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Abstract

Magneto-hydrodynamic (MHD) turbulence is ubiquitous in astrophysical systems,

and it is typically attributed to governing various micro-physical activities in these

systems. One of the important manifestations of this astrophysical turbulence is

the origin and transport of non-thermal particles, often called cosmic rays (CR).

These high-energy CRs, though small in number, play a significant and unique

role in various astronomical phenomena. While propagating through a turbulent

system, CRs acquire energy via Fermi acceleration processes and lose energy due

to various loss processes. Among those acceleration mechanisms, diffusive shock

acceleration (DSA) and stochastic turbulent acceleration (STA) are considered to

be operative, particularly in weakly magnetised regions. While DSA is a systematic

acceleration process that energises particles in the vicinity of shocks, stochastic

turbulent acceleration (STA) is a random energising process where the interaction

between cosmic ray particles and electromagnetic fluctuations results in particle

acceleration. This process is usually interpreted as a biased random walk in energy

space. The primary energy loss processes that these non-thermal high-energy CRs

undergo are synchrotron and inverse compton (IC) losses. This interplay of particle

acceleration processes and radiative losses subsequently shapes the emission features

of different astrophysical sources.

In this thesis, we develop a novel Eulerian algorithm adopted to incorporate turbu-

lent acceleration in the presence of DSA and radiative processes like synchrotron and

inverse-Compton emission. The developed framework extends the hybrid Eulerian-

Lagrangian module of a full-fledged relativistic magnetohydrodynamic (RMHD)

code, PLUTO. Through various benchmark tests, we validated the developed frame-

work and studied the competing and complementary nature of both acceleration

i



processes through various numerical test problems.

We subsequently focus on studying the interplay of particle acceleration and loss

processes in different components of radio-loud AGNs. Such systems are thought

to possess various sites of particle acceleration, which give rise to the observed non-

thermal spectra. We explore a phenomenologically motivated numerical model for

STA in order to investigate the interplay of different acceleration processes on the

emission characteristics of the radio lobes of these extragalactic sources. The study

demonstrates that STA produces curved particle spectra that differ morphologically

from the standard shock-accelerated spectrum. As a consequence of this structural

difference in the underlying particle energy spectrum, various multi-wavelength fea-

tures arise in the spectral energy distribution of the radio lobe. Further analysis

of these newly-emerged features and their comparison with realistic observations

reveals the complemantary nature of STA and DSA in producing the diffuse X-ray

emission in the radio lobes of FR-II radio galaxies.

Finally, we consider investigating the effects of STA caused by small-scale turbu-

lence. Such a turbulent condition can arise in the vicinity of the relativistic shocks

that these radio loud AGN possess. Under quasilinear approximation, and by as-

suming a turbulent spectrum with single scale injection at sub-gyroscale, we find

that the Fokker-Planck diffusion coefficients Dγγ and Dµµ scale with the Lorentz

factor γ as: Dγγ ∝ γ−2/3 and Dµµ ∝ γ−8/3. Furthermore, with the calculated

transport coefficients, we numerically solve the advection-diffusion type transport

equation for the non-thermal particles. We demonstrate the interplay of various

microphysical processes such as STA, synchrotron loss, and particle escape on the

particle distribution by systematically varying the parameters.
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Chapter 1

Introduction

The majority of the astrophysical systems comprise plasma, which is a state of

matter where the thermodynamic properties are maintained by the collective effects

of charged particles. These collective effects infuse the system with nonlinearity,

making it challenging to study the behaviour of astrophysical systems. Turbulence is

one of the manifestations of such non-linear behaviour in the plasma medium. It is

therefore expected to be present in astrophysical systems, where it plays a crucial role

in governing their dynamics and energetics. This chapter introduces turbulent astro-

physical plasma by gradually introducing hydrodynamic and magneto-hydrodynamic

turbulence. This chapter also introduces the jet and related structures of the radio-

loud AGN system. It further provides an outline of the work presented in this thesis.

1.1 Turbulence in astrophysical systems

Turbulence is ubiquitous in nature. From mixing the coffee in a cup of milk to

enhancing the diffusion of the scent of a perfume in the air, from interfering with

the radio waves in the ionosphere to governing global weather patterns, the effect of

turbulence can be found everywhere. In a simple way, turbulence can be described

1
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as a process by which energy transfer happens from large scales to smaller scales in a

fluid. For example, while making a perfect caramel macchiato, the barista mixes the

espresso with caramelised milk, and in doing so, he spends some of his mechanical

energy stirring the system. The stirring happens at a scale of the diameter of the

cup, but mixing happens at a scale where coffee molecules interact with the milk

molecules, which is very small compared to the diameter of the cup. The mechanical

energy given by the barista cascades through different scales and gets transferred to

the scale where the interactions between the molecules take place. Such an energy

transfer occurs due to turbulence.

In physics, turbulence is a century-old phenomenon, and it is often referred to as

one of the unsolved problems of classical physics till now. From the canvases of

Leonardo da Vinci at the beginning of the sixteenth century to today’s era of multi-

scale numerical simulations, the study of turbulence has evolved, and various novel

analyses have been performed that have consequently improved the understanding

of such phenomena. As a result of such a huge period of time, the study of turbu-

lence has witnessed various breakthroughs, and a vast literature has emerged out of

such studies. Here we briefly introduce the turbulence phenomena observed in hy-

drodynamics and magnetohydrodynamics before discussing the turbulence observed

in astrophysical systems and their manifestations. For a general pedagogical intro-

duction to the subject of turbulence, readers are advised to see Frisch (1995); Pope

& Pope (2000); Verma (2019).

We begin the discussion by briefly introducing some basic mathematical features for

a simpler case of hydrodynamic turbulence, below, even though the work presented in

this thesis is primarily concerned with plasma turbulence, and in particular magneto-

hydrodynamic (MHD) turbulence. As a result of this discussion, it will be easier to

comprehend turbulence-related concepts like turbulent cascade, Reynolds numbers,

and others, which will prepare the reader for the introduction of the more complex
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MHD turbulence scenario. We focus on the even simpler case of incompressible

turbulence here for the sake of simplicity. The evolutionary dynamics of a fluid

system is governed by the following equations,
∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1)

ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇P + µ∇2v (1.2)

where ρ, v, P and µ are the density, velocity, thermal pressure and viscocity of the

fluid. Eq. (1.2) is known as the Navier-Stokes equation. Due to incompressibility

condition, Eq. (1.1) takes the following form,

∇ · v = 0 (1.3)

Following such condition the thermal pressure can be found to be dependent on the

velocity through the following Poisson equation (see for example Eq. (2.6) of Frisch,

1995),

∂i∂iP = −∂kl (vkvl) . (1.4)

In the above equation {i, k, l} ∈ [1, 3] where different values correspond to differ-

ent spatial components; vk and vl are the kth and lth component of the velocity

respectively; ∂kl ≡ ∂k∂l. Further note that while writing the equation Einstein’s

summation convention is used. Such a dependency of the thermal pressure leads

Eq. (1.2) to take the following form (see Eq. (2.13) of Frisch, 1995),

∂tvi +
(
δil − ∂il∇−2

)
∂j (vjvl) = ν∇2vi (1.5)

where ∂t denotes temporal derivative, ∇−2 denotes inverse of the Laplacian operator

and ν = µ/ρ. Note that, for incompressible hydrodynamic turbulence, Eq. (1.5)

describes the temporal behaviour of fluid velocity in terms of two quantities ∂j (vjvl)

and ∇2vi. Such an evolving velocity behaviour will be used in the future to define the
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Figure 1.1: A schematic diagram of Richardson cascade where big whirls break into
smaller whirls which breaks into even smaller whirls.

Reynolds number for turbulent systems, but for the time being, we will concentrate

on the energy cascading behaviour of turbulence phenomena.

As stated earlier, turbulence makes the injected energy cascade from scale to scale.

Such scale-to-scale energy transfer can be physically visualised through the Richard-

son cascade process (Richardson & Lynch, 2007). In such a case, energy is injected

into the fluid via a large whirl-like structure that breaks into smaller whirls, and the

energy of the large whirl is evenly distributed to the smaller whirls. These smaller

whirls eventually fragment into even more smaller whirls, and so on. This breaking

of whirls continues until the smallest scale, where energy is dissipated through vis-

cosity rather than being distributed to smaller scales. A cartoon illustration of the

Richardson cascade is shown in Fig. 1.1, where the process of breaking bigger whirls

into smaller whirls is demonstrated.

To mathematically comprehend such cascade behaviour, it is instructive to conduct

the study in the Fourier domain, where one can analyse the simultaneous action
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of multiple scales on a particular scale of interest (Verma, 2019). In the Fourier

domain, the scale-by-scale energy transfer in the fluid due to turbulence is explained

by the following energy budget equation (see Eq. (2.48) and section 2.4 of Frisch,

1995, for a derivation from Eq. (1.2)),

∂tEK = FK − 2νΩK − ΠK . (1.6)

The above equation has four different terms which are explained below,

EK =
1

2

∑
i≤K

|v̂i|2 ΩK =
1

2

∑
i≤K

i2|v̂i|2

FK =
∑
i≤K

i2f̂ i · v̂−i ΠK = ⟨v<K · ∇v<K · (v<K · ∇v>K)⟩ + ⟨v<K · ∇v<K · (v>K · ∇v>K)⟩

(1.7)

with v̂i and f̂ i being the ith Fourier component of velocity and force applied to

the Navier Stokes equation as a source of energy injection; v>K and v<K being the

inverse Fourier transform of the velocity only including Fourier scales greater than

and less than K respectively. Eq. (1.6) can be interpreted in the following way:

the rate of change of energy (EK) at a scale above l = K−1 occurs due to energy

input from outside at those scales (FK), dissipation of energy occurring at those

scales (2νΩK), and the flux of energy transferred to scales below l (ΠK). Fig. 1.2

presents a representative illustration of such energy cascade due to turbulence in

Fourier space. In the figure, energy injection occurs at k = kmin; at subsequently

higher k modes, the energy cascades from scale to scale and ultimately dissipating

at k = kmax. The range of k′ values where energy cascade takes place is known

as the inertial range. One interesting thing to note is the behaviour of the E(k)

in the inertial range, where E(k) follows a power-law trend with the corresponding

wave number (k), E(k) ∝ k−p. Due to the inherent nonlinearity and subsequent

moment hierarchy of the Navier-Stokes equation, determining the exact value of

p using analytical methods is challenging. However, a value of p for incompress-
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Figure 1.2: Schematic illustration of turbulence energy cascade.

ible steady hydrodynamic turbulence was empirically established by Kolmogorov

(1941) as E(k) ∝ k−5/3 through a phenomenological approach (see section 1.1.2 of

Rogachevskii, 2021, for a pedagogical derivation).

An interesting quantity related to turbulence is the Reynolds number (Re), whose

value indicates whether a fluid system is turbulent or not. The quantity is defined

in the following way: From Eq. (1.5), we found that the change in velocity is gov-

erned by two different terms, one related to the cascade of energy and the other

related to dissipation. Although both of these processes occur concurrently, their

dominance over one another at a given scale determines the behaviour of the veloc-

ity evolution. For example, when the term on the right-hand side gets larger than

the second term on the left-hand side, the velocity evolution becomes dominated
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by diffusive decay. In contrast, when the relative proportion of those two terms

becomes inverted, the behavioural dynamics of velocity is governed by non-linear

scale-to-scale energy transfer. Therefore, at a particular scale, the ratio of these two

terms dictates whether the energy cascades or decays. Through such motivation,

Re is phenomenologically defined by the ratio of the dimensions of those two terms

at a scale L as follows,

Re ≈ v/(L/v)

v/(L2/ν)
=
Lv

ν
(1.8)

Therefore, from the above formula, it is clear that to have turbulence, or Re ≫ 1,

one needs to inject energy at very large scales, and the dissipation has to be very

small.

In astrophysical sources, due to their enormous size, the length scales at which en-

ergy injection happens and the length scales at which energy dissipates stay far

from each other; hence, these systems are usually considered turbulent. However,

the behaviour of astrophysical turbulence is not governed by Eq. (1.2), but by MHD

equations. Astrophysical turbulence is fundamentally compressible, and the work

shown in the thesis also considers compressible plasma; however, to introduce the

basic concepts of MHD turbulence, we consider here the incompressible MHD equa-

tion for simplicity. The evolutionary behaviour of plasma in ideal MHD conditions

is governed by the following equations (Verma, 2004),

∂tv + (v · ∇)v = −∇Ptot + (B · ∇)B + ν∇2v (1.9)

∂tB + (v · ∇)B = (B · ∇)v + η∇2B (1.10)

where B is the magnetic field; Ptot is the total pressure and defined as (P +B2/8π);

η is the magnetic diffusivity. Eqs.(1.9) and (1.10), coupled with the incompressibility

condition, ∇ · v = 0 and no-magnetic monopole condition, ∇ · B = 0 descibe the
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dynamics of incompressible MHD. Similar to the hydrodynamical case, here also the

total pressure Ptot can be evaluated by solving a Poisson equation of the following

kind,

−∇2Ptot = ∇ · [(v · ∇)v − (B · ∇)B] (1.11)

An interesting property of incompressible MHD equations is that they give rise to

Alfvèn waves (Alfvén, 1942; Alfven, 1950), which play a fundamental role in me-

diating turbulence in incompressible MHD. To understand the behaviour of Alfvèn

waves in MHD turbulence, we cast the evolution equations of incompressible MHD

via Elsässer variables, with ν = 0 and η = 0, in the following way (see Eq. (11) of

Galtier et al., 2000),

(
∂t + z−s · ∇

)
zs = −∇Ptot (1.12)

where zs = v + sb are the Elsässer Variables with s = ± and b = B/
√

4π. In terms

of Elsässer variables, the incompressibility and no-magnetic mono-pole equations

can be written as ∇ · zs = 0. Further, Eq. (1.11) takes the following form in terms

of Elsässer variables,

∂i∂iPtot = −∂j∂kz−sk zsj . (1.13)

The emergence of Alfvèn wave can be observed by perturbing Eq. (1.12) with the

following,

zs = u + sb0 + δv + sδb (1.14)

where u and b0 are the mean velocity and magnetic field, while δv and δb are

the velocity and magnetic field perturbations, respectively. Considering u = 0 for
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simplicity, Eq. (1.12) becomes(see section 7.2 of Galtier, 2022),

(∂t − sb0 · ∇) δzs = −∇Ptot −
(
δz−s.∇

)
δzs (1.15)

where δzs = δv + sδb. An interesting property of Eq. (1.15) is its linearization

(neglecting the non-linear right-hand side) gives the dispersion relation for the Alfvèn

waves, ω2
k = (k · b0)2 with k being the wave vector and ωk being the k-dependent

circular frequency of the wave. Consequently, Eq. (1.15) is sometimes referred to

as the non-linear evolution equation for the Alfvèn waves. Another property of

Eq. (1.15) can be realized by noting that if δz+ = 0, the evolution of δz− will follow

the following equation,

(∂t + b0 · ∇) δz− = 0 (1.16)

Such an equation can be interpreted as δz− is propagating without deformation

along the uniform magnetic field b0, with a speed b0. The same reasoning will be

applied when δz− = 0, and in that case, δz+ will propagate in the opposite direction

to the mean magnetic field. As a result, δzs can be interpreted as two oppositely

propagating entities (often called Alfvèn wave packets) which deform non-linearly

when they interact and the interaction is characterised by the right-hand side terms

of Eq. (1.15).

In Fig. 1.3 we show a cartoon illustration of the interaction and subsequent de-

formation of two oppositely propagating Alfvèn wave packets threaded by a mean

magnetic field. This non-linear interaction and the subsequent deformation of the

Alfvèn waves are responsible for the energy cascade in incompressible MHD turbu-

lence. Proceeding along the same line of argument, Iroshnikov (1964), and Kraichnan

(1965) independently realised that, due to the presence of Alfvèn waves, the energy

cascade would significantly differ from the Kolmogorov-like hydrodynamic turbu-
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Figure 1.3: Cartoon showing the interaction between two oppositely propagating
Alfvèn wave packets.

lence. They calculate the spectrum for the inertial range following E(k) ∝ k−3/2

for incompressible MHD turbulence. Galtier et al. (2000) following a perturbative

approach found that for weak incompressible MHD turbulence (|b0|/|δb|> 1), the

turbulence spectrum becomes anisotropic and follows E(k) ∝ k−2
⊥ . However, for

strong MHD turbulence, the form is still debatable. For an extensive review of

MHD turbulence and its current status, readers are encouraged to see Schekochihin

(2022); Verma (2004).

As stated earlier, astrophysical plasma is compressible, which makes its study more

challenging. Compared to the incompressible MHD case, compressible MHD is capa-

ble of generating compressive modes or waves in addition to the Alfvén wave, which

can give rise to different types of non-linear interactions and thereby change the

turbulence behaviour significantly. With the advent of numerical simulations, the

behaviour of compressive MHD turbulence has been extensively studied (Beresnyak

& Lazarian, 2019).
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Figure 1.4: Schematic depiction of the typical particle energy distributions observed
in turbulent astrophysical plasma. Left: Energy distribution of thermal particles
following Maxwellian. Right: Broken power-law-like energy distribution typically
observed for non-thermal particle population.

Moreover, in a typical astrophysical plasma, the collisional timescale is observed to

be greater than the majority of plasma behaviour timescales, indicating that col-

lisions between constituent particles in such systems are highly improbable. The

absence of collisions within astrophysical turbulence has a significant impact on the

turbulence dissipation mechanisms. In hydrodynamic turbulence, the dissipation

of turbulence energy happens due to viscosity which is a quantity results from the

collision of fluid molecules. However, due to the absence of collisions, such viscous

dissipation does not occur in the majority of astrophysical sources; instead, alterna-

tive energy dissipation mechanisms operate in these systems. One such mechanism

for energy dissipation is wave-particle interactions, through which turbulent waves

can transfer their energy to the charged particles in the plasma. Due to such a mech-

anism, acceleration of charged particles occurs in turbulent astrophysical medium

(see section 2.1.1 for more details).

Further, the emission of radiation from the majority of astrophysical systems is typ-

ically speculated to arise from two different particle populations. Among them, one

population comprises the particles that follow a Maxwell-Boltzman (MB) like energy
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distribution resulting from the thermal equilibrium that these particles experience

with their surroundings and are typically referred to as thermal particles. The

other population exhibits an energy distribution that significantly differs from the

previously known MB case and is referred to as non-thermal particles. A schematic

representation of the distributions typically observed for these two particle popula-

tions is shown in Fig. 1.4. The distribution in the left panel of the figure exhibits

a Maxwellian-like morphology, which is expected to be followed by the thermal

population. The non-thermal populations are known to follow multiple kinds of dis-

tributions, for example, power-law or Kappa-like. In the right panel of the figure, we

show a representative energy distribution for the non-thermal particles of the broken

power-law type, which is usually considered to investigate the particle distribution

in different astrophysical sources. The origin of these non-thermal particles is still

debatable; however, according to the currently accepted model, they are considered

to originate due to the collisionless turbulent behaviour of the plasma and subse-

quent particle acceleration (see Comisso & Sironi, 2018, for realization through first

principle PIC simulation).

In this thesis, we focus on studying the simultaneous action of various acceleration

and energy loss processes charged particles experience in turbulent plasma. To per-

form the study, we consider two different components of radio-loud AGNs, which

are (1) radio lobes and (2) relativistic shocks. Typically radio-loud AGNs are con-

sidered highly turbulent, which is further speculated to have a noticeable impact on

the emission properties of these sources. In the next section, we introduce radio-loud

AGNs along with their various components.

1.2 Introduction to radio-loud AGN

Active galaxies (AGN) are considered to be one of the most interesting systems

in astrophysics. Compared to a normal galaxy, these galaxies possess a luminous
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core or nucleus, which outshines the entire galaxy in the majority of cases. Such

a phenomenon is often considered to be related to the ongoing black hole (BH)

activities that these systems exhibit in their central region. The central BH activities

originated from the ongoing accretion process, with which this BH feeds on their

surrounding materials. One of the most widely accepted models for the morphology

of this central nuclear region considers a gigantic donut-shaped structure of cold gas

and dust, with the BH and accretion disc nestled inside the donut’s hole.

One out of ten active galaxies shows signs of a jet emanating out of its nuclear

region, transporting energy and particles to kpc or even Mpc scales. Such active

galaxies are typically referred to as radio galaxy or Quasar or Blazar depending on

the viewing angle with which these sources are observed (Peterson, 1997). Radio

galaxies are usually categorised into two distinct populations of sources based on

their radio power at 1.4 GHz. Such a classification was first realised by Fanaroff and

Riley (Fanaroff & Riley, 1974), and the classes were subsequently termed Fanaroff-

Riley type I (FR-I) and type II (FR-II). The power output of FR-I-type galaxies is

less than that of FR-II types.

Due to such disparity in output power, these sources show different morphological

structures. In Fig. 1.5, examples of sources falling into these two different categories

are shown, indicating the various components of these systems. Both sources can

be observed to have an oppositely directed dual jet-like structure. For the FR-I

class, as shown in the left panel of the figure, a plume-like morphology of the jet can

additionally be observed, while for the FR-II class, the jet can be seen to maintain

a highly collimated structure for a large distance. Often the counter-jet of FR-II

radio-loud AGNs is observed to be absent; however, it is expected to be present

and of nearly the same intrinsic brightness as the visible jet. Such a phenomenon

can be seen in the FR-II radio-loud AGN shown in the right panel of the figure,

and the reason behind this is attributed to Doppler boosting, which enhances the
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Figure 1.5: Example of Fanaroff-Riley classification. Left: Radio 4.9 GHz VLA
image of FR-I type radio galaxy, M84 (Laing & Bridle, 1987). Right: Radio 4.9 GHz
VLA image of FR-II quasar 3C 47 (Bridle et al., 1994).

brightness of the jet approaching the observer and decreases the brightness of the

receding counter-jet (Urry & Padovani, 1995). The collimated jet structure of FR-II

often shows evidence of knot-like structures embedded in it. These knots are asso-

ciated with multiple re-collimation shocks (Hervet et al., 2017). Such re-collimation

shocks result from the mechanical equilibrium between the under-pressured relativis-

tic jet and its surrounding external medium. Typically, these shocks are considered

relativistic (Baring et al., 2016; Crumley et al., 2019).

A hotspot region is typically seen at the jet termination point of the FR-II radio

galaxy, which is distinguishable due to its high luminosity in comparison to its

surroundings and is typically connected with head shock. Such a high-luminosity

region is often found embedded inside a lobe-like structure called radio lobe. Such a

structure results from the backflow of AGN jet materials in a direction opposite to
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Figure 1.6: Cartoon representation of various components of FR-II type AGN jet.

the jet, which did not get converted to radiation at the hotspot (Longair et al., 1973).

Due to the chaotic nature of these backflow plasma materials, radio lobes are often

considered turbulent systems (Matthews et al., 2019). In Fig. 1.6 we schematically

show various components of the FR-II type AGN jets.

In addition to such an interesting morphology, radio galaxies are observed to emit

radiation over a vast range of frequencies. Different components of radio-loud AGNs

are observed to emit differently, and the measure of the emission from various com-
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Figure 1.7: Left: Composite image of Centaurus A (adopted from Chandra Photo
Album). Middle: Various observational facilities that were involved in producing the
observational data. From top to bottom: Chandra X-ray telescope, Hubble space
telescope, Spitzer Infrared telescope and VLA radio facility. Left: Spectral energy
distribution of Centaurus A (Wang et al., 2021).

ponents contains the clue to deciphering the multi-scaled micro-physical plasma pro-

cesses that are taking place inside them. Typically, the spectral energy distribution

(SED) of these components exhibits a double-hump-like morphology. An example

of SED is shown in the right panel of Fig. 1.7. The SED is computed for the jet

of an FR-I type radio-loud AGN, Centaurus A (left panel of the figure), through

various observational facilities (middle panel). The low-frequency emission for each

component is usually attributed to synchrotron radiation from relativistic charged

particles gyrating around the local magnetic field. A typical characteristic of such a

radiation process is that the radiation flux follows an inverse power-law trend with

the frequency, S ∝ ν−κ where κ is referred to as the spectral index. For the high-

energy part, different components emit through different radiative processes. Below,

we categorically describe the origin of the emission from different components of the

radio-loud AGN source (Harris & Krawczynski, 2006).

• The jet component of FR-I type radio galaxy strongly supports synchrotron

origin of the emission from radio frequencies to X-rays. For these kinds of
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jets, κx > κxo > κr, where κx, κxo andκr is the spectral index at X-ray, X-

ray to optical and radio frequencies. Such a model suffers from a problem.

Synchrotron X-ray requires non-thermal leptons of very high energy, but due

to the magnetic field, such particles cannot hold their energy for enough time

to give off X-ray emission at a distance far from the core. Therefore, the in-

situ reacceleration of those non-thermal particles through turbulence is often

considered in such high-energy synchrotron models (Kataoka et al., 2006).

• The emission from FR-II jet is typically attributed to the inverse Compton

mechanism, whereby photons from the surrounding cosmic ray microwave

background get upscattered by high-energy non-thermal particles (IC-CMB)

(Celotti et al., 2001; Ghisellini, G. et al., 2005; Tavecchio et al., 2000). For

such a jet, the synchrotron origin of the emission would require multiple popu-

lations of non-thermal radiating particles, and the upscattering of the photons

originating through the synchrotron process via inverse Compton (also called

as sychrotron self Compton, SSC) would require an order of magnitude higher

magnetic field than the equipartition one.

• Emission from the knots present in the FR-II jets is usually considered of

synchrotron origin and associated with shocks.

• Emission from the radio lobe in X-ray is observed to explain via an IC-CMB

process (Croston et al., 2005; Gill et al., 2021).

• X-ray emission from the hotspot is still debatable. For some hotspots, it

is better explained through SSC (Hardcastle et al., 2004) while for others,

synchrotron radiation provides better explanations (Hardcastle et al., 2007a).

Similar to earlier considerations on the synchrotron origin of jet X-ray emission

for FR-I radio galaxies, turbulent acceleration is often considered a possible

mechanism for re-accelerating the particles for a sustained X-ray emission (Fan
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et al., 2008). Further, some FR-II radio galaxies show evidence of diffuse op-

tical emission on the kpc scale surrounding the hotspot region. Such emission

is observed to have a synchrotron origin, and distributed particle acceleration

through turbulence has also been invoked there to maintain the optical emis-

sion up to the kpc scale (Cheung et al., 2005; Lähteenmäki & Valtaoja, 1999;

Orienti et al., 2012; Prieto et al., 2002; Prieto & Kotilainen, 1997; Thomson

et al., 1995).

Following the above discussion of employing a turbulent acceleration mechanism to

address certain observational features in the radio-loud AGN system, in this thesis

we try to understand the interplay of turbulence and shocks on the emission from

the radio lobe component. Additionally, we study the turbulent acceleration that

is typically expected to happen downstream of the relativistic shocks, which are

typically observed in these radio-loud AGN sources. In the following two sections,

we discuss the motivations for choosing these two components as candidates for our

study.

1.2.1 Radio lobes

Radio lobes are known to be highly turbulent. The underlying turbulence is also

found to contribute to accelerating the non-thermal particles residing there via

a stochastic acceleration mechanism (Fan et al., 2008; Massaro & Ajello, 2011;

O’Sullivan et al., 2009). Further, the presence of shocks due to the turbulent den-

sity compression at random locations in such a system has been observed through

numerical simulations and speculated to act as an agent for accelerating charged

particles present there (Matthews et al., 2019).

Radio lobes are also observed to emit in different frequency bands, from radio to

X-ray. Such frequency-dependent emission is a manifestation of the particular micro-

physical processes that are taking place inside the radio lobes. Therefore, to gain
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Figure 1.8: Picture of a radio lobe of FR-II radio loud AGN, indicating the micro-
physical processes that has been used to compute the emission for this work. Im-
age descriptions: Background: VLA radio composite image of Hercules A (Credit:
Credit: B. Saxton, W. Cotton and R. Perley (NRAO/AUI/NSF)); Stochastic accel-
eration: Supersonic turbulent density field; Diffusive shock acceleration: Collision-
less shock observed through PIC simulations (Mignone et al., 2018); Synchrotron:
Spiraling charged particle around magnetic field emitting radiation (Source: James
Schombert/University of Oregon); Inverse Compton: Incoming photon getting scat-
ted through an electron.

an understanding about the actual micro-physical processes, here we undertake the

task of modelling the behaviour of the non-thermal particles in radio lobes, con-

sidering different acceleration and loss mechanisms working together in tandem. In

Fig. 1.8, we show a representative picture of the work we undertake here, showing

the locations of different acceleration and loss processes.

1.2.2 Relativistic shocks

Radio loud AGN systems exhibit shock-related features, such as knots, hotspots,

etc. Due to the relativistic nature of the plasma flow in such systems, these shocks
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are often speculated to be relativistic in nature. Typically, relativistic shocks are

mediated by small-scale turbulence in which the Larmour radius of the gyrating

particles exceeds the correlation length of the turbulence (Lemoine et al., 2006).

Various work has been devoted to comprehend the acceleration phenomena that

these shocks can cause by focusing on the importance of spatial diffusion of charged

particles in making them undergo sufficient numbers of Fermi cycles (upstream to

downstream to upstream) (Plotnikov et al., 2011). Here, our aim is to understand the

effect that this small-scale turbulence drives on particle acceleration via turbulence.

Such a scenario is typically obtained in the downstream of relativistic shock waves

once the particle escapes the shock region.

1.3 Objectives of the thesis

The primary aim of this thesis is to understand the manifestations of the interplay of

different particle acceleration processes and radiative losses on the emission of turbu-

lent astrophysical sources. The study is predicated mainly on the development and

execution of cutting-edge numerical simulations of astrophysical sources employing

sub-grid-scale (SGS) level physical models for particle acceleration processes. Due to

the resolution constraints of numerical simulations, resolving all the necessary scales

becomes impossible. To account for the influence of unresolved-scale activities on a

large-scale simulation, one employs SGS-level modelling to model the micro-physical

processes. In this work, we only restrict ourselves to the weakly magnetised regime.

The principal objectives of this thesis can be stated as follows:

1. Developing a numerical framework for studying the effect of stochastic turbu-

lent acceleration in large-scale astrophysical simulations.

2. Studying the interplay of various micro-physical acceleration and loss processes

on the emission of the turbulent radio lobes of FR-II radio galaxies via the

developed framework.
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3. Developing an SGS-level model for particle acceleration in a scenario where

the correlation length-scale of the turbulence is less than the particle’s gyro-

radius and studying its interplay with different loss processes. Such a scenario

can be realised in the vicinity of collisionless shocks.

1.4 Outline of the chapters

The thesis is structured as follows: In chapter 2, we introduce the relevant plasma

processes considered in this work. We also describe the numerical framework that

has been utilised to achieve the above-mentioned objectives. In chapter 3, we show-

case the numerical algorithm we developed to study the effect of stochastic accel-

eration. We validated the algorithm by performing various tests and comparing it

with other existing algorithms. We then study the interplay of different accelera-

tion processes through controlled test problems. We demonstrate the application

of the developed module on an astrophysical source in chapter 4. We consider the

radio lobe of the FR-II radio galaxy to study the interplay of particle acceleration

processes and understand their subsequent emission behaviour. A phenomenologi-

cally motivated SGS model is employed for the stochastic acceleration process. We

show the impact of such an SGS model on the multi-frequency emission of the sim-

ulated source. chapter 5 considers the computation of the transport coefficients for

the non-thermal charged particles in a situation of small-scale turbulence. We con-

sider a turbulence spectrum that lacks power at the resonant scale and perform a

quasi-linear calculation for the transport coefficients, focusing mainly on the particle

acceleration through such turbulence. The turbulent acceleration of particles in a

system consisting of relativistic shocks can be understood through the analysis we

describe in this chapter. Our findings are summarised and discussed in chapter 6.

We conclude the thesis by discussing future works that can be accomplished as a

result of the developments made in this thesis, as well as the potential extension of

the current developments. In the Appendix (A) we sketch out the derivations for
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the relevant equations used in this work.



Chapter 2

Microphysical processes

This chapter introduces the theoretical and numerical framework utilized while car-

rying out the work presented in this thesis. After introducing the fundamental equa-

tions governing the behaviour of the plasma, this chapter discusses various particle

acceleration processes in astrophysical plasma. This chapter also introduces various

mechanisms by which plasma particles lose their energy. Subsequently, the novel

Eulerian-Lagrangian numerical framework is introduced.

Plasma is all pervaded in the universe and studying its behaviour plays a crucial

role in understanding the present-day universe.

2.1 Introduction to plasma processes

By definition, plasma is a state of matter when its constituents get ionized; however,

due to Coulomb attraction, such a state will only stay for a short amount of time

unless some other thermodynamic quantities are involved, and one such parameter

is temperature. Temperature plays a significant role in sustaining the electrostatic

plasma state by giving a random component to the velocities of the constituents.

For a more general plasma system, typically observed in astrophysical scenarios, the

magnetic field also plays a fundamental role in sustaining the plasma. Due to the

presence of charged particles whose evolution is governed collectively by Lorentz

force law, Maxwell’s equation, and temperature, the processes inside the plasma

23
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show a multi-scale nature, i.e., at different scales, the behaviour of plasma changes.

Such multi-scaleness occurs not only on spatial scales but also on temporal scales.

Such scales can be realized by proper statistical mechanical treatment of the plasma

system. For example, due to the presence of temperature inside the medium of

an overall neutral plasma, the long-range Coulomb interaction gets screened, and

beyond a certain length, known as Debye length, the coulomb potential falls off ex-

ponentially due to other charges of opposite polarity. Mathematically, beyond such

a length scale, the two-point spatial correlation of any function computed at two

different positions in a system of charged particles experiencing Coulombic interac-

tions at thermal equilibrium decays exponentially (Brydges & Federbush, 1981). A

study of such a coulomb gas in the d > 2 dimension using renormalization group

theory revealed the emergence of Debye length as an intrinsic length scale related

to electrostatic plasma (Barkhudarov, 2014). Debye length, therefore, marks a spa-

tial scale beyond which plasma can be treated as a state driven by the collective

interactions of its constituents and the notion of a single charged particle becomes

suppressed. A timescale associated with this Debye length also emerges due to the

presence of temperature and the need to maintain overall neutrality, which govern

the time up to which a single charge potential can be felt before it gets screened.

An inverse of such timescale is known as plasma frequency. There are many such

spatiotemporal scales that exist and can be found through proper statistical and

mechanical treatments.

Below we briefly introduce the evolutionary equation of plasma kinetics for com-

pleteness.

Typically, plasma can be treated as a collection of charged particles, and for such

a system, the phase-space density function considering the position and velocity of

the individual particles can be written in the following way,
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Fs (r,v, t) =
ns∑
i=1

δ (r −Ri(t)) δ (v − V i(t)) (2.1)

where s specifies the particle species, ns is the number of particles in that species,

δ (r − r0) is the delta function peaking at r = r0 and (Ri(t),V i(t)) is the coordinate

of ith particle in the phase space at time t. The evolutionary dynamics of such a

density function is given by the following equation (see section 2.1.3 Swanson, 2008,

for derivation)

∂tFs + v · ∇Fs + qs (Em + v ×Bm) · ∂Fs
∂p

= 0 (2.2)

where the subscript m denotes that the electric and magnetic fields, Em and Bm

respectively, are a combination of external and the self-consistent field that the

particles produce through Maxwell’s equation; p denotes the momentum of the par-

ticles. Eq. (2.2) is known as Klimontovich equation, and it considers individual

particle dynamics. The solution of such an equation is very difficult and not very

illuminating, as this equation contains information that is unnecessarily huge for

describing the evolution of the system at the spatial and temporal scales of in-

vestigation. Therefore, averaging over a small volume in phase space is typically

performed on Eq. (2.2) to compute an equation with reduced information, which

is necessary to understand the plasma behaviour. Additionally, by averaging the

equation, one obtains a smoothed-out distribution function that does not contain

any singularities arising from the discreteness of the charged particles. The volume

over which the averaging is done plays an important role in the averaged behaviour

of the plasma; for example, if it is too large, we lose the resolution for studying

the variation in the plasma properties, or if it is too small, then the density at two

adjacent locations might get very large. Typically, the volume is constructed by

considering the spatial volume of the order of the Debye sphere, and the velocity

range is considered such that the sphere could include many particles (Swanson,
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2008). Upon performing such averaging, one gets an equation capable of modelling

the evolutionary dynamics of plasma beyond the Debye length. Such an equation is

known as Vlasov equation, which in cgs or gaussian units takes the following form,

∂f

∂t
+ (v.∇) f + q

(
E +

v

c
×B

)
.
∂f

∂p
= 0 (2.3)

where f is the average distribution function. Note that we have omitted the subscript

s, as the following discussion will consider only a single species of particles. Eq. (2.3)

coupled with the following Maxwell’s equations constitute a closed set of equations

describing self-consistent plasma behaviour.

∇×B =
1

c

∂E

∂t
+

4π

c
q

∫ ∞

−∞
d3vvf(r,v, t) +

4π

c
J ext

∇ ·E = 4πq

∫ ∞

−∞
d3vf(r, t) + 4πρext

∇ ·B = 0

∇×E = −1

c

∂B

∂t

(2.4)

where J ext and ρext defines the external current density and charge density.

The presence of Eq. (2.4) makes Eq. (2.3) non-linear and challenging to solve for a

generic situation. Therefore, one needs to make additional analytical assumptions

to extract information from Eq. (2.3). One such assumption, also known as test

particle approach, considers computing the evolution of the distribution function

due to the specified background electric and magnetic field. In this thesis, we will

concentrate on the quasi-linear evolution of homogeneous plasma derived from the

test particle approach. In the following section, we sketch out the derivation of the

evolution equation that the distribution function will follow when the background

electric and magnetic fields are weakly perturbed. The evolution equation for the

distribution function in such a scenario will be helpful in understanding the particle
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acceleration process and is also essential for the work presented in the following

chapters.

2.1.1 Quasi-linear evolution of plasma and particle acceleration

To derive the quasi-linear evolution of the distribution function, we perform a multi-

scale analysis on Eq. (2.3) through the following kinds of perturbations,

∂

∂t
=

∂

∂T0
+ ϵ1

∂

∂T1
+ ϵ2

∂

∂T2
+ O(ϵ3)

f = f0 + ϵ1f1 + ϵ2f2 + O(ϵ3)

E = ϵ1E1 + ϵ2E2 + O(ϵ3)

B = B0 + ϵ1B1 + ϵ2B2 + O(ϵ3).

(2.5)

Upon substituting the perturbed fields in the homogeneous (zero spatial gradient)

version of Eq. (2.3) and noting the randomness of the perturbation components,

the evolution equation for f0 takes the following form (see appendix A.1 for the

derivation),

∂f0
∂T2

+ q
〈(

E1 +
v

c
×B1

)
.∇pf1

〉
= 0. (2.6)

The above equation describes the evolution of the zeroth order distribution function

due to linear perturbations (or first-order perturbations) of the E, B and f fields.

Note the timescale, T2, on which such an evolution is realized. This indicates the

temporal hierarchy of the processes that are taking place inside the plasma system.

For example, while deriving Eq. (2.6) we consider f0 to be steady over the timescale

T0 which gave rise to the evolution of the perturbation f1 on a timescale T1 > T0.

Those perturbation starts to affect the evolution of the zeroth order distribution

function on a timescale of T2 > T1. This is an advantage of the multi-scale analysis,

where the individual evolution processes happening at different timescales can be
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decoupled from the main equation and studied separately.

Upon substituting the form for f1, Eq. (2.6) gives rise to a diffusion-like equation

for f0 of the following form(refer appendix A.1 for the derivation),

∂f0
∂T2

= −q2
∞∑

m=−∞

∫
d3k

〈[
L∗
||

(
Ẽ||

k
)∗
Jm (β) +

(
L∗
⊥ − 1

p⊥

(
k||v||
(ωk)∗

− 1

))(
Ẽ⊥

k
)∗]

ι
1

mΩ + k||v|| − ωk

(
L||Ẽ||

k
Jm (β) + L⊥Ẽ⊥

k
)
f0

〉
(2.7)

The above equation contains various terms, which are explained in appendix A.1.

An interesting property of the above equation is the presence of a term, mΩ +

k||v|| − ωk, relating quantities of the particles (such as Ω and v||), which constitutes

the distribution function, with the waves (such as k|| and ωk) which arises due to the

linear perturbations of the background electric and magnetic field. Such a term is

capable of driving resonance, and when this resonance condition is satisfied between

the particles and waves, the distribution function evolves. Such a resonance scenario

is typical for quasi-linear theory, and it is often attributed to the fact that the quasi-

linear approach in the physical space considers only the zeroth order orbit (Helical

orbit due to mean magnetic field) to evaluate the diffusion coefficient. Eq. (2.7) can

further be represented as a diffusion equation for f0 (see Eqs. 14 and 15 of Lerche,

1968), which upon averaging over pitch-angle becomes,

∂f0
∂T2

=
1

p2
∂

∂p

(
p2Dpp

∂f0
∂p

)
=

∂

∂p

(
Dpp

∂f0
∂p

)
+

2Dpp

p

∂f0
∂p

,

(2.8)

where the form of the diffusion coefficient, Dpp, is a complicated function of a series

of Bessel functions of the first kind and for a generic wave, the computation of Dpp

becomes very challenging.
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The whole exercise of deriving the evolution of the zeroth order distribution function

can be interpreted as follows, When the background electric and magnetic fields of

Eq. (2.3) are perturbed weakly, they generate waves that interact with the particles

constituting the zeroth order distribution function through a resonance condition.

This means not all the waves will interact with all the particles residing inside

the plasma; there will be certain waves (characterized by their frequency and wave

vector) which will interact with particles having specific values of the gyrofrequency

(Ω), and the velocity. Through such resonant interactions, the distribution function

subsequently evolves following a diffusion- and advection-like behaviour (the first

term and the second term of the right-hand side of Eq. 2.8, respectively). The

advection part of Eq. (2.8) describes the acceleration of the particles that constitute

the distribution function f0. Such acceleration occurs due to the interaction between

the charged particles and the waves from the background field, through which the

waves transfer their energy to the particles and get dampened. Moreover, this

energization process is random in nature which implies that there could arise a

situation whereby the particles transfer their energy to the waves, making them

amplified. The former situation is more likely to occur than the latter one, making

the entire process an overall acceleration process. However, the random behaviour

of the energization process is taken care of by the presence of the diffusion term in

Eq. (2.8). Such kind of acceleration of the charged particles is known as stochastic

turbulent acceleration (STA) or Fermi IInd order acceleration process.

Another kind of acceleration of these charged particles is possible considering the

shocks, which is known as diffusive shock acceleration (DSA) or Fermi Ist order

acceleration process. In this scenario, the charged particles get accelerated by in-

teracting with the waves as before, but due to the shock conditions, the impact of

such interactions on the particles results only in acceleration. The random ener-

gization does not occur here, making this acceleration more efficient than STA. The
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process of DSA is also defined through an advection-diffusion-like evolution of the

distribution function; however, in this case, the advection and diffusion happen in

the spatial domain, not in the momentum domain (see Chapter 5 of Zank, 2013, for

details).

The work presented in this thesis aims to study the interplay of these two acceleration

processes in turbulent astrophysical plasma. In the next section, we describe the

development of the MHD equations, which play a fundamental role in our study,

from the Vlasov equation.

2.1.2 Magneto-hydrodynamical evolution of plasma

From the Vlasov equation, one can calculate a coarse-grained spatio-temporal scale

where, instead of considering velocity fluctuations separately, one utilises the mo-

ments of these fluctuations. By taking such a velocity moment of the Vlasov

equation, one gets fluid-like equations for describing the plasma behaviour. These

fluid-like equations combined with Maxwell’s equations are termed as magneto-

hydrodynamic (MHD) equations. For ideal plasma, the MHD equations can be

written in the following way,

∂ρ

∂t
+ ∇ · (ρv) = 0 , (2.9)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

1

ρ
(∇×B) ×B , (2.10)

∂P

∂t
+ v · ∇P + ΓP∇ · v = 0 , (2.11)

∂B

∂t
= ∇× (v ×B) , (2.12)

where the quantities ρ, P , v, and B represent density, pressure, velocity, and

magnetic field, respectively; the magnetic field B further satisfies the constraint

∇·B = 0; and Γ represents the ratio of specific heats. Similar to the hydrodynamic

waves, the MHD equations give rise to different kinds of linear waves (originating
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from linear perturbations to the MHD equations). For a typical ideal compressible

MHD system, three kinds of waves can be observed, which are known as Alfvèn

wave, fast wave, and slow wave. The last two waves are compressive and can not

be found for incompressible MHD. For our purpose of study, the fluctuations due

to these waves are considered the source of fluctuations in the turbulent particle

acceleration process.

2.2 Introduction to radiation processes

The primary mode of information transfer from distant astrophysical sources to

us is through the emission of radiation. However, in the era of multi-messenger

astronomy, other modes, such as gravitational waves, are also becoming tools for

investigating the processes that occur in these sources. In this thesis, our primary

concern would be the former mode of information transfer. Astrophysical sources

are observed to emit radiation spanning a huge range of frequencies. Analysis of

the emission for such a range of frequencies helps decipher the actual micro-physical

processes happening in those systems. For the majority of astrophysical sources, the

emitted radiation is typically classified into the following three different categories,

• Thermal radiation: The radiation emitted by the particles follows a Maxwellian

energy distribution.

• Non-thermal radiation: The radiation emitted by the non-thermal particle

population residing in the turbulent plasma.

• Line emission: The radiation originates from the energy level transitions of

the atoms and molecules present in the astrophysical sources.

Through all the kinds of radiation described above, the radiating particles lose a

portion of their energy by emitting it through radiation. In this work, we primarily
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Figure 2.1: Schematic representation of the synchrotron process
(Source: Jon Lomberg/Gemini Observatory).

focus on two radiation loss processes, along with the adiabatic loss/gain, that the

non-thermal particles suffer in turbulent astrophysical systems. In the following

sections, we describe these three processes in detail.

2.2.1 Synchrotron radiation

Charged particles can radiate their energy when they undergo any mechanical ac-

celeration or deceleration. Note that the kind of acceleration we refer to here differs

from the acceleration considered in the previous section. In the previous section, by

acceleration, we meant “energization of the charged particles at a compensation of

the energy from the underlying turbulent field,” but here, “acceleration” means “the

change in the velocity of the charged particles through mechanical processes,” as will

be discussed below. The analytical model of such radiation arising due to the me-

chanical acceleration or deceleration process of the charged particles is given by the

following electromagnetic potential function, known as LiènardWiechert potential
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(Bartelmann, 2013; Englert, 2014; Sengupta, 2007),

ϕ(r, t) =

(
q

R(1 − e · β−s)

)
tr

, A(r, t) =
βs(tr)

c
ϕ(r, t) (2.13)

where ϕ and A are the scalar and vector electromagnetic potentials respectively

measured at a spatial position r and at time t due to a charged particle moving

with velocity β = v/c at an earlier time tr = t− R/c, with R = |r − r0 (tr) | being

the distance between the position of the charged particle at a time tr and the point

of observation; e is the unit vector directing from the charged particle to the point

of observation, e = R/R. The corresponding electric, E, and magnetic, B, fields

at the point of observation can be computed by properly differentiating the above

potentials and are described as follows,

E(r, t) =
q

(R− β ·R)3

[
(R− βR)

(
1 − β2

)
+

(
R×

{
(R− βR) × β̇

c

})]
,

B(r, t) =
R×E(r, t)

R
.

(2.14)

The first term in the right-hand side of the electric field corresponds to a generalised

Coulombic field originating due to the moving charged particle, while the second

term corresponds to the radiation that the particle emits due to its acceleration

β̇ = v̇/c. The corresponding radiation power, which can be calculated by computing

the Poynting vector for the radiation terms present in the electric and magnetic fields,

takes the following form (see Eqs. 1.129-1.132 of Bartelmann, 2013):

dL

dΩs

=
dE

dtdΩs

=
q2

4πc (1 − e · β)5

∣∣∣e×
[
(e− β) × β̇

]∣∣∣2 (2.15)

where Ωs is the solid angle. Upon integrating Eq. (2.15) over the entire solid angle,

the total power is described by the following form (see Eq. 1.135 of Bartelmann,
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2013):

Ltot =
dEtot
dt

=
2q2

3c
γ6
[
β̇

2 −
(
β × β̇

)2]
(2.16)

where γ is the Lorentz factor of the charged particle. Eq. (2.16) gives a quantitative

measure of the total power emitted by the charged particle at different acceleration

situations.

Relativistic charged particles residing in magnetized astrophysical systems are known

to follow a helical path around the local magnetic field, and in the course of such

a movement, they suffer centrifugal acceleration. The radiation that those particles

emit in such a situation is known as synchrotron radiation, and the total radiated

power by a single charged particle can be written as follows,

Lsyn =
dEsyn
dt

= cγ2σTUB (2.17)

where σT is the Thomson cross-section of the charged particle and UB = B2/4π is

the local magnetic energy density. In Fig. 2.1, we show a schematic representation

of the synchrotron process, where a charged particle can be seen to gyrate around

the magnetic field and consequently emit radiation.

The emission of radiation from a single particle does not happen uniformly over all

the frequencies. The spectrum of the radiation (power emitted per unit frequency) is

obtained by using the Parseval’s theorem (see section 2.2 and Eq. 2.35 of Bartelmann,

2013) which take the following form for synchrotron radiation,

Lsyn(ν, γ) =
√

3
e3B sin θ

mqc2
F
(
ν

νc

)
, (2.18)

where F(x) := x
∫∞
x
K5/3(x

′) dx′, νc = 3γ2Ω0 sin θ/4π and mq is the mass of the

charge particle. Typically in astrophysical systems, multiple particles radiate simul-
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Figure 2.2: Cartoon representation of left: the Compton process, right: the differ-
ential cross-section.

taneously and give rise to the observed radiation. In such a case, the frequency, ν,

dependent synchrotron emissivity of a particle distribution can be described in the

following way,

J(ν,nlos) =

∫
Lsyn(ν, E ′)N(E ′,nlos) dE

′dΩnlos
(2.19)

where Lsyn(ν, E ′) is the spectral power per unit frequency and unit solid angle emit-

ted by a single relativistic particle, with energy E ′, nlos is the unit vector along the

direction of observation; and N(E ′,nlos) dE
′dΩnlos

is the number of particles with

energy between E ′ and E ′ + dE ′ and whose velocity is inside the solid angle dΩnlos

around the direction nlos. Here we conclude our discussion of synchrotron radiation,

and in the next section, we introduce another radiation process that has been used

in this work.

2.2.2 Inverse Compton radiation

Compton scattering is a well-known phenomenon where a photon transfers its energy

to static particles. Such a scattering phenomenon is theoretically modelled through

quantum mechanics, and the change in the energy of the photon is described by the
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following equation,

hνs =
hνi

1 + hνi
mqc2

(1 − cos θ)
(2.20)

where h is the Planck constant, νs is the frequency of the scattered photon, νi is the

frequency of the incident photon, and θ is the angle between the direction of the

incoming photon and the scattered photon. In the left diagram of Fig. 2.2, we show a

cartoon representation of the Compton scattering process, in which a green-coloured

incoming photon interacts with a particle and is scattered at an angle θ with the

initial propagation direction and with lower energy (orange-coloured). Furthermore,

as a result of this scattering process, the particle scattered at an angle ϕ with the

incoming direction of the photon.

Eq. (2.20) has two input variables, νi and mq and one output νs. Therefore, for the

above equation to have a solution, the value of θ, the angle between the direction of

the incoming photon and the scattered photon, has to be provided from outside. It

is typically computed from the differential cross-section of such a scattering process,

which is defined as the ratio of the number of photons scattered into a solid angle

per unit time to the flux of incident photons. In the right diagram of In the right

diagram of Fig. 2.2, we show a cartoon representation for calculating the differential

cross-section.

For the Compton process, when hνi ≪ mqc
2, this differential cross-section is given by

the Thompson cross-section σT , while when hνi ≫ mqc
2 a quantum electrodynamic

treatment has to be adopted, which subsequently leads to the following Klein-Nishina

cross-section formula,

dσKN
dΩsolid

=
r20
2

(
νs
νi

)(
νi
νs

+
νs
νi

− sin2 θ

)
(2.21)

where r0 is the classical radius of a charged particle of mass mq and charge q. In
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the low energy limit hνi ≪ mqc
2, Eq. (2.21) reduces to the following Thompson

differential cross-section formula,

dσt
dΩ

= r20
1 + cos2 θ

2
(2.22)

When this Compton process occurs on a moving particle rather than a static particle,

it may also energise the photons at a compensation of the particle’s energy. Such

a process where photons get energised through the Compton mechanism is known

as inverse Compton process (IC), and it is typically attributed to being one of

the primary high-energy radiation emission mechanisms for turbulent astrophysical

systems. The energy loss of a charged particle via the IC process in the Thompson

limit can be quantified through the following equation (Eq. 4.12 in Kembhavi &

Narlikar, 1999),

dEIC
dt

=
4

3
cγ2β2σTUph (2.23)

with Uph being the total energy density of the photon field. The work presented here

considers cosmic microwave background (CMB) radiation as the source of the photon

field. The energy density of the CMB radiation can be written in the following way,

uCMB = 4
σB
c

[TCMB(1 + z)]4 (2.24)

where σB is the Stepfan Boltzmann constant,TCMB is the temperature of the CMB

photons, TCMB = 2.728 K and z is the red-shift of the source of interest. The IC

emissivity for such a photon source can be written in the following way (Vaidya

et al., 2018),
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jIC/hν =

∫ ∞

0

dε′ph

∫
dΩ′

ph

∫
dE ′

∫
dΩ′

τ[
N(E ′, τ) c(1 − βe · l′)n′

ph(ε
′
ph, l

′) σTh(ε
′
ph, l

′, ν ′, n̂′)
]
,

(2.25)

where n′
ph(ε′ph, l

′)dε′ph and N ′(E ′, τ )dE ′ are, respectively, the number of photons

between the energy range ε′ph and ε′ph + dε′ph along a direction l′ and the number

of particles within the energy range E ′ and E ′ + dE ′ and direction τ . The factor

c(1−βe ·l′) arises from the differential velocity between the photon and the electron,

and βe is the scattering electron velocity vector in units of c. The scattering cross-

section, σ, depends, in principle, on the directions and energies of the incident and

outgoing photons.

2.2.3 Adiabatic loss/gain process

Along with the radiative losses, the charged particles residing in astrophysical plasma

also suffer adiabatic loss (gain) if the particles are confined within an expanding

(Compressing) volume. Such a loss process is typically observed to happen in the

vicinity of shocks. The adiabatic loss/gain can be described through the first law of

thermodynamics, which says,

d̄Q = dU + PdV (2.26)

where Q is the heat given to the system, d̄ implies the inexact differential, U is the

internal energy of the system, and PdV is the work done by the system. For the

adiabatic process, heat exchange is forbidden; consequently, d̄Q = 0. Further, if we

consider only non-relativistic particles constitute the system, then through statistical

mechanics, we can get a relation between the internal energy of the system and the

pressure P as follows (see Eqs. 8.71 and 8.73 of Fitzpatrick, 2020),

P =
2U

3V
. (2.27)
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Substituting it in Eq. (2.26) and considering the adiabatic condition, the temporal

evolution of the internal energy can be written as the following,

dU

dt
= −2U

3V

dV

dt
(2.28)

where dV/dt describes the change in volume, which can be related to the divergence

of the fluid velocity in the following way (see Eq. 11.24 of Longair, 1992),

dV

dt
= (∇ · v)V (2.29)

which, upon substitution in Eq. (2.28) gives an expression for the momentum evo-

lution of these charged particles due to the adiabatic process in the following way,

dp

dt
= − (∇ · v) p (2.30)

Such an equation remains valid even for relativistic particles, which we consider in

this thesis. With this, we conclude our discussion on the adiabatic loss/gain process.

In the following section, we introduce the transport equation for the particles residing

in the plasma, through which one can obtain the evolution of the particle energy

spectrum considering all of the above-discussed processes.

2.2.4 Particle transport equation

In typical astrophysical sources, all the above processes do not happen in isolation

but rather in tandem with each other. Such a simultaneous action of all the micro-

physical processes that these charged particles undergo can be described through

a transport equation. Here, to give an idea of how all such processes arise in the

transport equation below, we briefly describe the derivation of a simple transport

equation. The derivation considers a system of charged particles that are either

accelerating or losing their energy through some means, and the evolution of the
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entire system is governed solely by these micro-physical acceleration and loss pro-

cesses. The energy of such a system, in that case, can be described through an

energy distribution function f(E) dE, which quantifies the number of particles in

the energy range E and E + dE and follows the equality,

N =

∫ Ef

Ei

f(E ′) dE ′ (2.31)

where N is the number of particles inside the system, Ei and Ef are the minimum

and maximum energies that the particles have at a particular time. Note that due

to the loss process, as the energy of the constituent particles decreases, the limit also

moves towards lower energies, while due to the presence of the acceleration process,

the opposite situation happens. Therefore, with time, these bounds will evolve as

well and will be governed by the loss and acceleration processes; however, during

such evolution, the particle number inside the system should remain constant. The

above statement can mathematically be described as follows,

dN
dt

=
d

dt

(∫ Ef

Ei

f(E ′) dE ′
)

= 0 (2.32)

By applying Leibniz rule of integration we get the following,

d

dt

(∫ Ef

Ei

f(E ′) dE ′
)

=

∫ Ef

Ei

∂f(E ′)

∂t
dE ′ + f(Ef )

dEf
dt

− f(Ei)
dEi
dt

=

∫ Ef

Ei

{
∂f(E ′)

∂t
+

∂

∂E ′

(
dE ′

dt
f(E ′)

)}
dE ′

(2.33)

Therefore, we can write Eq. (2.32) in the following way,

∂f(E)

∂t
+

∂

∂E

(
dE

dt
f(E)

)
= 0 (2.34)

where we dropped the ′ for clarity. Eq. (2.34) is a simple representation of the

transport equation which describes the evolution of the energy distribution function
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of the system due to the loss and acceleration processes, dE/dt, that the particles

undergo.

Further, the term dE/dt can be written as a combination of all the energy loss and

acceleration processes, and for our case, it can be written in the following way,

dE

dt
=
dE

dt

∣∣∣
sync

+
dE

dt

∣∣∣
IC−CMB

+
dE

dt

∣∣∣
adiab

(2.35)

where the first term on the right-hand side is due to synchrotron loss, which takes

the form specified in Eq. (2.17), the second term corresponds to IC-CMB loss, and

the last term corresponds to adiabatic loss/gain (see Eq. 2.30).

Further, the acceleration due to turbulence that we discussed in section 2.1.1 can be

incorporated to Eq. (2.34) as follows,

∂f(γ)

∂t
+

∂

∂γ

(
dγ

dt
f(γ)

)
+

∂

∂γ

(
2Dγγ

γ
f(γ)

)
=

∂

∂γ

(
Dγγ

∂f(γ)

∂γ

)
(2.36)

where we have substituted Eq. (2.8) in the right-hand side of the Eq. (2.34) and

written the whole equation in terms of the particle Lorentz factor, γ. In addition,

while substituting Eq. (2.8), we consider a transformation of the distribution function

from f0 to f in the following way f = 4πp2f0. Such a transformation is required to

maintain the similarity between the definition of the distribution function, as from

Eq. (2.8) the particle number is calculated through the following expression,

N =

∫ pf

pi

4πp2f0 dp (2.37)

while for Eq. (2.34) the definition of the number of particles is given by Eq. (2.31),

which is different from the above definition. This transport equation changes signifi-

cantly for realistic astrophysical flows, and one such transport equation is considered

in chapter 3. In the next section, we discuss the numerical framework used to per-
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form the works in this thesis.

2.3 Numerical framework

Most of the work presented in this thesis is carried out using a massively parallel

relativistic magnetohydrodynamic (RMHD) code called PLUTO (Mignone et al.,

2007). This code is primarily used to numerically solve non-linear mixed hyper-

bolic/parabolic systems of partial differential equations in the conservative form of

the following type,

∂U
∂t

+ ∇ · A (U) = ∇ · D (U) + S (U) (2.38)

where U represents the set of dynamical quantities whose evolution has to be calcu-

lated, A represents the non-linear advection flux, and D represents the diffusion

flux of those quantities. S defines the source term. The form of these quan-

tities depends on the type of physical scenario used for the simulations. Cur-

rently, the code is capable of solving dynamical equations for hydrodynamics (HD),

ideal magneto-hydrodynamics (MHD), relativistic hydrodynamics (RHD), relativis-

tic ideal magneto-hydrodynamics (RMHD) and resistive magneto-hydrodynamics

(ResMHD). PLUTO can work in static and adaptive grids (Mignone et al., 2012).

It also provides a hybrid framework whereby particles and grid-based dynamics can

be coupled. Such a framework reduces the large-scale gap between physics at micro

and macro scales.

As a part of this hybrid framework, a novel Eulerian-Lagrangian particle module

was developed by Vaidya et al. (2018), which employs passively evolving Lagrangian

(or macro-) particles for simulating the emission of different astrophysical systems.

The dynamics of such macro-particles is governed by the underlying thermal fluid.

The concept of this module is described in Fig. 2.3 where a background is taken as

a representation of the density, which is calculated by solving the MHD equations
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Figure 2.3: Schematic representation of the working of Lagrangian macro-particles.
The background of the figure is adopted from Mignone et al. (2018). The black dots
are representative of the macro-particles.

and inside which the macro-particles (depicted by black dots) move passively. Each

of these particles constitutes an ensemble of non-thermal micro-particles (usually

leptons) existing in close proximity in physical space with a finite energy distribution.

The energy distribution for each of the macro-particles is evolved following a pre-

specified transport equation, and such evolution happens concurrently with the fluid

evolution, considering the dynamical quantities interpolated from the nearest grid

points at the position of the macro-particles. Further, to compute the emissivity,

the instantaneous energy distribution of each macroparticle is convolved with the

corresponding single-particle radiative power and extrapolated to the nearest grid

cells.

In addition, to calculate the effect of shock acceleration, PLUTO employs a shock-

capturing technique that identifies the shock zone when the following conditions are
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met:

1. ∇ · v < 0, with v being the fluid velocity,

2. ∆P/P1 > ϵP , with ϵP being an pre-imposed threshold and P1 is the upstream

pressure.

When a Lagrangian particle crosses such a flagged region, its energy distribution is

evolved following a subgrid prescription.

Our concern in the current work is to understand the effect of such an interplay of

different micro-physical processes on the emission of astrophysical sources. To per-

form the study, we extend the above-mentioned numerical framework to include the

stochastic turbulent acceleration mechanism. We then apply the extended frame-

work to study the emission properties of the radio lobes of FR-II radio-loud AGN

systems due to the interplay of DSA and STA. Subsequently, we study the STA

process in small-scale turbulence by computing the momentum diffusion coefficients

through quasi-linear theory. Such a turbulent scenario is typically observed in rela-

tivistic shocks. In the following chapters, we describe in detail the methods used to

complete these objectives and the results obtained from it.



Chapter 3

Numerical modeling of Fermi II nd

order acceleration process

This chapter has been adopted from Kundu et al. (2021) 0 and it describes the nu-

merical algorithm that has been developed to study the effect of stochastic turbulent

acceleration process in turbulent astrophysical plasma and its manifestations on the

spectral evolution of highly energetic non-thermal particles. This chapter further

discusses about the interplay of diffusive shock acceleration and stochastic turbulent

acceleration processes through pilot case studies.

3.1 Introduction

From giving a universal power-law trend to the cosmic ray spectrum to explaining

the observed emission features of various astrophysical sources, particle acceleration

process plays a crucial role in shaping our understanding of the nature of various

space and astrophysical phenomena. Several observations require particles to be

accelerated to very high energies in order to explain the energetics in different as-

trophysical sources. Due to high electrical conductivity, astrophysical plasma is

incapable of sustaining a global electric field, making it challenging to energize par-

0Kundu, S., Vaidya, B., and Mignone, A. (2021) Numerical Modeling and Physical Interplay of
Stochastic Turbulent Acceleration for Nonthermal Emission Processes, The Astrophysical Journal,
vol. 921, no. 1. doi:10.3847/1538-4357/ac1ba5.
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ticles in this scenario. Particle acceleration processes provide an alternative way to

accelerate particles in the absence of a global electric field. The existing literature

(Blandford, 1994; Kirk et al., 1994; Melrose, 1996) suggests three main approaches

to accelerate charged particles in an astrophysical plasma environment: shock ac-

celeration (DSA), coherent electric field acceleration, and stochastic acceleration

(STA).

In Fermi (1949), Fermi first gave a proper mechanism for accelerating charged par-

ticles to explain the cosmic ray spectrum and the possible origin of high-energy

cosmic ray particles. The mechanism considers relativistic particles getting scat-

tered by moving inhomogeneities, mainly various plasma waves (MHD waves for

highly relativistic cosmic ray particles (Kulsrud & Ferrari, 1971; Parker, 1955; Stur-

rock, 1966)), and gaining energy (accelerate) in a randomized manner. This process

is known as stochastic turbulent acceleration (STA) process. The randomness in

the acceleration makes this process inefficient to energize particles, as suggested

by the emission timescales observed in various astrophysical sources. Nevertheless,

STA is considered to be an important source of turbulence damping in plasma and

because of the omnipresence of turbulence in various astrophysical sources, STA

has been invoked in order to explain the particle acceleration process in solar flares

(Petrosian, 2012), corona above accretion disk of compact object (Belmont et al.,

2008; Dermer et al., 1996; Liu et al., 2004; Vurm & Poutanen, 2009), supernova

remnant (Bykov & Fleishman, 1992; Ferrand & Marcowith, 2010; Kirk et al., 1996;

Marcowith & Casse, 2010), gamma-ray burst (Schlickeiser & Dermer, 2000), emis-

sion from blazars(see Asano & Hayashida (2018) and references therein), radio lobes

of AGN Jets (O’Sullivan et al., 2009), the diffuse X-ray emission from AGN jets

(Fan et al., 2008) along with fermi bubbles of galaxies (Mertsch & Petrosian, 2019),

galaxy clusters (Brunetti & Lazarian, 2007; Donnert & Brunetti, 2014). Recently

STA has also been suggested as a candidate for the spectral gradient observed in
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galaxy clusters (Rajpurohit et al., 2020).

On the other hand, DSA gives a proper framework where particles can interact with

the magnetic inhomogeneities in a way that could only increase the particles energy

(Bell, 1978; Blandford & Eichler, 1987; Drury, 1983; Malkov & Drury, 2001). Due

to it’s efficiency, DSA has been used to describe the particle acceleration process

in various astrophysical systems, for example interplanetary helio-spheric shocks

(Jokipii et al., 2007; Perri & Zimbardo, 2015), shock wave of supernova remnant

(Bell, 2014), stellar bow shock (Rangelov et al., 2019), oblique shock in AGN jets

(Meli, A. & Biermann, P. L., 2013), radio relics of galaxy clusters (Kang et al., 2017;

van Weeren et al., 2017; Zimbardo & Perri, 2017). Though DSA is more efficient

compared to STA mechanism, it is believed to only give rise to localized emission

where STA is thought to produce large scale diffusive emission (Fan et al., 2008).

To study these particle acceleration processes in various astrophysical systems, a nu-

merical approach is imperative because of the multi-scale nature of the astrophysical

plasma. Numerical study for plasma systems can broadly be categorized into differ-

ent classes. Direct computation, mainly known as Particle in Cell (PIC) method,

where Newton-Lorenz force law is solved along with Maxwells equation describing

the dynamical evolution of the electric and magnetic field (Giacalone & Ellison,

2000; Nishikawa et al., 2007; Sironi & Spitkovsky, 2011; Spitkovsky, 2008). This

first principle approach has been taken by various researchers to study the particle

acceleration processes (Comisso & Sironi, 2018; Marcowith et al., 2020; Wong et al.,

2019). The next numerical scheme studies the plasma by solving the Vlasov equation

for particle distribution evolution along with Maxwells equations (Palmroth et al.,

2018). This scheme provides the advantage to study various plasma behaviour dis-

tinctively. This approach also enables us to study particle acceleration processes

in different physical settings. Similar to this approach, another approach is often

taken to study particle acceleration process in the quasi-linear approximation where
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a Fokker-Plank equation is solved in order to evolve the cosmic ray spectrum due

to interaction with MHD waves (Donnert & Brunetti, 2014; Miniati, 2001; Vazza

et al., 2021; Winner et al., 2019).

Another numerical procedure studies the plasma in the fluid regime, also known as

magneto-hydrodynamic (MHD) regime. This numerical procedure assumes plasma

to be sufficiently collisional. That is why this procedure is incapable of capturing

the physics of particle acceleration because collisions would make them to follow a

Maxwellian which is in contrast to the observed power-law trend for the distribu-

tion of the accelerated particles. Though fluid approach fails to capture the particle

acceleration process, it provides the background for the particles to interact with

various MHD waves and accelerate. Recently some research has been devoted to

combine the fluid and the PIC approaches (Bai et al., 2015) to study the DSA

(Mignone et al., 2018). The final numerical method uses Monte-Carlo technique to

study particle acceleration by shock wave (Achterberg & Krulls, 1992; Baring et al.,

1994; Marcowith & Kirk, 1999; Wolff & Tautz, 2015) and turbulence (Giacalone &

Jokipii, 1999; Teraki & Asano, 2019). Among all the numerical techniques avail-

able the Particle in Cell method has an advantage (Baring, 2004; Ellison & Double,

2002; Ellison et al., 1990; Lemoine & Pelletier, 2003; Niemiec & Ostrowski, 2006;

Ostrowski, 1988) over all other techniques because PIC not only can model the par-

ticle acceleration process, it also determine the self-generated magnetic turbulence,

and treat them self-consistently with the cosmic ray particles. But the disadvantage

of the PIC technique is, it is computationally very expensive (Ellison et al., 2013).

And in order to bypass this problem other numerical techniques are used. Among

them the kinetic test particle approach is one of the most efficient one because it

could easily be incorporated with multi-scale simulations.

As most of the sources of particle acceleration act simultaneously in different regions

of astrophysical sources, it is imperative to develop a framework that can study such
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region to understand role of individual acceleration process. In this work, we use the

kinetic test particle approach to study the competing and complimentary actions of

DSA and STA. Other complimentary approaches have focused on studying the role

either of the acceleration processes individually, for example, Donnert & Brunetti

(2014); Miniati (2003); Miniati et al. (2001) have demonstrated the role of STA in

large scale galaxy clusters.

Recently, the existing Lagrangian particle module developed by Vaidya et al. (2018)

in the PLUTO Code (Mignone et al., 2007) has been applied to AGN jets at kpc

scales to study the impact of instabilities and subsequent shocks on particle acceler-

ation and non-thermal emission (Borse, Nikhil et al., 2021; Mukherjee et al., 2021).

In the present work, we extend this Lagrangian framework by incorporating the STA

process, to study the effect of both DSA and STA along with their roles in shaping

the emission structure in astrophysical sources. In this context, a macro-particle is

a Lagrangian entity that moves along with the fluid and collects an ensemble of real

particles (e.g. leptons) that are distributed in 1D momentum space.

The chapter is organised as follows; in section 3.2, we discuss the fundamental theory

and necessary equations to describe the STA process. In section 3.3, we propose

and describe a numerical algorithm to solve the cosmic ray transport equation. We

validate our algorithm and discuss it’s accuracy in section 3.4. We analyze STA

process in presence and absence of shocks in section 3.5 and also discuss the role of

several STA parameters through applications to test situations. Section 3.6 discusses

our findings and summarizes this work.

3.2 Turbulent Particle Acceleration : Theory

In this chapter, we aim to study the effect of MHD turbulence and shocks on cosmic

ray transport and their effect on the spectral signature of various astrophysical

systems. The process of interaction between cosmic ray particles and turbulent
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plasma is stochastic in nature. Due to the random nature of the interaction, the

energy of a cosmic ray particle follows a biased random walk, which leads the particle

distribution to follow a diffusion equation (Tverskǒi, 1967):

∂f0
∂t

=
1

p2
∂

∂p

(
p2Dpp

∂f0
∂p

)
=

∂

∂p

(
Dpp

∂f0
∂p

)
+

2Dpp

p

∂f0
∂p

, (3.1)

where, f0 is the particle distribution function that depends on time t and momen-

tum p. Dpp is the diffusion coefficient in momentum space. The above equation

resembles a Fokker-Planck equation (Blandford & Eichler, 1987). In a magnetized

medium charged cosmic rays are also prone to loose their energy via various radiative

and adiabatic losses. Inclusion of these loss effects along with the random interac-

tions with turbulent magnetic fields results in the evolution of the distribution of

relativistic cosmic ray particles as follows (Webb, 1989),

∇µ(uµf0+q
µ)+

1

p2
∂

∂p

[
−p

3

3
f0∇µu

µ+⟨ṗ⟩Lf0−Γviscp
4τ
∂f0
∂p

−p2Dpp
∂f0
∂p

−p(p0)2u̇µqµ
]

= 0.

(3.2)

The various terms of the equation are described below:

1. ∇µ(uµf0 + qµ) represents the change in f0, due to the spatial transport. qµ is

the spatial diffusion flux, uµ is the bulk four-velocity;

2. p3

3
f0∇µu

µ defines the energy loss/gain due to adiabatic expansion;

3. ⟨ṗ⟩Lf0 describes the radiative losses, such as synchrotron and various Inverse

Compton (IC) processes;

4. Γviscp
4τ ∂f0

∂p
is the particle acceleration term due to fluid shear (Rieger & Duffy,

2019);



3.2. Turbulent Particle Acceleration : Theory 51

5. p2Dpp
∂f0
∂p

represents the Fermi II order particle acceleration or STA process

(see Eq. (3.1));

6. p(p0)2u̇µq
µ originates because of the frame transformation.

Following Vaidya et al. (2018), we neglect the spatial diffusion flux qµ as well as the

acceleration due to frame transformation (i.e., terms 1 and 6). Also, acceleration

due to shear flow (Γvisc = 0) is not considered in the present study. Furthermore, the

omission of the spatial diffusion term is compromised by an inclusion of a momentum

independent escape term in Eq. (3.2) (Achterberg & Krulls, 1992), so that Eq. (3.2)

takes the form,

∇µ(uµf0) +
1

p2
∂

∂p

[
− p3

3
f0∇µu

µ + ⟨ṗ⟩Lf0 − p2Dpp
∂f0
∂p

]
= − f0

Tesc
, (3.3)

where Tesc is the escape timescale. The above equation is same one used in Vaidya

et al. (2018) to update the spectral distribution of a single macro-particle with the

additional contributions related to Fermi II order acceleration and the escape term.

Note that, for relativistic flows, the convective derivative can be expressed as,

uµ∇µ ≡ γ

[
∂

∂t
+ vi

∂

∂xi

]
=

d

dτ
, (3.4)

where τ is the proper time. Assuming pitch angle isotropy in momentum space

(p), the distribution function can be written in terms of the number density of the

relativistic particles as N(p, τ)dp = 4πp2f0dp with N(p, τ) being the number density

of non-thermal particles with momentum between p and p+dp. Accordingly Eq. (3.3)

can be written as,

dN

dτ
+

∂

∂p

[
−N∇µuµ

p

3
+

⟨ṗ⟩l
p2

N −Dpp
∂N

∂p

+
2NDpp

p

]
= −N∇µuµ −

N

Tesc
(3.5)

Transforming the independent variable from momentum (p) to Lorentz factor (γ)

following p ≈ γm0c, with c being the speed of light in vacuum and m0 being the
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mass of the ultra relativistic cosmic ray particles, Eq. (3.5) can be expressed as (see

Eq. 11 of Tramacere et al., 2011):
∂χp
∂τ

+
∂

∂γ
[(S +DA)χp] =

∂

∂γ

(
D
∂χp
∂γ

)
− χp
Tesc

+Q(γ, τ) ,

(3.6)

where χp = N/n, with n being the number density of the fluid at the position of

macro-particle, S corresponds to radiative losses and adiabatic loss/gain process

and DA = 2D/γ2 corresponds to the acceleration due to Fermi II order with D =

Dpp/m
2
0c

2. We also include Q(γ, τ) as a source term in Eq. (3.6), which accounts for

particle injection process from external sources.

A numerical approach to solve Eq. (3.6) without the terms on the right hand side and

DA has been discussed in an earlier work (Vaidya et al., 2018), along with the particle

energization through 1st-order Fermi acceleration at shocks. The numerical method

for DSA has then recently been improved to account for the history of particle

spectra by Mukherjee et al. (2021) and will be repeated here for completeness.

The improved version of the DSA routine includes a convolution of the upstream

spectra to the downstream region of the shock in an instantaneous steady state

manner. In particular, as the macro-particle crosses the shock, its downstream

spectra is updated as follows:

χdown
p (γ) ∝

∫ γ

γmin

χup
p (γ′)G(γ, γ′)

dγ

γ
(3.7)

where, χup
p (γ) is the distribution function far upstream and χdown

p (γ) is the steady

state downstream distribution function, G(γ, γ′) = (γ/γ′)−m+2, with m = 3r/(r−1)

and r is the compression ratio. Here, γmin is the minimum value of Lorentz factor

obtained from the upstream spectrum. The value of γmax, the upper-limit of the

convolution, is evaluated by equating timescales due to radiative losses and various

acceleration processes (i.e., DSA and STA) (Böttcher & Dermer, 2010; Mimica &

Aloy, 2012; Vaidya et al., 2018). Further, it is also ensured that the Larmor radius
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of the highest energetic lepton within a macro-particle has a radius equal to or less

than one grid cell width. Further details are explicitly mentioned in (Mukherjee

et al., 2021; Vaidya et al., 2018).

3.2.1 Momentum diffusion coefficient (D)

The micro-physical processes of the turbulent interaction are encapsulated in the

transport coefficients of Eq. (3.6). The mathematical form of these transport coeffi-

cients due to different interactions of cosmic ray and turbulent magnetized medium

have been derived for Alfvènic turbulence (see, for instance, Brunetti & Lazarian,

2007; O’Sullivan et al., 2009; Schlickeiser, 2002a).

In this work, we will consider STA following a 1D energy spectrum expressed as a

power-law in terms of wave vector norm |k|= k with exponent −q,

W (k) ∼ k−q, (3.8)

where, W (k) is the turbulent energy spectrum in Fourier space. The momentum dif-

fusion coefficient can therefore be expressed as (O’Sullivan et al., 2009; Schlickeiser,

1989),

Dpp ≈ β2
A

δB2

B2

( rg
λmax

)q−1p2c2

rgc
∝ pq, (3.9)

where p is the momentum of the cosmic ray particles, Dpp is the momentum diffusion

coefficient, βA is the Alfv́en velocity normalized to the speed of light, B is the mean

magnetic field, δB its fluctuations, rg is the particle gyroradius and λmax is the

maximum correlation length of the turbulent medium.

With the definitions above, the systematic acceleration timescale (tA) for STA can

be written as

tA ≈ β−2
A

l

c
. (3.10)

where l (the mean free path of the cosmic ray particle) can be expressed as

l ≈ B2

δB2

( rg
λmax

)1−q
rg. (3.11)

Therefore, the acceleration timescale (Eq. (3.10)) in terms of γ could be expressed
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as,

tA ≈ A2

2
ρc(m0γc

2)2−qBq−4λq−1
max, (3.12)

where, A = B/δB defines the turbulence level whose value is set to unity for the

present study (O’Sullivan et al., 2009).

3.2.2 Timescales

The processes described in Eq. (3.6) involve separate timescales due to different

radiative losses and STA process. These timescales can be expressed in terms of the

particle Lorentz factor γ as follows:

1. Radiative losses time due to Inverse Compton (IC) in Thompson limit and

synchrotron radiation, tL ∝ 1/γ;

2. Diffusion time due to Fermi II order momentum diffusion tD ∝ ( γ
γs

)2−q, for the

chosen diffusion coefficient D ∝
(
γ
γs

)q
. The value of tD therefore becomes a

constant, tD = 1/D0 with a choice of q = 2, where D0 is the proportionality

constant. Here, γs defines scale Lorentz factor which we have taken it to be

unity for all the cases considered in this work;

3. The acceleration timescale tA = tD/2, estimated from Eq. (3.6) with the ac-

celeration coefficient DA = 2D/γ.

These considerations are of crucial importance in devising a numerical scheme for the

solution of Eq. (3.6), since an explicit method would demand ∆t < min{tL, tD, tA}

for stability reason.

3.3 Turbulent Particle Acceleration : Algorithm
3.3.1 Numerical Method

Eq. (3.6) is a non-homogeneous, convection-diffusion like partial differential equa-

tion (PDE) with variable coefficients. This equation combines both hyperbolic and
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parabolic terms. The non-homogeneous character of the equation is attributed to

the presence of the source and sink terms.

While various numerical methods for the numerical solution of Eq. (3.6) have been

proposed (see, for instance Chang & Cooper, 1970; Winner et al., 2019), here we take

a more up-to-date and refined approach based on the employment of Runge-Kutta

IMplicit-EXplicit (RK-IMEX) schemes whereby the hyperbolic term of the PDE

are treated using an upwind Godunov-type explicit formalism while the parabolic

(diffusion) term is handled implicitly.

Also, in order to account for the large range of values taken by the particle Lorentz

factor γ, we employ a logarithmically spaced grid to provide equal resolution per

decade.

To this end, we first introduce a coordinate transformation for the independent

coordinate γ ∈ [γmin, γmax] in the following way,

ξ(γ) =
log(γ/γmin)

log(γmax/γmin)
, (3.13)

where, ξ ∈ [0, 1] is the transformed (logical) coordinate. Eq. (3.6) is then rewritten

as,

∂χ

∂τ
+ ξ′

∂

∂ξ
(Hχ) = ξ′

∂

∂ξ

[
Dξ′

∂χ

∂ξ

]
− χ

Tesc
+Q (3.14)

where we have dropped the subscript p for ease of notation, while ξ′ is the Jacobian

of this transformation given by Eq. (3.13),

ξ′ =
dξ

dγ
=

1

γ log(γmax/γmin)
, (3.15)

while H = S +DA, from Eq. (3.6).

In order to apply the RK-IMEX scheme, we discretize Eq. (3.14) on a one-dimensional

mesh of N points using the method of lines,

dχi
dt

= Ai + Di + Si, (3.16)
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so that the original PDE becomes a system of ordinary differential equations at the

nodal points i = ib, ..., ie, with N = ie − ib + 1. In Eq. (3.16), Ai is the advection

term, Di is the diffusion term and Si accounts for accounts for source and sink terms.

The advection term Ai is discretized in conservative fashion using the nonlinear Van

Leer flux limiter scheme (Van Leer, 1977),

Ai = −ξ′i
Fadv
i+ 1

2

−Fadv
i− 1

2

∆ξ
, (3.17)

where the advection flux follows an upwind selection rule,

Fadv
i+ 1

2
=

H(γi+ 1
2
)χL

i+ 1
2

H(γi+ 1
2
) > 0

H(γi+ 1
2
)χR

i+ 1
2

H(γi+ 1
2
) < 0 .

(3.18)

The left and right states χL
i+ 1

2

and χR
i+ 1

2

are constructed up to 2nd-order accuracy in

space using a slope limiter to prevent oscillations around extrema,

χL
i+ 1

2
= χi +

δχi
2
,

χR
i+ 1

2
= χi+1 −

δχi+1

2
,

(3.19)

with the ∆χi is the harmonic mean slope limiter (Van Leer, 1977),

δχi =


2∆χi+ 1

2
∆χi− 1

2

∆χi+ 1
2

+ ∆χi− 1
2

if ∆χi+ 1
2
∆χi− 1

2
> 0

0 otherwise

(3.20)

where, ∆χi± 1
2

= ±(χi±1−χi). Note that this scheme is 2nd-order accurate away from

discontinuities and that the reconstruction step demands for 2 ghost zones beyond

the active domain cells.

For the diffusion term Di, we also adopt a conservative formalim and choose a central

differencing approach yielding 2nd-order accuracy in the uniform ξ grid:

Di = ξ′i

Fdiff
i+ 1

2

−Fdiff
i− 1

2

∆ξ
, (3.21)

where,

Fdiff
i+ 1

2
= (ξ′D(γ, t))i+ 1

2

(
χi+1 − χi

∆ξ

)
, (3.22)

is the diffusion flux constructed following a central difference approach.
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In the RK-IMEX approach, the advection is carried out explicitly while the diffusion

operator and the source terms are handled implicitly. This allows to overcome

the restrictive time step limitation ∆t ≲ ∆ξ2/(ξ′D) imposed by a typical explicit

discretization.

We have implemented two similar approaches for the temporal integration of Eq. (3.16)

in the PLUTO code. The first one is the Strong Stability Preserving (SSP) scheme

(2,2,2) of Pareschi & Russo (2005).

Omitting the subscript i for simplicity,

χ(1) = χ(n) + ∆tαD(1)

χ(2) = χ(n) + ∆t
[
A(1) + (1 − 2α)D(1) + αD(2)

]
χ(n+1) = χ(n) +

∆t

2

[
A(1) + A(2) + D(1) + D(2)

]
,

(3.23)

where ∆t is the time-step, α = 1 − 1/
√

2.

For the second approach we choose ARS(2,2,2) scheme due to Ascher et al. (1997):

χ(1) = χ(n) + ∆t
[
αA(n) + αD(1)

]
χ(n+1) = χ(n) +

∆t

2

[
δA(n) + (1 − δ)A(1)

]
+

∆t

2

[
(1 − α)D(1) + αD(n+1)

]
,

(3.24)

where, α = 1 − 1/
√

2, δ = 1 − 1
2α

.

Both time-stepping methods require the inversion of two tri-diagonal matrices per

step, which we perform following the Thomas algorithm (Press et al., 1992). In the

present work, we will only show results from the SSP(2,2,2) scheme since results

obtained with the ARS(2,2,2) are similar. Furthermore, for the sake of comparison,

we have also implemented the standard Chang-Cooper algorithm (Chang & Cooper,

1970; Park & Petrosian, 1996) for solving the Fokker-Planck Equation.
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3.3.1.1 Boundary conditions

In order for our numerical method to operate correctly, boundary conditions (b.c.)

must be specified in the guard (or ghost) zones for i = ib − 1, ib − 2 and likewise

for i = ie + 1, ie + 2. Two common b.c. have been routinely employed (Marcowith

et al., 2020). The first one (zero-particle) is a Dirichlet b.c. requiring the value of the

distribution function χ to vanish in the ghost zones. This kind of boundary condition

in solving the cosmic ray transport problem is used, for instance, by Winner et al.

(2019). Another boundary condition is a Neumann-like condition requiring zero-

flux across the boundary interface. This condition has been used, for instance, by

Chang & Cooper (1970) to solve the Fokker-Planck equation. The zero-flux b.c.

conserves the integral of
∫
χdγ (the analogous of particle number conservation).

For more discussion on the boundary conditions for cosmic ray transport see Park &

Petrosian (1995). Unless otherwise states, we will employ the zero-flux b.c. to ensure

that without the presence of source and sink terms in Eq. (3.6), the total number

of particles remain conserved. At the implementation level, we enforce the zero-

flux b.c. separately according to the implicit/explicit stage level in our RK-IMEX

update:

• during the implicit diffusion step we impose zero-gradient b.c.:
χdiff
i = χdiff

ib
for i < ib

χdiff
i = χdiff

ie for i > ie

. (3.25)

where χdiff is the solution array immediately before the implicit step.

• during the explicit hyperbolic update we impose reflective condition
χadv
i = −χadv

2ib−i−1 for i < ib

χadv
i = −χadv

2ie−i+1 for i > ie

(3.26)

together with

Fadv
ib− 1

2
= Fadv

ie+
1
2

= 0 . (3.27)
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In Eq. (3.26) χadv represents the solution array immediately before the explicit

advection step.

A third b.c. is used to assess the accuracy of our algorithm against a reference or

analytical solution. In this case, the value of χ in the ghost zones is set to the

corresponding analytical value in those zones, unless otherwise stated.

3.4 Results : Code Validation Tests

In this section we proceed to assess the accuracy of our newly proposed algorithm.

For accuracy calculation, errors will be computed using the L1 norm, defined as

(Winner et al., 2019):

L1(N) =

N∑
i=1

∣∣χref
i − χnum

i

∣∣∆γi
N∑
i=1

χref
i ∆γi

, (3.28)

where, N is the number of energy bins. To further ensure that the scheme accuracy is

not get dominated by the spatial discretization, the increment in N is compensated

by the decrement in ∆t such that the ratio N/∆t stays constant (Vaidya et al.,

2017). In section 3.5 all the tests are performed following the zero-flux boundary

prescription. Furthermore all the simulations in this work are performed using the

SSP(2,2,2) scheme with Courant number 0.4, unless otherwise specified.

3.4.1 Simple Advection

We start by considering a simple advection benchmark by setting S = kγ2, DA =

D = 0 in Eq. (3.6). Here we consider two cases, owing to two diffrent values of

k = ±1. The analytical solution for the case of k = −1 is given by (Kardashev,
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Figure 3.1: Evolution of
the particle distribution
function and their corre-
sponding L1 error for the
simple advection follow-
ing S = γ2 (Top panel)
and S = −γ2 (Bottom
panel) case with IMEX-
SSP algorithm. Left
panel: shows the nu-
merical (solid lines) and
analytical (black dotted
lines) solutions at differ-
ent times. Right panel:
L1 norm errors at dif-
ferent resolutions (blue
dots) and 2nd-order refer-
ence slope (dashed lines).

1962; Sarazin, 1999):

χp =

N0γ
−s(1 − γ/γcut)

s−2, γ ≥ γcut

0, γ ≤ γcut

(3.29)

where, γcut = 1/τ , while for k = 1 we do not encounter such discontinuity in the

result,

χp = N0γ
−s(1 + γ/γcut)

s−2. (3.30)

The initial condition consists of a power-law spectrum, χp(γ, 0) = N0γ
−s with s =

3.3. For the numerical calculations, we consider the range of γ ∈ [10, 103] as our

computational domain. We show the evolution of χp and the corresponding error for

both values of k in Fig. 3.1, using 128 bins and fixed time step ∆τ = 0.00375. The top

left panel of Fig. 3.1 shows the evolution of χp for k = 1, while the bottom left panel

depicts the same for k = −1. The solid curves represent the numerical solutions

while the black dotted curves depict the analytical solution at the corresponding

time. For k = 1, the distribution function follows the analytical results closely, while,
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Figure 3.2: Left: Sim-
ple diffusion case for dif-
ferent times where solid
lines show the numerically
computed particle distri-
bution function and black
dotted curve depicts an-
alytical solutions. Right:
L1 error convergence plot
for the Simple diffusion
case with IMEX-SSP algo-
rithm.

for k = −1 some deviations are observed at a later stage (τ = 0.03) between the

analytic and numerical solution, owing to the steepening of the solution (Eq. 3.29).

A convergence test is shown for both cases in the right panel of Fig. 3.1 where we

plot the L1 error as a function of the number of bins. Blue dots and the black

dashed curve represent, respectively, the computed L1 error and a reference for the

1/N2 slope. For k = 1 (top right) results converge with 2nd-order accuracy for all

resolutions, while for k = −1 (bottom right) a slight deviation from the 2nd-order

convergence can be observed. This discrepancy is attributed to the discontinuous

nature of analytic solution presented in Eq. (3.29).

3.4.2 Simple Diffusion

Next, we solve Eq. (3.6) in the case of simple diffusion where, S = DA = 0 and

D = γ2. The analytical solution for this case can be written as (Park & Petrosian,

1995),

χp =
1

γ
√

4πτ
exp

{
− [log(γ0/γ) + τ ]2

4τ

}
(3.31)

We define the computational domain as γ ∈ [1, 106] and employ 128 logarithmically

spaced bins with a fixed time-step ∆τ = 0.0375. The initial condition is given

by the analytical solution (Eq. 3.31) at τ = 1.0 and γ0 = 100.0. The results are
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Figure 3.3: Left: Evolution of the particle distribution following Eq. (3.32) with
θ = 1. Dashed curves plot results obtained with the Chang-Cooper scheme, red
curves correspond to the SSP(2,2,2) scheme. Different shades correspond to different
times. Black dotted curve depicts the analytical solutions at the corresponding times.
Right: L1-norm error convergence for both Chang-Cooper (blue dots) and SSP(2,2,2)
(red dots) schemes. Black curves shows the reference slopes for the corresponding
schemes.

shown in Fig. 3.2. The left panel shows the evolution of the distribution function at

different times with solid (black dotted) curve representing the numerical (analytical)

solution. In the right panel of Fig. 3.2 the corresponding L1 error is shown by varying

the grid size from 32 to 4096 bins. Here 2nd-order convergence is observed uniformly

at all resolutions.

3.4.3 Hard-sphere Equations

The next numerical benchmark is intended to verify the correctness of our imple-

mentation when source and sink terms are present in the Fokker-Planck equation.

Additionally, we also compare our code with the standard Chang-Cooper algorithm

(Chang & Cooper, 1970). For this purpose, we solve the following Fokker-Planck

equation
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Figure 3.4: Time evolution of the integral
∫
χp(γ, τ)dγ is shown for the proposed

boundary condition (zero flux boundary) along with the boundary condition where
the value of the distribution functions in the ghost zones are computed from the
analytic expression (analytic boundary).

∂χp
∂τ

=
∂

∂γ

(
γ2
∂χp
∂γ

− γχp(γ, τ)
)
− θχp . (3.32)

The analytical solution of the previous equation can be written as (Park & Petrosian,

1995),

χp =
e−θτ

γ
√

4πτ
exp

{
− [log(γ0/γ) + 2τ ]2

4τ

}
. (3.33)

For the present purpose, we take the inverse escape timescale θ = 1 and the initial

particle distribution is obtained by setting τ = 1.0, γ = γ0 = 100.0 in Eq. (3.33).

The computational domain is taken as γ ∈ [1, 106] using 128 (log-spaced) energy

bins and a fixed time step ∆τ = 0.0375.

Numerical solutions obtained via the Chang-Cooper algorithm (dashed curves) and

the SSP(2,2,2) algorithm (solid lines) are shown in the left panel of Fig. 3.3 at dif-
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ferent time (colors). The analytical solution (dotted lines) is also superposed. The

corresponding resolution study is reported in the right panel of the same figure using

L1 error. From the plots it clearly appears that the Chang-Cooper algorithm con-

verges at 1st-order rate while the SSP(2,2,2) scheme gives full 2nd-order convergence,

so that even at low resolutions the latter yields an error which is already one order of

magnitude smaller than the former. At the resolution of N = 4096 the SSP method

outperforms the Chang-Cooper scheme by more than 3 orders of magnitude.

Notice that, although we employ a conservative discretization, particle number is

not strictly conserved for this test, owing to the chosen boundary condition which

allows a non-zero net flux through the endpoints of the computational domain. In

order to check particle conservation, we have therefore repeated the same test in

absence of sink (θ = 0) and by prescribing the zero-flux b.c. (see section 3.3.1.1).

Results for the previous and current b.c. are shown in Fig. 3.4. It can be observed

from the figure that while the integral due to the previous b.c (depicted by green

dots), decreasing with time, the integral due to the zero-flux b.c. (depicted by black

dots) remains constant. This validates the particle number conserving nature of the

proposed boundary condition.

3.4.4 Log-Parabolic Nature of Particle Spectra

It has been shown (Massaro et al., 2006; Massaro, E. et al., 2004) that the hump

structure in the spectral energy distribution (SED) of blazars could be described

with a log-parabolic curve and this log-parabolicity is speculated to have originated

from STA (Tramacere et al., 2011). Here we validate the log-parabolic nature of

the particle distribution due to STA which consequently translates to log-parabolic

nature of observed SED. In particular, we numerically solve the transport equation

(3.6), in its conservative form (without source and sink terms) using the zero-flux

boundary prescription, for STA including synchrotron losses. We choose our grid
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Figure 3.5: Top left : evo-
lution of the particle distri-
bution function with turbu-
lent acceleration and syn-
chrotron losses with two
magnetic field values. Top
right : evolution of the
curvature of the distribu-
tion function fitted with a
log-normal density profile
(Eq. 4.17). Analytic solu-
tion is shown in solid or-
ange line. Bottom panel :
χp(γ, τ)/γ2 as a function
of γ at steady state (τ =
30 ts), in agreement with
Eq. A.21. The plot shows
the increase as γ2 (black
dashed lines) followed by an
exponential cut-off.

as 1.0 ≤ γ ≤ 109 with 5000 computational bins and ∆τ = 0.003 with the following

transport coefficients,

S = −C0γ
2B2 , D = D0γ

2 , DA =
2D

γ
, (3.34)

where C0 = 1.28×10−9, D0 = 10−4 sec−1 is the diffusion constant. We employ 1/D0

as our unit time (ts).

Here, we consider the one-zone model for the blazar emission (Tramacere et al.,

2011) where the geometry of the acceleration region is taken as spherical with radius

R = 5× 1013 cm threaded by a magnetic field Bmag. In this region, the acceleration

is accompanied by the radiative losses. Moreover, in order to solve Eq. (3.6) we

consider a mono-energetic initial distribution χp corresponding to a total power

Linj = 1039 erg/sec, where

Linj = Npart
4

3
πR3

∫
γmec

2δ(γ − γinj)dγ, (3.35)

where, Npart is the total number of particles injected per unit volume and γinj = 10.0.
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The Dirac delta is approximated with a Gaussian distribution with σ = 0.5 and

µ = 10 and it is shown by the purple solid line in left panel of Fig 3.5. Furthermore,

Eq. (3.6) is solved by adopting two different magnetic field values Bmag = 1G, 0.1G

and the corresponding distribution of χp for time τ = 30 ts is shown in the top left

panel of Fig. 3.5.

The numerical solution is shown in the top left panel of Fig. 3.5 for different magnetic

field strengths. We point out that the steady-state distribution is expected to have

an ultra-relativistic Maxwellian form as described in Eq. (A.21) in Appendix A.2.

This is confirmed in the bottom panel of Fig. 3.5 where we plot χp/γ
2 as a function of

γ, showing that our results correctly reproduce the γ2-dependence of the spectrum.

Also, in order to quantify the effects of acceleration and radiative losses on the

spectral evolution, we estimate the curvature of the distribution function. The

curvature is measured by finding the peak value of the distribution function at each

time-step which is also the point at which tL = tA (Katarzyński et al., 2006, see also

Sec. 3.2.2) and subsequently fitting a log-normal curve through 10 points centered

around γc (the energy at which the maximum occurs). The curvature is then taken

as the inverse of the variance of the best fit. In particular, we adopt the fitting curve

(Kardashev, 1962) as follows:

χfit =
A

γσ
exp

{
− (log(γ) − µ− σ2)2

4σ2

}
, (3.36)

with curvature parameter defined as r = 1/(4σ2). The fitting curve is a solution to

the Fermi II order transport equation (Eq. 3.6 with S = 0, D = γ2 and DA = 2D/γ

without sources and sinks) when σ2 = τ , therefore the evolution of the curvature r

goes as ∼ 1/(4τ). In the top right panel of Fig. 3.5 we compare r in the acceleration

region (yellow solid line) with r numerically calculated by fitting Eq. (4.17) with the

particle distribution, at each time, for different Bmag values (red and black dotted

lines) .

Our results show that the fitted curvature initially decays with time as r ∝ ts/4τ ,
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following a trend of curvature in the acceleration region, and then a sudden jump of

the curvature to the steady value of r = 0.25 can be observed. The results therefore

confirm that, during the earlier stages, STA dominates the evolution of the particle

distribution function and, later, that steady state is reached much faster for stronger

magnetic fields, as confirmed by the curvature evolution (black dots in the top right

plot of Fig. 3.5).

Summarizing, the numerical benchmarks proposed in this section validate our im-

plementation and demonstrate that the proposed SSP(2,2,2) scheme is fully conser-

vative and it provides full 2nd-order accuracy, in contrast to its predecessors (i.e.

Chang & Cooper, 1970; Winner et al., 2019) with typical 1st-order accuracy.

3.5 Effect of Turbulent acceleration in presence of Shocks

In this section, we describe the effect of STA on particle spectra in presence of shock.

In particular, we consider several test situations where the equations of classical or

relativistic MHD are solved using the PLUTO code (Mignone et al., 2007) along

with Lagrangian particles to model the non-thermal emission (Mukherjee et al.,

2021; Vaidya et al., 2018) in presence of DSA and radiative losses. To study the

effects of STA, the newly developed algorithm (see section 3.3) has been incorporated

into the Lagrangian framework. The effects of DSA and STA on particle spectra and

subsequent non-thermal emission signatures are compared for various test situations

and discussed in the following.

3.5.1 Non-relativistic MHD Planar shock

Here we perform a simulation of a non-relativistic MHD planar shock interacting

with a single macro-particle in a turbulent medium. We solve the 2D ideal MHD

equations with adiabatic equation of state on a Cartesian grid x ∈ [0, 40] and y ∈

[0, 2] using 1024 × 128 grid zones. Initially, we place a shock wave at x = 1 which
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moves towards the increasing x direction. The upstream density and pressure, ρu

and Pu, are taken as 1 and 10−4, respectively, in dimensionless units. A random

density perturbation is added to simulate a non-homogeneous upstream medium.

The magnetic field is defined as B = B0(cos θ, sin θ), where θ (the obliquity) is

the angle between B and the direction of shock normal. For our purpose, we have

considered θ = 30◦ while B0 is computed from the plasma beta, β = 102 = 2Pu/B
2
0 .

The physical units adopted for this test are: length L̂0 = 100 pc, density ρ̂0 =

10−2 amu while the unit velocity is taken to be the speed of light c. With this

choice, pressure will be given in units of P̂0 = 1.5 × 10−5 dyne/cm2, magnetic field

in units of B̂0 = 1.4 × 10−2 G and time in units of τ̂0 = 326.4 yrs.

The particle is initially located at (x, y) ≡ (1.5, 1.0) with an energy distribution

following a steep decreasing power-law profile with index 9. The grid ranges in

10 ≤ γ ≤ 1010 using 128 (log-spaced) bins. The particle spectrum (Eq. 3.6) is

evolved accounting for synchrotron, inverse-Compton losses and adiabatic loss/gain

along with the diffusion effect, modelled following the STA timescale (Eq. 3.12).

Additionally, the effect of shock is captured via the steady state update convolution,

Eq. (3.7). We also vary the index q for various turbulent spectra W (k) ∝ k−q in

three different scenarios: a) with only STA and no shock, b) both shock and STA

and c) both shock and STA with the latter active only in the downstream region.

The value of λmax is taken to be L̂0/105 for all the simulations.

The result in the case of a turbulence spectrum following W (k) ∝ k−2 is shown

in Fig. 3.6 where tA (see section 3.2.2) is independent of γ. The top panel shows

the Lagrangian particle position on top of the background gas density distribution

at t = 56.13. The evolution of the particle energy spectra with various radiative

losses and different acceleration scenarios are shown in the bottom four panels using

different colors (as indicated by the colorbar). The upper plot depicts the evolution

of the particle spectra for the situation when only DSA is effective. As the shock
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Figure 3.6: Top section: Density map of a fluid with a lagrangian particle (shown
in white dot). The upstream region is shown in blue, and the downstream region
is shown in green. Bottom section: Particle spectra in various scenarios with q =
2 turbulence spectrum. Particle spectra Middle left : For the case of only DSA
with a compression ratio of 3.89 and various losses. Middle right : In a turbulent
medium with various losses but no shock. Bottom left : With the both shock of
same compression ratio, turbulence and various losses. Bottom right : For turbulence
present only at the downstream region. The black dashed curve shows the particle
energy spectrum for the time when the density map snapshot is taken.

hits the particle, the spectra becomes flatter and radiative and adiabatic losses give

rise to a cut-off that gradually shifts from larger values of γ to lower values.

The evolution of the particle spectra due to STA alone is shown in the corresponding

right panel. The spectra is now considerably different when compared to the previous

case since, owing to turbulence and losses, particle energization occurs continuously

rather than just when crossing the shock. The spectra evolves towards the typical

steady state of the ultra-relativistic Maxwellian, as observed in the section 3.4.4,

with a peak value γc ∼ 108 when tA = tL. We also notice that the high energy cut-
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Figure 3.7: Steady-state parti-
cle distribution with shock and
turbulence acceleration for var-
ious turbulence spectra. Left :
For q = 2, Middle: for q = 5/3
and Right : for q = 3/2. The
solid blue line depicts the case
of turbulent acceleration with-
out shock; the orange line de-
scribes the case of shock and
turbulence acceleration consid-
ering both regions ahead and
behind of shock are turbulent,
and the green line also describes
the shock and turbulence accel-
eration scenario where only the
post-shock region is turbulent.

off does not ever decreases to lower values of γ (as for the pure DSA) but, rather, it

settles into a steady state as the result of mutual compensation between losses and

STA.

In the bottom left plot, we show the evolution of the energy spectrum in the presence

of both shock and STA. Both the upstream and the downstream are turbulent. In

this scenario, the distribution function becomes harder than the initial one owing to

the presence of upstream turbulence. The height of the spectrum now considerably

increases if compared to the previous two cases. Such an increase is primarily due

to the sub-grid modeling adopted at the shock front: the particle enters the shock

with a pre-accelerated spectrum and eventually ends up in the downstream region

with a different steady state (when compared to the STA alone case).

Finally, the particle energy evolution for the case in which STA is active only in

the downstream region is shown in bottom right panel. As expected, the particle

distribution does not significantly change until the particle crosses the shock and

then enters in the downstream region where turbulence is active. Here steady state
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Figure 3.8: Dependence
of γc on various param-
eters for turbulent ac-
celeration. Left : De-
pendence of γc on vari-
ous B field, Middle: De-
pendence of γc on vari-
ous ρ values and Right :
Dependence of γc on
various values of λmax.
Data point from corre-
sponding simulations are
shown as dots and the re-
sult from analytic calcu-
lations (see Eq. (3.37)) is
shown with a dashed line
for reference.

is attained due to STA. In this sense, the evolution resembles the previous case.

Further notice that, for all the cases but the pure DSA one, the particle distribution

functions eventually seem to achieve steady states of similar kind. This is expected as

the predicted steady state spectrum depends on the functional form of the transport

coefficients which are not affected by the presence of the shock.

3.5.1.1 Effect of turbulence on evolution of particle spectra

Additionally, in Fig. 3.7 we compare the particle steady-state distribution for tur-

bulent spectra with q = 5/3 (middle), and with q = 3/2 (right) with that obtained

for q = 2 (left).

The main difference between the acceleration scenario for turbulent spectrum with

q = 2, on one side, and q = 5/3 or q = 3/2, on the other, is that the latter achieve

steady state more rapidly because of the dependence of tA on γ.

Furthermore, the steady-state spectra for q = 5/3, 3/2 in the case of shock and STA

are not significantly different from the ones computed with STA alone (see blue
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and orange solid line in the middle and right plot of Fig. 3.7). Owing to the smaller

acceleration timescale, in fact, the spectra for q = 5/3, 3/2 approach the steady state

only when the particle arrives in the upstream region making the shock injection less

effective (see section 3.6) compared to the q = 2 case. However, for the case where

turbulence is present only in the downstream region, shock injection can clearly be

observed (solid green line in Fig. 3.7) as no significant turbulent energization took

place in the upstream region.

Additionally, we analyze the behaviour of γc, with various values of B0, ρu and λmax.

Analytically the value of γc can be calculated by equating tA to tL and yielding

γc =

2 × 103 ×

(
eBλmax

mec2

)2−q
ρλmax


1

3−q

(3.37)

Plots of γc computed from simulation data with different values of B , ρ and λmax

are compared in Fig. 3.8 toghether with the analytic form (Eq. 3.37). We observe a

good correspondence between the results.

3.5.1.2 Interplay of DSA and STA

In the previous section we found that the shock acceleration depends on the upstream

spectrum. With this motivation here we try to analyze the impact of STA on particle

shock energization by modulating the acceleration timescale tA and display its effect

on the shock injection with different compression ratios. Moreover, we define the

value of tA in terms of tL at γ = 1.0 and for each choice of tA, we perform the

simulation up to time τ = 100 τ̂0. Owing to the conserving nature of the boundary

condition, the number of micro-particles in a macro-particle remains same once the

shock takes place, thus by calculating the number of micro-particles after shock we

estimate the effect of shock injection when STA is in process. The variation of total

number of particles after shock is shown with ratio tA/tL at γ = 1.0 for different

shock compression ratio in Fig. 3.9 with a fixed magnetic field calculated using
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Figure 3.9: Dependence of shock injection on the upstream spectrum for various
shock compression ratio with β = 100.0. The obliquity is made fixed at 30◦. In
the inset the downstream distribution function is shown for two different values of
tA/tL.

β = 100.0. Further, the corresponding particle spectra at τ = 100 τ̂0 is plotted for

two values of the ratio and is shown in the inset of Fig. 3.9.

When tA is much less than tL at γ = 1.0 (or the ratio tA/tL is small) the particle

spectrum reaches the log-parabolic steady-state (see section. 3.5.1), before shock

hits the particle. making the shock injection less effective. On the other hand when

the ratio tA/tL is comparatively high, one observe very minute effect of STA on

the particle distribution in the upstream making the shock injection very effective

for this case. Furthermore, notice that for any value of tA/tL shock with higher

compression ratio injects more number of particles than the lower ones. Also from

the distribution functions shown in the inset, for two different values of tA/tL, it can

be observed that the spectra that were hit by strong shock (high compression ratio)

reach to the steady state much faster compared with the spectra hit by moderate
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shock (moderate compression ratio). Moreover, the decrement of the γc (see section

3.5.1.1) with increasing tA/tL could also be seen. Additionally, the number could be

seen to achieve a steady state, around N ∼ 10−6, at the higher values of tA/tL implies

an upper bound of the particle injection at the shock for different compression ratios.

In summary, we observe that the effect of shock injection on the particle distribution

function depends on the nature of the upstream particle distribution spectra. If the

timescale of the STA in the upstream region is such that the particle distribution

converges to steady-state spectra before the DSA could take place, the effect of

shock injection becomes minimal. However, if in the upstream region the particle

spectra do not reach the steady-state before the shock hits the particle, then a

considerable effect of shock injection on particle spectra could be seen. This analysis

spanning a wide parameter base, therefore showcases the interplay of these two

particle acceleration processes.

3.5.2 Relativistic Blast Wave

Here we focus on the impact of a relativistic blast wave on the evolution of the

spectral distribution in the presence of both shock and turbulence. Due to the

underlying symmetry of the problem we choose a single quadrant with 5122 Cartesian

computational zones with x, y ∈ [0, 6]. The initial condition consists of an over-

pressurized central region of circular radius 0.8L̂0 filled with pressure and density

{Pc, ρc} = {1, 1} surrounded by a uniform medium with {Pe, ρe} = {3×10−5, 10−2}.

The magnetic field is taken perpendicular to the {x, y} plane, B = B0ẑ as in Vaidya

et al. (2018). The boundary condition is set to be reflecting at x = y = 0 and

outflow elsewhere. We initially place 360 Lagrangian macro-particles uniformly over

0 < ϕ < π/2 at the radius of
√
x2 + y2 = 2. Physical units are chosen such that

L̂0 = 10 pc, ρ̂0 = 0.01 amu, P̂0 = 1.5 × 10−5 dyne/cm2, v̂0 = c, B̂0 = 1.37 × 10−2 G

and τ̂0 = 32.64 yrs. The initial distribution function for each macro-particle is taken
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Figure 3.10: Temporal evolution of particle distribution of a Lagrangian particle in
a turbulent medium for relativistic blast wave with different B fields. The turbulent
spectrum is taken as ∝ k−2, so the value of q is 2 and the value of λmax = L̂0/10.
Left : Corresponds to B0 = 5×10−2B̂0, Middle: Depicts the evolution of the particle
distribution for B0 = 5 × 10−3B̂0 and Right : Corresponds to the evolution for
B0 = 5 × 10−4B̂0. Dashed blue line corresponds to the initial distribution function
which is ∝ γ−9.

to be a steep decreasing power-law profile with index 9 covering a range in Lorentz

factor γ ∈ {1, 108} discretized using 128 bins. Similar to the MHD planar shock

test (section 3.5.1), the diffusion coefficient is modelled following the acceleration

timescale. The other microphysical processes considered are synchrotron, Inverse-

Compton losses and adiabatic loss/gain.

The evolution of the particle distribution for a macro-particle initially placed at

65◦, for q = 2, is shown in Fig. 3.10, where the particle evolution is shown for

3 different magnetic fields: B0 = 5 × 10−2 (left panel), B0 = 5 × 10−3 (middle

panel) and B0 = 5× 10−4 (right panel). Furthermore, in all three cases the value of

λmax = L̂0/10.

For the case with strongest magnetic field, the particle distribution initially evolves
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Figure 3.11: Spectral
slope distribution of
particles initially placed
at different angle (ϕ) at
the final time (τ = 6)
with B0 = 5 × 10−4B̂0 for
the relativistic blast wave
test.

due to STA and, after crossing the shock, a steady-state ultra-relativistic Maxwellian-

like spectral distribution can be seen to emerge eventually with a sharp cut-off be-

yond γc ∼ 108. On the contrary, for the weakest magnetic field case, the spectral

evolution shows distinct signatures of DSA only. Indeed, STA signature can hardly

be observed as the timescale obeys tA ∝ B−2 (see Eq. 3.12), thus very large for the

simulation time. In this case, the initial steep spectra is accelerated and the spectral

slope is flattened and cooling due to synchrotron and IC emission is evident from

the cut-off. Moreover, it should be noted that the particle can be energized beyond

γ > 109. For the intermediate case, we observe effects of both shock and STA in

shaping the particle spectra.

Additionally, we quantified grid orientation effects by estimating the slope of the

distribution functions for each macro-particle as a function of their initial angular

positions. This is shown, at time τ = 6 for B0 = 5 × 10−4B̂0, in Fig. 3.11. The final

slope for all the macro-particles approximately fall in the same range (≈ −4) with ad-

ditional variations due to discretization error (∼ 2%). Therefore all macro-particles

will have similar spectral distribution as shown for the typical macro-particle in

Fig. 3.10, apart from the minor variations due to discretization error.

3.5.3 Relativistic Magneto-hydrodynamic Jet

In this section, we describe a toy model of a relativistic magneto-hydrodynamic jet

and analyze its emission signatures due to the DSA and STA of cosmic rays. In
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Figure 3.12: Temporal evolution of the spectrum of a Lagrangian particle which has
gone through shock atleast once, in the RMHD Jet. Top: For the case of only DSA
Bottom: For the case with STA along with DSA.

particular, we employ a 2D cylindrical grid {R,Z} ∈ {0, 0} to {20, 50} using 160 ×

400 grid cells. The ambient medium is initially static (V m = 0) with constant density

ρm = 103ρ̂0, where, ρ̂0 = 1.67 × 10−24 gr cm−3. An under-dense beam with ρj = ρ̂0

is injected into the ambient medium with velocity vz along the vertical direction

through a circular nozzle of unit radius, Rj = L̂0 from the lower Z boundary. The

value of vz is prescribed using the Lorentz factor γj = 10 and L̂0 = 100 pc implying

an unit timescale of τ̂0 = 326.4 yrs. The magnetic field is purely poloidal, B = Bzêz

and is initially prescribed in jet nozzle and also in the ambient medium,
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Bz =
√

2σzPj. (3.38)

where, Pj is the jet pressure at R = Rj estimated from the Mach number in the

following way M = vj
√
ρj/(ΓPj) + 1/(Γ − 1) = 6 and adiabatic index Γ = 5/3.

The values for σz is taken to be 10−4 for the present simulation.

We further inject 25 Lagrangian macro-particles every two time steps with an initial

power-law spectral distribution with index −9 on a initial γ grid with {γmin, γmax} ≡

{1, 105} discretized with 128 bins.

The energy spectrum of the macro-particles are calculated for two different scenar-

ios: i) considering only DSA and different losses and ii) considering, in addition, also

stochastic processes. For scenario (i) we follow the numerical algorithm developed

in Mukherjee et al. (2021); Vaidya et al. (2018) to estimate the particle spectral

distribution, while for scenario (ii) we solve Eq. (3.6) without the source and sink

terms, along with the diffusion coefficient D ∝ γ2, where the proportionality con-

stant is computed from the value of tA following Eq. (3.12) and with the value of

λmax = L̂0/100. The advection term S accounts for synchrotron, Inverse Compton

losses and adiabatic loss/gain. Also, compared to the previous test problems here

we take Courant number 0.8 when solving Eq. (3.6). Moreover, for both scenar-

ios we compute the emissivity for each macro-particle based on their local spectral

distribution and interpolated it on the underlying grid (Vaidya et al., 2018).

In Fig. 3.12, we show the spectral evolution of representative particles, that have

been shocked at least once, for each of the scenarios. The top panel shows spec-

tral evolution of a representative particle for the case where acceleration is due to

shocks alone. The effect of DSA and radiative losses are clearly visible, respectively,

from the spectral flattening and from high energy cut-offs. Here the cut-off can

be observed clearly, as during DSA, the maximum energy get shifted according to
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Figure 3.13: Comparison between the emission from turbulence and DSA and only
DSA for radio frequency, 1.4GHz at time τ = 200. Notice that the radial coordinate
has been mirrored in the left plot.

the prescription described in Sec. 3.2. When the maximum γ exceeds its initial

value, cooling processes become effective so that the macro-particle quickly cools,

accounting for a sharp spectral cut-off.

The bottom panel shows the spectral evolution of similar particles for the case where

STA is also included (besides DSA). the distribution reveals a hump-like structure

in the low-energy end of the spectrum that slowly shifts towards higher γ values.

With time, this eventually leads the distribution function to reach a steady state, as

described by Eq. (A.21). Notice that our choice of parameters (Eq. 3.12) is such that

the acceleration timescale tA is larger or comparable to the dynamical time, leading

to feeble acceleration. We also point out that, during the initial stages, the particle

spectrum exhibits a pile-up effect at low γ, because of the finite grid constraint, as

discussed in section 3.4.3. This spurious effect dims with time as lower γ particles

start to accelerate toward higher γ. The impact of DSA (in addition to STA) can be
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Figure 3.14: Same as Fig. 3.13 but for optical blue light frequency 6.59 × 105GHz
at time τ = 200.

distinguished from the flattening of the spectral distribution. The more pronounced

low-energy cutoff is attributed to the lower energy particles being accelerated by

STA, eventually creating a deficiency in the number of particles at low γ.

From the instantaneous spectral distribution of Lagrangian macro-particles spread

across the computational domain, we estimate the synchrotron emissivity by con-

volving the macro-particle spectra with single electron synchrotron spectra and in-

terpolated it on the computational grid (see Eq. 36-37 in Vaidya et al., 2018). In

Figs. 3.13, 3.14 and 3.15, the emissivity Jν computed from the Lagrangian macro-

particles is shown for different frequencies at time τ = 200τ̂0 for the two different

scenarios (left and right halves, respectively).

In Fig. 3.13, with 1.4 GHz radio frequency, the emission due to turbulence and shock

(right half) is very similar to the case with DSA only (left half). For the case with

optical frequency (ν = 6.59 × 105 GHz) (Fig. 3.14), the emission becomes less than

the radio frequency (Fig. 3.13) for both cases with and without STA. This is expected
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Figure 3.15: Same as Fig. 3.13 but for 0.4KeV X-Ray at time τ = 200.

because of the faster cooling time with higher energy. However, a significantly larger

emission can be seen in case ii) in the region Z ≲ 10. The material in this region

originates from the back-flow dynamics of the jet (Cielo et al., 2014; Matthews et al.,

2019). If only shock energization is accounted for, the particle spectra become very

steep in this region owing to radiative losses and the absence of strong shocks.

However, if STA is also taken into account, the spectra remain hard because of the

competing effects of STA and radiative losses. Similar high emission features are

observed in X-ray (ν = 108 GHz) as well (right panel of Fig. 3.15). On the contrary,

in the presence of DSA only, a significant reduction in the X-ray emission can be

seen (left half). Here most of the emission originates from the regions near jet head

as well as isolated spots in the cocoon. In addition, smaller emission centers can be

observed in the region around the re-collimation shocks along the beam. This differs

from the case with DSA + STA, where the emission pattern was wider and more

uniformly distributed throughout the jet and the backflow region.
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3.6 Discussion and Summary

This chapter focuses on the numerical modeling of stochastic turbulent acceleration

(STA) and its physical contribution to the spectral evolution of highly energetic

particles. The numerical formulation is based on the fluid-particle hybrid framework

of Mukherjee et al. (2021); Vaidya et al. (2018) developed for the PLUTO code,

where the non-thermal plasma component is modeled by means of Lagrangian macro-

particles embedded in a classical or relativistic magnetized thermal flow.

The particle distribution function is evolved by solving numerically a Fokker-Planck

equation in which STA is modelled by two components: a hyperbolic term describing

the systematic acceleration (Fermi II) and a parabolic contribution accounting for

random resonant interaction between particles and plasma turbulent waves. While

Vaidya et al. (2018) presented a Lagrangian method for the solution of the Fokker-

Planck equation in the presence of hyperbolic terms only, here we have introduced

a novel Eulerian algorithm to account also for an energy-dependent diffusion coef-

ficient D ∼ γ2 which can become stiff in the high-energy limit. To overcome the

explicit time step restriction, the new method takes advantage of 2nd-order Runge

Kutta Implicit-Explicit (IMEX) methods, so that hyperbolic terms (e.g. adiabatic

expansion or compression / radiative losses / Fermi II) are treated explicitly while

parabolic terms (modelling turbulent diffusion) are handled implicitly.

Selected numerical benchmarks validated against analytical solutions and grid res-

olution studies demonstrate that our implementation has improved stability and

accuracy properties when compared to previous solvers (see for example Chang &

Cooper, 1970; Winner et al., 2019). In addition, due to the presence of boundary

condition our algorithm respects physical constraints (for example, γ ≥ 1) which

are not always satisfied in the Lagrangian method (Mukherjee et al., 2021; Vaidya

et al., 2018) with an evolving grid. STA modeling has also been validated against

radiative synchrotron loss process by studying the evolution of curvature of particle
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spectrum (Tramacere et al., 2011).

With these motivations, we have studied the effect of STA as well as other energiza-

tion processes, on the particle spectrum in the presence of shocks, using toy-model

applications. Such an interplay is commonly believed to operate in supernova rem-

nants, AGN radio lobes, galaxy clusters and radio relics.

As a first application example, we considered a simple planar shock in four different

acceleration scenarios. We found that when STA and DSA both are considered, the

former seems to affect the shock injection by changing the macro-particle distribution

function. Further tests with different forms of the diffusion coefficient reveal a similar

behavior. Additionally, we have also quantified the effect of STA time scale on the

radiative losses and its influence on the interplay with DSA. In particular, we observe

that the effect of shocks on particle distribution weakens with decreasing STA time

scales. Similar interplay of DSA and STA was also evident in case of spherical shock

formed in the test case of RMHD blast wave.

Finally, we have extended our algorithm to explore the emission properties of the

axisymmetric RMHD jet using a toy model. We find a significant difference both

in the evolution of the spectral distribution and the ensuing emission signatures

due to the presence or absence of the STA process. In particular, inclusion of STA

results in diffuse emission within the jet back-flow, particularly in the high-energy

X-ray band. Consequences of such an important finding will be further explored in

forthcoming works focusing on astrophysical systems along with comparison with

observed signatures.



Chapter 4

Interplay of different Fermi
acceleration processes in the radio lobe

This chapter has been adopted from Kundu et al. (2022) 0, and it discusses the ef-

fect of the interplay of shock and stochastic acceleration on the non-thermal emission

from the radio lobes of the FR-II AGN jet systems. It considers a phenomenologically

motivated ansatz for stochastic acceleration, and by comparing various acceleration

scenarios, it demonstrates the complementary nature of the acceleration processes in

producing X-ray emission.

4.1 Introduction

Radio galaxies are thought to be among the most energetic systems in the Universe.

These extragalactic objects are observed to possess a huge reservoir of relativistic

nonthermal particles, which collectively shape their emission features (Blandford

et al., 2019). Furthermore, due to the abundance of highly energetic particles,

these galaxies are generally considered favorable sites to study various high-energy

phenomena (Meisenheimer, 2003). In recent years, thanks to the advent of multi-

0Kundu, S., Vaidya, B., Mignone A. and Hardcastle M. J. (2022) A numerical study of the
interplay between Fermi acceleration mechanisms in radio lobes of FR-II radio galaxies, Astronomy
& Astrophysics, vol. 667, 2022, https://doi.org/10.1051/0004-6361/202244251
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messenger astronomy, different observations have uncovered various features and

are helping us understand the different microphysical processes occurring in these

systems (Marcowith et al., 2020).

Low-frequency radio observations of these radio galaxies provide insights about their

morphological structures (see Hardcastle & Croston, 2020, for more details), their

magnetic field strength (Croston et al., 2005), and their age (Alexander & Leahy,

1987; Carilli et al., 1991; Mahatma et al., 2019). Based on the brightness of these

sources at 178 MHz, they are classified as FanaroffRiley (FR) class I (low power)

or II (high power) (Fanaroff & Riley, 1974). These two classes of radio galaxies

are observed to manifest different morphological structures. While FR-II sources

exhibit a one-sided smooth spine-like structure with a bright termination point,

FR-I sources show a two-sided plume-like structure. Additionally, FR-II sources

show prominent signs of turbulent cocoons that have an extent of a few hundred

kiloparsecs, and are often partly visible as lobes (Hardcastle & Croston, 2020; Mullin

et al., 2008). These lobes are believed to be highly magnetized cavities of rarefied

plasma where most of the jet kinetic power is deposited. Radio lobes also have a

hotspot region near the jet termination region, responsible for accelerating particles

to high energies via diffusive shock acceleration (DSA) (Araudo et al., 2018; Brunetti

et al., 2001; Prieto et al., 2002). These freshly shock-accelerated particles further mix

with the older plasma particles already residing in the lobe, which makes the lobe

a turbulent playground for various plasma waves to interact with the particles and

then accelerate them via stochastic turbulent acceleration (STA). This mechanism

has also been invoked to explain the particle acceleration in various astrophysical

systems such as solar flares (Petrosian, 2012), the corona above the accretion disk

of compact objects (Belmont et al., 2008; Dermer et al., 1996; Liu et al., 2004;

Vurm & Poutanen, 2009), supernova remnants (Bykov & Fleishman, 1992; Ferrand

& Marcowith, 2010; Kirk et al., 1996; Marcowith & Casse, 2010), gamma-ray bursts
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(Schlickeiser & Dermer, 2000), emission from blazars (see Asano & Hayashida, 2018;

Tavecchio et al., 2022, and references therein), Fermi bubbles (Mertsch & Petrosian,

2019), and galaxy clusters (Brunetti & Lazarian, 2007; Donnert & Brunetti, 2014;

Vazza et al., 2021). STA has been invoked as a possible mechanism for producing

ultra-high-energy cosmic rays (UHECRs) from the radio lobe of Pictor A (Fan et al.,

2008) and Cen A (Hardcastle et al., 2009; O’Sullivan et al., 2009). Recently, it

has also been invoked as a plausible candidate in explaining the spectral curvature

usually observed in FR-II radio lobes (Harris et al., 2019).

In addition to the radio observations, X-ray observations of these radio-loud active

galactic nuclei (AGNs) have become popular due to the minimal contamination of

the X-ray radiation by non-AGN sources. Several components of these sources, such

as radio lobes, hotspots, and collimated radio jet spines, are observed to radiate in

the X-ray band (de Vries et al., 2018; Massaro et al., 2018). Additionally, these lobes

are often observed to give rise to diffuse X-ray emission from the region between the

host galaxy and the radio hotspot, which is usually ascribed to the inverse-Compton

emission off the cosmic microwave background radiation (IC-CMB) (Blundell et al.,

2006; Croston et al., 2005; Hardcastle et al., 2002). Recent observations reveal that

the nonthermal X-ray emission from the radio lobe increases with redshift, further

supporting the IC-CMB origin (Gill et al., 2021). Diffuse X-ray emission has also

been reported in the jets of the FR-I class of radio galaxies and has been ascribed

to a distributed particle acceleration mechanism (Hardcastle et al., 2007b; Worrall,

2009; Worrall et al., 2008). An IC-CMB model is sometimes invoked to explain

X-ray emission from the jets of FR-II radio galaxies and quasars; however, such

models require the jet to be highly relativistic and well aligned with the line of sight

and consequently tend to imply very large physical jet lengths, sometimes in excess

of several megaparsecs (Celotti et al., 2001; Ghisellini, G. et al., 2005; Tavecchio

et al., 2000). Furthermore, recent polarimetric studies and high-energy gamma-
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ray constraints provide evidence supporting the synchrotron emission model as the

origin of diffuse X-ray emission from AGN jets (see Perlman et al., 2020, for a recent

review). This consequently requires particles with very high energies to be present

in the jet and also favours a distributed particle acceleration mechanism due to the

short synchrotron lifetime of the radiating particles.

The present work explores, for the first time, the interplay of vital particle accel-

eration mechanisms in a weakly magnetised plasma environment such as the radio

lobes of FR-II radio galaxies and studies their effect on the emission properties of

these systems. Due to the complicated evolution of the dynamical quantities as a

result of a nonlinear plasma flow pattern inside these lobes, we adopt a numerical

approach for this work. In particular, we employed magnetohydrodynamic (MHD)

simulations to produce radio lobes and analyze the emission features caused by par-

ticle energization in the presence of shocks and underlying turbulence. We adopted

our recently developed second-order accurate STA framework (Kundu et al., 2021)

for this purpose. Owing to the increased computational complexity of the developed

framework, this chapter focuses on a 2D axisymmetric MHD jet model only, while

leaving the more computationally expensive 3D case to forthcoming works.

The chapter is organised in the following way. We describe our numerical setup for

simulating a 2D axisymmetric AGN jet in section 4.2.1. Section 4.2.2 describes the

numerical model to compute the emission properties. In section 4.3 we present the

results of the simulations. In section 4.4 we summarize our findings and discuss the

limitations of our model.

4.2 Numerical setup

In this section we describe the numerical setup adopted for the present work. The

radio lobes are typically associated with the termination point of the AGN jet,

where the velocity of the jet material reduces considerably such that relativistic
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effects become negligible (Huarte-Espinosa et al., 2011). Furthermore, as shown by

Hardcastle & Krause (2013), numerical simulations of realistic radio lobes require

high Mach number flows as well as very high-resolution meshes in order to have

radio lobes in pressure equilibrium with the surrounding medium and to resolve the

transverse radial equilibrium. Therefore, to investigate the emission profile of the

radio lobes, we focus on a nonrelativistic scenario and perform a two-dimensional

axisymmetric ideal MHD simulation using the PLUTO code (Mignone et al., 2007).

In particular, we solve the following set of conservation equations

∂ρ

∂t
+ ∇ · (ρv) = 0 , (4.1)

∂v

∂t
+ (v · ∇)v = −1

ρ
∇P +

1

ρ
(∇×B) ×B , (4.2)

∂P

∂t
+ v · ∇P + ΓP∇ · v = 0 , (4.3)

∂B

∂t
= ∇× (v ×B) , (4.4)

where the quantities ρ, P , v, and B represents density, pressure, velocity, and

magnetic field, respectively; the magnetic field B further satisfies the constraint

∇ · B = 0; and Γ represents the ratio of specific heats and its value is taken to

be 5/3, which is typically considered for supersonic nonrelativistic jets (Massaglia

et al., 2016). Equations (4.1)-(4.4) are solved with the HartenLaxvan Leer contact

(HLLC) Riemann solver using piece-wise linear reconstruction, the van Leer flux

limiter (Van Leer, 1977) and second-order Runge-Kutta time-stepping. Addition-

ally, we consider divergence cleaning (Dedner et al., 2002) to satisfy the solenoidal

constraint of magnetic field.

4.2.1 Dynamical setup

The two-dimensional axisymmetric simulations are carried out in a cylindrical geom-

etry {r, z} such that the radial and vertical extents range from {0, 0} to {65L0, 195L0}

with a resolution of 780 × 2340. The physical quantities defined in our simulations
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are appropriately scaled by defining length, velocity, and density scales. For the

length we define the jet radius rj = L0 = 2 kpc as the scale length. The core density

is adopted as the scale for density such that ρ0 = 5 × 10−26 gm/cc. Finally, for an

ambient temperature Ta = 2 keV, we define the sound speed ca = v0 = 730 km/s as

the scale velocity.

The ambient medium density is initialized with an isothermal King profile (King,

1972)

ρa =
ρ0(

1 +
(
R
Rc

)2) 3β
2

, (4.5)

where ρa is the ambient density that consists of a core with radius Rc = 40L0, and

R/L0 =
√
r2 + z2 is the spherical radius. The value of the power-law index is kept

constant at β = 0.35. Initially, the ambient medium is set to hydrostatic equilibrium

using a gravitational potential (Φk) (Krause, 2005)

Φk =
3βkBTa
2µmH

log

(
1 +

(
R

Rc

)2
)
, (4.6)

where kB, µ, and mH are the Boltzmann constant, mean molecular weight, and

hydrogen atom mass, respectively. The ambient pressure (Pa) is computed as

Pa =
ρaTakB
µ

. (4.7)

The ambient medium is set to be nonmagnetized initially, with the expectation that

the magnetic field in the environment will have minimal impact on the nonthermal

particle transport and the subsequent emission features within the lobe.

An underdense beam of density ρj = ηρ0 with velocity vj is continuously injected

in the medium from a circular nozzle of radius rj, along the vertical direction (ẑ)

at t = 0, with η = 0.1 being the density contrast. The nozzle is placed within the

numerical domain with a height of 0.5L0. The adopted resolution samples the jet

nozzle radius with 12 computational cells. The injection velocity (vj) is obtained by
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choosing the sonic Mach number M such that

vj = Mca, (4.8)

with M = 25.0. The injected beam includes a toroidal magnetic field (Bj) with the

following radial profile (Lind et al., 1989)

Bj,ϕ =


Bm

r
rm

for r ≤ rm

Bm
rm
r

for rm ≤ r ≤ rj

0 otherwise

, (4.9)

where the value of Bm is governed by the plasma-beta parameter and rm is the

magnetization radius. This magnetic field profile corresponds to a uniform current

density within the radius rm, the zero current density between rm and r, and a return

current at r. Furthermore, this configuration also respects the symmetry condition

on the z-axis (Bj = 0 at r = 0) (Komissarov et al., 2007). Additionally, a suitable

gas pressure is provided inside the jet to ensure radial balance between the hoop

stress and pressure gradient force

Pj =


(
δ + 2

κ

(
1 − r2

r2m

))
Pe for r < rm

δPe for rm ≤ r < rj

Pe at r = rj

, (4.10)

where δ = 1 − r2m
κr2j

and κ = 2Pe

B2
m

, and Pe is the pressure in units of ρ0v
2
0 at the

nozzle radius computed from the ambient medium (Pe = Pa at r = rj). Owing to

the constraint imposed by the 2D axisymmetric geometry, the induction equation

(Eq. 4.4) does not enable conversion of the toroidal magnetic field (Bϕ) to a poloidal

one. As a result, we consider a minimum value of Bm ∼ 100µG to avoid significant

amplification of the Bϕ due to its continuous injection into the computational domain

over time. Furthermore, the initial kinetic power of the jet is calculated from the

quantities defined at the jet nozzle (Massaglia et al., 2016)

W =
π

2

(
ΓkBNA

µ

) 3
2

ηρ0r
2
jM

3T
3
2
a , (4.11)

where NA is Avogadro’s number. For the choices adopted in the present work, we
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obtain W ≃ 1045 erg/s corresponding to the FR-II class of radio galaxies (Fanaroff

& Riley, 1974).

For the boundaries we employ axisymmetric boundary conditions about the axis for

the inner r boundary and free flow boundary conditions for all the other boundaries

in the computational domain.

4.2.2 Numerical setup to compute emission

The nonthermal emission from the radio lobe is modeled using the Eulerian-Lagrangian

hybrid framework of the PLUTO code (Mukherjee et al., 2021; Vaidya et al., 2018).

It employs passive Lagrangian (or macro-) particles whose dynamics is governed by

the underlying fluid motion. Physically, these macro-particles represent an ensemble

of nonthermal particles (typically leptons) residing very closely together in physical

space with a finite energy distribution.

The energy distribution of these macro-particles is evolved by solving the transport

equation
∂χp
∂τ

+
∂

∂γ
[(S +DA)χp] =

∂

∂γ

(
D
∂χp
∂γ

)
, (4.12)

where τ is the proper time; γ ≈ p/m0c is the Lorentz factor of the electrons, with

m0 being the rest mass of the electron; and c is the speed of light in vacuum. The

dimensionless quantity χp = N/n, with N(p, τ) being the number density of the

nonthermal particles with momentum between p and p+dp and n being the number

density of the fluid at the position of the macro-particle. The quantity S represents

various radiative losses and adiabatic loss/gain. The acceleration due to the Fermi

second-order mechanism is given as DA = 2D/γ, with D being the momentum

diffusion coefficient. For simplicity, we neglect the source and sink terms in the

transport equation.

Equation (4.12) is solved using a second-order accurate finite-volume conservative

implicit-explicit (IMEX) scheme (Kundu et al., 2021). The radiative losses consid-
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ered include synchrotron, IC-CMB, and adiabatic expansion to model the cooling

processes of relativistic electrons. Additionally, as the particle spectra in the high-

energy region falls off rapidly due to various cooling processes, we follow Winner

et al. (2019) and set the values of χp = 0 beyond a threshold χcut = 10−21 . We

note that Eq. (4.12) does not include shock acceleration; instead, a separate sub-grid

prescription is employed to account for DSA (Mukherjee et al., 2021; Vaidya et al.,

2018).

The microphysics of turbulent acceleration is encapsulated in the diffusion coeffi-

cient D. Typically, the empirical form of D is given as an input in numerical simu-

lations (Donnert & Brunetti, 2014; Vazza et al., 2021) as its quantification from first

principles is complex, particularly when applied to study large-scale astrophysical

environments. In this work we opt for a phenomenologically motivated ansatz of

exponentially decaying hard-sphere turbulence as a model of STA inside the radio

lobe. We consider the acceleration timescale (tA) as (Kundu & Vaidya, 2022)

tA = τA exp{(t− τt)/τd}, (4.13)

where τd is the turbulence decay timescale, τA represents the acceleration timescale

when turbulence decay is absent (or τd → ∞), t is the simulation time, and τt is the

injection time of the macro-particle in a turbulent region. For a macro-particle that

encounters a shock, its value is set to the time at which the last shock is encountered,

while for those macro-particles that never undergo a shock the value of τt is set to

the initial injection time in the computational domain.

This acceleration timescale has the capability to mimic the decay of turbulence,

generally observed in various astrophysical sources. The decay is a consequence of

the finite lifetime of the turbulence and prevents particles from being continuously
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accelerated. For this work we model τA and τd as

τA =
τc(γmax → γmin)

α
,

τd = τA,

(4.14)

where τc(γmax → γmin) represents the radiative loss time for a particle to cool from

γmax to γmin, and α is the ratio of synchrotron cooling time to acceleration time,

which also controls the efficiency of STA. A higher value of α corresponds to smaller

τA (STA timescale) and τd (turbulence damping timescale). Hence higher α indicates

faster stochastic acceleration and faster damping. In addition, with lower values of

α the effect of STA asymptotically diminishes. It is a parametric representation

that models the turbulence that actually occurs in realistic radio lobes of FR-II

radio galaxies, which is unresolved in our simulation. In this work we vary its value

and study how this affects the emission signatures. The diffusion coefficient can

subsequently be written as

D =
γ2 exp{−(t− τt)/τd}

τA
. (4.15)

The γ2 dependency of the diffusion coefficient is a characteristic of the hard-sphere

turbulence. Furthermore, instead of a γ2 dependent diffusion coefficient, alternative

diffusion models can also be explored. For example, adopting Bohm diffusion (∝ γ)

could influence the results; however, a study of varying dependence of the diffu-

sion coefficient on γ is beyond the scope of the scope of the work presented here.

To explore the ramifications of STA with varying efficiency on the emission of the

simulated radio lobe structure, we use two alternative values for α = 104 and 105

in this study. Furthermore, to sample the jet cocoon uniformly, we inject enough

(∼ 20) macro-particles at every time step in the computational domain. Initially,

the normalized particle spectrum for each macro-particle is assumed to be a power

law, defined as χp(γ) = χ0γ
−9, ranging from γmin = 1 to γmax = 105. The value of

χ0 is set by prescribing the energy density of the macro-particles to be a fraction

(≈ 10−4) of the initial magnetic energy density. We note that the initial spectral
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index has a negligible effect on the emission of the system at later times as long as

we consider a steep power law.

To compute the emissivity, we convolve the instantaneous energy spectrum of each

macro-particle with the corresponding single-particle radiative power and extrap-

olate it to the nearest grid cells. In particular we solve the following integral to

compute the emissivity

j(ν ′, n′, τ) =

∫ ∞

1

P(ν ′, γ′, ψ′)N ′(γ′, τ)dγ′dΩ′, (4.16)

where P(ν ′, γ′, ψ′) is the power emitted by a nonthermal particle per unit frequency

(ν ′) and unit solid angle (Ω′) with Lorentz factor γ′, and whose velocity makes an

angle of ψ′ with the direction n′, and N ′(γ′, τ) is the number of micro-particles

between Lorentz factor γ′ and γ′ + dγ′ at time τ ′. In the case of an axisymmetric

simulation, the magnetic field becomes independent of the polar angle, and therefore

to consider the line-of-sight (LOS) effect in the synchrotron emissivity, an appropri-

ate coordinate transformation is required (Meyer et al., 2021). We transform the

magnetic field from cylindrical to Cartesian coordinates and compute the LOS effect

by rotating the simulated structure explicitly. The entire rotation (of 360◦) is per-

formed with an interval of 5◦. Subsequently, the intensity maps of the structure are

computed by doing a LOS integration of the calculated emissivity. We note that all

the emissivity calculations are performed by considering a viewing angle of θ = 90◦

(i.e., along the z = 0 plane in Cartesian coordinates).

4.3 Results

We categorize the major results from our simulations in two parts. The first part

gives an overview of dynamical aspects of radio lobes and the second part provides

a detailed analysis of multiwavelength emission signatures and particle acceleration

processes within these lobes.
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Figure 4.1: Normalized density ρ/ρ0 evolution of the simulated radio lobe structure.
The images depict a slice through the mid-plane of the notional 3D volume; all
images are reflection-symmetric around the jet axis and the z = 0 plane since the
simulations are axisymmetric. The color bar shows a logarithmic scale of density.

4.3.1 Dynamics

We carried out axisymmetric MHD simulations following the initial conditions de-

scribed in Section 4.2 using the relevant jet and ambient medium parameters. The

simulation was carried out up to a physical time of ∼ 120 Myr. In Fig. 4.1 we

show the density evolution of the injected jets at different times: t = 37, 64, 91,

and 117 Myr. The density structure at every time snapshot shows an expanding

bi-directional underdense region, which at a later time (t = 117 Myr) can be iden-

tified as lobes (English et al., 2016). Similarly to Hardcastle & Krause (2013), we

found the formation of a long, thin lobe initially and a transverse expansion after-
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Figure 4.2: Temperature, pressure, absolute velocity, and plasma-beta maps of the
simulated jet structure for time t = 117 Myr. Temperature and pressure are shown
in physical units, velocity is shown in units of c, and the color bars are shown in
logarithmic scale. The average temperature of the radio lobe is on the order of
∼ 70 keV, average plasma-beta is ∼ 32, and average velocity is ∼ 0.02c.

ward. This subsequent expansion in the transverse direction is attributed to the

thermalization of the jet material by the shocks present in the lobe. Furthermore,

we observe the formation of vortices at the lobe boundary, which are typically at-

tributed to Kelvin-Helmholtz instabilities originated from the velocity shear between

the lobe material and shocked ambient material. Moreover, the entire structure is

encapsulated within a forward-moving shock that can be seen to propagate through

the ambient medium. This shock remains in the computational domain throughout

the simulation time, preventing any mass, energy, and momentum from escaping the

domain.

In Fig. 4.2 we show the temperature (left panel), thermal pressure (second panel),

absolute velocity |v| (third panel), and plasma-beta (right panel) maps of the bi-

directional jet at time t = 117 Myr. The temperature of the lobe (average value of
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∼ 70 keV) is higher than the ambient medium (Ta = 2 keV). This is expected given

the presence of a strong shock at the jet termination region, which is responsible

for heating the jet material in the cocoon. The existence of the strong shock can

be seen from the pressure map, as shown in the second panel of the figure. The

pressure map also provides evidence of multiple re-collimation shocks along the jet

axis. These shocks are expected to be favorable sites for accelerating particles via

shock acceleration, and are known to be a source of localised high-energy emissions.

Furthermore, we observe that the velocity of the jet is within the nonrelativistic

limit, with an average value of ∼ 0.02c. The plasma-beta map, as depicted in the

right panel of the figure, shows that the lobes are thermally dominated with an

average lobe plasma-beta value of ∼ 32.

The underdense lobes observed in 2D simulations resemble the radio galaxies in a

more consistent manner at later times (Hardcastle & Krause, 2013), in particular

when the expansion results in the length of the underdense region being comparable

to the core radius of the galaxy. Therefore, in this work, for the emission studies,

we adopt the dynamical results at time t = 117 Myr.

4.3.2 Emission

We now look at the emission signatures of our model. The discussion is based on

the comparison of synthetic emission signatures from different runs considered in

our study. The parametric study focuses mainly on the properties of the stochastic

turbulent acceleration mechanism. The details of these simulation runs are listed in

Table 4.1; various acceleration scenarios are considered, corresponding to different

turbulent acceleration timescales tA, while the background thermal fluid evolution

remains exactly the same.

The results obtained from cases (a) and (b) are useful in comprehending the impact

of STA and its interplay with DSA. Cases (b) and (c) highlight the implications of
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Run ID DSA STA Turbulent decay α Remarks

Case (a) YES NO NO 0 Energy spectrum exhibits
power law with exponential
cutoff; PDF of γavg shows
power law; SED shows tran-
sient peaks.

Case (b) YES YES YES 104 Individual macro-particle en-
ergy spectrum exhibits curva-
ture; γmax PDF indicates ac-
cumulation of particles around
104; γavg PDF exhibits low-
energy cutoff. Peak radia-
tion from synthetic SED is
1010 Hz through synchrotron
and 1019 Hz via IC-CMB.

Case (c) YES YES YES 105 Individual macro-particle en-
ergy spectrum exhibits curva-
ture. γmax PDF shows parti-
cle accumulation around 105;
γavg PDF provides evidence of
low-energy cutoff. Synthetic
SED peak at 1013 Hz through
syncrotron and 1021 Hz via IC-
CMB.

Case (d) YES YES NO 104 Individual macro-particle en-
ergy spectrum exhibits steady
ultra-relativistic Maxwellian
structure peaking at γ ≈ 104.

Case (e) YES YES NO 105 Individual macro-particle en-
ergy spectrum exhibits steady
ultra-relativistic Maxwellian
structure peaking at γ ≈ 105.

Table 4.1: Properties of the different cases considered in the present study for cal-
culating emission from the radio lobe. Column 1 gives the case labels for further
reference. Columns 2, 3, and 4 represent the presence or absence of DSA, STA,
and turbulent decay effects on the emission runs. Column 5 gives the value of the
free parameter α (Eq. 4.14) chosen for different runs. The last column describes the
results for each of the cases.
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having different turbulent decay timescales (see Eqs. 4.13, 4.14). For cases (d) and

(e), the turbulent decay is turned off by setting τd → ∞ in Eq. (4.13). Comparing

results from these cases demonstrate the effect of the turbulent decay process in our

simulations. In realistic astrophysical environments, we expect the turbulence to

decay on a timescale that is governed by the micro-physical properties of the wave–

particle interaction in that system. As the current work incorporates turbulence

via a sub-grid model, we explored the implications of different parameters through

these five cases. All the results presented in this section are for a dynamical time of

117 Myr, unless specified otherwise. Logarithmic binning has been adopted for all

the histograms.

4.3.2.1 Effect of turbulent acceleration on individual macro-particle energy spec-
tra

In Fig. 4.3 we show the evolution of the energy spectra for all the cases listed in

Table 4.1 for a randomly chosen macro-particle that encountered final shock at a

dynamical time t = 25 Myr. In the simulations presented in this work the majority

of the Lagrangian macro-particles are observed to encounter more than one shock.

We selected one particular particle that had experienced multiple shocks only at

earlier times as a representative candidate to demonstrate the effects of turbulent

acceleration on the particle energy distribution in the downstream of the shock for

all the case scenarios. The effect of multiple shocks on the energy spectrum of a

Lagrangian macro-particle without STA has already been investigated in the context

of AGN jet simulation (see, e.g., Giri et al., 2022; Mukherjee et al., 2021).

The spectral evolution of the macro-particle of case (a) is shown in the top left panel.

The spectrum exhibits a power law with a high-energy cutoff which gradually shifts

to lower energy with time owing to various energy losses. Additionally, a small

hump can be seen in the low-energy part of the spectrum, caused by an excess of

lower energy electrons arising from their higher energy counterparts due to radiative
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Figure 4.3: Evolution of the energy spectrum for a randomly chosen macro-particle
for all the cases described in Table 4.1. The macro-particle encountered shock at
a dynamical time of t = 25 Myr. The color bar shows how much time has elapsed
since the simulation began. The value of the lower end of the color bar is set to the
time when the macro-particle encountered the final shock.
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cooling.

The shape of the spectrum changes considerably when STA is considered in addition

to DSA. For cases (d) and (e) (right plot of the middle panel and left plot of the

bottom panel, respectively) the spectrum exhibits an ultra-relativistic Maxwellian

distribution at later times. This is a consequence of a steady competition between

stochastic acceleration and radiative losses resulting in the acceleration of low-energy

electrons toward higher energies (Kundu et al., 2021). Moreover, the peak of the

distribution corresponds to the value of γ at which acceleration and loss timescales

match (i.e., τc = tA). We find that the peak corresponds to γ ≈ α and depends on

the choice of the turbulent acceleration timescale (see Eq. 4.13).

When turbulent decay is included (cases b and c) we observe flatness of the spectrum

in the lower energy regime, compared to the power-law behavior observed in case (a),

along with a high-energy cutoff. The flattening of the lower energy component of the

spectrum is a consequence of the fact that STA provides a continuous acceleration to

all the micro-particles, resulting in their acceleration to higher energies, depopulating

the low-energy regime.

We also note that for the macro-particles that have encountered a shock, STA starts

acting in the downstream and modifies the energy spectra on a timescale that de-

pends on tA (Eq. 4.13), which in turn is regulated by the turbulent decay timescale

τd, and consequently develops a cutoff that moves toward lower energies.

In summary, the spectral evolution of a macro-particle, presented in Fig. 4.3 for dif-

ferent cases, clearly indicates that the presence of turbulent acceleration significantly

affects the spectral energy distribution and its evolution. Our results indicate, in

the absence of turbulent decay, that spectral evolution eventually relaxes toward a

steady-state configuration in which energy losses are balanced by turbulent accel-

eration, while, when accounting for the decay of turbulence, the energy spectrum
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Figure 4.4: Probability distribution function of the cutoff energy for the entire
macro-particle population. The left, middle, and right panel shows the PDF for
case (a), (b), and (c), respectively.

exhibits a nonstationary behavior in time and the cutoff is governed by the radiative

loss timescale subsequent to the decay of turbulence. Furthermore, the spectrum

shows flattening in the lower energy regime owing to the energization of low-energy

micro-particles to higher energy by STA.

4.3.2.2 Effect of turbulent acceleration on particle population

This section focuses on the effects of turbulent acceleration on the entire macro-

particle population in the lobe. In particular, we compute the effect of the STA

with turbulence decay on the cutoff energy (γmax) for the macro-particle population.

To compute the cutoff energy of a macro-particle we consider a generic form of its

energy spectrum

γ−m exp

(
− γ

γmax

)
, (4.17)

where m can be positive or negative depending on the macro-particle and γmax is the

cutoff energy. The exponential decay term takes care of the effects on the spectrum

due to various radiative losses (see section 4.3.2.1). The value of γmax is calculated

by multiplying Eq. (4.17) by a power-law profile, γ10, and calculating the maximum

point of the resultant curve.



4.3. Results 103

In Fig. 4.4 we show the probability distribution function (PDF) of the maximum

(or cutoff) energy (γmax) attained by individual macro-particles for cases (a) (left

panel), (b) (middle panel), and (c) (right panel). For case (a) the distribution peaks

around γmax ≈ 102, followed by a broken power-law-like tail beyond that. The

origin of this peak can be attributed to the presence of various radiative losses in

the system. The peak is also observed to gradually move toward lower values of

γmax with time. To support this argument, we undertake the following exercise: for

a particle undergoing synchrotron cooling only, the initial Lorentz factor γ
′

after a

time period of t
′

becomes

γ∗ =
1

C0B2t′ + 1
γ′
, (4.18)

where C0 = 1.28 × 10−9 is the synchrotron constant for the electron and B is the

magnetic field. For our case, considering an averaged magnetic field of B = 19.70µG

and t
′

= 117 Myr, we obtain γ∗ ≈ 5.4× 102 for a range of γ
′

values, which correlates

with the position of the peak. The break in the power law around γmax ∼ 105 is

attributed to the continuous injection of the macro-particles in the computational

domain with γmax = 105 (see section 4.2.2). The presence of an additional smaller

peak around γmax ∼ 109 can also be observed. This smaller peak is a transient

feature, which arises from recently shocked macro-particles and is a manifestation of

the continuous injection of jet material along with the Lagrangian macro-particles

inside the computational domain. The presence of this transient peak has been

reported in earlier works as well (see, e.g., Borse, Nikhil et al., 2021). Furthermore,

the power-law trend of the tail of the PDF is typically ascribed to the interplay

between the continuous injection of macro-particles in the computational domain

and the shock acceleration of these freshly injected particles. This power-law-like

behavior of the distribution in an AGN jet cocoon is also reported in Mukherjee

et al. (2021).
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Figure 4.5: PDF of the γavg (see Eq. 4.19) for the entire macro-particle population.
The left, middle, and right panel shows the PDF for case (a), (b), and (c) respec-
tively.

The PDFs for cases (b) and (c) show some additional peaks compared to case (a).

The origin of the peak at γmax ∼ 102 is similar to case (a), while the high-energy

peak (γmax ∼ 109) is again due to recently shocked macro-particles. In addition,

humps are observed at γmax ∼ 104 (for case b) and at γmax ∼ 105 (for case c). Their

presence is caused by particles undergoing turbulent acceleration downstream of the

shock, resulting in freezing the evolution of the cutoff at γmax ≈ α for some time,

due to the competition between STA and radiative losses, and afterward, due to

the decay of turbulence, the cutoff continues to decrease toward lower energy, as

dictated by loss processes.

To understand the distribution of electron energy within macro-particles, we also

estimate the average value of γ (at the final simulation time, t = 117 Myr) denoted

by γavg as

γavg(t) =

∫ γmax

γmin
γN(γ, t)dγ∫ γmax

γmin
N(γ, t)dγ

, (4.19)

where γmax and γmin are given in section 4.2.2. In Fig. 4.5, we plot the PDF of γavg

for the entire macro-particle population. In the left panel of the figure we show the

PDF for γavg for case (a). The distribution exhibits a power-law tail (∝ γ−qavg, with

q ≈ 2.54) beyond γavg ∼ 102. For cases (b) and (c) in the middle and right panels of
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Figure 4.6: Integrated spectrum
of the entire macro-particle pop-
ulation for the three cases. The
portion of the spectrum high-
lighted in orange corresponds to
the low-energy break. The high-
lighted portions of the spectrum
in blue and green correspond to
the high-energy cutoff for case
(b) and (c), respectively.

the figure the PDFs exhibit a power-law distribution starting from γavg ∼ 103 with a

small hump and an exponential cutoff. The hump feature arises due to competition

between STA and radiative losses (see above). It is interesting to note that the slope

of the power law for cases (b) and (c) (q = 0.29, 0.38, respectively) are both flatter

than for case (a). This is a consequence of the fact that STA continuously supplies

energy to the macro-particles by accelerating the low-energy micro-particles to the

higher energy, thus compensating for the radiative losses, as opposed to the case with

only DSA. Finally, in the presence of both DSA and STA, the γavg PDFs exhibit

a low-energy break around γavg ∼ 103 because STA boosts low-energy particles

to higher energies. This process is absent if only DSA is present since there is

no selective mechanism to accelerate only the low-energy particles during shock

acceleration (which involves convolution of the entire upstream spectrum of each

macro-particles to downstream; Mukherjee et al. 2021), and hence γavg PDF cannot

form a low-energy break.

In Fig. 4.6 we present the integrated particle spectrum considering the whole macro-

particle population for each of the three case scenarios. The integrated particle

spectrum is calculated as

F (γ) =
∑
i

χip(γ)

Ni(γ)
∫
χip(γ

′)dγ′
, (4.20)

where i corresponds to individual macro-particles inside the computational domain,
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χip(γ) is the distribution function of the i-th macro-particle, and Ni(γ) represents the

number of macro-particles with Lorentz factor γ. The DSA spectrum (case (a)) is in

the form of a broken power law with the break at γ ≈ 5× 102 (region highlighted in

orange in the figure). This behavior is expected when computing a resultant distri-

bution comprising all the macro-particles, where the spectral evolution is mediated

by shock acceleration and radiative losses (Heavens & Meisenheimer, 1987). The

position of the break has a direct correspondence with the peak in the γmax PDF for

case (a) and can be explained by the same reasoning (see Eq. 4.18). When STA is

taken into account (cases (b) and (c)), the spectrum exhibits an inverse power-law

behavior for γ ≲ 4 × 102, followed by a low-energy break and a power-law trend

with a high-energy cutoff (highlighted in blue and green for cases (b) and (c), re-

spectively). The spectral behavior in the region γ ≲ 4×102 is a manifestation of the

low-energy flattening in the individual macro-particle spectrum (see section 4.3.2.1)

due to turbulent acceleration. The origin of the low-energy break bears a similar

explanation to case (a). However, for cases where STA is taken into account the

cutoff is accompanied by piled up micro-particles (see case (c) in Fig. 4.3) as opposed

to case (a), which is why the break appears more prominent in cases (b) and (c).

The high-energy cutoff in the integrated particle spectrum (at γ ≈ 104 for case (b)

and ≈ 105 for case (c)) is governed by the formation of the quasi-stationary cutoff

in the individual macro-particle spectrum due to the interplay of DSA and STA. As

a result, the position of these high-energy cutoffs has an exact correspondence with

the peaks observed in Fig. 4.4 for the cases where STA is taken into account. The

power-law trend beyond γ ≳ 106 for all the case scenarios is a consequence of the

continuous macro-particle injection in the computational domain and a fraction of

them subsequently undergoing shock acceleration.

In summary, turbulent acceleration with exponential decay modifies the macro-

particles’ maximum energy (γmax) distribution by presenting an additional hump
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Figure 4.7: Histogram of macro-particles with respect to Beq/Bdyn to further study
the effect of STA on the macro-particle population. The histograms are normalized
and then scaled with the maximum value. Top panel: Histograms for three different
cases at four different times (color-coded, see inset at right). The top left, middle,
and right panel shows the histogram for case (a), (b), and (c), respectively. Bot-
tom panel: Two-dimensional histograms showing τt vs. Beq/Bdyn at the final time
t = 117 Myr for three cases. The bottom left, middle, and right panel shows the
histogram for case (a), (b), and (c), respectively. The color bar at the bottom panel
shows the number of macro-particles.

to the PDFs. The location of the each hump is closely connected to the γ of in-

dividual macro-particles, where τc = tA. The PDF of γavg for cases (b) and (c)

exhibits a power-law trend with an exponential cutoff and a low-energy break. The

integrated spectrum with only DSA exhibits a low-energy break, whereas with STA

an additional cutoff at high energy is also seen.

4.3.2.3 Turbulent acceleration as a sustained acceleration process

In this section we examine how STA supports the macro-particles to sustain their

energy from extreme radiative losses. To properly characterize this behavior we
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consider an equivalent magnetic field for each macro-particle and compare it with

the dynamical magnetic field at the position of the macro-particle. This is computed

from the instantaneous single macro-particle energy distribution as
B2

eq

8π
= m0c

2

∫ γmax

γmin

γN(γ, t)dγ, (4.21)

where Beq is the corresponding equivalent magnetic field.

Following Eq. (4.21), we compute Beq for cases (a), (b), and (c) and compare it

with the corresponding dynamical magnetic field Bdyn computed at the local macro-

particle position at each instant. We plot the time evolution of the histogram of

the quantity Beq/Bdyn on a logarithmic scale for all three cases in the top panel

of Fig. 4.7, where orange, blue, green, and black curves in each panel depict the

histogram at times 5 Myr, 29 Myr, 58 Myr, and 117 Myr, respectively. All the

histograms are normalized so that the maximum peak value is unity.

As shown in the top left panel, for case (a) the histogram gradually shifts toward a

state with Bdyn ∼ Beq as time progresses. Cases (b) and (c) exhibit a similar pattern,

and a broadening of the histogram is observed as well. For case (a) the shape of the

PDF can be observed to evolve to a negatively skewed distribution on a logarithmic

scale. To analyze the reason for this evolution, we show a 2D histogram (bottom

left panel) depicting the value of τt with respect to the magnetic field ratio, which

indicates that the macro-particle population with a larger magnetic field ratio has

recently been shocked. This should not be surprising since the shock acceleration

energizes particles, thereby increasing Beq. The 2D histogram also shows that a

relatively small fraction of macro-particles has magnetic field ratios higher than

unity, due to the absence of any further acceleration process. As a result these

particles undergo strong cooling and quickly lose their energy, hence featuring an

exponential fall in the histogram beyond Beq ∼ Bdyn (top left plot of Fig. 4.7).

On the contrary, for cases (b) and (c) (top middle and right panels) the 1D histogram

evolves to a more extended structure, which closely resembles the log-normal shape.
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Figure 4.8: Syn-
thetic spectral
energy distribution
for case (a) (in
green), case (b) (in
red), and case (c) (in
blue). The SED due
to the synchrotron
mechanism is shown
in solid lines and
the IC-CMB part
is shown in dashed
lines. The vertical
axis shows the value
of νFν in arbitrary
units.

This extended form of the histograms is ascribed to the presence of STA which

provides a continuous acceleration to the macro-particles and helps them maintain

their energy even in the presence of radiative cooling. This is further confirmed by

observing the corresponding 2D histograms in the bottom panels (middle and right,

respectively). In contrast to case (a), both figures show more macro-particles in the

region Beq/Bdyn ≳ 1. We can also infer that even macro-particles that were shocked

earlier (smaller τt) feature a higher value of Beq/Bdyn as a result of the fact that

with STA macro-particles can sustain their energy for a longer amount of time.

In summary, for all the cases, we observe that the distribution gradually evolves

toward a state where Beq ∼ Bdyn. Furthermore, due to the presence of STA, com-

pared to only DSA, the histogram manifests a more extended structure that is evenly

spread due to the macro-particles that were shocked at earlier time, but could sustain

their energy from radiative losses because of STA.
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Figure 4.9: Spatial distribution of the particles responsible for the peaks in SED. Top
panel: Position of the particle population with γmax ∼ 104 for case (a) (left), case (b)
(middle), and case (c) (right). Bottom panel: Position of the particle population
with γmax ∼ 105 for case (a) (left), case (b) (middle), and case (c) (right).



4.3. Results 111

4.3.2.4 Synthetic spectral energy distribution of radio lobe

In Fig. 4.8 we present the spectral energy distribution (SED) for cases (a), (b), and

(c). The SED is calculated by integrating the emissivity (Eq. 4.16) along the line of

sight (Vaidya et al., 2018) with two different radiation mechanisms: synchrotron and

IC-CMB. The synchrotron SED shows, for case (a), enhanced emission in the X-ray

band with multiple peaks at ν ∼ 1018 and ν ∼ 1021 Hz. These peaks originate from

freshly shocked macro-particles (Borse, Nikhil et al., 2021; Mukherjee et al., 2021).

This can be further verified analytically using the relation between the critical (or

cutoff) frequency (νc) of synchrotron radiation and the corresponding γ (see, e.g.,

Eqs. (5.80) from Condon & Ransom, 2016):

νc ≈
γ2eB

2πmec
. (4.22)

For instance, with an averaged magnetic field of the lobe B = 19.70µG and νc ∼

1021 Hz, we obtain a corresponding value for γ ∼ 109, which is consistent with the

peak in the PDF of γmax seen in Fig. 4.4.

For case (b), in addition to similar shock-induced transient signatures, the syn-

chrotron emission shows a distinct peak in the low-energy GHz radio band (ν ∼ 1010

Hz). The origin of such a low-energy peak is direct evidence of turbulent acceler-

ation, and corresponds to the hump in the PDF at γmax ∼ 104 (see middle panel

of Fig. 4.4). Likewise, the synchrotron peak can also be observed for case (c) at

a slightly higher energy, ν ∼ 1013 Hz. The macro-particles that are accelerated via

STA and give rise to the peak in PDF around γmax ∼ 105 (right panel of Fig. 4.4) are

mainly contributing to the emission at this frequency band. The macro-particle pop-

ulation that is stochastically accelerated in cases (b) and (c) is not only responsible

for synchroton emission, but also contributes to the distinct peaks in the IC-CMB

spectral energy distribution (ν ∼ 1019 Hz for case b, ν ∼ 1021 Hz for case c). We

verified that these values correspond to the frequency of the photons scattered of

a population of electrons with energy γmax ∼ 104 and γmax ∼ 105 for case (b) and
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(c), respectively. The post-scattering frequency of the photons νs is related to the

electron energy as

νs ≈ γ2maxν0 , (4.23)

where ν0 is the frequency at which the cosmic microwave background (CMB) ra-

diates. Using ν0 = 160 GHz in Eq. (4.23), we find that an electron population at

γmax ∼ 104 would scatter the CMB photons at a frequency of ∼ 1019 Hz. A similar

inference can be drawn for the origin of the IC-CMB peak around ∼ 1021 Hz for case

(c). Additionally, the peaks in the γ-ray band (ν ∼ 1027 Hz) for all cases corresponds

to the particles with γmax ∼ 109.

After observing the SED and identifying the particle populations responsible for

the various peaks, we proceed to show the spatial distributions of these particle

populations in order to understand the resulting emission structure. In Fig. 4.9 we

show the spatial distribution of the particle populations responsible for these peaks.

The top panels depict the particle distributions with γmax ∼ 104 for case (a) (left

plot), case (b) (middle plot), and case (c) (right plot). These particles are correlated

to the peak in the SED caused by IC-CMB at ν ∼ 1019 Hz, as explained earlier in

this section. The macro-particles in case (a) can be seen to be more confined around

the shocks in the beam and, to a lesser extent, to the cocoon region. The reason is

that, after the shock acceleration, the macro-particles’ energy evolution is governed

by loss mechanisms alone, and as a result they lose a considerable amount of energy

in a short distance. On the contrary, when turbulent acceleration is included, the

particle distribution corresponding to γmax ∼ 104 stretches over a wider area (see

the upper middle and right plot) since macro-particles can be reaccelerated via

turbulence, sustaining high energy for a longer distance before losing a substantial

portion of their energy. In comparison to case (a), this extended spatial distribution

implies a more diffuse structure of X-ray radiation attributable to IC-CMB. In the

lower panel of Fig. 4.9 we show the spatial distribution of the macro-particles with
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Figure 4.10: Spectral
index map and spec-
tral index distribution
of the radio lobe for
cases (a), (b), and
(c). The spectral
index maps are drawn
considering two radio
frequencies, 1.5 GHz
and 15 GHz. Top left
panel: Spectral index
map for case (a), Top
middle panel: for case
(b), and Top right
panel: for case (c).
Bottom panel: Spec-
tral index distribution
for all three cases.

γmax ∼ 105, responsible for the peak in the IC-CMB SED at ∼ 1021 Hz. Similar to the

former scenario, the particle distribution shows an extended morphology for case (c)

compared to the other two cases for the same reasons discussed before. Interestingly,

the spatial distributions for case (a) (left panel) and case (b) (middle panel) have

a very similar structure. The reason for this can be investigated by comparing the

γmax histograms for case (a) and (b) (left and middle panels in Fig. 4.4), showing a

similar behavior (after the peak at γmax ∼ 104 for the latter).

In summary, we showed that in the presence of stochastic acceleration the emission

from the radio lobe changes significantly compared to the case where STA is ne-

glected. With the inclusion of STA, the spatial distribution of the X-ray emitting

particles through IC-CMB exhibit a wider extent (see Fig. 4.9) compared to the

DSA-only case, indicating an emission structure that is diffusive.
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4.3.2.5 Spectral index distribution

In this section we focus on the effect of STA on the radio frequency regime (≤

15 GHz). With the advent of several high-resolution low-frequency telescope arrays

it is possible to quantify the distribution of the spectral index in extended lobes

(Alexander & Leahy, 1987; Harwood et al., 2013). In this regime the emission

from astrophysical systems are dominated by synchrotron radiation, which follows a

power-law relation with the frequency Iν ∝ ν−δ, with δ being the spectral index. In

our simulation we compute the intensity from the macro-particle energy distribution

(see section 4.2.2) and further calculate the spectral index δ using the equation

δ =
log(Iν2) − log(Iν1)

log(ν1) − log(ν2)
. (4.24)

In the top panel of Fig. 4.10 we show the Gaussian-filtered spectral index maps of the

radio lobe considering two frequencies, ν1 = 1.5GHz and ν2 = 15GHz, for cases (a),

(b), and (c). All the spectral maps show signs of spectral steepening from the outer

regions of the lobe (near the bow-shock) toward the inner part. This spatial distri-

bution can be further analyzed by observing the bottom panel of the figure, where

we plot the vertical distribution of the spectral index value on the path depicted by

the black dashed line shown in the corresponding top panel, from the inner region

of the lobe to the outer region. The spectral index distribution behaves similarly for

all three cases, showing a rapid increase followed by a softer (or almost constant)

increase. By analyzing the slope of this second part, we obtain an average value for

case (a) of −1.01, while for cases (b) and (c) it is −0.80 and −0.49, respectively. This

implies that the radiation spectrum becomes harder with increasing α in the lobe.

The spatial extent of the region with constant spectral index is larger for case (b)

compared to cases (a) and (c). For case (a) this directly follows from the absence of

any continuous acceleration mechanism other than shocks, and the ensuing radiative

cooling of the macro-particles in the back flow over a short timescale. In contrast,

for cases (b) and (c), STA provides additional continuous acceleration to the macro-
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particles. For this reason, the macro-particles could radiate for a longer amount of

time and the value of the spectral index could be maintained for a longer distance.

Additionally, due to faster turbulence decay, case (c) maintains the spectral index

for a shorter spatial extent compared to case (b).

Our results have shown that the signature of the continuous acceleration of particles

is due to the stochastic turbulence impact on several observables, including the

spectral index variation along the lobe. We also observed that while with increasing

α the spectral index value inside the lobe increases owing to the shorter acceleration

timescale, the extent of the region with constant spectral index decreases due to

turbulence decay. We discuss the implications of the synthetic measures quantified

in section 4.3 with multiwavelength observational signatures in the next section.

4.4 Summary and discussion

In this work we presented 2D axisymmetric large-scale numerical simulations of

AGN jets using a fluid-particle hybrid approach, in order to focus on particle ac-

celeration processes and emissions from radio lobes. In spite of their limitations,

and owing to the prohibitive cost of 3D computations, 2D models still provide fun-

damental insights into the interplay between different acceleration mechanisms and

their influence on emission signatures.

Owing to the multiscale nature of the system, the underlying turbulence is considered

in a sub-grid manner and its effect on the cosmic ray transport is modeled with a

phenomenologically motivated ansatz for the turbulent acceleration timescale that

can mimic the turbulence decay process usually observed in various astrophysical

sources. By introducing this timescale, we solve the cosmic ray transport equation to

evolve their energy distribution, accounting for diffusive shock acceleration (DSA),

stochastic turbulent acceleration (STA), and for radiative losses (synchrotron and

inverse-Compton), as implemented in the PLUTO code by Vaidya et al. (2018). We
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explore different scenarios by selectively including or excluding these acceleration

mechanisms, and study their effects on the emission signatures of the radio lobes.

We summarize the primary results from this work as follows:

• We observe significant modification of the energy spectra of macro-particles

when turbulent acceleration is included in addition to DSA compared to the

shock acceleration-only case. The interplay of DSA, STA, and turbulent de-

cay results in features such as flattening of the spectrum in the low-energy

region and a dynamically evolving high-energy cutoff. These features produce

curvature in the particle spectrum which can further manifest in the emission

properties of the radio lobe (Duffy & Blundell, 2012).

• The analysis of the maximum attainable energy results in a unimodal PDF

with a broken power-law tail when only shock acceleration is accounted for;

instead, when both DSA and STA are included the PDF exhibits a bimodal

structure. Furthermore, the PDF of the average energy (γavg) for each macro-

particle shows a power-law profile with an exponential cutoff on inclusion of

STA. These distributions closely resemble the case in which STA is mediated

by continuous particle injection and escape (see Fig. 2b of Katarzyński et al.,

2006). Here particle injection due to shocks act as a source, while the escape

is due to turbulence decay. The lobe integrated spectrum exhibits a broken

power-law structure for DSA, whereas with STA it displays a high-energy

cutoff in addition to the low-energy break. The position of the low-energy

break corresponds to the γ where radiative loss time becomes equal to the

dynamical time. The integrated spectrum generated by including STA can be

utilized as a consistent input for one-zone radio lobe modeling that accounts

for particle acceleration due to turbulence.

• Further analysis of STA and its effect on sustaining the particle’s energy
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against radiative cooling is performed through the evolution of Beq/Bdyn his-

tograms, showing for all three cases that the system evolves to a state where

Beq ∼ Bdyn. However, with STA the corresponding distributions become wider

when compared to the shock-only scenario as a result of the additional ener-

gization.

• The study of the synthetic SED of the simulated source demonstrates the

existence of additional peaks in the radio band due to synchrotron emission,

and in the X-ray band through the IC-CMB mechanism when STA is taken

into account. Further analysis of the spatial distribution of the macro-particles

corresponding to these additional peaks implies a more extended and diffuse

emission in the X-ray band owing to the interplay of the two acceleration

mechanisms. The extent of the spatial distribution is further observed to be

modulated by changing the value of α (see Eq. 4.13). This implies that with

an appropriate choice of α one might achieve diffuse emission around localized

regions inside the radio lobe (e.g., diffuse synchrotron emission around the

hotspot of 3C445, see Prieto et al., 2002).

• The radio frequency spectral maps along with the spectral index profile inside

the lobe indicate a harder emission spectrum due to STA compared to the DSA

case. The spectral index is observed to remain constant over a distance inside

the radio lobe whose length is modulated with the efficiency of the turbulent

acceleration. The value of the spectral index in this region is ∼ −0.49 for

case (c), for case (b) it is ∼ −0.8, and for case (a) it is ∼ −1.01. This

behavior has also been found in various observations of radio lobes (Parma

et al., 1999). Radio lobes of parsec-scale AGN jets have been observed to

exhibit similar characteristics (Hovatta et al., 2014). However, it should be

noted that from observation of radio lobes there is no evidence of a spectral

index ≈ −0.5 or higher. This, consequently, may impose a limit to the extent
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and the effectiveness of STA in the actual radio lobes.

Present limitations and future extension

The results shown in the present study represent a first step toward a more realistic

description of the complex interaction between the turbulent radio lobe material and

the nonthermal particles, and it is certainly limited by a number of considerations.

Two-dimensional axisymmetric models, for instance, are similar to 3D models only

in the case of stable jets and homogeneous media. Time-dependent jet propagation

is known to be prone to 3D instabilities (e.g., KelvinHelmholtz and current-driven

modes) that cannot be captured by axisymmetric models (see, e.g., Bodo et al.,

2013, 2016; Mignone et al., 2010). These instabilities are known to have an effect

on the jet emission (Acharya et al., 2021; Borse, Nikhil et al., 2021) and can induce

a range of non-axisymmetric structures, such as filaments and shocks along jets and

in the back-flowing zone (see, e.g., Matthews et al., 2019; Tregillis et al., 2001).

These non-axisymmetric structures are known to enhance the turbulence inside the

back-flowing region, and hence would strongly influence particle mixing (Jones et al.,

1999).

Another potential issue with 2D axisymmetric simulations is that, because of the

∂ϕ = 0 condition, the induction equation (Eq. 4.4) does not allow conversion of a

toroidal magnetic field (Bϕ) to a poloidal field (Porth, 2013). This leads to the con-

tinuous amplification of the injected Bϕ component in the computational domain

over time, eventually affecting the jet dynamics. However, for this work we consider

a very small Bϕ value to lessen any substantial impact on the dynamics. Neverthe-

less, 2D computations still allow our method to be tested with finer grid spacing

providing better resolution across shocked structures. This would be computation-

ally expensive in the fully 3D case. Additionally, we also consider an un-magnetized

ambient medium in the expectation that the magnetic field in the ambient medium
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will have minimal impact on the nonthermal particle transport within the lobe.

Our simulations describe the interaction between cosmic ray particles and jet mate-

rials although the former behave essentially as passive scalars without back-reaction

on the fluid. A future extension of our work will consider more exhaustive two-fluid

approaches by also taking into account energy and momentum transfer between the

two components in a self-consistent way (Girichidis et al., 2020; Ogrodnik et al.,

2021). It should be emphasized that the employment of parameters in our model

is an unwanted, albeit necessary, consequence of the fact that large-scale simula-

tions cannot possibly resolve (and therefore sample) the small-scale turbulence re-

gions. Sub-scale micro-physical processes (such as turbulent acceleration timescales

or MHD turbulence damping rates) must therefore be encoded through a sub-grid

recipe. In this work, in fact, we consider a one-parameter exponentially decaying

hard-sphere turbulence as a model of STA inside the radio lobe, with certain values

for the parameter (α = 104, 105) and compute the emission signatures from the radio

lobes via synchrotron and IC-CMB processes.

Future extensions of this work will hopefully consider fully 3D investigations, where

the impact of non-axisymmetric plasma instabilities may deeply affect the morphol-

ogy. Additionally, the sub-grid prescription of turbulence decay plays a crucial role

in governing some of the essential properties of emission.



Chapter 5

Cosmic ray acceleration due to
small-scale MHD turbulence

This chapter is adopted from Kundu et al. (2023) 0, and discusses the effect of small-

scale turbulence on the stochastic acceleration of non-thermal charged particles. This

chapter illustrates the behaviour of the momentum diffusion coefficients in such a

turbulent environment using a quasi-linear calculation with an isotropic turbulence

spectrum taking into account no power in the resonant scale. Additionally, it inves-

tigates the interplay of stochastic acceleration due to small-scale turbulence with the

synchrotron cooling process.

5.1 Introduction

The transport of non-thermal charged particles dictates the emission properties of

various highly energetic astrophysical sources. Usually, this transport phenomenon

is mediated by a turbulent magnetic field, which subsequently leads the particles

to exhibit diffusive behaviour in both space and energy domains. Such a diffusive

behaviour in energy is a crucial component in accelerating the particles via the Fermi

0Kundu, S., Singh, N. K., & Vaidya, B. (2023). Acceleration of cosmic rays in pres-
ence of magnetohydrodynamic fluctuations at small scales. MNRAS, 524(4), 4950-4972,
doi:10.1093/mnras/stad2098
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mechanism since the efficiency and the rate of particle acceleration directly depend

on the scattering due to the random magnetic fields. This turbulent acceleration is

speculated to occur in different astrophysical sources with a diverse set of physical

conditions, from the solar atmosphere (Bian et al., 2012; Petrosian & Liu, 2004;

Selkowitz & Blackman, 2004) up to more exotic objects, e.g. blazars, gamma-ray

bursts and other relativistic outflows (Asano & Hayashida, 2018; Asano & Mészáros,

2016; Bykov & Meszaros, 1996; Lemoine, 2016; Tramacere et al., 2011; Xu et al.,

2019; Xu & Zhang, 2017). The magnetic turbulence also dictates the confinement

of these charged particles in various astrophysical systems (Shalchi, 2009; Vukcevic

& Schlickeiser, 2007).

An analytical quasilinear model of diffusion (Jokipii, 1966, 1973) has often been

used to estimate diffusion coefficients when the turbulent field is weaker than the

background magnetic field. Such analytical approach has been invoked to study

the acceleration of particles via various MHD modes [by Alfvén modes (Chandran,

2000; Cho & Lazarian, 2006; Schlickeiser, 1989); by compressive modes (Chandran,

2003; Schlickeiser & Miller, 1998; Yan & Lazarian, 2002)]. For strong turbulence,

on the other hand, several studies have employed numerical simulations to examine

the transport properties of charged particles (Candia & Roulet, 2004; Casse et al.,

2001; Fatuzzo et al., 2010; Giacalone & Jokipii, 1999). Most of these studies have

focused their attention on the situation in which large-scale turbulence cascades

toward smaller dissipative scales and the interaction between turbulent waves and

charged particles is mediated by particular resonance conditions. Further, in such

studies, it is also implicitly assumed that the particles gyro-radius is smaller than

the maximum scale of the turbulence spectrum.

However, in certain astrophysical scenarios, the particle’s gyro-radius can exceed

the maximum coherence length of the turbulence. One example is the transport

of supra-thermal particles near a relativistic shock, where sub-gyroscale turbulence
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is essential in scattering cosmic rays (CRs) and enabling them to complete enough

Fermi cycles for efficient acceleration (Lemoine et al., 2006). Additionally, such

situations can also arise when the gyro-radius of highly energetic charged particles

become comparable to albeit less than the Hillas limit of the system exceeding any

length scale where fluctuations can occur in the system (Reichherzer et al., 2022a).

Despite the wide application of this regime in several astrophysical systems, it has

gained little attention to date. Although some recent research has been devoted

to studying this under-explored field, it has primarily focused on the problem of

spatial transport (Casse et al., 2001). For example, Plotnikov et al. (2011) developed

an analytical formulation of the spatial transport coefficients compatible with the

numerical results for an intense small-scale random magnetic field. Furthermore, the

work by Subedi et al. (2017) is worth noting, which studies the spatial diffusion of

the charged particle in three-dimensional isotropic turbulent magnetic fields without

a mean field. Dundovic et al. (2020) studied the transport of energetic particles in a

synthetic magnetostatic turbulence, which in a way extended the work by (Subedi

et al., 2017).

In this work, we examine the momentum diffusive transport of charged particles

in high-energy (or rigidity) regime with Rl/lc >> 1, where Rl is the gyro-radius

of the particle and lc is the highest correlation length of the turbulence. A possi-

ble scenario that illustrates this concept involves a particle undergoing acceleration

through turbulent processes in a large-scale turbulent environment. As the particle

continues to accelerate, it will eventually reach a point where its gyro-radius exceeds

the correlation length of the turbulence that is accelerating it. This work seeks to ad-

dress the question of whether the particle’s motion will continue to be influenced by

the turbulence, despite having surpassed its correlation length. To investigate this

question, we focus on a turbulence spectrum that exhibits power at scales smaller

than the gyro-radius of the particle, but not at the scale of the gyro-radius itself.
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Using an asymptotic analysis of the quasilinear diffusion coefficient, we estimate the

transport coefficients corresponding to this regime. We also demonstrate the impact

of the interplay between stochastic Fermi acceleration due to small-scale turbulence

and synchrotron loss on the spectrum of non-thermal particles.

The chapter is organised in the following way: in section 5.2 we show the calculations

for the momentum transport coefficient for small-scale turbulence and the results

are shown in sections 5.3.1, 5.3.2 and 5.3.3. In section 5.3.4, we show the results

from solving the cosmic ray Fokker-Planck equation using the calculated transport

coefficient. Subsequently, in section 5.4, we discuss possible astrophysical situations

where the phenomena of small-scale turbulence can become potentially impactful on

the energy distribution of the non-thermal particles. We discuss and summarize our

findings in section 5.5, and in the appendix, we lay out all the required derivations.

5.2 Calculation of the transport coefficients due to small-
scale turbulence

In this section, we provide the derivation of the momentum transport coefficients

Dpp, Dµµ and Dµp due to sub-gyroscale perturbations in the presence of a mean

magnetic field, where p and µ are the momentum and pitch-angle of the non-thermal

particles, respectively. We begin with the following form of the diffusive transport
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coefficients in momentum space (Schlickeiser & Achatz, 1993):
Dµµ

Dµp

Dpp

 =
Ω2(1 − µ2)

2B2
0


1

mc

m2c2

Re
n=∞∑
n=−∞

∫ kmax

kmin

d3k
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0

dte−ι(k∥v∥−ω+nΩ)t

J
2
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Ω

)
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 (5.1)

where Ω = ΩNR/γ and m = γme are the gyro-frequency and mass of the rela-

tivistic non-thermal particle (electron for our case), respectively; ΩNR denotes the

non-relativistic gyro-frequency and γ is the Lorentz factor; wave number kmin cor-

responds to the inverse of some maximal length scale L as kmin = 2πL−1, and kmax

corresponds to the dissipation scale; v⊥ and k⊥ are the particle’s velocity and the

wave vector components perpendicular to the mean magnetic field B0 = B0ẑ; ϕ

represents the phase angle between the Cartesian components of the wave vector

in a plane perpendicular to the mean magnetic field, i.e., ϕ = tan−1(ky/kx); L and

R represent left and right hand polarizations, given by L,R = (x ± ιy)/
√

2, with

x and y being the Cartesian coordinates, and ι =
√
−1 is the imaginary number;

Jn(:) is the Bessel function of first kind with integer order n. Note that the diffusive

transport coefficients in Eq. (5.1) corresponds to the lowest order in VA/c with VA

being the Alfvén velocity. The above transport coefficients are only valid for Alfvén

modes, whereas for other compressible modes, additional terms are needed to be

considered in the equation for Dµp. Here we focus only on Alfvén waves because

of their damping free nature in fully ionised medium (Ginzburg, 1970; Kulsrud &

Pearce, 1969; Yan & Lazarian, 2002). Further, the terms Pij, Tij, Qij and Rij are
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defined using two point correlations at scales k and k′ as follows,〈
Bi(k)B∗

j (k
′)
〉

= δ(k − k′)Pij(k),
〈
Bi(k)E∗

j (k′)
〉

= δ(k − k′)Tij(k),〈
Ei(k)B∗

j (k
′)
〉

= δ(k − k′)Qij(k),
〈
Ei(k)E∗

j (k′)
〉

= δ(k − k′)Rij(k).

(5.2)

where Bi and Ei are the magnetic and electric field fluctuations. We also define

terms Cij and Yij that relate the magnetic field and velocity correlations as follows:〈
ui(k)B∗

j (k
′)
〉
/VAB0 = δ(k − k′)Cij(k),〈

ui(k)u∗j(k
′)
〉
/V 2

A = δ(k − k′)Yij(k), (5.3)

Further considering MHD turbulence, the Ohm’s Law implies E(k) = −u(k)
c

× B0

with u(k) being the Fourier component of the velocity fluctuation of the underlying

MHD flow. Adopting this expression of electric field in Eq (5.2) and using the

definitions provided in Eq. (5.3) we obtain,

Tij(k) = −B
2
0VA
c

ϵjpzCip (k) ,

Qij(k) = −B
2
0VA
c

ϵimzCmj (k) ,

Rij(k) =
B2

0V
2
A

c2
[δijYpp (k) − Yji (k)] (5.4)

where, z is the Cartesian coordinate along the mean magnetic field (see appendix A.3

for detailed derivation). To explore the effect of sub-gyroscale fluctuations threaded

by a coherent magnetic field on the momentum transport of the charged particles,

we consider both the isotropic and anisotropic turbulence spectra. In the isotropic

scenario we consider Alfvèn and fast wave turbulence, whereas for the anisotropic

case we only consider Alfvèn wave turbulence. Such considerations are motivated by

the fact that in wave-turbulence framework fast wave turbulence is known to follow

an isotropic spectrum and the Alfvèn wave turbulence follows a highly anisotropic

spectrum (Cho & Lazarian, 2002; Yan & Lazarian, 2002). However in literature

isotropic Alfvènic turbulence is also considered (see for example, Brose et al., 2016).

Moreover from solar wind data, the turbulence is found to become isotropic at and
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below electron gyro-scale range and the wave-wave interaction is found out to have

resemblance with kinetic Alfvén waves (Kiyani et al., 2012). In the following sections

first we calculate the momentum diffusion coefficients following an isotropic single

scale injection spectrum and subsequently we carry out the calculation with a more

realistic anisotropic turbulence.

5.2.1 Isotropic turbulence

In this section we focus on an isotropic single scale turbulence injection spectrum to

compute the momentum transport coefficient for high-energy charged particles. In

particular we consider the following spectrum,

Yij (k) =

(
δij −

kikj
k2

)
Pisoδ

(
k

m′kg
− 1

)
k−2 (5.5)

where, kg is the inverse of the non-relativistic gyro-radius of a charged particle,

kg = ΩNR/v, and m′ is a parameter which dictates the scale of the turbulent energy

injection. The choice of such a monochromatic injection spectrum is driven by

the expectation that the energy present in the outer scale of the turbulence would

maximally impact the high rigidity particles. Additionally, it has already been

observed that the behavior of these particles is only marginally influenced by the

specific form of the turbulence spectrum (Subedi et al., 2017). An estimation of Piso

in the definition of turbulent spectrum can be computed following the equipartion

between the total magnetic energy and kinetic energy (Yan & Lazarian, 2002),∫
d3kYii

ρV 2
A

2
∼ B2

0

8π
(5.6)

with ρ being the density and VA = B2
0/(4πρ) is the Alfvén velocity. Comparing the

value of the integration on the left side to the right side results in Piso ∼ (8πm′kg)
−1.

On substituting the correlation coefficients for MHD turbulence (Eqs. 5.2 and 5.4)
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in Eq. (5.1), we obtain the expression of Dpp as follows (see appendix A.4)
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(5.7)

On performing the integration, Dpp simplifies to (see appendix A.5),
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(5.8)

The above expression for Dpp consists of several integrations involving the Bessel

function within the limits of ±1, and analytical solutions of such integrations are very

challenging. We, therefore, consider integrating the above expression numerically to

obtain the functional form of Dpp. For that we further simplify Eq.(5.8) by noting

that the The bessel function Jx(y) contributes most significantly when x ≈ y, i.e.,

when the order of the Bessel function is approximately equal to its argument. This

gives,
ω

Ω
− m′kgxvµ

Ω
± 1 ≃ m′kgv

Ω

√
1 − x2

√
1 − µ2 ≫ 1 (5.9)

which implies an analogous resonance condition of the following form:

ω −m′kg · v ≃ ∓Ω. (5.10)

Furthermore, note that the presence of ≃ in the above equation indicates that this

condition has to be weakly satisfied. Therefore, we introduce a parameter to modu-

late the value of (ω−m′kg ·v±Ω) to broaden the resonance condition of Eq. (5.10).

Furthermore, it is important to highlight that the resonance condition mentioned in
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Eq. (5.10) is different from the quasilinear resonance expressed as,

k||v|| − ω ∓ nΩ = 0.

Such a quasilinear resonance dictates the interaction between plasma waves and CR

particles. The origin of Eq. (5.10) lies in the mathematical nature of the Bessel

functions. In this context, we consider a broadening parameter that modulates the

difference between the left and right-hand sides of Eq. (5.10). Hereafter, when re-

ferring to resonance broadening, we specifically refer to this type of broadening.

Additionally, it should be noted that the literature extensively discusses the broad-

ening of the quasilinear resonance (see Schlickeiser, 2002b; Yan & Lazarian, 2008,

for example), but this work does not consider it. The presence of this resonance

condition constrains the limit of the x integral in Eq. (5.8). To identify the limits

for Alfvén waves, we undertake the following exercise: The resonance condition due

to the shear Alfvén wave, (ω = k||VA = kxVA), becomes,

γm′kgVAx

ΩNR

−
m′kgc

√
1 − 1

γ2
µx

ΩNR

γ −
m′kgc

√
1 − 1

γ2

ΩNR

γ
√

1 − x2
√

1 − µ2 ≃ ∓1

=⇒ Ax− Bx−G
√

1 − x2 = Q, (5.11)

where the form of A, B and G are as follows,

A =
γm′ΩNRVA

ΩNRv
=

γβAm
′√

1 − 1
γ2

; B =
m′ΩNRcγµ

ΩNRv

√
1 − 1

γ2
= γµm′;

G =
m′ΩNRcγ

ΩNRv

√
1 − 1

γ2

√
1 − µ2 = m′γ

√
1 − µ2,

with βA being the Alfvén velocity normalized to c, βA = VA/c. Note that we have

used the definition of kg, while defining A, B and G. Further with the presence of

Q, the resonance broadening effect can also be considered. Our interest is to find

the range of x such that the following equation is satisfied,

Qmin ≤ γm′kgVAx

ΩNR

−
m′kgc

√
1 − 1

γ2
µx

ΩNR

γ −
m′kgc

√
1 − 1

γ2

ΩNR

γ
√

1 − x2
√

1 − µ2 ≤ Qmax

(5.12)
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Following the range of x through solving Eq. (5.12), we write the form for Dpp in

the following way,
Dpp

m2
ec

2
= Dγγ ≃ ΩNR
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(5.13)

where F+ corresponds to the range of x when Eq. (5.12) is solved considering Qmax =

1 + σ and Qmin = 1 − σ with σ being the broadening parameter. Similarly F−

considers the range of x for the solution of Eq. (5.12) with Qmax = −1 + σ and

Qmin = −1 − σ. We solve Eq. (5.13) for different values of m′, βA and σ and the

result of the numerical integration is discussed in section 5.3.1.

Now we proceed to compute the form of Dµµ considering the correlation tensor

Pij = B2
0Yij. Such an assumption for the correlation function is typically used for

Alfvén waves (see for example Yan & Lazarian, 2002). With this correlation function

and an exactly similar kind of calculation as shown in appendix A.4 & A.5 leads to

the following form for Dµµ,

Dµµ ≃ ΩNR

γ
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.(5.14)

Here also, due to the presence of the Bessel function, we consider numerical in-

tegration. Interestingly, owing to the isotropic nature of the turbulence, all the

components of the correlation function for Dµp come out to be imaginary (see ap-

pendix A.4). Therefore, Dµγ = Dµp/(mec) does not make any contribution toward

the transport of these non-thermal particles.
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5.2.2 Anisotropic turbulence

In this section we calculate the momentum transport coefficient considering a re-

alistic power law like turbulence spectrum for Alfvèn waves. We further consider

the maximum turbulence correlation length to be smaller than the gyro-radius of

the charged particle by considering unit step function. In particular we choose the

following form for the anisotropic turbulence spectrum,

Yij(k) = Paniso

(
δij −

kikj
k2⊥

)
Θ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ , (5.15)

where Θ corresponds to Heaviside Theta function and Paniso being the injected

turbulent power; m′kg and m′′kg are the respective scales of k⊥ and k|| where the

turbulence energy is being injected, with kg = ΩNR/v; ki and kj corresponds to the

components of wave vector k, in the perpendicular direction of the magnetic field.

The motivation behind choosing such a spectral form for the anisotropic turbulence

spectrum stems from the observation that, at the largest length scale, MHD tur-

bulence tends to exhibit a weak turbulent behaviour. In this regime, the energy

cascade primarily occurs in the direction perpendicular to the mean magnetic field

(k⊥), while the parallel wavenumber (k||) remains unchanged. In particular, the

interaction between waves in weak turbulence leads to alterations in the perpen-

dicular wavenumber while leaving the parallel wavenumber unaffected. Therefore,

considering that the maximum impact on high rigidity cosmic rays is influenced by

the turbulence properties at the largest scale, we consider an anisotropic spectrum

of the turbulence as Eq. (5.15).

With such a spectrum the equipartition of energy implies the form of Paniso as the

following,

Paniso ≃
α− 2

2πm′′kg(m′kg)2−α
. (5.16)

The positivity constraint of the power implies α > 2. With such turbulence spectrum
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the momentum diffusion coefficients Dγγ becomes,

Dγγ =
Dpp
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+2J
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Ω

)}]
Although we have considered the upper limit of the integral to be ∞, note that the

value of k⊥ cannot take an arbitrarily large value owing to the following constraint,

m′′kgVA −m′′kgvµ± Ω ≈ k⊥v
√

1 − µ2 (5.18)

Following a similar kind of analysis described in the previous section, we introduce

a parameter Q and after some algebraic manipulations we write the above equation

in the following way,
m′′βA√
1 − 1

γ2

−m′′µ+
Qmax

γ
≥ m′

√
1 − µ2 (5.19)

Note that while writing the above equation we consider kg = ΩNR/
(
c
√

1 − 1/γ2
)

and k⊥ ≥ m′kg. From Eq. (5.19) we compute the range of µ such that the inequality

is satisfied. Subsequently for each value of µ in that range we compute the value of

upper limit of the k⊥ integral through the following equation,

k⊥(Q) =
ΩNR

v
√

1 − µ2γ

 γm′′βA√
1 − 1

γ2

− γm′′µ+Q

 . (5.20)

k⊥(Qmax) being the upper limit of the k⊥ integral and the maximum between

k⊥(Qmin) and m′kg is considered as the lower limit of the integral. Following the

limit of the integration we compute the integral in Eq. (5.17) numerically.

5.3 Transport coefficients Dγγ and Dµµ

First, we present our results on the transport coefficients by numerically evaluating

the integrals that appear in the expressions for Dγγ and Dµµ as presented above

in section 5.2. Subsequently, we solve the cosmic ray transport equation with the
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Figure 5.1: Plot (isotropic case) showing the dependence of pitch-angle-averaged
momentum diffusion coefficient on γ for different values of Alfvèn velocity (βA),
turbulent injection scale (m′), broadening (σ) and magnetic field (B0). All the plots
show the same trend of ξ ∝ γ−2/3.

calculated diffusion coefficients in addition to the synchrotron loss process and study

their interplay.

5.3.1 Momentum diffusion Coefficient (Dγγ)

We are interested here in the average diffusion which is obtained by integrating Dγγ

over the distribution of the pitch angle µ ∈ [−1, 1] as the following,

ξ =

∫ 1

−1

Dγγ dµ (5.21)

In Fig. 5.1 we show the dependence of pitch-angle-averaged momentum diffusion

coefficient (ξ) on γ for different values of the parameters βA, m′, σ and B0, which

are all defined above in section 5.2. For all the plots shown in the figure, ξ exhibits

a power-law trend following the same exponent with the Lorentz factor γ of the

non-thermal particles, ξ ∝ γ−2/3. In panel (a), one can observe the increase in ξ

with increasing βA for a constant value of m′ = 104, B0 = 10−3 G and σ = 5. This

indicates that the higher the velocity of the Alfvén wave is, the quicker the non-

thermal particles will diffuse in γ space. In panel (b) we show the dependence of ξ

on γ for different values of m′. We observe that with increasing m′, ξ decreases for

a fixed γ value. Such behaviour of ξ is expected as m′ parameterizes the scale of the

turbulent energy injection, and higher values of m′ indicate that the energy is getting
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Figure 5.2: Plot (isotropic case) showing the dependence of pitch-angle-averaged
pitch angle diffusion coefficient on γ for different values of Alfvèn velocity (βA),
Turbulence injection scale (m′), broadening (σ) and magnetic field (B0). All the
plots show the same trend of χ ∝ γ−8/3.

injected at a lower scale. The behaviour shown in panel (b) of the figure implies that

such an energy injection at smaller scales reduces the momentum diffusion, resulting

in the reduced acceleration of particles with large gyro-radii.

In panel (c) the right panel of the figure we show the functional dependence of ξ on

γ for fixed βA, B0 and m′ but varying σ. We observe with increasing σ values the

value of ξ increases for a fixed γ which is expected as with increasing σ, more and

more Alfvén waves would interact with the particles resulting in higher momentum

diffusion ξ. Finally, in panel (d) we show the variation of the ξ with the Lorentz

factor γ for different values of the magnetic field B0. From the trend it can be ob-

served that with increasing B0 value the diffusion coefficient increases which implies

that with higher magnetic field the diffusion enhances.

5.3.2 Pitch-angle diffusion coefficient (Dµµ)

Similar to Eq. (5.21), we define another dimensionless pitch-angle averaged diffusion

coefficient χ as:

χ =

∫ 1

−1

Dµµ dµ , (5.22)

with Dµµ being calculated by numerically integrating Eq. (5.14) for the region of x

satisfying Eq. (5.12). In Fig. 5.2, we plot χ for different values of m′ , βA, B0 and σ
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Figure 5.3: Figure showcasing the dependence of the pitch-angle-averaged momen-
tum diffusion coefficient (ξ) on particle Lorentz factor γ for different parameter
values when the underlying turbulence is anisotropic. Similar to the isotropic case,
the diffusion coefficient can be observed to behave as a power-law with the particle
Lorentz factor and with a similar index of −2/3. A black dashed curve of similar
power-law trend is shown in all of the panel of the figure for the reference.

All the plots exhibit an inverse power-law trend with Lorentz factor γ of the cosmic

rays. For all the cases in the figure, we find the same power-law index of −8/3. In

panel (a) of the figure, the plots are shown for constant m′, B0 and σ but varying βA.

The curves can be observed to almost overlap for different βA, indicating that χ has

a very weak dependency on the velocity of the Alfvén waves. In panel (b), the form

of χ has been shown for different m′ values while B0, βA and σ are kept constant.

Similar to ξ, here also we observe decrease in χ with increasing m′. In panel (c) of

the figure we show the plots for different values of σ. We find that χ increases with

σ, which is expected as larger σ consequently implies that more number of waves are

interacting with the charged particles. This results in more efficient diffusion. In the

rightmost panel, we plot the variation of χ with the Lorentz factor γ for different

magnetic field values, B0. Similar to ξ, we can observe the increase in the diffusion

coefficient with increasing magnetic field.

5.3.3 Momentum diffusion coefficient due to anisotropic small-scale
turbulence

Fig. 5.3 presents the pitch-angle averaged momentum diffusion coefficient
∫ 1

−1
Dγγ dµ
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as a function of the particle Lorentz factor γ, for different parameter values. In all

the simulations, the magnetic field value is fixed at 10−3 G and we consider α = 3.

The diffusion coefficient follows a power law behavior with an index of −2/3, which

is consistent with the isotropic case. Panel (a) shows the variation of the diffusion

coefficient with different values of m′, which correspond to different scales of en-

ergy injection along the direction of k⊥. It can be observed that for larger values

of m′, the diffusion coefficient decreases. This trend is expected as a larger value

of m′ corresponds to a smaller energy injection scale, resulting in a weaker effect

of turbulence on the charged particles. In panel (b), we modulate the value of m′′

and observe its effect on the diffusion coefficient. Similar to panel (a), the diffusion

coefficient exhibits a decreasing trend with an increasing m′′ value. Additionally, as

we increase the value of m′′, we notice that the diffusion coefficient becomes highly

responsive, resulting in a fluctuating pattern. Nevertheless, the general tendency is

apparent, and it conforms to a power-law distribution with an exponent of −2/3.

This behavior indicates that the injection of turbulence power at the coherent mag-

netic field’s length scale has a more significant qualitative impact than the length

scale perpendicular to B0. Next, in panel (c), we modulate the Alfvèn velocity of

the small-scale Alfvèn waves and show the trend of the diffusion coefficient. It is

observed that with decreasing Alfvèn speed of the underlying fluctuations, the mo-

mentum diffusion decreases. Finally, in panel (d), we investigate the effect of the

parameter σ on the momentum diffusion coefficient. As expected, with an increasing

σ value, the momentum diffusion coefficient increases. This trend is due to the fact

that particles interact with more waves as the value of σ increases.

In summary, we have observed that the pitch-angle averaged momentum diffusion co-

efficient exhibits a power-law like behaviour with an index of −2/3 for both isotropic

and anisotropic turbulence spectrum. This is consistent with theoretical expecta-

tions, as cosmic ray particles with high rigidity are expected to be weakly dependent
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on the specific form of the turbulence spectrum.

Note that, during all the above calculations of the diffusion coefficients, it was en-

sured that the values of both the order and argument of the Bessel functions re-

mained sufficiently large to satisfy Eq. (5.9). In the majority of cases, the values

of the argument and order were observed to be greater than 100, while in one case,

it remained greater than 70. Moreover, our analysis indicates that the parameters

m′ and m′′ have a significant impact on modulating the values of the argument

and order. Increasing their values leads to larger values of the argument and order.

This behavior is expected, as m′ and m′′ determine the scale difference between the

gyro-radius and turbulence injection scale. A decrease in their values implies a re-

duction in the rigidity of the non-thermal particle and eventually leading to the case

of large-scale turbulence. Hence, for large-scale turbulence, the order of the Bessel

function is typically considered in the range of 0, ±1, ±2 (Berezinskii et al., 1990).

Furthermore, we anticipate that for anisotropic turbulence, the pitch angle diffusion

coefficient will follow a similar trend to that of the isotropic case (see Fig. 5.2).

This expectation is based on the comparable behavioral patterns displayed by the

momentum diffusion coefficient for both isotropic and anisotropic turbulence. Ad-

ditionally, in quasilinear theory, the momentum diffusion coefficient is related to the

spatial diffusion coefficient along the direction of the coherent magnetic field through

the constraint given by (Thornbury & Drury, 2014):

KDγγ =
1

9
γ2V 2

A , (5.23)

where K represents the spatial diffusion coefficient along the direction of the coherent

magnetic field B0. The spatial diffusion coefficient is related to the pitch-angle

diffusion coefficient (Shalchi, 2009). Thus, once the behaviour of the momentum

diffusion coefficient is known, the behaviour of the pitch angle diffusion coefficient

can be constrained by the above equation. Therefore, we abstain from explicitly
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Figure 5.4: Evolution of an initial Gaussian (with mean 104 and standard deviation
102) for stochastic acceleration due to small-scale turbulence with different values
of D0 and following Eq. (5.27). The initial function is shown with a black dashed
curve.

calculating the behavioural trend of the pitch-angle-averaged pitch angle diffusion

coefficient due to the anisotropic turbulence spectrum.

5.3.4 Solutions of the Fokker-Planck equation

In this section we demonstrate the effect of the small-scale turbulence on the non-

thermal particle spectrum by numerically solving the cosmic ray transport equation

with the coefficients calculated in the earlier sections. Note that all the numerical

simulations are performed with a conservative, second order accurate IMEX scheme

(Kundu et al., 2021) and considering a discretization of the the particle Lorentz

factor γ from γmin = 103 to γmax = 107 with 128 logarithmically spaced bins to

provide equal resolution per decade.

In a turbulent medium with a guided field, the transport of cosmic rays is governed

by a Fokker-Planck equation of the following type (Kirk et al., 1988; Schlickeiser &
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Miller, 1998),
∂F

∂t
=

∂
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1
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where F is the pitch angle averaged cosmic ray distribution function, U is the non-

relativistic fluid velocity, v is the velocity of the cosmic ray particle and p is the

momentum of the cosmic rays and

K =
v2

8

∫ 1

−1

dµ
(1 − µ2)2

Dµµ

, a1 =

∫ 1

−1

dµ (1 − µ2)
Dµp

Dµµ

, a2 =
1

2

∫ 1

−1

dµ

(
Dpp −

D2
µp

Dµµ

)
.

(5.25)

Note that while deriving Eq. (5.24) the background flow and the guided magnetic

field are considered to be in the same spatial direction, z, and the timescale of

pitch-angle scattering is assumed to be minimum among all the timescales present

in the system. The latter assumption introduces the spatial diffusion term parallel

to the guided magnetic field in the right hand side of the equation (Shalchi, 2020).

A term consisting diffusion of cosmic rays in the direction perpendicular to the

guided field also arises in the Fokker-Planck equation due to the stochasticity in the

magnetic field line structure (Shalchi, 2021). For the current work such term due to

perpendicular diffusion is neglected as quasilinear theory is unable to address such

diffusive transport (Shalchi, 2020). As noted in the end of section 5.2, Dµp = 0 which

gives a1 = 0 and a2 is simply the pitch-angle averaged Dpp. For this work we consider

averaging out the spatial coordinates and following the leaky-box approximation

(Lerche & Schlickeiser, 1985) we replace the spatial diffusion and convection term by

a momentum dependent escape term (Rieger & Duffy, 2019) with an escape timescale

defined as Tesc ∼ K−1 ∝ γ−8/3. Further considering the calculated forms for pitch-

angle averaged diffusion coefficients (see section 5.3.2) in addition to synchrotron

cooling and neglecting adiabatic loss/gain process, Eq. (5.24) takes the following
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form (see appendix A.6 for a derivation),
∂f

∂T
+

∂

∂γ

(
2aγ−

5
3 − γ2

)
f =

∂

∂γ

(
aγ−

2
3
∂f

∂γ

)
− bγ

8
3f + S, (5.26)

where a, b and S are defined via Eq. (A.42).

Before considering the interplay of various micro-physical processes, we first analyze

the effect of the acceleration due to small-scale turbulence only. For that, we nu-

merically solve the following equation which is similar to Eq. (5.26) but without the

synchrotron loss, particle escape, and injection,
∂f

∂T
+

∂

∂γ

(
2D0γ

− 5
3

)
f =

∂

∂γ

(
D0γ

− 2
3
∂f

∂γ

)
, (5.27)

with D0 being a parameter with which the efficiency of acceleration can be tuned ,∫ 1

−1
Dγγ dµ = D0γ

−2/3. The value of D0 can be determined from the dependence of

the momentum diffusion coefficients on γ as shown in Figs. 5.1, 5.3, and observed

to vary between 10−2 − 10−5 for various parameter values typically observed in

astrophysical systems.

The numerical solution of Eq. (5.27) for different times and different D0 values are

shown in Fig. 5.4. An arbitrary Gaussian with 104 and 102 as mean and standard

deviation respectively, has been considered as the initial distribution (shown by a

black dashed curve). Owing to the lower efficiency of the turbulent acceleration

process due to small-scale fluctuations, we choose a larger final time (∼ 100 kyr) to

demonstrate sufficient acceleration of the initial Gaussian profile. With time all the

plots show the spreading of the initial distribution owing to the momentum diffusion

and acceleration due to small-scale turbulence. However, the spreading of the initial

distribution function is not uniform, the low energy part spreads faster than the

high energy. Such an acceleration can be analyzed by observing the dependency

of the acceleration timescale, τacc, on γ, which is τacc ∼ γ2/D ∝ γ8/3/D0 from

Eq. (5.27). It clearly shows that the timescale of acceleration is smaller for smaller

γ, which explains the faster acceleration in the low energy part. The acceleration

timescale also inversely depends on the choice of D0, which is why we observe faster
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Figure 5.5: Evolution of an initial power-law energy distribution of the form γ−6

following Eq. (5.26) considering synchrotron loss process and different values for a
for electrons. The values for b and S are considered zero. The initial distribution
is shown with the black dashed curve. Different color of the distribution function
corresponds to different time of evolution, as illustrated by the colorbar. To account
for the varying magnetic field values observed in different astrophysical systems and
the resulting variation in temporal units, the unit time is specified in terms of a
variable magnetic field.

acceleration for higher values of D0.

After analyzing various aspects and features of stochastic acceleration due to small-

scale turbulence we now proceed to analyze the interplay of different micro-physical

processes with this acceleration. To explore the combined effect of different pro-

cesses on the distribution function, we numerically solve Eq. (5.26) with the above-

mentioned algorithm by incorporating different processes gradually.

In Fig. 5.5 we show the effect of the interplay of synchrotron loss process and parti-

cle acceleration due to small-scale turbulence on the particle distribution function.

We solve Eq. (5.26) with an initial power-law type particle distribution of the form,

f(γ, 0) ∝ γ−6. As has been shown in the previous section 5.3.1, the transport coeffi-

cients are dependent on the choice of the broadening σ and injected power P0, which

could be different for different astrophysical systems. As an illustration, therefore,

we solve Eq. (5.26) to demonstrate the effects induced by the interplay of various
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micro-physical processes on the distribution function by varying a and b, which

are treated as arbitrary parameters in this work. Nonetheless, we make some esti-

mates for the parameter a considering some generic values for the magnetic field and

Alfvèn velocity in different astrophysical situations. Noting a = D0γ
−11/3
s /(c0B

2), in

Table 5.1 we give some quantitative estimate for the values of both D0 and a for dif-

ferent astrophysical environments. The quantitative estimations are shown for both

electrons and protons. Note that all estimates of the momentum diffusion coefficient

presented in the table are computed from the isotropic turbulence case due to fewer

parameter specifications. It is important to emphasize that the quantitative pre-

sentation of diffusion coefficients for various astrophysical systems aims to provide

an estimate and more importantly demonstrate the variation in diffusion values be-

tween electrons and protons. However, it is crucial to acknowledge that the specific

parameter values chosen for the calculations can influence the resulting diffusion

coefficients. If alternative parameter values were selected, the diffusion coefficients

would differ, while the qualitative concept and trends would remain unchanged.

The value of c0 is calculated to be 1.2 × 10−9 for electron and 2.08 × 10−19 for

proton and also the value m′ for all the calculations is considered to be fixed at

105. Moreover, it can be noticed that the length scale for turbulence injection is

not in the same order of scales typically where the injection of turbulence happens

in those astrophysical systems. Additionally, one can observe that the values of

the momentum diffusion coefficient are smaller for the proton compared to that of

the electron of the same Lorentz factor. Such kind of difference in the momentum

diffusion value results in a longer acceleration time for the former as compared to

the latter one. Further implication of such behaviour is explored in the following

part of this section.

In the left panel of Fig. 5.5 we show the evolution of the energy distribution function

for electrons without the source and escape terms (considering b = 0 and S = 0 in
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Environment
Particle
Nature

Magnetic
field
(B0)

βA D0 a = D0

c0B2
0

Relativistic
gyro-radius
(k−1
g cm)

Galaxy
Cluster

Electron
10µG

9× 10−4

(Petrosian, 2001)

1.12× 10−5 9.3× 1013 1.7× 108 γ

Proton 4.29× 10−7 2.06× 1022 3.13× 1011 γ

Relativistic
shock downstream

Electron 1mG
(Virtanen & Vainio, 2005)

9× 10−2
4.54× 10−3 3.78× 1012 1.7× 106 γ

Proton 1.73× 10−4 8.32× 1020 3.13× 109 γ

Interstellar
Medium

Electron 3µG
(Farmer & Goldreich, 2004)

6.6× 10−4

(Farmer & Goldreich, 2004)

5.09× 10−6 4.7× 1014 5.69× 108 γ

Proton 1.94× 10−7 1.04× 1023 1.04× 1012 γ

Table 5.1: Quantitative estimate for the values of D0 and a for different astrophys-
ical systems. Column 1 depicts the name of the astrophysical system, column 2
represents the nature of particle for which the values of D0 and a are calculated.
Columns 3 and 4 represent typical values for the magnetic field and Alfvèn velocity
in such astrophysical environments. Column 5, 6 and 7 shows the numerical values
for D0, a and relativistic gyro-radius considered for the calculations.

Figure 5.6: Evolution of an initial power-law energy distribution of the form γ−6

following Eq. (5.26) considering synchrotron loss process and different values for
a which typically occurs for protons. The values for b and S are considered zero.
Different color of the distribution function corresponds to different time of evolution,
as illustrated by the colorbar. To account for the varying magnetic field values
observed in different astrophysical systems and the resulting variation in temporal
units, the unit time is specified in terms of a variable magnetic field.
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Eq. 5.26) and considering a = 1011. A color-coded representation is utilized to illus-

trate the evolutionary trend of the distribution function over time. Different colors

correspond to different points in time, as shown on the color bar located at the

bottom of the figure. The unit time is specified based on a variable magnetic field

(B0). Such a choice of temporal unit is motivated by the fact that the synchrotron

cooling time varies in different astrophysical environments due to differences in the

magnetic field values. Therefore use of such temporal unit allows for the considera-

tion of different synchrotron cooling times, depending on the magnetic field values

present in different astrophysical systems. The use of this representation allows for a

better understanding of the evolution of the distribution function in different astro-

physical systems. To aid in the comprehension of the results, the unified temporal

unit is used in all subsequent figures. The distribution function can be observed to

develop an exponential cut-off at higher γ, which moves towards lower energy as

time progresses, due to synchrotron cooling. Additionally a hump like structure can

be observed to develop at the low energy regime due to the acceleration of low en-

ergy particles owing to the turbulent acceleration. The overall distribution function

attains a steady state as a result of the competition between stochastic acceleration

and synchrotron loss. The form of the steady state distribution can be computed

analytically from Eq. (5.26) considering b = 0 and S = 0 and is ∝ γ2 exp {−Λ(γ)},

where Λ(γ) = 3
(
γ11/3 − 1

)
/11a (see Eq. (A1) of Kundu et al., 2021). Further, with

such a steady state distribution function it can be observed that the maximum of the

distribution occurs at (2a)3/11 and it increases with a which can be observed from

the middle and the right panel of the figure where the evolution of the distribution

is shown form a = 1013 and a = 1015 respectively.

Fig. 5.6 illustrates the evolution of the distribution function for protons. All the

panels of the figure show that the steady state distribution function for protons is

morphologically very similar to that of electrons, although with variations in the
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peak positions. However, the time taken for protons to attain the steady state

distribution function is longer than that for electrons as can be observed comparing

the temporal unit and final time of both the figures. This difference is attributed to

the fact that the synchrotron cooling time for protons is higher due to their higher

rest mass, and the momentum diffusion coefficient for protons is lower than that for

electrons of similar energy, which can be inferred from the Column 5 of Table 5.1.

This implies that it takes more time to accelerate a proton compared to an electron

of the same Lorentz factor. As a result, the value of the parameter a is larger for

protons, leading to a longer time to reach the steady state.

Further observation reveals that the value of γ at which the distribution function is

maximum for protons is higher than that for electrons. This indicates that small-

scale MHD fluctuations can sustain the energy of higher energy protons for a longer

period of time than electrons from the catastrophic synchrotron cooling. Therefore,

it can be concluded that the effect of small-scale turbulence would be more prominent

for higher energy protons than for electrons.

It is important to note that the evolution of the distribution function show a similar

trend for both electrons and protons, and the steady state distribution functions are

morphologically similar. Therefore, we focus on the electron distribution for all the

subsequent analyses, but the results can be extended to the proton distribution in

a similar manner.

In Fig. 5.7, we show the evolution of the distribution function including particle

escape and acceleration along with synchrotron loss. The escape time is controlled

by the parameter b = 10−6 which is kept fixed for the curves shown with different

a values in three different panels. For all the plots the high-energy cut-off show

a rapid decrement towards lower γ as compared to Fig. 5.5 owing to the particle

escape in addition to the synchrotron loss process. One interesting observation is

that due to escape, the evolution of the distribution begins with the movement of the
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Figure 5.7: Evolution of an initial power-law energy distribution of the form γ−6

following Eq. (5.26) considering synchrotron loss process with different values for
a and b = 10−6. The values for S is considered as zero. The initial distribution
is shown with the black dashed curve. Different color of the distribution function
corresponds to different time of evolution, as illustrated by the colorbar. To account
for the varying magnetic field values observed in different astrophysical systems and
the resulting variation in temporal units, the unit time is specified in terms of a
variable magnetic field.

high-energy cut-off to lower γ and increasing the rate of the evolution towards the

steady state. After attaining the steady state the movement of the cut-off towards

lower γ ceases and the height of the distribution starts to decrease as a result of the

particle escape. Such kind of evolution is a manifestation of the escape time-scale

which follows γ−8/3 implying that the high-energy particles have lower escape time

and therefore they leaks out of the system faster than the low energy particles. We

further show the evolution of the distribution function for b = 10−4 and 10−5 with

different a values in Figs. A.2, A.3 which exhibit an almost similar evolutionary

dynamics. However, due to lesser escape timescale than with b = 10−6 the particles

leaks out much faster for the cases presented in Figs. A.2, A.3.

In summary, we investigate the impact of small-scale magnetohydrodynamic (MHD)

fluctuations on the acceleration of high-energy particles in astrophysical environ-

ments. We find that the acceleration of high-energy protons is significantly enhanced
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by small-scale MHD fluctuations compared to electrons. Turbulent acceleration me-

diated by these fluctuations enables protons to maintain their energy levels in the

presence of radiative synchrotron cooling. Additionally, the inclusion of the spa-

tial escape term, which arises from the parallel diffusion coefficient along the mean

magnetic field, demonstrates a relatively dominant escape of higher energy particles

from the system.

5.4 Astrophysical applications
5.4.1 Particle transport in the vicinity of relativistic shocks

Small-scale turbulence has been identified as the primary scattering agent of non-

thermal cosmic ray (CR) particles in the vicinity of relativistic shock waves, which

is crucial for efficient Fermi acceleration (Lemoine et al., 2006). The downstream

medium experiences intense small-scale turbulence due to weakly magnetized up-

stream regions, providing efficient scattering of CR particles and aiding in the com-

pletion of enough Fermi-cycles to facilitate acceleration (Plotnikov et al., 2011). The

resulting scenario leads to a power-law-like particle spectrum at the shock front,

while small-scale turbulence in the downstream region could act as an agent to

energize CR particles via stochastic turbulent acceleration as they move further

downstream.

Resonant scattering of particles with turbulent waves in the downstream region,

which is typical for low rigidity particles (Rl < lc), has been examined as a second-

order turbulent acceleration mechanism in parallel relativistic shock (Virtanen &

Vainio, 2005) considering the quasilinear condition. It has been concluded that this

mechanism could have a significant impact on the evolution of the particle spectrum.

However, as observed by Chang et al. (2008); Plotnikov et al. (2011), for a certain

period of time, the downstream turbulence is expected to be mediated by intense

(δB ≫ B0) small-scale magnetic turbulence, which decays with a damping rate ∝ k3
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suggesting a comparative quick decay of the power available at small-scales. Whereas

larger modes show a damping rate of ∝ k2 indicating that the power on scales

exceeding the Larmor radius of the bulk plasma decays on long, MHD scales (Keshet

et al., 2009; Sironi et al., 2015). This observation implies that turbulent acceleration

at the low rigidity regime with longer magnetohydrodynamic (MHD) modes could be

dominant at later stages, but initially, charged particles will experience acceleration

through small-scale turbulence. This argument is in consonance with the theory that

small-scale turbulence leads to large-scale turbulence through an inverse cascade

(Katz et al., 2007; Medvedev et al., 2004), although further research is needed in

this area.

Moreover, evidence of microturbulence generated through Weibel instability has

been observed in the precursor region of relativistic shocks, where the upstream

medium shows elongated filamentary structures (Plotnikov et al., 2013). This region

provides a scenario where turbulent acceleration of charged particles could take place

through small-scale turbulence.

This study focuses on the effect of stochastic turbulent acceleration on non-thermal

CRs in the presence of small-scale turbulence, where no power is available at the scale

of the gyro-radius of the particle. However, the present study relies on quasilinear

theory, and the intense small-scale microturbulence needed in relativistic shocks both

upstream and downstream requires a larger turbulence intensity δB ≫ B0, which is

not possible to achieve through the present analytical framework. This study can

be considered as an initial step to explore the turbulent acceleration mechanism in

such intense turbulence scenarios. Although the study cannot provide a realistic

quantification of the turbulent acceleration taking place in such microturbulence,

the universality in the momentum diffusion coefficient gives a hint of the enriched

physics, which would be interesting to explore and would be taken up in future

works.
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5.4.2 Ballistic transport of cosmic ray in Blazars

The regime under investigation in this work is commonly also referred to as the

”Ballistic Regime” (Reichherzer et al., 2022b), in which the parallel transport of

charged particles is minimally affected. The Ballistic Regime is especially suitable

for modeling the transportation of particles with extremely high energies, near the

Hillas limit. It is also effective during the initial stages of particle acceleration,

before the particle has spent enough time in the acceleration region for its transport

to become diffusive (Reichherzer et al., 2022a). Recent studies have attributed

the transport of particles in the Ballistic Regime to explaining the spectral energy

distributions and light curves of high-energy emission from Blazars (Becker Tjus

et al., 2022; Reichherzer et al., 2022a; Tjus, 2022). These works mainly focused on

the spatial transport of high energetic particles in AGN-plasmoids, which are often

speculated to be responsible for the observed temporal variability in the Blazar

sources.

Recent studies have shown that cosmic ray particles with energies above a certain

threshold are expected to follow Ballistic transport. Specifically, it has been sug-

gested by Becker Tjus et al. (2022) that cosmic ray particles with energies above

E ≳ 5lccqB0/2π are expected to exhibit Ballistic transport. For AGN-plasmoids, it

has been found that the transport of protons with energies ≳ 1015,eV should also

be considered under the Ballistic regime. Such protons typically possess a Lorentz

factor of the order of 106.

In Fig. 5.6, it has been shown that small-scale turbulence can effectively provide con-

tinuous acceleration to such high-energy protons, enabling them to maintain their

energy levels despite catastrophic radiative cooling. However, it is important to

note that a more precise quantitative analysis is necessary to fully comprehend the

transport of such particles in the context of AGN-plasmoids. We believe that our

work will be relevant in studying the effect of turbulent acceleration on cosmic ray
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particles in Ballistic transport regimes. In particular, it would be interesting to in-

vestigate the interplay between turbulent acceleration due to small-scale fluctuations

and synchrotron loss in the context of AGN-plasmoids and Blazar variability.

5.5 Summary and outlook

In this work we consider the effect of small-scale turbulence with a guided mag-

netic field on the acceleration of very high-energy charged particles. This study

is motivated primarily by an academic interest where our emphasis is towards un-

derstanding the nature of interaction between the cosmic rays and the stochastic

magnetic fields at scales smaller than the particles’ gyro-radius corresponding to

the uniform guided magnetic field. It is likely that such kind of situations occur in

various astrophysical scenarios, for example in the vicinity of relativistic shocks. We

carry out a semi-analytic study based on the quasilinear theory of plasma and de-

termine the momentum transport coefficients for scenarios involving both isotropic

and anisotropic turbulence at small scales. For Alfvènic turbulence, we consider

isotropic single-scale turbulence injection spectrum and anisotropic turbulence with

cascade along k⊥ direction. Our calculation indicates that in both the turbulence

scenarios the transport coefficients follow an inverse power-law trend with the en-

ergy, or in other words, the Lorentz factor γ, of the charged particles. In the present

work, we obtain the following power law scaling relations for the turbulent trans-

port coefficients: Dγγ ∝ γ−2/3, Dµµ ∝ γ−8/3, and Dµγ = 0. The earlier work by

Tsytovich & Burdick (1977) reports a power law behaviour of Dγγ ∝ γ−1 which is

different from what we observe here. Additionally, a similar trend for the transport

coefficient Dγγ is found for fast magnetosonic wave turbulence with an isotropic

single-scale injection spectrum, as described in detail in Appendix A.10. The simi-

larity in the behavior of Dγγ for isotropic Alfvèn, anisotropic Alfvén, and isotropic

fast wave turbulence suggests that the behavior of the momentum diffusion coef-

ficient becomes universal when turbulent fluctuations occur in the sub-gyro scale
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regime. Such universality of the diffusion coefficient has also been reported for spa-

tial diffusion of charged particles in small-scale turbulent environment1. Moreover,

Pezzi et al. (2022) also observed that the impact of anisotropy in MHD turbulence

spectrum on the particle diffusion coefficient is weak, which we also observe for the

momentum diffusion coefficient. Therefore it appears that for particles with larger

gyro-radius or greater energy, the specific details of the small-scale turbulence may

not significantly affect particle distribution, though the presence of power at these

scales can still impact the overall distribution. The calculated form for Dµµ leads to

a parallel spatial diffusion coefficient which scales with γ as ∼ γ8/3; see Eq. (5.25) for

K. Such a trend is compatible with the QLT constraint defined in Eq. (5.23). More-

over, the parallel diffusion that we find is similar to that of obtained from numerical

simulation by Casse et al. (2001). Their result showed that the parallel diffusion in

quasilinear regime scales with rigidity (or γ) with an exponent of 7/3 which is close

to the result that we obtain from asymptotic expansion of the quasilinear diffusion

coefficients.

Having observed the trend of the transport coefficients, we then solve the transport

equation for the cosmic rays, i.e., the Fokker-Planck equation. When we ignore

the synchrotron loss and diffusive escape mechanisms, we find that the small-scale

turbulence leads to the energization of particles in such a way that the low energy

particles are accelarated faster compared to the particles with higher γ, which is

typical for Fermi type stochastic acceleration. Thus resulting in a non-uniform

acceleration of the cosmic ray particles. A qualitative comparison with the case

where the gyro-radius of particle is smaller than the turbulence correlation length

reveals that the acceleration due to small-scale turbulence is relatively less efficient.

1See Plotnikov et al. (2011) for small-scale magnetic field following white noise and parallel
diffusion scaling as rigidity squared. Also, see Subedi et al. (2017) and Dundovic et al. (2020) for
similar scaling in isotropic spatial diffusion in synthetically constructed turbulence fields. Pezzi
et al. (2022) showed the same trend for MHD turbulence.
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We further demonstrate the interplay of various micro-physical processes, such as

acceleration, synchrotron loss and diffusive particle escape, on the particle spectrum

in various regimes of the parameters a and b in Eq. (5.26). The particle spectrum is

observed to attain a steady-state as a result of the competition between acceleration

and synchrotron loss. Additionally, with the particle escape process included, the

distribution function evolves in such a way that the high-energy particles leak out

of the system faster than the low-energy ones.

Our study indicates that in a situation where small-scale turbulence is mediated

by a mean magnetic field, acceleration of high energy particles would be small in

presence of other more dominant competing micro-physical processes, such as the

synchrotron loss and diffusive escape. However, such an acceleration is found to be

significant for lower energy particles. The hump like structure that develops in the

distribution function signifies the acceleration of low-γ particles. Additionally, while

investigating such interplay with electron and proton distributions individually, we

observe that small-scale turbulence can accelerate protons to higher energies than

electrons, and this acceleration may assist high-energy proton particles in maintain-

ing their energy from synchrotron loss effects. Therefore, we envisage that in some

cases with appropriate values for the dynamical quantities this acceleration could

become significant and it may help the non-thermal particles to sustain their energy

against the radiative cooling mechanisms. Finally we discuss about adequate astro-

physical systems that could provide suitable conditions for small-scale turbulence to

potentially influence the energy distribution of non-thermal particles.

This work is the first step towards studying a more complex interplay of various

micro-physical processes and their impact on the energy spectrum of the cosmic ray.

Other acceleration scenarios where resonant interaction between turbulent waves and

high energy cosmic ray particles is not included, for example, adiabatic acceleration

due to random velocity of the MHD fluid (Lemoine, 2019; Ptuskin, 1988) could
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also provide significant acceleration to the non-thermal particles with high rigidity.

Such acceleration configurations along with various energy loss processes will be

considered in future works. As an extension to this present work, it would be

interesting to see the effects of small-scale turbulence on the high energy non-thermal

particles in a non-linear framework of wave-particle interaction (Beresnyak et al.,

2011; Yan & Lazarian, 2008).



Chapter 6

Conclusion and outlook

Astrophysical plasma is known to be of a turbulent nature. The turbulence in the

astrophysical sources plays a fundamental role in governing the behaviour of these

systems. Due to the multi-scale nature of astrophysical systems, the impact of

turbulence shows different manifestations at different scales. At the micro-physical

scale, turbulence significantly impacts the dynamics of the charged particles residing

in astrophysical systems. Such an effect of turbulence is expected to be observed

through the emission these particles emit by interacting with the local magnetic field

or surrounding photon distribution. The work presented here aims to investigate the

impact of the underlying turbulence on the emission from astrophysical sources. The

investigation focuses on the particle acceleration processes driven by the turbulent

astrophysical plasma. In typical astrophysical sources, these acceleration processes

occur in tandem with various other micro-physical processes, and we observe the

collective action of all these processes.

This thesis studies the impact of different particle acceleration processes along with

different loss processes typically expected to be operating in a weakly magnetised

plasma environment. The actual micro-physical processes in these astrophysical

systems are still unknown and cannot be probed with current observational facilities.

In these circumstances, the developed framework offers a connection between the
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theoretical models and realistic observations. Below we reiterate the conclusive

points that came out of the works presented in this thesis.

Numerical implementation of STA

• Here, we present a novel second-order accurate conservative numerical ap-

proach designed to investigate the microphysical interplay between the stochas-

tic turbulent acceleration (STA) process and various loss mechanisms. This

framework contributes to a comprehensive understanding of the evolution of

non-thermal particle distributions in the presence of turbulence.

• By integrating the newly developed numerical methodology into the existing

particle module of the PLUTO code, we explore the effects of different ac-

celeration processes on emission. Through a series of test case scenarios, we

examine how different acceleration mechanisms influence emission signatures.

• Finally, we showcase the emission maps of a toy axisymmetric RMHD jet

considering all the acceleration and loss processes are working in tandem. A

distinct contrast emerges when comparing the outcomes with and without

STA in addition to shock acceleration. This difference becomes evident in the

evolving particle distribution and subsequent emission patterns. Notably, the

presence of STA plays a significant role in shaping the emission, particularly

manifesting as diffuse X-ray emission originating from the turbulent back-flow

region of the RMHD jet. This finding highlights the distinctive contribution

of STA compared to the sole influence of shock acceleration.

Emission properties of radio lobes of FR-II AGN jets

• Here, we investigate the interplay of multiple particle acceleration and loss

mechanisms on the emission from the turbulent radio lobe of the FR-II AGN

jet by adopting a phenomenologically motivated ansatz for STA, via numerical
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simulations.

• Stochastic acceleration introduces distinctive characteristics into the spectra

of non-thermal particles within the lobe. In comparison to scenarios without

STA, the resulting particle spectrum showcases a distinct morphology.

• The presence of STA leads to the emergence of both low- and high-energy

cut-offs in the resultant particle spectrum. The lower cut-off correlates with

the system’s radiative age, while the upper cut-off is a consequence of the

interplay between stochastic acceleration and radiative loss processes.

• The spectral energy distribution of the simulated source shows evidence of

different emission peaks emerging due to the presence of turbulent acceleration.

Observation of the spatial distribution of the particles responsible for the SED

peaks at X-ray frequencies indicates a diffuse nature of the emission arising due

to the complementary nature of the interplay of both the particle acceleration

processes.

Particle acceleration due to small-scale turbulence

• Here we study the effect of sub-gyroscale MHD turbulence threaded by a

mean magnetic field on the transport of non-thermal charged particles via

quasi-linear theory.

• The investigation has provided insights into the behaviour of the momentum

diffusion coefficient within the framework of both isotropic and anisotropic

small-scale turbulence. Our semi-analytical calculations have revealed a re-

markable universal power-law-like trend, linking the coefficient to the particle

Lorentz factor with a relationship of γ−2/3.

• We find that such small-scale turbulence could produce a steady-state particle

spectrum due to the competition with the synchrotron loss process, indicat-
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ing that such turbulence can provide continuous energization to non-thermal

particles, with which particles can keep their energy for a longer amount of

time. Additionally, our observations highlight a marked distinction between

protons and electrons. The steady-state peak occurs at substantially higher

energy levels for protons in comparison to electrons.

6.1 Outlook

The work presented in this thesis demonstrates the importance of a distributed

turbulent acceleration process and its interplay with other acceleration and loss pro-

cesses in astrophysical sources. This thesis focuses on the turbulent radio lobes of

FR-II jets and studies the particle acceleration processes in such systems and their

manifestations on the systems’ emission characteristics. For the turbulent acceler-

ation, we consider a phenomenological ansatz to mimic the effect of the turbulence

happening in realistic radio lobe systems.

The framework developed here can be used to study the effect of the interplay of

different particle acceleration processes in other astrophysical sources. For example

the radio halos of galaxy cluster is known to be highly turbulent and the radio emis-

sion is attributed to originate due STA (Ohno et al., 2002). In such scenarios, the

developed framework can be utilised to simulate the emission from such turbulent

radio halos considering turbulent acceleration and can be further compared with ob-

servations to understand the actual turbulent transport. In the downstream of radio

relics of galaxy clusters, stochastic acceleration is known to play a significant role

in providing continuous acceleration to the already shock accelerated non-thermal

particles (Fujita et al., 2015). Such a scenario can also be synthetically reproduced

using the framework developed in this thesis. These numerical reproductions can

then be compared with actual observations to constrain the microphysical processes

occurring at those extragalactic sites.



6.1. Outlook 157

Another application of this framework can be devised at the Inter-Stellar Medium

(ISM). Compared to the turbulence in cluster of galaxies, ISM turbulence is known to

be weak (δb/B < 1) and highly supersonic. Such supersonic magnetised turbulence

is capable of driving shocks in the ISM, and the current framework can easily be

applied to understand the relative contributions of shock and turbulence on the

particle acceleration in such a system (Falceta-Gonçalves et al., 2014).

The framework that has been developed as a part of this thesis can be extended

in future to work for a strong turbulent medium. Such turbulence is observable in

the solar wind and is capable of driving the magnetic reconnection process (Vlahos

& Isliker, 2018). The reconnection process contributes to the direct acceleration of

non-thermal particles, and the FP-like evolution equation for non-thermal energy

distribution cannot be employed in such a scenario. In addition to random acceler-

ation, it is speculated that this type of direct acceleration causes particles to follow

a Levy flight-like process in the energy space. By incorporating the microphysics

of such an anomalous process, the simulations of particle transport under intense

magnetised turbulence would become more realistic.

The work presented in this thesis has set the stage for developing more realistic

multifrequency emission models of the FR-II radio galaxies, which can be further

tested by several future telescopes, such as the SKA facility for the low-energy radio

domain or ATHENA for keV energy range.
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Appendix

A.1 Transport of charged particles in turbulent plasma

Relativistic Vlasov Equation reads,

∂f

∂t
+ (v · ∇)f + q(E +

v

c
×B) · ∂f

∂p
= 0 (A.1)

To perturbatively solve the Vlasov equation we consider a multi-time-scale pertur-

bation of various quantities in the following way,

∂

∂t
=

∂

∂T0
+ ϵ1

∂

∂T1
+ ϵ2

∂

∂T2
+ . . .

f = f0 + ϵ1f1 + ϵ2f2 + . . .

E = ϵ1E1 + ϵ2E2 + . . .

B = B0 + ϵ1B1 + ϵ2B2 + . . .

(A.2)

where ϵ1, ϵ2, ... describes the order of perturbation. Note that we have not considered

the zeroth order electric field, which is validated by the fact that Cosmic Rays

get transported through a medium where ideal MHD approximation works. So,

the presence of a mean electric field can be neglected and E field can only be

generated through random fluctuations. In the following, we will also assume f0 to

be homogeneous, so ∇f0 = 0.

Upon substituting the perturbed quantities, as described in Eq. (A.2), in Eq. (A.1)
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and collecting all the terms containing ϵ0 both from left and right side of the equation,

we obtain the following equation,

∂f0
∂T0

+ q
(v
c
×B0

)
· ∂f0
∂p

= 0 (A.3)

To proceed further we assume f0 is steady during the timescale T0. Further, Noting

p = mqγv and B0 = B0ẑ, Eq. (A.3) becomes the following,

q

mqγc
(p×B0) · ∂f0

∂p
= 0 (A.4)

Considering p in cylindrical coordinates as px = p⊥ cosϕ, py = p⊥ sinϕ and after

substituting it, the above equation takes the following form (see Eq. 10.1.4 - 10.1.8

in Gurnett & Bhattacharjee, 2017),

−∂f0
∂ϕ

B0 = 0 (A.5)

Note that while deriving the above equation we consider pz to be independent of

ϕ. Eq. (A.5) shows that f0 is independent of ϕ, the gyro-phase. Further, remember

that it assumes f0 is homogeneous and steady. So this proves f0 is independent

of ϕ, the gyro-phase. Note that this independence comes from the fact that f0 is

homogeneous and steady.

Further, equating the terms containing ϵ1 in in Eq. (A.1) after perturbation, we

obtain the following equation,

∂f1
∂T0

+
∂f0
∂T1

+ v · ∇f1 + q
(
E1 +

v

c
×B1

)
· ∇pf0 +

q

c
(v ×B0) · ∇pf1 = 0 (A.6)

We assume all the mean field quantities, described with subscript “0”, to be non-

random and the perturbations are random fluctuations. Therefore, performing en-

semble averaging over Eq. A.6 and noting that f1 is a fluctuation on f0, we obtain,
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∂f0
∂T1

= 0 (A.7)

While deriving above equation we consider, ⟨f0⟩ = f0, ⟨B0⟩ = B0, ⟨f1⟩ = 0, ⟨E1⟩ =

0 and ⟨B1⟩ = 0. Eq. (A.7) implies that f0 does not change over the timescale

T1. Substituting Eq. (A.7) back into Eq. (A.6), we obtain the following evolution

equation for f1 over a timescale T0,

∂f1
∂T0

+ v · ∇f1 + q
(
E1 +

v

c
×B1

)
· ∇pf0 + q

(v
c
×B0

)
· ∇pf1 = 0 (A.8)

The above equation indicates, that f1, the linear perturbation on Eq. (A.1), evolves

as a function of the zeroth order distribution function, the zeroth order magnetic field

and first order electric and magnetic fluctuations. One gets various kinds of waves

which are possible in Vlasov system, by solving such equation. To understand the

emergence of linearized waves and their consequences in Vlasov system, the readers

are encouraged to look chapter 19 of Bittencourt (2013).

Following the terms containing ϵ2 after substituting Eq. (A.2) in Eq. (A.1), we

obtain,

∂f2
∂T0

+
∂f0
∂T2

+ v · ∇f2 + q
(
E1 +

v

c
×B1

)
· ∇pf1 + q

(v
c
×B0

)
· ∇pf2

+q
(
E2 +

v

c
×B2

)
· ∇pf0 = 0

(A.9)

Upon employing the similar strategy of taking the ensemble average of the above

equation and considering ⟨f2⟩ , ⟨E2⟩ , ⟨B2⟩ = 0, we obtains,

∂f0
∂T2

+ q
〈(

E1 +
v

c
×B1

)
· ∇pf1

〉
= 0 (A.10)

The above equation is very important for our analysis and it implies that the evolu-

tion of f0 will occur at a timescale of T2 due to the linear perturbations of Eq. (A.1).
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We are interested to solve Eq. (A.10). Such a solution will be obtained by substi-

tuting the value of f1 from Eq. (A.8) in Eq. (A.10).

For solving Eq. (A.8), we do all the analysis in Fourier domain. Therefore, perform-

ing a Fourier transformation of Eq. (A.8), we obtain,

(−iωk + ik · v) f̃1 − Ω
∂f̃1
∂ϕ

+ q
(
Ẽ1 +

v

c
× B̃1

)
· ∂f0
∂p

= 0 (A.11)

where Ω is the relativistic gyro-frequency, Ω = qB0/mqγc while deriving the above

equation we consider f0 to be independent of spatial variables due to homogene-

ity due to which convolution did not arise in the last term on the left-hand side,

while Fourier transforming. We also consider the following relation (Gurnett &

Bhattacharjee, 2017),

q
(v
c
×B0

)
· ∇pf1 = − qB0

mγc

∂f1
∂ϕ

= −Ω
∂f1
∂ϕ

(A.12)

Further, we consider Amperes’ law to transform B̃1 to Ẽ1 in Eq. (A.11). After a

simple but long calculation, we obtain the form for f1 in the Fourier space as follows

(see section 9.3.1 in Gurnett & Bhattacharjee, 2017),

f̃1 = ιq

∞∑
n=−∞

∞∑
m=−∞

Jn(β)ei(n−m)(ϕ−ψ)

mΩ + k||v|| − ω

[
P⊥

2

{
Ẽ+e

iψJm+1(β) + Ẽ−e
−iψJm−1(β)

}
+Ẽ||P||Jm(β)

]
(A.13)

Eq. (A.13) has various terms which are explained below,
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P|| =
∂f0
∂p||

+
Ωm

ωv⊥
T,

T =

(
v||
∂f0
∂p⊥

− v⊥
∂f0
∂p||

)
,

P⊥ =

(
1 −

k||v||
ω

)
∂f0
∂p⊥

+
v⊥k||
ω

∂f0
∂p||

,

β =
k⊥v⊥

Ω
,

α =
k||v|| − ω

Ω
,

Ẽ± = Ẽx ∓ ιẼy,

Ẽ|| =
Ẽ1 ·B0

|B0|

(A.14)

Upon substituting Eq. (A.13) back in Eq. (A.8), we obtain our required equation.

Before proceeding we note that, Eq. (A.8) is defined in real space while Eq. (A.13)

is in Fourier space so we transform Eq. (A.8) in the following way,

∫
∂f0
∂T2

e−ig·rd3r = −q
〈∫ (

Ẽ1
(g−k)

+
v

c
× B̃1

(g−k)
)
· ∇pf

k
1 d

3k

〉
(A.15)

The superscripts of Ẽ1, B̃1 and f̃1 represents the dependencies of these quantities

on the Fourier variables g and k. Further a convolution operation is performed,

which is implied through the dependency of Ẽ1 and B̃1 on g − k.

Note that in Eq. (A.15) if we make g = 0 the left-hand side becomes ordinary

average of the temporal evolution of f0, which through commutativity between the

integration and ensemble averaging implies an average of f0. Due to the definition of

f0, such an averaging will not change its value, hence considering g = 0 in Eq. (A.15)

we obtain the following,

∂f0
∂T2

= −q
〈∫

d3k
(
Ẽ1

−k
+

v

c
× B̃1

−k
)
· ∇pf

k
1

〉
(A.16)

Further due to the fact that all the field variables are real, their Fourier transforms
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obey the following identity (see page 462 of Bellan, 2008),

(
Ẽ1

k
)∗

= Ẽ1
−k
,(

B̃1
k
)∗

= B̃1
−k
,(

ωk
)∗

= −ω−k

(A.17)

where, ωk is the k−dependent circular frequency of the wave which we consider

to be imaginary in our calculation for the sake of generality. After considering the

above condition, we obtain the Fourier transformation of Eq.(A.13) as the following,

∂f0
∂T2

= −q
〈∫ (

Ẽ1
k

+
v

c
× B̃1

k
)∗

· ∇pf
k
1 d

3k

〉
(A.18)

After performing some simple but lengthy algebra and considering some identities

of the Bessel function we finally obtain the following equation,

∂f0
∂T2

= −q2
∫
d3k

〈[
L∗
||(Ẽ||

k
)∗Jm(β) +

(
L∗
⊥ − 1

p⊥

(
k||v||
(ωk)∗

− 1

))
(Ẽ⊥

k
)∗
]

i
1

mΩ + k||v|| − ωk

(
L||Ẽ||

k
Jm(β) + L⊥Ẽ⊥

k
)
f0

〉 (A.19)

where L|| and L⊥ are differential operators which are defined as P || = L||f0 and

P⊥ = L⊥f0 respectively.

A.2 Analytical solution of Fokker-Planck Equation

Eq. (4.12) is very hard to solve for a proper general analytic solution. Various work

has been devoted to solve Eq. (4.12) for various transport coefficients (e.g., Chang &

Cooper, 1970; Kardashev, 1962; Katarzyński et al., 2006; Park & Petrosian, 1995).

Chang & Cooper (1970) solved Eq. (4.12) for the steady-state solution and the

solution could be written as,
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χsteady(γ) = χ0 exp
{
−
∫ γ

1

(S(γ′, τ) −DA(γ′, τ)

Dγγ(γ′, τ)

)
dγ′
}
. (A.20)

Katarzyński et al. (2006) solved Eq. (A.20) for Dγγ(γ, τ) = Dγ0γ
2/2 with Dγ0 =

1/tA, DA(γ, τ) = γ/tA and S(γ, τ) = S0γ
2. These form of the parameters are typical

for particles in plasma. The loss term S(γ, τ) gets a similar form if Inverse-Compton

radiation is taken in the Thompson limit with Synchrotron radiation and the form

for the diffusion coefficient Dγγ which also matches the form from typical particle

in cell simulation as discussed above. The solution to Eq. (A.20) with the above

mentioned parameters is,

χsteady(γ) = χ0γ
2 exp{−2S0tA(γ − 1)}. (A.21)

Kardashev (1962) got a time-dependent solution for Eq. (4.12) without the loss terms

and showed the acceleration leads to a log-normal particle distribution (similar to

Eq. (4.17)).

So, if the particles only accelerate via STA the particle distribution follows a log-

normal form due to the fact that the STA process is a multiplicative acceleration

process (Tramacere et al., 2011). But if those particles loose their energy via ra-

diative means along with the acceleration the particle distribution starts to follow

an ultra-relativistic Maxwellian (Eq. (A.21)), which looks like a thermal or quasi-

thermal spectrum with a scaled temperature of 1/S0tA which is also the value of γ

where, tA = tL.

A.3 Calculation of correlation terms for MHD turbu-
lence

Here we show the derivations pertaining to the calculations of Tij, Qij and Rij for

MHD turbulence. The Ohm’s Law for MHD regime can be written in the following
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way,

E (k) = −
(

1

c

)
u (k) ×B0 =⇒ Ei (k) = −

(
1

c

)
ϵimnum (k) × B0n

Therefore, the electric field correlations can be written as follows,〈
Ei (k)E∗

j (k′)
〉

=
1

c2
〈
ϵimnϵjpqum (k)B0nu

∗
p (k′)B0q

〉
As mean B-field is only directed along z direction, the correlation becomes,〈

Ei (k)E∗
j (k′)

〉
=
B2

0

c2
〈
ϵimzϵjpzum (k) u∗p (k′)

〉
Employing the identity ϵimnϵjpq = (δijδmp − δipδjm) the correlation function simpli-

fies to, 〈
Ei (k)E∗

j (k′)
〉

=
B2

0

c2
[δij
〈
up (k) u∗p (k′)

〉
− ⟨uj (k) u∗i (k′)⟩] (A.22)

Similarly, the electric field magnetic field correlation becomes,〈
Ei (k)B∗

j (k′)
〉

= −1

c

〈
ϵimnum (k)B0nB

∗
j (k′)

〉
= −B0z

c

〈
ϵimzum (k)B∗

j (k′)
〉

(A.23)

and, 〈
Bi (k)E∗

j (k′)
〉

= −B0z

c

〈
Bi (k) ϵipzu

∗
p (k′)

〉
= −B0z

c
ϵipz
〈
Bi (k) u∗p (k′)

〉
Following the definitions given in Eq. (5.3) we get,

1.
〈
Ei (k)E∗

j (k′)
〉

=
B2

0

c2
[
δijV

2
Aδ (k − k′)Ypp (k) − V 2

Aδ (k − k′)Yji (k)
]

=
B2

0V
2
A

c2
[δijYpp (k) − Yji (k)]

2.
〈
Ei (k)B∗

j (k′)
〉

= −B0

c
ϵimz

〈
um (k)B∗

j (k′)
〉

= −B
2
0VA
c

ϵimzδ (k − k′)Cmj (k)

3.
〈
Bi (k)E∗

j (k′)
〉

= −B0

c
ϵjpz

〈
Bi (k) u∗p (k′)

〉
= −B

2
0VA
c

ϵjpzδ (k − k′)Cip (k)
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A.4 Calculation of correlation functions

In this appendix, we derive the transformation laws for various turbulent spectra,

from Cartesian space to polarization space.

R11δ(k − k′) = ⟨E1(k)E∗
1(k′)⟩ =

〈
ER(k) + EL(k)√

2
· E

∗
R(k′) + E∗

L(k′)√
2

〉
=

1

2
[⟨ER(k)E∗

R(k′)⟩ + ⟨ER(k)E∗
L(k′)⟩ + ⟨EL(k)E∗

R(k′)⟩

+ ⟨EL(k)E∗
L(k′)⟩] (A.24)

Where, ER and EL are known as Jones vectors and they are defined as,

ER =
E1 − ιE2√

2
, EL =

E1 + ιE2√
2

.

=⇒ E1 =
ER + EL√

2
, E2 =

EL − ER

ι
√

2
=
ι(ER − EL)√

2
. Further with the following definitions of the correlation tensor in the polarization

space R11 becomes,

• RRRδ(k − k′) = ⟨ER(k)E∗
R(k′)⟩;

• RRLδ(k − k′) = ⟨ER(k)E∗
L(k′)⟩;

• RLRδ(k − k′) = ⟨EL(k)E∗
R(k′)⟩;

• RLLδ(k − k′) = ⟨EL(k)E∗
L(k′)⟩;

R11 =
1

2
(RRR +RRL +RLR +RLL)

Similarly R22, R12 and R21 can be written as,

R22δ(k − k′) = ⟨E2(k)E∗
2(k′)⟩ =

1

2
[⟨ER(k)E∗

R(k′)⟩ + ⟨EL(k)E∗
L(k′)⟩

− ⟨ER(k)E∗
L(k′)⟩ − ⟨EL(k)E∗

R(k′)⟩]

= −1

2
(RRR +RLL −RLR −RRL) δ(k − k′). (A.25)
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R12δ(k − k′) = ⟨E1(k)E∗
2(k′)⟩ =

〈
ER(k) + EL(k)√

2
− ι

(E∗
R(k′) − E∗

L(k′))√
2

〉
= − ι

2
[⟨ER(k)E∗

R(k′)⟩ − ⟨ER(k)E∗
L(k′)⟩ + ⟨EL(k)E∗

R(k′)⟩ − ⟨EL(k)E∗
L(k′)⟩]

= − ι

2
(RRR −RRL +RLR −RLL) δ(k − k′).

(A.26)

R21δ(k − k′) = ⟨E2(k)E∗
1(k′)⟩ =

ι

2
[⟨ER(k)E∗

R(k′)⟩ + ⟨ER(k)E∗
L(k′)⟩

− ⟨EL(k)E∗
R(k′)⟩ − ⟨EL(k)E∗

L(k′)⟩]

=
ι

2
(RRR +RRL −RLR −RLL) δ(k − k′). (A.27)

Therefore, we can write,
R11

R12

R21

R22

 =
1

2


1 1 1 1

−ι ι −ι ι

ι ι −ι −ι

1 −1 −1 1




RRR

RRL

RLR

RLL

 (A.28)

The matrix upon inversion gives,

• RRR =
1

2
(R11 +R22 + ι(R12 −R21));

• RLL =
1

2
(R11 +R22 − ι(R12 −R21));

• RLR =
1

2
(R11 −R22 + ι(R12 +R21));

• RRL =
1

2
(R11 −R22 − ι(R12 +R21));

By definition (see Eq. 5.2),

Rij(k)δ(k − k′) =
〈
Ei(k)E∗

j (k′)
〉

=
B2

0

c2
(
δij
〈
up(k)u∗p(k

′)
〉
− ⟨uj(k)u∗i (k

′)⟩
)

=⇒ Rij =
B2

0V
2
A

c2
(δijYpp(k) − Yji(k)) =

B2
0V

2
A

c2
(δijYpp − Yij)

=
B2

0V
2
A

c2k2

(
δij +

kikj
k2

)
P0δ

(
k

m′kg
− 1

)
(A.29)
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where we have used Eq. (A.22) for the electric field correlation term, Eq. (5.5) for

the small-scale turbulence spectrum and utilized its symmetry property (Yij = Yji).

We further use the following identity for Ypp,

Ypp (k) = k−2 (δpp − 1)P0δ

(
k

m′kg
− 1

)
=

2P0

k2
δ

(
k

m′kg
− 1

)
.

Therefore, with the definition of k = {k⊥ cosψ, k⊥ sinψ, k||} the correlations in the

polarization space takes the following form,

• RRR =
1

2

B2
0V

2
A

c2k2
P0δ

(
k

m′kg
− 1

)[
1 +

k2⊥ cosψ2

k2
+ 1 +

k2⊥ sinψ2

k2

+ι
(
k2⊥
k2

cosψ sinψ − k2⊥
k2

cosψ sinψ
)]

=
B2

0V
2
A

c2k2
P0

(
1 +

k2⊥
2k2

)
δ

(
k

m′kg
− 1

)
;

• RLL =
B2

0V
2
A

c2k2
P0

(
1 +

k2⊥
2k2

)
δ

(
k

m′kg
− 1

)
;

• RLR =
1

2

(
1 +

k2⊥ cosψ2

k2
− 1 − k2⊥ sinψ2

k2
+ ι

(
2
k2⊥
k2

cosψ sinψ

))
B2

0V
2
A

c2k2
P0δ

(
k

m′kg
− 1
)

= 1
2

B2
0V

2
A

c2k2
P0δ

(
k

m′kg
− 1
)
k2⊥
k2
e2ιψ

• RRL =
1

2

B2
0V

2
A

c2k2
P0δ

(
k

m′kg
− 1

)
k2⊥
k2
e−2ιψ

where we have used the following,

δij +
kikj
k2

=


1 0 0

0 1 0

0 0 1

+
1

k2


k2⊥ cos2 ψ k2⊥ cosψ sinψ k⊥k|| cosψ

k2⊥ cosψ sinψ k2⊥ sin2 ψ k⊥k|| sinψ

k||k⊥ cosψ k||k⊥ sinψ k2||

 (A.30)

Similarly considering Pij = B2
0Yij we get,

• PRR = B2
0YRR =

B2
0

k2

(
1 − k2⊥

2k2

)
P0δ

(
k

m′kg
− 1

)
;

• PLL = B2
0YLL =

B2
0

k2

(
1 − k2⊥

2k2

)
P0δ

(
k

m′kg
− 1

)
;

• PLR = B2
0YLR =

−B2
0

2

k2⊥
k4
e2ιψP0δ

(
k

m′kg
− 1

)
;
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• PRL = B2
0YRL =

−B2
0

2

k2⊥
k4
e−2ιψP0δ

(
k

m′kg
− 1

)
.

Further, following the definition of Tij and Cij while noting the fact that Cij = σYij

and Yij is real, the velocity-magnetic field correlation function becomes,

• T11 = −B
2
0VA
c

ϵ1m3C
∗
m1 = −B

2
0VA
c

ϵ123C
∗
21 = −B

2
0VA
c

C∗
21

=
B2

0VA
c
σ
k2⊥
k4

cosψ sinψP0δ
(

k
m′kg

− 1
)

;

• T22 = −B
2
0VA
c

ϵ2m3C
∗
m2 =

B2
0VA
c

C∗
12 = −B

2
0VA
c

σ
k2⊥
k4

cosψ sinψP0δ

(
k

m′kg
− 1

)
;

• T12 = −B
2
0VA
c

ϵ2m3C
∗
m1 = −B

2
0VA
c

ϵ213C
∗
11 =

B2
0VA
c

C∗
11

=
B2

0VA
ck2

σ
(

1 − k2⊥ cosψ2

k2

)
P0δ

(
k

m′kg
− 1
)

• T21 = −B
2
0VA
c

ϵ1m3C
∗
m2 = −B

2
0VA
c

C∗
22 = −B

2
0VA
ck2

σ

(
1 − k2⊥ sinψ2

k2

)
P0δ

(
k

m′kg
− 1
)

where ϵijk is the Levi-Civita symbol and we have further used the fact that Cij = C∗
ij.

Following these the correlation in the polarization space takes the form,

• TRR =
P0

2k2

(
ι
B2

0VAσ

c

(
1 − k2⊥ cosψ2

k2
+ 1 − k2⊥ sinψ2

k2

))
δ

(
k

m′kg
− 1

)
= ι

B2
0VAσ

2ck2

(
2 − k2⊥

k2

)
P0δ

(
k

m′kg
− 1
)

;

• TLL = −ιB
2
0VAσ

2ck2

(
2 − k2⊥

k2

)
P0δ

(
k

m′kg
− 1

)
;

• TLR =
P0

k2

[
B2

0VAσ

2c

(
k2⊥ cosψ sinψ

k2
+
k2⊥ cosψ sinψ

k2

)
+ι
(

1 − k2⊥ cosψ2

k2
− 1 +

k2⊥ sinψ2

k2

)]
δ
(

k
m′kg

− 1
)

= −ιB
2
0VAσ

2c

k2⊥
k4
e2ιψP0δ

(
k

m′kg
− 1

)
;
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• TRL = ι
B2

0VAσ

2c

k2⊥
k4
e−2ιψP0δ

(
k

m′kg
− 1

)
.

Note that all the velocity-magnetic field correlations becomes imaginary in the po-

larization space.

A.5 Derivation of Dpp

From Eq. (5.7) we get,

Dpp =
Ω2 (1 − µ2)

2
m2c2

V 2
A

c2
P0Re

[
∞∑

n=−∞

∫ kmax

kmin

δ

(
k

m′kg
− 1

)
k−2 d3k∫ ∞

0

dt e−ι(k||v||−ω+nΩ)t{(
J2
n+1

(
k⊥v⊥

Ω

)
+ J2

n−1

(
k⊥v⊥

Ω

))(
1 +

k2⊥
2k2

)
+Jn+1

(
k⊥v⊥

Ω

)
Jn−1

(
k⊥v⊥

Ω

)
k2⊥
k2

}]
(A.31)

Time integration leads,

Dpp =
Ω2 (1 − µ2)

2
m2c2

V 2
A

c2
πP0Re

[
∞∑

n=−∞

∫ kmax

kmin

δ

(
k

m′kg
− 1

)
dk∫ π

0

sin θdθ

∫ 2π

0

dϕ δ(k cos θv|| − ω + nΩ){(
J2
n+1

(
k⊥v⊥

Ω

)
+ J2

n−1

(
k⊥v⊥

Ω

))(
1 +

k2⊥
2k2

)
+Jn+1

(
k⊥v⊥

Ω

)
Jn−1

(
k⊥v⊥

Ω

)
k2⊥
k2

}]
(A.32)

The presence of the δ function inside the ϕ integration, gives rise to a resonance

condition which the plasma waves and the charged particles have to satisfy in order

for interaction to happen between them. In this work, we consider the resonance

to be exact with no broadening. Additional modifications regarding the resonance

condition is also considered in literature which results from modifications of the

quasilinear approach (see Yan & Lazarian, 2008, for example). Upon performing
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the ϕ integration we get,

Dpp = Ω2
(
1 − µ2

)
m2c2

V 2
A

c2
π2P0Re

[
∞∑

n=−∞

∫ kmax

kmin

δ

(
k

m′kg
− 1

)
dk

∫ π

0

sin θdθ

δ(k cos θv|| − ω + nΩ)

{(
J2
n+1

(
k⊥v⊥

Ω

)
+ J2

n−1

(
k⊥v⊥

Ω

))
(

1 +
k2⊥
2k2

)
+ Jn+1

(
k⊥v⊥

Ω

)
Jn−1

(
k⊥v⊥

Ω

)
k2⊥
k2

}]
.

(A.33)

Further, we note that k⊥ = k sin θ = k
√

1 − x2 with x being the cosine of the

angle between k and the direction of the mean magnetic field, x = cos θ. Owing

to the small scale limit, k⊥v⊥
Ω

>> 1, the summation on ’n’ becomes integration and

integration over delta function with resonance condition leads (Tsytovich & Burdick,

1977),

Dpp ≃ Ω
(
1 − µ2

)
m2c2

V 2
A

c2
π2P0Re

[∫ ∞

0

δ

(
k

m′kg
− 1

)
dk∫ 1

−1

dx

{(
J2

ω
Ω
− kxvµ

Ω
+1

(
kv

Ω

√
1 − x2

√
1 − µ2

)
+J2

ω
Ω
− kxvµ

Ω
−1

(
kv

Ω

√
1 − x2

√
1 − µ2

))(
3 − x2

2

)
+
(
1 − x2

)
Jω

Ω
− kxvµ

Ω
+1

(
kv

Ω

√
1 − x2

√
1 − µ2

)
Jω

Ω
− kxvµ

Ω
−1

(
kv

Ω

√
1 − x2

√
1 − µ2

)}]
,

(A.34)

where we consider v⊥ = v
√

1 − µ2 with µ being the pitch-angle and the limit of the

k integration to be 0 to ∞. Performing the k integration leads,

Dpp ≃ Ω
(
1 − µ2

)
m2c2

V 2
A

c2
π2m′kgP0Re

[∫ 1

−1

dx

{(
J2

ω
Ω
−m′kgxvµ

Ω
+1(

m′kgv

Ω

√
1 − x2

√
1 − µ2

)
+ J2

ω
Ω
−m′kgxvµ

Ω
−1

(
m′kgv

Ω

√
1 − x2

√
1 − µ2

))(
3 − x2

2

)
+
(
1 − x2

)
Jω

Ω
−m′kgxvµ

Ω
+1

(
m′kgv

Ω

√
1 − x2

√
1 − µ2

)
Jω

Ω
−m′kgxvµ

Ω
−1

(
m′kgv

Ω

√
1 − x2

√
1 − µ2

)}]
,

(A.35)
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A.6 Transport Equation

From Eq. (5.24) following a1 = 0, due to the fact that Dµp = 0, leads to
∂F

∂t
=

∂

∂z

(
K∂F
∂z

)
− U

∂F

∂z
+
p

3

∂U

∂z

∂F

∂p
+

1

p2
∂

∂p

(
p2a2

∂F

∂p

)
+ S0 (A.36)

Substituting F = f
p2

, f follows the following equation,

∂f

∂t
=

∂

∂z

(
K∂f
∂z

)
− U

∂f

∂z
+
p3

3

∂U

∂z

∂

∂p

(
f

p2

)
+

∂

∂p

(
p2a2

∂

∂p

(
f

p2

))
+S0p

2 (A.37)

which upon simplification gets the following form,
∂f

∂t
=

∂

∂z

(
K∂f
∂z

)
− ∂(Uf)

∂z
+

∂

∂p

(
∂U

∂z

p

3
f

)
+

∂

∂p

(
a2
∂f

∂p

)
− ∂

∂p

(
2a2f

p

)
+ S0p

2. (A.38)

For the present work, we neglect the 3rd term on the right-hand side, which corre-

sponds to adiabatic loss/gain, and introduce a radiative loss term due to synchrotron

process. We further employ the leaky-box approximation (Lerche & Schlickeiser,

1985), following which we replace the spatial advection and diffusion terms by a

momentum dependent escape term. Such an approximation leads the transport

equation to take the following form,
∂f

∂t
+

∂

∂γ

(
2Df

γ
− c0B

2γ2f

)
=

∂

∂γ

(
D
∂f

∂γ

)
− f

Tesc
+ S0γ

2. (A.39)

Note that, the above equation is written in terms of particle’s Lorentz factor γ in-

stead of momentum p and the corresponding conversion factor is encapsulated within

the constant factors of the transport coefficients. Further, following the forms of the

transport coefficients for small-scale turbulence as discussed in sections 5.3.1 and

5.3.2, we find 1/Tesc = αγ8/3, D = D0γ
−2/3, with α and β being the constants whose

values depends on βA, m′ and σ. Upon substitution of the transport coefficients,
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the transport equation takes the following form,

∂f

∂(TsT )
+

∂

∂(γsΓ)

(
2D0(γsΓ)−

2
3f

γsΓ
− c0B

2(γsΓ)2f

)
=

∂

∂(γsΓ)

(
D0(γsΓ)−

2
3

∂f

∂(γsΓ)

)
−fα(γsΓ)

8
3 + S0(γsΓ)2.

(A.40)

Note that the substitution of the transport coefficients is done considering t = TsT

and γ = γsΓ with Ts and γs being the scaled time and Lorentz factor respectively.

The above transport equation when written in the scaled units, simplifies to,

∂f

∂T
+ Ts

∂

∂Γ

{
2D0(γsΓ)−

5
3f

γs
− c0B

2

γs
(γsΓ)2f

}
= Ts

∂

∂Γ

(
D0

γ2s
(γsΓ)−

2
3
∂f

∂Γ

)
−Tsfα(γsΓ)

8
3 + TsS0(γsΓ)2.

Next, we consider Ts to be the synchrotron cooling time for γs, Ts = Tcool(γs) =

1/(c0B
2γs) and with such choice of Ts the transport equation further simplifies to,

∂f

∂T
+

∂

∂Γ

{
2D0γ

− 5
3

s Γ− 5
3

γsc0B2γs
f − c0B

2(γsΓ)2f

γsc0B2γs

}
=

∂

∂Γ

(
D0γ

− 2
3

s Γ− 2
3

γ2sc0B
2γs

∂f

∂Γ

)

−f γ
8
3
s αΓ

8
3

c0B2γs
+ S0

γ2sΓ
2

c0B2γs
,

which finally takes the following form,
∂f

∂T
+

∂

∂Γ

(
2aΓ− 5

3f − Γ2f
)

=
∂

∂Γ

(
aΓ− 2

3
∂f

∂Γ

)
− bΓ

8
3f + S. (A.41)

where a and b are the ratios of the synchrotron cooling time to diffusion timescale

and escape timescale at γ = γs, respectively; S is the scaled source term. They can

be defined in the following way,

a =
D0γ

− 11
3

s

c0B2
, b =

γ
5
3
s α

c0B2
, S = S0

γs
c0B2

Γ2. (A.42)

A.7 Comparison with Hard-sphere turbulence

In this appendix we show a comparative analysis between the acceleration efficiency

of the small-scale turbulence and hard-sphere turbulence. For this purpose we solve

the following Fokker-Planck equation considering different forms for the diffusion
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Figure A.1: Evolution of an initial Gaussian with mean 104 and standard deviation
100 (shown by a black dashed curve) for two different cases, following Eq. (A.43).
Left: Due to small-scale turbulence (D = γ−2/3), Right: due to hard-sphere turbu-
lence (D = γ2). The temporal value is depicted by the colorbar.

coefficient.
∂f

∂T
+

∂

∂γ

(
2D

γ

)
f =

∂

∂γ

(
D
∂f

∂γ

)
, (A.43)

We consider D = D0γ
−2/3 for the stochastic acceleration due to small-scale turbu-

lence (see section 5.3.1) and D = Dhsγ
2 for the case of hard-sphere turbulence with

both D0 = Dhs = 1.

In Fig. A.1 we show the temporal evolution of the initial distribution function for

both the case scenarios. In the left plot, due to small-scale turbulence, the spread

of the initial distribution function increases owing to the acceleration of particles.

However, the spreading of the distribution function happens slowly compared to the

plot shown in the right panel. Such an evolution is due to the larger acceleration

time (τacc ∼ γ2/D ∝ γ8/3) for the small-scale turbulence as compared to the right

one where τacc is constant. This exercise clearly shows that the acceleration due

to the small-scale turbulence is less efficient as compared to the hard-sphere case,
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Figure A.2: Evolution of an initial power-law energy distribution of the form γ−6

following Eq. (5.26) considering synchrotron loss process with different values for a
and b = 10−5. The values for S is considered as zero. The initial distribution is
shown with the black dashed curve.

however one should keep in mind that the result is largely dependent on the choice of

D0 and Dhs (see Fig. 5.4). The purpose of this analysis is to compare the evolution

of the distribution function for two mathematically different form of D.

A.8 Evolution of the distribution function with different
escape timescale

In this appendix we show additional figures (figs. A.3 and A.2) for the evolution

of the distribution function by solving Eq. (5.26) with b = 10−4 and 10−5. The

evolution is computed for different values of a and S = 0.

A.9 Computation of transport coefficients for small-scale
anisotropic Alfvèn wave turbulence spectrum

For computing the transport coefficients for small-scale anisotropic turbulence, we

consider the form of the turbulence spectrum such that it can mimic the behaviour

of realistic Alfvènic turbulence upto a certain degree (Yan & Lazarian, 2002). In

particular, we consider the turbulence spectrum of the following form,

Yij(k) = Paniso

(
δij −

kikj
k2⊥

)
Θ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ , (A.44)
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Figure A.3: Evolution of an initial power-law energy distribution of the form γ−6

following Eq. (5.26) considering synchrotron loss process with different values for a
and b = 10−4. The values for S is considered as zero. The initial distribution is
shown with the black dashed curve.

where Θ corresponds to Heaviside theta function and Paniso being the injected tur-

bulent power; k⊥ and k|| are the perpendicular and parallel wave vector components;

m′kg and m′′kg are the respective scales where power corresponding to k⊥ and k||

are injected. Note the difference between the above spectrum with the isotropic one

given by Eq. (5.5), the isotropic part here corresponds to the isotropy in the plane

perpendicular to k|| and unlike the earlier one the injection of energy is happening

at different scales for k⊥ and k|| separately, which is governed by the value of m′

and m′′ respectively. Moreover the above spectrum allows for the energy to cascade

along k⊥ direction, while a single scale injection is considered along k||. With such

a spectrum the equipartition of energy implies the form of Paniso as the following,

Paniso ≃
α− 2

2πm′kg(m′′kg)2−α
. (A.45)

The positivity constraint of the power implies α > 2. Such a turbulence spectrum

takes the following form in the polarisation space,

• RRR =
1

2

B2
0V

2
A

c2
PanisoΘ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ ;

• RLL =
1

2

B2
0V

2
A

c2
PanisoΘ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ ;
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• RLR =
1

2

B2
0V

2
A

c2
PanisoΘ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ e2ιψ;

• RRL =
1

2

B2
0V

2
A

c2
PanisoΘ (k⊥ −m′kg) δ

(
k||
m′′kg

− 1

)
k−α⊥ e−2ιψ;

With such turbulent spectrum, Dpp takes the following form,

Dpp =
Ω (1 − µ2)

4
2π2m2c2

V 2
A

c2
m′′kgPanisoRe

[∫ ∞

m′kg

k−α+1
⊥ dk⊥{

J2

ω
Ω
−

m′′kgv||
Ω

+1

(
k⊥v⊥

Ω

)
+ J2

ω
Ω
−

m′′kgv||
Ω

−1

(
k⊥v⊥

Ω

)
(A.46)

+2J
ω
Ω
−

m′′kgv||
Ω

+1

(
k⊥v⊥

Ω

)
J

ω
Ω
−

m′′kgv||
Ω

−1

(
k⊥v⊥

Ω

)}]
Note that the integral over k⊥ resembles a variation of the Weber-Schafheitlin type

integral and the integration is performed by bounding the upper limit of the integral

due to the constraint given in Eq. (5.18).

A.10 Transport coefficient for fast magnetosonic wave

We show the calculation of the momentum transport coefficient for the scenario when

the small-scale turbulence is mediated via compressional fast waves. For simplicity

we consider the dispersion relation of the fast wave in a cold plasma medium, which

takes the following form (see Eq. 13.3.1 in Schlickeiser, 2002b),

ω = VAk (A.47)

where VA is the Alfvèn velocity and k = |k|. With such dispersion relation Eq. (5.10)

becomes the following,

γm′kgVA
ΩNR

−
m′kgc

√
1 − 1

γ2
µx

ΩNR

γ −
m′kgc

√
1 − 1

γ2

ΩNR

γ
√

1 − x2
√

1 − µ2 = Q,

With such a condition, we compute the region of validity for x from the following

equation,

Qmin ≤ γm′kgVA
ΩNR

−
m′kgc

√
1 − 1

γ2
µx

ΩNR

γ −
m′kgc

√
1 − 1

γ2

ΩNR

γ
√

1 − x2
√

1 − µ2 ≤ Qmax,

(A.48)
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for fast waves and thereby calculate the momentum diffusion coefficient following

Eq. (5.8).

Below we investigate the impact of various parameter values on the pitch-angle-

averaged momentum diffusion coefficient for isotropic fast wave turbulence. The

results are presented in Fig. A.4, which comprises of four panels displaying the

impact of different parameters on the diffusion coefficient. The diffusion coefficient

can be observed to follow a power-law like trend with an index of −2/3 with the

particle Lorentz factor γ in all of the panels, similar to that of the Alfvènic turbulence

as shown in section 5.3.1.

Panel (a) of the figure investigates the influence of different values of the mean

magnetic field B on the diffusion coefficient. It can be observed that the diffusion

coefficient increases with the magnetic field strength. In panel (b), the effect of the

parameter m′ on the diffusion coefficient is examined. It is observed that a smaller

energy injection scale, corresponds to larger values of m′, results in a reduced in-

fluence of turbulence on the charged particles, causing the diffusion coefficient to

decrease. Panel (c) investigates the effect of the Alfvén velocity on the momentum

diffusion coefficient. The results indicate that a decrease in the Alfvén velocity of

the underlying fluctuations leads to a reduction in momentum diffusion. In addi-

tion, panel (d) examines the effect of the parameter σ on the momentum diffusion

coefficient. The results indicate that the momentum diffusion coefficient increases

as σ increases, due to particles interacting with an increasing number of waves as σ

increases.

Moreover, comparing the value of the diffusion coefficients by modulating various

parameters with the one observed for the Alfvèn waves (as discussed in section 5.3.1,

see also Fig. 5.1), we find the values to be of the same order which ultimately

resonate with the fact that the nature of the turbulence becomes degenerate to the

non-thermal particles whose gyro-radius is higher that the turbulence correlation
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Figure A.4: Figure demonstrating the dependence of the pitch-angle-averaged mo-
mentum diffusion coefficient (ξ) on particle Lorentz factor γ considering an isotropic
single-scale turbulence injection spectrum for fast magnetosonic waves in cold
plasma.

length.
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