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ABSTRACT

KEYWORDS: Biorthogonal dual; Dual frame; Dual integrable representation; Fiberiza-
tion; Frame; Gramian; Heisenberg group; Infimum cosine angle; Locally compact group;
Multiplication invariant space; Nilpotent Lie group; Oblique dual; Orthogonal frame; Re-
producing formula; Riesz Basis; Shift-invariant space; Translation-invariant space; Uni-

tary Representation; Zak transform

For a second countable locally compact group I', let p be a unitary representation of
' acting on a separable Hilbert space H. Also for a collection of functions {¢; : t € N'}
in H, where N is a o-finite measure space, considering the continuous frame of orbit:
{p(v)pr : v € Tt € N}, we discuss the various dual frames of the same form, i.e.,
{p(v)y : v € T',t € N} for some ¢, € H. We provide various necessary and sufficient
conditions for the characterizations of dual frames. In particular, we concentrate on the
context of translation generated systems in H = L*(%), where translations are from closed
subgroup I" of the locally compact group 4. Our characterization results are based on the
Zak transform. When ¢ becomes locally compact abelian (denoted by G), we discuss the
same using the fiberization map. At the end, we discuss our characterizations for the
S1/Z nilpotent Lie group ¢ (denoted by G), which is considered to be a high degree of

non-abelian structure.
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CHAPTER 1

INTRODUCTION

One of the primary goals of signal analysis is to represent a signal/vector in terms
of the fundamental building blocks, often known as energy blocks. In particular, we are

interested in the following expression of a signal f:

(1.0.1) f= ZQ’fz’;
iel

where f!s are the fundamental building blocks. If the collection {f;};s is an orthonormal
basis then ¢;’s are predetermined. However, there are situations when additional desired
features are required to limit the projected noise level during transmission, which is not
possible using an orthonormal basis as the scalars ¢;’s are fixed. To overcome these
issues, the concept of frames was proposed by Duffin and Schaeffer in the study of non-
harmonic Fourier analysis in 1952 [32]. Frames generalize the concept of bases so that
we have significantly more flexibility in the building of f;’s and plentiful options for ¢;’s.
For a frame {f;}ics;, every element in a Hilbert space H has a representation as a linear
combination of the frame elements, i.e., there exist coefficients {¢;(f)}i; such that
holds. The coefficients ¢; have the form: ¢;(f) = {f, g;) for some g; € H, by the Riesz
representation theorem. The collection {g;};cs is called the dual frame which has numerous
uses in noise reduction and data reconstructions. Additionally, the theory of dual frames
has been applied to the investigation and construction of oversampled filter banks and
error correction codes [21].

Recently, the conventional idea of frames has been extended to subspace frames,
i.e., frames on subspaces. In this case, the frame decomposition becomes f =
DuerCilf)fi for f e X, where X' is a closed subspaces of H (see |37,43,44,/46]). The
vectors {fi}ier and {g;}ic; are still required to be frames, but only for subspace X and
a possibly different subspace S, respectively, such that H = X @ S+, where S+ denotes
the orthogonal complement of S in H. Then {g;}ic; is known as oblique dual frame. By

choosing S = X = H, we recover the conventional dual frames.



Frames are not necessarily linearly independent and have the feature that any vector
in the space can be expanded in terms of the elements from it. The recent surge in
interest in frames is due to the fact that they are useful in studying wavelet expansions
and possess robustness qualities [30,41,6970]. Dual frames are valuable construction tools
for series expansion in a Hilbert space, where the series coefficients may not be unique.
Recently, numerous linkages between frame theory and signal processing techniques have
been identified and developed. Wavelet frames and Gabor frames are utilized in quantum

mechanics and numerous other branches of theoretical physics.

1.1. Oblique duals for a frame

Ali, Antoine, and Gazeau [4] and Kaiser [53] all came up with the idea of a continuous
frame on their own. By sampling the continuous frames, we can get discrete frames that
have wide applications due to their computational simplicity. The discretization problem
for continuous frames was studied by many authors, including Freeman and Speegle [35].

Let H be a complex Hilbert space, and let (.#,), ,, pt.#) be a measure space, where
Y. 4 denotes o-algebra and p_, the non-negative measure. A family of vectors { fx}re.s in
H is called a continuous frame (simply call as, frame) for H with respect to (A, ,, 1t.n)
if k — fj is weakly measurable, i.e., the map k — {(f, fx) is measurable for each f € H,

and there exist constants 0 < A < B, called frame bounds, such that

(1L AU < | KB duglh) < BISIP for all f <2

The frame {fy}rer is called tight frame when A = B. If we choose A = B = 1,
it is Parseval frame (also known as coherent state). When the inequality on the right
hand side in holds, the family {fi}re.s is called Bessel with bound B. In case of
countable set .# and counting measure p 4, the continuous frame reduces to the usual
discrete frame. Here, it can be noted that the above weak measurability condition can be
replaced by strong measurability in view of the Pettis’ lemma since we consider separable
Hilbert spaces.

Given a Bessel family X = { fi}xe.» with respect to the measure space (&4, ,, p.n)

in a Hilbert space H, we define a bounded linear operator Ty : H — L*(.#, 1iy), known
2



as analysis operator, by
Tx(h)(k) =<h, fr) forall ke #, heH,
and its adjoint operator T% : L?(.# , pi.4) — H, known as synthesis operator, by

(T, = f/<k><fk,¢> dg(k) forall e H, pe XM p),

in the weak sense. Then, Sy :=T3Ty : H — H is a frame operator given by

Sxf= f%<f, fiofe dig (k) for all fe Hy,

while the other side composition Ty T% : L*(A , pu.y) — L*(AM , 11.4) is known as Gramian
operator.

At this juncture, it can be noted that the Bessel family X' = { f;}rc.» is a continuous
frame for Hy := span{fi}rer < H with bounds 0 < A < B if and only if the frame
operator Sy on Hy is positive, bounded and invertible with Aly, < SX"HX < Bly,,
where I3;, denotes the identity operator on H which is restricted on Hy. The inverse
of frame operator Sy on Hx satisfies %[Hx < (SX‘HX)’l < %IHX and the family X =
{(SX|HX)_1 fr}re.w is also a continuous frame for Hy, known as canonical dual frame for
X in Hy, which satisfies the following reproducing formula for all f € Hy in the weak

sense:

(1.1.2) f= f/}f, (leﬂx)ilfk)fk dpg (k) = J//[<f, fk><SX‘HX>71fk dpt.n (k).

That is, we have H; := span(X) = span(X) = Hy, and T;T??‘HX = T;TX|HX = Iy,
Since the frame operator Sy on H need not be invertible, we call the family XT :=
{ST fi}rews as canonical dual frame for X in H, where { is the pseudo-inverse of the
bounded operator Sy with closed range. The reproducing formula (|1.1.2) gives an idea to

find a new Bessel family, say {gx}re.sr =@ Y in H, such that the following decomposition

formula holds (weak sense) for a given Bessel family {fx}re.r in Hu,

f = J <f>gk>fk d,LL//(k) for all f € HXv Le., T;Ty‘y.[x = [’HX?
M

where ) need not be a subset of H .
When the duals of a frame are considered outside of the space H x, one of the benefits
is that it is sometime possible for the dual function to have improved localization prop-

erties in both the time and frequency domains. This is one of the advantages of defining

3



alternate, oblique, type-I, and type-II duals. The following definitions will be helpful
to extend the idea for continuous frames, including the classical definitions of discrete

setup [44,46].

Definition 1.1.1. Let X = {fi}rer and YV = {gr}re.r be two families in H and let
Ha = span(X) such that the family X is a continuous frame for Hy and ) is Bessel with
respect to the measure space (., ,, p.x). We say the family ) is

(a) an alternate dual for X if Tj’}Ty‘HX = Iy,

(b) an oblique dual for X if T;’;Ty‘HX = Iy,, YV is a continuous frame for Hy, and

T$Txl,, = Iy, where Hy = span(Y).

(c) a type-I dual for X if T;Ty‘%( = Iy, and range(73) < range(Ty).

(d) a type-II dual for X if T;;Ty‘HX = I3, and range(Ty) < range(Tx).

(e) a dual frame for X if T;Ty‘HX = Iy, and Hy = H.
Here, I3, denotes the identity operator on ‘H which is restricted on Hx. The operator
T3Ty is known as the mized frame operator. When the linear operator 157} is thought

of as a matrix, it is often referred to as the mized dual Gramian of X and ). We also call

type-1 (type-11) dual as dual of type-I (type-II).

Note that the canonical dual frame X is a special case of (a), (b), (c), and (d). The
Definition (e) is the usual concept of the dual frame in a Hilbert space, and the notions
(a), (b), (c), and (d) are identically the same in this case. Additionally, observe that the
oblique dual is a special case of alternate dual while type-I and type-II duals are special

cases of oblique dual.

1.2. Motivation

Let p be a unitary representation of a locally compact group ¢ on a separable Hilbert
space H. Then for a set of vectors o7 in H, one of the most attractive research problems
in harmonic analysis lies towards the investigation of Bessel, Riesz basis, or frame prop-
erties of the orbit F(</) = {p(x)p : ¢ € &, x € ¥4} in H [9,10,(12,/19,49,/50,63]. The
problem is intricately linked to a number of different aspects of functional analysis such
as wavelets, frames and harmonic analysis, time-frequency analysis, spectral theory, etc.

Many researchers have explored the topics of frame theory for such systems, including

4



Bownik et al. [19] and Iverson [49]. The next level of discussion is made with two basic

questions:

(Q1) What are the necessary and sufficient conditions to build a dual frame pair E (<)
and E(</") for various sets of generators o/ and </’ 7
(Q2) When is the dual frame unique ?

In this dissertation, we attempt to address the aforementioned two questions. This
research seeks to establish a connection between the continuous and discrete theories of
translation-invariant systems. When this is accomplished, the “unified strategy” proposed
in [63] will be implemented and applied to a considerably broader range of scenarios. In
addition to this, the new theory will incorporate intermediate stages, and it will do so in
the context of a large number of square-integrable functions on locally compact groups.
Particularly, by studying Gabor systems as a particular case, it is possible to obtain the

standard conclusions for describing both the discrete and continuous systems (Section

13).

1.3. Translation-invariant spaces

Both (Q1) and (Q2) are the subject of an extensive investigation in the context of
shift-invariant spaces where they were first introduced. According to the representation
theory, the shift-invariant spaces are derived from the action of Z™ on L*(R") by the shift
operator Ly : L*(R") — L?*(R") defined by Lyf(z) = f(x — k) for k € Z",z € R". The
orbits associated with this action are {Lyp; : k € Z™,1 € I}. They are used extensively in
Gabor systems, multiresolution analysis, signal analysis, spline systems, approximation
theory, and wavelets. The subspaces that are invariant under this representation are
referred to as shift-invariant or SI for short. A closed subspace V of L*(R") is called
shift-invariant if Lyf € V for all feV, ke Z".

One of the most attractive areas of research in harmonic analysis is to reproduce
a function from a given set of functions via a formula known as reproducing formula
[51]. Gabor, wavelet, and shift-generated systems are notable platforms for studying
such formulas in the Euclidean and locally compact abelian (LCA) group setup due to
their wide use in various areas: time-frequency analysis, mathematical physics, quantum

mechanics, quantum optics, etc. [13}26,30,[37,/41,42,46]. In general, the researchers have
5



considered the system {;(- — k) : k € Z",i € I} having countable functions in L?(R") and

tried to characterize ¢;’s in L*(R™) such that the following reproducing formula

F=2 (L= k)Dpi(- — k) for all fespan{p;(- —k)}ix,

i€l keZm™

holds true provided both the systems {¢;(- — k)}ix and {1;(- — k)}ix are Bessel. The
system {1;(- — k)};x is known as an alternate dual for {¢;(- — k)}ix, where {p;(- — k) }ix
is a frame sequence satisfying the above formula. It can be noted that the above stable
decomposition of f allows the flexibility of choosing different types of duals for the frame
{©i(-—k)}i k. When the frame sequence {p;(- —k)}; , becomes Riesz basis, the choice of 1;
is unique and the system {;(- — &)}, is biorthogonal dual to {¢;(- —k)};x. In general, the
researchers consider span{y;(- — k)}ix = span{y;(- — k)}ix but sometimes choosing 1;’s
outside the space span{y;(-—k)};x provides better localization properties in both the time
and frequency domains. Such kind of requirements motivates researchers to define various
duals for a frame, like oblique dual, type-I and type-II duals, etc. We refer |37,,43,44} 46|
for more details.

The discussion on the characterization of the dual frame was initiated by Ron and
Shen [61, Section 4]. Later on, Bownik’s revolutionary paper [16] appeared. But they
did not classify duals into further categories. The classification of type-I and type-II dual
first time appeared through [36]. In this paper, Gabardo and Han categorized the duals
for the Gabor system. At the same time, Christensen and Eldar popularize the concepts
of the oblique dual frame for a given frame sequence {fi}rer of a subspace V' on a shift-
invariant space [26,33|. Later, they generalized the same for multi-generators in [25]. The
classification of oblique, type-I, and type-II and their existence and uniqueness appeared
in [46]. Following that, Heil et al. [44] classified those types of duals for the Hilbert spaces.
In this line of research, our focus will be to investigate the characterizations of duals for the
translation generated continuous frame systems by the action of locally compact groups.

Throughout the dissertation, let us assume a second countable locally compact group
¢ (not necessarily abelian) and a closed abelian subgroup I' of ¢, and consider a I'-

translation generated (T-TG) system EV(&/) and its associated I-translation invariant

(D-TT) space ST (&) for a family of functions & = L?(¥) by the action of T, i.e.,

(1.3.1) &) :={Lp:veTl,pe o}, and S' (&) :=span{L,p:vel,pe &},

6



where for n € 4, the left translation L, on L*(¥) is defined by

(LyS)(v) = f(n'y), v 9.

By I'-translation invariant (I'-TI) space V, we mean L¢f € V for all f € V and € T,
where V' is a closed subspace of L*(%). In this scenario, the main goal of this dissertation
is to provide a compendious study of duals for a continuous frame V(&) of ST (). The
study of frames for I-TG system was initiated by Iverson [49] followed by Bownik and
Iverson [19].

Our aim is to characterize a collection &’ in L*(¥) such that the I-TG system E' (")

satisfies the following reproducing formula:

(1.3.2) f= J J J < f, LY > Ly dur dpy dp for all f e ST(o),
Yed! Jped Jyel’

which is defined weakly in terms of the Pettis integral, where ur, pt., and p.» denote the
corresponding measures. We call E¥ (') to be a I'-T'G dual for a continuous frame £ (&)
of 8Y(«). It can be noted that the above stable decomposition of f allows the flexibility of
choosing different types of duals for a continuous frame &' (7). For developing standard
dual results authors consider S'(«7) = S'(&’) in general [19], but sometimes choosing
a I-TG dual E'(«’) outside the space ST (&) provides better opportunities. For this,
different types of duals for a discrete frame have been discussed by many authors, including
Bownik [17], Gabardo and Han [36], Han and Larson [43], Heil, Koo, and Lim [44], and
Hemmat and Gabardo [37,[46]. To unify such results related to the duals for a frame,
we study alternate (oblique) I'-TG dual, TG dual of type-I and type-II, and I'-TG
dual frame for a continuous frame ' (&) of S (&) in L*(¥), by the action of a closed
abelian subgroup I' of 4. We obtain characterizations of these duals in terms of the Zak
transform for the pair (¢,T"). Further, we characterize the uniqueness of these duals in
terms of the Gramian or dual Gramian operators, which become a discrete frame or Riesz
sequence in L*(%). One of the benefits of such study on the pair (¢,T) is to access the
various number of previously inaccessible pairs, like (R",Z™), (R",R™), (G, A), (Qp, Z,),
etc., where n = m, A (not necessarily co-compact, i.e., G/A-compact, or uniform lattice)
is a closed subgroup of the second countable locally compact abelian (LCA) group G,
and Z, is the p-adic integer in the p-adic number @Q,. Such advantages become possible

due to the involvement of the Zak transform, which was independently introduced by

7



Iverson [49] and Barbieri, Hernandez, and Paternostro [47]. In the case of the pair (G, A)
of LCA groups, we provide the characterizations of these duals in terms of the fiberization
operators. Along with the counterexamples using the fiberization, we also illustrate the
results for the abelian and non-abelian groups.

In this continuation, we generalize the concept of alternate dual and name it K-
subspace dual for a subspace K in H (Chapter . Further, we provide a detailed study
of 8T (&/)-subspace duals of a Bessel family/frame V(&) in L*(¥) due to its wide uses.
Our results have so many predecessors related to the work on subspace and alternate
duals and orthogonal Bessel pair [19,25}26],30,[39-41},44,|46,/54,73]. The purpose of this
study is devoted to characterizing a pair of orthogonal frames and subspace dual of a
Bessel family/frame generated by the I-TG system £Y(&) in L*(4). When EY(&) is a
Riesz basis, then there is an associated biorthogonal system, which forms a unique dual
and it is called biorthogonal dual. A brief study of the biorthogonal system with discrete
translations is discussed. We characterize such results using the Zak transform Z for
the pair (¢,T") defined in . For the case of a locally compact abelian group G, we
use the fiberization map .7, which unifies the classical results related to the orthogonal
and duals of a Bessel family /frame associated with a TT space. This study of orthogonal
frames enables us to discuss dual for the super Hilbert space @~ L?(%¢). In the past, the
Zak transform was mostly used for the case of Gabor systems; however, we now apply it
for the translation-invariant systems. This study expands beyond the previously explored
realm of locally compact abelian groups with discrete translation to include non-abelian

groups with continuous translations.

1.4. Reproducing formula for nilpotent Lie groups

The discussion of frames for shift-invariant spaces on connected, simply connected
nilpotent Lie group was started by Ajita et al. [29] and later on by Barberi et al. for the
Heisenberg group [12].

Our main goal is to describe the reproducing formulas associated with the translation
generated continuous frame in L?(G). In particular, we assume G to be a connected,
simply connected nilpotent Lie group with Lie algebra g and Z be the center of G. Then

G is an SI/Z group if almost all of its irreducible representations are square-integrable

8



modulo the center Z. An irreducible representation 7 of G is called square integrable

modulo the center (SI/Z) if it satisfies the condition
J (7 (g)u, v)|* dg < oo for all u,v.
G/Z

Indeed, our work is a continuation of a chain of research carried out by Currey et al. [29]

for G, and Barbieri et al. [12] for H?. The novelty of the current study is in two folds:

(i) For the first time, it encompasses the non-abelian setup of the nilpotent Lie group,
which is considered to be a high degree of non-abelian structure.

(i) It includes non-discrete translations as well.

We briefly start by describing left translation generated systems in L?*(G) as follows. For
a sequence of functions &/ = {p; : k € I} in L?(G) and a subset A of G, we define
A-translation generated (A-TG) system (/) and its associated A-translation invari-
ant (A-TI) space S*(</) by the action of A from (1.3.1) EM) := {Lyp : A€ A, p €
'}, and SN /) := spanE® (/). For an integer lattice Ay in the center of G, we par-
ticularly consider A = {\M Ao : A\; € A;, @ = 0,1}, where A; is a subset (not necessarily
discrete) of G.

Due to the wide use of continuous frames, we discuss the reproducing formulas for
EM(/) associated with the general set A;, not necessarily discrete. The current study
provides a compendious study of duals for a continuous frame (&) of S*(«7). We pro-
vide point-wise characterizations of alternate duals and their subcategories, like oblique,
type-I, and type-II duals for the continuous frame £*(.«7) and show that the global prop-
erties of duals can be transmitted into locally. The point-wise characterization results in
terms of the fibers will also depend upon A; unlike the Euclidean case [46].

We can get results for discrete frames by sampling the continuous frames which have
wide applications due to their computational simplicity. Further, for the discrete A;, we
discuss reproducing formulas associated with the singly generated A-TG systems £ ()
and £2(v) for ¢, € L?(G) having biorthogonal property.

At this juncture, we point out that the Plancherel transform is a standard tool for
such study in the Fuclidean and LCA group setup. Unlike the Fuclidean and LCA group
setup, the dual space of the nilpotent Lie groups replaces the frequency domain, and the
Plancherel transform of a function is operator-valued. Therefore the technique used in

the Euclidean and LCA groups is restrained.
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To illustrate the current work for the Heisenberg group H?, we first note that H? is
an S1/Z nilpotent Lie group identified with R? x R? x R. The d-dimensional Heisenberg
group, denoted by H?, is an example of SI/Z group. The group H? can be identified with
R? x R? x R under the group operation (z,y,w)-(2/,y',w') = (z+ 2",y +y,w+w' +z-y),
z, 2, y,y € RY, w,w € R, where “” stands for R? scalar product. Using the fiberization
map on L?(H?) associated with the Schrodinger representations, we can convert all results
into the Heisenberg group H¢ setup from the SI/Z nilpotent Lie group G in a natural
way. For this case, the integer lattice is Ay = Z, A, is a discrete set of the form AZ< x BZ,
where A, B € GL(d,R) with AB* € Z, and N € N. As a consequence of our results for the
Heisenberg group, a reproducing formula associated with the orthonormal Gabor systems

of L?(R?) is obtained.

1.5. Structure of the thesis

The structure of the thesis is as follows:

The results of Chapter [2| and Chapter [4] are from our published material S. Sarkar,
N. K. Shukla, Translation generated oblique dual frames on locally compact groups,
Linear Multilinear Algebra, (2023), doi:10.1080/03081087.2023.2173718, 32 pages.
The Section of Chapter [6] is a part of our published material S. Sarkar, N. K.
Shukla, Characterizations of extra-invariant spaces under the left translations on a Lie
group, Advances in Operator Theory, (2023), https://doi.org/10.1007/s43036-023-
00273-x.

Chapter 2| and Chapter |3| offer abstract machinery tools for the dual frames in
measure-theoretic abstraction as a preparation for the next chapters.

In Chapter we characterize alternate (oblique) duals and duals of type-I and
type-II for a frame in multiplication invariant spaces on L?*(X;H) corresponding to the
pointwise conditions in H. This contains discussions on Plancherel transform on L?*(X)
corresponding to a Parseval determining set in the measure-theoretic setup and then
providing a characterization result for the type-II dual. The results present a unified
theory connecting the discrete problems with a continuous setup. Besides, we characterize
these duals’ uniqueness using the Gramian/dual Gramian operators, which become a

discrete frame/Riesz basis for the associated range space.
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In Chapter (3| we discuss the construction of the dual frames and their uniqueness
for the multiplication generated frames on L?(X;H) where X is a o-finite measure. A
necessary and sufficient condition of such duals associated with the infimum cosine angle
is obtained.

In Chapter 4, we obtain characterizations of alternate (oblique) I'-TG duals and
[-TG duals of type-I in terms of the Zak transform for the pair (¢,I") and its uniqueness
using the Gramian/dual Gramian operators. In the case of a discrete abelian subgroup
I' of ¢4, I'-TG duals of type-II and their uniqueness are characterized in terms of the
Zak transform. When ¢ becomes an abelian group G, the fiberization map is used to
characterize these duals by the action of its closed subgroup A. In Section we provide
prototype examples on R", Q, along with counterexamples of duals. In conclusion, we
provide the characterizations of the duals for Gabor systems in Section 4.3l In Section
4.4 we additionally take into account the oblique dual frame characterizations and their
uniqueness associated with the orbit generated by dual integrable representations of LCA
groups. At the end, the construction techniques of new dual frames and their uniqueness
associated with the infimum cosine angle for the I'-TG frame are also discussed in Section
4.5

By an action of a closed abelian subgroup I' of ¢ on a collection of functions & in
L*(9), we study S'(«/)-subspace orthogonal and duals to a Bessel family/frame E' ()
in Chapter [5] and obtain characterization results in terms of the Zak transform for the
pair (¢4,1") and the Gramian operator. As an application, we study such subspace dual
and orthogonal frames for singly generated systems in Subsection[5.1.1. An investigation
of a translation generated biorthogonal system and dual of a Riesz basis is carried out in
Section [5.2] In Section we address the theory for a collection of generators indexed
by o-finite measure space (need not be countable) by the action of any closed abelian
subgroup I' of ¢ which unifies the broader class of continuous frames as well. This
chapter ends with an illustration of our results for the various potential applications such
as splines, Gabor systems, p-adic fields Q,, etc.

The Chapter [6] starts with a brief discussions about the Plancherel transform for the
S1/Z nilpotent Lie group (Section [6.1)). Section is devoted to construct reproducing

formulas associated with the continuous frames generated by the non-discrete translation
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of multiple functions using the range function. Employing the Plancherel transform fol-
lowed by periodization, we discuss various reproducing formulas for the singly generated
discrete systems £2() and £* (1)) having biorthogonal property in Section . We estab-
lish the proof of our main results Theorem [6.6.2, [6.6.7, [6.6.8 and [6.6.10] in Section [6.6.1

by involving the range function associated with a A;Ag-invarinat space.

In the context of a connected, simply connected nilpotent Lie group, whose repre-
sentations are square-integrable modulo the center, we find characterization results of
extra-invariant spaces under the left translations associated with the range functions.
Consequently, the theory is valid for the Heisenberg group H?, a 2-step nilpotent Lie
group.

Finally, Chapter (7| deals with some concluding remarks and provides directions for

future studies.
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CHAPTER 2

MULTIPLICATION GENERATED OBLIQUE DUAL
FRAMES IN L%(X;H)

]

In this chapter, we discuss duals of the multiplication generated systems as a measure-
theoretic abstraction in L?(X;H) using the range functions. The results present a unified
theory connecting the discrete problems with a continuous setup. Besides, we characterize
the uniqueness of these duals using the Gramian/dual Gramian operators, which become

a discrete frame/Riesz basis for the associated range space.

2.1. Multiplication invariant spaces

Throughout this chapter, we fiz separable Hilbert space H, and a positive, o-finite and
complete measure space (X, ux) such that L*(X) is separable. Now we define multiplica-

tion operator on L?*(X;H), where
L*(X;H) = {g@ | ¢ : X — H is measurable such that JX lo(z)|? dux(z) < oo} :
is a Hilbert space with the inner product
oty = | (@) vl@)) dus(a) or .0 € LX),
Definition 2.1.1. For ¢ € L*(X), the operator M, on L?(X;H) is defined by

(Myf)(@) = p(2)f(2) ae. v X, fe LA(XiH),

is known as the multiplication operator.

This chapter is a part of the following manuscripts:
S. Sarkar, N. K. Shukla, Translation generated oblique dual frames on locally compact groups, Linear
Multilinear Algebra, (2023), doi:10.1080/03081087.2023.2173718, 32 pages.
S. Sarkar, N. K. Shukla, A characterization of MG dual frames using infimum cosine angle,
arXiv:2301.07448.



The operator M, is a bounded linear operator on L?(X;H) satisfying | Myl = | ¢ 1=
provided X is a o-finite measure space. If X is not a o-finite measure space, then || M|
need not be the same as |¢|» [27, Theorem 1.5].

Next, we define the determining set introduced by Bownik and Ross [20].

Definition 2.1.2. A set ® < L*(X) is called a determining set for L'(X) if for any
non-zero f in L'(X), there exists a g € ® such that §, f(z)g(z) dux(z) # 0.

The determining set is a basis like family of functions in L*(X). For example, if
G is a locally compact abelian group, the dual group G (collection of all continuous
homomorphisms from G to T) is a determining set for L'(G), and it is an orthonormal
basis for L?(G) when G is compact.

Now we define multiplication invariant spaces on L?(X;#H) associated with the deter-

mining set ® < L*(X).

Definition 2.1.3. Let V be a closed subspace of L?*(X;H) and ® be a determining set
for L'(X). We say V is a multiplication invariant (MI) space corresponding to @ if

MyfeViorallpe® and feV.

Given a family A « L*(X;H) and a determining set ® < L*(X) for L'(X), we
define multiplication generated (MG) system FEg(A) and its associated MI space Sp(.A)

as follows:
Eo(A) :={Myp:pe®,pe A} and Sp(A) :=spanFyp(A).

For the characterization of MI spaces, the range function plays a crucial role. The
history of the range function traces back to the work of [19,20,45,49.71]. A range function
on X is a mapping J : X — {closed subspaces of H}. Further, we say J is measurable
if for any w,v € H the mapping = — (P;(x)u,v) is measurable on X, where for z € X,
the orthogonal projection P;(z) : H — H projects onto J(x). Next, we define a closed

subspace V; corresponding to the projection-valued map J as follows:
(2.1.1) Vy={pe L’(X;H): p(zx) € J(z) for a.e. x€ X}.

The following result is a restatement of |20, Theorem 2.4].
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Theorem 2.1.4. Let (X, i) be a o-finite measure space, ® be a determining set for L'(X)
and H be a separable Hilbert space. Then the following hold:

(i) If J is a measurable range function then MyV; < V; for ¢ € ©, where V; is defined
m @
(ii) The mapping J — Vj from the collection of all measurable range functions which
are equal a.e. to the set of all MI subspaces of L*(X;H) is a bijection.
(iii) For a collection of functions A in L*(X;H) and for a countable dense subset Ay =
A, consider the range function J(x) = span{p(z) : ¢ € Ao} (defined a.e.). Then,
Vy = So(Ap) = So(A).

At the end of this subsection, we define Parseval determining set for L*(X) which is
a special kind of determining set, introduced by Iverson [49]. It is a measure-theoretic

abstraction of characters for an abelian group G satisfying the Plancherel formula:

(2.1.2) )B(x) dug(x)

dug(B) =

f @) dug(z) for f € V().

Definition 2.1.5. Let (M, upr) be a measure space. A set D = {gs € L*(X) : s €
M} is said to be a Parseval determining set for L'(X) if for each f € LY(X), s —

§ f(2)gs(7) dux(z) is measurable on M and

x)gs(x) dpx(x)

dMM J f(@)]” dux(x).

2.2. Characterization results

Given a Parseval determining set D = {g, € L*(X) : s € M} for L'(X) (see Definition
2.1.5), and a family of functions A = {¢; : t € N'} having a countable dense subset A, in
L*(X;H), we recall the MG system Ep(.A) and its associated MI space Sp(A) in L*(X; H)
associated with D, given by:

Ep(A) := {Mg,01(") = gs(-) () : s € Mt € N} and Sp(A) := spanEp(A),

where (M, ) and (N, pp) are o-finite measure spaces. For a.e. z € X, we define the

range function J4(x) and a set A(z) as follows:

(2.2.1) Ja(x) :=span{n(x) : n e Ao}, and A(z) := {n(z) : n e A}
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Now in the sense of Definition|1.1.1, we define alternate (oblique) duals and its particular
cases for a continuous frame Ep(A) of Sp(A) in L?(X;H).

Definition 2.2.1. Given A, A’ < L*(X;H), assume that the MG system Ep(A) is a
continuous frame for the MI space Sp(A) over M x N and Ep(A’) is Bessel in L?(X;H)
over M x N. We call

(i) Ep(A’) an alternate MG-dual for Ep(A) if it is an alternate dual for Ep(.A) in the
sense of Definition [L.1.1 (a).
(i) Ep(A’) an obligue MG-dual for Ep(A) if it is an oblique dual for Ep(A) in the
sense of Definition [1.1.1 (b).
(iii) Ep(A’) a type-I MG-dual for Ep(A) if it is a type-I dual for Ep(A) in the sense
of Definition [L.1.1 (c).
(iv) Ep(A") a type-1II MG-dual for Ep(A) if it is a type-1I dual for Ep(A) in the sense
of Definition [1.1.1 (d).
(v) Ep(A’) an MG-dual frame for Ep(A) if it is a dual frame for Ep(.A) in the sense
of Definition [L.1.1 (e).

In general, we write MG dual of type-I (type-1I) instead of type-1 (type-II) MG dual.

It is worthwhile to mention that the cannonical dual of an MG system Ep(A) is
itself an MG system Ep(A) for any collection A = {¢;}epn in L2(X;H), where A :=
{(SED(A)‘SD(A)>_1% :te N} [19]. Further note that for a.e. # € X, A(z) is the canonical
dual for A(x), where

(2.2.2) [(SED(A)ISD(A))j%] (z) = (SA(m)}JA(x))fl (pi(z)) for ae. z € X.

In this chapter, we will characterize alternate, oblique, type-I and type-II MG du-
als corresponding to the point-wise conditions in . For this, we begin with defining
Plancherel transform associated with the Parseval determining set. This is a variant of

Fourier transform introduced by Bownik and Iverson [19].

Definition 2.2.2. For f e L'(X) n L*(X), we define Ff € L?(M) corresponding to the
Parseval determining set D = {gs € L*(X) : s € M} by

(2.2.3) (Ff)(s) = JX f(2)gs(z) dux(z) ae. se M.
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The Plancherel transform associated with Parseval determining set D has a unique ex-

tension F : L*(X) — L?*(M), which is linear and isometry.

Employing the Parseval determining set D for L'(X) and isometry of F, we have the

Plancherel’s relation and Parseval’s formula

(2.24) | Fflreomy = 1fl2o) and (Ff, Fhyramy = {f; hyr2ix) for all f,h e L*(X),

respectively.

We need the following result in the sequel to step ahead.

Lemma 2.2.3. For two Bessel families Ep(A) and Ep(A") over M x N in L*(X;H),
we have the following for all f,ge L*(X;H):

(Tepafs Tepa)g) = JX<TA/(x)f(x>7TA(x)g(I)> dux (),

where Tg,a) and Tg,ay are the analysis operators associated with the Bessel families

Ep(A) and Ep(A'), respectively. Moreover, we obtain

f f (o Myibe) T Myey dpane(t) diapals) f f (F (@), () @) oo @)y dpnc(t) dpx ().
M IN

Proof. For f,g e L*(X;H), the analysis operators Tr, 4y and Tr, 4y satisfy

(TED(A)Q>(S7t) <ga gsg0t> and (TE‘D A’)f)( ) = <f7 Mgs¢t> for all <S7t) € M x N?

and then we compute the following:

(Tepan fr Tepa)9) = J f {fy My, ey {g, My, 00y dpnc(t) dpipa(s)

[ ([ ot duc)) = [ 0@ dsto) duto) duss)
JJU (f (@), Yel@)ygs(w) dpx (& ) (J (g(x), pi(x))gs(x) dpx (x )) dpp(t) dpp(s).
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Choosing Fy, (z) = (f(2),v:()> and G, () = {g(z), ¢s(x)) for & € X and t € A, we have
eain . Toons) = | | FFCLT) du(t) dias(s)
- || FROFET) duants) dutr)
- | FPuFCL) dutt) = | (PG dustt)
- || Pu@C @) duxte) dutt)
- L<f<m>,wt<m>> @), @)y diix () dun(h),

using Parseval’s formula (2.2.4) on L*(X). Note that, Fy,,G,, € L?*(X;H) in the above
calculations by the fact that Ep(A) is Bessel with bound B if and only if A(z) is Bessel

with bound B for a.e. x € X, and the following estimate

J J ’Fwt ‘ e (J J [F (@), en(@) dpx (w) d/w(t))é
X (L JN K9(@) o@Dl dux (@) d/w(t)) |

<VBB|fllgl,

using Cauchy-Schwarz inequality, where we assume Ep(A) and Ep(A’) are Bessel systems
with bounds B and B’, respectively. Therefore using Fubini’s theorem over N' x X, we

get

(oo fr Ton g = N L<f<x>, u(2)) @), @) dpix (z) dpun(t)

r

- || T (@O G0 dint) dis ()

JX

_ ;<TA’(z) (2), Ta@)9(x)) dux (),

where T (f(2))(t) = (f(x), t(x)) and Ty (9(2))(t) = (o), pi(@)) for te N, O

Now, we state an abstract version of the results developed by many authors [17,
Theorem 7.3], [46, Theorem 5] and [44, Theorem 4.2] for discrete frames on Euclidean
spaces. The following results characterize the alternate (oblique) MG-duals, MG-duals of

type-1, and MG-dual frames associated with the range function J4(z) for a.e. = € X.
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Theorem 2.2.4. Let A = {¢; : t € N'} be a collection of functions in L*(X;H) such
that there exists a countable dense subset Ay of A and Ja(x) is defined for a.e. x €
X by (2.2.1), where (X,px) and (N, py) are o-finite measure spaces. For a Parseval
determining set D = {gs}sem for LY X), let the MG system Ep(A) be a continuous frame
for the MI space Sp(A) over M x N, where (M, ) is a o-finite measure space. If
= {4y : t € N} is a collection of functions in L*(X;H) such that the MG system
Ep(A') is Bessel over M x N in L*(X;H), then the following hold:
(i) Ep(A') is an alternate MG-dual for Ep(A) in L*(X;H) if and only if for a.e.
xr € X, the system A'(x) is an alternate dual for the frame A(x) of Ja(z) in H.
Equivalently, TED(A)TED(A/)|SD(A) = Ig,(a) tf and only if Ti(x)TA/(x)‘JA(x) = Iy,
for a.e. x e X.
(ii) Ep(A’) is an oblique MG-dual for Ep(A) if and only if for a.e. x € X, A'(x) is an
oblique dual for the frame A(x) of Ja(x).
(iii) Ep(A’) is an MG-dual of type-1 for Ep(A) if and only if for a.e. x € X, A'(z) is
a type-I dual for the frame A(z) of Ja(x).
(iv) Ep(A') is an MG-dual frame for Ep(A) if and only if for a.e. x € X, A'(x) is a
dual frame for A(x) of Ju(z).

Proof. (i) Assume that the MG system Ep(A’) is an alternate MG-dual for Ep(A) in
L*(X;H), ie

so) = Lso()-

By Lemma [2.2.3; we get the the following for all f,g € Sp(A):

226) | TieTawde) o) dix(@) = [ S)ala)) dus(a).
We have to show Tj‘(m)TA/(I)|JA(m Iy, for a.e. x € X. For this, let {z,}nen be a

countable dense subset of ‘H and let P;,(x) be an orthogonal projection onto J4(x) for
a.e. x € X. Clearly for a.e. x € X, {Pj,(2)x,}nen is dense in Jy(z). Next, for each

m,n € N, we define a set S,,,, as follows:

S = {rc € X : pmn(z) ::<Tj(m)TA/(x)PJA ()T, Py, (2)xn)

(P ()T, Py (2)20) # o}.
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Now we assume on the contrary Tj(x)TA/ # 1;,(») on a Borel measurable subset Y’

of X having positive measure. Then, there are mg, ng € N such that S,,, ,, N Y is a Borel
measurable subset of X having positive measure, and hence either real or imaginary parts

Of Py () are strictly positive or negative for a.e. @ € Sy, n, NY. First, we assume that

0,70
the real part of pi,, n, () is strictly positive on Sy, », NY. By choosing a Borel measurable

subset S of Spy.n, MY having positive measure, we define functions hy and hy as follows:

Pj (x)x,,, forxzels, P;, (x)x,, forxzels,
hl(aﬁ): JA() 0 and hg(&?): JA() 0

0 for x € X\S, 0 for x € X\S.

Then, we have hy(z), ho(x) € Ja(x) for a.e. x € X since {P,(2)x,}nen is dense in J4(z),
and hence we get hq, hy € Sp(A) using Theorem [2.1.4. Therefore, using f = hy, g = hy
in (2.2.6), we obtain {g pmgm, () dpx(x) = 0, which is a contradiction since the measure
of S is positive and the real part of p,,,.n,(z) is strictly positive on S. Other cases follow
in a similar way.

Conversely, suppose Tj(x)TA/(x , for a.e. x € X. Then we have the result

)‘JA(I) = Lia
(2.2.5), follows from the computation

(TipwTesanf 9) = L (Ta) [(@), Tawg(x)) dux(z)
- [ T Ta 9000 dinnta)

_ L (Fla), g(x)) dux(a)

for all f, g€ Sp(A) by Lemma [2.2.3.
(ii) From the part (i), 77, T

= 17, fora.e. x € X is equivalent to (2.2.5), i.e.,

x) () ‘JA(x)

TED(A)TED(-A/) (4)- Similarly, we can prove Tj"(w)TA(w)‘JA/(x) = [JA,(x) for a.e.

Sp(A) Isp
x € X is equivalent to

TED(A/)TED(A)‘SD(A’) - ISD(.A')'

Therefore, we have the result by observing Definition [2.2.1.
(iii) Due to the part (i), we need to show range 7%  ,y < range Ty 4 if and only if

range T*,(x) C range le(x). Equivalently,

[T, ary (L2 (M x N))| v Sp(A') S [Ty ay (L2 (M x N))| n Sp(A),
20



if and only if for a.e. z € X, [Tj,(m)(LQ(N))] N Ja(z) S [Tj‘(m)(LQ(./\/'))] N Ja(z). Tt is
enough to verify only on generators ¢;, 1; for t € . Therefore, the result follows by noting
that M, ¢ € Sp(A) for t e N and s € M if and only if for a.e. z € X, ¢y (x) € Ja(z) for
t' € N in view of Theorem 2.1.4.

(iv) follows easily. O

Next, we will assure the existence of an oblique (type-IT) MG-dual in L?(X;H) while the
canonical dual always exists (see Theorem [2.2.6).

We first ensure the commutativity of the multiplication operator M, with the orthog-
onal projection on a closed subspace of L?(X;H). For the sake of completion we provide

a proof of the following lemma. The techniques of the proof follow from [27, Proposition

3.7].

Lemma 2.2.5. Let ¢ € L®(X) and W be a closed subspace of L*(X;H). Then, the
multiplication operator My commutes with Py if and only if W is invariant under both
the operators My and M, where Py is an orthogonal projection on W and Mg s the

adjoint of bounded linear operator My.

Proof. For each ¢ € L*(X), suppose MyPyw = PwM,. We need to show that Mjf
and M7g are members of W for each f,g € W. For this first note that we can write
L*(X;H) = W @ W+, and hence the bounded linear operator M, can be represented as

A B
My = ,where A: W - W, B: Wt > W,C: W+t - Wand D: Wt - Wt
C D
are bounded linear operators [27]. The orthogonal projection Py can also be represented
1
in the form of matrix as follows: Py = v , where Iy is an identity map on W.
0 0
Now by employing the matrix representations of M, and Py on M,Py = Py My, we get
A 0 0
B =0,C =0, and hence we have My = and also Mj = , where A*
0 D 0 D*
and D* are the adjoint operators of A and D, respectively. Therefore for any f,g € W,
S Af . [9 Atg\ . :
we get My = and M = which are members of W. Thus, W is
0 0 0 0

invariant under both M, and M.
Conversely, assume that the closed subspace W is invariant under both the operators

My and Mg. Then observe that W+ is also invariant under both operators M, and M},
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follows by observing (g, Mgh) = (M3g,hy = 0 and (Mjh,g) = (h, Mgy = 0 for all
he Wt and g € W. Now for h € L*(X;H), we have Pyyh € W and then My(Pywh) € W

since W is invariant under M. Therefore, we have
(Mg Pw)h = Py (MyPw)h = (PwMyPw)h.

Thus, we get Py MyPy = MyPy . Similarly, due to the invariant property of W+ under

My, we have
(I = Pw)My(I — Pw) = My(I — Pw),

where [ is the identity operator on L?(X;H) which gives Py M, = Py MyPy by cancel-
lation property. Hence, we get Py My = My, Py since Py MyPy = My Py . 0

The following result is a slight modification of |44, Theorem 1.5].

Theorem 2.2.6. Let A = {¢; : t € N'} be a collection of functions in L*(X;H) and let
D be a Parseval determining set for L'(X) such that for all g € D, we have g€ D , where
G(x) = g(z) for ae. x e X, (X,ux) and (N, uy) are o-finite measure spaces. If the
MG system Ep(A) is a continuous frame for the MI space Sp(A), then the following are
equivalent:
(i) L*(X;H) = Sp(A) @ W, for some closed subspace W of L*(X;H) with MgW <
W for all ¢ € D, where @ denotes the direct sum of closed subspaces whose inter-
section 1S zero.
(ii) There is a family A" = {i}en in W such that W = Sp(A'), and Ep(A’) is an
MG-dual of type-1I for Ep(A).
(iii) There is a family A" = {ihen in W osuch that W = Sp(A’), and Ep(A’) is an
oblique MG-dual for Ep(A).

Proof. (i)=>(ii). Let us assume (i). To prove (ii), we need to construct a family A" =
{1 }tenr in W osuch that Ep(A’) is a frame for W, and Ep(A’) is an MG-dual of type-II
for Ep(A). Since L?(X;H) = Sp(A) @ W, the orthogonal projection B := Py |gpy(a) :
Sp(A) — W is an isomorphism [15,27], where Py is an orthogonal projection from
L?*(X;H) onto W. Hence, the collection PB(Fp(A)) is a continuous frame for W. Therefore
by using Lemma [2.2.5, we have

&BED(-"U = PI/I/(ED(A)) = ED(PW-A) = ED(mA),
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since W is invariant under M, and M; = Mg; for all g; € D by noting that D consists
of both g, and g;. Thus, the family Ep(B.A) is also a continuous frame for W.

Now we assume Ep(Ay) is the canonical dual frame for Ep(9.A) in W, where Ay :=
{@ihien in L2(X;H). Then, Ep(Agy) is an alternate MG-dual for Ep(.A) since

Tepa)T7, I, (4, follows by observing

Aq} ’SD(.A

JM

[ <8P 0B M, o st dumt))
N

— g (fM JN<PWf, My, 6B M, 00 drina(5) dlw(t)>

gt ( f f OB, My, 5O M, 0 djipals) dxw(t))
JM IN
= m_lmf = ffor fe SD(A).

Next the relation Sgypa) = ThyqpaTEo@a) = Bl iy TEp()PB* = BSEy )P, since

TED(;B A = =PIy, (A) implies

* — 1% *\—1
TE‘D(A‘;;X) (SED((BA)|SD(EBA)) TED(mA) = (q3 ) (SED ‘S (A q3 mTED

%\ — —1 ES
= (P) " (Seospa) " Thnca):

and hence Ker T;D(Am) = Ker TED(A). Thus, we obtain range TED(Am) = range Tr, ).
Therefore, (ii) follows.
(ii)=(iii) follows easily.
(ili)=(i). Suppose (iii) holds. Since the family Ep(.A’) is a continuous frame for Sp(A’) =

W, we have range T7, |,y = W, and hence, we get (T3 (A)TED(A/)) = T3 T en(),
range(Tg, 1) epa)) = Sp(A) and Ker(Tg, 4 Tepa)) = wt.
Therefore, we have L?(X;H) = Sp(A)®W |27, Proposition 3.2 (c)]. Thus (i) follows. [

We need the following result for the characterization of MG-duals of type-II in order

to move on to the next step. It is a measure-theoretic abstraction of [46, Lemma 1].

Lemma 2.2.7. Let A = {p;}ien be a family of functions in L*(X;H) such that the col-
lection Ep(A) is Bessel over M x N in L*(X;H). For eacht € N and ¢, € A, let p,, be a
complez valued measurable function over X x N such that |{p,, (2)}@.ex x| r2x;z2ovy) <

. Then following statements are equivalent for all f € Sp(A):
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0 | | @) pala) dus(a) dut) o

(ii) For a.e. x € X, f N<f(x), 0t (7)) Py, (x) dupr(t) = 0.

t

In particular, it holds for all f € L*(X;H).

Proof. For (ii) = (i), first note that Ep(A) is Bessel with bound B if and only if for a.e.
x € X, A(z) is so with same bound. Then for f € Sp(A), we have f(z) € J4(z) for a.e.
x € X from Theorem [2.1.4, and hence by Cauchy-Schwarz inequality, we get

(2.2.7)

j N f @) D pa @) du(t) dux(@)

< (LGX LN [(f (@), pe(x))I dpn(t) dux(ﬂf))l/2 (LeX LN [P () dpa(t) dpx (x))

< (B | i duch))l/z ( || P dux<x>)1/2 <,

since f € L*(X; M) and [{py, ()} @pex<alr2(x;r2vy) < 0. Using Fubini’s theorem, we

1/2

obtain
| | @) pato) dutt) dux(a) = || F@p)pae) dusta) du®),
zeX JteN teN JzeX
Thus, (i) holds true.
For (i) = (ii), let {x,, }nen be a countable dense subset of H. Note that for a.e. z € X,

{Pj, () }nen is dense in J4(z). For each n € N, we define

S, — {x € X Ay() = JN<PJA(J;)%, (1), (%) dpin (t) # 0} |

If (ii) is false, there exists nyp € N and a Borel measurable set Y in X having positive
measure such that the measure of S,,, NY is positive. There are four possible inequalities
for A, (z), viz., real part of A, (z) > 0, real part of A, (z) < 0, imaginary part of
Ay, (z) > 0, and imaginary part of A, (z)(x) < 0. For the case of real part of A, (z) > 0,
we choose a Borel measurable set S in S,,, N Y having positive measure and then define

f € SD<.A> by
Py (x)x,, forxzes,
fa) =1 ™
0 for z € X\S.
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Hence, we arrive on a contradiction §¢ A, (z) dux(x) = 0, since the measure of S is

positive and real part of A, (x) > 0. Other cases follow easily. O

Due to the applications of the inverse of F for further nurture, we require surjectivity
of F defined in . In general, it is not surjective. For example, in the case of countable
sets X and M equipped with counting measures, F need not be surjective as it becomes
an analysis operator for the Parseval frame D. In general, a Parseval frame for L?(X)
consisting of functions in L*(X) need not be a Parseval determining set for L'(X). Indeed,
for any f e L'([0,1])\L?(]0,1]) there is an orthonormal basis D = {gs}s«n < C([0, 1]) for
L2([0, 1]) such that D is not a Parseval determining set [49]. Also, observe that D = G is
a Parseval determining set for L(G) in view of (2.1.2) but it need not be an orthonormal
basis for L(G). The set D = G becomes an orthonormal basis when G is compact [48].
As per our requirement and these discussions, let us define an orthonormal Parseval

determining set and F~! as follows:

Definition 2.2.8. A set 2 = {gm}mem S LP(X) n L*(X) is said to be an orthonormal
Parseval determining set for L?(X) if it is a Parseval determining set for L'(X) as well

as orthonormal basis for L*(X), where M is a countable set having counting measure.

Lemma 2.2.9. For an orthonormal Parseval determining set 9 = {gm}mem, the map
F : LA(X) — (3(M) associated with 2 defined by (2.2.3) is surjective (and hence, iso-
morphism), where pux < oo and M is a countable set having counting measure. Moreover,
the map F~1: (2(M) — L*(X) defined by
(FH (@) = Y] e(m)gm(@), ¢ = {e(m)}mer € F(M), z€ X
meM

satisfies the following:
|F | = || and (F e, F'dy = {c,d) for all c,d € (*(M),
where the above series is interpreted as its limit in L*(X).

Proof. The range of F contains all the functions ¢ = {c(m)}ner in £2(M) such that
c(m) = 0, except for finitely many terms, i.e., the range of F is dense in ¢*(M). Since
F is an isometry it is a closed range. Hence, the isomorphism follows. Note that the

operator F is isometry and F ! is the adjoint of F using the formula (Ff,c) = {(f, F*c)
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and from the following estimate

(Ff.ey= Y, Ff(m)e(m) = L f(l’)( > gm(fL“)C(m)) dpx (),

meM meM

the remaining part follows. O]

We state an abstract version of a result developed in [46, Theorem 5]. The following
result characterizes MG-duals of type-II associated with the range function J4(x) for a.e.

re X.

Theorem 2.2.10. In addition to the hypotheses of Theorem[2.2.4, assume that the Par-
seval determining set D becomes an orthonormal Parseval determining set 2 = {gm }mem
for L*(X), where ux < oo and M is the countable set equipped with counting measure.
Then the following are equivalent:

(i) Eg(A") is an MG-dual of type-II for E4(A) in L*(X;H).

(ii) For a.e. v € X, A'(x) is a dual of type-11 for the frame A(x) of J4(x) in H.

Proof. For (i) = (ii), let T 4 Tp, a1

s, 4) = Iso) and range T, (a) < range T, (4).
Then, the analysis operator T'g,, () is restricted on S (.A) and range Ty, 4y = Tk, ) (S2(A)).

Therefore due to Theorem [2.2.4 (i), it is enough to show
range Ty () € range Ty, 1., Taw) (H)" S Tawy(Jalx))t in L*(N)

; 1.
)|JA(CC) = I;,(x) for a.e. x € X. For this, let p := {p;}ren € [TA(x) (H)] in
L?(N). Then for f e L*(X;H), we have f(x) € H a.e. z € X and hence

since Tj(m)T W(z

@) B = | @)@l dut) =0 e ve X

For a fixed m € M, we choose p,, (2) = gm(2)p: in Lemma [2.2.7, where g, € 2 < L*(X),
and then by Fubini’s theorem (see (2.2.7)) we get the following

|| | o cwmm dun) dte) 0. e, | <1008 dute) o

b

since {p,, } € L*(X; L*(N)) and E4(A) is a Bessel family in L?(X;H). Therefore for any
¢ = {Cm}mem € (2(M), we can write

<TED(A)f7 {CmPttmemien) = Z JN<f7 My, 01)Cmbs dpn(t) = 0.
meM
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Thus, the system {cpi}meren € [Tr, ) (L2(X;H))]*F n L2(M x N). Now by us-
ing the assumption [Tg,a)(L*(X;H))]*" S [Ty (S2(A)]*F in L2 (M x N), we get
{cmbi}tmerien € [Trya)(S2(A))]*- and then for g € S5 (A), we have

0= 3 | oMy 00 duntt) = || o) inte (2 g >cmpt> dpx(t) dyux (a),

meM meM

due to Fubini’s theorem. We can write the following using Lemma [2.2.9

|| o)) 2T din(0) dux(o) =
N IX

Therefore by observing {p; }iens € L2(N), {¢m}mem € £2(M), and

[{pe (F7(0)) () henvaex [2vxx) = [l [{peden 2o

we have

fN<g<x>,wt<x>>pt 1) @) dun(t) = 0 for ae. v € X,

using Lemma [2.2.7. Thus for a.e. x € X, we get {pilen € [TA/(I)(JA(x))]L since

{Cm}mem € £2(M) is an arbitrary element and g(z) € J4(x).

For (ii) = (i), let T% ,\Tw (> = I;,(x) and range T () S range Ty, for a.e.

(2) >‘JA(x>

x € X. Then for a.e. x € X, the analysis operator T y(,) is restricted on J4(z) and

range Tu(z) = Tw(z)(Ja(z)). It suffices to show

range T, (a) € range T, 4), i-€., Tr, 4 (L*(X; H))t < T,E@(A/)(S@(.,ét))L in L*(MxN),

since T 1) TEq (A1) So(d) = Is,, (). For this, let § := (f,, (M) m.nyemxn € [Troa) (L2 (X5 H))]H

in L*(M x N). Then, we get the following for all f € L*(X;H)

0=} f <5 My o) ) = 3 j j (@), 0u())gm@) fon () dpix () (1)

meM

- || s@rat (2 fon(m )dux()dMN(t)
meM

j f (@), o) FT o) @) dpix (z) dpne(t),

using Fubini’s theorem and Lemma [2.2.9, and hence by Lemma [2.2.7, we obtain

f (F(2), ool F o) @) dun(t) = 0 e, x € X,
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since [{F (o) (@)}l r2cei2vy) = {fobten|2ovy < o0. Thus, for ae. z € X we get

L

{F o) @) hen € [Taw (H)]

which implies {F~(f,,,)(2) hen € [T @) (Ja( ))]L in L?(\) due to our assumption. That

means for a.e. x € X and g(x) € J4(x), we have

f<g (@) F (o) @) dpuar(t) = 0,

and hence using Lemma [2.2.7, we obtain § = (fp,(m))mpemxn € [Tr,an(Sz(A))]*,

ie.,

3 | oMy B ) i) = 0 for al g 55(A)

meM
in view of Theorem [2.1.4 since Fg(A) is a Bessel system in L?(X;H). ]

Remark 2.2.11. As a consequence of the above results for A = {p} and A" = {1}, the
MG system FEp(A’) is an alternate MG-dual for Ep(A’) if and only if for a.e. z € X
such that Ju(z) # 0, we have (p(z),¥(x)) = 1. In addition if A = A’, Ep(A) is an
alternate MG-dual of itself if and only if |¢(z)| = 1 for a.e. € X such that Ja(x) # 0.
This generalizes the results [26, Theorem 4.1] and [44, Corollary 4.6] for the set theoretic

abstraction.

Example 2.2.12. Let A = {¢} and A" = {1} be two collections of function in L2([0, 1]; ¢*(Z))
such that

= {Xp0,1/21(- = k) }rez and ¢ = {xpo,1/21001,3/21 (- = k) } ez
Choose D = {e*™*-}, 7, which is a Parseval determining set for L!([0, 1]). This follows by

noting
1 .
) Foye e ] = 5[ Foof” =17 = [ 15 ar or 7 2201,
kez 1Y0 keZ

Also [[f]2 = o0 and | f]|ls = oo for f e L*([0, 1])\L2([0,1]).

Here the MG systems are Fp(A) = {¥™* ¢ : k € Z} and Ep(A’) = {2k : k € Z}.
For a.e. = € [0, 1/2] the range function J4(z) = span{e(x)} = span{(..., 0, 0, 1, 0, 0,...)} #
0, and the value of

p(@), () = > Xjo2 (@ — k) xjo1/20m3/2)(z — k) = 1 on [0,1/2].

keZ

Applying Remark 2.2.11| we say Ep(A’) is an alternate MG-dual for Ep(A).
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Indeed, this singly generated MG system Ep(A) is a Parseval frame (known as, Co-
herent State) for Sp(A) whose associated canonical dual is unique alternate MG-dual.
Adopting the idea of this characterization associated with J4(x), next we concentrate on
the canonical dual when it becomes unique MG-dual for a discrete frame. Such duals are

associated with Riesz sequences which are always discrete [20].

2.3. Uniqueness of multiplication generated duals

For a countable sequence {z;} in H, if there are 0 < C} < Cy < 0 such that for all

{ci} € 2 with ¢; # 0 for only finitely many 4,

2, it
i

{x;} is known as Riesz sequence in H with bounds C; and C,. It is known as Riesz

C1 el < < Ce |{ei}lze

2
H
basis if Span{z;} = H. Note that a sequence {z;} in H is a Riesz basis for H if and
only if it is a frame for H and it has a unique dual frame. In this section, our goal is to
find characterizations when alternate (oblique) MG-dual/ MG-dual of type-I and type-11/
MG-dual frame for Ep(A) admits unique MG-dual.

Throughout this section, we assume M and N are countable sets having counting
measures, and the measure of X is finite. For two countable families A = {¢,}nen and
A" = {p}nen in L2(X;H) and an orthonormal Parseval determining set 2 = {gm }mem
for L?(X), we observe that Fg(A’) is an alternate MG-dual for E4(A) other than the
canonical dual Ey(A) if and only if the following fact holds for all f, g e Sy (A):
(23.1) D0 2 My, ) My, o0, 9) = 0,

meM neN

where 1, = ¥, — (SEQ(A)‘S@(A))_lgon, if and only if for a.e. x € X, A'(x) is an alter-
nate dual for A(x) other than the canonical dual A(z) if and only if for a.e. z € X,
S e F (@), (@) pn(2), 9(2)) = 0, where 7,(x) = v (2) = (Saco],, o))~ Pn(a) for ace
z € X from (2.2.2). Observe that E(A”) is Bessel in L?(X; H), where A” := {1, : n € N},
and hence the system A”(z) is Bessel in H for a.e. x € X.

Next we mention characterization results for the uniqueness of alternate (oblique)

MG-dual, MG-dual of type-I and type-II, and MG-dual frame for Ep(A) which are an

abstract version of some results of [36/37,42,44/|46]. These results are also connected with
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the Gramian and the dual Gramian operators associated with A(x) = {p,(z) : n € N'}.
Given a Bessel sequence A(x) in J4(z) = span{p,(z) : n € N} for a.e. x € X, the
operator G(z) = O(z)0*(x) on (*(N) is the Gramian corresponding to A(z), while
its dual operator ©(z)*O(z) =: G(z) on Ja(z) is the dual Gramian operator, where
O(z) : Ja(x) — £2(N) and its adjoint ©*(z) : 2(N) — J4(z) are given as follows:

O(x)h = {{h, u(@)) tnen, and O%(z)(c) = Z Cnipn ()
neN

for h € Ja(x) and ¢ = {c¢p}nen having finitely many non-zero terms. Further, we can

obtain easily the following associated matrix for a.e. z € X:
(2.3.2)

G(z) = Lpile), ()]s jor and G(x) = | Y {ew(x), pil)a(), oil)) :
ieN kleJ
where {ey(x)}res (J-countable index set) is the standard orthonormal basis for H. The
entries of matrix G(z) are well defined if {(e;(z), 0i(2))}ien € C2(N) for k € J and a.e.
zeX. Forae. xeX, Ja(z) =0 is equivalent to G(z) = 0 as well as G(z) = 0.
The following result is a measure-theoretic abstraction of [36, Theorem 2.3] and [46,

Theorem 6.

Theorem 2.3.1. Let (X, ux) be a finite measure space, and M, N are two countable sets
having counting measures. For an orthonormal Parseval determining set 9 = {gm }mem
for L*(X), let A = {¢, : n€ N} be a countable family in L*(X;H) such that E4(A) is a
frame for Sg(A) over M x N with bounds A and B, and for a.e. x € X, Jy(x) defined

by Ja(x) = span{e,(z) : n € N'} is non-zero. Then, the following are equivalent:

(i) An MG-dual of type-1 for Eg(A) is the only canonical dual frame in Sy (A) with
bounds 1/B and 1/A.

(ii) E9(A) is a Riesz basis for Sy(A) with some bounds Cy and Cs.

(iii) For a.e. = € X, the dual of type-I for A(x) is the only canonical dual frame in
Ja(x) with bounds 1/B and 1/A.

(iv) For a.e. x € X, A(x) is a Riesz basis for J4(x) with bounds Cy and Cs.

(v) For a.e. x € X, the synthesis operator ©*(x) (Gramian operator G(zx)) associated
with A(z) is injective.

30



(vi) For a.e. x € X, the Gramian operator G(z) associated with A(x) satisfies
Cllp(j\/) < G([L’) < Cg[p(/\/).

(vil) For f = {f, }nen in (N L*(X)), we have

{ 2 fon (rt)son(fv)}

neN

2

< C2\|f||?2(N;L2(X))‘
L2(X;H)

Ch Hng?(N’;L?(X)) <

(viii) For any Riesz sequence D < L*(X) in L*(X) with bounds ¢, and cy, Ep(A) is a
Riesz basis for Sp(A) with bounds ¢;Cy and cyCs.
Moreover, Ja(x) need not be non-zero, then (i) is equivalent to either Ja(x) = 0 or (iv)

for a.e. x e X.

Proof. The equivalence of (i) and (ii) follows by S5(A) = range T3, ) = range T b=
S4(A) from Theorems 3.6.2 and 6.3.1, and Theorem 1.2 of [44]. Similarly, (iii) and (iv)
are equivalent since J4(z) = range T, = range T:’i(w) = Jj(x) for a.e. € X. Employing
Theorem 2.3 of [49], (ii), (iv), (vii) and (viii) are equivalent.

Further the equivalence between (iv) and (vi) follows by the definition of Riesz basis

and from the property of Gramian operator G(x) = ©(x)0*(x),

D Caonl(@)

neN

2

(G(z)e, ¢) = (O (x)c, % (x)c) =

22(N)
for a.e. x € X and for all ¢ = {c¢,, }pen € C2(N).

Next for (iv) <= (v), assume (iv) is true. Then (v) follows by observing Ker G(z) =
Ker ©*(z), and Ker ©*(z) = {{¢,}nen € CC(N) : X cn Catpn(z) = 0} = {0} for a.e. € X,
since C1 Yy [enl® < | X en can(@)]? for some C; > 0. Conversely, assume (v) holds.
Since for a.e. x € X, A(z) is a frame for J4(x), the operator ©*(x) is surjective, and
hence ©*(x) is an isomorphism for a.e. z € X. If we fix an orthonormal basis {e, },en for
*(N), we have ©*(x)e, = ¢, () for all n € N and for a.e. x € X. Therefore the result
(iv) follows by observing the isomorphism of ©*(z) and an orthonormal basis {e, },er for
2(N).

Moreover part follows by observing the equivalence between (i) to (vi) for a Borel

measurable subset Y of X having positive measure such that J4(z) # 0 fora.e. z €Y. O

The following result establishes the uniqueness of MG duals of type-IT in L?(X;H).

It is an abstraction of [36, Theorem 2.3] and [46, Theorem 7] in measure-theoretic setup.
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Theorem 2.3.2. Under the standing hypotheses mentioned in Theorem|2.5.1, the follow-

g are equivalent:

(1) An MG-dual of type-1I for E4(A) is the only canonical dual frame in Sg(A) with
bounds 1/B and 1/A.

(i) Eg(A) is a frame for Sg(A) with bounds A and B, and Sy(A) = L*(X;H).

(iii) For a.e. x € X, the dual of type-1I for A(x) is the only canonical dual frame in
Ja(x) with bounds 1/B and 1/A.

(iv) For a.e. x € X, A(x) is a frame for Ja(x) with bounds A and B and Ja(x) = H.

(v) Fora.e. x € X, the analysis operator ©(z) (dual Gramian operator G(z)) associated
with A(z) is injective.

(vi) For a.e z € X, the dual Gramian operator G(zx) associated with A(x) satisfies

Al < G(x) < Bl and H = Jy(x).

Moreover, J(x) need not be non-zero, then (i) is equivalent to either J4(x) = 0 or (iv)

for a.e. x e X.

Proof. Using Proposition 7.4 of [44], (i) and (ii) as well as (iii) and (iv) are equivalent.
Also the equivalence between (iv) and (vi) is obvious by noting the definition of frame

and the property of dual Gramian operator G(z) = ©*(2)©(z) given below

(G(x)h, hy = (O(x)h, O(x)hy = > [(hypn())]?

neN

for a.e. x € X and h € H. Next for (iv) «< (v), assume (iv) holds. Then for a.e. z € X,
we have Ker O(z) = {h € H : (h,o,(2)) = 0 for all n e N'} = Jy(z)t = H*, and also
Ker G(z) = Ker ©(z) = J4(z)*. Thus (v) follows while the converse part (iv) is obvious
by using the fact Ker ©(z) = J4(x)*.

Now it suffices to show (i) <= (iv). For (i) = (iv), assume on the contrary (iv) does
not hold. Since E4(A) is a frame for Sy (A), therefore there is a Borel measurable set
Y € X with pux(Y) > 0 such that for a.e. x €Y, A(x) is a frame for J4(x) and J4(x) is
a non-trivial proper subspace of H, i.e., Ja(x)t N H # {0} as Ja(x) # {0}.

Fix an orthonormal basis {u;} for H and let P;, () be an orthogonal projection
from H onto JA(x)i. Then for some Borel measurable set Y; < Y with ux(Y;) > 0, there
exists jo such that pj,(z) := Py, )L (2)uy, # 0 for a.e. 2 € Y1. Further, we can also choose

some Borel measurable set Y < Y] with pux(Y2) > 0 such that there is a function H in
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S%(A) so that for a.e. x € Y3, ¢,(x) = (H(x), pn(x)) # 0 for some n € N. For each n e N
if we define 3, € L?(X;H) by

cn(2)pjo(x)  for z €Y,

0, otherwise,

then for a.e. z € X\Ya, we have Y\ [(Bn(2), {¢s}nen)|* = 0 while for a.e. = € Y5 and

u € H, we have
2 Bal@), w* = D lea(@)PKojo (@), wI* < Jul® ) leal@)* < Bllul?| H]?,
neN neN neN

since A(x) is Bessel with bound B. Therefore, the system B(z) := {5,(z) : n € N} is
Bessel with bound BJ||H|? for a.e. € X, and hence the family F4(B) is also Bessel in
L?(X;H) with same bound. Therefore for f € L?(X;H) and n € A/, the calculation

E(), pn(x)) (f(2), pjo ()  for z € Vs,
0 for z € X\Y5,

(f(x), Bn(x)) =

implies range Ty (,) S range 14(,), and so, we have range T, @) S range Tg,4) using
Theorem . Thus by using 7, = [, mentioned in for each n, the system
{My, (0, (SE@(A)‘S@(A))*lcpn) :m € M,n € N} is another MG-dual of type-II for
Ep(A) other than Ep(A), follows by noting {f(z), p;,(z)) = 0 for a.e. = € Y, and

D0 22 My By {9, My, 0n) =J 2. enl@)f (@), pjo (@) {g(), pu()) dpx(x)
Y2 nenN

meM neN

for all f,g€ S4(A) from Lemma @ Thus we arrive on a contradiction.

Conversely for (iv) = (i), assume (iv) holds. Then due to the equivalence of (iii)
and (iv), dual of type-II for A(x) is the only canonical dual. Now by proceeding with
the contradiction of (i), assume that there is a countable family A" = {1, }pens # A in
L*(X;H) such that Fg(A') is another MG dual of type-II for F4(A). Then the system
Eg(A") is Bessel by (2.3.1), where A" = {n, = ¥, — (SE@(A)|S_@(A))_190"}"€N> and hence
for a.e. x € X, A”(x) is Bessel in H = Ja(z). Using Theorem [2.2.10} the system A'(z)

is another type-II dual for A(z) for a.e. x € X. Thus the result follows. Moreover part
follows quickly by illustrating the equivalence of (i) to (vi) on a Borel measurable subset

X where Jy4(z) is non-zero a.e. x € X. [l
33



The following result summarized Theorem [2.3.1 and Theorem [2.3.2 for the uniqueness
of alternate duals in L?*(X;#). This follows by observing that the canonical dual is both
type-I and type-II dual.

Theorem 2.3.3. Under the standing hypotheses mentioned in Theorem|2.5.1, the follow-

g are equivalent:

(i) An alternate MG-dual for E4(A) is the only canonical dual frame in Sy (A) with
bounds 1/B and 1/A.
(ii) E4(A) is a Riesz basis for Sg(A) with some bounds Cy and Cy and Sg(A) =

LA*(X;H).
(iii) For a.e. x € X, the system A(z) is a Riesz basis for J(x) with bounds Cy and Cy
and Ja(z) = H.

(iv) For a.e. x € X, the alternate dual for A(z) is the only canonical dual frame Ja(x)
with bounds 1/B and 1/A.

(v) For a.e. x € X, the Gramian G(z) and dual Gramian G(z) operators associated
with A(zx) are injective.

(vi) For a.e. x € X, the Gramian G(x) and dual Gramian G(z) operators associated

with A(x) satisfy Ci1lpy < G(x) < Colpyy and Aly < G(x) < Bly.
(vii) For f = {f,.}nen in C2(N; L*(X)), we have

{ > fon (x)wn(aﬁ)}

neN

2

< ol e (x))-
L2(XH)

CleH§2(N;L2(X)) <

(viii) For any Riesz sequence D < L*(X) in L*(X) with bounds ¢, and ¢y, Ep(A) is a
Riesz basis for Sp(A) with bounds ¢;Cy and cyCs.

Till now, we have characterized various duals with their global and local behavior.
Next we are going to construct multiplication generated oblique dual frames in a multi-
plication invariant space. In this construction technique, we find the connection of the
infimum cosine angle between subspaces with oblique dual. The infimum cosine angle is
directly connected with the oblique projections and it further relates to oblique dual. In

the next chapter, we will talk about this briefly.
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CHAPTER 3

CONSTRUCTION OF OBLIQUE DUAL FRAMES IN L?(X;H)

0

This chapter discusses the construction of dual frames and their uniqueness for a
multiplication generated frame on L?(X;H), where X is a o-finite measure. Various
necessary and sufficient conditions of such duals associated with the infimum cosine angle

are obtained [66].

3.1. Infimum cosine angles and oblique duals

In this section, our goal is to find characterization results for the MG duals Ep(A") of
a frame Ep(A) associated with the infimum cosine angles between the closed subspaces
Sp(A’) and Sp(A) of L?(X;H), for some finite collections of functions A, A’ in L*(X;H).
The infimum cosine angle between two closed subspaces of Hilbert spaces [1] is defined as

follows:

Definition 3.1.1. Let V and W be closed subspaces of H. The infimum cosine angle
between V and W of H is defined by

P
RV, W) — ing 120
veV\{0} [0

where Py is the projection on W.

In general, R(V,W) = R(W,V). If R(V,W) > 0 and R(W,V) > 0 then R(V,W) =
R(W, V), and hence we can decompose the Hilbert space as H = V @ W+ (not necessarily
orthogonal direct sum), means, H = V + W+ and V(W = 0 [26]. In addition, if the
following reproducing formula holds :

f=YXf fiogi forall feV,
kel

This chapter is a part of the following manuscript:
S. Sarkar, N. K. Shukla, A characterization of MG dual frames using infimum cosine angle,
arXiv:2301.07448.



where { fx}rer and {gx }rer are Bessel sequences in H and W = Span{ fy}, then { fx}xes is an
oblique dual frame for {gi}rer on W, and {g }res is an oblique dual frame for {f;}res on
V|26, Lemma 3.1]. Furthermore, {gx}xer and {Py fi}rer are dual frames in V' and { fi }xer
and { Py gr}rer are dual frames in W. This decomposition is important to recover data
from a given set of samples. Tang in [72] studied the infimum cosine angles in connection
with oblique projections that leads to oblique dual frames, followed by Kim et al. for
the different contexts in [55,56]. Further, Christensen and Eldar in [26], and Kim et al.
in [57] developed a connection of the infimum cosine angle with oblique dual frames for
shift-invariant (SI) spaces in L*(R"). An existence of Riesz basis using infimum cosine
angle for the theory of multiresolution analysis in L?(R"™) was discussed by Bownik and
Garrigds in [18]. We aim to continue the work in the context of set-theoretic abstraction.

Now we provide a characterization of an alternate dual associated with the Gramian

operators. Recalling the Gramian and dual Gramian operators from ([2.3.2) as follows :
Ga(x) = Ta(x)Th(x) and Gu(x) = Th(2)Ta(z) ace. z€ X,

where T4(x) and T%(z) are the analysis and synthesis operators corresponding to A(x) =
o)y, For A = {1, and &' = ()i, the operator Cau(x) = (s (2). ta(e)], s o

is known as the mixzed Gramian operator for a.e. x € X. The following result is a gener-

alization of [57, Theorem 4.1] and [46, Theorem 5(a)].

Proposition 3.1.2. Let A and A’ be two finite collections of functions having same
cardinality such that Ep(A) and Ep(A’) are Bessel. Let us assume Ep(A) be a frame
for Sp(A). Then the system Ep(A’) is an alternate MG-dual for Ep(A) if and only if for
a.e. x € X the system A'(x) = {(x) : ¢ € A'} is an alternate dual for A(z) = {¢(x) :
v € A}, equivalently, the Gramian G (x) and mized Gramian G . (x) operators satisfy

the following relation:
Ga(2)Gan(z) = Ga(x) for a.e. v € X.

The following result is a measure-theoretic abstraction of [57, Theorem 4.1] for oblique
dual frames associated with the rank of the mixed Gramian operator and the dimension

of range functions.

Proposition 3.1.3. In addition to the assumptions of Proposition |3.1.2, let us assume

Ep(A) and Ep(A’) be frames for Sp(A) and Sp(A"), respectively, such that Ep(A’) is an
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alternate MG-dual for Ep(A) and
(3.1.1) rank Gy (z) = dim Ja(x) = dim J 4 (z) a.e. v € X,

where Jy(x) = span{f(x) : f € A} and Jy(x) = span{g(z) : g € A'}. Then Ep(A’) is an
oblique MG-dual for Ep(A).

Proof. Observing the proof of Proposition B.1.2, we get A’(z) is an alternate dual for
A(z) for a.e. x € X since Ep(A’) is an alternate MG-dual for Ep(A). Then for a.e.
r e X, we can write p(z) = >\ {(p(x),;(z))p;(x) for each ¢ € Sp(A). Further note
that P(x) := PJA,(w)‘JA(z) : Ja@) — Ja(z) is invertible in view of [57, Lemma 3.1] and

relation (3.1.1). Therefore for k = 1,2,...,r and a.e. z € X, we get

P(@)p(x), gi(2)) = (P, (), gi(x)) = {o(x), Py, 95(2)) = (), gr(2))
<Z (), ix))pilx), g (w)>

< Z<gk ) i(® )>
< Z@k ) il )>

and hence gi(x) = >_,(gk(x), @i(x))¥;(x) since P(x) is invertible. Therefore the result
holds by noting Proposition [3.1.2. O]

The next result tells that the space L?*(X;H) can be decomposed with the help of
Sp(A) and Sp(A’) using the rank condition (3.1.1). We use the concept of angle between
two MI subspaces and their point-wise characterizations for its proof. From Definition

3.1.1, note that
(Pspa)|span ) (@) = (PspayPspan f)(@) = Pspan () Pspay (@) f(x) = Pspaya)| s @) f (@),

and by [19, Theorem 4.1 (iii)], we have

inf{%’ﬁ/)f“ fe SD(A)\{O}} = oss-inf {M we JA(:B)\{O}} .



Thus if we define o(Sp(A)) := {z € X : J4(x) # 0}, then

(3.1.2)

R(Sp(A), Sp(A) = ess-infeo(sp(a)) R(Ja(®), Ja(2)) if px(o(Sp(A))) >0,

1, otherwise.

Proposition 3.1.4. In addition to the assumptions of Proposition |3.1.2, the following

statements are equivalent:

(i) For a.e. x € X, the relation (5.1.1) holds, i.e., rank G4 (x) = dimJu(z) =

dim J 4 (z) a.e. x € X, and there exists a constant C' > 0 such that
(G a(2) VPG an(2) (Ga(2)V?| < C ae. x€{xe X : Jy(x) # 0} := o(Sp(A)),

where G4 a(z)" denotes the pseudo inverse of G4 ().
(ii) L*(X;H) = Sp(A) ® Sp(A')* .
(i) L3(X;H) = Sp(A") @ Sp(A)*.
(iv) R(Sp(A),Sp(A’)) >0 and R(Sp(A’), Sp(A)) > 0.

Proof. The result can be established easily following the steps of |19, Theorem 4.18] and
[57, Theorem 3.8]. O

At the end of this section, we provide a method to construct alternate (oblique) duals,

which is an abstraction version of [57, Lemma 5.1].

Proposition 3.1.5. For a o-finite measure space (X, pux) with uy < oo, consider the
assumptions of Proposition|3.1.2 and assume Ep(A) to be a frame for Sp(A). Define a
class of functions A' = {h;}_, associated with A" = {{;}/_, < L*(X;H) by

S Ganw(@)]; ¥i(@) if v e 0(Sp(A)),

0, otherwise.

(3.1.3) hi(z) =

Then, Ep(A') is an alternate (oblique) MG-dual for Ep(A) if the Proposition |3.1.4 (i)
rank condition holds and there exists a C > 0 such that |G4a(2)'| < C ae. x €
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Proof. Note that G 3 (z) = Gax(2)'Ga(2)(Gan(x)N)* ae. x € 0(Sp(A)) and G 4 (z) =
0, otherwise, |G 3 ()| is bounded above due to Bessel property of A’(z). By the Propo-
sition @, we need to verify Ga(z)G 4 4 (z) = Ga(z) which follows from the same
techniques of proof from [57, Lemma 5.3]. ]

Now we provide our first main result which is a measure theoretic abstraction of [57,

Theorem 4.10] using range function.

Theorem 3.1.6. Let (X, ux) and (M, pr) be o-finite measure spaces such that jx < oo,
and the set D = {¢s € L®(X) : s € M} is Parseval determining set for L'(X). For
the finite collections of functions A = {@:}™, and B = {¢;}, in L*(X;H), and for
a.e. x € X, assume the range functions Jx(x) = span{y;(xz) : i = 1,2,...,m} and
Jp(x) = span{y;(x) 1 i = 1,2,...,n} associated with the MI spaces Sp(A) and Sp(B),
respectively. Then the following are equivalent:
(i) There exist A = {pi}_y and B' = {!}7_, in L*(X;H) such that Ep(A’) and
Ep(B') are continuous frames for Sp(A) and Sp(B), respectively, and they are

oblique duals to each other, i.e., the following reproducing formulas hold for g €

Sp(A) and h e Sp(B):
(3.14) g= ;LA@ My, i) My, 0; dpim(s) and h = ZZ:JMGL’ Mo, )Mo, 0} dpip(s).
(ii) The infimum cosine angles of Sp(A) and Sp(B) are greater than zero, i.c.,
R(Sp(A). Sp(B)) > 0 and R(Sp(B), Sp(A)) > 0.

(iii) There exist collections of functions {¢}}7_y and {/}7_y in L*(X;H) such that for
a.e. = € X, the systems {@i(x)}i_y and {Y)(x)}i_, are finite frames for Ja(x)
and Jg(x), respectively, and they are oblique duals, i.e., they satisfy the following

reproducing formulas for u e J4(z) and v € Jg(z):

(3.1.5) u = Z<u vi(z))ei(z) and v = Z@, o (x)i(x) ae. x € X.

(iv) For a.e. x € X, the infimum cosine angles of Ja(z) and Jg(x) are greater than
zero, i.€.,

R(Ja(x), Jg(x)) > 0 and R(Jg(x), Ja(x)) > 0.
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Proof. (ii) = (i). Assume that (ii) holds, then we have rank G4p(r) = dim Ja(z) =
dim Jz(z) a.e. x € X by Proposition [3.1.4 (iv). Considering the projection P(z) :=
Pr@)sw * 8@ — Jaw), we have Gap(r) = Tp(x)P(z)T;(z), and P(z) is invertible
by [57, Lemma 3.1]. Then the length of Sp(A) = length Sp(B) since Sp(A) and Sp(A)
are finitely generated. Let  be the common length of Sp(A) and Sp(B). Then using |20,
Theorem 2.6], there exist A# = {¢¥}7_ and % = {4)¥}7_, such that Sp(A#) = Sp(A)
and Sp(B*) = Sp(B). Hence R(Sp(A*), Sp(B#)) > 0 and R(Sp(B%), Sp(A*)) > 0.
Further, applying Proposition [3.1.4 (iv), there exists a positive constant C' such that
|G ar ()G a5 (2) G (2)'2] < C e x € 0(Sp(A)).

For the class of functions A# = {p#}7_,, define the new class of functions A’ = {@/}7_,
by

oi(z) = Z ((GA#(x)T)l/Q)mgoj%(x) for a.e. x € X, and for each i € {1,2,...,r}.
j=1

Applying the singular value decomposition of the positive semidefinite matrix G4« (x) for

a.e. re X,
Gax(z) = Q(x)D(2)Q(x)",

where the diagonal entries of D(x) are the non-zero eigenvalues of G 4#(z) and Q(z) is

unitary. Also, note that
[ (@)? = (Gaw (2)") 2 G an (2)(G s (2)1) )i = 0 or 1.
For each i € {1,2,...,7}, [¢]* = § [¢i(2)]? du(X) < oo, hence ¢} € L*(X;H). Also
Ga(x) = (Gar (1)) 2G4 (2) (G (2)1)? = Gan (2) G an () e v e X

The eigenvalues of G 4(z) are 0 or 1. Thus Ep(A’) is a frame for Sp(A#). Now we will
show Sp(A’) = Sp(A#). Tt is clear that Sp(A')(z) = Sp(A*)(x) for a.e. x € X. Also,

dim Jy (z) = rank G (x) = rank Gux(r) = dim J%(x).

Hence Ju(z) = Ju#(z) ae. z € X, ie., Sp(A') = Sp(A¥) |49, Proposition 2.2 (iii)]. The
class Ep(A’) is a tight frame for Sp(A*). In a similar way, we can show that there exists

a collection B’ = {!}7_, such that Ep(B') is a tight frame for Sp(B*¥), and also we have

Gup(x) = (Gpw(2))2G 40 g (2) (G () 1) V2.
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Since P(z) is invertible a.e. Gu g () = (G4 (2))2G 4% p# (2) T (Gp# (7)) V2. Now |G a5 (2)1]| =
(G 4% (2))Y2G p g ()T (G s (2))V?| < C ace. @ € o(Sp(A*)). By the Proposition @,
Ep(B') is an oblique MG-dual for Ep(A’).

()= (ii). Define amap : L2(X; H) — So(A) by Zf = 1, §,(fs Myt!) Mg diaa(s).
Then = is not necessarily an orthogonal projection. Therefor L?(X;#H) cab be decom-
posed as L2(X;H) = range = ®Ker = = Sp(A)@Ker Z. We now show Ker = = Sp(B)*.

Let o € KerZ. Then ¢ = f —=Zf, f € L*(X;H). For ¢ € Sp(B),

oty = (= E) = oy = EL)y = oy = X | MMt ) dpna()

= {f,v) - <f7iJM<¢7 Mypiy My, duM(5)>

Hence ¢ € Sp(B)*. On the other side, if ¢ € Sp(B)* then Z¢p = 0.

(i)<=(iii). Since Ep(A’) and Ep(B’) are frames for Sp(A) and Sp(B), respectively,
the systems A'(z) = {¢i(z) : i =1,...,r} and B'(z) = {¢j(x) : i = 1,...,r} are frames
for Ja(z) and Jg(z), respectively, for a.e. z € X [49, Theorem 2.10] . The rest part of
the result follows by Proposition [3.1.2.

In a similar way, the converse part follows.

(iv)==(iii). Assume (iv) holds, i.e., there exist frames {¢}(x)};_; and {¢}(z)}i_, for
Ja(x) and Jp(z), respectively. We need to show that R(J4(x), Js(x)) > 0and R(Jg(z), Ja(z)) >
0, which is equivalent to J4(z) ® Jg(z)* = H [26, Lemma 2.1]. For this define a map,

:H — Ja(z) by Z(f) = 2_{f,¥i(x))¢i(x). Then = need not be an orthogonal

projection. Hence

[1]

H =range= @ Ker= = Jy(z)® Ker=.

Our aim is to prove Ker= = Jg(z)t. Let u € Ker=. Then u = f — Zf for some f. Let
h e Jg(x). Writing

(u,hy = (f —Ef, by = (f, h) — Z<f¢ AL > (f by — Z<fw (), h

= <.fa h> - <.fa Z<h>@;($)>¢;($)> = <f7 h> - <f7 h> =0,

we have u € Jg(z)*, and if u € Jg(x)*, then u € Ker Z.
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(il)= (iv). If R(Sp(A),Sp(B)) > 0, we have R(J4(z), Jg(x)) > 0 for a.e. z e X.

The remaining part follows easily. m

3.2. Riesz basis and its associated dual

The equations (3.1.4) and (3.1.5) explore the various possibilities of obtaining oblique

dual frames in the global and local setups, respectively. These duals and associated repro-
ducing formulas are not necessarily unique. But when Fp(.A) is a Riesz basis then the dual
is always unique. The following main result discusses the uniqueness of reproducing for-

mula, which is a measure-theoretic abstraction of [72, Corrollary 2.4] and [18, Proposition

2.13).

Theorem 3.2.1. Let (X, uy) be a o-finite measure space with px < o0, and let ¥V and ¥
be multiplication invariant subspaces of L*(X;H) corresponding to an orthonormal basis
9 of L*(X). For a finite collection of functions A = {p;}'_,, assume E4(A) is a Riesz
basis for V. Then the following holds:
(i) Global setup: If there exists A" = {pi}i_y in L*(X;H) such that Eq(A') is a
Riesz basis for W satisfying the following biorthogonality condition

(321) <M¢(PZ', M¢/§O;/> = (51'71‘/(5(;37(;5/, i, = 1, 27 e, T QZS, gb/ € @,
then the infimum cosine angles of V" and W are greater than zero, i.e.,
(3.2.2) R(V,#)>0and R(W,7) > 0.

Conversely if (5.2.2) holds true, then there exists A" = {}}i_, in L*(X;H) such
that E¢(A’) is a Riesz basis for W satisfying the biorthogonality condition (3.2.1).

Moreover, the following reproducing formulas hold:
f= Z Z<f, MypiyMyp; for all fe ¥, and g = Z 2<g, MypiyMyp for all ge W'
peZi=1 ¢ i=1
(ii) Local setup: If there exists A" = {@}}i_; in L*(X;H) such that for a.e. x €
X, {¢i(z)}_, is a Riesz sequence in H satisfying the following biorthogonality

condition

(3.2.3) pi(), Pi(x)y = 0i4ry 1,4 =1,2,...,1,
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then the infimum cosine angles of J4(x) = span{y;(x)}i_; and J 4 (z) = span{y}(x)}i_,

are greater than zero, i.e.,
(3.2.4) R(JA(z), Ja(x)) > 0 and R(J x4 (x), Ja(z)) > 0 a.e. v € X.

Conversely if (3.2.4) holds, there exists A' = {¢}}r_, in L*(X;H) such that for a.e.
xe X, {@i(x)}i_, is a Riesz sequence in H satisfying the biorthogonality condition
@ Moreover, the following reproducing formulas hold for u € Ju(x), and
ve Jy(x):

u—2<u o (2))pi(x), andv—Z@ wi(x))pi(x) for a.e. x € X,

Before moving towards the proof of Theorem |3.2.1, we need the concept of supremum
cosine angle [68]. For two subspaces V' and W of a Hilbert space H, the supremum cosine

angle between them is:
| P

veV\{0} HU”

SV, W) =

The correlation between supremum and infimum cosine angle is related with the follow-

ing: R(V,W) \/ 1 —S(V,W¥)2. One of the main uses of supremum cosine angle is
to determine whether the addition of two closed subspaces is again closed or not. The
sum of two closed subspaces V' and W is again closed and V [|W = {0} if and only if
S(V,W) <1 [72, Theorem 2.1].

Proof. (i) Global Setup: Suppose E4(A) and E4(A") are Riesz basis for ¥ and #, with
constants A, B and A’, B, respectively, and are biorthogonal. By [49, Theorem 2.3|, we
have A(z) = {pi(z) :i=1,2,...,r} and A'(z) = {}(z) : i = 1,2,...,r} are Riesz bases
for J4(z) and Ju () for a.e. x € X. It suffices to show R(¥, #') = R(#,?) > 0. The dual
Riesz basis for Ey(A) in ¥ is of the form Ey(A#), where A# = {o¥ :i=1,2,... .r} = ¥.
Therefore the orthogonal projection Py onto # can be expressed as
Pyf = D Myl )Mypr = > Y {f, Myp )My} for all f e L*(X;H).
i=1 ¢e9 i—1 geP

Observe that Py My, = ¢ for all p € 2 and i = 1,2,...,r. For f € #\{0}, we have
f=2ia Zq&e% CfMMD;a where

AY Y IEE<IfP<B ) ) 11

i=1¢e2 i=1 e
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Then

Y [Py fI2 _ BT gl 1
Pyf = ;éC?M%O? and HHE > By, 1?2 ~ BB

since Ey(A%) is a Riesz basis with constants B~', A=, Hence R(¥,#') = (BB')~'/2.

Conversely, Since R(#, 7)) > 0, then R(#, V)| f|| < ||f| for all f e ¥. Also since
E4(A) is a Riesz basis for 7/, then the corresponding projection on %, that is, { Py Msp; :
peP,i=1,2,...,r}is a Riesz basis for #. Since R(¥,#') > 0, we get span{ Py Mp;
e D,i=12,...,r} =W, and by [19, Corrollary 5.14] there exists a dual Riesz basis
for span{PyMyp; : ¢ € 2,i = 1,2,...,r} of the multiplication generated form, i.e.,
{Myp:pe D,i=1,2,...,r} for some ¢} in #'. Thus we have

(Mypj, My @iy = {Mypj, Py My o))
= (PyMgyp;, My )

= 5(1),45’51',3'7 where ¢7 Qﬁ, € Y and ’L,j € {]_,2, C. ,T}.

Therefore the result follows.
(ii) Local Setup: For a.e. x € X, let {p;(z)}i_; and {¢}(x)}/_; be Riesz bases for
Ja(x) and J 4 (z), respectively, and they are biorthogonal. We now show this is equivalent

to
(3.2.5) Ju(2) ® Ju(x)t = H and Ju(2) ® Ju(2)t = H for ae. x€ X.

Since {¢;(x)}i_, and {¢;(x)}_, are Riesz basis, then Jy(z) = {u eH:u=>,_,cpix)}
and Jy(z) ={veH :v=>,_ coi(x)}. Let he Ja(z)()Ju(x)+ then

h = Z<h pi(x >901 =0,

hence Ju(x) () Ja(z)* = {0}. Let w € H, then Pw := Y_ (w, p;(x))¢}(z) € Ja(x). By
the biorthogonal property of {y;(z)}/_, and {¢(x)}_,, we have (w — Pw,p;(z)y = 0
foralli =1,...,r, ie., w— Pw e Ja(z)*. Sow = Pw + (w — Pw) € Jy(x) + Ja(z)*
which implies Ju (z) + J4(z)* = H. Combining, we have Jq (1) ® Ja(z)t = H. In a
similar way, interchanging the roll of J4(z) and Ju(z) in another part of (3.2.5), i.e

Ja(x) ® Jg(z)t = H for a.e. 7 € X, can be shown.
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Since J4(x) + Ju(x)* is closed and J4(z) () Ja(z)F = {0}, by the |72, Theorem 2.1]

the supremum cosine angle

S(Ja(@), Ja(x)") := sup{|(v,w)] : v € Ja(w),w € Ja(x)", Jv] = Jw| =1} < 1.

Hence R(J4(z), Ju(x)) = 4/1 — (x), Ja(x)+)? > 0. Interchanging the roll of J4(x)
and Jy () in the above argument R(JA/ (x), Ja(z)) > 0.

For converse part, let R(J4(x), Ja(x)) > 0. Then S(J4(x), Ju(x)*t) < 1. Using |72,
Theorem 2.1], we have J4(x) + Ja(z)* is closed and J4(z) () Ja(z)t = {0}. In a sim-
ilar way when R(Ja(x), Jaw)) > 0, then we can show Ju(z) + Ja(z)* is closed and
Ju(x) () Ja(z)t = {0}. Hence

Tale) + L) = (ala) + T} = (Tale)* () Jaw)) = H

So H = Ju(x) ® Ju(z)*t. In a similar way, H = Ju(x) ® Ja(z)*.

Assume Jy(2) @ Ja(x)t = H. Let for a.e. € X, {p;(2)}_, and {hi(z)}_, be the
dual Riesz bases for J (), i.e., {pi(x), h;j(z)) = &;;. Let S : Ja(x) — Ja(x) be the frame
operator, then consider

bi(x) == S pi(), 1< <7
Now the map Py, : H — H by Prwf = 2 (f,¢i(x))i(z) is the orthogonal
projection of H on Ju(z). Consider & := Py, ()]s ). If f € Ju(x) and P(f) = 0
then f e Juo(z)()Ja(z)t = {0} so £ is injective and P (Ja(x)) = Py ) (Ja(x)) =
Py (Ja(z) + Ja(z)) = Py @) (H) = Ja(z). Hence & is bounded invertible operator.
Define
pi(z) == P pilx), 1 < i<

Then {¢}(x)};_, is the required Riesz basis for J 4 (x), satisfying the biorthogonality con-
dition.

]

The development of the theory of duals for a continuous frame on a locally compact
group (need not be abelian) translated by its closed abelian subgroup is the novel aspect
of general machinery developed for L*(X;H) in this chapter and the earlier one. In the
next chapter, we will explore this topic and we will also demonstrate how our approach
towards a measure theoretic abstraction can help us to offer various characterizations of
duals for the locally compact groups.
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CHAPTER 4

DUAL FRAMES BY THE ACTION OF AN ABELIAN
GROUP

0

In this chapter, we characterize I'-T'G duals of a continuous frame on locally compact
group ¥ by the action of its closed abelian subgroup I'. We characterize such results
using the Zak transform Z for the pair (¢,1"). When ¢ becomes an abelian group G, the
fiberization map is used to characterize these duals by the action of its closed subgroup
A. The vast majority of these traditional results for integer shifts were merely dependent
on the fiberization map [37,42,44,146]. We are investigating the study of alternate duals
in the setup of general locally compact abelian and non-abelian groups in which we do

not require I' to be discrete or A to be uniform lattice or co-compact (i.e., G/A-compact).

4.1. Translation generated duals of a frame

For a second countable locally compact group ¢ (not necessarily abelian) and a closed
abelian subgroup I' of ¢, let us recall a I'-translation generated (I'-TG) system E' (o)
and its associated T-translation invariant (I-TT) space S'(&7) from (1.3.1) for a family
of functions & = L*(¥¢) by the action of T, i.e.,

EN) ={Lep: pe o/, £ T} and S (&) := span&’ (),
where for n € 4, the left translation L, on L*(¥) is defined by

(L f)(v) = f(n '), ve 4.

This chapter is a part of the following manuscripts:
S. Sarkar, N. K. Shukla, Translation generated oblique dual frames on locally compact groups, Linear
Multilinear Algebra, (2023), doi:10.1080/03081087.2023.2173718, 32 pages.
S. Sarkar, N. K. Shukla, A characterization of MG dual frames using infimum cosine angle,
arXiv:2301.07448.



By I'-translation invariant (I'-TI) space V, we mean L¢f € V for all f € V and £ € T,
where V is a closed subspace of L*(¥).
We now define the translation generated dual and its types in L*(9).

Definition 4.1.1. Let A be a complete, o-finite measure space. Suppose & = {©; }ten, &

{1 }ten are families of functions in L?*(%) such that £'(</) is a continuous frame for

St (o), and EY(&7') is Bessel. We call £V ("),

(i) an alternate T-TG dual (simply, alternate TG-dual) for E¥(/) if it is an alternate

dual for £7(«7) in the sense of Definition [.1.1 (a).

(ii) an oblique I-TG dual (simply, oblique TG-dual) for EY (/) if it is an oblique dual
for £Y'(o7) in the sense of Definition E (b).

(iii) a T-TG dual of type-I (simply, type-I TG dual) for EV () if it is a type-I for E' ()
in the sense of Definition [l.1.1 (c).

(iv) a D-TG dual of type-II (simply, type-II TG dual) for EV (&) if it is a type-II for
E'(<7) in the sense of Definition [1.1.1 (d).

(v) a T-TG dual frame (simply, TG dual frame) for E'(7) if it is a dual frame for
E'(«/) in the sense of Definition [1.1.1 (e).

For the stable decomposition and reproducing formula of a signal/image, we study
alternate (oblique) I'-TG dual, I-TG dual of type-I and type-II, and I'-TG dual frames
for a continuous frame ' (&) in L*(¢) by the action of a closed abelian subgroup T' of
4 [see Theorems [1.1.2 - [4.1.6].

We now return to our primary objective to find a possible collection of functions which
generates a translation-invariant (TT) space in L?(%) such that the reproducing formula
(1.3.2) is satisfied. The system generated by translations of such collections need not
to be a frame for its associated TI space. We start the investigation by discussing the
Zak transform and fiberization [47,49]. By applying these operators, we obtain alternate
(oblique) TG-dual’s characterization for a continuous frame and its uniqueness in the TI

subspaces of L*(¥) along with prototype examples.

4.1.1. Zak transform, fiberization and I'-TI space

Let ¢ be a second countable locally compact group (not necessarily abelian) with

Haar measure ug such that ¢ contains a closed abelian subgroup I'. For x € ¢, a right
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coset of I in & with respect to x is denoted by I'z, and for a function f : ¢4 — C, we

define a complex valued function f'* on I' by

7 (y) = f(E(lx)), y €T,

where the space of orbits [\¥ = {I'z : © € ¢} is the set of all right cosets of I in ¢, and
=:"\¥Y — ¥ is a Borel section for the quotient space I\ whose existence is guaranteed

by [60, Lemma 1.1]. Then for f'* € L}(T'), the Fourier transform is

A~

(@) = | £*()a6) diny). ae T
r
Therefore, the Zak transformation Z of f € L*(%) for the pair (¢4,T) is defined by
(4.1.1) (Zf)(a)(Tz) = f7*(a) ae.acl and Tz e\¥,

which is a unitary linear transformation from L%(%) to L%(I'; L2(T\&)) [49]. Since the
space L2(f‘; L*(T\¥)) can be identified with the space LQ(IA“ x I"\¥), we can interpret Z as
Z from L3(¥) to L2(f‘ x I\9) by (Zf)(e,Tx) = (Zf)(a)(I'z). When & becomes abelian
group G, then we also denotes the corresponding Zak transform as Z.

Note that the map Z is closely associated with the fiberization map .7 when ¥
becomes abelian. For a second countable LCA group G and its closed subgroup A, the

fiberization 7 is a unitary map from L*(G) to L2(G/A*; L2(AY)) given by
(THBA) W) = Flw ((BAY)), we A, Be§
for f e L2(G), where A* := {8 € G : B(\) = 1 forall A € A}, AN\G = G/AL and
¢: G /AL — G is a Borel section which maps compact sets to pre-compact sets. For more
details about the Zak transformation we refer [9,10,49].
Observe that Z intertwines the left translation with the multiplication operators, i.e.,

for fe L*(9),
(4.1.2) (ZLyf)(a) =(Mg, Zf)(a) for a.e. v € ['and yeT,

where My is the multiplication operator on LA(T; L2(T\¥)), dy(a) = a(y) and ¢, €

L*(T") for each 7 € T'. Therefore, our goal can be established by converting the problem

of T-TI space S'(«7) into the MI space on L?(X;H) with the help of Z, where X = r
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and H = L*(T\¥). Similar situation will arise in case of abelian group G and its closed

subgroup A since the map 7 satisfies the following intertwining relation for f e L*(G):
(4.1.3) (T L f)(BAY) = (My, T f)(BAY) for ac. BeG and A € A,

where ¢, € LOO(C;/AL) given by ¢,(BA) = B(\) and the multiplication operator M,, is
defined on L2(G/AY; L2(AL)).

Now we modify the Theorem @ in the setup of L2(T; L2(I'\¥)) using the Zak
transform which will provide a classification of all T-TI spaces S' (&) in L*(¥). For a
family of functions & = {p;}en in L*(¥), we recall T-translation generated (I-TG)
system E''(7) by left action of I and its associated [-translation invariant (I-TI) space
SY(), ie., EN(A) = {L,p; : ye 't € N} and S'() := span{L,p; : 7 € [',t € N},

where (N, uy) is a complete, o-finite measure space. In this setup, the range function is

J:T - {closed subspaces of L*(I'"¥)},

and the orthogonal projection for each o € I' is Py(a) : L2(I'\%) — J(a), and hence the

associated closed subspace V; given in (2.1.1) can be written as:
v, = {f e LX(9) : (Zf)(a) € J(a) for ae. ac f} .

Using the range function J and associated space V; we can write Theorem [2.1.4. For I'-T1
space ST(&) in L*(¥), the corresponding range function J is such that, for a.e. a € f‘,

J(«) is defined by
(4.1.4) J(a) =span{(Z[)() : f € @} =: Ju(a),

for some countable dense subset % of & in L*(¥) [Denote Z«7 := {Zf : f € &/}]. This
follows by noting that the set D defined by

(4.1.5) D= {%em(f) .7 €T, 6,(a) = a(y) for aef}

is a determining set for L!(T') since for f € L'(T'), we have 0 = $o f(@)oy () dup(a) =
o f (a)a(y) dug(e) for all y € T which implies f = 0. Note that {¢,},cr is the collection
of all characters on I using the identification between 1a and I' from Pontryagin Duality
theorem.
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For the abelian group G and its closed subgroup A, the range function is J : G /AL —

{closed subspaces of L?(A1)} and its associated space V is
Vv, = {f e L2(G) : (T 1)(BAY) € J(BAY) for ace. BAL € gA/AL} .

Then, we can write Theorem [2.1.4 for an LCA group, where for the A-TI space S* (),
the corresponding range function .J is given by: for a.e. BA* € (j//\l the space J(BA"L) is
defined by

(4.1.6) J(BAY) = span {(T ) (BAY) : fe o} = J9(BAY),

for some countable dense subset 7 of &7 in L*(G) [Denote 7.« :={T f: f € «}]. The
determining set D for Ll(é /A1) is given by

(417) D ={ore LG/AY) : Ne A, 6(BA) = BON) for AL e G/a*} = DF.
4.1.2. Characterization of I'-TG duals for continuous frames

Now, we present the most important outcomes of our characterizations which are the

applications of the theory developed in Chapter

The following Theorems [4.1.2, 4.1.4, [4.1.5, and 4.1.6 are generalizations to a locally

compact group of the results |44, Theorem 4.2] and [46, Theorem 5.

Theorem 4.1.2. Let o/ = {@;}en be a collection of functions in L*(¥) such that the
TG system EY () is a continuous frame for the TI space S (<), and o/ has a countable
dense subset oty for which J(«) is defined by @) for each o € f, where (N, ppr)
is a complete, o-finite measure space. If &' = {1, : t € N'} is a collection of functions
in L*(9) such that the TG system EY(&') is Bessel in L*(9), then the following are
equivalent:

(i) EY(") is an alternate TG-dual for EY (), i.e., for all f € S (), we have (in

the weak sense)

f = fN j L Lo dpin(y) dpu(d).

(ii) For a.e. a € T, the system (Zd") () := {Z¢i(a) : t € N'} is an alternate dual for
the frame (Z4)(a) := {Z¢(a) : t € N} of Ja(a), i.e.,

h = f Chy Z(a)yZp(a) dup(t) for all h e Ju ().
N
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When the pair (4,T) becomes an abelian pair (G, N), let J9,(BALY) be defined by (14.].6),
then the above (ii) is equivalent to the following:

(ii’) for a.e. BA* € QA/AL and h € ng(ﬁAL)a
- JN@, TP (BAN)) T or(BAT) dun(t),

i.e., the system (T .</")(BAY) = { T, (BA*) 1 t € N} is an alternate dual for the frame
(7 ) (BAY) = {Tpu(BAY) 1t € N} of J5,(BAY).

Proof. For all f e S'(47), the expression f = §,/ §.(f, Ly Ly dur(y) dpn(t) (in the

weak sense) is equivalent to the following :

Zf = f f (Zf, My, Z)My, Zep, dpur(y) dpn(t),
N JT

follows from the intertwining relation (4.1.2). Therefore from the part (i) of Theorem
2.2.4, the MG system Ep(Z.4/’) is an alternate MG-dual for Ep(Z47) in L*(X;H) if and
only if the system (Z47')(«) is an alternate dual for (Z247)(a) a.e. a € [. Here, X =T,
H = L*(T\¥), and the set D defined by @ is a Parseval determining set for L!(T),

follows by noting (|2 and

J

for H € Ll( ) due to Pontryagin Duality theorem.

2

dﬂr( ) dpir ('Y)

ffmcowa) dpie(@)

dﬂr

The moreover part follows by replacing Z with the fiberization .7, D with DY defined
in (4.1.7), and also choosing X = G/A* and H = L%(A*) in the above argument. O

Remark 4.1.3. In case of & = {¢} and &/’ = {4}, the above result says that the TG
system E'(&/’) is an alternate TG-dual for £ () if and only if for a.e. a e I' such that
Js(a) # 0, we have (Zp(a), Z¢(a)y = 1. In addition if & = &' = {p}, EV () is a
Parseval frame (coherent state) for ST(«7) if and only if | Zp(a)| = 1 for a.e. e I’ such
that Jo(a) # 0. The same can be written for the pair (G, A) using a fiberization map.

Theorem 4.1.4. Under the standing hypotheses mentioned in Theorem |4.1.2, EY (") is
an oblique TG-dual (TG-dual frame) for EY () if and only if for a.e. a € T, the system

(Z4")(«) is an oblique dual (dual frame) for the frame (Z47)(a) of Joy ().
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Moreover, for an abelian pair (G, \), let J9,(BA*) be defined by (14.1.6) then (7 2")(BAY)
is an oblique dual (dual frame) for the frame (T )(BAY) of JS(BAY) for a.e. BA* €
G/AL.

Proof. This follows on the same line of proof of Theorem [4.1.2 along with parts (ii) and
(iv) of Theorem [2.2.4. O

Theorem 4.1.5. Under the standard assumptions in Theorem [{.1.2, E¥(</") is a TG-
dual of type-I for EY (<) if and only if for a.e. a € f‘, (Z4")(a) is a type-1 dual for the
frame (Z47)(a) of Jo ().

Moreover, when the pair (4,T') becomes an abelian pair (G, A), let J9(BAL) be defined
by @ Then, the last statement is equivalent to: for a.e. At € QA/Al the system
(F72")(BAY) is a dual of type-I for the frame (T </ )(BA*) of J9(BAL).

Proof. This follows on the same line of proof of Theorem [4.1.2 along with part (iii) of
Theorem [2.2.4 and the observation L., € S'(&/) if and only if ZL. 1, € Sp(Z.47) for all
(7,t) € T' x N. Similarly, we can proof for the fiberization map. m

Theorem 4.1.6. In addition to the standing hypotheses mentioned in Theorem[{.1.2, let
N andT be two countable families and discrete sets having counting measures, respectively.
Then, EX (") is a TG-dual of type-II for EX (<) if and only if for a.e. a € T, (Z')(«) is
a type-1I dual for the frame (27 )(a) of Juy (), where Joy (o) = span{(Z¢;)(a) : t € N}

Moreover, when the pair (4,T) becomes an abelian pair (G,A) and let J9,(BA*Y) be
defined by J9,(BA*) = span{(T ¢;)(BAL) : t € N'}, then the above characterization is true
just by replacing the system (Z.97)(a) with the system (7 .o )(BAL) as well as J.; (o) with
J9(BAL) for a.e. BAL € G/AL.

Proof. Observe that the Parseval determining set D for Ll(f) (defined by @) can be
identified with ? Therefore, the set D is an orthonormal Parseval determining set since D
is an orthonormal basis for L2(f‘) due to the discrete set I'. Thus, we have the result on the
same line of the proof of Theorem @ along with compactness of f, Theorem and
the observation Ter(,(S" (")) © Ter(y)(S' () if and only if Tg,(zm)(Sp(Z4"))
T, z0)(Sp(Z247)). The observation follows by noting {{f, Ly¥:)}eren € range Ter )

for all f € Sp(«7’) if and only if there exists g € Sp(«7) such that for all y e I" and ¢t € NV,
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we have
<f7 L7¢t> = <g7 L7Q0t>, i'e‘a <Zf7 M¢yz¢t> = <Zg7 M¢7‘ngt>

Similarly, we can prove the moreover part. ]

Next, we are presenting the characterizations when TG duals for a frame become the
canonical dual frame in L*(%). Note that the system (/) := {L,@; : v € ', @ =
(Sgr(ﬂ)‘sr(ﬂ))*l%,t e N} is the canonical dual for a frame V' (.&7) of S'(«7), follows by
the commutativity of the left translation operator L. and the frame operator Ser ) ‘ ST ()’
The following theorem is a generalization of [46, Theorems 6, 7 and 8] for a locally

compact group.

Theorem 4.1.7. Under the standing hypotheses mentioned in Theorem[4.1.6, and for a.e
ael, Jy(a) # {0}, the following statements hold:

(i) An alternate (oblique) TG-dual (TG-dual frame) for EY (&) is the only canonical
dual frame of EY () if and only if for a.e. o€ T, the system (Z4)(a) is a Riesz
basis for L*(T\¥Y).

(i) A TG-dual of type-I for EX () is the only canonical dual frame of EY () if and
only if for a.e. a € f‘, the system (Z4f)(«) is a Riesz basis for J,(a), where
Jor () = Span{(Zy)() : t € N}

(iii) A TG-dual of type-II for EY (<) is the only canonical dual frame of EY (&) if and
only if for a.e. € T, the system (Z4/)(a) is a frame for L*(T\&).
Moreover, in case of abelian pair (G, A), the above characterizations are true just by re-
placing L*(T\&) with L*(AY), and the system (Z4)(a) with the system (T .o/ )(BAL) as
well as Jor () with J9(BAY) for a.e. BAL € G/AL.

Proof. Since the set D is an orthonormal Parseval determining set as discussed in the
proof of Theorem {4.1.6, the results follow by observing Theorems [2.3.1, [2.3.2, and [2.3.3
on the line of Theorems 4.1.2, |4.1.4, |4.1.5, and |4.1.6. n

Remark 4.1.8. (i) For the uniqueness, the remaining results of Theorems [2.3.1, 2.3.2
and [2.3.3 can be transformed for the locally compact group in a similar way.

(ii) Analogous to the Theorem [2.2.6, the existence of oblique TG-dual and TG-dual of
type-II can be obtained for the continuous frame ' (/) of S'' (&) which will generalize

a result of Heil, Koo and Lim [44, Theorem 1.5].
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4.2. Examples

In this part, we will show our findings for a variety of experimental setups and present

counterexamples.
4.2.1. On the Euclidian space R" by the action of integer shifts Z"

Let G = R™ and A = Z". Then, G = R”, At = Z" and the fundamental domain for
7" is QA\AL = T". Then the fiberization map is

~

T L*(R™) — L*(T™; (*(Z"™)) defined by T f(€) = {f(& + k) }rezn, £ € T™.

Therefore by considering a countable family <7 in L?(R"), we can obtain characterization
results of duals for a discrete frame sequence £%" (&) using Z that provide results of

references within [37,46]. Indeed, our study covers duals for a continuous frame also.
4.2.2. On the p-adic group Q, by the action of p-adic integers Z,

For a prime number p, consider the group of p-adic numbers @, and its closed subgroup
Z, of p-adic integers. The p-adic group Q, is an LCA group and all its proper subgroups
H are compact and open, and hence G/H is not compact. Therefore, Q, does not have
any proper co-compact closed subgroup while the maximum literature for duals on LCA
groups was mainly based on the action by closed co-compact subgroups [52]. Note that
in our situation we require only a closed subgroup.

Let © be a fundamental domain for Z, which is a discrete set. Then for f e

LY(Q,) (N L*(Q,), the Zak transform is defined by
Zf(x,y) = | fly+&e ™™ dug,(§) forz,yeQ.
Zp

Therefore, we can derive characterization results of duals for a continuous frame £%» (&)

using Z and Theorems 4.1.2~|4.1.7.

4.2.3. Counter examples of duals in LCA groups

For a second countable LCA group G having closed co-compact subgroup A, we can
write é = Q@ At by the Pontryagin Duality theorem, where  is a fundamental domain.
Then, the system {Q + X : X € A'} is a measurable partition of G. Here we also fix an
automorphism A on G such that AQ < Q throughout the entire section. Now, we provide

counter examples using the fiberization, Remarks [4.1.3, [4.1.8, and Theorems [4.1.2/4.1.7.
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Example 4.2.1 (Alternate dual but not frame). Let 7,7, € L*(G) be two functions
such that its Fourier transforms are defined by 71(€) = xaa(§) and 72(§) = xaa(§) +
\/@XQ\AQ@ ) for € € G , where ¢ is a real valued function on G such that the restriction
map g‘Q\ a0 - NAQ — (0,1] is strictly decreasing and onto. Then, we conclude the

following:
(i) The system E2({n;}) is a Parseval frame for S*({n,}) since for a.e. £ € AQ, we have
1TmE)]? = Dyenr M (E+ N> = 1, by observing that the system {Q+ X : A € A}
is a measurable partition of G, AQ = Q and p5(AQ A (AQ+ X)) = 0 for A € A\{0}.
(i) E2({n2}) is Bessel with bound 2 since for a.e. ¢ € €, we have |Tn(¢)|| =
Dend [M2(6 + N)? < 2, by observing p5(AQ 0 (AQ + X)) = 0, pg((Q\AQ) N
((NAQ) + X)) = 0 for A € AF\{0} and also pug(AQ N ((NAQ) + X)) = 0 for
A € At since the measurable sets AQ and Q\AQ are disjoint subsets of 2.
(iii) E2({n2}) is an alternate TG-dual for £2({n;}) since
(Tm€), Tm(€)y = Y, M(E+ N+ A) = xaa(§) for ae. &

XeAL
(iv) But EA({n}) is not a frame for S*({n,}) since for a.e. & € Q, no lower bound of
| T m2(€)] is greater than zero, follows by noting that the infimum of g| o 10 (NAQ)

is zero and

2 72(& + NP = xaa(€) + 9(&)xaaa(€)-

AeAt

Example 4.2.2 (Alternate but not oblique dual). Let 7,70 € L*(G) be such that
M = Yaq and 7y = Yq. Then, E4({n;}) is a frame for S*({n;}) for i = 1,2, and E*({n2})
is an alternate TG-dual for E*({n,}) since for a.e. €€ Q, 3, 0 M€+ N)|* = xaa(§),
Seat (6 + NP = xal€), and 3,0 (€ + NR(€+ X) = xaq(€). Since AQ < Q, the
system EA({n;}) is not an alternate TG-dual for £4({n,}), and hence the system E*({n.})
is not an oblique TG-dual for E*({n,}). Further note that it is neither type-I nor type-II
dual.

Example 4.2.3 (Oblique but not dual frame; Type-I but not Type-II dual). Let
o = {n1,me} and &’ = {(1, (>} be two families of functions in L?(G) such that 7, = Xq =
2 7 and & = Xo, G = 0. Then for a discrete set A, we get Dt IME+ NP =xalé) =
23 ear M€+ N+ X) and 3yous [72(€ + NP = Ixa(€), and hence the Gramian

matrices G (&) associated with &7 is [(T1;(€), Tn;(€)))1<ij<2 (in view of (2.3.2)), which
56



0
will be

0 0
for & € Q.QTherefore for £ € Q, we conclude J, (&) = Jo(€) and Ker G (&) #Ker G (§).
That means, we get S (/) = S*(&"), and Ker Tgn (o) # Ker Tea(gr. Thus, EMa') is a
dual of type-I for £2(a7) but not type-II dual. Also note that it is oblique but not dual
frame since S (/) < L*(G).

. Similarly, the Gramian matrices G (&) associated with &7” is

PN T T

Example 4.2.4 (Unique Type-I dual but J,(z) = 0 for a measurable set). Let
m,m2 € L*(G) and \g € AX\{0} be such that 7, = yaq and 7j, = X(AQ+))- Then for a.e.

£eQ, weget Doan Mi(E+N]? = xaa(§) for i = 1,2 and Y, 0 1(§ + Np(§+ A) =0,

1
and hence the associated Gramian matrix G(§) is for £ € AQ and for

01 0 0
€ € Q\AQ. Since for each ¢ € €, either G(€) is invertible or G (&) = 0, the frame E4({ny, 72})

admits unique TG-dual of type-I by Theorem 4.1.7 and Theorem [2.3.1.

Example 4.2.5 (Non-unique Type-I dual). Let 1,7, € L?*(G) be such that 7, = yaq

and 72 = Xo\a0- Then for a.e. £ € Q, we get 3,10 [M1(€+ AP = xaa(§), Zyear 1126 +
M2 = xaua(§), and X, 0 11(§ + A)a(€ + A) = 0, and hence the associated Gramian

10 00
matrix G(§) is for £ € AQ, and for € € Q\AQ. Since for each £ € Q, G(&)
0 0 01

is not invertible, the frame E*({n;,n2}) admits more than one TG-dual of type-I.

Example 4.2.6 (Type-II but not Type-I dual). Let 5,7, € L*(G) and )y € A+\{0}
be such that 71 = x40 and 7> = Xaqu(a0+xr,)- Then for a uniform lattice A, EM{me)) is
an oblique TG-dual for £2({n,}) follows by noting 31,1 5:(€ + N)7;(€ + A) = xaa(€) for
1 <i4,7 < 2. Thus, it is a dual of type-II since for a.e. £ € Q, Ker T{’Zl}(f) = Ker T{”;n}(f)
but not type-I dual since Jy,;3(&) # Ji3 (€).

Example 4.2.7 (Unique TG-dual of Type-II). Let 7y,m, € L?(G) and Ay € At be

such that 71 = xq and 72 = x4, Then, for a uniform lattice A, for a.e. £ € Q and

i=1,2, we get D\ ar [M:(E+N? = xal€), and D, 0 Mi(€ + A)N2(€ + A) = 0, and hence
the system E*({ny,n2}) is an orthonormal basis for S*({n;, n2}). Therefore, it is a Riesz
basis for SM({n1,m2}).
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Example 4.2.8 (Non-unique Type-II dual). For a uniform lattice A and A\ € A*,
let my € L?(G) be such that 7y = xa4px, Where B is an automorphism on é such that

BA*+ < AL, Then for a.e. € € Q, the dual Gramian matrix

GE) = | D ME+ M)ME+ AQ)] = [ D xaesal€ + A)xara(€ + X
A ged

AeAt AeA L A AseAL
is non-zero and non-invertible matrix, follows by noting that all the terms of columns of
G (¢) with respect to Ay is identically non-zero when \; € BA*, while it is identically zero
for \; ¢ BA*. Also note that the Gramian matrix G(£) = [(T 05, (€), TN, (E))]a, apear 8
an identity matrix. Therefore, the frame £*({nx}ear) admits more than one TG-dual of

type-II.

Next, we start the continuous Gabor system due to its importance into various appli-
cations. The characterizations established here generalize various results available in the

literature including [8}17,241|49,52].

4.3. Duals for a continuous Gabor frame

For a second countable LCA group G having closed subgroup A and a family </ in
L*(G), let us consider a Gabor system (also known as, (A, AL)-translation modulation

generated (TMG) system) G(</, A, A*) given by
G(o A AY) = {L\E,p: Ae Awe AN ped},
and its associated (A, A*)-translation modulation invariant (TMI) space
S(, A, A*) :=spanG(/, A, AT),

where for w € G, the modulation operator E,, on L2(G) is defined by (E, f)(z) = w(z) f(z), z €
G, f e L*(G). By a TMI space V, we mean it is closed subspace of L*(G) such that
LyE,f eV forall feV and (\w) e (A, AL).

Since the Zak transform satisfies the relation (ZLyE,f)(3, zA) = Mm’w(é'f)(ﬁ, xA),
for f e L*(G), (\,w) € (A,AY) and (8,2)) € (A, G/A), where ¢, (8,2) = B(ADw(x),
therefore the set D = {¢,,, € LOO([A\ X G/A)}awiea,at) is a Parseval determining set for
LY(A x G/A) follows by the isomorphism between groups (A x G/A)”* and A x A+ due to

Pontryagin Duality theorem.
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For a Borel subset B « A x G/A, consider Vi = {f € L*G) : (Zf)(B8,Az) =
0 for a.e. (8,Ax) ¢ B}. Then the map B +— Vg is a bijection and corresponding to
the (A, AL)-TMI system S(o7, A, At) = S(a, A, A1), the set B is given by

(4.3.1) B ={(B8,Az) € A x G/A: (Zf)(B,Az) # 0 for some f e o},

where o7 is a countable dense subset of o7 [17, Theorem 3.1}, [23, Theorem 4.1].

Now we state the following characterization results of duals (alternate (oblique) TMG-
dual, TMG-dual of type-I (type-II), TMG-dual frame in the sense of Definition for
a continuous frame G(&7, A, AL) of (A, A+)-TMI space S(«7, A, At) in view of Theorems
2.3.1,2.3.2 and [2.3.3. It is a generalization of [17, Theorem 7.3] and [36, Theorem 2.3]

for a locally compact abelian group.

Theorem 4.3.1. Let &/ = {pi}en be a collection of functions in L*(G) such that
G(4, N\, A*) is a continuous frame for S(</, A, A*), and B is defined by @), where
(N, ) is a complete, o-finite measure space. If &' = {1 }en is a collection of functions
in L?(G) such that G(<7, A, A*t) is Bessel in L*(G), then we have the following:

(i) G(&', A, AY) is an alternate (oblique) TMG-dual (dual frame) (dual of type-I) for
G(o, A, AY) if and only if for a.e. (B,xA) € B, the system (Z4')(8,Ax) =
{Zy(B,Ax) : t € N} is an alternate (oblique) dual (dual frame) (dual of type-I)
for the frame (Z247)(B, Az) == {Z¢(B,Ax) : t e N'}.

(ii) For a countable family N and discrete set A having counting measures, G(</', A, A)
is a TMG-dual of type-II for G(</, A, A*Y) if and only if for a.e. (B,zA) € B,
(2&%’)(6,:5A) is a dual of type-II for the frame (Z.27)(3, ).

Proof. Using the Parseval determining set D = {¢,,, € L (/A\ X G/N)} o wyeanr) for Ll([A\ X
G/A), and the intertwining relation (ZLyE,f)(5,zA) = me(éf)(ﬁ,xA), we can get
the results similar to Theorems [4.1.244.1.6. O

Example 4.3.2. Let G = R", A = Z™ where m < n, considering Z™ as a subgroup of
R™ by fixing the first m entries are non-zero and remaining are 0 in n-tuple, then the Zak

transform Z : L2(G) — L*(A x A\G) takes of the form :

Z: L*(R") — L*([0,1)™ x [0,1)™ x R*™™)
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by (Zf)(u,v,2) = Y, pm [0+ k,2)e 2™ for (u,v,2) € R™ x R™ x R*™ f e L*(R").
Then for two countable collections of functions & = {p;}ien, @' = {; }sen in L*(R™) we
can state the Theorem |4.3.1 for the discrete translations in Euclidean setup.

4.4. Duals associated with the orbit of a representation

The present section overwhelms with a deep connection between frame theory and
representation theory. Such study in connection with discrete as well as continuous frames
has been done by many researchers including Hernéndez, Sikic, Weiss and Wilson [47],
Barbieri and Herndndez and Parcet [9], Iverson [49], and Bownik and Iverson [19]. A
representation (unitary) p of a second countable LCA group G is a homomorphism from
G to U(H), where U(H) denotes collection of the unitary operators on a Hilbert space
H, such that the map = — p(z)v is continuous from G to H for any v € H. We simply
call (p,G,H) as a representation of G. Further, we call (p,G,H) as a dual integrable
representation if there is a bracket map [-,-] : % x H — L'(G) satisfying

(o p(a)g) = L [, 91(B)B) dug(B), v <G and fge M.

Note that the translation and modulation representations are dual integrable acting on
H = L*G) and H = L2(é), respectively. Through out this section (p,G,H) denotes a
dual integrable representation acting on a separable Hilbert space H.

For a dual integrable representation (p,G,H) and a family o/ = {@i}en S H, we
define its orbit under p by

Og() :=={p(x)p xv€G,ped},

and its associated p-invariant space Sg(&7) = spanOg(«/). By a p-invariant space we
mean a closed subspace V' of H such that p(z)p € M for all ¢ € V and x € G. Since
we are interested to discuss duals viz. alternate (oblique) dual, dual frame, type-I and
type-11 duals for the frame Og (o) of Sg(«7), we require the isometry 7 between H and
L2(G: (2(I)) defined by

T = (Mmﬂ)) for feH.Ae G,
[Cia Cz] 2 (6) icl
where {(;}ic; © H is the orthogonal generators for p, i.e., H = @®;c; span{p(z)(;}aeg,
and € = {8 € G : [G,¢] # 0}. Then from [47,149], note that it satisfies the following
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intertwining properties with representation, i.e., T (p(x)p) = My, T(p) for all ¢ € H
and z € G, where ¢,(3) = B(z),8 € G. Therefore, the set D = {¢, : z € G} is a
Parseval determining set for Ll(gA) by Pontryagin Duality theorem. Analogous to the
previous case, we notice that for g € QA , the space J(f) associated to the range function

J:G— {closed subspaces of ¢*(I} is defined by

(4.4.1) J(B) = span{(T f)(B) : | € S} = Js(B)

for some countable dense subset %, of &/ in H.

Now we state the following characterization results of duals (in the sense of Definition

for a continuous frame Og (&) of Sg(«):

Theorem 4.4.1. Let (p,G,H) be a dual integrable representation and let o/ = {©i}ien
be a collection of functions in H such that Og(<f) is a continuous frame for Sg(</), and
the associated range function is defined by , where (N, unr) is a complete, o-finite
measure space. If &' = {Wilenr 15 an another collection of functions in H such that

Og(") is Bessel in H, then we have the following:

(1) Og(&") is an alternate dual (oblique dual, dual frame, dual of type-I) for Og(<f) if
and only if for a.e. B€G the system (T")(B) := {Tu(B) : t € N'} is an alternate
dual (oblique dual, dual frame, dual of type-1) for the frame (T < )(5) := {T(B) :
te N} of J/(5).

(ii) For a countable family N and a discrete set G having counting measure, Og (")
is a dual of type-II for Og(<) if and only if for a.e. B € G, (Za7")(B) is a dual of
type-11I for the frame (T <7 )(5) of Jo ().

Proof. By noting the Parseval determining set D = {¢, : ¢o(8) = 8(z),8 € G,z € G}

for L'(G), and the intertwining relation T (p(x)p) = My, T (¢) for all ¢ € H and z € G,

the results can be proved in a similar way of Theorems4.1.2,4.1.4,|4.1.5, and |4.1.6 using
the linear isometry T : H — L*(G;¢*(I)) maps Sg(«/) unitarily onto Sp(7 ), sending
Og() to Ep(T ). ]

Similarly we can prove the following using Theorems [2.3.1, 2.3.2 and [2.3.3 and Theorem
417
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Theorem 4.4.2. In addition to hypotheses of the Theorem [{.4.1, let N and G be a
countable family, and a discrete set having counting measure, respectively, such that for
ae. BeG, Js(B) is defined by J,(8) = span{(T:)(8) : t € N} # {0}. Then, we have
(i) an alternate dual (oblique dual, dual frame) of Og(<?) is the only canonical dual
frame of Og() if and only if for a.e. B € G, (T<7)(P) is a Riesz basis for H.
(i) a dual of type-I for Og() is the only canonical dual frame of Og(<f) if and only
if for a.e. Be G, (T)(B) is a Riesz basis for J.s(8).
(iii) a dual of type-1I for Og() is the only canonical dual frame of Og(<) if and only
if for a.e. f€ GA, (T <) (B) is a frame for J,(B).

At the end of this section we discuss dual integrable representations associated with

the dilation map in view of the importance of wavelet theory.

Example 4.4.3. For an LCA group G acting on a o-finite measure space (2, u) and
g € G, we define a dilation map D, : G — L*(Z") by D,f(z) = (Jg(x))% f(g.z), where
Jy(z) = % and “” is an action of G on 2. Then it is a dual integrable unitary
representation of G on L*(2, u) [47]. Now for a collection &/ < L*(Z"), if we consider
the system Og(/) = {Dyp : g € G, € &/}, then we can discuss the local dual frame
property applying Theorem [4.4.1 and their uniqueness from Theorem [4.4.2 in terms of

suitable Zak transform.

In the next section, we are going to provide new oblique dual frames for given TI

spaces.

4.5. Existence of oblique duals and infimum cosine angle

The following result is a generalization of [57, Theorem 4.10 | for the locally compact

group.

Theorem 4.5.1. Let &4 be a locally compact group having a discrete abelian subgroup T,
then for the finite collections of functions & = {p;}™, and B = {;}", in L*(4), and
for a.e. o€ T, assume the range functions Jy(a) = span{Z¢;(a) 1 i = 1,2,...,m} and
Jz(a) = span{Zy;(a) : i = 1,2,...,n} associated with T-TI spaces S' () and S"(A),
respectively. Then the following are equivalent:
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(i)

(i)

(iii)

There exist o' = {pi}r_, and B’ = {YL}7_, in L*(4) such that EY (") and EY (A')
are continuous frames for S'(a/) and S'(AB), respectively, satisfying the following
reproducing formulas for g € S* (&) and h € S*(A):

9= Z J (9, Lygi) Ly dur(v), and h = Z f Chy Loy Loa; dpr (7).
=11 i=1 YT
The infimum cosine angles of S* (/) and SY(AB) are greater than zero, i.e.,
R(S"(#),S"(#)) > 0 and R(S"(B),S" (7)) > 0.

There exist collections of functions {@L}7_, and {Y!}7_, in L*(94) such that for a.e.
a €T, the systems {Z¢,(a)}1_, and {Z¢)(a)}1_, are finite frames for Jo (o) and
Jg(a), respectively, satisfying the following reproducing formulas for u € Jy ()

and v e Jy(a):

T r

u = Z<u, ZYi(a)Zei(a), and v = Z@, Ze(a))ZY(a) ae. aeT.

i=1 i=1
For a.e. a €T, the infimum cosine angles of Jo (@) and Jy(a) are greater than

zero, i.e.,

R(Jy (), Jg(a)) > 0 and R(Jz(a), Jy(a)) > 0.

Proof. Since Z is an unitary operator, R(S'(#),S'(«")) = R(ZS" (&), Z8" (")) using
Definition [3.1.1. Hence we have the desired result using Theorem (3.1.6. O

Next we state the following result which is a generalization to the locally compact

group in case of Riesz basis |18, Proposition 2.13].

Theorem 4.5.2. Let & be a locally compact group having a discrete abelian subgroup T’
and V', W be T-TI subspaces of L*(¥4). For the finite collection of functions & = {p;}7_;,
assume EY () is a Riesz basis for V. Then the following holds:

(i) Global setup: If there exists &' = {p\}7_, in L*(¥) such that EY (") is a Riesz

(4.5.1)

basis for W satisfying the biorthogonality condition {L.pi, L fl) = 0;110 ., 0,7 =
1,2,...,r; v, €L, then the infimum cosine angles of ¥ and W are greater than
zero, i.e.,

RV, W)>0and R(W,7) > 0.
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Conversely if (4.5.1) holds true, then there exists o' = {¢}}1_, in L*(¥4) such that
EV(A") is a Riesz basis for W satisfying the biorthogonality condition. Moreover,

the following reproducing formulas hold:

F =2 Ly Lyi forall f € ¥, and g = ). > (g, Lypi) Lyg, for all ge ¥

yeli=1 vel i=1
(ii) Local setup: If there exists o' = {Q}7_, in L*(¥4) such that for a.e. « €T,

{Zi(a)}r_y is a Riesz sequence in L*(T\¥Y) satisfying the following biorthogonality

condition
(4.5.2) (Zoi(a), Zou(a)y = b, 1,0 =1,2,...,7, a.e. a € T,

then the infimum cosine angles of Jo;(a)) = span{Zy;(a)}i_, and Jo(a) = span{Z¢;(a)}i_,

are greater than zero, i.e.,
(4.5.3) R(Jos (@), Jopr(@)) > 0 and R(Jo (), Jr (@) > 0 a.e. a €T

Conwversely if (14.5.5’) holds, there exists ' = {@i}7_, in L*(94) such that for a.e.
a e, {Zl(a)r_, is a Riesz sequence in LA(T\&) satisfying the biorthogonality
condition (4.5.2). Moreover, the following reproducing formulas hold foru € J (),

and v € J(a):
u = Z<u, Zyi(a)Zei(a), and v = Z@, Zoi(a))Zgi(a) for ae. aeT.
i=1 =1
The similar results can be deduced for locally compact abelian group G using the

fiberization map 7.

Example 4.5.3. Let G = R", A = R™ where m < n, considering R™ as a subgroup of
R" by fixing the first m entries are non-zero and remaining are 0 in n-tuple, then the Zak

transform Z : L*(G) — L2(A; L2(A\G)) takes of the form :
Z: L*(R") — L*R™ x L*(R"™™))

by (Z£)(u)(y) = §gm f(2, y)e 2™ dx for u € R™, y € R"™™. Then for the finite collections
of functions & = {p;}7, and & = {1;}"_, in L?*(R") we can state the Theorem |4.5.1 for

the continuous translations in Euclidean setup. Similarly, Theorem 4.5.2 can be stated.
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Example 4.5.4. Recall Example[d.2.2, the Gramian matrices corresponding to the system
T = Xaq and 15 = xq, Where AQ < § are

I, for o € A€, I for a € Q,
G771 (Oé) = and an (O./) =
0, otherwise, 0, otherwise,
I, for a € A€,
G (@) =

0, otherwise.
R(Jy, (@), Jpy (@) = |Gy () Gy p (@) Gy ()| > 0 only when o € AQ. Hence the dual is

not oblique.

Example 4.5.5. When AQ = , then R(J,,(a), J,,(a)) > 0 for all a € I'. Hence the dual

is oblique in this case.

We have discussed various duals for the translation generated systems in L?*(%¢). Or-
thogonality of frames is a key concept to generalize these duals for the super Hilbert space
L*(9)® - ® L*(¥) (N-copies) or @V L*(¥) [43]. In the next chapter, we characterize

orthogonal frame pairs and generalize the dual frames for the super Hilbert spaces.
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CHAPTER 5

SUBSPACE DUAL AND ORTHOGONAL FRAMES BY
ACTION OF AN ABELIAN GROUP

0

In this chapter, we discuss subspace duals of a frame of translates by an action of a
closed abelian subgroup I' of a locally compact group ¢. These subspace duals are not
required to lie in the space generated by the frame. We characterize translation generated
subspace duals of a frame/Riesz basis involving the Zak transform for the pair (¢,I"). We
continue our discussion on the orthogonality of two translation generated Bessel pair using
the Zak transform, which allows us to explore the duals of super-frames. As an example,
we extend our findings to splines, Gabor systems, p-adic fields @Q,, locally compact abelian

groups through the ways of the fiberization [64].

5.0.1. Orbit generated by a representation of a locally compact group

Let ¢ be a second countable locally compact group with a Haar measure py and X
be a closed subspace of a separable Hilbert space H. By a wunitary representation m of
¢, we mean it is a strongly continuous group homomorphism 7 : ¢4 — % (H), where
% (M) = {U : U is a unitary operator on H}. Then for a o-finite measure space N with
measure (i, and a family of functions &7 = {¢;}en in H, an orbit £(&/) generated by a

unitary representation (mw, H) of ¢4 given by

5(2{) = {W(z)@t}xe%ta\/

is said to be a continuous KC-subspace frame (simply, call as K-subspace frame) if the map
(z,t) — (f,m(x)pr) from (¢4 x N) to C is measurable and there exist 0 < A < B < @
such that

(50.0) A< fN L (@)oo diua(a) dune(t) < BI S|P for all f € K.

This chapter is a part of the following preprint:
S. Sarkar, N. K. Shukla, Subspace dual and orthogonal frames by action of an abelian group, submitted.



If & = H, then the orbit £(&7) is a frame for H, and it is Bessel in H when only upper
bound holds in (5.0.1), and complete when spané (<) = H.

Definition 5.0.1. For two Bessel families £(27) and {g, +}zew.ten in H, if they satisfy the

following reproducing formula:

(5.0.2) . [ guimtaron duate) duatt) = 1 forat g i <

then {g +}eew ten is called a KC-subspace dual to the orbit £(<7).

Note that £(27) need not be a K-subspace dual to {gy.+}zew tenr, but the family {g,+ +
Bt} ey ten is a K-subspace dual to £(&) provided

(5.0.3) JN L<f, hy () dug(x) dua(t) = 0 for all f e K,

where {hyt}zewen is Bessel in H. Such {hy+}rewen satisfying @) is known as K-
subspace orthogonal to the orbit £(<7).

Every frame or a Bessel family is associated with an analysis operator, the range of
which carries out a lot of information of a signal/image or function. Given a Bessel family
E(</) in H we define a bounded linear operator Tg(y) : H — L*(¢ x N), known as

analysis operator, by

(5.0.4) Te(or)(f)(x,t) = (f,m(x)py) for all (z,t) €94 x N, and fe N,
and its adjoint operator T ¥ v L9 x N) — H, known as synthesis operator, by
(5.05) T = f f O, (@) or dpig () dun(t) for all € LA x N,

in the weak sense. For two Bessel families £(.7) and Y := {gs.+}vew ten in H, the operator

TgnTy : H — H given by [ — §.§,(f, goiym(2)pr dpg(x) dpy(t) is known as mized

dual Gramian.

Definition 5.0.2. Let £(«7) and ) be frames for spané (&) = S(&/) < H, and span),
respectively.
(i) If 77, Ty = Is() on S(&/) = span) then £(&/) and Y are dual frame to each
other, where Is(.) is an identity operator on S(7).
(i) If T¢Iy = 0 on S(&/) = span), () and Y are orthogonal frame pair.
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Orthogonal frame pair plays a prominent role to generalize dual frames for super
Hilbert spaces [73]. For more details on orthogonal Bessel families, we refer 19,3940,
54,73] . Next for the case of -subspace dual (5.0.2) and K-subspace orthogonal (5.0.3)
to the orbit £(&7), we can write Tg”‘(%)Ty‘,C = I and TE*(,Q{)TZ‘;C = 0, respectively, where
Z = {hyt}zeg.ren is Bessel family in H. In particular, if the orbit £(&7) is a K-subspace
frame for K = span€ (<), and TE*(ﬂ)Ty’/c = I, then Y is an alternate dual to the orbit
E(o). We refer [26,44,46] for more details on alternate duals.

5.0.2. Transformation of the orbit to a translation generated system

For a sequence & = {p;}; in H, there is a correspondence between the orbit £(.27) and
a translation-invariant system generated by a sequence of functions { f;}; in L*(%¢) with the
action of I', where I' is a closed abelian subgroup of a locally compact group ¢ [19] . Infact,
there is a unitary map U : Span€ (/) — span{n(z) fi}zer,; such that Un(x)y; = mp(x) fi,
for all 7 and z € T', where the left reqular representation ny, : 4 — % (L*(94)) is defined
by

[m(@)]f(y) = fy~'2) = (Laf)(y) for all fe L*(F) and v,y € 9.

The left regular representation 7y, is unitary. Using the information that has been provided
so far, we build a translation-invariant system that is indexed by a o-finite measure space
called NV in order to cover the extensive class of £(&).

For a closed abelian subgroup I" of a second countable locally compact group ¢ (not
necessarily abelian), we recall, the T'-translation generated (TG) system EV (<) and its
associated I-translation invariant space ST (/) from (1.3.1):

EN):i={Lyp:veT,pe o}, and S (&) :=span{L,p:vel,pe o}

By a I'-translation invariant (I'-TI) space V, we mean L¢f € V for all fe V and { €T,
where V is a closed subspace of L*(4). For & = {p}, we denote £V (&) and S'(«) by
E(p) and S (y), respectively. In this scenario, our main goal is to provide a detailed
study of ST (&)-subspace duals of a Bessel family/frame V() in L*(¢) due to its wide
use in the various areas like harmonic analysis, mathematical physics, etc. Our results
have so many predecessors related to the work on subspace and alternate duals, orthogonal
Bessel pair, etc. [19,125,26,139,40, 44} 46,54, 73]. The purpose of this section is devoted

to characterize a pair of orthogonal frames, and subspace dual of a Bessel family/frame
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generated by the I-TG system 7 (&) in L*(¥4). When ' (<) is a Riesz basis then there is
a associated biorthogonal system, which forms a unique dual and it is called biorthogonal
dual. A brief study of biorthogonal system with discrete translation is discussed here. We
characterize such results using the Zak transform Z for the pair (¢,I") defined by .
For the case of locally compact abelian group G, we use the fiberization map 7 which
unifies the classical results related to the orthogonal and duals of a Bessel family /frame
associated with a TI space. This study of frames for their orthogonality also enable us to

discuss dual for the super Hilbert space @ L*(¥).

5.1. Subspace dual of a frame by a discrete abelian group action

Throughout the section we assume that I' is a closed discrete abelian subgroup of a
second countable locally compact group ¢. In this section we study S (27 )-subspace duals
of a Bessel/frame sequence E' (&) in L?(¥) in terms of the Zak transform for the pair
(¢,T'). Such study on the pair (¢,1") allows to access the various number of previously
inaccessible pairs, like (R™, Z™), (2", Z"™), (Z%,Z}}), etc., where n = m and Zy is a group
modulo N. In the setup of discrete group I', the Zak transform Z for the pair (¢,1") can
be rewritten from (4.1.1) as follows, for f € L}(¥) n L}(9),

(Zf)(a,Tz) = fF\x(a) = Z o (y)a(y™) for a e [ and Tz eI\¥.

~vyel'

In the present section we discuss subspace dual and orthogonal frames for I'-TT spaces
generated by a countable number of functions & = {p; : t € N} in L?(¥4), where N is
a o-finite measure space having counting measure. We refer [14,25]54,|73] regarding the
orthogonality and dual frame related results of a frame in the Euclidean spaces and LCA
groups using Fourier transform. We begin with the notion of matrix elements for the left

regular representation |34, Section 5.2].
Definition 5.1.1. For ¢, ¢ € L*(¢), let W, : ' — C be a function defined by

W) () = by m(v)y = W, Ly, ve T

Then M1 is known as a matriz element of the left regular representation 7, associated
with ¢ and .
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In the sequel we require the discrete-time Fourier transform of W, at a point of I
Recall, a discrete-time Fourier transform Z(a) of a sequence z = (2()) € £*(T") at a point
a e T, defined by Z(a) = X cr 2(7)a(v). The convergence of series is interpreted as its
limit in LQ(IA“). Next we describe the discrete-time Fourier transform of W, in terms of

the Zak transform associated with the right cosets in I"\¥.

Lemma 5.1.2. Let o, € L*(¢) be such that the associated matriz element W, is a

member of (*(T). Then the discrete-time Fourier transform of Wy at a € T is

W) (@) = (24, Z¢](a),

provided [Z1, Zo](-) € LX), where the complex valued function [Z1, Z¢]() on T is
given by

(5.1.1) [ZY, Zp](a) = L\% ZY(a,Tz) Zo(a,Tx) durg(T'x) for ae I

Moreover, for a Bessel sequence E (¢) = {Lp : v € '} in L*(4), W, and [Z¢, Zp](+)

are members of (2(T') and L(T), respectively, and hence the above result holds true.

Proof. Since Z is unitary, the discrete-time Fourier transform of {W,¢(y)},er € ¢2(T) at
ael is,
Wod)(@) = Y1, Lypda(r™) = Y UEG, Z(Lro))a oy a7
~yel vyel

Employing the intertwining property of Zak transform Z on the left translation with
modulation, i.e., for f € LY(%) n L%(¥),veT, ael, z €%, and using (4.1.1),
Z(Lyf) (e, Tx) = Y (L, /) (V) = > F((IVETT)a(r )

el el

_ Z 2y NaA Y = a(y HZf(a, Ta).

el
Then we obtain

(512) Wat)(a) = Yia(v7™) ﬁ BONEW(B), Zo(B)) 12wy dup(B) = Y5 aly™)E(),

~yel r ~yel

where for v € T, the function ((v) := §z B(7)(Z¥(B), Z¢(B)) dus(B) is identical with

W, (7). The sequence {C(V)}vep € EQ(F) since {W,(7)}er € (3(T). Further, we can
71



write (5.1.2) for a e T as follows:

W)@ = Y a1 = 3 ([ 50)@0(0). 266 du(3)) alr™)

~ell ~ell

-3 ([0 ([ 26000 ZA0T5) o)) o)) a7

~yel

-2 ( f (20, 201(8)5(7) dufw)) a(y ™),

~ell

where for 8 € T', [Z1, Z¢](B) is defined by [Z1, Z¢]( SF\% ZY(B,Tx)Zp(B,Tx) durg ().
Also by identifying I' to T as v — 3 and noting that F is an orthonormal basis for LQ(F),

we can write

W) = Y ( [ 1ze.ze00m0 dmm) 5a)

vyel’

= 3 {12%. 261(),5() Y 3() = [2¢, Z¢](@),

~yel

provided [Zv, Z¢](-) € LA(T).

For the moreover part, assume that the I-TG system E'(p) is Bessel. Then for all
f € L*(¥) we have the inequality > | < f, L,¢ > |> < B||f|? for some constant B > 0,
and hence by choosing f = ¢, we get W,1) as a member of £%(T"). Also the Bessel property
of ET(y) implies [Z¢, Zp](a) < B a.e. a e ' [49], and hence using the Cauchy-Schwarz

inequality

Jolize zate  anste) = | || 2000, 102500, dur )i o

“J (.

_ f (2, Z4](a)[Z¢, Z¢](a) dup(a)

(0, )| dur\g(”)) (L

|zetaro) “dpra(C) ) digla)

<B ff[zw,zmm dyig(0) = Bl 29 = By
]

When the locally compact group ¢4 becomes abelian, denoted by G, the groups G JAL
and 9//7\ are topologically isomorphic to A and A+, respectively [34], where A is a closed

discrete subgroup of G. Instead of the Zak transform Z for the pair (¢,T), we will use
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the fiberization map .7 : L2(G) — L2(G/A*: L*(AY)) for the pair (G, A) which is unitarily
defined by

~

(7 HIwAM)(E) = F(O(wA?)E),

for f e L}(G) wAt e f!?/AL and & € A*, where the Borel section © : G/A+ — G sends
compact sets to pre-compact sets.

For any ¢, € L?(G), next we obtain a relation between [Z1, Zp](-) and [T, T¢](*)
in the setup of locally compact abelian (LCA) group G and its closed discrete subgroup
A, where

(5.1.3) [T¢, TelwhA') = | TYWAL) ()T oA (E) duar(€) for wA* e G/AL,

AL

which is a reminiscence of [49]. Since [Z¢, Z¢](-) € L*(A) from (5.1.2) the Fourier
transform F of [Z¢, Zp](-) at A € A can be written as

FI20, Z0](\) = L[Zw,ZsO](ﬁ)ﬁ(A) dyiz ()

- [ ([, 20 A0 Zo 8] dune ) TV i)

=)

_ L<Z@b(ﬁ)7 Zo(B)BON duz (8)

- | E@a3).203) dus(p)
= <L)\w7 90>

Since [T, To](-) € Ll(é/AL), from the similar calculations of (5.1.2), and the groups
G/A* and A are topologically isomorphic, the Fourier transform F of [Z4, Z¢](-) at

A € A can be written as follows:

FITZ0. 76100 = [ 170, 7 el o) dus )

- <JAL TP(wA) (&) T (wA)(E) dpipe (5)) w(A) dpg(w|a)

~

JA

_ ;<7¢<wAi>, T p(WAL)w(N) dpiz (w]a)

r‘ ——

= |, TN, TolAw) dig e (wh)

(-
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Employing the unitary property of the fiberization map .7, we have
FITY, Tpl(N) = L/AL&?LW(M\L), T p(wAD)) dpg iy (WAT) = (Lat, @),

since the fiberization map .7 intertwines left translation with modulation, i.e.,
T L @A) (©) =(La)(O@AN)E) = OWAN)(AEN T FWA)(E) = w(A )T FwA*)(©).

as Fourier transform intertwines left translation with modulation and © : QA /AL — QA is a
Borel section ©(wAt) = wn for some n € A+ and n(A~!) = £(A~1) = 1. Therefore for all
A € A, we have F[Z¢, Zp](N\) = F[T Y, T¢](N\) which implies

(5.1.4) (20, Zo](w|p) = [T, Tpl(wAb) ae. weg,

A~

since the Fourier transform F : L'(A) — Cy(A) is injective. Thus by using the relation
, we state the following result analogous to Lemma @ for the case of an LCA
group G and its closed discrete subgroup A in terms of the fiberization. In particular the
same result can be realized for the case of uniform lattice A. By a uniform lattice A, we

mean it is a closed discrete subgroup of an LCA group G such that G/A is compact.

Lemma 5.1.3. Let G be a locally compact abelian group and A be a closed discrete sub-
group of G. If v, € L*(G) such that the matriz element W, is a member of (*(A), then
the discrete-time Fourier transform of W, in terms of the fiberization for the abelian
pair (G, A) is

Weth)(wla) = [T, Tol(wh), wA* € G/A*,

provided [T, To](:) € LZ(Q/AL), where the complex valued function [T, T ](-) on
G/A* is given by (@) Moreover, for a Bessel sequence E*p) in L*(G), Wy and
[T, T¢|(-) are members of (2(A) and L*(G/AL), respectively, and hence the above result
holds true.

The following result plays an important role to study the duals of a I'“TG system
using the Zak transform. As an additional point of reference, it expresses the transition

from the role of T to T.

Lemma 5.1.4. Let ¢ and v be two functions in L*(4) be such that the corresponding

[-TG systems defined as in (1.3.1), E'(p) = {L,p : v €T} and E'(Y) = {L¢p : y € T}
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are Bessel. Then for all f,g € L*(¥4), we have

S (f, Loy (Lt g) = f (£, Z0)(0)[ 24, Zg)(a) dus(a).

~yell
Moreover, when the pair (4,1) is an abelian pair (G,\) for f,g € L*(G) and a.e. wA* €
G/A,
S L) = [ 175 TAANT Y, TN digps (),
g

AeA
in terms of the fiberization 7 .

Proof. For all f e L*(¥) and from (5.1.1),

(o Logy =(Zf. ZLyg) = L<Zf(a),390(&)>a(7) dyiz () = f 21, Zol(@)a(y) duz(a).

I
Since the I-TG system E7 () is Bessel, we have [Zf, Z¢](-) € LA(T) from Lemma @,
and hence using the inverse Fourier transform [Z f, Z¢]¥ () at v € T, the above expression
can be written as follows:
o Lypy = [2F, 2] (7).

Similarly, we have (L1, g) = [Zv, Zg]¥ () for v € " and g € L*(¥). Further, note that
the sequences {[Z f, Zp]" (V) }rer and {[Z¢, Z9]¥ (7)},er are members of £2(T") follow from
Lemma @ Hence the result follows by observing the Parseval formula on ¢*(T") in the
following calculation,

D L)X Lyh gy = D (121, 2] (7)) (124, 291 (7)) = A2, 2¢) [29, Z20] )y

=21, 2¢]().[29. ZY]()) 2y = L[Zf, Zpl()[24, Zg](a) dup(a).

The moreover part follows from the same argument as above by substituting the Zak
transform Z for the pair (¢,1") with the fiberization .7 for the pair (G, A) by the Lemma
.13 O

The next result connects analysis and synthesis operators with the pre-Gramian
operator in terms of the Zak transform for the pair (¢,I'). We recall I'-TG system
EX( ) = {L,o}er per and its associated I'-T1 space S' (/) = span&’ (/) from @),
for a countable collection @ = {¢; : t € N'} in L*(9). If ET () is a Bessel family in L*(¥),
then from @), the associated analysis operator Ter(y) : L*(¢) — €*(I' x N) is defined
by f = {{f, Lyo)}er sepe and the synthesis operator is T,y : (3(I' x N) — L*(¥)
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defined by {hi(7)btenqer = 2jenr 2ver Pe(7) Lypr from @) Since E'(/) is Bessel
in L*(¢), the system {Z¢(a) = {Z¢i(a,I'r)}rzerg hen is also Bessel in L*(T\¥) for
ae. ael [49], and hence the associated pre-Gramian operator J.(«) correspond-
ing to the Bessel system £'(&) is defined by J. () : (2(N) — LA(T\Y), n = {nihen —
{2en mZei(a, T) b, p g, which is a well defined bounded linear operator due the Bessel
system Z.4/(a). Further, we define its adjoint operator J., (a)* : L} (T\¥) — (*(N) by
v = {v, Zpi(a))}e - Recall the Gramian operator Gy () = Jo()*Jor () from 2(N)
to (2(N) is also bounded linear operator for a.e. « € I'. For two Bessel systems £ (&)
and ET(«"), the associated mized dual-Gramian operator G (@) = Ju ()T (a)* -
LXT\Y) — LX(T\9) is defined by (G (a)vi,v2) = 3\ <v1, Z()) (va, Zipi(a)) for
a.c. a el where v, vy € L2(I\Y) and &’ = {1, : t € N'} © L2(¥). This terminology and
the following proposition can be deduced using the fiberization map .7 for the abelian

pair (G, A).

Proposition 5.1.5. Let &7 = {@i}en and ' = {ii}enr be two countable collections of
functions in L*(4) such that EY () and EY (') are Bessel. Then the following are true:

(i) For eacht e N and f e L*(¥), the Fourier transform of (Ter () f): is given by

(Ter (o) Pele) = [2£. Zo(@), and {(Ter () fel@)} = 3@ HE(@,T2)}reerie

teN
for a.e. € f‘, where (Tgr(ﬂ)f)t = {{f, L%@t>}7er'

(ii) For h = {hi(V) hten~er € C2(T x N), the Zak transform of (Ter
D x T\ is [Z(Tgw)h)] (@, Tz) = Y, r he(a) Zg,(a,Ta).

Moreover, we have

yh) at (a,T'z) €

{[Z(Tgp(ﬂ)h)] (a, FJJ)} = Ju(a) {l?t(oz)} Wy for a.e. aeT.

Fzel’\¥ te

(iii) For fe L*(¥9) and a.e. a € T,
{Z (T;r(d)TgF(Q{/)f> (Oé, Fx)}rg;el"\% = 397((1/)3%/(@)* {Zf(Oé, F:E)}Fajef\g
= é%,ﬂi’(a> {(Zf>(a7 Fx)}l‘xef\% :

Proof. (i) The Fourier transform of (Ter(,yf): at a € T, (Tg/r(Zf)t(oz) = [Z2f, Z¢](),

follows by Lemmal5.1.2 and (Ter () f)e = {{f, Ly} e = {We f) (1)} ep for each t € N
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and f € L*(¥). Further,

(T}, - (2 2a)@hey = { [ (20000 Z000 ] dure(T)}

\Y teN

— {((Zf(a), Zei(a))}enr = Jer () {(Z)(, T) }rpers ae. a €T

(ii) Let h = {hi(7) hen~er € 2(T x N). Employing the Zak transform on the synthesis
operator (T¢gr ) at (a,I'z) € ['xT\& and the discrete-Fourier transform on the sequence

{he(7)}ver at a € I, we obtain

Z(Térh) (o, I'x) (Z Z he(7y 7@) a,l'x) <Z Z hi(v)Z(Lpy > (o, T'z)

teN ~el teN ~el
—Z (th )ngta ['x) th @) Zpi(a, Tx).
teN \~el teN

Then in terms of pre-Gramian operator for a.e. «a € f‘, we get
{2Ts e} - { S (@) Zaila m)}r o o) {m(@} .
Trel \¢

(iii) From the above (i) and (ii) parts and for a.e. o € I', we get the following by combining

both the analysis and synthesis operators for f € L?(9):

{Z(T;r(%)TgF(d')f)(a» Fx)} Jor(@) {(Tgr/@;f)t(a)}te/\/

.Q/(Oé>3.9i’ (a)* {Zf(av Fx)}F:ceF\% :

Izel\¥

I
o)

]

Now, we state main results of this section to characterize subspace orthogonal and dual
to a Bessel family having multiple generators. Theorem [5.1.6 is a successor of the results
of [251/73] studied for L?(R"™). Theorem [5.1.8 characterizes orthogonal frames ' () and
EY(2") in terms of pre-Gramian and mixed-dual Gramian operators for locally compact
groups by action of its abelian subgroup. The result has so many predecessors by action
of integer translates in L?(R™) and uniform lattices in L*(G) [39,40,54,(73], where G is an
LCA group.

Theorem 5.1.6. For a o-finite measure space N having counting measure, consider two
sequences of functions o = {pien and ' = {Uihen in L*(9) such that the T-TG

systems E (/) and EY (") are Bessel. Then the following hold:
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(i) EY(") is an S*()-subspace dual to EY () if and only if for all t' € N, we have

(Zoy)(a,Tz) = Z[Z%/,Zwt](a) (Z¢i)(a,Tx) for a.e. ac T, Tze Ny.
teN

Equivalently, for t' € N, {(Zop)(a,I'z)}rgerg = I (@) {[Z00, Zi](a)},cp for
a.e ael.

(i) EX (") is an ST ()-subspace orthogonal to EY () if and only if for f € S'()
and g€ L*(¥9),
YIZF 2020 Z9)(@) = 0 = (Guran(@)(2f(a)), Zg(a) ) acc. ael.

teN
Moreover, when the pair (4,1") is an abelian pair (G, \), then (i) and (i) become (i’) and
(ii°) as follows:
(i) EM') is an SM()-subspace dual to M) if and only if for allt' e N,
(Zr) (WA (©) = D [T v, T](WAY) Tp(whh)(€)
teN
for a.e. WAt € QA/AL and € € A*.
(ii") EM(") is an SM()-subspace orthogonal to EX() if and only if for all f € SM)
and g€ L*(G) ,
YT f Tl (WA [T, T gl(wA™) =0
teN
for a.e. wA* € C:/AL.

Proof. (i) Let EY'(&') be an S'(&/)-subspace dual to EY(&7). Then for f € S'(«), we
can write f = >, D0 p(fs Lyt Lypr. By choosing f = Lypy for n € I' and ' € N,
and applying the Zak transformation Z on both the sides, we have Z(L,pv)(a,I'z) =
2 (Zte/\/ 2erlLnpr, L7¢t>Lyg0t> (a,Tz) for a.e. eI and Tz € T\@. Thus we get the
result by noting Z(L,¢)(a,Tx) = a(n™ ) Zpy(a,Tx), and Proposition @ (iii),

Z(Ter (o Ter (an Lnpr) (@, Tw) = Ju ()3 (@) {Z Loy (@, D) g

= Z[Z(Lwﬂ),zwt](a)z%(aaFSU)
teN

= aly™) Y[Z v, 20)(@) Zp1(0, T).
teN

Conversely, assume (Z¢y)(a,T'x) = X, [ Zor, ZU(a) (Z¢)(a,Tx) ae. a € [ Tz e

N and t' € N. Then, we have Lypy = >cn D0 erllapr, Ly Lypy in view of the
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above calculations for n € T and ¢ € N. Therefore for f € spanf’ (&), we can write
f= 2ien 2nerlfs Lyt Lypy which is also valid for all f € S"(&7) since the function
f Y el Ly Lypr from ST(e7) to L*(9) is continuous due to the Bessel
systems EY(«) and EY(&/’). Thus the result holds.

For the equivalent part, {[Zpy, Z¢¢](a)},cp is @ members of 2(N) for a.e. o € T,

follows from

3 | Zen 2ud@F ducte) = 3, [ |Weo@)|| dugla) = 3 3 W)
teN teN teN ~el’

= > Kew, Ly)|* < Blgw|?

teN el

for some B > 0, since £V (/') is Bessel. Using the definition of J., («) we get the result.
(ii) Suppose ET' (") is an 8" (o7 )-subspace orthogonal to E' (), then for f € S'(«/) and

g € L*(9), we have 3, >, ([, Ly¥){Lyp, g) = 0 from (5.0.3), and hence we can get
the following easily

(515) 3 | 127, 200120 Z0l(@) dpglo) =0
teN

by considering countable functions in Lemma |5.1.4 . Therefore for a.e. o € f, we need to
prove >y v[Zf, ZU(a)[ 21, Zg](a) = 0, 1., 25\ (Zf(a), Zihi(a)) (Zei(@), Zg9(a)) =
0 for a.e. a. For this, let (e;);z be an orthonormal basis for L?(I'\%) and P(«) be an
orthogonal projection of L?*(I'\¥) on span{{Z¢:(a,'z)}ruerw : t € N} for ae. o € I
Assume on the contrary, there exists iy € Z such that

= 2 (P(a)ei, Zpi(a)) (Zu(a), Zg(a)) # 0,

teN

on a measurable set £ < I with ps(E) > 0. Then one of the four sets must have positive

measure:
E; ={a€ E : Re h(a) > 0}, Ez ={a € E :Im h(a) > 0},
Ey ={a € E : Re h(a) < 0}, Ey={a€ E:Im h(a) < 0}.

Suppose pq(Er) > 0, and choosing f € ST(«7) such that for all Tz e I\Y |, Zf(a,Tz) =

P(a)e;, for a.e. a € E; and zero for other o’s. Then the estimate

Re {Z ( j 21, Z61)(0) [ 21, Zg)(0) dma)) } >0

teN
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due to pp(Ey) > 0, which contradicts the fact that the integration is zero by (5.1.5).
Similarly, we can discuss for the other sets F», F3 and F,, and will arrive on the same
conclusion. The converse part follows immediately by Lemma [5.1.4. The remaining part

follows easily from the definition of G () for a.e. o€ I O

The following immediate consequence can be observed easily by Theorem |5.1.6.

Corollary 5.1.7. For t,t' € N, let [Zoy, Z](a) = 6 for a.e. a € T along with the
assumptions of Theorem |5.1.6. Then E' (/") is an S*()-subspace dual to EV ().

The following result describes few more properties of orthogonal frames using mixed

dual-Gramian operator.

Theorem 5.1.8. Let o = {oi}hen and ' = {}en be two sequences of functions in
L*(9) such that EY () and EY (") are ST (/) and ST (/")-subspace frames, respectively.
If ST(o/) = SY("), then the following are equivalent:

(i) EY () and EY (') are orthogonal pair.

(i) J ()T (a)*F (@) = 0 for a.e. ael.

(iii) Gy (a)Gor() =0 for a.e. a el
Additionally, when S¥ (/) = SY(&') = L*(¥), then EY (<) and EY (") are orthogonal
pair if and only if émdl(a) =0 for a.e. a € T

We proceed by decomposing any I'-TI space as an orthogonal direct sum of S*(;)’s
up to countable, where EV'(ip;) is a frame for S'(y;) with bounds A = 1 and B = 1, for
each i. Our procedure is motivated by DeBoor, DeVore, and Ron [31] and Bownik [16].

Their analysis relied on the Fourier transform, whereas ours based on the Zak transform.

Proposition 5.1.9. For ¢ € L*(9), a function f € S'(p) if and only if for a.e. a € f‘,
and Tx e \Y, Zf(a,T'z) = m(a) Zp(a, T'z), where m is a member of the weighted space
12 (f, [Z@,ng]) .

Moreover, if V is a T-TI subspace of L*(94) then there are at most countably many
s in'V such that f € V can be decomposed as follows:

(5.1.6) fla,I'z) Z m, (@) Zp,(a,Tx) for allTx € T\Y and « € T,

neN

where m, € L2(T' A Q) and Q,, = {ae I [Z¢n, Zpn] # 0}
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Proof. For f € span€'(yp), a representation of f is of the form f = Z'yef‘ cy Ly, where
only finitely many c,’s are non-zero, and hence by applying the Zak transform on both
the sides, we obtain,
(Z)(@,T2) = Y e, Zp(a,Tx)a(y) = Zp(a,Tx) Y cya(y) = m(a) Zp(a, T'z)
vyel ~yel

for a.e. a el and Iz € I\, where m : [' — C, m(a) := 2er (7). Conversely, we
can recover f € span€'(yp) from the above relation. It only remains to generalize it for
f € SY(¢). For this define an operator % : span€'(y) — P by % f = m, where P is the

collection of all trigonometric polynomials, which is an isometry and onto, follows by
- | f | Iml) 2 T i (1) )
N7

(5.1.7) f m(a)"[Z¢, Z¢](0) dup(@) = g 2 2

Therefore, there exists a unique isometry % : S¥(p) — P = L2(f‘, [Z¢, Z¢]). The more-
over part follows by observing orthogonal projections P,’s on S'(p,) and the following

calculation for every f e V:

Zf(a,T'x) = ZZPf ), Tx) Zmn )Zpn(a, Tx), mneLz(f‘mQ‘pn)

neN neN

a.c. el and [z € T\@. Thus the result follows. O
Proof of Theorem[5.1.8. The I-TG systems (/) and E'(«/’) are orthogonal if and
only if T¢: () Ter (o) f =0 for feS" (o). Equivalently,

0=[2(T¢ )TsF ") )fH L[Z(Tgf(p/)TSF(w )1 2(T8 EV (o )Tef(w’))f](@) dpp(a)

- f\gﬁ | ZT¢r (o) Ter (o f (@, I'z)]? dus () durg (Tz).
r r

Further, it is equivalent to
{Z(T;r(eﬂ)TgF(d/))f(Oé, I'%)}rzervg = 0 for a.e. a € T

Since {Z(Tgp(%)Tgr(m)f)(a,Fx)}mer\g = Jo()J5 (@) {Zf(e, T2)}pyepg by Proposi-

tion [5.1.5, and also from Proposition [5.1.9, f € S'(&’) if and only if {Z f (e, T'2) }ryery =
{D e me(o) 24y (v, Fx)}rxer\g = Jo (o) {my(a)},o ) for ae. ae [. Therefore we get

{ZT;FW)Tng)f(a, Fx)}l"xel“\% = 3u(0)Fr (@) *Turr () {my () },opr B €T
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Thus (i) is equivalent to (ii) follows by observing that f is an arbitrary member of S'(%7).
The equivalence of (ii) and (iii) follows immediately by just observing frame property of
EN).

When S'(&) = L*(¥4), J.(a)* has bounded inverse on the range of J.(a), and

hence the result follows. O]

Next, we observe that a new orthogonal pair can be constructed from the given or-
thogonal pair by involving I'-periodic functions. A function f : ¢ — C is said to be

[-periodic if f(x + ) = f(z) forall yeT', and z € 9.

Proposition 5.1.10. Under the assumptions of Theorem|5.1.6, let EY (2/") be an ST (<)-
subspace orthogonal to EY' (). If h is a T-periodic function on 4, EY (ha") is also S¥ (A )-
subspace orthogonal to EY (), where ha?' = {h) : ¢ € &', (h))(x) = h(x)Y(x), x € G}.

Proof. The result follows by observing >3, - >, cr(fs ¥i(z — 7))¢i(x — ) = 0, and
DI () (@ = )pu(w =) = hl@) DD (x — )z — )

teN ~el teN ~el’

for x € 4 and f e L*(9). O

5.1.1. Application to singly generated system

For a function ¢ € L*(¥), we recall the I-TG system E'(p) and its associated T'-
TI space ST (p) from @ The following consequences of Theorem @ state about
ST (p)-subspace duals/ orthogonal to E'' (). The pedigree of our results traces back to the
seminal works of many articles including [24/26,44] for L*(R™) by the action of integer

translations, and [51,/52] for LCA group setup.

Corollary 5.1.11. Let ¢ and v be two functions in L*(4) such that the corresponding
[-TG systems EY(p) and EV(Y) are Bessel. Assume a measurable set Q, defined by
Q, = {oz el: [Zo, Zp](a) # O}. Then, the following are true:
(i) EY(v) is an S (p)-subspace dual to EX (o) if and only if [Z¢, Z¢Y](a) =1 a.e. a €
Q.
(ii) EY(v) is an SY(p)-subspace orthogonal to EY(¢) if and only if [Zp, Z¥](a) =
0 a.e. a € Q. In this case, we have [Zp, Z¢|(a) = 0 for a.e. o€ T, which implies

EV(p) is also an ST (1))-subspace orthogonal to ET ().
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Moreover, the same can be deduced in terms of the fiberization Z for an abelian pair

(G, 7).

Proof. The result follows easily by choosing ¢; = ¢, and ¢y = ¢ for every ¢ in Theorem
b.1.6 and f =g = ¢

Next assume that [Z¢, Z¢](a) = 0 for a.e. a € €2,. Then first note that [Z¢, Z¢](a) =
0 on a.e. f‘\Qc/,, and hence using the Cauchy-Schwarz inequality in the following estimate:
for a.e. a € f,

20, 2¢](0)] < f

|Z¢(0,T2) 20(a, )| duryg (T)
N

N

1/2 1/2
([ 1zetaral quara) ([ 1206 diatra)
rne %

(5.1.8) = ([Z20, Z¢](@)*([2¢, 2¢](a))"?,

we get [Z¢, ZY](a) = 0 on a.e. f‘\Q@. Thus we have [Z¢, Z¢](a) = 0 for a.e. ave L.
The moreover part follows from the same argument as above by replacing the Zak

transform Z for the pair (¢,I") with the fiberization .7 for the pair (G, A) O

The part (ii) in Corollary|5.1.11| motivates to elaborate more regarding the symmetry of ¢
and 1. For part (i), a counter example is provided in Example[5.1.13] We provide various

necessary and sufficient conditions on the I'-TG systems to become orthogonal pairs.

Theorem 5.1.12. Let ¢ and v be two functions in L*(4) such that the T-TG systems
E(p) and EY (1) are Bessel. Then the following are true:
(i) Assume [Z¢, Zp](a)[Z, Z¢](a) = 0 for a.e. o€ L. Then [Zp, Z](a) = 0 a.e.
a, and hence EY () is an S'(p)-subspace orthogonal to ET ().

(ii) If EY () is an ST (p)-subspace orthogonal to EY(p), then EY () is also so for all
JesT(w).

(iii) If ST (¢) = SY () and EL (1) is an S (p)-subspace orthogonal to EX (), then EX ()
is also an S'(p)-subspace orthogonal to ET' (1), and hence EY () and EY(p) are
orthogonal pair.

(iv) Assume that ST () = SV(¢). Then EY(Y) and EY(p) are orthogonal pair if and

only if for a.e. a € f,

[Z¢, Zo](a)[ 24, Z¢](a) = 0.
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(v) If the functions ¢ and v satisfy (supp Z¢) N (supp Z¢) = 0 a.e., then EY(¢Y) is an
ST (p)-subspace orthogonal to E' (o), where supp Z¢ denotes the support of Zp by
considering the map Zp : T — LA*(T\¥9).

Proof. (i) The expression [Z¢, Z1](«) = 0 follows by observing the estimate from (5.1.8)

for a.e. a e,

[Z¢, 26](0) < f

Ny

Zp(o. Ta)Z20(a, Te) | dun (L) < (2, Z¢](@) (20, 20 ()

using Cauchy-Schwarz inequality. From Corollary EL(y) is an ST (y)-subspace
orthogonal to ().

(i) For ¢ € ST(), we can write Zi(a,Tz) = m(a)Z(a,Tz) for ae. ael, and 'z €
¥ due to Proposition @, where m is a member of the weighted space Lz(f‘, [Z¢, Z¢]).
Then, we get [Z¢, Z¢](a) = m(a)[Z¢, Z¢](), and hence the result follows since the
system ET' (1) is an ST (p)-subspace orthogonal to E'(y), equivalently, [Z¢, Z1](a) = 0
a.e. a el by Corollary .

(iii) This follows easily by Corollary [5.1.11}
(iv) It is enough to show the orthogonality of the Bessel pair £'(¢) and E'' (1) implies the

expression [Z¢, Zp|(a)[ 21, Z¢](a) becomes zero for a.e. « in view of Corollary
and part (i). For this, we proceed similar to the part (i) of Corollary by considering
Yerlfs LybyLyp = 0 for all f € ST(p) = S™(¢). Then we get [ 24, Z¢|(a) Zp(a, Tx) = 0
by choosing f = 1 and hence, we obtain either [ 2, Z¢](a) = 0 or [Z¢, Z¢](a) = 0 for
a.e. e L. This proves the result.

(v) Observe that the set {a € T {Zo(o,T'x)}rzery # 0} is same as the set {o €
T {Z¢(a, I'z)}rzervw| # 0} which is further equal to {a € T [Zo, Zp](a) # 0}.
Therefore, the support of Z¢ is same as the support of [Z¢p, Z¢]. Hence (supp Z¢) N
(supp Zv¢) = 0 a.e. implies (supp [Z¢, Z¢]) N (supp [Z9, Z¢]) = 0 a.e. Thus, we get
[Z, Z0](a)[20, ZY](a) = 0 for a.e. o€ I'. Now from part (i), the result follows. O

Now we provide some examples to illustrate our results.

Example 5.1.13. For a second countable LCA group G having uniform lattice A, we
can write G = Q@ AL due to the Pontryagin Duality theorem, where 2 is a fundamental
domain. Then, the system {Q + A : A € AL} is a measurable partition of G. Note that )

is a Borel section of QA/AL. Let n1,m2 € L?(G) be such that 7)1 = xq, and 7, = xq,, where
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p5(Q2 0 Q) = 0 and for each i = 1,2, the system {€; + A : A € At} is a measurable
partition of G. Then for each i = 1,2, the system £*(n;) is an S*(n;)-subspace frame
since [T, Tni](€) = 1 for a.e. € € Q;. Further note that £2(n5) is an S*(n;)-subspace
orthogonal to £2(n;,) since for a.e. € € Qy, [Tna, Tm](€) = Dyenr T(E+N)N(E+ N) = 0.
Similarly, £2(n;) is also an S*(n)-subspace orthogonal to E*(n,).

Example 5.1.14. First we recall Example |5.1.13] and also fix an automorphism A on G
such that AQ < Q. Let & = {9, n} < L*(G) be such that 7 = xaq and 7o = X0\ 40-
10 00

Then the associated Gramian matrix G (§) is for £ € AQ, and for
0 01

£ € MAQ by noting 3\ 1 [i(§ + NP = Xa0(€), Dpenr [2(€ + N = xa140(E), and
2oear ME+Np(E+A) =0.
Further, let ' = {(;, G} € L2(G) be such that {; = Xouao and (o = Yaq for ae.

0
¢ € Q0. Then the associated Gramian matrix G/ (&) is for £ € AQ, and
01 00

for £ € Q\AQ. Since G, (£)G . (€) = 0 for a.e. € € €, the systems E4(&7) and £ (")
are orthogonal pair by Theorem [5.1.8. From the Corollary [5.1.7, note that £*(</) and
EM') are SM() and S («')-subspace dual to itself, respectively.

Example 5.1.15. Let 1) € L*(%) be such that £T(¢)) is an ST ())-subspace frame. Assume
that ¢, ¢ € L*(¥¢) which are defined in terms of the Zak transform for a.e. a € f,

(Zo)(a,Tx) = m(a)(ZY)(a,T'x) and (Z29)(c, T'z) = m(a)(Z¢)(a, T'x) for all Tx e T'\¥Y,

where m, m € L? (f, [Z, Z¢]> are bounded functions. Then £ (y) is an ST (yp)-subspace
frame as S* (@) = ST(¥) and [Z¢, Z¢](a) = [m(a)[2[Z2¢, Z¢](a) for a.e. o € T Similarly,
ET(p) is also an ST (p)-subspace frame. Also note that

[Z¢, 28](0) = m(a)m(a)[ 24, Z4](a) for ae. aeT.

By the Corollary [5.1.11} E¥(¢) is an S'(p)-subspace dual to ET' () if and only if
= 1 { ~
m(a)@(a) = ————on {ael: [2¢, Z¢)(a 7&0}.
(@) = Tz goTa (20 26](0)
In this case, both EY(¢) and ET(p) are dual frames to each other. The condition gives
various choices of subspace dual frames. Also, E' () is an S'(@)-subspace orthogonal to
ET(@) if and only if m(a)m(a) = 0 a.e. o€ [. Then ET(p) and E7 () are orthogonal pair.
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The Example also concludes that there is a unique ¢ € S¥'(¢)) such that ()
is an ST(¢))-subspace dual frame to EY(¢)), where ¢ = STy (pseudo inverse). Since
(29, Zo](a) = m(a)[ 21, Z¢](a) = 1 a.e. on Q, the function m is unique except on the
set {a € T': [Z¢, Z4](e) = 0} as various choices of m is possible on this set. But note
that whatever choices we have for m, we always have Zp(a,T'z) = m(a)Z¢(a,T'x) = 0
on {oz el : [Zv, Z¢](a) = 0} . So Zy is uniquely defined and hence ¢ is so.

The next result discusses an existence of an S (p)-subspace dual to a frame E(y)

and provide a condition to get unique dual (upto a scalar multiplication). This theorem

generalizes a result provided for the case of L*(R™) [24, Theorem 4.3].

Theorem 5.1.16. Let ¢, € L*(4) be such that EY'(p) and EY () are S*(p) and
ST (1)-subspace frames, respectively. If for some positive constant C, the expression
[Z¢, Z¢](@)| = C holds for a.e. o€ Q, (defined in Corollary[5.1.11), then there exists
a ¥ € ST(p) such that EX (V) is an ST (p)-subspace dual to ET (p). Moreover, 1) € ST (1))
is unique if and only iof Q, = Qy a.e. In particular, the Pe ST () is unique and satisfies

the following relation for a.e. v € Qy,:
[Z¢, 20](a) (29)(a,Tz) = (Z¢)(e,Tx) xa,(a) for all Tz e T\Y.

Proof. Firstly note that for a.e. a € Q,, C < [[Zp, Z¢](a)| < VBB, follows from the
estimate @ as EY(p) and ET (1) are Bessel sequences with bounds B and B’, respec-
tively [49]. Further note that any function ¢ € S'(¢) if and only if for a.e. o € I', we have
Zi(a,Tz) = m(a) Z(a, Tz) for all Tz € T\Z where m € L(T', [Z¢, Z1]) from Proposi-
tion @ From Corollary additionally note that T (¢) is an ST (¢)-subspace dual
to E(p) if and only if for a.e. o€ Qy, 1 = [Z¢p, ZP](a) = m(a)[Z¢, Z¢](a). Hence, m is
both bounded above and bounded below on €2,. Extending this to an arbitrary function
in L(I"), will produce a function 1 € ST (1) such that () is an ST(p)-subspace dual
to EV(y).

Since |[Z¢, Z¢](a)| = C for a.e. a € Q,, we have

{oz el : [Z, Z¢](a) = 0} c {oz el : [Zp, Z¢|(a) = O}.

When the equality holds on the above sets, we get Z¢)(a) = 0 on {a el: [Zo, Zp](a) = 0}
always, whatever m is considered. In this case there exists unique zz, which fulfils the re-

quirements. Otherwise for the case
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{a el : [2¢, Z¢](a) = 0} < {a el : [Z¢, Zo](a)(a) = 0} , various choices will lead to

various Zv(«) as it is non-zero, by considering m on

{oz el: [Zp, Zp](a)(a) = O}\{a el: [Z¢, ZY](a) = O}.

Thus the various lﬂ is possible. Hence the result follows.

]

In this section, we have discussed S'(«)-subspace duals of a frame/Bessel family
EN() in L?(¥), and realized that we can obtain various duals of a frame/Bessel family
(for instance, Example ). Theorem motivates to discuss about unique dual.
It is well known that the unique dual can be obtained when the frame/Bessel family
EY'(/) becomes Riesz basis for L?(¥), known as dual basis or biorthogonal basis. We
refer [24,74] for more details on Riesz basis and biorthogonal basis. Next, we study

biorthogonal systems and Riesz basis generated by translations in L*(%¥).

5.2. Translation generated biorthogonal system and Riesz basis

Recall that for non-zero functions ¢, 1 € L?(%4), the I'-TG systems () and EY ()
are said to be biorthogonal if (L p, Lp) = 6., for all 7, € I'. Throughout the section,
we assume [ to be a discrete abelian subgroup of ¢. The following result characterizes
biorthogonal systems in terms of the Zak transform and describes whether a translation
generated system is linearly independent or not.

The system EY(y) is linearly independent if Y er &Ly = 0 for some {c, },er € (2(T)

implies ¢, = 0 for all .

Theorem 5.2.1. For non-zero functions @, € L*(94), the T-TG systems EY'(p) and
EL () are biorthogonal if and only if for a.e. a € f‘, [Zo, Z¢Y](a) = 1. In this case, the
following hold:

(i) The systems E'(¢) and ET (V) are linearly independent.

(ii) ET () is an ST (p)-subspace dual to E(p) for compactly supported p and .
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Proof. Firstly observe that the biorthogonal relation between E' (o) and EF (v) is (L, p, 1) =
0,0 for v e I'. Now,

dy0 = (ZLyp, Zw>L2(f;L2(r\g)) = LL\@ Zo(o, Tz) Z¢(a, Tz)a(y) durg(T'z) dug(a)

_ j (2, 20](a)a(7) dpg(a).

r

Thus the result follows from the uniqueness of the Fourier coefficients.

For the remaining part of (i), let {c,},er € *(T') be such that »} .c L, = 0. Then
for each v € I', 0 = €0, Lyp) = QL cp e Ly, Lyth) = > p e (Lyp, Lyp) = ¢y by the
biorthogonal relation between E''(p) and E'' (), and hence all ¢,’s are zero. Thus E' ()
is linearly independent. Similarly, £¥(¢)) is also linearly independent.

(ii) Due to {p, L)) = 6,0 for y € T', we have f = 3 . {f, Ly¢)Lyp for all f € span&’ ()
and I'; is a finite subset of I, which holds for all f € S''(y) in view of compactly supported
functions ¢ and 1, and the continuity of the function f — ZV€F< [, L)L, p. Note that
EM(p) and EY (1) are Bessel families since {[Z¢, Zp](a)}, 5 and {[Z¢, Z¢](a)} . are

ael’

bounded sets for a.e. o € I' [49]. The boundedness of {[Z¢, Zp](a)},p follows by
observing the continuity of the function o — [Z¢, Z¢](a) from the compact set I to R.
Indeed, [Z¢, Z¢](a) is a polynomial for a.e. a € I, that can be realised by writing it
in the form of Fourier series expansion where only finitely many Fourier coefficients are

non-zero in view of the compact support of . ]

Corollary 5.2.2. Let ¢ € LX(9) be such that for a.e. a €T, C < [Zp, Z¢](a) < D for
some constants 0 < C < D < . Then there is a 1 € L*(4) such that EY (o) and EY (¥)

are biorthogonal systems. Moreover, EY(¢) is linearly independent.

Proof. For p € L*(¥), choose 1 € L*(¥) satisfying Zp(a,Tz) = Z¢(a, Tz)[Z¢, Zp|(a),
for a.e. o € I and Tz € I\&. Then £7(p) and ET () are biorthogonal systems in view
of Theorem [5.2.1 since [Z¢p, Zip](a) = 1 for a.e. a € I'. The moreover part follows by
Theorem [5.2.1. O

Following the concept of Corollary [5.2.2, we state a characterization result for the
existence of a generator to make a biorthogonal system on locally compact group. It is a

reminiscence of a result developed for group frames in [47, Theorem 6.1].
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Theorem 5.2.3. For a non-zero function p € L*(9), there exists a function 1 € S'(p)

such that E(p) and EX () are biorthogonal if and only if {1/[Z¢, Z¢](a)}. € L(T).

ael

For this first we prove the following lemma which provides an isometric isomorphism
between ST(p) and the weighted Hilbert space L2(T',[Z¢, Z¢]), which intertwines the

left translation with modulation.

Lemma 5.2.4. For a non-zero function p € L*(¥4), define an operator T, : S'(p) —
LT, [2¢, Z¢)]) by

(2], Z¢]()
[Z¢, Z¢](a)

where Q, = {a € [':[Z¢, Zo](a) # 0}. Then, the operator T, 1s an isometric isomor-

Tofla) = Xa,(a) for f €S () and a.e. a e T,

phism.

Proof. The operator T, is well defined since

f T, f (@) P20, Z0)() dup(a) = j [2F. Z0)(0)? dup(a) < | f]?

Qp
for f € S'(p) using (5.1.8). For the isometry of T, it suffices to verify |T,f| = | f|| for
all f € span€’ () since span€’ (p) is dense in ST (p). By writing f = 3, ¢, L, (only
finitely many c,’s are non-zero), we have

3 ea()| 26, Z¢l(0) dup(a)

~el’

= [ [2(Zete).2( S erte) i) dnien

JI vyell vyell

= [ [, Zf)(a) dus(a) = | f]*

JI

[ Eest@rize. 201 duste) - |

-~

Next for the subjectivity of T,, we can proceed by assuming a non-zero element 7 €

L2(f‘, [Z¢, Z¢]) such that n L T,(S"(p)), which leads to a contradiction. O

Proof of Theorem[5.2.3. Assume that there exists a 1 € S'(p) such that E'(p) and
ET () are biorthogonal. Then T,1 € LY(T, [Z¢, Z¢]) follows by

2

[ m@ize. 260 auste) < ([ mo@PLze 260 dute))

1
2

(ff[z@,z«)](a) (@)
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Since T, is an isometric isomorphism from Lemma [5.2.4, then from the assumptions

we have 8,0 = (L, 0) = (Tu(Ly)), Tp(p)) = §p Tp (W) (@) [29, Zp](a)a(y) dup(a) for
v € T', and hence by the Fourier expansion T, (¢¥)(o)[Z¢, Z¢](a) = 1 ae. a € ['. Thus
[Zp, Zp](a) > 0 ae. o€ I' and also {1/[Zp, Zo](a)}, 5 € L'(I) using Lemma [5.2.4,

ael

$¢ Zozae (@) = 51T () (@) P[20, Z¢](@) dpp(a) = [¢]* .

A~

act € L1(I). Then {1/[2¢, Z¢](@)} o 1s a mem-

ber of the weighted space L2(T',[Z¢, Z¢]), and hence v := T[22, 29)(@)} ep) 18
an element of ST () by Lemma [5.2.4. Therefore for v € T,

Conversely, suppose {1/[Z¢, Z¢](a)}

(L, ) = (Zp(Lyp), {1/[Z20, Z20)(@)} ooty

= [ ot dug(e)

r

= ’7707
since I is an orthonormal basis for L2(f‘). This proves the result. O

Our next goal is to fix a function ¢ € L?(¥4) and to find v € L*(¥4) such that £ (y)
is an S(yp)-subspace dual to EY(¢) by following the idea of Theorem @ To find
such v, we will assume ¢ € L*(%) with compact support such that £ () is an ST (ip)-
subspace Riesz basis in the next result. By an S'(yp)-subspace Riesz basis, we mean
ET(p) is an ST (ip)-subspace frame and ET' (i) is linearly independent. Equivalently, there
are 0 < A < B < o such that AY, [ [e,[> < |2 e Lawpl® < BY, opley|? for some
sequence {c,},er € £2(T') having finitely many non-zero terms. We refer [20,49,(74] for

more details.

Theorem 5.2.5. Let ¢ € L*(9) be a function with compact support such that EY () is
an S'(yp)-subspace Riesz basis. If there exists a function 1 € L*(4) such that EY(¢Y) is
biorthogonal to E¥ (), EY () is an S*(p)-subspace dual to EY (o). Moreover, ET (1) is also

an 8" (v)-subspace Riesz basis.

Proof. Firstly note that for any f € span€'(y), we can write f = el Ly Lo
due to the biorthogonality of £V (1)) and £ (y) for some finite set " in I'. We need to
show the expression for all f € ST (). For this, let f € S'(¢), then there is an element
g € span&’ () such that | f—g| < € for € > 0. By writing g = Yier, Sy Ly Ly, where I'y

is a finite subset of I', we have f —> . {f, Ly¥) Ly = (f —9) + 2 er, (9= f), Lyp) Lyp,
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and by taking norm on both the sides, we obtain

If = Y Lyl < | f =gl + || Y g — ), Ly Lol

'YEF1 ’yEF1

<1 ol +VB( X Ko P L)

vel'y

< (1+VBB)|f —g| < (1++VBB)e,

for some B, B’ > 0 since £ (p) is an S'(p)-subspace Riesz basis. The last inequality
holds true provided Y . [(f, Lyi)[* < B'|f|? for all f € S"(p). For this, let f € ST (p).
Then there is a sequence {f, }nen in span€’ () such that liilgo |fn — fll = 0, and also by
Cauchy-Schwarz inequality we have nlgrolo (fors Ltp) = {f, L:w> for every ~ € I'. Hence for

any finite set ['; of I', we have

S KAL) = 3 T [ Ly = lim 3 (o, Ly < B Jim | ] = B S,

~el'y v€F1 ~el's

provided Y . [{f, Lyy)l* < B[ f|* for all f € span&(p). To show, this we proceed as

follows:

By writing f € span€'(p) in the form f = Z'\/EF ¢y Ly with finitely many non-zeros
{cyhyer € 2, we get [ f? = |Zf]? = (5 [6(@)P[Z2¢, Z¢](a) dus(a) by following the steps
of (5.1.7). Since £ (¢) is a ST (p )—subspace Riesz basis, we have C' < [Z¢, Zgo](a) < D for
ae. a el and some 0 < C' < D < o [49, Remark 5.6], and hence C §a1e(o)|? dup(a) <
If1? < D§z[e(v)|* dup(a). Thus, we get {5 [6(a)* dug(e) < &[ f]* Further, due to the

Biorthogonality of the sets £ () and ' (¢) and Parseval’s formula, we write {+ [¢(a)|? dup (o) =

Yier eyl = 20 [Kfs Ly)|* which gives the inequality Y . [(f, Lyib)[* < B'|f|? for
€ span an = =, us the result tollows.
f Sr(go) d B é Thus th 1t foll O

In the following example we construct various biorthogonal systems using Theorem [5.2.1.

Example 5.2.6. First we recall Example and assume that E'(¢)) is an ST (y))-
subspace Riesz basis. The functions ¢, ¢ € L*(¥) are defined by (Z¢) (o, ') = m(a)(Z¢)(a, T'x)
and (23)(a,Tz) = m()(Z¢)(a,Tx) for all Tz € T\¥, and a.e. o € [, where m, i ¢
L? (f’, [Z, Z@b]) . Then in view of Theorem 52—1 EY(p) and E(p) are biorthogonal if

and only if m(a)m(a) = jforae. ae T, follows from the calculations of Example

0. 1. 15

[Z¢, Zd)
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5.3. Orbit generated by the action of an abelian subgroup

The purpose of this section is devoted to characterize a pair of orthogonal frames and
subspace dual of a Bessel family/frame £ (&) = {L,¢, : v € I',t € N'} in L*(¥), where
the group T is a closed abelian (need not be discrete) subgroup of 4, N is a o-finite
measure space (need not be countable), and & = {p; }senr © L*(¥). We characterize such
results using the Zak transform Z for the pair (¢,T') defined by (4.1.1). When ¢ becomes
an abelian group G, the fiberization map is also used which unifies the classical results

related to the orthogonal and duals of a Bessel family/frame associated with a T space.

5.3.1. Orthogonal and dual frames’ characterization using the range function

Now, we are going to discuss our main result, which is connected to the subspace
orthogonal and duals of a Bessel family associated with the range function in terms of the
Zak transform. It includes certain results of [19] which contains an alternative strategy

for proving the result.

Theorem 5.3.1. Let (N, ) be a complete, o-finite measure space and let & = {@;}hen
and " = {i}en be two collections of functions in L*(4) such that the T-TG systems
EV() and EY (") are Bessel. Assume o/ has a countable dense subset <y for which
Ja(a) =span{(Zf)(a): f € d} a.e. a L. Then the following hold true:

(i) EY(") is an S (o )-subspace dual to EY () if and only if the system Z4' (o) =
{ZY(a) e '} is a Jy(a)-subspace dual to Z47 () = {Zp(a) : p € I} for a.e.
ael.

(ii) EY(2") is an S* (A )-subspace orthogonal to EY (&) if and only if the system Z.a/' ()

is a Ju(a)-subspace orthogonal to Z47 («) for a.e. o€ T.

When the pair (4,T) is an abelian pair (G, A), let J,(a) = span{(7 f)(BA*) : f € %}
for a.e. BAY € G/AL. Then (i) and (ii) become (i’) and (ii’) as follows:

(i) EM') is an S* () -subspace dual to EX () if and only if the system T o' (BAL) =
{TW(BAL) - e &'} is a J (BAL)-subspace dual to T .o (BAY) = { T p(BAL) :
e} for ae. BAL € G/AL.

(i) EM") is an SM)-subspace orthogonal to EM(<) if and only if the system
T (BAY) is a Ju(BAL)-subspace orthogonal for a.e. BA* € G/AL .
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Before proceeding for a proof of Theorem [5.3.1, we first establish the following result to

express the change of role of I' to [ in terms of the Zak transform Z.

Proposition 5.3.2. Assuming the hypotheses of Theorem [5.3.1, the following holds for
all f,ge L*(9):

f f (s Logey (Lo, gy (E)dpur (7) j f (Z1(a), Zon(a)) (Zt(a), Zg(a)) dpin (@) du (1),

Proof. Applying the Zak transform,

f f (o Lopr (Lt 9) dpr(y) dpinc(2) j f (. 2(Logn)) (Z (L), 29) dyur(y) dian(t)

(53.1) = [ (@t aust)) ([ mi@at dusie) et o

where (;(a) = (Zf(a), Zpi(a)) and n(a) = (Zg(a), Z¢(a)) for each t € N'. The func-
tions (; and 7, are in Ll(f‘) due to Cauchy-Schwarz inequality and

| gt (o) = |

) <L L\% 27(@)Ta)f" durw(T=) dﬂf(@)>1/2 (ff .[r\y |Ze(a)(T)[* dprg (Tx) duf(a)>1/2

= Zfl1Z¢e:l = [ flllee]l < oo

dpip ()

L\g Zf(a)(rx)m dprg (L)

Similarly, n; € Ll(f). Then for each t € N, the inverse Fourier transform ¢, and 7, of
and 7, respectively, are members of L*(T"), where

j G(e)a(y) dup(a) and 1(7) = J n(@)a(y) dug(a).

r

This follows by observing the Bessel property of £'(.7) and calculations

2

o> || 1K Lo P durty f (Z5(0), Z(Lye)(@)) dp(@)| dyr(y) dpx()

e dux(®) f f GNP dur() dunc(t).

F L<Zf<a>,z%<a>>a<v> e
Similarly, we have 7j; € L?(T"). Therefore, the equation ([5.3.1) is equal to the following

JJQ ) dpr(y) dp(t) f fm )Gi(a) dup(@) dpy ().

Thus the result follows. O
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Proof. (i) Firstly assume E'(&/’) is an S'(&)-subspace dual to E'(«7). Then for f €
St (&) and g € L*(¥4), we have

ft | ikt o) dura) dus) = <.

Equivalently, we get the following by applying Proposition [5.3.2 and the Zak transform
Z,

fN f (ZF(0), Zor(@)y(Zn(a), Zg(a)) dup(a) dun(t) = L<Zf(oa), Zg(a)) dyup ().

To get the result for a.e. o € I, we show Sy (Zfla), Zoi(a)) (Z(a), Zg(a)) dup(t) =
(Zf(a),Zg(a)) for f e S (o) and g € L*(4). On the contrary of this we assume a Borel
measurable subset Y in I having positive measure such that the equality does not hold
on Y. Then, there are mg,ng € N such that S,,, ,,, 'Y is a Borel measurable subset of r

having positive measure, where for each m,n € N, the set S, , is
Smn = {a el pn(a) = JN (P (@)@m, Zpr(a))(Z(a), zn) dpp(t) — (P, () Tm, Tn) # 0} :

when P;_(«) is an orthogonal projection onto J(a) for a.e. a € ' and {xn}nen is a
countable dense subset of L*(T\&). Clearly, {P;_ (a)x,}nen is dense in Jy(a) for a.e.
€ I'. Hence, either real or imaginary parts of Pmo.mo (@) are strictly positive or negative
for a.e. a € Sy 0, NY. By adopting the standard techniques, first we assume the real part
of pmg.me (@) is strictly positive on S, n, N Y. By choosing a Borel measurable subset S
of Sppme MY having positive measure, we define functions hy and hy as follows: hy(a) =

Py (), foraels, Py (a)z,, foraels,
and hy(a) =

0 for a € '\ S, 0 for a € I\S.
Then, we have hi() and ho(a) € J(a) for ae. a eI since {P;_ ()T }nen is dense in
Jos (). Hence we get hy, hy € S"(«7) which gives (¢ pmgm, () dpp(a) = 0. We arrive on a
contradiction since the measure of S is positive and the real part of p,,, () is strictly
positive on S. Other cases follow in a similar way. Thus the result follows.

The converse part follows easily by the Proposition [5.3.2.

(i) For f € S'(«/) and g € L*(9), first assume §_ - §.  (f, Lotbe) (Lypr, g) dpr(y) dpn(t) =
0, which is equivalent to §,. {z (Zf(a), Zoi(@)) (Z¢i(), Zg()) dpp(a) dup(t) = 0 from
Proposition @ To get the result for a.e. a € f‘, we need to show

JN (Zf(a), Zo@))(Ze(a), Z29(a)) duy(t) =0 for feS' (o), ge L*(¥).
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For this, let (e;)iez be an orthonormal basis for L*(T\¥) and P;_(«) is an orthogonal
projection onto .J,(a) for a.e. o € I'. Assume on the contrary, there exists iy € Z such
that h(a) = §,(P(a)ey,, Zoi()) (Zi(a), Zg(a)) duxn(t) # 0 on a measurable set E r
with pa(E) > 0. The rest of the proof follows in the similar manner of Theorem @ (ii).

The converse part follows immediately by Proposition [5.3.2. O

In case of S'(7) = S"(&7’) in Theorem [5.3.1, we get J(a) = J () ae. a eI, follows
by observing the bijection J +— V; and V; = S¥(«/) = ST (&’). Then we have following

result.

Corollary 5.3.3. Under the hypotheses mentioned in Theorem|5.3.1 let S (/) = ST(").
Then,

(i) EY (") and EY () are dual frames to each other if and only if for a.e. a € T, the
system Zo/' (o) = {ZY(a) : Y € A} and 24 (o) = {Zp(a) : p € A} are dual to
each other.

(i) EY(") and EX () are orthogonal pair if and only if for a.e. a € I, the system
Zd' () and 24/ () are orthogonal pair.

5.3.2. Super dual frames

Orthogonality is a fundamental idea that plays a significant role in the discussion
of the dual frame property of super-frames in orthogonal direct sum of Hilbert spaces.
This concept was first presented by Han and Larson [43] and Balan |11], who developed it
further. This notion is further generalized in the context of TT and Gabor systems [58,(59).
By a super Hilbert space L*(9) @ -+ @ L*(¥¢) (N-copies) or @V L*(¥), we mean it is a

collection of functions of the form
(5.32)  OVLAD) = (@), [ = (fO, O, fM): [ e L2),1 < n < N},

with the inner product (®\_, f™ @®N_ ¢ = 21];[:1<f(n)7 g"™>. Indeed, ®V L?(¥) is noth-
ing but the Hilbert space L*(¢ x Zy), where Zy is an abelian group with modulo N.
Analogous to the classical trend, we state the following characterization result for (super)

dual frames of translates in the super Hilbert space @V L*(9).
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Theorem 5.3.4. Let N € N and N be a o-finite measure space with counting measure.

For1<n <N, let {@’”}teN and {@Dt(n)}te/\/ be two collections of functions in L*(94) such

that {ngpgn)}ta\/ﬁep and {L,\/lﬂgn)}te]\/’ﬂel" are Bessel.

For each v € T, define the translation operator L. := (~DNL7 which acts on an element

@r]y:lf(n) by
£ ( n= 1f n)) ®n 1L’Yf

Then, {L.(®N_ ol )}te/\f ~er and { L (@Y L )}te/\/ﬁer are (super) dual frames in @~ L*(9)
if and only if for a.e. a € F, the following holds:

(i) The systems {{Z@")(Q,Fx)}rxer\g}te . and {{Z¢tn)(a,Ffﬂ)}rxer\g}tw are dual

frames in L*(T\¥) for 1 <n < N.
( ) Forl < ny # ng < IV, {{nggnl)(aa Fx)}FweF\%}tEN and {{szgrm)(o‘a Fx)}f‘mef\% ‘te N}

form an orthogonal pair.

Proof. Assume the systems {L. (D). 1S0t )}teN ~er and {L£, (@ 1¢t )}teNﬁep are (super)
dual frames in @VL?(¥). Then for each 1 < n < N, (i) follows by just applying the
orthogonal projection P, on it and Corollaryz For the part (ii), let 1 < ny #ng < N
and h € ®VL*(¥). Then, we have P, (P,,h) = 0, where P, (P,,h) is equal to

||| Pt P (@ae )P (2, @ 047 dian(3) din )

N JN J (Poyhy L™ Lopi™ dpup (7) dpn(t).
T

Hence, E7 ({0 }ien) and ET({t){™ }enr) are an orthogonal pair. Therefore (ii) follows.
Conversely, let us assume (i) and (ii) hold. Then notice that both {L£.(®)_ 190t )}te/\/ el

and {,C,y(@r]:[:l’ll)in))}te/\/ﬁer are Bessel families in @V L?(¥), follows by the below calcu-

lations for h € L*(¥4)" using the Bessel property of {ngpgn)}ta\/ﬁep with Bessel bound

|| | @D dur o) dtt) = [ [ K@Y P £, (@YD die(a) dia

N 2
= [ [ IS gt ) dcty < clpre Y, 50
' =1 n=1

for some constant C' > 0 (similarly, for {walfn)}te/\mep ). Thus we have the result using

Theorem [5.3.3, by just looking the reproducing formula for each h € ®~ L?(¥) and writing
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h = ®)_, P,h in the below calculations:

J;v Jr<h7Lv(®g—1wtn))>£w(@5_190£n)) dpr (v) dppe(t)
N

- JNL;@DML, L7¢§n)>£7(®7]¥=190§n)) dpr(y) dpp(t)
N

B JNL Z_;<P"h’ Lap{™ Lot dpr(v) dun(t) @ ..

N
@ JJ\/’J 2<Pnh’ L’thn)>L790§N) dur () dpn(t)
I'n=1

=Ph®---®Pyh=nh.

5.4. Applications

In this section, we explore how our findings can be put to use. Since there is always
an attraction of researches to find various properties of Gabor systems (see [8,[17,23]24,

431149,52]) and references therein, firstly we focus on the Gabor system.

5.4.1. Gabor System

Let G be a second countable LCA group having a closed subgroup A. Then for a
family of functions & = {p; : t e N'} in L*(G), a Gabor system G(o/, A, A1) is

G/, A, AY) = {L,\Ewgot ; )\EA,WEAL,tEN},

where N is a o-finite measure space, and for w € QA, the modulation operator E, on
L?(G) is defined by (E,f)(z) = w(z)f(z), z € G, f e L*G). We denote S(o7, A, A*) :=
spanG (<, A, At).

In case of N having counting measure and discrete subgroup A, the following result
is established for the pair (G, A) by observing the Gabor system G(<7, A, At) as a A-TG
system EMNo7), where & = {E,p : p € o, w € A*}. The similar results can be deduced

for the case of uniform lattice A in G, in particular, Z™ in R™.

Theorem 5.4.1. Let & = {pi}ien and &' = {{i}ens be sequences in L*(G) such that

the Gabor systems G(o/, A, A*) and G(</', A, A*) are Bessel, where A is a closed discrete
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subgroup of an LCA group G. Then G(/',A,At) is an S(o/, A, At)-subspace dual to
G(o, A, A1) if and only if for allt' e N,

Zop(B,zN) = Z[Zg@t/, ZU(B)Zpi(B, xA) for xA e G/A and a.e. f € A.
teN

In particular, G({1)}, A, AY) is an S({e}, A, A+)-subspace dual (orthogonal) to G({¢}, A, A1)
if and only if [Zp, ZY)(B) =1 ([Z¢, 2¢]|(B) = 0) for a.e. 5 € Q.

Proof. This follows from Theorem [5.1.6 due to the relation [Z(E.¢:), Z(E,)](8) =
[Z¢r, Z44](B) for ae. B A and t,# € N since the Zak transform satisfies the formula
Z(E f)(B,2A) = w@)Zf(B,zA) for w € AL, (B,zA) € (A,G/A) and f € L3(G). The
remaining part follows by Corollary [

For an arbitrary closed subgroup A and o-finite measure space N, the following result can
be deduced for the set B defined by B := {(8,zA) € AxG/A : Zf(B,zA) # 0 for some f €
Ay}, where for a given &7 in L*(G), the family of functions &% < &/ is a countable dense
subset of &7 (see |17,123,49]). The associated range function J.(5,zA) = C.

Theorem 5.4.2. Let of = {@i}en and ' = {P}1en be two collections of functions in
L2(G) such that G(a/, A, A*) and G(&’', A, AY) are Bessel, where (N, ) is a complete,
o-finite measure space. Then G(&/', A, A*) is an S(a/,\, A*)-subspace orthogonal to
G(e, N, A) if and only if for a.e. (B,z\) € B, the system Z.a/'(B,z\) is a Jz (3, z\)-
subspace orthogonal to Z.47 (5, x\).

5.4.2. Splines on LCA groups

Fix N € N. For an LCA group G with the uniform lattice A and the associated
fundamental domain U, the weighted B-spline of order N is defined by By = @1 xu* - - *
©nXs, where @; € L2(U) for 1 < i < N. Then the system £*(By) is Bessel [24]. Similarly,
the system £*(B)) is also Bessel, where By = 1xg * - -+ * ¥nXp for 1; € L?(U) with
1 < i < N. Therefore for a.e. ¢ € Q (fundamental domain associated with At in QA), we

have the following similar to Example [5.1.13}

(7B, TBy)(€) = Y Bu(€+ NBR(E+A) = Y (H (@) (€ + N (o) €+ V).

AeAt AeAt  j=1
By the Corollary |5.1.11] the subspace orthogonal and duals for the system £*(Bl);) associ-

ated with £4(By) can be described by assigning the values on the above expression either
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0 or 1, respectively. Due to the importance of splines in numerous applications, both the
Euclidean and the LCA group setups conduct an in-depth research for the Gabor and
Wavelet systems [24,52].

5.4.3. For other setups

In the scenario of p-adic numbers @, and Heisenberg groups, we may examine our
results for the subspace orthogonality and duality of Bessel families. Considering that the
Zak transform plays a significant role in describing our results, such as, Theorems [5.1.6,

[5.1.8, 15.1.16} [5.2.3, and [5.3.1, Corollary [5.1.11] we describe below the Zak transform in

these setups (see [8,49]) and references therein.

5.4.3.1. p-adic numbers Q,. Recall Subsection [4.2.2] for a prime number p, the locally
compact field of p-adic numbers Q,, is {Z;O:m c;p :meZ,c;ef{0,1,...,p—1}} in which
the associated with the p-adic norm is |z|, = p™™ for z = Zjo:m ¢;p, cm # 0. Indeed, it
is an LCA group. The p-adic integers Z, defined by {Z, := {x € Q, : |z|, < 1}} is a
compact open subgroup of Q,. In this setup, the Zak transform is given by Zf(z,y) =
Sz (y + &)e 2™ dug, (§) for f e LYQ,) n L*(Q,) and z,y € Q which can be extended
from L?(Q,) to £2(Q x Q), where Q is the fundamental domain.

5.4.3.2. Semidirect product of LCA groups. For LCA groups I'y and I's, let us con-
sider a locally compact group ¢, = I'y x, I's by the semidirect product of I'y and I'y with
the binary operation (y1,72).(71,7%) = (M7, Y27 (72)), where 41 — 7, is a group ho-
momorphism from I'y to the set of all automorphisms on I'y, such that (y1,v2) — 7, (72)
from I'y x 'y — Ty is continuous. Then the Zak transform Z is defined by Z f(y;,w) =
SFQ (71, 72)w 72)5(71) dur,(v2) for fe LY Ty x, Ty), (y1,w) € Ty x5 f‘;, where § is a pos-
itive homeomorphism on I'y given by dpur,(72) = 6(71)dpr, (7, (72)). It can be extended
from L2(T; x, I'y) to L2(Ty x7 I).

Till now, we have discussed the dual frames and their types for the locally compact
groups translated by their closed abelian subgroups. Next, we are going to discuss these
duals in the case of connected, simply connected nilpotent Lie group which is considered to
be a high degree of non-abelian structure. Unlike the previous chapters, our translations

are from the non-abelian subgroup. This type of discussion was started by Currey et

al. [29].
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CHAPTER 6

REPRODUCING FROMULA FOR SI/Z LIE GROUP

0

In this chapter, we discuss characterization results for reproducing formulas associated
with the left translation generated systems in L*(G), where G is a connected, simply con-
nected nilpotent Lie group whose irreducible unitary representations are square-integrable
modulo the center. Unlike the previous study of discrete frames on the nilpotent Lie
groups [29], the current research occurs within the setup of continuous frames, which
means the resulting reproducing formulas are given in terms of integral representations
instead of discrete sums. As a consequence of our results for the Heisenberg group, a
reproducing formula associated with the orthonormal Gabor systems of L2(R%) is ob-

tained [65).

6.1. Plancherel transform for S7//Z nilpotent Lie group

Let G be a connected, simply connected nilpotent Lie group with Lie algebra g.
We identify G with g =~ R" due to the analytic diffeomorphism of the exponential map
exp : g — G, where n = dim g. To choose a basis for the Lie algebra g, we consider the
Jordon-Holder series (0) € g1 € g2 ... < g, = g of ideals of g such that dim g; = j
for j = 0,1,...,n satisfying ad(X)g; < g;j_1 for j = 1,...,n and for all X € g, where for
X,Y eg, ad(X)(Y) = [X,Y], the Lie bracket of X and Y. Now we pick X € g;\g;—1 for
each 7 = 1,2,...,n such that the collection {X7, Xs,...,X,,} is a Jordan-Hélder basis.
The map R" — g — G defined by (21, 22,...,2,) = 2, 2;X; — exp(3_, 7, X;)

This chapter is a part of the following manuscripts:
S. Sarkar, N. K. Shukla, Reproducing formulas associated to translation generated systems on nilpotent
Lie groups, arXiv:2301.03152.
S. Sarkar, N. K. Shukla, Characterizations of extra-invariant spaces under the left translations on a Lie

group, Advances in Operator Theory, (2023), https://doi.org/10.1007/s43036-023-00273-x.



is a diffeomorphism, and hence the Lebesgue measure on R™ can be realized as a Haar
measure on G [28].

Note that the center 3 of the Lie algebra g is non-trivial, and it maps to the center
Z :=expj of G. The Lie group G acts on g and g* by the adjoint action exp(Ad(z)X) :=
rexp(X)z™! and co-adjoint action (Ad*(x)l)(X) = ((Ad(x~')X), respectively, for x €
G,X € g, and £ € g*. The g* denotes the vector space of all real-valued linear functionals
on g. For ¢ € g* the stabilizer R, = {x € G : (Ad*x)¢ = (} is a Lie group with the
associated Lie algebra r, :={X e g: ([Y, X]| =0 for all Y € g}.

Our aim is to discuss Kirilov Theory [28| to define the Plancherel transform for S1/7
group. Given any ¢ € g*, there exists a subalgebra b, (known as polarizing or mazimal
subordinate subalgebra) of g which is maximal with respect to the property ¢[hy, b,] = 0.
Then the map A& : exp(hy) — T defined by X;(exp X) = e?™X) X e b, is a character
on exp(hy), and hence the representations induced from &, 7, := ind%_, X, have the

exp by

following properties:

(i) m is an irreducible unitary representation of G.
(ii) Suppose b', is another subalgebra which is maximal with respect to the property

[b,, b,] = 0, then indS_, Xy = indS

exp he exp

(o) X2
(iii) 7y, = my, if and only if ¢; and /5 lie in the same co-adjoint orbit.
(iv) Suppose 7 is a irreducible unitary representation of G, then there exists ¢ € g* such

that ™ ~ m,.

Therefore there exists a bijection t* : g*/Ad*(G) — G which is also a Borel isomorphism,
where @ is the collection of all irreducible unitary representations of G.

For an irreducible representation 7 € @, let O, denote coadjoint orbit corresponding
to the equivalence class of 7. Then the orbital characterization for the S1/Z representation

is:
7 is square integrable modulo the center if and only if for { € Oy, 10 = 3 and O, = £ + 3*.

If SI/Z # ¢ then S1/Z :C:‘max, where the Borel subset @max cG corresponds to coad-
joint orbits of maximal dimension which is co-null for Plancherel measure class. Hence,
when G is an SI/Z group, @max is parameterized by a subset of 3*. If 7 € @max, then dim

O, = n—dim 3, since O, is symplectic manifold, it is of even dimension, say, dim O, = 2d.
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By Schurs’ Lemma, the restriction of 7 on Z is a character and hence it is a unique ele-
ment ¢ = o, € 3* (say) and 7(2) = e?™?1°82 [ where [ is the identity operator. It shows
that O, = {le g* : [|; = 0} and 7™ — o, is injective.

Let G be an SI/Z group and W = {0 € 3* : Pf(0) # 0} be a cross section for the
coadjoint orbits of maximal dimension, where the Pfaffian determinant Pf : 3* — R is

given by

0 \/} det (€[X;, X;1)ij=r..mn]-

Then, for a fixed 0 € W, p(0) = Z?:1 gj((f!gv) is a maximal subordinate subalgebra for o
J
and the corresponding induced representation 7, is realized naturally on L?(R?), where

n = r + 2d for some d. For each ¢ € L'(G) n L*(G), the Fourier transform of ¢ given by

B(0) = Lso@)wa(x) dr, o e W,

defines a Hilbert-Schmidt operator on L?(R%) with the inner product (A, B)ys = tr(B*A).
This space is denoted by H.S(L?(R?)). When do is suitable normalized, then

ol = | 1800 Businay PE@)] dlo).
The Fourier transform can be extended unitarily as F- the Plancherel transform,
F i IX(G) — LA HS(LA(RY), [PE(0)|do)), Ff = J.
Note that the Plancherel transform F satisfies the relation
F(Lrf)(0) = m,(AN)Ff(o) for A e G,a.e. oe3*, and fe L*(G),
where the left translation operator Ly on L?(G) is given by Ly f(z) = f(\ ).

6.1.1. Plancherel transformation followed by a periodization

Throughout the next, let us assume that G be an S1/Z nilpotent Lie group with center
Z. From the Section [6.1] we consider the center Z identified with R” (r < n) for a chosen
(ordered) basis { X1, X, ..., X,,} of the corresponding Lie algebra g, as follows:

Z =expRX;expRX,...expRX,.
Also we write a set X identified with R?? (n = r + 2d) as follows:

X =expRX,,1expRX, 5...expRX,,.
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The elements y = (y1,%2,...,y.) € R" and & = (2,11, ..., z,) € R* are identified by
Yy = €exXp lel €xp y2X2 ... €Xp erra and r = exp xr+1Xr+1 exp xr+2Xr+2 ... €Xp anm
which can be observed from the homeomorphism between R” x R?? and G given by

(Y1, Y2, - Yy T 1y - - Tp) — €XP Y1 X7 €XP Y2 Xo ...

e €Xp Y X eXP 1 Xpy1 €XP XpioXpyo .. €XP T Xy,.

Further assume that Ay is a uniform lattice in Z, means, it is a discrete closed subgroup
of Z such that Z/Ay is compact. Then we have Z//\Ag ~ Ay and Z JAgt = Ay since the
center Z becomes a locally compact abelian group. The dual group of Z, denote by Z , 1s
also identical with R". The group 7 consists of continuous homomorphisms from Z to T,

and the annihilator Ay* is defined by
Aot = {X e Z:X*(\) =1forall Ae Ao}

The set Z can be tiled by ¥ with the tiling partner Ay*, where ¥ is measurable section
of 7 /AOL having finite measure. The set ¥ is a tiling set of A , means, the collection

{S + X*: \* e Ag'} is a measurable partition of 7.

Definition 6.1.1. For a measure space (X, p1), a countable set {€2;}; of subsets of X is
tiling of X if p(X\{J; ) = 0, and p(82; 1 Q) = 0, when i # j. A set T is tiling partner
of  for X if there is a set © in X such that the collection {2+ : z € T'} is a tiling of X.

In this section, we discuss the Plancherel transform followed by a periodization named
Z, which is an operator-valued linear isometry (similar to the Fiberization). It is well
known but for the sake of completion, we provide its proof with the approach of the com-

position of unitary maps. The map .% intertwines left translation with a representation

7. For ge G and h e L*(X, (2(A¢, HS(L*(R%))), the representation 7 is given by
7(g)h(o) = T, (g)h(o) a.e. o€ .
The associated representation 7,(g) on £2(Ag*, HS(L*(R?)) is given by
7 (9)2(V) = Toran(9)02(X7), A* € At

where the sequence (z(A\*)) lies in £2(Agt, HS(L*(R?)), “o” denotes the composition of

operators in HS(L*(RY)) and 7, »«(g) is the Hilbert-Schmidt operator defined on L*(R?).
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The following Proposition was developed in [29] but for the sake of simplicity we write a

simplified proof.

Proposition 6.1.2. (i) There is a unitary map F : L*(G) — L*(Z, 2(Ao*, HS(L*(R%)))
given by

Ff(o)(\*) = Ff(o + X)|Pf(o + X\)|[Y2, fe L*(G),\* € Ag* and a.e. 0 € 3.

(ii) The map F satisfies the intertwining property of left translation with the representa-
tion . For A€ A = AjAg = {A1 o : A1 € Ay, Ao € Ag}, where

A CexpRX,,1...expRX,, and Ay = expZX; ...expZX,
is the integer lattice in G,
(6.1.1) F(Lrf)(0) = 2205 (X\).Z f(0).

Proof. (i) Since the set W is Zariski open in 3* and Pf(o) is non-vanishing on W, the

map
Uy - (W, HS(L*(R?)), |Pf(0)| do) — L*(3*, HS(L*(R?))), h — h|Pf(c)|"?

is unitary. Further note that Ay» is tiling partner of ¥ for 7 =~ 3*, we can define a

periodization map
Us : (3%, HS(L*(RY)) — L? (S, (Ao, HS(LP(RY))) , b (h(- + A*))ysengt-

It is also unitary by identifying the linear dual 3* of 3 with R". Therefore we get a sequence

of unitary maps as follows:
L(G) 5 12 (W, HS(LA(RY), [PH(w)|dw ) 2 L2(5*, HS(LARY)) 5 L2 (2, (A", HS(LARY)) )

where the first unitary map %4 is the usual Plancherel transform F.

For h e L* (W, HS(L*(RY)),|Pf(c)|do) , we observe
(U2 (o) = (2.h)(0)|Pf(0)|Y? = Fh(o)|Pf(0)|V? a.e. ce W
and then for a.e. 0 € X, A* € Ag” and f € L*(G), we have
(W Ua20) f(0)(N) = (W(U0) f(0)) (N) = (%) f(0+X) = Ff(o+X)[PEo+1*)] 2.

Thus the result follows by choosing . % = YU .
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(ii) For \* € Ag™ and a.e. 0 € X, we get
F (L @) V) =F (Lo )0 + N)PEo +N)[2 = 7ons (Mdo) Ff (0 + A7) [P0 + A7) 2
=M w(NFfo + X)[PEo + \¥)|2
=T (7, () F () (W),
since F(Lyf)(0) = 7o (N)F f(0). O
Example 6.1.3 (Heisenberg group). Let G be a d-dimensional Heisenberg group denoted

by H¢ with a Lie algebra g having a basis { X1, X», ..., X4, Y1, Ya, ..., Yy, W}. Its associated
Lie brackets are:

(i) [X0 X)) = [V Y} = 0,1 < d,j < d

(i) [W, X;] =[W,Y;] =0,1 <i<d;

(i) [X;, Y] =6;,;W,1<14,j<d.
So the center of the Heigenberg group becomes: Z = expRW and non-center part
X = expRX;...expRX expRY; ...expRY,. H? is the d-dimensional Heisenberg group
identified with R¢ x R? x R and group operation:

(z,y,w)- (2, ¢, w) = (x+ 2" y+y,w+w +xy).

It is an SI/Z group, and when 3* is identified with R, then W = R* = R\{0}, |Pf(\)| =
IA|4. So its irreducible unitary representations 7 of H¢ are indexed by A € R*, upto a set of
measure-zero. For 0 € R* = R\{0} and u = (z,y, 2) € H%, the Schrodinger representations

7,(u) on L?(RY) is given below for f e L?(RY),
o () F(&) = o (2,1, 2) F(a) = €272 200 f(af 3} 2y o' € RY and z € R.
For ¢ e LY(H?) n L*(H?), the Fourier transform is defined by:
Fo(o) = fHd o(z)7,(x) dx, o€ R,
and the fiberization map % : L2(H¢) — L*(T; (*(Z,HS(L*(R?)))) is given by
F()@)(m) = |a+m|* Fp(o+m).

Consider A; = R? x R? x {0} and Ay = {(0,0)} x Z, then the set A = AjAg can be
identified with R? x R? x Z. The associated representation 7,, which is defined by

Ta(A)2z(m) 1= Tasm(A1)oz(m), where (2(m)) € (*(Z, HS(L*(R?))).
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6.2. Translation-invariant spaces

We briefly start by describing the left translation generated systems in L?(G) as

follows:

Definition 6.2.1. Let Ay be a uniform lattice in the center Z of G and A; be a discrete
set lying outside the center Z. A closed subspace W of L*(G) is said to be Ay Ag-invariant
if

Ly xfeW forall \y e A;,\ge Ag and fe W,

where for each y € G, L, f(z) = f(y~'z) for z € G and f € L*(G).

Next we discuss the range function J for a AjAg-invariant space. The range function
is a mapping

J: ¥ — {closed subspaces of £*(Ag™, HS(L*(RY)))}.

It is measurable if the projection map P(o) : L?*(G) — J(o) is weakly measurable, i.e.,
for each a,b e 2(Ag", HS(L*(RY)) and o — (P(0)a,b) is measurable.

The space W can be expressed as follows: W = {p € L*(G) : Z (o) € J(0o) for a.e. o €
¥} and 7,(Ay) < J(o). Also, there is bijection W — J. We refer [3,12.20,24,29,61,62] for
more details about shift-invariant spaces and associated range functions for the abelian

and non-abelian setups.

Proposition 6.2.2. The range function J associated with the Ay Ag-invariant space W =

Shiho(o7) satisfies
(6.2.1) J(o) =span{.Z (Ly,p)(0) : p € &/, A\ € A1} a.e. 0 € X.

Proof. From the intertwining property (6.1.1), we get .Z (L, x,)(0) = 2™ 7 (X)) F (o)
for \iAg € A1Ag, and a.e. o € X, and hence, .Z(S4 (7)) is invariant under exponen-
tial and 7(A;).Z (SMY(o)) = F(SMA0(&7)). Therefore, we get the result by observing
F (§hho(o7)) = My, where the space M is defined by

(6.2.2) M; = {fe L*%, (A", HS(L*(RY)) : f(o) € J(0) for a.c. 0 € X}

for the range function J given in (6.2.1). For this let us consider a function g € . (S*40 (7).
Choose a sequence (g;) converging to g such that . ~1g; € span{Ly,»,© : MAo € A1Ag, p €

2/}. Then we have g;(0) € J(o) in view of (6.1.1), and hence g(o) € J(o) since J(o) is
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closed. Therefore, g € My, ie., F(SM% (o)) = M;. For the equality .7 (SM0(&7)) =
M, we need to show .7 (8140 (e7))t A M; = 0. Choose h € .#(Sh140 (7))t A M. Then
for any f € span{.Z(Ly, ) : A\ € A, ¢ € &} and Ay € Ay, we have >0 f(\) e
F (8M20(g7)), and then we obtain

0= JE<62”i<"’\°>f(0), h(o)) do = fz 62m<">\0><f(0'), h(o)) do.

Hence, all the Fourier coefficients of a scalar function given by o — {(f(0), h(c)) are zero.

Thus, {f(0),h(c)) =0 a.e. c € ¥ and f(o) € J(0), ie., h(c) € J(o)* a.e. 0 € X. O

6.3. Reproducing formulas associated with continuous frames

Through out the section, we assume G to be a connected, simply connected nilpotent
Lie group with Lie algebra g. The Haar measure on G can be realised as a Lebesgue

measure on RY. Further, assume an arbitrary measurable subset
A CexpRX, ;1 ...expRX,, (not necessarily discrete)

and the integer lattice Ay = expZX;...expZX, in G. For the countable collection of
functions & = {¢} : k€ I} and &' = {¢y : k € I} in L*(G), we recall the A-translation

generated systems
EMA) = {Lapp - Ne A ke I} and EM') = {Ly, : Ae A ke I},

where A = AjAg = {A\ Ao : A1 € A1, Ao € Ag}. The set A = AjAg is measurable.
We now define the translation generated dual and its types in L?(G):

Definition 6.3.1. Suppose & = {©p}rer, @' = {U}rer are families of functions in L?(G)
such that £*(«7) is a continuous frame for the span closure S*(«7), and £ (/') is Bessel.
We recall the definitions of £2(.’) to be an alternate dual, oblique dual, type-I dual,
type-1I dual, and dual frame for £*(/) from Definition @

First we proceed by defining the terms G5 (o) and HY () for each A\; € Ay, k € I and
a.e. a € T" as follows. For f,ge L*(G),

(6.3.1) Gf“\l () :={ZF f(a), Ta(M)F pr(a)) and H])fl (@) :={(Fg(a), To(M)F ().

Proposition 6.3.2. For each k € I and \; € Ay, the functions G5 and HY are in L*(T")

and their Fourier transforms G and HY are the members of (*(Z").
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Proof. Applying the Cauchy-Schwarz inequality and using the property of .%#, we have

mez" T mezZr

1/2 1/2
| 6@l da < ( |2 1 s da) ( [ % 17 oo da)

= [ZFIIF Laeorl = [ flller] < oo,

since 7 (Ly, 1) () = 2007 (M) .F p(a) = 7o(M)F () and the left translation Ly,
is an isometry. Hence G5 € L*(T"). Similarly, Hf € L'(T"). The Fourier transform of

G’}\l and H;fl at \g € Ag is given by

61;\1()\0) — Glil(a>e—27ri<a,>\o> da, and [T[AEO‘O) _ H/l\ﬂl(a)ef%i(a,)\@ dov.
Tr Tr

Then the sequence {5’}\\1 (Xo) }roen, € £2(Z7), follows by observing the Bessel property of
EMf) and properties of .# (Proposition [6.1.2) in the following calculations:

» >ZL\<J2LA%>2 D= ¥

kel kel VA1 \geAo

=D DS

kel Y1 ageAq

2

J (Ff(a), Ta(\)F pp(a)ye 220 da| d),

Similarly, we have {@(AO)}AOEAO e (2(Z7). O

Proposition 6.3.3. For all f,g € L*(G), we have

> L (f Lar) (Latbr, gy dA = ) L f G (@) HY (a) da d),

kel kel

where EM7) and EM (') are Bessel systems.
Proof. Applying the map .%, we have

| Lo @atgy i3 = 3 [ (P17 L) (L, Fop

kel kel

Y[ ([ 1@ st i) ([ L. Fa) ) a

— ZJA TT<yf(a)’%a<A)y¢k<a)> da Tr<ﬁa()\)y¢k(a)7gg(a>> dev d\.
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Writing A = Ao, where A\; € Ay, \g € Ag, we get To(AAg) = 2™ % (X)), and hence

the above expression can be written as:

ZJ {f, Laor) {Latg, g) dA

kel
_ ZJ (J (T (@), Ta(MA)F pr(a)) doz) X
kel YA NgeAo
< (Ta(MA) Fp(), Fgla)) da) d\
'JTT‘
X[ % ([ e o m o Tl da) »
kel YA xgeAo "
<f 62”<°"A°><7~ra()\1)ﬁwk(a), Fgla)) da) d\y
_ ZJ (J —27ri<a,>\0>Gl>€\l (OZ) dO[) (J 27rz<a )\0>Hk ( ) dOé) d>\1
kel YA NgeAo "
= Gh, )\O)H (Ao) dAy = ). <GA1, ;@mm d\
kel YA AoeAO kel YA
—ZJ (GEHE Y dA, = ZJ J Gt () HE (o) da dA,.
kel kel "
Hence the result follows. OJ

Now we state our main results of this section which characterizes alternate (oblique)
duals and type-I (type-II) duals in the nilpotent Lie group setup. Our characterizations
are based on the range function techniques for S1/Z Lie group associated with the rep-

resentation 7.

Theorem 6.3.4. For a.e. a € T", we consider the range function
(6.3.2) Jo(a) = span{ia(\)ZFpla): pe o, \ e A} € (2(Z7, HS(L*(RY)),

associated with the representation 7,. Then EM(/') is an alternate (oblique) dual for
EM) if and only if for a.e. a € T", the system {7o(\)FY(a) : Y € &'\ e A} is
an alternate (oblique) dual for the continuous frame {T,(\)Fp(a): p e o A\ € A} of
Jo (@), i.e., for all he Jy(a),

h = Z <h Ta(M)F r(@))Ta (A1) F o) dAr.

kel
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Proof. We prove the result for alternate duals and proceeding by a similar manner we can
conclude for oblique duals. For f,g e S*(&7), we have

S [ crao0 gy = 5[ [Gh @A) do i

kel kel

(6.3.3) = ZJ (T fl@) Ta(M)F pr(a)) (Ta(M) FUi(a), Fg(a)) da dAy

due to the Proposition [6.3.3. Assume the system {7, (A1) Z V(o) : ke I,\ € A1} is an
alternate dual for the continuous frame {7,(A\1)Fgr(a) : k€ I, A\ € Ay} for a.e. a e T,
ie.,

> <a Ty (@) F o)) Gin, () F (@), by dAy = (a,b) for all a,b e J ().

kel
Employing (6.3.3), we obtain Y, ; §, {f, Laxgi)XIathy, g) dX = §.(F f(a), Fg(a)) do =
{f,g), since fe S*(«) implies Z f(a) € J(a) for a.e. a € T". Therefore, EX (/') is an
alternate dual for £ (7).

Conversely, assume that £4(&7’) is an alternate dual for £4(), i.e.,

Sover Sa s Lagry {Lathy, gy dX = {f, g) for all f, g e 8*(o/). Now using (6.3.3), we obtain

(Ff(0).Fglo)) da =< f.g>= 3, f (s Lo Lt g) AN

kel

(6.3.4) = ZJ (Ff(a), Ta(M) For(a)) (Fa(M)FPr(a), Fg(a)) da dAr.

kel

Then, the expression >, §, (F f(a), Ta(M)Fpr(@)) (Ta(M)Fr(a), Fg(a)) dhi is
equal to (Z f(a), Zg(a)) for a.e. a € T". Suppose this does not hold. Then there
exists a measurable set 2 < T" with positive measure such that it is not equal for a.e.
ae .

Let {Z,}nen be a countable dense subset of (2(Z", HS(L*(R?))) and let P;_(a) be
an orthogonal projection on Jy (). Clearly {P;_ (a)xy}nen is dense in Jy (). For each
1,7 € N, we consider the set

Sij={ae T pisla Zf (Pyy (@)s, Fal M) F () GralM) F(@), Py (@) dh
kel

—(Py_(a)zi, Py (a)z;) # o}.

Then there exist ig, jo € N such that the set E := S;

10,0

hence one of the sets, viz., By = {a € T" : Re(p;,4,) > 0}, B2 = {a € T" : Re(piy o) < 0},

N 9 is of positive measure, and

E; = {a e T" : Im(piy;,) > 0} and Ey = {a € T" : Im(p;,4,) < 0}, must have positive
111



measure, assume Fj. By choosing . f(a) = xg, Py, ()zj, and Fg(a) = x5, Py, (a)z;,
we have f, g € S*(&) and in view of (6.3.4), we reach on a contradiction that the measure
of & is positive. Similarly, we get contradictions with respect to the other sets Fy, Fj

and E,. Hence the result follows for alternate duals. O

Proposition 6.3.5. For ke I and \; € Ay, let us assume a measurable Z" -periodic func-
tion p  satisfying > .o §a, v Py, (@)]? dov d\y < 0. Then, for a Bessel system (),

the following are equivalent:

(1) Dker SAl $1- Gﬁl(a)Pil(@) da dAy = 0.
(ii) For a.e. € T", >, ; SAI G'f\l (oz)p’jl(a) d\; = 0.

Proof. Assume (i). If (ii) does not hold true, there exists a measurable set 2 < T" of
positive measure such that ), _, SAl Gh ()ph (@) dAy # 0 for a.e. a € D. Let {x;};en be
a countable dense subset of (2(Z",HS(L*(R?))) and for a.e. a € T", let P;_(a) be an
orthogonal projection on J (o). Then {Ps_ (a)x;}ien is dense in J, (o) and there exists

an 79 € N such that
@)1= 3 [ <Pr (@i Fal M) Fola))ph () ks #0
kel YA

on some measurable set Y in & having positive measure. Now, the proof follows by
considering the real and imaginary parts, and by choosing suitable function, the way we
did for the proof of Theorem|[6.3.4 . Conversely, we assume (ii). The part (i) follows easily
by integrating (ii) with respect to the torus T". O

It can be noted further that the below characterization for type-I and type-II duals behaves
similar to the Theorem [6.3.4 of the alternate (oblique) duals while type-I and type-II duals

are the particular cases of the alternate (oblique) duals.

Theorem 6.3.6. (') is a type-I (type-1I) dual for E(a/) if and only if for a.e.
a € T7, the system {To(\)ZFY(a) : v e '\ € AN} is a type-1 (type-1I) dual for the
continuous frame {7o (M) Fp(a) : ¢ € o, A\ € A} of Jy(), where the range function
Jw(a) is defined by (6.3.2) for a.e. a €T

Proof. We first prove the result for type-I duals and then for type-II duals. Let T (4) and

Tor(a) be analysis operators associated with & (a) := {7To (M) Fpr(a) 1 ke I, \ € A}
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and Z o' () := {To(M)FUr(a) : k€ I, \ € A1}, respectively. It’s adjoint operators are
17 and T3,

For Type-I duals: In view of Theorem @, it suffices to show range T3 N
range Ty 1f and only if range T°* /(o) S TANZE T;;(a). Equivalently, [Tg‘,\(%,)( 2(I x A))] N
SMa') < [ £ oy (L2 (1 % A))]mSA(,@/) if and only if for a.e. o € T", [T;’;,(a)([,?(] X Al))]m
Ju(a) < [Tj:;(a)(LQ(I X Al))] N J(a). For this it is enough to verify on the generators
0k, . Then the result follows just by observing: Ly € Sh(o7) for k € I and \ € A if
and only if for a.e. a € T", F Ly, ¥y () € Jy(a) for k' € I, A1 € A;.

For Type-I1 duals: In view of Theorem @, it suffices to show range Tea(yn S
range Tea(.y if and only if for a.e. a € T", range T, () < range Ty (q). First we assume
range Toya) S range Tiy(q) a.e. a € T, Then the family {ajx, trerren, in L*(I x Ay)

satisfies for a.e. a e T",

(6.3.5)
ZJ Chy (M) F pr(a))ag, dA =0 — Z Chy o (M) F Yg(a)yaga, dhi =0 for all h e Jy(a).
kel kel Y1

To prove range Tea(y S range Tea(yy, we calculate the following for {cpa}rernen =

{Ck,/\o,)q}ke[,)\oer,)\leAl n L2<I X A) as fOHOWSZ

> J L)y dX = Zf > f (F [(@), F Lxiag () )Cix xg dov dAy

kel kel VM MoEAD
=2, f 2 J (F f(a), F Ly, gr(e))e 2T G050 dac dAg
kel YA Ao€EAQ
-3 [ [ ) mn ek ) da ax.
kel

k _ 2mida, Ao ) :
where p} (@) = X5 cap ChA1A€ satisfies

ZJ J |pl)€\1(04)‘2 do d)\l = ZJ 2 ’Ck,)\l,)\0|2 d)\l < 00.
kel VA1 VTT el YA

1 )\oer

Similarly, we can obtain

I KESABCETED) f (@), 7uM) F ) (@) (0] da i,

kel kel
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By assuming >, ; §,{f, Lyxgr)crx dX = 0 for all f € S*(</), and applying Proposition
6.3.5 we get for a.e. a e T",

> <<ff ) (M) Fpp(a))pf, (@) dhy =0

kel
(6.3.6) — 2, | (FT@) () Fi(a))rf () A = 0

kel
from (6.3.5). Therefore, we get >, ; §, . {f, Lyt )Crr dX = 0 for f € S*(o7). Thus, range
Ten(ry S range Tea(y. Conversely, we assume range Tea () S range Tga(y). For range

Ty © range Tiy(q) a.e. a € T", we can proceed with the help of (6.3.6) and choosing
Py (a) = cp, for all e T". O

Remark 6.3.7. Let G be a d-dimensional Heisenberg group denoted by H?. Consider
A =R? x R? x {0} and Ay = {(0,0)} x Z, then the set A = A;Ay can be identified with
R? x R x Z. For o/ < L?(H?), the A-generated system (/) will be of the form

EMet) = {Lanp : 0 € o, A € RY x R x {0}, Mg € {(0,0)} x Z}.
For a.e. a € T, we consider the range function
Jos(a) = span{ia,(\)Fola): pe o, \ e A} € 2(Z,HS(L*(RY)))
associated with the representation 7., which is defined by

Ta(M)z(m) := Tasm(A1)oz(m), where (2(m)) € (*(Z, HS(L*(R?))).

Then we can state Theorems [6.3.4 and [6.3.6 for the continuous setup.

Similarly, the results can be developed for A; of the form A; = T'; x I'y x {0} and Ay =
{(0,0) x mZ}, where 'y, T'y are additive subgroups of R and m € N.

6.3.1. Super dual frame pair

Now, we will discuss the properties of dual frame for super-frames in orthogonal direct
sum of Hilbert spaces, introduced by Han and Larson [43] and Balan [11]. This concept
has been carried out by many authors in the context of translation-invariant system and
Gabor systems including Lie and Lian 58], and Lopez and Han [59] in the super Hilbert
spaces. We will address it for Lie group. By a super Hilbert space L*(G) ® --- @ L*(G)
(N-copies) or ®VL?(G) (see (5.3.2)), we mean it is a collection of functions of the form
(@N_ f™ = (fO, @ Ny f) e [2(G),1 < n < N} with the inner product
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(@N_, f™ @ gy = 3N (F g Indeed, ®N L*(G) is nothing but the Hilbert space
L?(G x Zy), where Zy is an abelian group with modulo N. For each \ € A, define the
translation operator £y := @~ L, which acts on an element @_, f™ by Ly(@N_,f™) =
DN Lo f.

The following results characterize the (super) dual frame in the super Hilbert space
®NL?(@G). Recalling that, two Bessel families X = {fi}rer and YV = {gr}res in H, are said
to be orthogonal if »}, _;{f, gi)fi = 0 for all f e H.

We will characterize two orthogonal Bessel pair using range function:

Theorem 6.3.8. Let of = {py : k € I} and &' = {¢y : k € T} be two sequences
of functions in L*(G) such that the A-translation generated systems EM(o/) and EX (")
are Bessel and they form an orthogonal pair if and only if for a.e. « € T", the system
FA (o) ={FLY(a) Yved' I\ e} and Fo(a)={FLypla): ped I\ €A}
are orthogonal Bessel pair in (*(Z", HS(L*(R?))).

Proof. Let EX(o7) and EA(&7") are orthogonal, i.e., for f,g e L*(G), first assume

> L<fa Lyibw) {Lagr, gy dX =0,

kel
which is equivalent to >, ; §p. (Z f(), For(a)) (Fip(a), Fg(a))da d\ = 0 from Propo-
sition[6.3.3. For a.e. o € T", we need to show Y5, (F f(«), Fop(a)) (Fipp(a), Fg(a)) =
0. For this, let (e;)icz be an orthonormal basis for ¢2(Z", HS(L*(R?))) and £;_ () is an
orthogonal projection onto J. () for a.e. « € T". Assume on the contrary, there exists
ig € Z such that h(a) = X, (P (a)ei, For(a)) (Fip(a), Fg(a)) # 0 on a measurable
set < T with pu(2) > 0. The rest part of the proof follows from the similar steps of
Theorem @ (i). The converse part follows easily from Proposition @ H

Theorem 6.3.9. For 1 <n < N, N e N, let {gp,(cn)}ke[ and {%E;n)}kel be two collections
of functions in L*(G) such that {L,\<p,(€")}kel7)\e,\ and {LAw,(ﬂ")}keL)\eA are Bessel. Then
{,C,\(Gaﬁyzlgp,(fn))}keb\e/\ and {zx(@ﬁzlzpﬁ))}ke]’m are (super) dual frames in @~ L*(G) if
and only if :

(i) Fora.e. « € T" and1 < ny #ny < N, {9L,\lgo,(€n)(a)} and {QLM ,(Cn)(&)}

)\16A1,k€[
are orthogonal pair.
(i) Fora.e. a € T" and1 <n < N, {ﬁLM@,(:)(a)}
are dual frames in (*(Z", HS(L*(RY))).
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Proof. Assume the systems {L£(®N_ 1<pk )}kel ren and { £y (@ 1%; )}ke[ xea are (super)
dual frames in @V L?(G). For the part (i), let 1 < ny # ny < N and h € ®VL?(G). Then,
we have &, (Z,,h) =0, where &, (Z,,h) is equal to

5 [ (st P L@ AP (L2 & 0) 3= [ (Pt gl L

kel kel
Hence, £ ({¢p), (n2) brer) and SA({w(m }rer) are orthogonal pair. Therefore (i) follows. Then
for each 1 < n < N, (ii) follows by just applying the orthogonal projection &2, on it. Con-
versely, let us assume (i) and (ii) hold. Both {£,(®)_ 1‘:% )}ke] xen and { Ly (@ 1@Z)k )}keL)\eA
are Bessel families in @V L?(G), follows by the below calculations for h € L?(G)" and the
Bessel property of {LA(plgn)}kE[, yea with Bessel bound B™

j B, L@ oM )y [2dA = ZM@H L P LA@Y_ o) dA

kel kel

_Z“Z@@hm%

kel

N )
E B\
n=1

for some constant C' > 0. Similarly for {L,\@Z)lin)}keL,\eA. Then the rest follows by observ-
ing the reproducing formula for h € @V L?(G) and writing h = @)_, Z,h in the below

calculations:

3 j Chy LA@N_ o D LA@N_ o) dr =), f E@hw;bm( M) da

kel kel
= f Z@@ h LAY Lagy) dA@ - @ ) J 2@ hy Lo Lol d
kel kel

- Ph® - ® Pyh=h,

in view of Theorem [6.3.8. ]

6.4. Reproducing formulas by the action of discrete translations

In this section, we assume a discrete subset A; € expRX,,1...expRX,, and the
integer lattice Ay = expZX;...expZX, in G. Our aim is to obtain results related to
reproducing formula of a Bessel family in terms of the bracket map for a A-translation

generated system having biorthogonal property, where A = A;Ay.
116



In the sequel, we use the operator [-,-] : L*(G) x L?*(G) — L'(T"), known as bracket
map, defined as follows for a.e. a € T" and ¢, € L*(G):

[p, ¥](e) = (Fp(a), FY(@))p@r mswrway = ) (Felat+m), Fi(a+m))|Pf(atm),

MEL"

to address the results related to the reproducing formulas [12]. Recall, the A-translation
generated system E*(p) = {Lyp : A € A} and its associated A-translation invariant space
SMp) = span&?(p) in L*(G), where ¢ € L*(G). Then, for the reproducing formulas
associated with the system £*(y), we proceed by considering biorthogonal systems gen-
erated by the discrete translations. £*(p) and EA(v) are biorthogonal if {p, Lxt)) = 0y
for all A € A. We obtain a necessary and sufficient condition for the biorthogonality and

orthogonality of translation generated systems in terms of the bracket map.

Proposition 6.4.1. Let ¢, € L*(G) be non-zero functions. Then the following hold:

(i) EM(p) and EA(Y) are biorthogonal if and only if [¢, Lx,](a) = 6x0 for all M\ €
A1, ae. aeT.

(ii) The subspace generated by E*(p) is orthogonal to EX(v) if and only if
[¢, Ly ¥ () =0 for all \y € Ay, a.e. ae Qy,:={ae T :[p, p](a) # 0}.

In particular, E4(p) is an orthogonal system of functions if and only if the orthog-

onality condition
(6.4.1) (Oy) & [, Ly, pl(a) =0 for all \y € A)\{0}, a.e. a €y, holds.

The proof of Proposition [6.4.1 can be realized on the same techniques followed in
[7,12] for the Heisenberg group. In the wake of Proposition [6.4.1, we observe that the
biorthogonality (or orthogonality) of A-translation generated systems is equivalent to the
corresponding biorthogonality (or orthogonality) of Ag-translation generated systems.

We first note Proposition [6.4.1 motivates to decompose the principle translation-

invariant space S*(¢) into the orthogonal direct sum of A;-translates.

Proposition 6.4.2. Let o € L*(G) be such that it satisfies the orthogonality condition
(O,) mentioned in 46.4.]). For \; # X, € Ay, the subspace generated by E2(Ly,p) is

orthogonal to E*(Ly, @) and S*(¢) = @y, e, S (L, 0)-
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Moreover, f e SMp) if and only if

(Z f)(a)(m) = Z Py (@) F Ly, o(a)(m) for ae. €T, meZ,
A EAT

where p = {Px, baen, 15 a member of the weighted space L*(T", [p, ¢]). Further, there exist
unique py,, ¥y, in S (Ly, @) such that

f: Z Prx, 9= Z wkw and <f7g>: Z <<)0)\1,1p>\1>f07”f,g€$/\(g0).

A EAL A€EA A1eA]

Proof. At first we will show the condition (O,,) is equivalent to

(P, Laire®) = 0x,09, L) for all AiAg € A/,

First, assume the condition that is, for all \; € A1\{0}, [¢, Lx,¢](e) = 0 for a.e. v € Q, =
{ae T : g, o](a) # 0}. If a ¢ Qy then [p, Lyp](a) = 0 for all XA € A, as for ¢, ¢ € L*(G)

1/2 1/2
le.vl(@)] < Y |[Fo@G)FH@G)|, < (Z wm)(j)nis) (Z ww)o)@s)
JEL JEZT jezr
= ([0, 2)(@)*([4, ] ()2,
easily follows from Cauchy-Schwarz’s inequality. Hence the condition (O,) equivalent to

mention for a.e. a e T". So for \; # 0, [p, Ly, ¢](a) = 0 a.e. a € T". Now calculating

<907 L>\1>\090> = <ﬁ@(a)a fL,\l)\Ocp(oz» da = <g90(04)7 ﬁL}\ﬁO(a»e_Qm@%)\@ da
T T

N f [¢, Ly, ] ()e ™ da = (5A1,0f e 2mia0) o

T

= 5A1,of [, p](@)e ™ dav = 6y, o, Ly ).
’]I‘T

Conversely, assume {(p, Ly, 3,9 = 0x, 0{p, L), then {p, Ly) = § [0, Ly, ¢]e 2" > ) doy

and from the uniqueness of Fourier coefficients, we have [p, Ly, ¢](a) = 0 for all a € T".
Let 0 # f e Sh(Ly,p), 0 # g € SAO(L,\rlgo) then f = Zkoer exo Lo (L) and

9 = Dirgeny Dol (L p) for some non-zero ¢y, and dy,. Now,

<fag>: Z C)\OL/\0<L>\190)> Z d/\oL)\o(LXIQO) = Z <CA0L)\0L)\1907d/\oL)\oL>\’190>

)\()EAU /\()EA() )\UEAO
_ _ ~1
= 2 <C/\0907d/\oL,\1—1>\'1<P> = Z Caoy, <9, L,\l—l,\'190>
)\0€A0 /\0€A0
—1 —1 —1 7
= Z oty @5 Ly p) = 5>\;1>\’1,0 Z Caoty, = 0 (assume 71 = Ay Ap).
Ao€AQ Ao€Ag
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Hence f L g, i.e., S (Ly, ) L SAO(L,\/lgo).

Let f € SA(@)» then f = Z)\EA aLyp = ZAl)\OeAlAO CAleLMAoQO = Z)\l)\DeAlAO C>\1>\0L>\1L/\090 =
Yinen, G La (L) where dy, = ¢, which implies that f € S*(Ly, ¢).
The next part follows easily.

]

We now provide a characterization of Bessel family under the orthogonality condition.
Recall, the sequence E4(p) is called Bessel in S*(¢) if >, [{f, Lap)|*> < B| f|? for all f €
SMep).

Proposition 6.4.3. Let ¢ € L*(G) be such that it satisfies the orthogonality condition
(O,) mentioned in (6.4.1). Then EX(p) is Bessel sequence in S*(p). Also, EMy) is a

Bessel sequence in S () is equivalent to E20(p) is a Bessel sequence in S ().

Proof. The Bessel condition of £2(y) is followed from the Parseval equality of the or-
thonormal system E£%(p). To show the equivalence, let £49(p) be a Bessel sequence
in SY(p) with bound B. For f € S*(y), there exists oy, in S(Ly, ) such that
f= Z/\le A, P> and hence by using Proposition @, we obtain

Z|<faL/\90>|2: Z Z |< Z 90>\17L771L77090>|2: Z Z |<L7l1*1907717L77090>|2

AEA 771€A1 770€A0 )\16/\1 7]161\1 noEAo
<B ) |Ln-sonl? =B ) lenl® = BIfI,
YIS meM

since L, 10y, € S%(yp) and L,,-1 is an isometry. Hence E(p) is also Bessel sequence in
SHp).

Conversely, assume E*(¢) is a Bessel sequence in S*(¢). Using Proposition [6.4.2, we
have (¢, Ly, Ly, = 0 for \; # 0 as ¢ € S*(y), and hence the result follows by noting

D1 Ko Lo = Y Y5 Koy Ln Lag)* < Blo|*

Ao€Ao A1€A1 MoE€AQ

]

Next, we observe that the orthogonality condition (6.4.1) transfers the nature of the
reproducing formula of A-translation generated systems to the Ag-translation generated

systems.
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Proposition 6.4.4. Let @, € L*(G) be two functions such that ¢ and 1) satisfy the
orthogonality conditions (O,) and (Oy) mentioned in (0.4.1), respectively, then the fol-

lowing are equivalent:

(i) {f,9) = 2neallfs L) {Lag, g) for all f,g € S™(p).

(11) <fa g> = ZAoeAO<f7 L)\0¢> <L)\0907 g> fOT all fvg € SAO (SO)

Proof. First we note that the summations used in (i) and (ii) are well defined in view of
Proposition @, since EA(p) and £ (1) are Bessel, and ¢ and v satisfy the orthogonality
conditions (O,) and (Oy), respectively.

Now assume (ii) holds. By choosing ¢y, , ¥, € S*(Ly, @) such that f = 35, _ ©x, 9 =
2aen, ¥ and using Proposition @), we have

Z<faL>\1/f><L>\<P79>: Z Z Z SDA17L771L710¢> <Lano‘Pa Z 7/1)\1>

AEA 771€A1 nUEA() )\16/\1 )\16/\1

© 53 () (i )

)\1€A1 'r]oEAO

Since Ly-rpng, Ly-1iy, € S% (), we obtain the following in view of the assumption (ii):

DI Iag gy = ), <L)\1—1Q0>\1’L)\1—1¢>\1> = > doanta) = (f.9)-

AeA A1EA| A1€A

Thus, (i) holds. Conversely, assume (i) holds. For f,g € S (p), we have {f, Ly, Lx,) = 0
and {(g,Ly,Lx,p) = 0 for all \y # 0 € A;, by Proposition Then the result follows

immediately. O

Now we state our main result for a A-translation generated system in L*(G) to form
reproducing formula. Unlike the case of the Euclidean setup, we observe that a necessary
condition is involved related to the orthogonality of A-translation generated system of

functions.

Theorem 6.4.5. Let ¢, € L*(G) be two functions such that they satisfy the orthogonality
conditions (O,) and (Oy) mentioned in (6.4.1). If EX() is biorthogonal to EX(p), the

following reproducing formula holds true:

f="2 Ly Lag for all f e S™(p).

AEA
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Proof. Since E*(p) and A (1)) are biorthogonal, we have {(p, Ly,1) = 6,0 for Ay € Ay,
and hence for f € span £2(y), we write f = ZA0€A6<f’ Ly, ¥) Ly, for some finite subset
Ag of Ag. Since the function f— >, _\ (f, Lx,¥)Ly,¢p is continuous, the expansion of f
holds for all f € S*(y). Thus the result follows by Proposition @ H

Next, we discuss reproducing formula for a A-translation generated system and find

an easily verifiable condition to satisfy the reproducing formula.

Theorem 6.4.6. Let @, € L*(G) be such that ¢ and v satisfy the orthogonality condi-
tions (O,) and (Oy) mentioned in (16.4.1), respectively, then the following are equivalent:

(1> f = Z/\EA<f7 L)\w>L)\90 fOT all f € SA(SO)
(i) [, ¢](a) =1 a.e. ae .

Proof. Let us assume (i). Equivalently, f = Y, \ (f, Ly¥)Ly,¢ for all f e S*(¢) by
Proposition [6.4.4. Applying the map .# on the both sides for a.e. @ € T" and using the
relation (F Ly,p)(a) = e 24420 Zp(a), we have

7 ( 2, . LAOWAo@) (@) = 3 (s Lagt T Lag) @) = (F)(@) Y, (f, Lagpe 270

)\06/\0 )\06/\0 )\061\0

= (Z¢)(a) ), J (Ff(a), FLyb(a)y do e~ 270
Ao€AQ T

= (Fe)@) N | AL vlia) da o e

Aoer

= [f,¢¥](a) (Fp)(a) for ae. a e T,

and hence we get Z f(a) = F (X,,cn, > L) Lng®) (@) = (Fo)(@)[f,¢](a) for all
f e 8% (y). By choosing f = ¢, we have (ZFp)(a) (1 — [¢,¥](a)) = 0 for ae. a € T".
Therefore, we get [, ¥](a) = 1 for a.e. o€ Q.

Conversely, assume (ii), i.e., [¢,¢¥](a) = 1 a.e. « € Q. Then it is enough to show
[ = 2nenells Lng) Ly for all f e S% () in view of the Proposition |6.4.4. Since the
function f — Y5, 1 {f, La¥) Ly from S () to L*(G) is continuous, it suffices to show

the result for f = L,p, n € Ag. Therefore the result follows in view of the calculations
4 (Z@n% LW>LW> (@) = (ZR)@)[(Lyp), ¥](a) = P (F p)(a) [, Y] (@)
AeA

= F (Lyp)(a)[p, Y](@) = F(Lyp) ().

121



6.5. Gabor system and Heisenberg group

We now discuss a reproducing formula for the Heisenberg group H? associated with
the orthonormal Gabor systems of L?(R?) using Theorem I@ For y € R*, we define
functions v, and w, from [12], such that v,(z) = |y|¥?v(yx) and w,(z) = |y|Y*w(yz),
z € R where v,w € L?*(R?) with |v]| = 1,||w| = 1. Corresponding to v, and w,, we

consider the rank one projection operators P, and Q, defined as follows:

Py = v, ®v, :L*(R?) — L*(RY) by and Q, = w, ® w, :L*(RY) — L*(R?) by

f={fovy, [ = {fwyw,.
Next, for all ¢ € (0,1) we define

P, forye(t,1], Q, forye (t1],
Aily) =4 " and Gly)=q

0, otherwise, 0, otherwise.
Then 4,9, € L*(R*, HS(L*(R?))|\|?d\) since

1 forye (¢ 1],
|7 () ns = AL

0, otherwise,

and hence for each t € (0, 1), ¢, € L?(HY), where p; = F 154 and ¢, = F'%,.

Theorem 6.5.1. Let A, B € GL(d,R) such that AB' € Z. For 0 < a < 1, let the Gabor

systems
{ma(m,n)v, : (m,n) € AZ* x BZ%}, and {m(m,n)w, : (m,n) e AZ* x BZ%}

be orthonormal in L*(R%). Then for each 0 <t < a < 1, the systems EX(¢;) and E* (1)

satisfy the reproducing formula

) ) 1
f= Z<f, Lty Ly for all fe S*y) if and only if [(va, wa)r2ra)| = Pk

AEA

where A = AZ% x BZ4 x 7.
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Proof. Observe that foreach 0 < a < 1,0 <t <a < 1and A\ € Ay = AZ? x BZ?, we

have

[Ly oo (@) = Y (FLypi(a + m), For(o + m)yysla + m|*

meZ

= Y Tarm(\) A0 +m), Hi(a+ m))ysla +m|

meZ

= (ma(M)Hi(a), Hi(0)uslal” = (Ta(M)va, Va)r2s o]

since T, (A)Po = (T (A1) Pata) ® v, and

o)), s = | || a5 ma M) ) T a(s) s = oMt

Similarly, we can calculate [Ly, ¢y, ¥y](a) = (ma(A)Wa, Wa)r2ra)|a|?. Therefore for each
0 <t < a < 1, the functions ¢; and 1, satisfy orthogonality conditions (O,,) and (Oy,)
(mentioned in (6.4.1)) due to the orthonormal Gabor systems {m,(\1)v, @ A1 € A1} and
{ma(A)we = Ay € Ay}

Further, observe that £2(¢;) is Bessel since [y, ¢;](c) is bounded above follows by

noting
[1, ] (ax Z | For(a +m)|5slo + m|?
meZ
= > I+ m)[fsla + m|
mEeZ
= | () Plel®

ol t<a<l,
0, otherwise.

In a similar way, we can obtain £*(1);) to be a Bessel system. Next we calculate [¢;, 1;](a)

as follows:

[, ¥e)() = D (Fprla +m), Fir(a+m)la+m| = 3 (Al +m), % (a+m)la +m|

meZ meZ

- () Gieprslal’ = lal’ | | wallua(wjuafijun(s) ds du

= [(va, wa)l*lal”.

Hence the result follows from Theorem [6.4.6 provided [¢:, 1:](a) = 1 for 0 < o < 1 and

O<t<a<l. O
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The properties of the TI spaces are very important in establishing the characteristics
of dual frames but the researchers are also interested in looking for extra-invariant spaces.
Next, we aim to characterize all A;Ag-invariant space W to become A;O-invariant, where
O is a closed subgroup of Z and Ay < ©. This is known as the extra-invariance of a
translation-invariant space W. In the context of a connected, simply connected nilpotent
Lie group, whose representations are square-integrable modulo the center, we find char-
acterization results of extra-invariant spaces under the left translations associated with
the range functions [67]. Consequently, the theory is valid for the Heisenberg group H¢,
a 2-step nilpotent Lie group.

6.6. Extra invariances on Lie group

Translation-invariant spaces have enormous applications in sampling, approximation,
wavelets, etc. Bownik in [16] characterized all Z%-invariant subspaces in L?(R?) followed
by the works of Ron and Shen in [61]. For the locally compact abelian group setup, the
theory of TT spaces were studied in [20}22,138]. Moving towards the non-abelian group
setup, Currey et al. in [29] provided a characterization of all AjAg-invariant spaces using
the range function for the S1/Z nilpotent Lie group.

Next we define an invariance set in the center Z of the SI/Z nilpotent Lie group G.

Definition 6.6.1. For a given A;Ag-invariant subspace W, an invariance set © is defined

by
(6.6.1) ©={N€Z:LyyfeWforall \; € A; and f e W}.

The set © is a closed subgroup of Z containing Ay. For this, let us consider a net
(Ao,e) in © such that lim, Ao.o = Ao, say. Then we have limg, [Lxz.f — Laro.f] = 0
for f € W and each A\; € A, and hence \y € © since W is a closed subspace. Therefore,
O is a closed set. Since O is a semigroup of Z and the image of quotient map from Z
to Z/Ag on O is closed in Z/Ay and hence compact, therefore, the group property of ©
follows from the fact that a compact semigroup of Z/Ay is a group.

The main aim is to characterize all A; Ag-invariant spaces W to become A;O-invariant,

where © is a closed subgroup of Z and Ay < ©. This is known as the eztra-invariance of a
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translation-invariant space W. The current study of extra-invariance encompasses the non-
abelian setup for a nilpotent Lie group which is considered a high degree of non-abelian
structure. Consequently, the theory is valid for the d-dimensional Heisenberg group HY,
a 2-step nilpotent Lie group. Shift-invariant spaces that are %Z—invariant in L*(R) were
completely characterized by Aldroubi et al. in [2] for the one-dimensional Euclidean case,
and Anastasio et al. in [5,/6] for higher dimensions and locally compact abelian groups.
In this chain of researches we continue with various necessary and sufficient conditions
under which a A;Ag-invariant space becomes A;O-invariant in the context of nilpotent
Lie group G whose representations are SI/Z type. The characterization results below
are based on the Plancherel transform. Unlike the Euclidean and LCA group setup, the
Plancherel transform of a function is operator-valued so that the techniques used in the

Euclidean and LCA groups is restrained. We now state the main result.

Theorem 6.6.2. Let Ay be a uniform lattice in the center Z of G and Ay be a discrete
set lying outside the center Z containing the identity element e such that Jand X are
the Borel sections of Ao /O and E/Aol, respectively, where © is a closed subgroup of Z
containing No. If W is a AyAg-invariant subspace of L*(G), then it is A1©O-invariant if
and only if for each 7€ J, W contains Vj@, where

VP =S € 1(G): ] = xapG with g€ W}, and 3 = 3+ j + O,

In this case, the space W can be decomposed as the orthogonal direct sum of VJQ s, i.e.,
_ e
W @ve.
jeJ

6.6.1. Proof of the main result

Recall the AjAg-invariant subspace W from Definition [6.2.1, A;Aq-invariant space
Shiho(g7) from ([1.3.1) generated by &/ and invariance set © from (6.6.1). Firstly, we
concentrate for the properties of ©. We observe the tilling property of > with respect to

©1 in the following result.

Proposition 6.6.3. For any section J of Ay/OF, the set ©F + J is a tiling partner
(Definition|6.1.1) of ¥ for Z. That means, the collection {’Hje}jej is tiling of 2, where

(6.6.2) H? =%+ j+0
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Proof. The set ¥ is a tiling set of Z, means, the collection {& + A\* : A\* € A} is a
measurable partition of 7. Since m ~ Ag and Z /A, is compact, therefore A is discrete
and countable, and hence ©% is also discrete and countable follows from ©+ < Aj. Hence
the collection {©++7 : j € J} is a tiling of Ag by considering a Borel section J of A3 /Ot
Thus the result follows by employing the fact A is tiling partner of ¥ for Z and J is a
tiling partner of © for Ag. O

Example 6.6.4. For the Heisenberg group H?, the uniform lattice Ay in the center R is
the set of all integers Z. Since the only proper closed additive subgroups of R containing Z
are %Z for some natural number N, we consider the extra-invariance set © = %Z. Then
the annihilators of Ag and © are A7 = Z and ©+ = NZ, respectively. Note that the set
R can be tiled by a Borel section ¥ = [0, 1) with the tiling partner Ay = Z. By assuming
the Borel section Zy := {0,1,..., N — 1} of Aj/©+ = Z/NZ, the set nZ + Zy is a tiling
partner of [0, 1) for R, that means, the collection {Hn% Z}ngl is tiling of R, where

HY® = [0,1) + n+ NZ = | J[n,n +1) + Nk.
keZ

For the case of Heisenberg group H?, we consider the set A; = AZ? x BZ? from outside

of the center of H?, where A, B € GL(d,R) such that AB! € Z.

Employing the Proposition [6.2.2, we characterize a member of S*1%40() with the help

of Plancherel transform.

Proposition 6.6.5. For f € SY1%0(yp), the Plancherel transform of f is given by

(6.6.3) Ffw)= D Bu)F(Lyp)(w) ae we s,

where By, is a Aot —periodic function. Conversely if Ba, 1S an Aot -periodic function such

that

20 BuCF(Lae) () € LA HS(LARY),

)\161\1

then the function f defined by (6.6.3) is a member of S*1%0(y).
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Proof. Applying the Plancherel transform followed by periodization .# on a function
feSMAo(p) we get

F [(0) = F(P[)(o) = P(U)ff(a)

_ <‘74 L)\lcp)( )>0“ o) ae. o€
064 “L s e 22 (o)) a7 €

in view of Proposition [6.2.2 and commutativity of P and .#, where P and P(o) are

orthogonal projections on S*149(p) and J(o), respectively. The above expression (6.6.4)
can be written as .7 f(0) = 3, ., Ba(0)F Ly, ¢(0) for a.e. 0 € ¥, where the Ag—periodic
function f3,, is defined by

(F (@), 7 (L, £)(0)) F(0)N),Z (La, ) () (%)) B
EIOIE ZA*eAL G b T €Xe(0) =
B (o) = {oeX: | F(Lyp)(0)]* # 0},
0, otherwise.

The function 3, can be extended periodically on 7 since A is a tiling partner of ¥ for 7.
Also observe that for any w € A , there exists unique o € ¥, \* € Ag such that w = o + \*,

and hence from ([6.6.4), we obtain

Ff(w)[Piw)| = Ff(o + A")[Pf(o + A" = = > Bu(0)F (Lap) (o))
A EAT
= ) Bulo + X)F(Lyg)(0)(X*)[PEo + )]
/\1€A1
= D B (W) F (L) (w)|[PEw))|.
A €EAL

The converse part follows from the above calculations by writing F f(-) = X5 ca, Bn () F (La,0) ()
in the form Z f(0) = >\ cp, B (0)F (Lr,0)(0), and noting 7 f(o) € J(o) gives f €
Shiho () from Proposition [6.2.2. O

In the present section, our first goal is to prove Theorem [6.6.2 which characterizes invariant
subspaces of L*(G) with the action of © in the center Z containing the uniform lattice

Ay. The following lemma plays a crucial role to establish the Theorem [6.6.2.

Lemma 6.6.6. Let W be a Ay Ag-invariant subspace of L*(G) and let J be a Borel section
of Ag/©*. For each j € J, consider the space Vj@ given by

(6.6.5) Vj@ = {fe L*G): f= X?—LJ@/Q\ for some g € W},
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where Hj@ is defined in (6.6.2). If Vje c W, it is a AyO-invariant (and hence A1Ao-
invariant) subspace of L*(Q).

Proof. For j € J, let us consider the space Vj@ ={fe L*G): fz xyeg for some g € W},
J

where ’H? = Y +j+6"L. To prove it as a A;O-invariant subspace of L?((G), we first assume

a sequence (p) in V;Q converging to ¢ € L*(G). Then ¢ € W since Vj@ c W and W is

closed, and hence ¢ € V]Q. This follows by writing ¢ = XHJQQB since ||pr — | — 0 implies

A~

QOX(H?)C = 0 from

lex — ol = [Pk — PIXHO): 2> H@X(H?)CHQ, where ¢ denotes complement of the set.

Therefore, Vje is closed. Further we observe that if f € Vj@, then f = XH?@ for
some g € W, and hence for § € © and A\, € A;, we can write 2™« F(L, f)(w) =
o (W)X D F(Ly g)(w) for w € 3* since F(Ly,g)(w) = mu(A)g(w). For the A;O-

J

invariant it suffices to show e2™“® F(L, g)(w) € F(W) that gives e>™“O F(Ly, f)(w) €
F(VP). Observe that e F(Ly, g)(w) € F(S*(g)) = F(W) due to the converse part
of Proposition [6.6.5, provided ty(w) := e*™“® a e w e HY,
Since €29 is ©t-periodic we have 27+t — 2mlo+i+0%0) for g e g e X, j e J, and

for every 0* € ©+, and then for each \* € Ag we define ty(o + \*) = 2™+ a6 g€ 3.

is a Ag-periodic function.

Thus the function t4 is Ag-periodic on ¥, can be extended to 3+ since Ag is tiling partner

onforg*gZ. O

Proof of Theorem[6.6.2. For each j € J, if V;Q c W, the space V;@ is A;©-invariant
from Lemma I@, and hence the space @, ; VP < W is so. Since {H}jes is a tiling
of Z = 3, therefore any element f € W can be written as f(w) = X, 7;(w) ae.
w € 3%, where g; = J?XH].@' By the definition of Vf), gj € Vje for every j € J and hence
fe®jcs V2. Therefore, W is A;O-invariant.

Conversely, let us assume that the A;Ag-invariant space W is A;O-invariant. For Vj@ c
W, we choose f € V]Q. Then, we have ]? = XHJ_@@ for some g € W. Employing the
Plancherel transform followed by periodization (Proposition [6.1.2) .Z®© from L*(G) to
L*(D, 2(0+, HS(L*(R?))) given by

FOF(0)(0%) = Ff(6 4 60%)|P£(6 + 6%)|V2, fe L*G),0" € ©F and a.e. § € D,
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where D is the Borel section of Z /O, we obtain

FOF(O)(07) = xno (0)-F “g(0)(67).

since Xno is ©+-periodic due to the definition of 7-[? in (6.6.2). Then for a.e. § € D,
we have #©(L.g)(0) € JO(9), where J®(§) = span{.#°(Ly,g)(d) : \1 € A1}, and hence
FOf(5) e J(S) for a.e. §€D. Thus f e SM°(g) =« W due to Proposition [6.2.2. O

As a consequence, we find the below characterization result for S140(o7) to become

A1O-invariant using the associated range function.

Theorem 6.6.7. In addition to the hypotheses of Theorem |6.6.2, let of be a sequence
of functions in L*(G). Then SMA0(a7) is a Ai©O-invariant if and only if the Plancherel

transform followed by periodization F satisfies

F(Ly, ¢ )(o)e J(o) ae. ceX, foralljeJ and M\ € Ay,
where the associated range function J(o) = span{.% (Lx,p)(0) : ¢ € &, N\ € A1}, and
¢ = @XH?

Proof. For j € J assume Vj@ ={fe L*Q): fz Xyog for some g € W}, and W; = {f €
L*(G) : supp(]?) c ’H?}, where ”Hj@ =Y+ j + ©*. Let P; be the orthogonal projection on
W;. Then

P8 () = {171 [ = [xo, f € S ()} = VP,

whose associated range function is ije(d) = span{.F (L, ’)(0) : pe T N\ € A, =

Pxyo} for a.e. o € X. Therefore from Theorem [6.6.2, SY140(o7) is a A;O-invariant if and

only if V2 c SM4 (o) for each j € J. Further it is equivalent to .Jye(0) < J(o) for a.e.
o€, forall j € J, where J(o) is the range function associated with Sh40(a7) [ see

Proposition [6.2.2 and [20]]. Thus the result follows. O

We further characterize this extra invariance using the dimension function. Given any

A1 Ag-invariant subspace W of L?(G), we define the dimension function as
dimy : 22— No|_J{eo} by dimy (o) := dim(Jw(0)) for ae. o € ¥,

where Jy (o) is the range function associated with W.
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Theorem 6.6.8. Under the standing hypotheses of Theorem |6.6.2, the AiAg-invariant
space W is N1O-invariant if and only if the dimension function satisfies the following
relation

dimy (o) = Z dimvje(a) a.e. o € X.
jeJ

Proof. From Theorem |6.6.2, we have W = @Vj@ if W is AO-invariant. Then for
JjeJ
a.e. o € X, the range function satisfies Jw (o) = @, Jve (o), follows by observing

the orthogonality of ije(a) and ijc? (0) for j # j', since {HP}je7 is a tiling of 7 =~ 3*.
Hence dimy/ (o) = > ;7 dimvje(a) a.e. 0 € X.

For the converse part, first observe that the A;Ag-invariant space W is contained
in P, V2. This follows by writing f € W as flw) = Yjes Jiw) ae. w € 3*, where
gj = fXH? since {H$}jes is a tiling of Z =~ 3*. Then the range function satisfies Jw(o) <
Djecs ije(a), and hence we have Jiy (o) = @D, JVje(a) for a.e. o € X due to the
condition dimw (o) = >, ; dimvje(a) a.e. o € Y. Therefore we get ije(a) < Jw(o)
for each j € J, i.e, Vj9 c W for all j. Thus W is A;©-invariant follows from Theorem
0.6.2. O

The following result can be established easily for the d-dimensional Heisenberg group

H?, a 2-step nilpotent Lie group, using Theorems [6.6.2, 6.6.7 and [6.6.8. In this case, the

uniform lattice is Ag = Z, A; is a discrete set of the form AZ? x BZ? and the extra

invariance set O is of the form %Z where A, B € GL(d,R) with AB* € Z, and N € N.

Theorem 6.6.9. Let A, B € GL(d,R) such that AB* € Z and let N € N. If W is an

AZ* x BZ® x Z-invariant subspace of L*(H®), then it is AZ® x BZ® x Z-invariant if and
1

only if for eachn € Zy :={0,1,2,...,N — 1}, W contains VnNZ, where

1
~Z

(6.6.6) ViV = {f € L*(G): [ = x, 1.0 with g € W}, and HY" = [n,n+1) + NZ.

1
In this case, the space W = P Vnﬁz, and dimy (§) =

nEZN

dim_1,(§) a.e. £€[0,1).

?’LEZN v
n

As an application of the above results, the following consequence provides an estimate

to measure the support of the Plancherel transform of a generator of S0 (7).
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Theorem 6.6.10. In addition to the hypotheses of Theorem |6.6.2, let o/ = {@;}!_, <
L*(G) and Ay be a finite set having cardinality k, i.e., |Ay| = k. If SY1%o (o) is A1O-

wmwvariant, then the following inequality holds:
(6.6.7) p({6eD:pi(d) #0}) < Z m (X)) < nk for allie{1,2,...,n},

where D is the Borel section of Z/O*, %, = {c € ¥ dimpy (o) = m} and 0 is in the

sense of the zero operator.

Proof. For §* € ©+ and ¢ € &7, we first estimate the measure of following set:

p({(o,j) e X x T : glo+j+0%) #0})
=p({(0,)) €L X T : Topjrox(M)P(o + 7+ 0%) # 0}) for any A\ € Ay

p({(o,7) e x T F(Lyxp)(o+j+60%) #0})

J ’5‘7’ do,

where the set S := {j € J : F(Lx,)(0 +j + 0*) # 0} and |S7| denotes the cardinality
of S7. For a.e. o € X, the set S7 is contained in the set {j € J : dimvje(o) # 0} since
dimye (o) = dim Jye(o), where Jyo(o) = span{.Z (Ly,@")(0) : ¢ € & N\ € A, =
QBXH?}. Then, we have

ST < {jeT: dimve ) # 0} < Z dlmve = dimy (o) a.e. o€ .
jeJ

Since the set {¥ + j + 0*},c7 pxcoL is a tiling set for 2, therefore for a fixed o € ¥ and
J € J there is a unique 07 ; € O+ such that o + j + 05 ; € D, and hence we have

p({deD: @) #0}) = Zu({aeE:@(avLijG;j)sﬁO})
€T

({(UJ)EZXJ go(a—i—]-i—@ #0})

f 57| do

f Z dlmvo ) do = J dimyy (o) do
b

= jeg
nk
= > m u(Sm) < nk,
m=0
where [A;| = k and 3, = {0 € ¥ : dimy (o) = m}. Thus the result follows. O
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We have a immediate consequence for the singly generated system.

Corollary 6.6.11. Let ¥ and J be the Borel sections of E/Aé and A /©*, respectively,
such that the cardinality |J| of J and measure (%) of ¥ satisfies the relation

(|T|\pu(2) — k) > 0, where k is the cardinality of a nonempty set A;.

When the space SMA0(p) becomes A1O-invariant, then the Plancherel transform @ of ¢

satisfies the following relation:
p{wes*: gw) = 0}) = [0H(|T|u(E) — k) > 0.

Proof. Considering a Borel section D of Z /61 and noting 7 ~ 3™, we have the following
from Theorem [6.6.10

wes' :Bw) =0} = 3 u{5eD+6%: 5(6) = 0})

0*cO+
= > ul(D+0")\({0eD+0": 3(6) # 0})]
0*cO+
= Y uD) - Y ulfoeD: () £ 0
0*cO+ 0*cot
= > D uE+5) = D) ulfyeD:@y) #0})
0*eOL jeJ 0*ceL
> 0417 1n(z) — K6*] = [0*[[17|u(Z) — K] > 0.
Thus the result follows. O

Remark 6.6.12. For the Heisenberg group H?, the center Z = R, the uniform lattice
Ay = 7Z and the extra-invariance set © = %Z. Then the annihilators of Ay and © are
Ay = Z and ©1 = NZ, respectively. Consider ¥ = [0,1) and J = {0,1,2,..., N — 1}
be the Borel sections of Z/A¢ = R/Z and A$/©t = Z/NZ, and choose A; = {0}. Then
D = [0, N) is the Borel section of Z/0* and the estimate @ mentioned in Theorem
[6.6.10] can be written as p({& € [0,N) : $;(€) # 0}) < n for all i € {1,2,...,n}, since the
cardinality of A; is K = 1. For N > 1, when the space S*4°(y) becomes A;O-invariant,

the measure of the set {{ € R: $(£) = 0} is infinite from Corollary [6.6.11
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

Chapter|l|gives an introduction to the research area and available literatures including
preliminaries for the upcoming chapters. In Chapter , we characterize alternate (oblique)
duals, and duals of type-I and type-II of a frame for an MI space on L?(X; H) correspond-
ing to the pointwise conditions in ‘H. Besides we characterize these duals’ uniqueness using
the Gramian/dual Gramian operators, which become a discrete frame/Riesz basis for the
associated range spaces. In Chapter [3| we discuss the construction of dual frames and
their uniqueness for the multiplication generated frames on L?(X;H) using infimum co-
sine angle. Emplyoing the techniques of Zak transform for the pair (¢,I'), in Chapter ,
we obtain characterizations of alternate (oblique) I'-TG duals and I'-TG duals of type-I,
type-11, dual frames. When ¢ becomes an abelian group G, the fiberization map is used
to characterize these duals by the action of its closed subgroup A.

Further in Chapter , we study S'(/)-subspace orthogonal and duals to a Bessel
family /frame E'(«7) and obtain characterization results in terms of the Zak transform
and Gramian operator. The Chapter [6]starts with a brief discussion about the Plancherel
transform for the connected, simply connected nilpotent Lie group of S1/Z type. Em-
ploying the Plancherel transform followed by periodization, we discuss the reproducing
formula for translation-invariant spces by an action of a non-abelian subgroup. Finally,
Chapter [7| deals with concluding remarks and provides some directions for future studies.

It would be interesting to study the above problems for dual frames in K-translation
generated systems in L?(%¢), where K is compact. This type of study will be promising
since its beautiful interplay between representation theory and frames. From a geometric
point of view, the theory of dual frames can be further studied for L?(M), where M is a
smooth connected Riemannian manifold.

Looking from the perspective of quantum field/modern physics, the theory of dual

frames may be discussed for unitary irreducible representations on solvable Lie groups.



The method of characterizing dual frames arises from the action of irreducible represen-

tations of some solvable Lie groups can also be studied.
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