chosen

Table. 7.1.1 Probability of coincidence (Pc) analysis of proposed approach

w.r.t. related approaches [11,12,15].

Table. 7.1.2. Comparison of PC of the proposed approach with [40, 17].

signature size. The three terms in the formula indicate security due to

eight-variable encoding, hashing, and eightfold mapping, respectively. The

TP

90

DCT
FFT
IIR
FIR
ARF

1D-DWT
MPEG

[17]ProposedBenchmarks [40]

1.7e1-0
6.0e-11
1.0e-5
7.4e-20
1.5e-17
3.8e-8
4.0e-20

1.8e-2
1.2e-1
9.3e-2
2.1e-3
5.1e-2
4.2e-3
5.1e-2

2.6e-1
5.2e-1
4.7e-1
2.6e-1
5.2e-1
1.6e-1
4.7e-1

proposed approach’s tamper tolerance ability has presented in the Table.

7.1.3 and compared with other approaches [11, 12, 15]. The results show

that the proposed approach achieves higher tamper tolerance compared to

the related approaches, making it more difficult for attackers to deduce or

tamper with the author's signature. This prevents attackers from claiming

IP ownership by circumventing counterfeit detection processes by

embedding authentic signatures in counterfeit designs.

Fig. 7.1.1 Variation in Pc due to embedding watermark during different

phases.

Design cost analysis and security-cost tradeoff

The design cost is evaluated as follows:

 (3)

Where , , and are the design area, latency, maximum area and

maximum latency respectively. and are the weight contribution of

latency and area in the design cost.

The design area is calculated as follows:

Ct

Ct = a1
Lh

Lm
+ a2

Ah

Am

Ah Lh Am Lm

a1 a2

91

 (4)

Where K and U(Zi) denote the number of types of FU resources and the

number of instances of FU type Zi respectively.

Table. 7.1.3 Tamper tolerance () analysis of proposed approach w.r.t.

related approaches [11],

[12], [15]

The design latency is determined by analysing the scheduling information

of the operations that are scheduled in various control steps. The

calculation of design latency is based on the following formula:

 (5)

AH =
K

∑
i=1

U(Zi) * AZi

TP

Lh = RL +
T

∑
i=1

(Li
m + RL)

92

 Where represents the delay of a register, T denotes the total

number of control steps and indicates the delay of the FU with the

maximum latency in the ith control step. Table. 7.1.4 presents the design

cost before and after watermark embedding for a fixed signature size. The

table shows zero design cost overhead for most DSP benchmarks.

However, for some designs, there may be a slight increase in design cost

due to an increase in latency after embedding scheduling constraints. Fig.

7.1.2 illustrates the trade-off between design cost and security (measured in

) for a fixed partition type and varying signature size. The figure

demonstrates that the value significantly decreases with increasing

signature size, with little to no impact on design cost.

Fig. 7.1.2 Security (in terms of Pc)-cost tradeoff for various benchmarks.

RL

Li
m

Pc

Pc

93

Table. 7.1.4 Design cost pre and post-embedding of the proposed

watermark.

Impact and analysis of portioning on and design cost

 Fig. 7.1.3 depicts the impact of selecting three different partition

types (X, Y, and Z) on design cost and . The figure illustrates that

choosing different partition types can have varying effects on design costs.

However, there is a negligible impact on for a fixed signature size. This

allows designers to select the partition type that results in the least design

cost overhead.

Fig. 7.1.3 Partitioning-cost trade-off for IIR filter core for signature

size=32

Pc

Pc

Pc

94

DCT
FFT
IIR
FIR
ARF

1D-DWT
MPEG

Design cost
of proposed

Design cost
of baseline

Benchmarks %cost overhead

0.497
0.395
0.522
0.461
0.408
0.851
0.370

0.537
0.395
0.522
0.494
0.408
0.851
0.370

8.0%
0.0%
0.0%
7.1%
0.0%
0.0%
0.0%

Impact of proposed mapping of signature triads into corresponding

constraints on security and design cost.

 The signature is transformed into watermarking constraints using

an eightfold mapping proposal. The constraints are then embedded into

four different phases of HLS, resulting in a significant improvement in

security concerning and tamper tolerance. The mapping of signature

triads to FU vendor binding and interconnect binding constraints does not

affect design cost as no additional resources are required. However, the

mapping of triads into register binding constraints may result in a minimal

increase in design overhead due to the potential need for additional

registers. The mapping of signature triads into scheduling constraints may

sometimes cause a delay overhead, thereby affecting the latency of the

design.

7.2 Results and analysis of the proposed
unified biometric driven hardware security
methodology

In this section, the outcomes of the proposed hardware security

method, which utilises an encoded dictionary-based unified biometric

approach for safeguarding fault-secured DSP IP cores, are examined. The

method was developed using Python programming language and

implemented on a processor with a 2.40 GHz frequency.

Security analysis:

The unified biometric signature that is embedded in the DSP design

using an encoded dictionary-based approach is non-replicable. This

hardware security methodology utilising a unified biometric approach

provides strong protection against IP piracy and prevents an adversary

from evading the piracy detection process. The reason for this is that it is

not feasible for an adversary to reproduce the exact signature and

corresponding security constraints, due to several security parameters that

are integrated during the embedding process of the unified biometric

signature. The proposed approach's ability to protect against the threat of IP

Pc

95

piracy is evaluated by examining the probability of coincidence () and

tamper tolerance (). The probability of coincidence () is measured

using the following metric [11]:

 (6)

‘k’ represents the number of registers required to store all the input,

intermediate, and output variables of the target design before implanting

secret constraints, while ‘w’ represents the number of covert security

constraints generated for the proposed unified biometric signature

embedded in the design. A low probability of coincidence is desirable as it

indicates a lower likelihood of detecting security constraints in an

unsecured design. The comparison of the values achieved using our

proposed unified biometric-driven hardware security methodology with IP

watermarking [11], hardware steganography [17], unimodal palmprint

biometric [26], and unimodal fingerprint biometric [28] approaches for

various DSP frameworks are presented in Table. 7.2.1 and Table. 7.2.2.

Table. 7.2.1 Comparison of of proposed unified biometrics approach

w.r.t related works [11], [17].

As shown in Table. 7.2.1, the proposed encoded unified biometric

approach generates a greater number of secret security constraints,

resulting in a lower value compared to related approaches such as IP

watermarking [11] and hardware steganography [17]. Similarly, as

illustrated in Table. 7.2.2, the proposed approach achieves a lower

Pbc

T T Pbc

Pbc = (1 −
1
k

)w

Pbc

Pbc

Pbc

Pbc

96

value compared to related approaches like unimodal palmprint biometrics

[26] and unimodal fingerprint biometrics [28].

Table. 7.2.2 Comparison of of proposed unified biometrics approach

w.r.t related works [26], [28].

 The tamper tolerance metric is used to evaluate the security against

tampering attempts aimed at determining the exact signature combination.

Our proposed multi-modal biometric signature approach achieves higher

tamper tolerance compared to related approaches. The tamper tolerance

ability () is assessed using the following metric [11]:

 (7)

 The tamper tolerance ability of our proposed approach is compared

with related methodologies in Table. 7.2.3 and Table. 7.2.4, where ‘ ’

represents the number of signature variables used in the multimodal

biometric signature. Due to the generation and embedding of a

significantly higher number of secret security constraints through the

proposed approach, the tamper tolerance ability is much stronger than the

related methodologies [11, 17, 26, 28]. Table. 7.2.5. shows the impact of

varying the multi-modal signature on and . The proposed approach

generates a greater number of secret security constraints, resulting in a

lower value and higher value, providing strong digital evidence

against IP piracy and robust security against tampering aimed at

determining the exact embedded ‘encoded dictionary-based unified

biometrics signature’.

Pbc

T T

T T = (τ)ω

τ

Pbc T T

Pbc T T

97

Table. 7.2.3 Comparison of of proposed unified biometrics approach

w.r.t related works [11], [17].

Table. 7.2.4 Comparison of of proposed unified biometrics approach

w.r.t related works [26], [28].

Table. 7.2.5 PC, TT of the proposed approach corresponding to varying

signature size for 8-point DCT application.

Analysis of embedded design cost:

The cost of the unified biometric-driven signature embedded design is

analysed in this subsection, specifically about the unsecured baseline

design. The design cost of the fault-secured DSP design embedding

proposed security constraints is computed using the following [17]:

T T

T T

Dc(st
n)

98

PbcSecurity constraints T T

75
200
350
500
686

7.9e-3
2.4e-6
1.5e-10
9.6e-15
5.91e-20

3.77e+22
1.6e+60
2.2e+105
3.2e+150
3.2e+206

 (8)

 where ‘ ’ indicates the resource constraints (where ’n’ specifies the

number of resources and ’t' specifies the type of resources), ‘ ’ and ‘ ’

indicates the design area and latency respectively, ‘ ’ and ‘ ’

indicates the maximum design area and latency of the design. The

weighing factors ‘ ’ and ‘ ’ are used to determine the relative

importance of normalised design area and latency in the cost function, and

they indicate the priority given by the IP vendor to these factors during the

cost evaluation process. In this case, the weighting factors for design area

and latency are both assumed to be 0.5. The cost of generating the

protected fault-secured design is presented in Table. 7.2.6, which provides

details on the functional units, the number of required registers, and the

design cost of embedding an encoded dictionary-based unified biometric

signature. The use of this signature incurs no additional design cost for any

DSP design. To estimate the delay and area of the design, a 15nm open-cell

library is used.

Table. 7.2.6 Comparison of the design cost pre and post-embedding

encoded dictionary-based unified biometric signature

Dc(st
n) = τ1

DA

DmaxA
+ τ 2

DT

DmaxT

st
n

DA DT

DmaxA DmaxT

τ1 τ 2

99

Table. 7.2.7 Implementation run time of the proposed security

methodology corresponding to different benchmarks (fault-secured)

Table. 7.2.7 presents the implementation run time for the proposed security

methodology, which generates a secured version of the design using

encoded dictionary-based unified biometric signatures. As shown, the

proposed technique is capable of generating fault-secured designs with

embedded biometric signatures in a relatively short implementation time.

100

6.852
6.810
19.279
107.027
14.526

Implementation run time (ms)Benchmarks

DCT-8 point
IDCT-8 point
JPEG sample

MESA
WDF

Chapter 8

Conclusions and Scope for Future Work

 The use of intellectual property (IP) cores in modern system-on-

chip (SoC) designs has become increasingly prevalent. However, the

globalisation of the design supply chain has made IP cores vulnerable to

various hardware security threats, such as IP piracy, counterfeiting, and

false claims of IP ownership. These threats can result in serious concerns

for end consumers such as. To address these concerns, IP watermarking has

emerged as a robust detective control mechanism that provides security to

IP cores against these hardware security threats. Hardware watermarking

involves embedding a unique digital signature, or watermark, into the IP

core design, which can be used to identify the rightful owner and detect

any attempts to tamper with or copy the IP core.

 In this thesis, a novel quadruple-phase watermarking scheme has

been proposed to secure digital signal processing (DSP) IP cores. The

scheme employs mechanisms such as partitioning, encoding, hashing, and

eightfold mapping in the signature generation process, making the

signature constraints highly tamper-tolerant. The watermark is embedded

into the design during four distinct phases: scheduling, the functional unit

(FU), register binding, and interconnect binding, of the high-level synthesis

(HLS) process. Embedding the watermark during these phases ensures a

robust watermark, providing stronger ownership proof and higher strength

of digital evidence embedded into the IP core designs.

 Experimental analysis of the proposed quadruple-phase

watermarking scheme was conducted in terms of probability of

coincidence, tamper tolerance ability, the impact of embedding the

signature on design cost overhead, and security-cost tradeoff. The results

101

(chapter 7) showed that the proposed approach outperformed related state-

of-the-art works, achieving a significantly lower probability of coincidence

and higher tamper tolerance.

 Moreover, pirated IP cores that are integrated into hardware

systems of consumer electronics (CE) products may pose a serious concern

to the end consumer from the perspective of safety, non-reliability, and

confidentiality. Therefore, a unified biometric-driven hardware security

methodology has been presented to ensure robust piracy protection of DSP

IP cores and safeguard the end consumer and critical systems that may

have integrated pirated DSP IP cores.

 An adversary may try to evade piracy detection by intentionally

integrating fake IP cores in CE systems due to a lack of robust security

mechanisms. A unified biometric-driven hardware security approach is

presented to provide strong piracy protection for DSP IP cores, protecting

both end consumers and critical systems that may have used pirated DSP

IP cores. The proposed methodology uses an encoded dictionary to allow

for the flexible selection of a robust signature, which significantly

complicates the generation of secure security constraints from the

attacker’s perspective. This renders the attacker unable to extract the

embedded signature and copies it into fake IP cores to evade piracy

detection, ensuring the safety and reliability of CE systems for end

consumers. In summary, the proposed quadruple-phase watermarking

scheme and unified biometric-driven hardware security methodology

provide a promising solution to protect hardware IP cores against IP piracy,

counterfeiting, and false claim of IP ownership threats, ensuring the

reliability and safety of consumer electronics products and critical systems.

 While hardware watermarking is a useful technique for enabling

detective control against IP piracy threats and IP ownership. On the other

102

hand, obfuscation is another important mechanism for enabling preventive

control measures against reverse engineering attacks (RTL design

alteration). Obfuscation involves modifying the design structure or

implementation to hide the original IP and make it difficult for attackers to

extract the functionality or design details [55]. Obfuscation can be

achieved through various techniques, such as logic obfuscation or

structural obfuscation, and can be applied at different levels of abstraction,

from the register transfer level (RTL) to the high-level synthesis (HLS)

level. In my future work, I will be focusing on exploring the double line of

defence mechanism (ensuring both detective and preventive control) for

securing hardware IP cores against hardware security threats. Further,

generating low-cost and secure architectural solutions corresponding to

different data-intensive hardware IPs and also analysing the trade-offs

between security and performance or power consumption by proposing

novel approaches to enhance the security of DSP designs while incurring

negligible design cost overhead.

103

104

References

[1] A. Sengupta, R. Sedaghat, Z. Zeng, “Multi-objective efficient design

space exploration and architectural synthesis of an application specific

processor (ASP),” Microprocess. Microsyst., vol. 35, no. 4, June 2011, pp.

392–404.

[2] J. Rajendran, H. Zhang, and O. Sinanoglu, “High-level synthesis for

security and trust,” in Proc. IEEE 19th Int. On-Line Testing Symposium,

Chania, Greece, 2013, pp. 1–6.

[3] M. Beaumont, B. Hopkins, and T. Newby, “Hardware trojans—

Prevention, detection, countermeasures (a literature review),” Dept. of

Defense, Defense Sci. and Technology Org., Australia, DSTO-TN-1012,

2011.

[4] A. Sengupta, “Protection of IP-core designs for CE products,” IEEE

Consum. Electron. Mag., vol. 5, pp. 83–89, Dec. 2015.

[5] A. Sengupta, S. Bhadauria, and S.P. Mohanty, “TL-HLS: Methodology

for low-cost hardware trojan security-aware scheduling with optimal loop

unrolling factor during high level synthesis,” IEEE Trans. Comput.- Aided

Design Integr. Circuits Syst., to be published. doi: 10.1109/

TCAD.2016.2597232.

[6] Cui A, Chang CH, Tahar S. IP watermarking using incremental

technology mapping at logic synthesis level. IEEE Trans Comput Aided

Des Integr Circuits Syst 2008;27(9):1565–70.

[7] Cui A, Chang C. Watermarking for IP protection through template

substitution at logic synthesis level. In: Proceedings of the ISCAS; 2007. p.

3687–90.

[8] Cui A, Chang C, Tahar S, Abdel-Hamid AT. A robust FSM

watermarking scheme for IP protection of sequential circuit design. IEEE

Trans Comput Aided Des Integr Circuits Syst 2011;30(5):678–90.

[9] Karmakar R, Chattopadhyay S. Hardware IP protection using logic

105

encryption and watermarking. In: Proceedings of the IEEE international

test conference (ITC). IEEE; 2020. p.

1–10.

[10] Karmakar R, Jana SS, Chattopadhyay S. A cellular automata guided

finite-state-machine watermarking strategy for IP protection of sequential

circuits. IEEE Trans. Emerg. Top. Comput. 2022;10(2):806–23. 1 April-

June.

[11] Koushanfar F, Hong I, Potkonjak M. Behavioral synthesis techniques

for intellectual property protection. ACM Trans Des Autom Electron Syst

2005;10(3): 523–45.

[12] Sengupta A, Roy D, Mohanty S P. Triple-phase watermarking for

reusable IP core protection during architecture synthesis. IEEE Trans

Comput Aided Des Integr Circuits Syst 2018; 37 (4): 742 – 55.

[13] Le Gal B, Bossuet L. Automatic low-cost IP watermarking technique

based on output mark insertions. Des Autom Embed Syst 2012;16(2):71–

92.

[14] Hong I, Potkonjak M. Behavioral synthesis techniques for intellectual

property security. In: Proceedings of the DAC; 1999. p. 849–54.

[15] Sengupta A, Bhadauria S. Exploring low-cost optimal watermark for

reusable IP cores during high level synthesis. IEEE Access 2016;4:2198–

215.

[16] Sengupta A, Rathor M. Enhanced security of DSP circuits using multi-

key based structural obfuscation and physical-level watermarking for

consumer electronics systems. IEEE Trans Consum Electron

2020;66(2):163–72.

[17] Sengupta A, Rathor M. IP core steganography for protecting DSP

kernels used in CE systems. IEEE Trans Consum Electron

2019;65(4):506–15.

[18] S. Rai, A. Rupani, P. Nath and A. Kumar, “Hardware Watermarking

Using Polymorphic Inverter Designs Based On Reconfigurable

106

Nanotechnologies,” 2019 IEEE Computer Society Annual Symposium on

VLSI (ISVLSI), 2019, pp. 663-669.

[19] M. Shayan, K. Basu and R. Karri, "Hardware Trojans Inspired IP

Watermarks," IEEE Design & Test, vol. 36, no. 6, pp. 72-79, Dec. 2019.

[20] J. Kuai, J. He, H. Ma, Y. Zhao, Y. Hou and Y. Jin, "WaLo: Security

Primitive Generator for RT-Level Logic Locking and Watermarking," 2020

Asian Hardware Oriented Security and Trust Symposium (AsianHOST),

2020, pp. 01-06.

[21] T. Kean, D. McLaren, and C. Marsh, “Verifying the authenticity of

chip designs with the designtag system,” IEEE International Workshop on

Hardware-Oriented Security and Trust, 2008, pp. 59–64.

[22] G. T. Becker, M. Kasper, A. Moradi, and C. Paar, “Side-channel based

watermarks for integrated circuits,” IEEE International Symposium on

Hardware-Oriented Security and Trust (HOST), 2010, pp. 30–35.

[23] M. Rathor and A. Sengupta, "IP Core Steganography Using Switch

Based Key-Driven Hash-Chaining and Encoding for Securing DSP Kernels

Used in CE Systems," IEEE Trans. Consum. Electron., vol. 66, no. 3, pp.

251-260, Aug. 2020.

[24] S. S. Zalivaka, A. A. Ivaniuk and C. -H. Chang, “Reliable and

Modeling Attack Resistant Authentication of Arbiter PUF in FPGA

Implementation with Trinary Quadruple Response,” IEEE Trans. Inf.

Forensics Security, vol. 14, no. 4, pp. 1109-1123, April 2019.

[25] Y. Lao, B. Yuan, C. H. Kim and K. K. Parhi, “Reliable PUF-Based

Local Authentication With Self-Correction,” IEEE Trans. on Comput.-

Aided Design of Integr. Circuits and Syst., vol. 36, no. 2, pp. 201-213, Feb.

2017.

[26] A. Sengupta, R. Chaurasia and T. Reddy, “Contact-Less Palmprint

Biometric for Securing DSP Coprocessors Used in CE Systems,” IEEE

Trans. Consum. Electron., vol. 67, no. 3, pp. 202-213, Aug. 2021.

[27] A. Sengupta and R. Chaurasia, “Secured Convolutional Layer IP Core

in Convolutional Neural Network using Facial Biometric,” IEEE Trans.

107

Consum. Electron., 2022.

[28] A. Sengupta and M. Rathor, “Securing hardware accelerators for CE

systems using biometric fingerprinting,” IEEE Trans. Very Large Scale

Integr. (VLSI) Syst., 2020.

[29] F. Koushanfar, S. Fazzari, C. McCants, W. Bryson, P. Song, M. Sale,

M. Potkonjak, Can EDA combat the rise of electronic counterfeiting?

Proceedings of the DAC design automation conference, San Francisco, CA

(2012), pp. 133-138.

[30] Plaza SM, Markov IL. Solving the third-shift problem in IC piracy

with test-aware logic locking. IEEE Trans Comput Aided Des Integr

Circuits Syst 2015;34(6): 961–71.

[31] “Single event upsets”, Intel [online]. Available: https://www.intel.com/

content/www/us/en/support/programmable/suppo rt-resources/quality/

seu.html, Jan. 2022.

[32] A. Sengupta, S. P. Mohanty, F. Pescador and P. Corcoran, “Multi-

Phase Obfuscation of Fault Secured DSP Designs With Enhanced Security

Feature,” IEEE Trans. Consum. Electron., vol. 64, no. 3, pp. 356-364, Aug.

2018.

[33] P. Qiu, D. Wang, Y. Lyu and G. Qu, "VoltJockey: Breaking SGX by

Software-Controlled Voltage-Induced Hardware Faults," 2019 Asian

Hardware Oriented Security and Trust Symposium (AsianHOST), 2019, pp.

1-6.

[34] S. Park, S. Jeon, B. Kim and J. Lee, “Methods for Improving the

Reliability of Intelligent Semiconductor,” 2021 IEEE International

Conference on Consumer Electronics-Asia (ICCE-Asia), 2021, pp. 1-4.

[35] B. Yuce, C. Deshpande, M. Ghodrati, A. Bendre, L. Nazhandali and P.

Schaumont, “A Secure Exception Mode for Fault-Attack-Resistant

Processing,” IEEE Trans. Dependable Secure Comput., vol. 16, no. 3, pp.

388-401, 1 May-June 2019.

[36] M. T. Arafin, A. Stanley and P. Sharma, “Hardware-based anti-

counterfeiting techniques for safeguarding supply chain integrity,” 2017

108

IEEE International Symposium on Circuits and Systems (ISCAS), 2017, pp.

1-4.

[37] N. Khan, S. Nitzsche, A. G. López and J. Becker, “Utilizing and

Extending Trusted Execution Environment in Heterogeneous SoCs for a

Pay-Per-Device IP Licensing Scheme,” IEEE Trans. Inf. Forensics

Security, vol. 16, pp. 2548-2563, 2021.

[38] A. Syed and R. M. Lourde, "Hardware Security Threats to DSP

Applications in an IoT Network," 2016 IEEE International Symposium on

Nanoelectronic and Information Systems (iNIS), 2016, pp. 62-66.

[39] Martins M, Matos JM, Ribas RP, Reis A, Schlinker G, Rech L,

Michelsen J. Open cell library in 15nm freePDK technology. In:

Proceedings of the ISPD; 2015.

p. 171–8.

[40] Castillo E, Parrilla L, Garcia A, Meyer-Baese U, Botella G, Lloris A.

Automated signature insertion in combinational logic patterns for HDL IP

core protection. In: Proceedings of the 4th southern conference on

programmable logic. IEEE; 2008.

[41] D. Ziener and J. Teich, “Power signature watermarking of IP cores for

FPGAs,” J. Signal Process. Syst., vol. 51, no. 1, pp. 123–136, 2008. doi

10.1007/s11265-007-0136-8.

[42] A. Sengupta and D. Roy, “Antipiracy-aware IP chipset design for CE

devices: A robust watermarking approach,” IEEE Consum. Electron. Mag.,

vol. 6, no. 2, pp. 118–124, Apr. 2017. doi: 10.1109/MCE.2016.2640622.

[43] K. Wu, R. Karri, Algorithm level recomputing—a register transfer

level concurrent error detection technique, Proc. IEEE/ACM Int. Conf.

Comput. Aided Des. Nov 2001, pp. 537–543.

[44] A. Sengupta, R. Sedaghat, Swarm intelligence driven design space

exploration of optimal k-cycle transient fault resilient datapath during

high-level synthesis based on user power-delay budget, Elsevier J.

Microelectron. Reliab. 55 (6) (2015) 990–1004 (May 2015).

[45] K. Wu, R. Karri, Fault secure datapath synthesis using hybrid time and

109

hardware redundancy, IEEE Trans. Comput. Aided Des. Integr. Circuits

Syst. 23 (10) (2004) 1476–1485.

[46] C. Rusu, et al., Multiple events transient induced by nuclear reactions

in CMOS logic cells, 13th IEEE International On-Line Testing Symposium

2007, pp. 137–145.

[47] Natasa Miskov-Zivanov, Multiple transient faults in combinational

and sequential circuits: a systematic approach, IEEE Trans. Comput. Aided

Des. Integr. Circuits Syst. 29 (10) (2010) 1614–1627.

[48] S. Chen, Z. Guo, J. Feng, and J. Zhou, “An improved contact-based

high-resolution palmprint image acquisition system,” IEEE Trans. Instrum.

Meas., vol. 69, no. 9, pp. 6816–6827, Sep. 2020, doi: 10.1109/

TIM.2020.2976081.

[49] J. P. Patil, C. Nayak, and M. Jain, “Palmprint recognition using DWT,

DCT and PCA techniques,” in Proc. ICCIC, 2015, pp. 1–5, doi: 10.1109/

ICCIC.2015.7435677.

[50] M. Pudzs, R. Fuksis, R. Ruskuls, T. Eglitis, A. Kadikis, and M.

Greitans, “FPGA based palmprint and palm vein biometric system,” in

Proc. BIOSIG, 2013, pp. 1–4.

[51] S. Priya and M. Ezhilarasan, “A novel palmprint authentication

system using level 3 pore feature,” in Proc. ICCSP, Chennai, India, 2018,

pp. 623–626, doi: 10.1109/ICCSP.2018.8524278.

[52] S. K. Panigrahy, D. Jena, S. B. Korra, and S. K. Jena, “On the privacy

protection of biometric traits: Palmprint, face, and signature,” in Proc. Int.

Conf. Contemp. Comput. (CCIS), vol. 40, 2009, pp. 182–193.

[53] D. P. Gaikwad and S. P. Narote, “Multi-modal biometric system using

palm print and palm vein features,” in Proc. IEEE India Conf. (INDICON),

Mumbai, India, 2013, pp.1–5, doi: 10.1109/INDCON.2013.6726010.

[54] A. Sengupta, E. R. Kumar, and N. P. Chandra, “Embedding digital

signature using encrypted-hashing for protection of DSP cores in CE,”

IEEE Trans. Consum. Electron., vol. 65, no. 3, pp. 398–407, Aug. 2019.

110

[55] Y. Lao and K. K. Parhi, “Obfuscating DSP Circuits via High-Level

Transformations,” IEEE Trans. Very Large Scale Integration Sys., vol. 23,

no. 5, pp. 819–830, May 2015.

[56] CASIA Palmprint Database, NIST, Chinese Academy of Sciences,

Accessed: November. 2022.

http://biometrics.idealtest.org/dbDetailForUser.do?id=5#/.

[57] Multimedia Laboratory Datasets. Accessed: November. 2022.

[Online]. Available: http://mmlab.ie.cuhk.edu.hk/datasets.html

[58] V. K. Alilou. Accessed: November. 2022. Fingerprint Matching: A

simple approach MATLAB Central File Exchange. [Online]. Available:

https://www.mathworks.com/matlabcentral/fileexchange/44369-

111

http://biometrics.idealtest.org/dbDetailForUser.do?id=5#/
http://mmlab.ie.cuhk.edu.hk/datasets.html
https://www.mathworks.com/matlabcentral/fileexchange/44369-

	ABSTRACT
	LIST OF PUBLICATIONS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	Chapter 1
	Introduction
	Chapter 2
	Chapter 3
	Quadruple phase watermarking during high-level synthesis for securing reusable hardware intellectual property
	cores
	Signature embedding and detection process in the quadruple phase watermarking approach during high-level synthesis
	Chapter 5
	Exploring Unified Biometrics with Encoded Dictionary for Hardware Security of Fault-Secured IP Core Designs
	Chapter 6
	Unified Biometrics signature generation using expandable encoded dictionary and signature embedding and detection process
	Chapter 7
	Results and Discussion/Analysis
	Chapter 8
	References

