DESIGN AND SYNTHESIS OF BIMETALLIC
CATALYSTS FOR VARIOUS
ENVIRONMENTALLY BENIGN ORGANIC
TRANSFORMATIONS

A THESIS

Submitted in partial fulfilment of the
requirements for the award of the degree
of
DOCTOR OF PHILOSOPHY

By

NEHA CHOUDHARY

DEPARTMENT OF CHEMISTRY
INDIAN INSTITUTE OF TECHNOLOGY INDORE
JULY 2023






INDIAN INSTITUTE OF TECHNOLOGY
INDORE

CANDIDATE’S DECLARATION

| hereby certify that the work which is being presented in the thesis entitled DESIGN
AND SYNTHESIS OF BIMETALLIC CATALYSTS FOR VARIOUS
ENVIRONMENTALLY BENIGN ORGANIC TRANSFORMATIONS in the partial
fulfilment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY
and submitted in the DEPARTMENT OF CHEMISTRY, INDIAN INSTITUTE OF
TECHNOLOGY INDORE, is an authentic record of my own work carried out during the
time period from July 2018 to July 2023 under the supervision of Dr. Shaikh M. Mobin,
Professor, Department of Chemistry, Indian Institute of Technology Indore.

The matter presented in this thesis has not been submitted by me for the award of any other

degree of this or any other institute.

‘-7\”“/3
25 06.07.2023

Signature of the student with date
(NEHA CHOUDHARY)

This is to certify that the above statement made by the candidate is correct to the best of

my/our knowledge.

Signature of Thesis Supervisor with date
(Dr. SHAIKH M. MOBIN)

September 2023. v
p . Sl“” kW
Signature of Thesis Supervisor with date
(Prof. SHAIKH M. MOBIN)







ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor
Prof. Shaikh M. Mobin for his valuable guidance and constant
support through my Ph.D. journey. I want to thank him for
providing vesearch facilities with freedom to work
independently to develop new the research ideas. He always
encouraged me to come out of my comfort zone and said go
ahead to try new things. I specially thank him for his quick
response and efforts to publish the work on time in reputed
journals. Also, I sincerely want to thank him for providing
opportunities to present my work in various national and
international conferences. The scope provided by him to
develop my own research goals and to participate in projects
within the lab have been helpful in my growth through the
last five years.

I also thank my PSPC members, Prof. Sampak Samanta and
Prof. Sarika Jalan, for their constructive suggestions and
comments to improve the work. I would like to thank Prof.
Pratibha Sharma who motivated me to join Ph.D. at IIT-
Indore.

I extend my thanks to all the faculties, staff members and
technicians at the Department of Chemistry, IIT Indore, for
their guidance and support during my course WOrR,
department-related activities, and documentations. I am
grateful to the staff members at SIC, Mr. Kinny, Mr.
Ghanshyam, Mr. Nitin, Mr. Ravindra for their help to
perform various characterizations. I am also thankful to
SAIF, IIT-Bombay, ACMS, IIT-Kanpur, MRC, MNIT-Jaipur,

\



IIC, IIT-Roorkee, CIF, IIT-GN, IISER Bhopal for providing
characterization facilities.

I am deeply grateful to our computational collaborator Prof.
Giannis Mpourmpakis, University of Pittsburgh, USA, and his
student Ms. Mona Abdelgaid for performing DFT calculations
for exploring the mechanism. I extend my thanks to Prof.
Jeffrey T. Miller Purdue University, USA and Prof. Abhaya
Datye, University of New Mexico, USA for performing
characterizations and for their guidance throughout the
collaborative work.

I also thank UGC, India, for providing research fellowship. I
also thank SERB, CSIR and BRNS for providing financial
support for travel to present my thesis work in conferences.
Twould like to extend my sincere thanks to all my currvent and
past lab members for their warm support during these years.
I would like to specially thank Dr. Topi, Dr. Shagufi and Ms.
Puja who guided and helped me in shaping my research goals
like a sister in my initial years. I would [ike to thank my other
group members Dr. Sanjay, Dr. Anoop Gupta, Dr. Ajeet, Dr.
Prakash, Dr. Vinay, Dr. Mohit, Dv. Khursheed, Dr. Kaushik,
Dr. Richa, Drv. Navpreet, Dr. Pranav, Dr. Nabeela, Dr.
Kamal, Dr. Viresh, Dr. Diptangshu, Mr. Ravinder, Ms.
Nirmiti, Mr. Nissar, Mr. Praveen, Mr. Zahir, Mr. Rakesh, Ms.
Priya, Ms. Vinita, Mr. Debashish and Mr. Kapil for their
suggestions during my work.

I want to offer special thanks to my friends Mr. Sandeep, Ms.
Ekta, Mr. Shivendu, Ms. Nida, Mr. Deepak for their support
during my Ph.D. journey. They were always behind to support

me and gave valuable suggestions throughout. A special
Vi



thanks to Mr. Navdeep Srivastava for always motivating me
and giving mental support during this five-year journey.
‘Without his support this journey won't be possible. He was
always there in my hard time and motivated me to keep going.
Finally, I would [ike to thank wmy parents who has
unconditionally supported me and allowed me to pursue my
career despite all hurdles. My mother Mrs. Nirmala and my
father Myr. Babulal Choudhary always encouraged me to be
independent and go for further studies. They have given me
enough freedom to take my decisions and motivated me to
keep going. Words are mnot enough to explain their
contribution in this journey and in my life. I owe them a lot.
Lastly, I extend my sincere gratitude to everyone who has

directly or indirectly contributed to my educational life.

NEHA CHOUDHARY

Vil



Dedicated to my family



ABSTRACT

The investigation embodied in the thesis entitled “DESIGN AND
SYNTHESIS OF BIMETALLIC CATALYSTS FOR VARIOUS
ENVIRONMENTALLY BENIGN ORGANIC
TRANSFORMATIONS” was initiated in July 2018 in the Department of
Chemistry, Indian Institute of Technology Indore. The objectives of this
thesis are synthesizing recyclable, bimetallic catalysts i.e., nanocatalysts
and single atom catalysts for various organic transformations like
hydrogenation, carboxylation, and CO> fixation reactions. The focal points

of the thesis are as follows-

1) Synthesis and characterization of Zn-Cu supported on mesoporous silica
MCM-41 (ZnO-Cu(OH)CI/MCM-41) for transfer hydrogenation of ketones

with water as solvent and NaBHj4 as reducing agent.

2) Bimetallic CoNi nanoflowers for reduction of terminal alkynes into
alkanes using hydrazine hydrate as reducing agent and ethanol as solvent.

3) Bimetallic CuNi-12 nanoparticles with 1:2 molar ratio of Cu:Ni for
hydrogenation of biomass derived furfural, cinnamaldehyde and 5-hydroxy
methyl furfural (HMF) into corresponding alcohols using 2-propanol as

hydrogen source, KOH as base.

4) Bimetallic CuNi-11 nanocatalyst (Cu:Ni = 1:1 molar ratio) for
carboxylation of benzene to benzoic acid with solvent-free condition and

HCOOH as carboxylating agent.

5) Co doped ZrO> single atom catalysts for chemical fixation of CO into
epoxides to cyclic carbonates with solvent free conditions.



This thesis includes seven chapters, and it starts with the general
introduction of heterogeneous catalysis with focusing on nanoparticles and
single atom catalysts strategies (Chapter 1), followed by synthesis of
supported nanocatalyst (Chapter 2) for hydrogenation reactions, followed
by utilization of bimetallic nanocatalysts hydrogenation of terminal alkynes
(Chapter 3), hydrogenation of biomass derived furfural (Chapter 4),
carboxylation of arenes (Chapter 5), and further synthesis of single atom
catalysts for CO> fixation reaction (Chapter 6). Finally, thesis concludes
with the future perspective specially focusing further utilization of
nanocatalysts and developing new strategies of synthesis of SACs (Chapter
7). The contents of each chapter included in the thesis are discussed as
follows:

Chapter 1 includes the general introduction of catalysis, types of catalysis
i.e., homogeneous, and heterogeneous catalysis and their advantages and
disadvantages with focusing on heterogeneous catalyst i.e., nanoparticles
and single atom catalysts. This is followed by a brief discussion on the
tuning of the properties of nanoparticles as catalysts and their applications
in various organic transformation reactions such as hydrogenation of
ketones, aldehydes, and terminal alkynes. Furthermore, the single atom
catalysts and their synthetic strategies, characterization techniques and their
applications.

In Chapter 2, the MCM-41 supported ZnO-Cu(OH)CI nanocatalyst was
synthesized via facile wet impregnation method at room temperature and
characterized via various techniques like powder X-ray diffraction (PXRD),
thermogravimetric analysis (TGA). Morphological studies were performed
by Scanning electron microscopy (SEM), Transmission electron
microscopy (TEM). The above studies revealed the incorporation of metal
species into the pores of MCM-41, leading to decrease in surface area of the
nanoparticles found to be 239.079 m?/g. As synthesized catalysts showed
high catalytic activity towards 19 ketone substrates using NaBHs as

reducing agent, water as a solvent and within 45 minutes at 40 °C, the

X



acetophenone (model substrate) converted 100% with 100% selectivity and
recyclable up to six cycles. Hence, ZnO-Cu(OH)CI/MCM-41 nanoparticles
with 2.46 wt% zinc and 6.39 wt% copper were deciphered as an active
catalyst for the reduction of ketones without using any gaseous hydrogen

source making it highly efficient and, environmentally and economically

benign.
O
MCMm-41

—
NaBH, NaBH, D e
H,0 H,0 A Ohe ttxw A
0.75h 0.75h ° %m‘* )
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30% Conversion 100% Conversion

Figure 1. Schematic representation of hydrogenation of ketones using ZnO-
Cu(OH)CI/MCM-41 nanocatalyst.

In Chapter 3, bimetallic CoNi nanoflowers developed via facile liquid-
phase reduction method. The catalyst has flower like morphology
confirmed by HR-TEM and SEM. The nanoflower utilized for
hydrogenation of terminal alkynes (15 substrates) using hydrazine hydrate
as hydrogen source at 80 °C. The heterometallic nanoflower exhibited
100% conversion with ~100% selectivity towards alkane products (15
substrates). CoNi nanoflowers are magnetically separable and recyclable up

to six cycles.
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Figure 2. Schematic representation of hydrogenation of terminal alkynes

into alkanes.

In Chapter 4, magnetic CuNi-12 nanocatalyst (Cu:Ni = 1:2 molar ratio)
was synthesized via a liquid-phase reduction method and utilized for the
efficient and selective hydrogenation of biomass-derived aldehydes and
ketones with 2-propanol as hydrogen source and KOH as base. As
synthesized nanocatalyst have flakes like morphology confirmed by SEM
and HR-TEM analysis. The synergistic effect between copper and nickel
metal enhanced the catalytic activity and selectivity. Biomass derived
alcohol i.e., furfural, cinnamaldehyde, 5-hydroxy methyl furfural were
utilized as substrate and converted into alcohol with 100 % conversion and
selectivity. Bimetallic nanocatalyst CuNi-12 having high surface area and
it is reusable, magnetically separable, and recyclable up to seven cycles.
This approach of catalytic conversion of biomass-derived aldehydes is

sustainable and can be implemented for chemical industries.
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Figure 3. Biomass derived aldehydes conversion into alcohol using CuNi-

12 nanocatalyst.

In Chapter 5, bimetallic CuNi-11 nanocatalyst with 1:1 molar ratio via
liquid-phase reduction method and used for carboxylation of benzene with
formic acid with 100% conversion and 100% selectivity. The catalyst was
characterized by SEM and TEM which confirm the flakes like morphology
and BET analysis confirm the high surface area of 58.99 m?/g with
recyclability up to six cycles. The catalytic reaction mechanism was
analysed using Density Functional Theory (DFT) calculations which
demonstrate that the mechanistic pathway involves benzene and formic acid
C-H bond activation, benzoic acid and H. formation with the benzene C—H
activation being the rate-determining step. Further, the bimetallic CuNi-11
nanocatalyst exhibits an activator-, additive- and solvent-free carboxylation
of benzene with magnetically separable, recyclable approach. Overall, our
work contributes to introducing sustainable and environmentally friendly

carboxylation routes of arenes with a new mechanistic approach.
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Figure 4. Carboxylation of benzene to benzoic acid using formic acid and
CuNi-11 nanocatalyst.

In Chapter 6, Cobalt doped ZrO, was synthesized and utilized for CO-
fixation of epoxides. The synthesized Co/ZrO, catalyst was characterized
by EXAFS and STEM to confirm the presence of isolated Co*? on the ZrO-
support. The STEM-EDS data showed uniform distribution of Co over the
surface of the ZrOz support. The catalytic results revealed the Co active sites
on ZrO» enhance catalytic performance and provide 100% conversion with
100% selectivity towards carbonate products in the presence of trace
amounts of tetrabutylammonium bromide (TBAB). The catalyst is readily
regenerated and recycled. When undoped ZrO; and Co3O4 impregnated
ZrO, catalyst was utilized for comparison, less than 50% conversion of
epoxides was obtained. The single atom catalyst (SAC) showed a broad
substrate scope, solvent-free reaction and higher catalytic activity and

selectivity.
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Figure 5. CO; fixation into cyclic carbonates using Co doped ZrO2 SACs.

Chapter 7 includes the outline of the future perspective of the work.
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CHAPTER 1

Introduction

Heterogeneous catalysts i.e. metal nanoparticles, single-atom catalysts
(SACs), metal oxide supported catalysts, metal organic frameworks
(MOFs) etc has different phases from the reaction mixture and owing to
this, it is stable in the reaction medium and easily recoverable and recyclable
from the reaction mixture.[1,2] Nanoparticles are best suitable catalysts as
they have high surface area, low preparation cost, reusability, and easy

synthesis process (Figure 1.1).[3]

High surface
area

Figure 1.1. Major highlights of nanocatalysts.

1.1. Bimetallic nanocatalysts

Bimetallic nanomaterials proved to be multifunctional materials and
discovered to enhance the chemical, magnetic, electrical, and biological
activities owing to the synergistic effect between existing metal components

(Figure 1.2).[4-6] Bimetallic nanostructures are becoming a prominent



class of metal nanomaterials owing to their extraordinary properties that are
beneficial in numerous fields of science and technology. Alloying high-cost
noble metals with low-cost metals reduce the total preparation cost and
made the process economic and showed excellent catalytic activity for

various organic transformations.
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Figure 1.2. Representation of bimetallic alloys and intermetallics [7]

To achieve optimal activity for the desired functions, their dual metal
composition and configuration can be adjusted. In bimetallic systems, the
elemental ratio and atom arrangement are important parameters to tune their
properties for the desired application or activity. Bimetallic nanoparticles
can control the corrosion and leaching of metals which plays an important

role in catalyst deactivation in bulk scale reactions.[§]

The bimetallic nanoparticles show excellent efficiency and catalytic
activity than their monometallic nanoparticles for various organic
transformation reactions i.e. hydrogenation, dehydrogenation, methanol
production, Suzuki coupling, C-N cross coupling etc.[9-12] Modifying the
nanoparticle by introducing some metals can enhance the selectivity like
Lindlar catalyst Pd/CaCO3-Pb.[7,13] Cheephat et al.[14] compared the
catalytic activity of monometallic and bimetallic catalytic systems for
partial oxidation of methane and they observed that bimetallic Re over Ni
supported on Al;Os showed superior catalytic activity than their

monometallic Ni, Rh, Re supported on Al>O3 catalyst. The introduction of



Re drastically promote the reaction synergistically. Furthermore, Goulas et
al.[15] reported that selectivity can be tuned by using supported materials
with bimetallic system. The support material affected the catalytic activity
of PdCu alloy catalyst for (de-)hydrogenation and decarbonlylation
reactions. Pd and Cu alloying is the main factor for the increased selectivity

towards (de)hydrogenation.

Iriondo et al.[ 16] compared the catalytic activity of monometallic Ni, Pt and
bimetallic PtNi catalysts supported on y-Al,O3 and La>Os-modified vy-
AlOs. Among all catalysts, bimetallic PtNi showed higher catalytic activity.
However, La>O3 as support showed the conversion of glycerol towards
lighter gaseous product. The study reveals the importance of supported
material which enhances catalytic activity. Additionally, Seemala et al.[17]
explored and compared the catalytic activity, product selectivity and
catalyst stability of supported bimetallic CuNi catalyst with monometallic
supported catalysts. Also, they have studied the effect of supported material
with CuNi bimetallic nanoparticles with varying the Ni loading for the
conversion of furfural to 2-Methylfuran. They have observed that both
supports enhance the catalytic activity for furfural conversion. However,
ALO; promoted hydrogenation of furan ring to furfuryl alcohol and
tetrahydrofurfuryl alcohol whereas TiO> promoted carbonyl hydrogenolysis

to form methyl furan.

Moreover, Robinson et al.[18] reported the enhanced hydrodeoxygenation
of m-Cresol using supported Pt-Mo/Al,O; bimetallic system over
monometallic Pt/Al>O; catalyst. Using Mo with Pt reduce the overall cost
of the catalyst with enhanced catalytic activity. They have explored the
mechanism using DFT studies and observed that Mo sites in the Pt surface

increased the interaction between oxygen and m-Cresol (Figure 1.3).[18]
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Figure 1.3. Comparative results of monometallic and bimetallic catalyst

for deoxygenation reaction.[18]

Bimetallic catalysts with supported materials showed promoted catalytic
activity. Supported materials stabilize the structure and enhance interaction
between reactant and provides high surface area. Enhanced catalytic activity
and selectivity could be accomplished by taking advantage of the special
metal-support interactions between the metal nanoparticles and the
supporting materials.[19,20] Porous supported materials can provide
internal and external both surface to substrate to react further which leads
to increase in catalytic activity.[21,22] Hence, modification in bimetallic
nanomaterials using supported material or metal oxides with high surface
area is a better approach. The use of support to the metal nanoparticles not
only increase the surface area but also stabilize the nanoparticles by
preventing agglomeration of nanoparticles.[3,7,20] Scheuermann et al.
observed that the doping of oxide materials alter the shape and electronic
properties of supported metal particles as well as facilitate the gas
adsorption and enhance the catalytic performance (Figure 1.4).[23]
Additionally, C, N, F, B-doped carbon supports showed superior catalytic
activity over undoped material due to synergistic effect and also creates

acidic or basic sites on the catalyst surface.[24-26]
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Figure 1.4. Representation of (a) supported nanocatalyst and (b) modified

nanocatalyst.[7]

Furthermore, in bimetallic catalysts magnetic properties can be introduced
by alloying one nonmagnetic metal with magnetic metal. Alloying Fe, Mn,
Co, Ni metals with precious metals can introduce magnetic properties. [27—
29] Magnetic properties in the field of catalytic applications are highly
desirable due to easy recoverability and recyclability from the reaction
mixture using external magnet (Figure 1.5).[30,31] The easy recovery of
the catalyst makes them suitable for industrial applications. In a review
article, Zhang et al. discussed about various catalytic applications of
magnetic nanomaterials i.e., hydrogenation reaction, Suzuki-Miyaura
reaction, oxidation reaction, chiral catalysis, enzyme catalysis,

photocatalysis, electrocatalysis, and photoelectrochemical catalysis.[32]



Only attraction

Figure 1.5. Bimetallic catalyst separations using external magnet.[31]

Hence, the use of bimetallic nanoparticles for catalytic application is getting
attention of scientific community owing to their above properties and it is
easy to tune their properties according to reaction requirement for desired

product selectivity.
1.1.1. Applications in catalysis

Nanoparticles as catalysts or nanocatalysts have been widely utilized for
various catalytic applications 1i.e., photochemically, thermally,
electrochemically. The use of nanocatalysts gave a new approach to
catalytic applications. As discussed in above section, nanocatalysts include
core-shell, metal oxides, carbon-based materials, supported nanomaterials
etc have great importance in catalysis. Specifically, transition metal based
catalysts are preferable due to their high abundance. Since ages, Pd, Co, Ni,
Ru, Fe, Cu, Rh etc have been reported for various catalytic reactions due to
their outstanding properties as shown in Figure 1.6. First row transition
metal nanoparticles of Cu, Ni, Co, Zn showed excellent activity for

hydrogenation reactions. These metal oxides were extensively explored for



hydrogenation reactions due to their redox properties, low cost, and low

sensitivity.

Unsupported Supported

Selective
CO oxidation Oxidation Water-gas shift
Selective
Hydrogenation Electrocatalysis Photocatalysis
Organic deNOx Reforming
reactions reactions

Figure 1.6. Applications of supported and unsupported nanoparticles in
catalysis.[33]

For examples, Dragoi et al. reported Ni supported on mesoporous silica for
transfer hydrogenation of acetophenone using 2-propanol with base as

solvent at 80 °C (Scheme 1.1). [34]

o OH

@)J\Rz Ni@mSiO, @)\RZ
R; NaOH, i-PrOH

R4

\

Scheme 1.1 Reaction scheme for the transfer hydrogenation of ketone to

alcohol.

Furthermore, bimetallic RhsCo nanocatalyst was reported for
hydrogenation of terminal alkynes and alkenes using hydrazine hydrate and
60 °C temperatures.[35] The reaction was performed with 19 substrate and

it showed food to excellent yield (Scheme 1.2).
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Scheme 1.2. Reaction scheme for the transfer hydrogenation of terminal

alkynes to alkanes.

Additionally, transfer hydrogenation of aldehydes and ketones were
reported using Pd nanoparticles on graphene oxide using 2-propanol and
KOH as base at 80 °C. The catalyst showed good to moderate yield (Scheme
1.3).[36]

o OH

@H GO-Se-Pd @)\H
KOH, i-PrOH

R1 R1

Y

Scheme 1.3. Reaction scheme for the transfer hydrogenation of aldehydes

to alcohol.

Furthermore, the carboxylation of arenes were reported generally using CO-
high pressure or CO toxic gas with oxidizing agent with high cost Pd
catalyst. Pd acetate as catalyst has been utilized for carboxylation of aryl
halide with HCOOH and DCC as additive with xantphos (Scheme 1.4). In
this reaction triethyl amine and DMF used as solvent at 100 °C.[37]

X (0]

@ Pd(OAc), @)‘\OH
R, HCOOH, DCC R

1

Scheme 1.4. Reaction scheme for the carboxylation of benzene to benzoic

acid.
1.2. Single atom catalysts (SACs) as heterogeneous catalysts

Single-atom catalysts (SACs) where each metal atom present on metal

oxide support in isolated form, emerged as outstanding alternative in



heterogenous catalysis (Figure 1.7).[38] They have properties of both
homogeneous and heterogeneous catalysts i.e. high exposure of active sites,
easy recovery and good recyclability.[39,40] The SACs have high catalytic
activity due to presence of isolated atoms as active sites over other

supported metal systems.[7]

Geometric
Structures

Nanoparticle Cluster Single atom

©

0.1 nm
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Electronic
Structures

Metal energy band  Molecular orbitals Atomic orbitals

Figure 1.7. Comparative geometrical and electronic structures of

nanoparticles, cluster, and single atom catalyst.[33]

Initially, SACs named as isolated atom or single site catalysts where
metal atoms presented isolated on metal oxide support.[38,41] Later, with
the advancement of characterization techniques contributed to the research
on single-atom catalysts. Thanks to the technology to develop the
microscopic and spectroscopic techniques i.e., high resolution transmission
electron microscope (HR-TEM), and aberration-corrected scanning
tunneling electron microscopy (AC-STEM), electron energy-loss
spectroscopy (EELS), energy dispersive X-ray (EDX), X-ray absorption
near-edge structure (XANES) and extended X-ray absorption fine structure
(EXAFS) through which we can observe the subnanoclusters and atoms in

the catalysts.[40,42]



However, the main challenge is to synthesize these SACs in large scale
because due to their high surface energy, single-atom sites are prone to
sintering and aggregating into thermodynamically stable nanoclusters.
Sintering can be avoided by incorporating suitable supports to enhance the
local coordination environment, electrical characteristics, and strong metal-
support interactions. As the size decreases from bulk to atomic level, the
surface free energy increases due to which capacity of metal sites interaction
with the support and adsorbates increases (Figure 1.8). Although a variety
of potential SACs with affordable supports are emerging as attractive
candidates for heterogeneous catalysis, it is still unclear what the true
functions and crucial components of supports are in determining the

catalytic properties of these SACs.

A
Single-atom

Surface Free Energy

Minimizing Metal Sizes

Figure 1.8. The effects of support on stabilizing single atoms and changes
in surface free energy and specific activity per metal atom with metal

particle size.[43]
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1.2.1. Synthesis strategies

The most common strategies for atom stabilization over the support include

doping, taking advantage of defects, and spatial confinement (Figure 1.9).

1) Doping of heteroatom provides endless opportunity for tuning the
coordination sites because the doping of element creates isomorphous
substitution in lattice. Single atoms can bind effectively to dopants which
have lone pairs of electrons i.e., N, O, S. Additionally, doping of element
generates surface defects which help single atoms to stabilize on support.
Specifically, doping in carbon based materials shows excellent properties
due to electron donating and accepting sites.[44,45] Nitrogen containing
materials not only enhances the stabilization of metals but also prevents

their aggregation and leaching.[46]

.. : 5% ";;

|
|
|
|
[*vee.,
[= M R R R A A

Figure 1.9. Different types of SACs are illustrated by schematic diagrams:
(A) Metal single atoms anchored to graphene, (B) metal surfaces, and (C)

metal oxides, respectively.[43]

2) Defects on the surface of the support facilitate the modification in
electronic and surface morphology by creating unsaturated coordination
sites and showed enhance catalytic properties for electrocatalysis and
photocatalysis. Metal oxides such as ZrO», TiO2, CeOz and Al,O3 have
defects on their surface when used as support and this is most promising
approach to stabilize the SACs. These type of SACs are highly stable at
higher temperature.[40]

3) Spatial confinement strategies are applicable in case of porous supports

like zeolites, MOFs, COFs, graphitic carbon nitride which are able to trap

11



the atom. In MOFs, the SACs immobilization can be done at unsaturated
metal nodes or on chelating sites which was generated by organic linkers or
only if the precursors are incorporated into the MOF pores.[47] However,
high metal loading on low surface area leads to agglomeration of single
atom which can be controlled by using high surface area support with

mesoporosity.[48]
1.2.2. Characterization techniques

For characterizing single atom catalysts various microscopic and
spectroscopic techniques have been utilized as shown in Figure 1.10. To
check the presence of isolated atoms, the HR-TEM and AC-STEM analysis
have been utilized. However, the existing tools are not enough to analyze
the presence of all atoms. It has some limitations as it is dependent on
atomic number Z and the acquired images are best only if the support
material has lower atomic number than the isolated atoms. Moreover, high-
angle annular dark-field (HAADF) is used to increase the contrast of the
image. Although, EDX of SACs can confirm the element dispersion over
the support by analyzing various sections of surface. Additionally, electron
energy-loss spectroscopy (EELS) is analysis technique which provides the

elemental analysis of low atomic numbers.

12
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Figure 1.10. Characterization techniques for analyzing single atom

catalysis.[46]

Furthermore, EXAFS is the technique through which the coordination
number, chemical bonding, bond distance can be analyzed. EXAFS can
provide the details about the local environment and geometric structure of
the single atom. If the doping of the element occurred successfully onto the
support, then the bond distance and chemical environment vary from the
standard one, hence we can confirm the same from EXAFS. Further,
XANES is also provides the local electronic structure of an atom.
Additionally, XPS, XRD, insitu FT-IR, Raman etc are the techniques which
utilizes to analyze the formation of material, element presence, binding
energy etc. Furthermore, DFT calculations are also explored widely to study
the surface defects, plausible structure. DFT studies are generally
complement the other XAS studies to confirm the actual nature and to

explore the mechanistic pathways.

13



1.2.3. Applications in catalysis

SACs have been widely explored for various catalytic reactions for
thermocatalytic, photocatalytic and electrocatalytic reactions.[39,49-52]
Specifically, for thermocatalysis SACs were explored for various organic
transformation reactions such as biomass derived materials conversion, CO3
reduction, gas sensing, water remediation, hydrogenation, hydrosilylation,
hydroformylation, alkane oxidation, alcohol oxidation, C-C coupling
etc.[51,52] SACs showed outstanding catalytic activity, high selectivity and
maximum utilization efficiency in all cases. Furthermore, for
electrocatalytic reactions, SACs showed excellent results for CO>
electroreduction (CO2RR), water-oxidation reaction, oxidation evolution
reaction (OER), hydrogen evolution reaction (HER), NOx removal, N
electroreduction (NRR) etc. [53,54] Zhang et al. discussed the comparative
study of the selective hydrogenation over nanocatalysts, modified
nanocatalysts and SACs as shown in Figure 1.11.[7] Based on reports, they
have concluded that the presence of active sites on single atom catalysts

showed selectivity for hydrogenation reaction over other catalysts.
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Figure 1.11. Chemoselectivity pattern from nanocatalysts to single atom

catalysts.[7]
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For CO; conversion into value added chemicals like CHs, HCOOH, MeOH
etc have been extensively explored using SACs.[55,56] Mechanistic studies
proved the high catalytic activity of single atom for the CO; activation and
reduction. The production of methanol and hydrocarbons is highly desirable
due to their use in synthesis of fuels and other fine chemicals. However,
various reports were there on the synthesis of these chemicals and CO>
conversion, but SACs showed greater activity compared to other materials.
The side reactions during methanol or methane synthesis are the major
issues during their selective production. Also, the traditional methods of
CO; hydrogenation need to be improved to make it more practical. SACs

pave the path for new catalytic approach by providing more active sites.

For example, SACs have been utilized for CO> fixation reaction of epoxides
into cyclic carbonates. Xu et al. reported Iridium single atom supported on
WOs catalyst for cycloaddition of CO,. Epichlorohydrin used as model
substrate and TBAB used as co-catalyst with solvent-free conditions

(Scheme 1.5).[57]

o)
o) /WO, >¥O
IR TBAB OWR

CO,, 40 °C
Scheme 1.5. CO; fixation reaction into epoxides sing SACs.

However, to make these processes more suitable for industrial applications,
some efforts are required to design the catalysts to overcome the existing

issues of product selectivity.
1.3. Scope of present work

The above discussed contain the importance of nanomaterials and single
atom catalyst for catalytic reaction. The present thesis work focuses on
heterogeneous catalysis using bimetallic nanocatalysts of non-noble metals

i.e., Zn-Cu/MCM-41, CuNi-11, CuNi-12, CoNi and single atom catalyst

15



(Co/ZrO»). All catalysts were synthesized and characterized with various
characterization techniques such as PXRD, TGA, BET, SEM, EDAX, HR-
TEM, XPS and then utilized for various catalytic applications
(hydrogenation and carboxylation reaction). All the nanocatalysts were
synthesized using simple reduction method, wet-impregnation method, and
liquid phase reduction methods. Furthermore, single atom catalyst was
synthesized by co-precipitation method and extensively characterized via
EXAFS, XANES, AC-STEM, HAADEF, STEM-EDX and utilized for CO»
fixation reaction into epoxides for cyclic carbonates. All results were

compared with earlier results.
The main highlights of thesis work are mentioned below:

1) Zn-Cu supported on mesoporous silica MCM-41 (ZnO-
Cu(OH)CI/MCM-41) was synthesized via wetness-impregnation method
and utilized for transfer hydrogenation of ketones with water as solvent and

NaBHj4 as reducing agent.

2) Bimetallic CoNi nanoflowers were synthesized via liquid phase
reduction method and utilized for reduction of terminal alkynes into alkanes

using hydrazine hydrate as reducing agent and ethanol as solvent.

3) Bimetallic CuNi-12 nanoparticles were synthesized with 1:2 molar ratio
of Cu:Ni and utilized for hydrogenation of biomass derived furfural and 5-
hydroxy methyl furfural (HMF) into corresponding alcohols using 2-

propanol as hydrogen source, KOH as base.

4) Bimetallic CuNi-11 nanoparticles were synthesized via simple reduction
method with 1:1 molar ratio of Cu:Ni and utilized for carboxylation of
benzene to benzoic acid with solvent-free condition and HCOOH as
carboxylating agent. The reaction mechanism was explored with DFT

calculations.

5) Co doped ZrO» single atom catalysts were synthesized and characterized

via EXAFS, XANES, STEM-EDX, HAADF and the EDX data confirmed

16



the uniform dispersion all over the ZrO». Also, for comparison, undoped

ZrO; and impregnated Co304/ZrO; was also synthesized and utilized for

chemical fixation of CO; and Co/ZrO; single atom catalyst showed superior

catalytic activity with 100% conversion and selectivity with solvent free

conditions.
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CHAPTER 2

Ketone Hydrogenation by using ZnO-
Cu(OH)CI/MCM-41 with a Splash of
Water: an  Environmentally Benign
Approach

2.1. Introduction

Nanoparticles as a catalyst have recently attracted the attention of the
scientific community because of their high selectivity, durability,
recoverability with considerable economic benefits in manufacturing
as an industrial commodity.[1] Metal nanoparticles as catalysts are
popular owing to their high surface area properties, leading to
enhanced interaction between reactant and catalyst surface, hence high
activities observed even under mild conditions.[2] Nanocatalysts have
various applications in numerous fields such as refinery,
petrochemicals, pharmaceuticals, chemicals, food processing.[3,4] The
nanomaterial based on transition metals is the center of attraction
because these species can be used both as a catalyst and catalyst
support due to their activity and their activated surface.[5] The first
row transition metals are replacing the organometallic compounds due
to their high stability and low cost. Since they advantages mixture so
we can say that nanoparticles bridge the gap between homogeneous
and heterogeneous catalysis.[6] Hence, after studying the
aforementioned advantages, we have synthesized the nanocatalyst
ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39
wt% copper by using MCM-41 (Mobil Corporation Matter no. 41) as
support for zinc and copper oxides.

From previous reports, it deduced that individually ZnO and CuO have
various properties such as high electron mobility, high catalytic
activity, high chemical and thermal stability and non-toxicity, easy
availability in nature as well as biocompatibility,[7-9] while a hybrid
Copper-Zinc  oxide catalyst possess application in steam

forming[10,11], methanol synthesis,[12-14] methanol reforming for
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fuel cell,[15] anodic material in lithium-ion batteries[16] and CO>
fixation.[17] So, we have amalgamated them together and synthesized
a catalyst with zinc and copper supported on mesoporous silica MCM-
41. Out of various metal nanoparticle supports reported like
MnO [18,19] alumina,[20] graphene oxide[21] and cerium oxide[22]
silica MCM-41 as support pertaining its high surface area (~1000
m?/g) and pore diameter.[23] Being a porous material, it is capable of
providing more active sites to the reactant and permitting both internal
and external catalysis.[24] Hence, the above properties make MCM-41
an appealing and a novel candidate to act as a support of metal
nanoparticles for catalysis. The previous reports has marked efficiency
of MCM-41 as support for catalysis of acetylene hydration,[25]
oxidation of  phenol solution,[26]  hydrohalogenation  of
chlorobenzene,[27] amination of glycerol,[28] formylation of
amines,[29] syngas  methanation,[30]  hydrosulfurization  of
dibenzothiophene,[31]  toluene  alkylation,[32]  oxidation  of
hydrocarbons,[33] hydrogenation,[34][35] and also used as drug
delivery[36], etc. Herein, the catalytic transfer hydrogenation using
acetophenone as model substrate was studied and the best reaction
condition was optimized using ZnO-Cu(OH)CI/MCM-41 catalyst.

The principle of ‘green chemistry’, focusses on non-toxicity of the
reaction solvent along with recyclability and cost-effectiveness of the
catalyst.[37] Water as a solvent demonstrates distinctive activity.
Hence, in this work water as “green solvent” used, which is cheap,
abundant, eco-friendly, and non-toxic for the reduction of ketones
using synthesized nanomaterial ZnO-Cu(OH)CI/MCM-41
nanoparticles with 2.46 wt% zinc and 6.39 wt% copper along with
sodium borohydride as reducing agent. Reduction using hydrogen
sources like water, methanol, isopropanol, which is known as transfer
hydrogenation has attracted attention owing to its secure handling and
also safety concerns.[38] Although, sodium borohydride reported for
reduction of ketones and aldehydes to alcohols in organic
chemistry[39] with different catalyst. As previously reported that 1-

Phenyl ethanol is used as a flavouring agent, coloring agent in food
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additives, perfumery agent, and in pharmaceutical industries.[40] We
have designed and evaluated the reduction of acetophenone to 1-
Phenyl ethanol as model substrate using sodium borohydride and water
as a solvent. [41,42]

2.2. Experimental

2.2.1. Synthesis of Zn-Cu/MCM-41

Materials used for synthesizing the nanoparticles were Mesoporous
Silica MCM-41, Zinc Chloride and Copper (ii) chloride (> 98%), Zinc
Oxide nanopowder, and all reagent grade ketones, heterocyclic
compounds for the catalytic reaction were purchased from Merck. For
the preparation of bimetallic ZnO-Cu(OH)CI catalyst supported on
MCM-41, firstly zinc chloride (ZnCl2) 3 g and copper chloride (CuCly)
0.33 g were dissolved in 90 ml deionized water with 9:1 weight%
loading respectively and stir for 15 minutes. After that the aqueous
solution of metal salts was added dropwise to the MCM-41 (333 mg)
with continuous stirring at room temperature for 6 hours in the round
bottom flask. The precipitate was then centrifuged and dried at 100 °C
overnight, and hence, the synthesized catalyst named as ZnO-
Cu(OH)CI/MCM-41 nanoparticles.

2.2.2. General catalytic procedure

The reduction of ketones carried out in a 15 mL culture tube with
stirring at a magnetic bar stirrer at 40 °C temperature. The ketone
substrate (1 mmol), reducing agent NaBH4 (0.5-1 mmol), 3 mg of
catalyst (ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc
and 6.39 wt% copper) and water (2 mL) stirred at 40 °C for appropriate
time(0.5-4 h). After 100% conversion of the reactant, the reaction
mixture was quenched with NH4Cl aqueous solution to pH = 7 and
then work up with ethyl acetate and further analyzed by Shimadzu GC-
MS.

2.2.3. Physicochemical measurements
Powder x-ray diffraction (PXRD) of the nanoparticle performed using
Cu Ko radiation (1.54 A) using the Rigaku Smart Lab X-ray
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diffractometer. Fourier-transform infrared spectroscopy (FT-IR)
carried out using KBr pellets with a Bio-Rad FTS 3000MX instrument.
For analyzing thermal stability, the thermogravimetric analysis
performed using TGA 4000, Perkin Elmer using software PYRIS 6. To
know the surface morphology, Scanning Electron Microscopy (FE-
SEM) and Field Emission Gun-Transmission electron microscopy
(HR-TEM, 300 kV) performed using Supra55 Zeiss and FEI Tecnai
G2, F30 respectively. The Brunauer—Emmett—Teller (BET) surface
area determined using N2 and COz adsorption-desorption
measurements. XPS analysis of fresh and spent catalysts recorded
using Auger Electron Spectroscopy (AES) PHI 5000 Versa Prob 11,
FEI Inc. Identification of the products of catalytic reactions carried out

using Shimadzu GC-MS, QP2010 mass spectrometer.

2.3. Results and discussion
2.3.1. Characterization of nanoparticles
Synthesis of the catalyst is carried out via an incipient wetness

impregnation technique as shown below in Scheme 2.1.

<
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Scheme 2.1. Synthesis of ZnO-Cu(OH)CI/MCM-41 nanoparticles.

The XRD patterns of ZnO-Cu(OH)CI/MCM-41 nanoparticles with
2.46 wt% zinc and 6.39 wt% copper catalyst is shown in Figure 2.1, in
which a broad peak around 26 = 23°, indicates amorphous behaviour of
MCM-41 silica support [43][44] and the other diffraction peaks on 20
= 16.16°, 32.28° and 39.64° representing the planes (100), (021) and
(121) of Cu(OH)CI (PDF- #51-0400) and the diffraction peak at 32.28°
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confirmed the ZnO formation and exactly matched with JCPDS No.
36-1451.[45] This revealed the formation of ZnO-Cu(OH)CI/MCM-41
nanoparticles with 2.46 wt% zinc and 6.39 wt% copper. The average
crystallite size of the ZnO-Cu(OH)CI/MCM-41 nanoparticles obtained

29 nm by using Scherrer’s equation.

ZnO-Cu(OH)CI/MCM-41

(100)

(021)
(121)

Intensity (a.u.)

e

) v I v L] v L] v L) M LJ v L)

10 15 20 25 30 35 40 45 50
20 (degree)

Figure 2.1. PXRD measurement data of ZnO-Cu(OH)CI/MCM-41.

In the FT-IR spectrum, as shown in Figure 2.2, the absorption
peak at 3566 cm™ assigned to the stretching vibrations of -OH bond of
silanol group of surface of supported silica[26,46] and the absorption
band at 1620 cm? was because of bending vibration of H-OH
bond[47], and 956 cm™ attributed to the asymmetric stretching
vibration of Si-OH bond.[48,49] The absorption band at 802, 1087, and
1237 cm™ assigned to internal and external asymmetric stretching of
Si-O-Si of the SiO framework. The shift in absorption peaks was may
be because of the substitution of silicon by incorporated metals zinc
and copper.[27] Due to the introduction of zinc and copper the bond

distance of Si-O increases and causes the smaller wavenumbers.[27]
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Figure 2.2. FT-IR spectrum of ZnO-Cu(OH)CI/MCM-41.

Thermogravimetric analysis (TGA) was performed to
determine the thermal stability of the catalyst (Figure 2.3). The major
weight loss observed in three temperature regions: (i) 37 — 140 °C, (ii)
202 — 490 °C, and (iii) above 490 °C. The total weight of the sample is
4336 mg and the weight loss in these three major regions is
respectively 18.656 wt%, 8.659 wt% and 20.023 wt%. The weight loss
below 140 °C might be because of the removal of adsorbed water and
organic solvents. The second significant weight loss was observed
because of the removal of organic species trapped inside the pores of
supported silica. Beyond 490 °C, the weight loss due to the removal of
hydroxyl groups linked to copper[43] and condensation of Si-OH

groups of the inner surface of pores of silica.[50]
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Figure 2.3. Thermogravimetric analysis of ZnO-Cu(OH)CI/MCM-41.

SEM analysis performed to study the surface morphology and
the structure of the nanoparticles, as shown in Figure 2.4. The
presence of Zn, Cu, Si, and O elements was confirmed by EDAX and
mapping (Figure 2.5 (A-E)). Moreover, the EDAX spectrum for
catalyst ZnO-Cu(OH)CI/MCM-41 shows the presence of desired

elements such as Zn, Cu, Si, and O with 6.39 wt% of copper and 2.46
wit% of zinc present.

Figure 2.4. SEM images at (A) 10 um and (B) 2 pum of catalyst ZnO-
Cu(OH)CI/MCM-41.
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Figure 2.5. (A) Mapping, (B) Zn, (C) Cu, (D) Si, (E) O elemental
analysis of ZnO-Cu(OH)CI/MCM-41 catalyst.

To understand the surface morphology and distribution of zinc
and copper on the surface of the catalyst, the TEM experiment was
performed. As shown in all images, it is confirmed that the metal
nanoparticles are disseminated on the surface of MCM-41. The highly
ordered hexagonal channels of MCM-41 can easily be seen in Figure
2.6(A-B),[33,51] and Figure 2.6C indicates the incorporation of metal
inside the pores which  further corroborated by N3
adsorption/desorption study which shows the decrease in surface area
of MCM-41 in ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt%
zinc and 6.39 wt% copper.[52] It is also validated that the MCM-41 is
used as support for zinc and copper and after introducing the metals,
there is no change in the framework of MCM-41.[48,49] As shown in
Figure 2.5D, selected area electron diffraction (SAED) was performed
which indicated the concentric rings which show the crystalline nature
of the catalyst ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt%
zinc and 6.39 wt% copper.
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Figure 2.6. HR-TEM analysis of catalyst at (A) 10 nm, (B) 50 nm and
(C) 20 nm and (D) SAED images of nanoparticles at 5 1/nm.

Furthermore, the pore size and surface area of the catalyst was
determined by the nitrogen gas adsorption and desorption studies as
shown in Figure 2.7 (A-B). The observed adsorption-desorption
isotherm was type IV which indicate the mesoporous behaviour of the
catalyst.[53,54] The surface area of ZnO-Cu(OH)CI/MCM-41
nanoparticles with 2.46 wt% zinc and 6.39 wt% copper calculated with
the Brunauer—-Emmett-Teller (BET) equation was 239.079 m?/g, and
pore volume is 0.743 cc/g and pore diameter 3.055 nm. The surface
area for MCM-41 is approximate 1000 m?/g and the pore volume 0.98
cc/g and pore diameter 4 nm which decreases after incorporation of
metal inside the pore of the MCM-41. Incorporation of metal species
blocked the pores of the supported silica MCM-41 and reduced the
specific surface area and pore volume.[55,56] The hysteresis curve
indicates that the metal species distributed all over the channels of
MCM-41. The metal species were not agglomerated at the opening of
mesopores of MCM-41.[52]
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Figure 2.7. N2 adsorption-desorption studies for (A) surface area and

(B) pore size measurement.

The chemical composition and oxidation states of the prepared
ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39
wt% copper were investigated by X-ray photoelectron spectroscopy
(XPS) analysis as shown in Figure 6. The survey spectrum and high-
resolution XPS of ZnO-Cu(OH)CI/MCM-41 showed the existence of
Zn, Cu and O (Figure 2.8). The high-resolution XPS spectra of Zn 2p
reveals the binding energies of Zn 2ps, at about 1020.5 eV and Zn
2p12 center at 1043.7 eV, peak shape and peak separation which is ~
23eV revealed that presence of Zn*2 in ZnO as shown in Figure
2.8A.[57,58] XPS spectra of Cu 2p showed the two peaks centered at
933 eV and 953 eV were assign to Cu 2psz and Cu 2py. present in
Cu(OH)CI in where Cu is in +2 oxidation state shown in Figure
2.8B.[59] The O1s spectra at 530.4 eV attributed that O ions in the
ZnO lattice.[60,61]
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Figure 2.8. XPS analysis for ZnO-Cu(OH)CI/MCM-41 (A) Zn 2p, (B)
Cu2pand (C) O 1s.

2.3.2. Catalytic results

The catalytic transfer hydrogenation is a good choice of green
chemistry to reduce the way to reduce the ketones into alcohol without
using molecular hydrogen. It is a less hazardous route to reduce the
ketones using cheap reducing agent sodium borohydride. The catalytic
hydrogenation reaction was performed using sodium borohydride
(NaBHa) as a reducing agent in the presence of green solvent “water”
at 40 °C. The preliminary experiments were performed with
acetophenone as model substrate. Firstly, to know the effect of solvent
on the model substrate, different types of solvents such as water,
methanol, acetonitrile, ethanol, and DCM were used as shown in Table
2.1. The complete conversion of acetophenone into 1-Phenyl ethanol
was observed with water, methanol, and acetonitrile in 1.5 h. The
effect of solvents on the conversion of the ketone is in order of polar
protic solvents < polar aprotic < non-polar solvent.[40] Solvents like
water, methanol, acetonitrile have a high dielectric constant than

dioxane and ethanol, which lead to high conversion and selectivity.[27]

33



Table 2.1. Effect of solvents on the formation of 1-Phenyl ethanol

Entry | Solvent Temg}ecr;;lture Con(\(/;)r)sion
1 H20 40 100
2 MeOH 40 100
3 CH3CN 40 100
4 EtOH 40 87
5 Dioxane 40 49

Reaction conditions: Substrate (acetophenone) = 1 mmol, catalyst
(ZnO-Cu(OH)CI/MCM-41) = 3 mg, NaBH4 = 0.5 mmol, time = 1.5 h,

temperature = 40 °C, solvent = 2 mL.

For finalizing the solvent of the reaction, the reaction was
carried out with these three solvents that are water, methanol, and
acetonitrile and as a result, water gave 100% conversion and 100%
selectivity within 0.75 h as shown in Table 2.2, so further experiments
were performed using water as the solvent. The variation in conversion
may be observed due to a higher dielectric constant of water than

methanol and acetonitrile.[27,62]

Table 2.2. Time optimization for reduction of acetophenone to 1-

Phenyl ethanol

Entry Time (min) Con(\(/);)r)sion
1 15 28
2 30 46
3 45 100
4 60 100

Reaction conditions: Substrate (acetophenone) = 1 mmol, catalyst
(ZnO-Cu(OH)CI/MCM-41) = 3 mg, NaBH4 = 0.5 mmol, H2O =2 mL,

temperature = 40 °C, time = 15-60 min.

Furthermore, the effect of reducing agent loading was

performed and observed that 0.5 mmol of NaBHs is appropriate for
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complete conversion and selectivity. As shown in Table 2.3, when the
amount of reducing agent increased from 0.4 mmol to 0.5 mmol, the

conversion and selectivity 100% obtained.

Table 2.3. Reducing agent amount loading for reduction of

acetophenone
Entry Redl(JrcT:]ig%f;gent Conversion (%)
1 0.25 28
2 0.3 40
3 0.4 54
4 0.5 100

Reaction conditions: Substrate (acetophenone) = 1 mmol, catalyst
(ZnO-Cu(OH)CI/MCM-41) = 3 mg, H20 = 2 mL, temperature = 40 °C,
time = 0.75 h, Reducing agent = 0.25-0.5 mmol.

Also, the optimization of the substrate amount loading on the
catalytic reaction was performed and observed that with increasing the
and conversion decrease

loading, the reaction time increases,

simultaneously as shown in Table 2.4.

Table 2.4. Substrate amount loading for reduction of acetophenone to

1-Phenyl ethanol

Entry Sagzgg?;e Conversion (%)
1 0.5 100
2 1 100
3 1.5 27
4 2 18

Reaction conditions: Substrate (acetophenone) = 0.5-2 mmol, NaBH.
= 0.5 mmol, Catalyst (ZnO-Cu(OH)CI/MCM-41) = 3 mg, H.O =2 mL,

temperature = 40°C, time = 0.75 h.
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Furthermore, to investigate the effect of Zn and Cu ions in
catalytic reduction, we performed the reaction using ZnClz, CuCl,,
ZnO as catalyst (Table 2.5). Conversion of acetophenone to the
desired product 1- phenyl ethanol was observed 100% with the catalyst
ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39
wt% copper (3 mg amount) with 100% selectivity. Conversion with
CuClz and ZnO is 54% observed with 100% selectivity, whereas with
ZnCl, the conversion is 44% found. So far, the reaction carried out

without catalyst only 30% conversion observed.

Table 2.5. Catalyst screening for the reduction of acetophenone to 1-

Phenyl ethanol

Entry Catalyst Conversion (%)
1 ZnCl 44
2 CuCl 54
3 ZnO (Purchased) 54
4 ZnO-Cu(OH)CI/MCM-41 100
5 - 30

Reaction conditions: Substrate (acetophenone) = 1 mmol, different
catalyst = 3 mg, H.O = 2 mL, NaBH4 = 0.5 mmol, temperature = 40
°C, time =0.75 h.

Further, we studied the scope of the reaction using different
types of substrates, and results are concluded in Table 2.6. Almost all
the substrates were converted into a product within 0.5 to 4 h with
100% selectivity and almost 100% conversion. There was observed no
effect of electron-withdrawing or electron releasing substituents on the
reaction but there was effect of bulkiness observed. For p-methyl and
p-methoxy substituted acetophenone, there was 90-100% conversion
observed (Entry 12, 13). We examined the effect of the position of
substituents on the phenyl ring of the acetophenone. The para-
substituted acetophenone gave more easily reaction in case of fluoro-,

chloro- and bromo- substituents. As we proceed the reaction with
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ortho- and meta- position substituted acetophenones, there was effect
of position of the substituent perceived in case of bromo- and it might
be because of the steric hindrance of the substituent group (Entry 7-
9).[63] For o-,m-,p- fluoro- and chloro- substituents (Entry 2-6) there
was no significant difference observed in conversion and selectivity. It
estimated from the previous reports that might be bromo- on ortho-
position hinders the reaction site and after increasing reaction time, the
conversion found 86% which in the case of para-bromo was found
96%.[63] The effect of bulkiness was perceived when we move from
fluoro to iodo substituted acetophenone. For 1-(4-iodophenyl)ethan-1-
one, steric hindrance caused a drastic decrease in conversion in 24h
which is only 39% (Entry 10).[64] It may be due to the internal
catalysis phenomena of porous material in which bulky substituent
cannot pass through the pores of the catalyst.[65] The same
phenomena examined in the case of benzophenone that there is only
80% conversion observed in 4h (Entry 11). Next, to explore the
activity of the catalyst, the same reaction was performed with cyclic
ketones such as cyclopentanone, cyclohexanone and 2-
methylcyclohexan-1-one and these all were converted 100% into
products within 0.5 h with 100% selectivity (Entry 14-16). There was
no effect observed of methyl substituent on cyclohexenone. With
heterocyclic compounds such as 1-(tetrahydrothiophen-2-yl)ethan-1-
one, 100% conversion observed in 2h (Entry 18). When we performed
reaction with (E)-4-phenyl but-3-en-2-one and 2,3-dihydro-1H-inden-
1-one, 100% conversion observed with 100% selectivity (Entry 17,
19). We have performed reaction with amino- and hydroxy-substituted
acetophenone but not considerable conversion observed.[63] All the
conversion of substrate was analysed by GC-MS analysis and the

general catalytic reaction is shown in Scheme 2.2.
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NaBH,
R, ——————» 2

40 °C, H,0
R1 R1

R1=-H, -F, -Cl, -Br, -Me, -OMe

R2 = -Me
R1 =-H
R, = -Ph

Scheme 2.2. General catalytic transfer hydrogenation of substituted

acetophenones and heterocyclic ketones.

Table 2.6. Substrate scope for reduction of ketones to corresponding

alcohols
S. Substrate Product NaBHa4 Time Conv.
No. (eq.) (h) (%)
1 o) OH 0.5 0.75 100
2 (o] OH 1 1 100
feplNen
3 0” OI H 1 2 99
F F
4 o OH 1 2 100
calioa
5 o OH 1 2 96
6 0” 0| H 1 2 88
Cl Cl
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Reaction conditions: Substrate = 1 mmol, reducing agent (NaBH4 =
0.5-1 mmol), catalyst (ZnO-Cu(OH)CI/MCM-41) = 3 mg, water = 2

mL, temperature = 40 °C, time = 0.5-24 h.

Generally, the hydrogenation reactions involve harsh reaction

conditions such as high temperature, molecular hydrogen as a

hydrogen source, and use of expensive catalysts. Based on different

catalysts and substrates, it is challenging to compare the reduction of

ketones. However, to compare this work with some reported literature,

we compile some of the recently reported works in the hydrogenation
of ketones [Table 2.7].
Table 2.7. Comparison of ZnO-Cu(OH)CI/MCM-41 and some

previously reported work of hydrogenation

S.  Catalyst | Substrate | H-Source Solvent | Time | Temp Yield Ref
No /Additive (h) (%)
[FeHBr( | Acetophen 16 20 99 | [66]
CO) one (0.416 bar)/
(PNP)] mmol) KOBu (5
complex mol%)
@
mol%)
2 Rheniu | Acetophen H, (50 Toluene 18 120 98 [67]
m one (0.25 bar)/ (2 mL)
complex mmol) tBuOK (1
0.5 mol%)
mol%)
3 Co/ZrLa | Acetophen Hz (2 H,O 10 40 100 | [68]
020x(50 | one (0.83 MPa)
mg) mmol)
4 Pd- NPs | 4-methoxy Hz (1 H.0O 3 RT 99 [69]
4 acetophen atm)
mol%) one (0.05
mmol)
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5 Co0-900 | Acetophen Hz (2 HO 12 RT 100 | [70]
catalyst one (1 MPa) (10 mL)
(20 mg) mmol)

6 Ir- Spiro | Acetophen H, (50 EtOH 5 RT 100 | [71]
PAP one atm)/ (2mL)
tBuOK
(0.02 M)
7 PANF- | Acetophen NaBH. H,O 0.75 35 97 [72]
QAS (10 one (1 (0.5
mol%) mmol) mmol)
8 nBusNC | Acetophen NaBH, DCE 13 40 90 [73]
1 (7.5 one 0.5
mol%) mmol)/
NaOH
(30
mol%)
9 Fluorous | Acetophen | BH3. THF THF 1 RT 99 [74]
oxazabo | one (0.25 (0.5
rolidine mmol) mmol)
(4.5
mol%)

10 | Fluorous Ketone BH3. THF THF 15 RT 93 [74]
diphenyl | (0.5 mmol) (2eq.)

prolinol
(0.05
mmol)

11 Zn0O- Acetophen NaBH4 H.0 (2 0.75 40 100 | Thi
Cu(OH) one (1 0.5 mL) S
Cl/MC mmol) mmol) wor
M-41 (3 k

mg)

Based on our experimental result and available previous reports
[75-77] the plausible mechanism of reduction of ketones catalyzed by
ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39
wt% copper in aqueous medium using NaBHa (Figure 2.9) was
proposed. Cao et al. and Lai et al. reported that the NaBHa reacts with
water and produces NaBO. and hydride ion (step 1). [75,78] This
hydride ion adsorbs on the surface of the catalyst and this hydride gave

a very fast reduction of the ketone to alcohol (step 2 and 3).
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Figure 2.9. Plausible Mechanism of reduction of ketone using NaBHa,

water and catalyst

2.3.3. Kinetic and recycle study

The reduction of acetophenone was observed 100% in 0.75 h using 3

mg catalyst with water. For the study, the kinetics of the reaction,

periodically sample was taken by injection for GC analysis. The

sample was taken on 15 min, 30 min, 45 min, and observed conversion

were respectively 28, 46, 100%. The kinetic study of the model

reaction shown in Figure 2.10.
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Figure 2.10. Kinetic study of the conversion of acetophenone to 1-
Phenyl ethanol. Reaction conditions: Substrate = 1 mmol, reducing
agent (NaBH4) = 0.5 mmol, catalyst (ZnO-Cu(OH)CI/MCM-41) = 3
mg, water =2 mL, =40 °C, time = 15-60 min.

The leaching test performed to know the reusability of the
catalyst throughout the catalytic reaction. For this test, after completion
of reaction the catalyst was filtered and separated to perform ICP-AES
analysis with the supernatant and this result indicate no considerable
leaching of the catalyst (Table 2.8).

Table 2.8. ICP-AES data of catalyst ZnO-Cu(OH)CI/MCM-41 after
catalysis

Sample ICP-AES (ppm)
ZnO-Cu(OH)CI/MCM-41 Cu Zn Si
0.059 0.635 4.43

To know the reusability of the catalyst ZnO-Cu(OH)CI/MCM-41
nanoparticles with 2.46 wt% zinc and 6.39 wt% copper, we have
performed the recycle study for the reduction of the acetophenone to 1-
Phenyl ethanol as shown in Figure 2.11. After completion of the
reaction one time, the reaction mixture was centrifuged, and the

catalyst was separated from the reaction mixture.[79] Then dried at
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room temperature and again reuse this for the next cycle with the same
reaction condition, and we observed almost 100% conversion up to
four cycles. After four cycles, the conversion decreased to 89% which
maybe because of the increase of carbon content, which was trapped
inside the pores of MCM-41 from the substrate.[80] The coke
deposition also confirmed by XPS analysis in which the carbon content
increases when we compare both fresh and spent catalyst samples.
Hence, our synthesized nanoparticle is recyclable catalyst.[81,82]
There is reduction of copper observed after recycle by XPS analysis of
spent but this reduction of Cu(ii) into Cu(0) catalyse the reduction
reaction and this Cu(0) again oxidized to copper oxide in alkaline
medium.[83,84]

Il Conversion (%)
I selectivity (%)

100 -

80

60

40 -

Conversion & selectivity (%)

20

1 2 3 4 5

Number of cycles

Figure 2.11. Recycle study of the catalyst for conversion of
acetophenone to 1- Phenyl ethanol. Reaction conditions: Substrate = 1
mmol, reducing agent (NaBHs) = 0.5 mmol, catalyst (ZnO-
Cu(OH)CI/MCM-41) = 3 mg, water =2 mL, =40 °C, time =60 min.

2.4. Conclusions

In conclusion, ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt%
zinc and 6.39 wt% copper is a heterogeneous catalyst with high surface
area and stability for the reduction of ketones, and it’s a very lesser
amount (3 mg) is required for 100% conversion. The nanomaterial
ZnO-Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39
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wt% copper was synthesized by wetness impregnation technique by
using water as a solvent at room temperature. HR-TEM and BET
studies proved the incorporation of zinc and copper species on the
surface of MCM-41 and inside the pores of MCM-41, which leads to
decrease in surface area of MCM-41 in metal nanoparticles ZnO-
Cu(OH)CI/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39 wt%
copper. This catalyst was used the first time for reduction of ketones
by transfer hydrogenation using water as a solvent, provide the basis

for developing the new potential supports.

2.5. GC-MS spectra of analyzed data of conversion of ketones to

corresponding alcohol of different type of substrate
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CHAPTER 3

Bimetallic CoNi Nanoflowers for Catalytic
Transfer Hydrogenation of Terminal

Alkynes

3.1. Inroduction

In the last few years, transition metal-based bimetallic nanomaterials
have gained much attention owing to their extraordinary properties,
variable oxidation states and coordination numbers.[1,2] Bimetallic
nanomaterials as multifunctional materials have been developed for
various applications such as in catalysis,[3,4] energy storage,[5]
electrocatalysis,[6]  sensors[7,8] biological application, and
environmental remediation etc.[9] Additionally, owing to their excellent
redox activity, cost-effectiveness and natural abundance, environmental
compatibility of 3d-transition metals favor them an economical,
sustainable and convenient choice for catalytic applications.[10,11]
Hence, the development of transition metal-based materials is in great
demand. Due to the synergistic effect between existing metal
components, the bimetallic nanomaterials have been proven
multifunctional materials[12] and discovered to enhance the chemical,
magnetic, electrical, and biological activities and reduce the process
cost.[13,14] Also, the bimetallic nanoparticles show excellent efficiency
and catalytic activity than their monometallic nanoparticles.[12,15]
Owing to these benefits, bimetallic transition metal nanoparticles are
explored as sustainable, recyclable catalysts for various organic
transformations.[16] Moreover, the magnetic nanoparticles evolved as
sustainable, stable, recyclable catalysts due to their easy separation from
the reaction mixture using an external magnet. Hence, magnetic

nanocatalyst is the best choice for catalytic conversion reactions.

The hydrogenation of C-C multiple bonds is one of the most

important reactions in organic synthesis and pharmaceutical industries.
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Also, the product of C-C hydrogenation, i.e., the alkane, is in high
demand due to its use as raw materials in chemical industries and for the
synthesis of various gasoline and oils.[17] However, using a catalyst, the
complete hydrogenation of unsaturated C-C triple bond is still
challenging.[18] Though the noble metal catalysts (Pd[19], Pt[20,21],
Au[22], Pt/Nb20Os[23]) exhibited remarkable activity, the high cost and
limited availability hinder their application in industries.[9,24]

Additionally, some other catalysts were reported, such as
Ni[25,26], Cu[27,28], Co[29], Fe[30,31] as monometallic catalysts,
whereas Au@Ni[32], Ni/Fe304[33], Pd/Ni[34], Al-rGO/Ni-Pd[35],
Ni/Ru/Pt/Au[36] as a bimetallic catalyst. Raney nickel is widely used
in industries and chemical laboratories for various hydrogenation
reactions as an efficient catalyst that adsorbs hydrogen in its pores[37]
but is pyrophoric, air sensitive and requires extra precautions and safety
measures while transporting.[38] Also, the hydrogenation using
organometallic complexes has some drawbacks of non-recyclability,
hard synthetic process, and air sensitivity. In this context, nanoparticles
have gained the great attention of the scientific community due to their
high surface area, recyclability and easy synthetic process.[39] Hence,
developing a better alternative is required, and for this purpose, first-row
transition metal nanoparticles can be considered an alternative of noble
metals.[40,41]

However, the hydrogenation using a various metal catalyst with
hydrogen gas or reducing agents were widely reported. Hydrogen gas
leads to selective hydrogenation of alkyne into alkene rather than alkane,
which is an excellent finding in organic synthesis.[42] However, using
hydrogen gas and its storage in chemical laboratories and industries is
still challenging due to safety issues.[43] So, the use of reducing agents
like formic acid, isopropyl alcohol, hydrazine hydrate, ammonia borane,
NaBH4, glycerol etc., used to preferred and explored for industrial
purposes due to economic reasons.[35] Hence, using bimetallic
nanocatalyst with reducing agents for the hydrogenation of alkynes is

the better choice. Among transition metal nanomaterials, the Ni-based
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catalyst shown excellent catalytic activity for hydrogenation reactions
owing to its low cost, redox properties and magnetic behavior, so the use

of nickel metal with any other metal is the best choice.

Keeping these above points in mind, herein, we report a bimetallic
catalyst of cobalt and nickel metal for hydrogenation of alkynes using
hydrazine hydrate as a reducing agent. The synthesized nanocatalyst has
flower-shaped morphology, and the same was utilized for catalytic
hydrogenation of alkynes with 100% conversion and excellent
selectivity with recyclability up to six cycles. The synthesized bimetallic
CoNi nanoflower (containing 50 wt% Co, 50% wt% Ni) is an efficient,
magnetically separable, cost-effective catalyst for hydrogenation of

terminal alkynes (15 examples).
3.2. Experimental

3.2.1. Materials

All starting materials used as purchased. Cobalt chloride hexahydrate
(CoCl2.6H20), Nickel Chloride (NiCl..6H20), and sodium hydroxide
(NaOH) pellet were purchased from Merck, India. Ethylene Glycol,
Hydrazine hydrate (N2H4. 2H.0) and alkynes were purchased from

Sigma-Aldrich, and other solvents were used as received.
3.2.2. Catalyst Preparation

For synthesizing CoNi nanoflower, 2.38 gm Cobalt chloride
hexahydrate (CoCl2.6H.0) and 2.38 gm Nickel Chloride (NiCl..6H20)
were dissolved in ethylene glycol with mechanical stirring at 80 °C.
After 10 min, add NaOH to maintain the pH at 10.5 and stir the reaction
mixture for another 20 min. After 20 min, add 16 mL hydrazine hydrate
to the above reaction mixture. After 1 hr, the black color precipitate was
obtained with a clear solution. Furthermore, centrifuged the above
reaction mixture containing precipitate, washed with ethanol and water
three times, and dried overnight in a vacuum at 80 °C. The obtained
black color particles are named CoNi nanoflower. The cobalt and nickel

salts were used in 1:1 molar ratio.
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2Ni%* + NoHs+ 40H° —  2Ni + Nz + 4H,0
2C0%* + NoHs + 40H° —  2Co + Nz + 4H,0
With a similar method, pure monometallic Co and Ni nanomaterials

were also synthesized and used for the catalytic hydrogenation reaction.
3.2.3. General catalytic reaction

In a typical catalytic hydrogenation reaction, terminal alkyne substrate
(0.5 mmol), CoNi catalyst (10 mg), Hydrazine hydrate 99% (2 mmol),
Ethanol (2 mL) in a round bottom flask equipped with condenser at
magnetic stirring bar. The reaction mixture reflux for the appropriate
time (10-22 h) at 80 °C. After completion of the reaction, the reaction
mixture was allowed to cool at room temperature and separated the
catalyst with magnet, and the reaction mixture was diluted, filtered and
given to record the Shimadzu GC-MS analysis for calculating

conversion and selectivity.
3.2.4. Physicochemical measurements

The details about the PXRD, FE-SEM, HR-TEM, BET characterization
and utilized instruments have been discussed in chapter 2 in
physicochemical measurements section. Thermogravimetric analysis
was performed using METTLER TOLEDO (TGA/DSC 1) to evaluate
the thermal stability of nanocatalyst. The X-ray Photoelectron
Spectroscopy (XPS) analysis of fresh and spent catalysts was recorded
using Scient Omicron Multiprobe MXPS spectrometer. Magnetic
properties were analysed using Lake Shore VSM (Model 7410 series
VSM) at room temperature. Identification of the products of catalytic
reactions carried out using Shimadzu GC-MS, QP2010 mass

spectrometer.

3.3. Results and discussion

3.3.1. Characterization of CoNi nanoflower

The synthetic procedure of bimetallic CoNi nanoflower is shown in
Scheme 3.1. The bimetallic CoNi nanoflower was synthesized by

modifying the reported liquid phase reduction method.[44,45]
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Scheme 3.1. Schematic representation of the synthesis of bimetallic

CoNi nanoflower.

The powder X-ray diffraction pattern shows three strong peaks at
44.4°, 51.6° and 76.3° as shown in Figure 3.1A. These peaks shifted
slightly from both FCC Ni and FCC Cobalt reported nanoflower with
JCPDS Card no. 04-085 and 15-0806, respectively, as shown in Figure
3.1A(inset).[46,47] The peaks exhibited in PXRD spectra were assigned
for the plane (111), (200) and (220), respectively, of the FCC phase of
CoNi nanoflower.[48] The crystallite size was calculated with the

Debye-Scherrer equation was 41 nm.
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Figure 3.1. (A) XRD pattern (in the inset, the zoom view of PXRD for
reference), (B) TGA curve of bimetallic CoNi nanoflower.

Furthermore, TGA was performed to analyze the thermal
stability of the synthesized bimetallic CoNi nanoflower from room
temperature to 700 °C, as shown in Figure 3.1B. It was observed that
the nanoflower showed three major weight loss regions (i) Below 190
°C, (ii) up to 370 °C and above 370 °C. In this region, the observed
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weight loss was 2.151 wt%, 31.594 wt% and 23.887 wt%, respectively.
The first weight loss is attributed to the removal of adsorbed solvents
and water molecules and the weight loss after 190 °C, might be the
removal of trapped organic species inside the pores of nanoflower.[49]
This result confirmed the thermal stability of bimetallic CoNi

nanoflower at higher temperatures.

After performing TGA analysis, BET measurements of
bimetallic CoNi nanoflower were performed to analyze the surface area
and porosity at 77K and 1 bar pressure. The N2 adsorption-desorption
isotherms are shown in Figure 3.2A. The calculated specific surface
area is 5.026 m?/g. The adsorption curve is depicted as a type IV curve
confirming the presence of mesopores.[50-52] This mesopore
formation confirmed with the pore size distribution curve shown in
Figure 3.2B, which reveal the BJH pore size is 3.78 nm and pore volume
is 0.045 cm®/g.
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Figure 3.2. N2 adsorption desorption study for (A) surface area and (B)

pore size distribution.

The morphological study was performed using FE-SEM analysis
of the synthesized nanoflower as shown in Figure 3.3. The FE-SEM
images revealed the flower like shape of bimetallic CoNi nanoflower as
shown in Figure 3.3(A-C).[53-55] Furthermore, to confirm the
presence of element and the approximate weight ratio of the CoNi
nanoflower, the elemental analysis and mapping analysis were
performed as shown in Figure 3.3(D-F). The elemental analysis
confirmed the presence of both Co and Ni element with approximate 1:1
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weight% ratio. Hence, the synthesized nanoflower confirmed as
nanoflower shaped with equal weight% ratio of Co and Ni element.
Also, the average particle size was calculated which was found to be 44

nm.

[Full Scale 3267 cts Cursor: 0.000

Figure 3.3. SEM images of bimetallic CoNi nanoflower at (A) 1um (B-
C) 200 nm, (D) EDAX pattern of bimetallic CoNi nanoflower, (E-F)
elemental mapping of Co and Ni element.

Moreover, to investigate the other structural information of
nanoflower, the HR-TEM analysis was performed, and the obtained
images were in agreement of SEM images. The HR-TEM images
confirmed the morphology of bimetallic CoNi nanomaterials as flower-
shaped (Figure 3.4(A-E)).[56-58] The leaves of the nanoflower can be
seen in the images. The selective area electron diffraction (SAED)
pattern (Figure 3.4F) shows the bright spot with concentric rings reveals

the high crystallinity of CoNi nanoflower.[59,60]
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Figure 3.4. HR-TEM images of bimetallic CoNi nanoflower at (A-B)
200 nm, (C-D) 100 nm and (E) 50 nm and Selective area electron
diffraction (SAED) pattern at 5.00 1/nm.

Additionally, to check the magnetic property of bimetallic CoNi
nanoflower, vibrating sample magnetometer (VSM) studies were
performed, and M-H loop was recorded at room temperature (Figure
3.5). The saturation magnetization (Ms) was recorded to be 90.62 emu/g
and retentivity (M;) 2.63 emu/g, and coercivity 61.61 Oe. The
remanence ratio (M/Ms) was calculated to be 0.029.
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Figure 3.5. Hysteresis loop of bimetallic CoNi nanoflower at room

temperature.
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Furthermore, the chemical composition and oxidation state of the
bimetallic CoNi nanoflower as analysed using XPS analysis as shown
in Figure 3.6. The individual study of cobalt and nickel element was
performed for bimetallic CoNi nanoflowers and the results shown in
Figure 3.6(A-B). The presence of Co, Ni and O element in bimetallic
CoNi nanoflower was confirmed in survey scan (Figure 3.6C).[50,61]
The XPS spectra of Co element exhibited peaks at 778.1 eV, 792.6 eV,
780.86 eV and 796.5 eV. The peak at 778.1 and 792.6 eV for Co 2pz..
and Co 2pi» respectively reveals the presence of metallic cobalt
Co(0).[62,63] The peaks at 780.86 eV and its satellite at 785.9 eV reflect
the presence of cobalt oxide (C00).[61,64] Similarly, the XPS spectra
of Ni element was performed which showed peaks at 852.7 eV and 870
eV of Ni 2ps2 and Ni 2p1/2 respectively reflect the presence the metallic
Ni(0).[65,66] The deconvoluted peak at 855.1 eV and satellite peak at
860.9 eV attributed the presence of NiO.[8,67,68] The peak 860.9 eV
and 879.4 eV were ascribed to the satellite peak of Ni 2pz, and Ni 2p1.
respectively.[65] The presence of Co(0)/Ni(0) is in good agreement of
the PXRD data for bimetallic CoNi fcc nanoflower. The presence of
CoO and NiO either due to surface oxidation of metallic Co and Ni in
the exposure to air or due to incomplete reduction of Co and Ni
elements.[61,62,65]
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Figure 3.6. XPS analysis of CoNi nanoflower for (A) Co 2p, (B) Ni 2p,

and (C) survey scan.
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3.3.2. Catalytic results:

The hydrogenation of terminal alkyne into alkane by using bimetallic
CoNi nanoflower and hydrazine hydrate as reducing agent with ethanol
as solvent was performed. Phenylacytylene considered as model;
substrate and all the optimization reactions were performed using this as

shown in Scheme 3.2.

©/// CoNi N
N,H,.2H,0 ©/\ ’ ©/\

EtOH, 80 °C
a b

Scheme 3.2. General catalytic scheme of phenyl acetylene using

bimetallic CoNi nanoflower.

A systematic investigation of hydrogenation reaction was
performed using phenyl acetylene as a model substrate to select the best
reaction condition by varying the solvent, reaction time, temperature,
catalyst and reducing agent. Initially, the catalyst screening was
performed, and CoClz, NiClz, CoNi, CuNi, Co and Ni nanocatalysts were
used (Figure 3.7). When the hydrogenation reaction was performed
with synthesized bimetallic CuNi catalyst, the conversion was 73% with
76% selectivity for the major product ethyl benzene. In contrast, when
reaction performed with monometallic Co and Ni catalyst, the
conversion was 63% and 53% respectively with 68% and 40%
selectivity for ethyl benzene. When the same reaction was performed
with bimetallic CoNi nanoflower, the conversion of phenyl acetylene
into ethyl benzene is 100% with 100% selectivity. This data shows that
the Dbimetallic CoNi nanoflower is excellent choice for the
hydrogenation reaction of phenyl acetylene. Further, all reactions and
optimization were carried out with bimetallic CoNi nanoflower. A
reaction without catalyst was also performed and only 37% conversion
observed with 41% selectivity for major product that shows the
importance of synthesized bimetallic CoNi nanoflower.
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Figure 3.7. Effect of different catalyst on hydrogenation of phenyl
acetylene into ethyl benzene. Reaction conditions: Substrate = 1 mmol,
hydrazine hydrate = 2 mmol, solvent (EtOH) = 2 mL, catalyst = 10 mg,
time = 10 h, temperature = 80 °C.

Furthermore, the catalyst loading was investigated and the best
results obtained with 10 mg of the catalyst with 100% conversion and
100% selectivity of phenyl acetylene into ethyl benzene (Figure 3.8A).
It was observed that the conversion was dependent on the amount of
catalyst used in the reaction. After optimizing catalyst amount, effect of
the amount of reducing agent was tested using 0.5 to 2 mmol and the
results show that 2 mmol of reducing agent hydrazine hydrate is
sufficient for hydrogenation of 0.5 mmol of phenyl acetylene (Figure
3.8B). Hence, further optimization was analysed using 2 mmol of
hydrazine hydrate with 10 mg of the CoNi nanoflower as catalyst.
Additionally, the substrate amount was also tested from 0.5 mmol to 1.5
mmol and the results show that as the amount of substrate increases, the
conversion of phenyl acetylene was decreases. In all the results,
selectivity for ethyl benzene was higher than styrene (Figure 3.8C).
Since 0.5 mmol of phenyl acetylene was converted into product with
100% selectivity, so further all the reactions were performed using 0.5
mmol of phenyl acetylene with 10 mg of catalyst and 2 mmol of
reducing agent. Furthermore, the screening of different solvents was
performed and ethanol, methanol, acetonitrile, toluene, THF was used
with above optimized reaction conditions (Figure 3.8D). It was

observed that the conversion with polar protic solvents is higher in

70



comparison to the non-polar solvents.[69] The neat reaction was also
performed and the obtained conversion was 35% with 29% selectivity
towards ethyl benzene. The highest conversion was observed with
ethanol as a solvent, so further all reactions carried out with ethanol as
solvent. Furthermore, the influence of temperature was investigated and
the results depicted that the conversion of phenyl acetylene increases
with increase in temperature as shown in Figure 3.8E. When reaction
was performed at room temperature then only 53% conversion with 56%
selectivity observed for ethyl benzene. Hence it was confirmed that for

complete hydrogenation of phenyl acetylene 80°C temperature required.

05mmol 0.7 mmol L mmol 15 mmol

= Conversion3 of ethyl benzene  m Selectivity of ethyl benzene. u Conversion% of ethylbenzene W Selectivity of ethyl benzene.

ethyl benzene e ethylbenzene  m Sel of ethyl benzene

Figure 3.8. Effect of (A) catalyst amount (B) hydrazine hydrate amount
(C) substrate amount (D) solvent and (E) temperature on hydrogenation
of phenyl acetylene into ethyl benzene. Reaction conditions: Substrate
= 0.5-1.5 mmol, catalyst = 0-10 mg, hydrazine hydrate = 0.5-2 mmol,
solvent = 2 mL, time = 10 h, temperature = 25-80 °C.

Additionally, the effect of different reducing agent was performed and
for that, formic acid and triethylamine additive was used instead of
hydrazine hydrate and the results presented in Table 3.1. Interestingly,
in case of formic and EtsN the conversion is selective towards styrene
instead of ethyl benzene with 43% conversion. Hence, it was noted that
the best optimized reaction condition for the hydrogenation of 0.5 mmol
phenyl acetylene into ethyl benzene involves the use of 2 mmol
hydrazine hydrate, 10 mg CoNi nanoflower and 2 mL ethanol required
at 80 °C.
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Table 3.1. Effect of reducing agent on hydrogenation of phenyl

acetylene.

Reducing  Additive Conversion Selectivity (%)
agent (%) a
N,H,.2H,0 - 100 100 -
HCOOH Et.N 43 - 100
Reaction conditions: Substrate = 0.5 mmol, hydrazine hydrate = 2

Entry

mmol, solvent (EtOH) = 2 mL, catalyst = 10 mg, time = 10 h,

temperature = 80 °C.

After screening best reaction condition for the hydrogenation of
phenyl acetylene, further the scope of reaction was performed using
phenyl acetylene derivatives (Table 3.2). The reaction was affected by
electron-rich and electron-deficient substituents. The electron-rich
substituents (-Me, -OMe) and electron-deficient substituents (-F, -Br, -
NHz) both shows the excellent conversion of 100% with 100%
selectivity of corresponding alkane (Table 3.2, Entry 2-7). Although,
the conversion of electron-withdrawing substituents took more time in
comparison to that of electron-donating substituents, which revealed the
electronic effect of alkynes on the catalytic activity.[28] Furthermore,
hydrogenation of heterocyclic substrates was also investigated (Table
3.2, Entry 8-10) and it was observed that all substrate 100% converted
into corresponding products with almost 100% selectivity. The
hydrogenation of ortho- substituted alkyne (Table 3.2, Entry 4 and 10)
took more time in comparison to para- substituted alkyne for complete
conversion due to steric hindrance (Table 3.2, Entry 3 and 8) which
indicate the effect of substituent position. The hydrogenation of 2-
ethynyl pyridine shows less selectivity i.e. 94% towards corresponding
alkane in comparison to 4-ethynyl pyridine and 3-ethynyl pyridine i.e.
100%. Additionally, the hydrogenation of di-substituted alkyne took
more time in comparison to mono-substituted aryl alkyne (Table 3.2,
Entry 11) and the substrate showed 100% conversion and 100%
selectivity. Moreover, some small alkynes were also analysed for
hydrogenation reaction and all substrates were converted 100% into

corresponding alkane and alkene with almost 100% selectivity (Table
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3.2, Entry 12-15). The results showed that the CoNi nanoflower are
efficient catalyst for hydrogenation of alkynes. All the conversion and
selectivity was confirmed by GC-MS analysis (Section 3.5). The
general catalytic reaction scheme is as shown in Scheme 3.3.

+
2H22H20 R
EtOH, 80 °C

R =-H, -Br, -F, -Me
-OMe, -NH,

CoNi
2H2 2H,0 O/\ O/\

EtOH, 80 °C

Scheme 3.3. General catalytic scheme of substituted phenyl acetylene

and heterocyclic alkynes by using bimetallic CoNi nanoflower.

Table 3.2. Substrate scope of hydrogenation of alkynes into alkanes
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Reaction Conditions: Substrate = 0.5 mmol, catalyst = 10 mg,
hydrazine hydrate = 2 mmol, solvent (EtOH) = 2 mL, temperature = 80
°C, time = 10-22 h. AIl conversion and selectivity confirmed by
Shimadzu GC-MS analysis.

To compare this work with some reported literature, we compile some
of the recently reported works where hydrazine hydrate and hydrogen
gas was utilized for the hydrogenation of terminal alkynes to alkanes
and the results exhibited that CoNi bimetallic catalyst showed promising
catalytic activity without using harsh reaction conditions [Table 3.3].
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Table 3.3. Comparison of hydrogenation of alkynes using bimetallic

CoNi with some previously reported work.

S. Catalyst Substrate | H-Source Time | Temp | Yield/ Ref.
No. /Additives (h) 0 Sel (%)
1 Au@Ni Phenyl Hz gas (50 | 4 50 100/100 | [70]
core-shell acetylene | psi)
NPs
2 Pd/Ni-B Phenyl Hz gas (20 | 0.083 | RT 100/100 | [34]
catalyst acetylene | bar)
3 Pt@Cu- Phenyl Ho gas (12 40 93/100 | [20]
MOC acetylene | bar)
4 N-assembly | Phenyl H2 gas (20 | 8 230 100/100 | [71]
carbons acetylene | bar)
(NACs) 5
mg
5 RhsCo Phenyl N2H4.H20 8 60 71 [73]
nanocatalyst | acetylene | (4.7 mmol)
6 Cu/Cu-BTC- | Phenyl N2H4.H20 6 80 97/94 [69]
MOF acetylene | (2.4 mmol)
7 Cu/D  NPs | Phenyl N2H4.H20 24 60 39 [27]
(20 mg) acetylene | (0.1 mL) +
(I mmol) | aq. NH3
(0.025 mL)
8 MoO:2 Phenyl N2H4.H20 0.5 30 0.2 [74]
catalyst (20 | acetylene | (1.5 mmol)
mg) (0.5
mmol)
9 Pd@Pt core- | Phenyl NzHs  -H20 | 30 60 85/94 [75]
shell NPs acetylene | (20 mL) +
0.5 aqueous NHz
mmol) (10 mL, 28—
30%)
10 Bimetallic Pheny N2H4.H20 (2 | 10 80 100/100 | This
CoNi acetylene | mmol) work
nanoflower
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Based on experimental results and previous reports,[69,76] the plausible
mechanism was proposed for catalytic hydrogenation of alkynes using
CoNi nanoflower and hydrazine hydrate as reducing agent with ethanol
as solvent (Scheme 3.4). It was reported earlier that in presence of air or
oxidizing agent, the hydrazine hydrate activated on the surface of the
catalyst and converted into diimide and this diimide generate the
hydrogen which react with phenyl acetylene. The presence of catalyst
facilitates the reduction reaction of phenyl acetylene into styrene and
later on ethyl benzene as shown in plausible mechanistic pathway. To
confirm this mechanism, the same reaction was performed in presence
of N2 and Ar atmosphere in de-aerated flask and in both the cases the
conversion of phenyl acetylene was very less and this result supported
our proposed mechanism in which the presence of air plays an important
role. The diimide formation was the key for the hydrogenation reaction
which is produced by the synthesized CoNi nanoflower via dissolved
oxygen present in the reaction mixture. Hence, the control experiment
confirmed the insitu diimide formation which transfer hydrogen to
phenyl acetylene followed by conversion of styrene and then ethyl

benzene.

CoNi nanoflowers

Scheme 3.4. Plausible mechanism of catalytic hydrogenation of alkynes

into alkanes.
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3.3.3 Kinetic and recycle study

The kinetic study of hydrogenation reaction of phenyl acetylene into
corresponding alkane and alkene was performed by taking samples
periodically on 2, 4, 6, 8 and 10 hours from the reaction mixture and
given for GC-MS analysis and the observed conversion was 56%, 61%,
64%, 70% and 100% respectively (Figure 3.9A). The selectivity of
ethyl benzene increases with increase in time. Furthermore, to
investigate the recyclability and reusability of the bimetallic CoNi
catalyst, the recycle study was performed.[39] After completion of
hydrogenation reaction of phenyl acetylene, the magnetic catalyst was
separated by magnet and the reaction mixture was injected for GC-MS
analysis. The separated catalyst was dried overnight at room temperature
and reuse for next cycle and the same process repeated and the obtained
conversion and selectivity was shown in Figure 3.9B. The magnetically
separable catalyst shown excellent conversion and selectivity up to 6

cycles.
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Figure 3.9. (A) Kinetic study of conversion of phenyl acetylene into
ethyl benzene and (B) recycle study of the catalyst for hydrogenation
reaction of phenyl acetylene. Reaction conditions: Substrate = 1 mmol,
catalyst (CoNi nanoflower) = 10 mg, hydrazine hydrate = 2 mmol,
solvent (EtOH) = 2 mL, temperature = 80 °C, time = 2-10 h.

Additionally, to check the stability of bimetallic CoNi nanoflower,
the spent catalyst was analysed by XPS analysis as shown in Figure
3.10. In the XPS spectra of Co element, the peak ascribed at 780.58 eV
and 796.2 eV of Co 2ps2and Co 2py2 respectively revealed the existence
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of Co0.[77] The peaks at 783.8 eV and 801.9 eV were attributed for the
satellite peaks of Co 2ps;2 and Co 2py2 respectively as shown in Figure
3.10(A). Furthermore, the XPS spectra of Ni element was also analysed
and the peaks exhibited at 855.2 eV and 872.8 eV for the presence of
Nickel oxide (NiO).[67,78] The peaks at 860.8 eV and 878.8 eV were
attributed as the satellite peaks of Ni 2ps2 and Ni 2pu2 respectively as
shown in Figure 3.10(B).[68] The oxidation of the metallic CoNi
catalyst in spent, may be due to washing and drying process of the
catalyst while using it for the recycle study.[65] In given survey scan
Figure 3.10(C), the presence of Co, Ni, C and O was confirmed. The
increase in carbon amount is due to adsorption of substrate during the
catalytic reaction.
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Figure 3.10. X-ray photoelectron spectroscopy analysis of (A) Co 2p,
(B) Ni 2p and (C) survey scan of recovered CoNi nanoflowers.

Additionally, to check the sustainability of the catalyst after catalytic
reaction we have performed the FE-SEM analysis of the recovered
catalyst and the data shows that there were no significant changes
observed in the morphology (Figure 3.11).
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Figure 3.11. FE-SEM analysis of recycled CoNi nanoflower.

Additionally, the catalyst leaching was analysed using ICP-AES
technique via hot filtration method.[39] For this, the reaction was carried
out for 2 hours and then the catalyst was separated with magnet and the
supernatant was filtered. The supernatant was proceed for further
reaction for 10 hours and the sample was taken for GC-MS analysis. The
GC-MS analysis data reveals that there was further conversion observed
after removing the catalyst. The supernatant sample was also given for
ICP-AES analysis to check the leaching of the catalyst and the data
confirmed that there is no significant leaching was observed (Table 3.4).

Table 3.4. ICP-AES analysis of reaction mixture for leaching of CoNi

nanoflower.

0.027 0.012

3.4. Conclusions

The bimetallic CoNi nanoflower prepared with facile liquid phase
reduction method for catalytic hydrogenation of terminal alkynes. The
preparation of CoNi nanoflowers was confirmed by X-ray diffraction
technique. The flower shaped morphology was analysed by FE-SEM
and TEM analysis. The synthesized nanoflowers showed excellent
catalytic activity for transfer hydrogenation of alkyne (15 substrate) into
alkane with 100% conversion and 100% selectivity with outstanding
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recyclability up to six cycles. Hence, the bimetallic CoNi nanoflower is
easily synthesizable, cost-effective, magnetically separable, recyclable,
and reusable material for catalysis.

3.5. GC-MS spectra of catalytic hydrogenation of all

reactants and products
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CHAPTER 4
Conversion of Biomass-Derived Aldehydes
using Environmentally Benign  CuNi

nanocatalyst

4.1. Introduction

Biomass is derived from plant or animal-based material that can
directly be used as fuel to produce heat via combustion or
electricity.[1] To satisfy the energy demand, the development of
sustainable renewable energy sources is need of an hour due to the
depletion of fossil fuels.[2] Also, the use of non-renewable fossil
fuels increases greenhouse gas emissions and leads to climate
change. However, more than 80% of energy demand is mainly
fulfilled from non-renewable fossil fuels. For this purpose, biomass-
derived materials can be used as an alternative to non-renewable
fossil fuels. Plants and crops capture around 1% solar energy in the
form of complex molecules via photosynthesis, such as lignin,
cellulose, hemicellulose and carbohydrates.[3,4] Furfural is a
lignocellulosic biomass-derived platform molecule that can be
converted into value-added chemicals for energy usage or biofuel
precursors.[5,6] Since furfuryl alcohol is an essential intermediate of
the drug, resin and adhesive synthesis, the selective conversion of
furfural to furfuryl alcohol is an important step in industrial
applications.[7-9] The presence of C=C bond and C=0 bond in the
furan ring decrease the selectivity of hydrogenation of only C=0
bond. The side products from hydrogenolysis of C-O/C=C bonds
were obtained; hence, the selective hydrogenation of furan-based
compounds like furfural and 5-(hydroxymethyl) furfural (HMF) has
great importance. The furfuryl alcohol, further via hydrolysis, can be
converted into levulinic acid and later reduced into y-valerolactone
(GVL), which is considered a valuable platform molecule for the

production of biofuels.[10] Hence, the selective conversion of furfural
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into furfuryl alcohol is an important pathway for the production of
biofuels. Although, selective hydrogenation have been reported by
using various homogeneous and heterogeneous catalysts such as
Pt[11,12] Pd[12,13], Ru[14,15], Rh[16], Ir[17] based noble metal

catalysts.

However, some major drawbacks of homogeneous catalysis
such as over hydrogenation, unselective C—C cleavage, and use of
flammable H> with high pressure and temperature are entailed, which
may result in the decrease of selectivity toward targeted products as well
as increased production cost, moisture sensitivity and non-
recyclability.[18,19] In this context, the use of nanoparticles as
heterogeneous catalysts is the best choice which is generally recyclable
and reusable. Also, the process cost decreases when non-noble metal
catalysts are used. Also, the size and shape tuning of the nanoparticles
can increase the activity, selectivity, and stability.[20,21]

Moreover, several reports use monometallic and bimetallic
nanocatalysts like Pt, Cu-Co[22], Cu/Cu20-MC[23], nanoporous
carbon[24], Cu-Fe[25], Ni-Fe[26] and Cu-, Ni-based catalysts for
selective hydrogenation of furfural.[27] Additionally, supported CuNi
metal oxides and alloys were reported for hydrogenation of furfural into
tetrahydrofurfuryl alcohol (THFA), 2-methyl furan and furfuryl alcohol
(FOL).[28-30] These reports indicate that for hydrogenation of furfural,
the Cu and Ni metal show excellent activities, but the selectivity towards
furfuryl alcohol is the primary concern with lower reaction temperature.
However, it was reported that Ni-based catalyst showed greater activity
for hydrogenation reactions.[31] Keeping this in mind, we synthesized
CuNi bimetallic nanoparticles for the selective hydrogenation of furfural

into furfuryl alcohol.

The hydrogenation of furfural is mainly reported with the use of
highly flammable hydrogen gas at high temperatures. For a safer
approach, the utilization of hydrogen gas as a hydrogenation source is
avoided. In this concern, the use of alcohols for transfer hydrogenation
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is clean, cheap, environmentally benign and sustainable as removal of
these alcohols is easy after reaction completion.[32] Moreover, the
reported work of hydrogenation of furfural with alcohol like 2-propanol
and 2-butyl alcohol performed at very high temperature like 180-230 °C
with more reaction time.[33-36] Therefore, we utilized less amount of
base for activation of the same to decrease the reaction time and increase

the selectivity with lower temperature.

Herein, we report bimetallic, recyclable, magnetically separable
CuNi-12 nanocatalyst (1:2 molar ratio of Cu: Ni) for the selective
hydrogenation of furfural into furfuryl alcohol with the use of potassium
hydroxide as base and 2-propanol as a hydrogen source. The synthesized
nanocatalyst is a highly efficient catalyst for the hydrogenation of
aldehydes and ketones with almost 100% conversion and 100%
selectivity toward the corresponding alcohol product. The synergistic
effect between the existing metal was also observed in the case of
monometallic Cu and monometallic Ni. It was reported that the
heterometallic nanocatalysts show greater efficiency and catalytic
activity than their monometallic nanocatalysts.[22,37] The observed
conversion of furfural into furfuryl alcohol is higher in the case of
bimetallic CuNi nanocatalyst than monometallic Cu and Ni. The results
are promising and provide an environmentally benign, sustainable and
cost-effective pathway for the hydrogenation of biomass-derived
aldehydes.

4.2. Experimental
4.2.1. Materials

Cetyl trimethyl ammonium bromide (CTAB) >99% pure, copper
chloride (CuClz) anhydrous >99.99% pure, and nickel chloride
hexahydrate (NiCl..6H20) >99.9% pure were purchased from Merck,
India. Hydrazine hydrate (N2H4.H20) 80% in water, sodium hydroxide
pellets (NaOH) 98% pure, KOH 100% pure, and aldehyde compounds
>08-100% pure were purchased from Sigma-Aldrich. All solvents were

used as received.
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4.2.2. Catalyst preparation

For synthesizing CuNi-12 nanocatalyst, the copper chloride and nickel
chloride was used as precursor metal salts in deionized water at room
temperature, as shown in Scheme 4.1. Initially, 72 mg of CTAB was
dissolved into 100 mL of deionized water, and then 0.49 g copper
chloride and 1.51 g nickel chloride were added to the above mixture of
CTAB in round bottom flask stirred the mixture for 1 hour. The CTAB
is used as surfacant and capping agent which control the shape of the
nanoparticles by reducing the surface tension. After the formation of the
homogeneous mixture, 10 mL of hydrazine hydrate was added and the
reaction mixture was stirred for 1 hour. Further, the required amount of
NaOH solution was added to maintain the pH at 12 as well to ensure the
formation and stir the mixture for the next 1 hour. Here, the addition of
NaOH is required as there is no nanoparticles formed with the only use
of hydrazine hydrate. So, the NaOH plays an important role to maintain
the pH as well as to accelarete the reaction. Additionally, the reaction
between hydrazine hydrate, metal ions and NaOH provide inert
atmosphere to the reaction by releasing nitrogen gas as shown
below:[38]

Ni* + Cu®* + NjHy + O ———————  Nj+Cu + N, + H,0

The black color magnetic precipitate was obtained collected on the
magnetic bar. Further, the reaction mixture was washed with acetone,
vacuum filtered, and dried overnight at room temperature. Based on the
used ratio of copper and nickel metals, the nanoparticles were named
CuNi-11, CuNi-12 and CuNi-21 with 1:1, 1:2 and 2:1 molar ratios.

4.2.3. General catalytic procedure

In a general hydrogenation reaction, aldehydes, and ketones (1 mmol),
CuNi-12 catalyst (8 mg), Base KOH (16 mg) and isopropyl alcohol (4
mL) in a glass reaction tube of 15 mL with stop cock were used at
magnetic stirring bar and stirred for the appropriate time at 75 °C. After
completion of the reaction, it was allowed to cool at room temperature,

and the catalyst was separated using an external magnet. The separated
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catalyst was used for the next cycle, and the reaction mixture was diluted
and given for Shimadzu GC-MS analysis to analyze the product

conversion and selectivity.
4.2.4. Physicochemical measurements

The details about the PXRD, FE-SEM, HR-TEM, BET characterization
and utilized instruments have been discussed in Chapter 2 in
physicochemical measurements section. The details about TGA, XPS
and VSM analysis were discussed already in Chapter 3 in
physicochemical measurements section. The catalyst leaching was
performed using ICP-Atomic Emission Spectroscopy (Model: ARCOS,
Simultaneous ICP Spectrometer). Identification of the products of
catalytic reactions carried out using Shimadzu GC-MS, QP2010 mass
spectrometer.

4.3. Results and discussion

4.3.1 Characterization of CuNi-12 nanocatalyst

The bimetallic CuNi-12 nanocatalysts were synthesized at room
temperature via a simple liquid-phase reduction method with

modification of our work [38] as shown in Scheme 4.1.

TS Hydrazine
T £
S DissolveCTABin hydrate
deionized water After 1 hour
g add hydrazine ‘
~ hydrate

Aqueous metal
salt solution

/ Add NaOH
F=—_—,

Vacuum filter tillpH =12

the solution Stir for 1 hour

CuNi-12 Nanocatalyst

Scheme 4.1. Schematic representation of the synthesis of CuNi-12

nanocatalyst.
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The synthesized nanocatalyst was characterized via various
characterization techniques. Initially, the X-ray diffraction pattern of
CuNi-12 nanocatalyst was recorded, as shown in Figure 4.1A. In the
PXRD spectra, the obtained diffraction peaks at 32.20, 38.15, 61.23 for
(100), (101), and (111) planes correspond to the presence of S-Ni(OH).
(JCPDS 14-0117). The peaks at 35.16 and 65.56 indicate the presence
of CuO for (I11) and (022), respectively, as confirmed by JCPDS 80-
1916. Additionally, the peaks at 43.95, 51.18, and 75.78 reveal the
formation of metallic Cu FCC (JCPDS 04-0836) for (111), (200), and
(220) planes, respectively. The average crystallite size was calculated
by the Debye Scherrer equation was obtained to be 3 nm. The PXRD
analysis data of other composition i.e. CuNi-11, CuNi-21, monometallic

Cu and Ni was discussed earlier in our reported work.[38]
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Figure 4.1. (A) PXRD and (B) thermogravimetric analysis of bimetallic
CuNi-12 nanocatalyst.

The thermal decomposition of synthesized CuNi-12
nanocatalyst was analyzed by using thermogravimetric analysis from 30
°C to 800 °C temperature under nitrogen atmosphere, as shown in
Figure 4.1B. In the TGA curve, two major weight loss was observed,
i.e., below 280 °C and above 280 °C. In the first region, the total weight
loss of 8.27 wt% was observed due to the removal of adsorbed CTAB
and water molecules, and in the second region, the total weight loss of
4.62 wt% was observed, which was maybe owing to the decomposition
of surfactant layer of CTAB from the surface of CuNi-12 nanocatalyst,

and further complete oxidation of CTAB capping occurred.[39,40] The
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observed results confirmed that the synthesized nanocatalyst is

thermally stable up to 700 °C temperature.
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Figure 4.2. N2 adsorption-desorption study for (A) surface area and (B)

Pore size distribution of bimetallic CuNi-12 nanocatalyst.

Moreover, the surface area is essential to improving the catalytic
activity by providing more active sites on the surface.[41] For this
purpose, BET measurements were carried out to calculate the surface
area, pore size and pore volume at 77K at 1 bar pressure, as shown in
Figure 4.2. Figure 4.2A indicates the N adsorption-desorption
isotherm of the bimetallic CuNi-12 nanocatalyst, which exhibits the
presence of mesopores with the presence type IV isotherm with H3
hysteresis loop[42] (Figure 4.2A) and the obtained specific surface area
was 31.59 m?/g. Moreover, the calculated BJH pore size and pore
volume were 17.39 nm and 0.10 cm®/g. This result further confirmed the

presence of mesopores in the synthesized CuNi-12 nanocatalyst.[8,43]
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Figure 4.3. FE-SEM images at (A) 2 um (B) 1 um (zoom view in inset),
mapping of (C) copper, (D) nickel, and (E) Elemental analysis of
bimetallic CuNi-12 nanocatalyst.

Additionally, the morphology of the nanocatalyst is a crucial
parameter for the catalytic properties. Hence, the morphological studies
were performed using FE-SEM analysis, as shown in Figure 4.3(A-B).
The revealed surface morphology of the synthesized CuNi-12
nanocatalyst was a flakes-like structure (magnified image shown in the
inset of Figure 4.3B).[44,45] Further, elemental analysis (EDX) and
mapping were performed, and the results confirmed the presence of both
Cu and Ni elements in an approximate 1:2 weight% ratio, as shown in
Figure 4.3(C-E). The average measured particle size was found to be
69 nm.

Furthermore, to get more structural data, HR-TEM analysis was
performed, and the obtained data was in accordance with the FE-SEM
imaging data (Figure 4.4(A-C)). The morphology of synthesized CuNi-
12 nanocatalyst was flakes shaped structure.[46,47] The lattice fringes
of the CuNi-12 bimetallic nanoparticles indicate that synthesized
nanoparticles are crystalline in nature. Moreover, the selective area
electron diffraction (SAED) pattern revealed the bright concentric rings

of the CuNi-12 nanocatalyst, which is in good agreement with the HR-
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TEM images that further confirm the crystalline nature of the bimetallic
CuNi-12 nanocatalyst.[48]

Figure 4.4. HR-TEM images of bimetallic CuNi-12 nanocatalyst at (A)
50 nm, (B) 20 nm, (C) 2 nm and (D) Selective area electron diffraction
(SAED) pattern at 2 1/nm.

The magnetic nanocatalyst has the advantage of easily
recyclability after completing the reaction using an external magnet, and
in this regard, the magnetic properties of bimetallic CuNi-12 were
explored using a vibrating sample magnetometer (VSM) study at room
temperature (Figure 4.5). The values of saturation magnetization (Ms)
= 16.277 emu/g, remanence (Mr) = 3.834 emu/g and remanence to
saturation ratio (Mr/Ms) = 0.235 and coercivity (Hc) = 128.667 Oe were
calculated from the obtained M-H loop curve. The bimetallic CuNi-12

nanocatalyst is ferromagnetic in nature.
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Figure 4.5. Hysteresis loop for magnetic properties of bimetallic CuNi-

12 nanocatalyst at room temperature.

The chemical composition of the nanocatalyst is a significant
factor in any catalytic process, and to analyze the same, X-ray
photoelectron spectroscopy (XPS) analysis was performed. The XPS
spectra of Cu 2p, Ni 2p and O 1s element were recorded as shown in
Figure 4.6(A-C). The Cu 2p demonstrated two broad peaks of Cu 2ps2
at 932.62 eV and Cu 2p1» for 952.91 eV, respectively owing to the
presence of metallic Cu(0).[49] Also, the deconvoluted peak of Cu 2ps/2
at 933.76 eV confirmed the presence of CuQO.[50] Further, the XPS
spectra of Ni 2p showed two peaks and their satellite peaks. The XPS
spectra indicate two peaks at 856.23 eV and its satellite peak at 861.05
eV of Ni 2ps2 and 873.69 eV and its satellite peak at 879.89 eV of Ni
2p1s2 for the presence of Ni*2.[51,52] The spin-orbit separation of 17.6
eV was calculated which confirms the presence of Ni(OH)2.[53,54]
Also, the deconvoluted O 1s spectra peaks at 530.1 eV and 531.7 eV
confirmed the presence of metallic oxide and hydroxide in synthesized
CuNi-12 bimetallic nanocatalyst as shown in Figure 4.6C.[55] This data
confirms the formation of copper oxide and nickel hydroxide in
bimetallic CuNi-12 nanocatalyst. Additionally, to confirm the presence
of all the elements, survey scan of fresh CuNi-12 catalyst was performed
which indicate the presence of all elements Cu, Ni and O (Figure 4.6D).
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Figure 4.6. XPS analysis of fresh bimetallic CuNi-12 nanocatalysts
(A) Cu 2p, (B) Ni 2p, (C) O 1s and (D) survey scan.

4.3.2. Catalytic results

The synthesized bimetallic CuNi-12 nanocatalyst was utilized for
catalytic conversion of biomass-derived aldehydes and ketones into

corresponding alcohols using isopropyl alcohol and base.

Initially, the systematic investigation of the hydrogenation
reaction of biomass was performed, using furfural as a model substrate
to optimize the best suitable reaction condition. For this purpose, the
effect of catalyst amount, the base amount, hydrogen source at various
temperatures, bases and catalyst amount. Firstly, catalyst screening was
performed using various catalysts. We have synthesized three metal
ratios of Cu: Ni and named them CuNi-12, CuNi-11, and CuNi-21 on
their molar ratios and the results in Figure 4.7. In all the combinations,
CuNi-12 shows greater catalytic efficiency with 100% conversion and
100% selectivity of furfural to furfuryl alcohol. Bimetallic catalyst
CuNi-12 contain 1:2 ratio of Cu: Ni which indicate that the catalyst
containing more nickel amount shows greater activity whereas copper

shows high redox properties which converted into zero oxidation state
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insitu by adsorbing the hydride ion and promotes the hydrogenation
reaction. To confirm this possibility, we have additionally performed the
reaction with monometallic Cu and Ni catalysts, and in both cases, the
conversion is less, which is 14% and 22%. This result confirms the
synergistic effect of Cu and Ni in synthesized bimetallic CuNi-12
nanocatalyst to convert the furfural into furfuryl alcohol with 100%
conversion and 100% selectivity. Hence, all the reactions were carried
out using a CuNi-12 catalyst.

Catalyst screening

100 100 100 100 100
10
100
33 30
14 22
-

0
CuNi-12 CuNi-11 CuNi-21 CuNPs NiNPs

Conversion (%)

Catalyst (mg)

M Conversion (%) ® Selectivity (%)

Figure 4.7. Screening of catalyst on the hydrogenation of furfural into
furfuryl alcohol. Reaction condition: Substrate (furfural) = 1 mmol,

catalyst = 10 mg, base (KOH) = 16 mg, temperature = 75 °C.

Furthermore, the effect of catalyst was analyzed using 4, 6, 8,
and 10 mg CuNi-12 bimetallic nanocatalyst with 1 mmol furfural, 16
mg base at 75 °C temperature, as shown in Figure 4.8A. As the catalyst
amount was increased, the conversion was increased. When 4 mg and 6
mg of nanocatalyst were used for the reaction, 72% and 95% conversion
was observed into furfuryl alcohol. The 100% conversion was observed
in the case of 8 mg and 10 mg of bimetallic CuNi-12 nanocatalyst.
Hence, all the reactions were carried out using 8 mg of the bimetallic
CuNi-12 nanocatalyst. Additionally, the reaction was performed without
catalyst and only 37% conversion was observed which indicate the

importance of our catalyst for the hydrogenation reaction.
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Additionally, the effect of the hydrogen source was analyzed
using 2-propanol (isopropanol), 1-propanol, t-butanol, 1-butanol,
MeOH, EtOH and water using a bimetallic CuNi-12 nanocatalyst and
KOH as a base at 75 °C temperature. The reaction with 1-propanol, 1-
butanol, t-butanol, MeOH, EtOH and water shows poor conversion,
which is 36%, 14%, 13%, 31%, 24% and 9%, respectively, for the
hydrogenation of furfural, as shown in Figure 4.8B.[56] In contrast, 2-
propanol is found to be optimum hydrogen source with 100%
conversion and 100% selectivity towards alcohol product. Therefore, all
the reactions were performed using 2-propanol as a hydrogen source and

solvent.

After finalizing 2-propanol as a hydrogen source, the base
optimization was analyzed by varying several bases such as KOH,
NaOH and K>COs under the same reaction conditions (Figure 4.8C). In
the case of NaOH, 87% conversion was obtained, with is quite good,
whereas, in the case of K>COs, only 13% conversion was obtained. In
the case of strong base KOH, 100% conversion and 100% selectivity
were observed. Since KOH showed more excellent conversion and
selectivity and further all the reactions were performed using a KOH
base.

Hydrogen source optimization

A Catalyst amount optimization B C Base optimization
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Figure 4.8. Effect of catalyst amount loading, hydrogen source with

different base and base amount on conversion of furfural to furfuryl
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alcohol. Reaction conditions: Substrate (furfural) = 1-1.8 mmol,
catalyst = 0-10 mg, base (KOH) = 0-20 mg, temperature = 40-75 °C.

Since the above results indicate that KOH is the best suitable
base for the hydrogenation reaction, the optimization of the KOH
amount was analyzed with 10 mg of CuNi-12 catalyst and 4 mL 2-
propanol as the hydrogen source and solvent (Figure 4.8D). When 5 mg
of the base was used, only 21% conversion was observed whereas in the
absence of base, no conversion was observed indicating that the base is
required to hydrogenate furfural into furfuryl alcohol. When the base
amount was increased to 20 mg, the conversion increased from 21% to
100%. When 16 mg of the base was utilized with the same reaction
condition, 100% conversion was observed; hence, all the reactions were

further performed using 16 mg KOH.

Furthermore, the effect of reaction temperature was analyzed,
and the same reaction was carried out at various reaction temperatures
such as 40 °C, 50 °C, 60 °C and 75 °C, as shown in Figure 4.8E. In the
case of 40 °C, the conversion is relatively low in the case of 50 °C and
60 °C. Maximum 100% conversion and selectivity were observed at 75

°C; hence, all the reactions were carried out at this temperature.

After finalizing all the optimized reaction conditions, the effect
of substrate amount was tested using 1 to 1.8 mmol of furfural with the
above-optimized reaction conditions. The results reveal that as the
amount of substrate increased, the furfural conversion decreased from
100% to 21% of furfuryl alcohol, as shown in Figure 4.8F. Hence, all
the reactions were carried out with 1 mmol of substrate with 8 mg of
bimetallic CuNi-12 nanocatalyst, 4 mL of 2-propanol and 16 mg of
KOH at 75 °C.

After analyzing the best suitable reaction conditions, the substrate scope
was analyzed using various substituted aldehydes and ketones (Table
4.1, Entry 1-20). All aldehydes (Table 4.1, Entry 1-16) were converted
into corresponding products with 100% selectivity, whereas the ketone

(Table 4.1, Entry 17-20) conversion took more time. First, the biomass-
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derived aldehyde, i.e., HMF and cinnamaldehyde was utilized for
hydrogenation. HMF was successfully converted into corresponding
alcohol product with 100% conversion and 100% selectivity (Table 4.1,
Entry 2). Although, 90% conversion of cinnamaldehyde into cinnamyl
alcohol was obtained with 100% selectivity indicating the bulkiness
affects the substrate’s conversion (Table 4.1, Entry 3). However, when
benzaldehyde was used as a substrate, the benzyl alcohol was observed
within 3 hours with 100% conversion and 100% selectivity (Table 4.1,
Entry 4). To extend this study, various electron-deficient and electron-
rich substituted aldehydes were utilized. Electron withdrawing groups
like —CN, -Cl, -Br substituted aldehydes were primarily used for the
hydrogenation reaction (Table 4.1, Entry 5-10). Almost all aldehydes
were converted into corresponding alcohols, but the effect of
substitution position on the ring was examined. The para-substituted
aldehydes show conversion in less time, whereas ortho-, meta-
substituted aldehydes took more time in case of all substituted
aldehydes, which may be because the reaction site hinders the hydride
attack.[40] The bromo- substituted aldehyde took more time than that of
-chloro substituted aldehyde, which might be due to steric hindrance of
the bulkiness of bromo- group. Although, there was not much difference
was observed in reaction time in the case of all the halogen-substituted
aldehydes. Also, there was no dehalogenation observed of halogenated
aldehydes. Further, electron-rich substituted aldehyde was analyzed by
taking meta-methyl benzaldehyde, and it was converted into
corresponding alcohol within 6 hours with 96% conversion and 100%
selectivity (Table 4.1, Entry 11). This data indicates that the effect of
electron-deficient and electron-rich substituents on the aldehyde ring
was perceived. Further, a bulky substrate 1-Naphthalene
carboxaldehyde was utilized for hydrogenation reaction, and after 7
hours, 96% conversion was obtained, indicating the effect of bulkiness
(Table 4.1, Entry 12). Furthermore, the same reaction was performed
using cyclic aldehydes such as 1-Cyclohexene-1-carboxaldehyde, which
shows 100% conversion with 100% selectivity (Table 4.1, Entry 13).

Moreover, some heterocyclic aldehydes were also analyzed, such as 3-
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pyridinecarboxaldehyde, 4-pyridinecarboxaldehyde and 2-imidazole
carboxyldehyde at same reaction condition for appropriate time and
100% conversion with 100% selective alcohol was obtained (Table 4.1,
Entry 14-16). After analyzing the activity of catalyst towards
aldehydes, ketones were also explored using 2-methyl cyclopentanone,
4-chloroacetophenone, 4-methyl acetophenone and 4-
methoxyacetophenone (Table 4.1, Entry 17-20). The hydrogenation of
ketones was converted into product and took more time than aldehydes.
All conversion and selectivity were confirmed with Shimadzu GC-MS
analysis (Section 4.5). The general catalytic reaction is shown in
Scheme 4.2.

R | o L CuNi-12 R__0o OH
% KOH, 2-Propanol, 75 °C \E/)_/
/@O CuNi-12 _ /@/\OH
(o]
R KOH, 2-Propanol, 75 °C R

R =-CN, -ClI, -Br, -Me,

Scheme 4.2. General catalytic conversion of biomass-derived aldehydes

and ketones using CuNi-12 bimetallic nanocatalyst.

Table 4.1. Substrate scope of hydrogenation of aldehydes and ketones

into alcohols
Entry Substrate Product Time Conv
h | @)
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18 0] OH 12 75

20 o} OH 12 89

Reaction conditions: Substrate = 1 mmol, catalyst (CuNi-12) = 8 mg,
base (KOH) = 16 mg, time = 1-15 h, 2-propanol = 4 mL, temperature =
75 °C.

Based on previous reports and literature[56-58], the plausible
mechanism was proposed for the transfer hydrogenation of furfural
using CuNi-12 catalyst, as shown in Scheme 4.3. Primarily, the base
additive promotes the oxidative addition of 2-propanol and CuNi-12
catalyst and produces an intermediate 1. The addition of base is
important to promote the reaction faster as base abstract proton from the
2-propanol and produce hydride ion for hydrogenation reaction. Further,
the aldehyde or ketone substrates adsorb on the surface of the CuNi-12
bimetallic catalyst with the coordination of the carbonyl group of the
substrate with the catalyst surface to form intermediate 2. After that, an
active H* specie attack on the carbonyl group of the substrate produces
3. Additionally, the release of acetone molecule occurred, and then 4
generated where the C-OH bond formed. The acetone was produced due
to the removal of two hydrogen atoms from 2-propanol. After that, the
alcohol product was released, and the catalyst surface became free for

further reaction.
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¥

12 nanocatalyst

Scheme 4.3. A plausible mechanism of hydrogenation of furfural into

furfuryl alcohol.

Moreover, we have tried to summarize the work with some
earlier reported hydrogenation reactions using various Cu and Ni-based
catalysts (Table 4.2). As mentioned, bimetallic Cu-based NPs as
catalyst was utilized highly flammable hydrogen gas at high temperature
at 150-170 °C with moderate to excellent selectivity[22,59] whereas
photocatalytic conversion was performed using base, hydrogen gas with
2-propanol which showed approx. 98% conversion with 93%
selectivity.[23] Additionally, nickel based catalyst was also utilized as
catalyst at 100-250 °C with H2 gas and 2-propanol with excellent
catalytic activity but high reaction time.[10,60,61] Based on these
reports, as synthesized bimetallic CuNi-12 nanocatalyst showed greater
efficiency with gas free approach at minimal temperature and less
reaction time for the catalytic transfer hydrogen of biomass derived
aldehydes i.e. furfural in terms of selectivity, reaction time and
temperature. Hence, the present work involves sustainable and simple
method for the conversion of furfurals with 100% conversion and 100%

selectivity at 75°C temperature in 1 hour. Also, the synthesized CuNi-
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12 catalyst provide large substrate scope of aldehydes and ketones which
make the reaction simple, promising, efficient and economical for the

transfer hydrogenation.

Table 4.2. Comparison of present work with some previously reported

work.

Cu—Co Furfural Hzgas (0.5 | 3 150 100 100 | [22]
Bimetalli | (1 mmol) | MPa) + 10
c NPs mL H,0
(20 mg)
CuFe@C | Furfural Hzgas (0.5 | 3 150 84.2 67. | [22]
-500 (L mmol) | MPa) + 10 8

mL H.0
CuNi@C | Furfural Hzgas (0.5 | 3 150 100 30. | [22]
-500 (L mmol) | MPa) + 10 8

mL H.O
Fe(NiFe) | Furfural Hz gas (20 | 4 250 94 100 | [61]
04=Si0; bar)
(0.51
wt%)

Cu/Cu,0 | Furfural | H, gas (1| 16 LED, | 97.8 | 92. |[23]

-MC (10 | (0.05 bar) + 2- N2 5
mg) mmol) propanol
(4 mL) +
K2COs
(1.44)
NP-Cu Furfural H; gas (2 | 3 170 100 100 | [59]

catalyst (0.62 @) MPa) + 2-
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(Cu/C- propanol
400) (15.4 g)
7 Ni@N/C | Furfural H> gas | 6 100 99 98 [10]
-g-800 (0.5 (200 psi) +
catalyst mmol) H.O + 2-
propanol
(34+01
mL)
8 Co/ZrLa | Furfural H, gas (2 | 10 40 99 99 | [62]
0.20y (05 MPa) +
catalyst mmol) H.O (10
mL)
9 NiO NPs | HMF (2 | 2-propanol | 4 180 99 93 [60]
mmol) (10 mL)
10 | Ni- Furfural 2-propanol | 3 130 95.6 96. | [63]
SAS/INC | (I mmol) | (8 mL) + 8
N2 )
MPa)
11 | GO-Se- Benzaldeh | KOH (0.2 | 3 80 97 100 | [57]
Pd yde (2 | mmol) +
mmol) 2-propanol
(5mL)
12 | CuNi-12 | Furfural KOH (16 | 1 75 100 100 | This
(I mmol) | mg) + 2- work
propanol
(4 mL)

4.3.3 Kinetic and recycle study

Furthermore, the final optimized reaction conditions for hydrogenation

of furfural (1 mmol) were analyzed with the use of base KOH (16 mg),

CuNi-12 bimetallic catalyst (8 mg) with 2-propanol (4 mL) in 1 hour
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reaction time. To study the kinetics of hydrogenation reaction of
furfural, the sample was taken periodically by using injection and given
the samples for GC-MS analysis. The sample was taken at 15, 30, 45
and 60 min, and the obtained conversion was 23, 55, 78 and 100%

respectively, as shown in Figure 4.9(A).

—a— Conversion % [ conversion (%)
1004 A =S p

@
=3
L

Conversion (%)
» o
o =]
L
Conversion & selectivity (%)

N
=)
1

i - b Time (.-:|on) . - Number of cycle

Figure 4.9. (A) Kinetic study and (B) Recycle study of bimetallic CuNi-
12 nanocatalyst for conversion of furfural. Reaction conditions:
Substrate (furfural) = 1 mmol, catalyst (CuNi-12) = 8 mg, base (KOH)
=16 mg, 2-propanol = 4 mL, temperature = 75 °C, time = 1 h.

After that, to check the reusability and recyclability of
synthesized CuNi-12 nanocatalyst, the recycle study was performed for
the hydrogenation of furfural to furfuryl alcohol, as shown in Figure
4.9B. After the first run, the catalyst was separated with a magnet, and
the reaction mixture was given for GC-MS analysis to check the
conversion and selectivity. Further, the catalyst was washed with water
and then dried at room temperature. After drying the catalyst, the spent
catalyst was reused for the next cycle with the appropriate reaction
condition. Till six cycles, the conversion was almost 100% with 100%
selectivity. In the seventh cycle, the conversion decreases to 89%, but
the selectivity remains the same, i.e., 100%. The decrease in conversion
with the cycles may be due to increased carbon content or coke
deposition at the catalyst's surface and pores, reducing the active sites

and deactivating the catalysts.[64,65]

Moreover, to check the stability of the bimetallic CuNi-12

nanocatalyst, the spent CuNi-12 nanocatalyst was analyzed using XPS
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analysis (Figure 4.10). The XPS spectra of the Cu element show two
peaks at 932.58 eV and 952.5 eV for Cu 2ps; and Cu 2pi in the
presence of metallic copper (0).[50,66] The XPS spectra of the Ni
element show the peaks at 852.76 eV and 870.13 eV for Ni 2ps2 and Ni
2p1s2, respectively, confirming the presence of metallic nickel(0).[67,68]
The catalyst is in Cu(0)/Ni(0), which is in its active form. This change
in oxidation state of copper from CuO to Cu(0) was attributed to reaction
of hydride ion during the course of reaction.[69]

A Cu2p,, Cu Spent| B Ni2p,, | Ni Spent

Cuzp,,

A

T T T T
T T T
930 940 950 960 850 860 870 880 890
Binding Energy (eV) Binding Energy (eV)

Intensity (a.u.)
Intensity (a.u.)

Figure 4.10. XPS spectra of (A) Cu 2p element (B) Ni 2p element of
spent CuNi-12 nanocatalyst.

Additionally, to check the leaching of the catalyst, inductive
coupled plasma atomic emission (ICP-AES) analysis was performed
(Table 4.3). The catalyst was filtered, and the supernatant was given for
ICP-AES analysis, and the obtained data confirmed no significant

leaching was observed.

Table 4.3. ICP-AES analysis data of CuNi-12 nanocatalyst for

hydrogenation reaction

Sample ICP-AES (ppm)
CuNi-12 nanocatalyst Cu Ni
0.101 0.633
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4.4. Conclusions

The magnetically separable CuNi-12 nanocatalyst was synthesized with
1:2 molar ratio with a simple method at room temperature and utilized
for catalytic conversion of biomass-derived aldehydes into alcohols with
100% conversion and 100% selectivity. CuNi-12 nanocatalyst has high
surface area of 31.592 m?/g and showed flakes-like morphology
analyzed by BET and HR-TEM analysis respectively. The catalyst
exhibited high efficiency for conversion of aldehydes and ketones by
using base and 2-propanol. The synthesized CuNi-12 catalyst is
efficient, highly active, cost-effective, magnetically separable and
recyclable for up to seven cycles. This approach of catalytic conversion
of biomass-derived aldehydes is sustainable and can be implemented for

chemical industries.

4.5. GC-MS spectra of catalytic hydrogenation of all

reactants and products
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CHAPTER S5

CuNi Bimetallic Nanocatalyst Enables

Sustainable Direct Carboxylation Reactions

5.1. Introduction

Heterogeneous catalysis has attracted tremendous attention in modern
industry as it plays a vital role in the production of chemicals and
pharmaceuticals. Heterogeneous catalysts offer many advantages over
homogeneous catalysts including the high catalytic stability under
reaction conditions and recyclability through the facile separation of the
liquid or gaseous products from the solid catalyst. Among the different
fields of heterogeneous catalysis, catalysis by transition metal
nanoparticles is one of the most important, owing to their inherent
properties that include variation of metal oxidation state, high surface
energy which increases the activity of surface atoms, high surface-to-
volume ratio, environmental abundance, and cost-effectiveness. [1,2]
Hence, the use of transition metal nanoparticles as heterogeneous
catalysts is an attractive alternative to homogeneous metal
complexes.[3] Additionally, bimetallic nanoparticles have drawn a
greater interest than monometallic nanoparticles due to the synergistic
effects between individual metals present in the bimetallic system[4-6],
leading to higher chemical activity and enhanced chemical, biological,
and magnetic properties.[7,8] Specifically, magnetic bimetallic
nanocatalysts show promise in heterogeneous catalysis owing to their
ease of separation directly from the reaction mixture using an external

magnet.[9]

The transformation of C-C and C-H bonds has a major impact
on the field of organic synthesis and pharmaceutical industry for the
production of natural products and various crucial intermediates.[10]

Specifically, aromatic carboxylic acids have found tremendous
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applications in the pharmaceutical and chemical industry.[11,12] For
example, benzoic acid and its derivatives are commonly used
as antimicrobial preservatives, flavouring agents, and food additives.
Owing to their application, significant research efforts have been
devoted to developing new synthetic protocols to produce these value-
added synthons. One of the most promising approaches is the direct
carboxylation of aromatic compounds to their corresponding aromatic
acid analogues. However, the direct functionalization of aromatic non-
activated C-H bonds remains a daunting task in synthetic and
organometallic chemistry due to the high chemical stability and inert

nature of the arenes C-H bonds.[13]

However, the carboxylation of arenes proceeds via four major
pathways: (i) base-mediated (i.e. Kolbe-Schmitt reaction type)[14] (ii)
Lewis-acid-mediated (i.e. Friedel-Crafts reaction type) (iii) transition-
metal catalyzed, and (iv) enzymatic carboxylation.[15] The base-
mediated carboxylation involves the use of a base to avoid the formation
of undesired H.O, however, high pressure of CO: is still required. The
carboxylation via Lewis-acid mediated pathway involves the use of
AICI3/Al with CO2 gas which occurs on the most nucleophilic site of
arenes.[16] Additionally, several studies have reported the C-H
activation and carboxylation of aromatic compounds using
monometallic catalysts, including Pd[17], Cu[18], Ni[19], Ir[20],
Rh[21] which either involve the use of highly toxic CO or chemically
stable CO. gases with oxidizing agents. Besides, some studies used
N,N'-dicyclohexylcarbodiimide (DCC) as an additive with formic acid
for the carboxylation reaction which required a catalytic amount of DCC
and pre-activated substrate such as aryl halide instead of benzene, in
addition to high reaction temperature.[22] Although, due to the low
electrophilicity and high stability of CO> and high toxicity of CO
gases[23] developing alternative carboxylation protocols with reactive
and eco-friendly carboxylating agents is highly desirable. Also, the

existing procedure involves the use of non-recyclable, precious metal
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complexes as catalysts with high loadings, oxidants, or activators along
with the high reaction temperature and time. Henceforth, the
development of a recyclable, cost-effective heterogeneous catalyst for
the carboxylation of arene via an activator-free, gas-free, and additive-

free approach needs to be explored.

In this context, formic acid is a suitable carbonyl source, owed
to its non-toxicity, accessible synthetic approaches, and cost-
effectiveness due to its availability as a by-product from the industrial
sector.[24,25] Also, formic acid can be used as an alternative to CO and
CO2 gases for the carboxylation of arenes.[22,26] Moreover, several
computational studies have been reported so far to elucidate the catalytic
activation and decomposition strategies of formic acid on monometallic
transition metal surfaces, such as Pt,[27] Cu,[28,29] Ni,[30,31]
Au[32,33] and Pd[31] and bimetallic transition surfaces such as
PtPd[34] and PdCu.[35,36] These studies pave the path for utilization of
formic acid on copper and nickel metal surfaces for carboxylation
reactions due to low cost and high abundance[37,38] over expensive
metals like Pd, Pt, Ru, Rh noble metals as for industrial process, the cost-

effectiveness is an important factor.

Keeping this in mind, we have explored and synthesized CuNi
bimetallic nanocatalyst for the conversion of benzene with the use of
formic acid in solvent-free condition for sustainable and
environmentally benign approach.[24,39,40] Herein, we explored
catalytic experiments in conjunction with DFT calculations to report an
easily synthesizable, magnetically recoverable CuNi-11 bimetallic
nanocatalyst for the catalytic conversion of arenes utilizing formic acid,

with an activator-free, gas-free and solvent-free approach.
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5.2. Experimental

5.2.1. Materials

Cetyl trimethyl ammonium bromide (CTAB) >99% pure, copper
chloride (CuClz) anhydrous >99.99% pure, and nickel chloride
hexahydrate (NiCl2.6H20) >99.9% pure were purchased from Merck,
India. Hydrazine hydrate (N2H4.H20) 80% in water, sodium hydroxide
pellets (NaOH) 98% pure, aryl compounds >98-100% pure, and formic
acid 98% were purchased from Sigma-Aldrich. All solvents were used

as received.
5.2.2. Catalyst preparation

Three nanocatalyst with Cu:Ni molar ratios of 1:1 (CuNi-11), 1:2
(CuNi-12), and 2:1 (CuNi-21) were synthesized.'? The synthesis
procedure of CuNi-11 is illustrated in Scheme 5.1. First, 292 mg CTAB
were added into 100 mL deionized water in a 1000 mL round bottom
flask. The solution was stirred at room temperature for 10 minutes. 2.7
g CuClz and 5.3 g NiCl..6H20 were added to the mixture, forming a
green solution. After 1 hour, 20 mL of N2H4.H2O were added, changing
solution colour to coffee brown. We note that NoHsH>O acts as a
reducing agent and provides N inert atmosphere to the reaction as

follows:

NiZ"+ Cu%* + NaHy + O —————— i+ Cu + N, + H,0

After 1 hour, the required amount of NaOH solution was added
into the above mixture till pH approximate 11-12 with an ice bath
producing a black solution. After stirring the solution for 6 hours, excess
acetone was added into the reaction mixture to remove the excess
CTAB. After vacuum filtering the black magnetic precipitate, CuNi
nanocatalyst with a 1:1 molar ratio was obtained which named as CuNi-
11.
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Following the same methodology, and utilization of CuCl. and
NiCl2.6H20 as metal chlorides, monometallic Cu and Ni nanocatalysts

were synthesized.
5.2.3. General catalytic carboxylation reaction

“The carboxylation reaction was performed in 15 mL sealed glass vial
with a cap equipped with a magnetic stirrer bar. In the glass vial, aryl
substrate (1 mmol), formic acid (12-15 mmol), and catalyst (15 mg or
0.0096 mol%) were stirred for required time at 55 °C. After completion
of the reaction, the reaction mixture was cooled at room temperature.
After that, the catalyst was removed with an external magnet and the
reaction mixture was diluted with ethyl acetate and dried over vacuum
and given for GC-MS analysis with HPLC methanol for recording
conversion and selectivity. The recovered catalyst is washed with
ethanol and water several times and dried at room temperature
overnight. After each run, the catalyst was recovered and washed with

the same procedure.”

5.2.4. Physicochemical measurements

The details about the PXRD, TGA, FE-SEM, HR-TEM, BET
characterization and utilized instruments have been discussed in chapter
2 in physicochemical measurements section. However, the EDAX
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elemental analysis and mapping was done by using Zeiss-Gemini Field-
Emission Scanning Electron Microscope. FT-IR analysis was performed
using PerkinElmer Spectrum at 400 to 4000 cm™. The details about XPS
and VSM analysis were discussed already in Chapter 3 in
physicochemical measurements section. The leaching of the catalysts
was analysed by using Inductively Coupled Plasma (ICP-OES)
instrument with Model number: Nexion 2000B ICP-MS (Perkin Elmer).
Identification of the products of catalytic reactions was carried out using
Shimadzu GC-MS, QP2010 Mass Spectrometer and RTX-5 tubular
diphenyl dimethyl polysiloxane capillary column, 30 m long, 0.25 mm
diameter, and df value of 1.0 um. The formation of substituted benzoic
acids was confirmed by !H and ¥C NMR analysis using NMR
Spectrometer, Model AVANCE 111 400 MHz.

5.2.5. Computational Methods

Electronic structure calculations were performed at the Density
Functional Theory (DFT) level using the CP2K package.[43] The
Perdew-Burke-Ernzerh of exchange-correlation functional[44] was used
in conjunction with Grimme’s D3 method to account for adsorbate-
surface dispersion interactions.[45] The core electrons of the atoms were
treated using Goedecker, Teter, and Hutter pseudopotentials.®® The
electronic wavefunctions of Cu and Ni atoms were described using the
double-{ valence polarized basis sets, whereas triple-( valence polarized
basis sets were used for C, O, and H with a kinetic cutoff of 600 Ry.[49]
All structures were relaxed using the
Broyden—Fletcher—Goldfarb—Shanno minimization algorithm until
forces between the atoms were less than 4.0 x 10~* Hartree Bohr™, with
SCF threshold of 10 Hartree. The minimum energy pathway for
benzene carboxylation was investigated using climbing image nudged
elastic band (CI-NEB) calculations.[50] Potential transition states were
further tuned with the dimer method and verified with vibrational
frequency analysis to have a single imaginary frequency along the
reaction coordinate.
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The crystalline structure of the most thermodynamically stable
form of bimetallic CuNi-11 (i.e. face-centered cubic, FCC) was
constructed by replacing 2 Ni atoms in an FCC Nis conventional cell
with 2 Cu atoms. The calculated lattice constants for the chemically
ordered 1:1 Ni-Cu binary system are a = 3.49 A b = ¢ = 3.61 A,
consistent with previous theoretical calculations.**™*® The most stable
(111) surface of CuNi was modelled by a periodic three-layered slab
with a vacuum region in excess of 20 A to avoid periodic interaction
between slabs in the surface normal direction. The three-layered slab is
testified and benchmarked in previous literature to be a reasonable
model for adsorption and reaction mechanism studies through
comparison with experiments and results of four- and five-layered
models.***35 To reduce the computational load, the top two layers and
the adsorbates were allowed to relax during geometry optimization and
transition state search, whereas the bottom layer was fixed at its
equilibrium bulk phase position.[51] Adsorption energies of the
adsorbates on the surface were calculated based on the following

equation:

Eads = Eadsorbate/surface - Eclean surface ~ Eadsorbate

where Eqgsorbates/surface 1S the total energy of adsorbates on the
surface, Ecjean surrace 1S the total energy of bare (111) CuNi surface,
and E 4s0rpate 1S the total energy of isolated adsorbate in the gas phase
which was calculated by placing the isolated adsorbates in a cubic box
of 15Ax 15A x 154, To evaluate solvent effects, single point energy
calculations including solvation were further performed on the fully
optimized gas phase structures. Solvent effects were considered through
the self-consistent continuum solvation model by Andreussi et al. using

formic acid as the solvent.[56]
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5.3. Results and discussion

5.3.1. Characterization of bimetallic CuNi-11 nanocatalysts

The synthesis of all CuNi nanocatalysts was performed by varying the
Cu:Ni molar ratios such as CuNi-11(1:1), CuNi-12(1:2), CuNi-21(2:1),

and monometallic Cu and Ni were also considered (Scheme 5.1).

Hydrazine
hydrate

After 10 min

After 1 hour
——
a(zld Cucl, add hydrazine
NiCl,. 6H,0 hvdrate
in 1:1 ratio Y
Dissolve CTAB in Metal chloride salt
deionized water
After 1 hour
NaOH
Add NaOH to
maintain pH=
11.5

stir for 6 hour

CuNi-11 Nanoparticles
after vacuum filtration

Scheme 5.1. Schematic representation of the synthesis of CuNi-11
nanocatalyst.

All the synthesized nanocatalysts including CuNi-11, CuNi-12,
CuNi-21, monometallic Cu, and monometallic Ni were synthesized and
characterized by PXRD analysis (Figure 5.1).
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Figure 5.1. PXRD analysis of all synthesized nanocatalysts (i) CuNi-
11, (ii) Cu, (iii) Ni, (iv) CuNi-12, (v) CuNi-21.

The PXRD analysis of CuNi-11 showed diffraction peaks at 19.05°,
33.22°, 38.34°,58.94°, and 62.54° corresponding to (001), (100), (101),
(110), and (111) planes, respectively, which imply the presence of f-
Ni(OH). (JCPDS #14-0117) as shown in Figure 5.2A.[57,58] The
diffraction peaks at 43.41°, 50.49°, and 74.16° corresponded to (111),
(200), and (220) planes, respectively, which are attributed to Cu
(JCPDS#04-0836). [59,60] The PXRD peaks of CuNi-11 nanoparticles
was compared with monometallic Cu and Ni nanoparticles (Figure 5.1),
the shift in PXRD peaks suggested that the synthesized CuNi-11
nanoparticles is an alloy. The average crystallite size calculated by the

Debye Scherrer equation was found to be 5 nm.
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Figure 5.2. (A) PXRD spectra and (B) thermogravimetric analysis of
CuNi-11 nanocatalyst.

Thermogravimetric analysis (TGA) was performed to check the
thermal stability (Figure 5.2B) under N2 atmosphere from 30 °C to 800
°C. There were two major weight losses observed in the region of (i) up
to 250 °C and (ii) above 250 °C. The weight loss in these regions was
observed at 8.29 wt% and 4.64 wt%, respectively. The first weight loss
is due to the partial removal of adsorbed CTAB and water
molecules[41,64] or decomposition of CTAB which was attached to the
surface of CuNi-11. The second weight loss was attributed to the
complete oxidation of CTAB layer capping. These results indicate the
high thermal stability of the synthesized bimetallic CuNi-11
nanocatalyst up to high temperatures. For better clarification of weight
loss with increasing the temperature, the differential derivative
thermogravimetric analysis (DTG) was also added in Figure 5.2B.

Furthermore, the FT-IR spectrum of bimetallic CuNi-11
nanocatalyst was performed (Figure 5.3) and the absorption peaks at
3406 cm™ indicate the presence of CTAB for OH vibration of hydroxyl
group.[61,62] The peaks at 2918, 1716, 1257 cm™ attributed to C-H
stretching bands of CTAB surfactant.[63] The absorption peaks at 1636,
1496 cm attributed to asymmetric and symmetric stretching vibrations
of N*_CHzand 760 cm™ assigned for Br- of CTAB.[9] The absorption
peak at 455 cm™ was may be because of stretching vibration of metal-
metal i.e. Cu-Ni band.[63] This data revealed the capping of CTAB on

bimetallic CuNi-11 nanocatalyst.
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Figure 5.3. FT-IR spectrum of bimetallic CuNi-11 nanocatalyst.

High surface area plays a key role to enhance the catalytic
performance. Thus, to quantify the surface area of the synthesized
bimetallic catalysts, the N adsorption-desorption studies were
performed by employing Brunauer-Emmett-Teller (BET) surface area
analyzer at 77 K and 1 bar. The calculated specific surface area, pore
size, and pore volume were found to be 58.993 m?/g, 7.76 nm, and 0.136
cm?®/g, respectively (Figure 5.4). The N2 adsorption curve exhibited type
IV isotherm with H3 hysteresis loop, indicating the presence of
mesopores. [65,66] Moreover, CO. adsorption-desorption studies
performed at 298 K and 1 bar revealed maximum CO> uptake of 95.546
m?/g. The results demonstrate that the CuNi-11 nanocatalyst is more
selective towards CO2 over N2, showing a potential for application of

CuNi-11 nanocatalyst in CO> capture technologies. [67,68]
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Figure 5.4. (A) N2 adsorption-desorption (B) CO2 adsorption-
desorption (C) BJH pore-size distribution isotherm of CuNi-11
nanocatalyst.

Surface morphology plays an important role in the catalytic
activity and selectivity[69,70] and for that, the surface morphological
studies were performed using FE-SEM analysis of the CuNi-11
nanocatalyst. The overall morphology revealed nanoflakes type
structures which were arranged in nanoflower-like shapes (Figure
5.5(A-B)). [71,72] Furthermore, the elemental analysis and mapping of
CuNi-11 nanocatalyst confirmed the presence of Cu and Ni elements
with a 1:1 wt% ratio (Figure 5.5(C-E)). Furthermore, the detailed
morphology of the synthesized bimetallic CuNi-11 nanocatalyst was
analyzed using HR-TEM (Figure 5.6(A-C)). The observed images were
in accordance with FE-SEM imaging of nanoflakes-like structures.
Additionally, the d-spacing was calculated from TEM images to be 0.27,
0.18, and 0.15 nm for (100), (110) planes of s-Ni(OH)., and (200) plane
of copper metal nanocatalysts (Figure 5.6C).[73] The d—spacing of the
planes matched well with PXRD data peaks (Figure 5.2A). Further, the
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SAED pattern showed the concentric rings which confirmed the

crystalline nature of CuNi-11 nanocatalyst (Figure 5.5D).

Figure 5.5. SEM images of CuNi-11 nanoflower at (A) 300 nm (in inset
magnified image of flakes scale at 100 nm) and (B) 1 um. (C) EDX
pattern of CuNi-11 nanocatalyst, (D) elemental mapping of copper, and
(E) nickel element.

Figure 5.6. TEM images of CuNi-11 nanocatalyst at (A) 100 nm (B) 20
nm (C) 2 nm and (D) SAED pattern.
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Furthermore, magnetic study of CuNi-11 nanocatalyst was
performed using a vibrating-sample magnetometer (VSM), confirming
the ferromagnetic nature of CuNi-11 (Figure 5.7). [74] Magnetic
properties of CuNi-11 were studied at room temperature with an applied
field of £20.0 kOe. The values of saturation magnetization (Ms),
remanence (M), remanence to saturation ratio (MyMs), and coercivity
(Hc) were calculated from the obtained M-H loop curve. These values
were found to be 10.27 emu/g, 1.30 emu/g, 0.13, 75.48 Oe for Ms, My,
MuMs, and Hc, respectively. Overall, these results highlight the

ferromagnetic nature of bimetallic CuNi-11 nanocatalyst.[59,74]
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Figure 5.7. Magnetic hysteresis curve of CuNi-11 nanoparticle.

Finally, X-ray photoelectron spectroscopy (XPS) analysis was
performed to confirm the chemical composition and the oxidation state
of the catalyst (Figure 5.8). The XPS spectra of Cu 2p exhibited two
broad peaks of Cu 2ps and Cu 2pi at 933.6 eV and 953.6 eV,
respectively, for the presence of CuO (i.e. Cu?*) as a result of surface
oxidation of metallic copper (Figure 5.8A). [75,76] On the other hand,
the XPS spectra of Ni 2p exhibited two peaks of Ni 2ps2 and Ni 2p12
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(Figure 5.8B). The peak at 855.7 eV and the satellite peak at 861.2 eV
for Ni 2pszand at 873.3 eV and its satellite peak at 879.9 eV for Ni 2p1.2
for Ni*2 of Ni(OH)..[77,78] The peak separation of 17.6 eV in Ni 2ps2
and Ni 2p12 confirmed the formation of Ni(OH)2 due to the spin-orbit
coupling phenomenon.[79-81] Moreover, the O 1s peak observed at
531.2 eV confirmed the presence of hydroxide which supports the
formation of nickel hydroxide in CuNi-11 nanocatalyst as shown in
Figure 5.8(C). [82,83] The survey scan confirmed the presence of Cu,
Ni, and O elements (Figure 5.8D).
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Figure 5.8. XPS spectra of (A) Cu 2p, (B) Ni 2p, (C) O 1s and (D)
survey scan of synthesized CuNi-11 nanocatalyst.

Furthermore, the XPS spectra of recovered catalyst were also
performed, confirming the reduction of CuNi-11 nanocatalyst to
Cu(0)/Ni(0) in presence of HCOOH (Figure 5.9(A-C)). The XPS
spectra of copper Cu 2ps2 and Cu 2p12 present at 932.7 eV and 953.2
eV for the formation of Cu(0).[84,85] Additionally, the XPS spectra of
Ni 2ps2 and Ni 2p12 observed at 852.1 eV and their satellite peaks shown
in Figure 5.9(B) confirmed the presence of Ni metallic character.[86,87]
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This is an important observation since the alloy Cu(0)/Ni(0) appears to

be the active catalyst form during catalytic operation.
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Figure 5.9. XPS spectra of (A) Cu 2p, (B) Ni 2p, (C) survey scan of

recovered CuNi-11 nanocatalyst.
5.3.2. Catalytic results

The catalytic carboxylation reaction of different substituted benzenes
using the CuNi-11 nanocatalyst in the presence of formic acid as
carboxylating agent and solvent-free conditions has been performed.
Initially, several catalysts including monometallic Cu and Ni, CuCl,
CuNi-11, CuNi-12, and CuNi-21 were screened for the direct
carboxylation of benzene using 12 mmol of formic acid for 20 hours at
55 °C temperature (Figure 5.10). Based on previous reports,[88,89] the
concept of a Lewis-acid mediated pathway was also explored by using
CuCl which provided only 9% conversion and ruled out the possibility
of that pathway. The reaction with monometallic Cu, monometallic Ni,
CuNi-12, and CuNi-21 revealed that excess Cu and/or Ni suppress the
catalytic activity, whereas an equimolar ratio of Cu and Ni species is

essential for enhanced catalytic performance.[90] The synergistic effect
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in between Cu and Ni metal enhances the catalytic activity and provides
100% conversion for the same reaction whereas monometallic Cu and
Ni metal shows only 41% and 68% conversion of benzene into benzoic
acid. The best result was obtained with CuNi-11 nanocatalyst with 100%
conversion and 100% selectivity. The obtained data indicate the
importance of bimetallic CuNi nanocatalyst for the catalytic conversion
of benzene. Therefore, all catalytic reactions were carried out with
CuNi-11 nanocatalyst.
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Figure 5.10. Effect of different catalysts on the conversion of benzene
to benzoic acid. Reaction conditions: Substrate (benzene) = 1 mmol,
catalyst (CuNi-11) = 15 mg, formic acid = 12 mmol, solvent = 2 mL,
time = 20 h, temperature = 55 °C.

The systematic investigation of carboxylation reactions was
performed using benzene as a model substrate to efficiently select the
optimal reaction conditions (e.g. loading of solvent, concentration of
formic acid and substrate, reaction time and temperature). To examine
the influence of solvent (2 mL), various solvents such as 2-propanol,
methanol, water, and methanol-water mixture (1 mL each) were
screened with HCOOH (12 mmol), catalyst (15 mg) for 20 hours.
Remarkably, the highest conversion was obtained when the reaction was
solvated with either water (100% conversion) or a water-methanol
mixture (95% conversion) (Table 5.1). Surprisingly, a solvent-free
carboxylation reaction also resulted in a maximum 100% benzene
conversion and 100% selectivity to benzoic acid. Consequently, the
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solvent-free reaction was preferred to avoid the post-work-up process of
the reaction mixture.[40,91] It is to be noted that formic acid may play
the role of the solvent medium in the reaction mixture as all reagents

were present in the liquid form.

Table 5.1. Effect of solvent on the conversion of benzene into benzoic

acid
Entry Solvent CuNi-11 | Formic acid Conversion

(2mL) (mg) (mmol) (%)

1 H.0 15 15 100

2 MeOH 15 15 71

3 H>0:MeOH 15 15 95

4 2-Propanol 15 15 47

5 - 15 15 100

Reaction conditions: Substrate (benzene) =1 mmol, catalyst (CuNi-11)
= 15 mg, formic acid = 15 mmol, solvent = 2 mL, time = 20 h,

temperature = 55 °C.

Furthermore, the reaction in solvent-free conditions was carried out
by varying the formic acid amount between 5 to 15 mmol, with benzene
(2 mmol) and CuNi-11 (15 mg) for 20 hours. It was observed that the
conversion of benzene depends significantly on the amount of HCOOH,
as shown in Table 5.2. As the formic acid amount decreases, the
conversion of benzene decreases and with 5 mmol of formic acid no
conversion was observed whereas the 100% conversion was observed
with 12 and 15 mmol of formic acid. Hence, further all the reactions

were carried out with 12 mmol of formic acid.
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Table 5.2. Effect of amount of formic acid on carboxylation of benzene

Entry Formic acid CuNi-11 Conversion
(mmol) (mg) (%0)
1 5 15 -
2 8 15 17
3 10 15 77
4 12 15 100
5 15 15 100

Reaction conditions: Substrate (benzene) =1 mmol, catalyst (CuNi-11)

= 15 mg, formic acid =5-15 mmol, time = 20 h, temperature = 55 °C.

Thereafter, the effect of benzene concentration (1-2.5 mmol) was
carried out with HCOOH (12 mmol), CuNi-11 (15 mg) for 20 hours at
55 °C. A complete 100% conversion of benzene to benzoic acid was
obtained using 1 mmol of benzene (Table 5.3). These results showed

that as the substrate amount increases, the conversion decreases.

Table 5.3. Effect of substrate amount on carboxylation reaction of

benzene
Entr Substrate Formic acid Conversion
y (mmol) (mmol) (%)
1 1 12 100
2 15 12 47
3 2 12 33
4 2.5 12 15

Reaction conditions: Substrate (benzene) = 1-2.5 mmol, catalyst
(CuNi-11) = 15 mg, formic acid = 12 mmol, time = 20 h, temperature =
55 °C.

Moreover, a control experiment without catalyst resulted in only
17% conversion, whereas 100% conversion was obtained when 15 mg
of CuNi-11 nanocatalyst was utilized (Table 5.4). This result showed
the importance of the synthesized bimetallic CuNi-11 catalyst for the

carboxylation of benzene to benzoic acid.
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Table 5.4. Effect of catalyst amount loading on carboxylation of

benzene
Entry CuNi-11 Formic acid Conversion

(mg) (mmol) (%)

1 - 12 17

2 3 12 36

3 6 12 47

4 9 12 58

5 12 12 80

6 15 12 100

Reaction conditions: Substrate (benzene) = 1 mmol, catalyst (CuNi-11)
= 0-15 mg, formic acid = 12 mmol, time = 20 h, temperature = 55 °C.

The influence of temperature was studied on the carboxylation
reaction. When the reaction was carried out at either room temperature
and 40 °C for 20 h, benzene conversion was 12% and 72%, respectively.
A maximum 100% conversion with 100% selectivity was obtained at 55
°C in 20 hours (Figure 5.11). Hence, the final optimized reaction
conditions for carboxylation of benzene were 1 mmol of benzene, 12
mmol of HCOOH, and 15 mg of CuNi-11 catalyst along with a reaction
temperature of 55 °C and reaction time of 20 hours to achieve complete

benzene conversion and selectivity.
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Figure 5.11. Effect of temperature on the carboxylation reaction of

benzene. Reaction conditions: Substrate (benzene) = 1 mmol, catalyst
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(CuNi-11) = 15 mg, formic acid = 12 mmol, temperature = 25-55 °C,
time = 20 h.

Furthermore, to check the applicability of the reaction,
carboxylation of some simple substituted arenes including toluene,
haloarenes (-Br, -Cl, -F), phenol, aniline, naphthalene, and pyridine
were explored under the identified optimized reaction conditions (Table
5.5, Entry 1-9). Additionally, the reaction is also applicable to solid
arenes such as naphthalene, using methanol as solvent (2 mL), which
requires a longer reaction time to achieve 100% conversion and 100%
selectivity (Table 5.5, Entry 5). All products and conversions were
confirmed by Shimadzu GC-MS and NMR analysis (Section 5.5 and

5.6). The general catalytic reaction for carboxylation reaction as shown

@ CCuNitt
HCOOH, 55 °C

R4= -H, -Me, -Cl, -Br

in Scheme 5.2.

COCH

COOH

CuN| 11
HCOOH, 55 °C OO

Scheme 5.2. Catalytic conversion reaction scheme of substituted

benzene to corresponding benzoic acids using CuNi-11 nanocatalyst.
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Table 5.5. Carboxylation of selected substituted arenes into their

corresponding acids.

Entry Substrate Product Time | Conv.

(h) (%)

1 © ©/COOH 20 100

2 /@ /©/COOH 30 100

3 /@ COOH 31 100
Br Br/©/

4 /@ COOH 31 100

5 O COOH 30 100
AJ | T

6 /@ COOH 29 100
w2 | LT

7 /@ COOH | 35 100
A | AT

8 | X X COOH 28 100

N~ N| =
92 COOH 40 100

s
&

Reaction conditions: Substrate = 1 mmol, catalyst (CuNi-11) = 15 mg

(0.0096 mol%), formic acid = 12 mmol, time = 20-40 h, temperature =

55 °C. ®Methanol used as solvent due to solubility issue in water.
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The kinetic study of the carboxylation reaction was performed using
benzene as a model substrate by taking samples periodically at 4, 10, 15,
and 20 hours and around 17, 47, 76, and 100% conversion was observed
(Figure 5.12A). Furthermore, the recyclability of the catalyst has been
studied with model substrate benzene. After each run, the reaction
mixture was separated with a magnet, then washed and dried overnight
at room temperature. The recycled catalyst was reused for up to six
consecutive cycles (Figure 5.12B).

120

A —e— Conversion (%) B - Conversion (%)
100
100 + ']

) / o

®
1 /
40 40
20 20

0 T T T T 0+
5 10 15 20 1 2 3 4 5 6

Time (hr) Number of cycle

60

Conversion (%)
Conversion (%)

Figure 5.12. (A) Kinetic study and (B) Catalyst reusability of the
carboxylation reaction of benzene for all the cyclic runs. Reaction
conditions: Substrate (benzene) = 1 mmol, Catalyst (CuNi-11) = 15 mg,

formic acid = 12 mmol, time = 4-20 h, temperature = 55 °C.

To check the leaching of the catalyst, hot-filtration test was
performed.[4,92] The reaction was stirred for 4 hours, and the catalyst
was separated with a magnet. Then, the reaction mixture was filtered
using a filter paper. Further, the supernatant was proceeded and stirred
as reaction mixture to react without catalyst and the sample was taken
for GC-MS analysis. There was no conversion observed after catalyst
removal, indicating no leaching of the Cu and Ni metals. Also, the
supernatant was characterized via ICP-OES and the analysis reveals no
significant leaching of Cu and Ni metals (Table 5.6).
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Table 5.6. ICP-OES analysis of reaction mixture for leaching of the

bimetallic CuNi-11 nanocatalyst.

Sample ICP-OES (ppm)
CuNi-11 Cu Ni
0.6466 0.8797

Further, to check the morphological changes in the recovered catalyst,
FE-SEM was performed in which no significant changes were observed
in the structure of the recovered catalyst (Figure 5.13). These results
reveal that the synthesized catalyst is recyclable, reusable, and robust in

nature.

FFull Scale 10772 cts Cursor: 0.000 ke

Figure 5.13. FE-SEM images of recovered CuNi-11 nanocatalyst.

Additionally, to get more evidence of the formation of benzoic acid,
Fourier transformation infrared spectroscopy (FT-IR) was performed on
the isolated product. The analysis showed absorbance peaks at 3073,
2827, 1682, 1288, and 933 cm™* for O-H, C-H, C=0 and aryl C-H
vibrations of benzoic acid (Figure 5.14).[93,94]
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isolated Benzoic acid |

Transmittance (%)

T T T T T T
3500 3000 2500 2000 1500 1000 500

Wavelength (cm™)
Figure 5.14. FT-IR spectra of isolated benzoic acid after reaction.

Furthermore, an isotopic-labelling experiment was performed under
standard reaction conditions using CeDs as substrate and formic acid as
carboxylating agent, and the corresponding expected deuterated acidic

product was obtained (Figure 5.15).

F4E+08

165.80]
128.16]
128.07]
127 87|
127 68|

{&

FaE+08
D
OH F4E+08

D D

b FE+08
fee+08

=z
feE+08 E
fee+08
FiE+08

FSE+HO7

T T T T T T 7 T 7 7 T T T 7
160 170 160 150 140 130 120 10 100 w0 80 il &0 =0 40
1 {pom)

Figure 5.15. Labelling experiment with benzene-d6: 3C NMR (400
MHz, CDCls): & 165.80, 128.16, 128.07, 127.87, 127.68.

To the best of our knowledge, the mechanistic aspects of the direct
carboxylation of benzene with formic acid on CuNi-11 bimetallic
catalyst remain unknown. In this regard, we performed DFT calculations

to gain valuable insights into the potential reaction mechanism. We
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considered the alloy Cu(0)/Ni(0) form of the catalyst as suggested by
the XPS analysis of recovered catalyst (Figure 5.16). Scheme 5.3
presents a proposed reaction mechanism for the carboxylation of
benzene to benzoic acid with formic acid as carboxylating agent on the
CuNi-11 nanocatalyst surface. The computed reaction energy profile
and graphical snapshots of relevant reactants, intermediates, and
transition states (TSs) for the reaction on (111) CuNi-11 surface are
shown in Figure 5.16. Importantly, our PXRD analysis has
authenticated the active sites of CuNi-11 nanocatalyst are located on the

(111) plane surface, as depicted in Figure 5.2.

Benzoic Acid Formation
Benzene Adsorption

71 / 2]

g\
»

Benzene Dissociation

Hydrogen Desorption

3
[6] 3l >

Q
®

QG

»
\G‘

"
% oo o
Bt -
90 Formic Acid Adsorption
Q

Hydrogen Formation
[4]
Formic Acid Dissociation

Scheme 5.3. Plausible mechanism of benzene carboxylation with formic

acid on bimetallic nanoparticles.

In the first step of the cycle, benzene chemisorbs through its ©
electron cloud with hexagonal close-packed (hcp) flat-lying orientation,
involving the H-flipped configuration of the ring.[95] Generally, it is
established that benzene adsorbs on transition metals with its aromatic
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ring lying parallel to the surface,[96-99] similar to the adsorption of
biomass derived rings on metal catalysts.[100] The computed binding
energy of benzene on (111) of CuNi-11 three-fold hollow site is -137.7
kJ mol-1, whereas DFT-computed adsorption energy of benzene ranges
between -54.0 to -103.2 and -84.0 to -101.3 kJ mol? on three-fold
hollow sites of (111) Cu[101-103] and Ni[96,104-106] metals,
respectively. The stronger binding energy of benzene on CuNi-11
catalyst relative to Cu and Ni metals may be traced down to (i) a larger
overlap of benzene 7 orbitals with the orbitals of the CuNi-11 surface
than that with either Cu or Ni surface individually and (ii) better
description of adsorbate-surface dispersion interactions by PBE-D3
method (see computational methods in supporting information). At the
hcp adsorbed state (CeHs*), the mechanism is initiated by activation of
benzene C-H bond and formation of tilted phenyl (C¢Hs*) intermediate
with a neighboring H™ species occupying the hcp site. The geometry
structure for benzene C-H scission TS (TS1) exhibits the breaking of a
o bond, featuring a three-membered metallacycle C-Cu-H, with an
activation energy barrier of 180.9 kJ mol™. Formic acid then adsorbs
nearly perpendicular with its carbonyl oxygen bonded atop on a Ni site
and C-H bond pointing towards a bridge Cu-Ni site. The computed
adsorption energy of formic acid is -60.1 kJ mol?, indicating an
energetically favorable process. Several theoretical studies have
investigated formic acid adsorption and decomposition on Cu and Ni
(111) surfaces and reported atop adsorption through the carbonyl
oxygen, with binding energies of -46.3 and -34.7 kJ mol™* for Cu and Ni
metals, respectively.[31,107,108] After adsorption, formic acid
decomposes into adsorbed bidentate carboxyl intermediate (COOH¥*)
and atomic hcp-bounded H"*. Furthermore, breaking the C—H bond in
HCOOH (TS2) on CuNi bimetallic surface is exothermic (-65.4 kJ mol
1), with an activation barrier of 46.3 kJ mol™. Jiang and coworkers
investigated the activation of the HCOOH C-H bond on the Cu (111)
surface and reported an activation energy barrier of 36.7 kJ mol™.[36]

Dehydrogenation of HCOOH to the formate intermediate
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E (kJ/mol)

(HCOO*)[109] via the cleavage of the O-H bond, followed by C-H bond
scission to produce CO>* and 2H* was not considered herein, as the
liberation of CO2 gas was not detected experimentally via lime water
test. In the next step, the surface-bound hydrogens on adjacent hcp sites
(H* + H"*) recombine to form molecular hydrogen. The H-H bond
formation (TS3) takes place on top of a Ni atom, with an activation
barrier of 74.4 kJ mol™. The atop adsorbed molecular hydrogen desorbs
from the surface with an energetic penalty of 53.1 kJ mol™. Liberation
of Hz gas was detected by the flame test, supporting the proposed
reaction mechanism. Lastly, C7HsO2 forms on the hcp site through the
recombination of phenyl and carboxyl intermediates via TS4. The

recombination step is exothermic with reaction and activation energy

barriers of 80.7 and 36.2 kJ mol?, respectively.

TS1: C.H, C-H activation
i TS2: HCOOH C-H activation

FREIA3 TS3: H, production

; | TS4: C,H.0, production

Reaction Coordinate

Figure 5.16. Potential energy surface of direct carboxylation of benzene
to benzoic acid on close-packed fcc (111) CuNi-11 bimetallic surface.
The detailed structures of reactants, transition states, intermediates, and

products are schematically illustrated in insets.
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Figure 5.17. Potential energy surface of direct carboxylation of benzene
to benzoic acid on close-packed fcc (111) CuNi-11 bimetallic surface on
the gas phase (black) and in the presence of formic acid (red), and

benzene (blue) as the solvation medium.

The catalytic cycle completes with benzoic acid desorbing to
regenerate the catalyst, with desorption energy of 137.6 kJ mol™.
Overall, benzene C-H bond activation was found to be the rate-
determining step in the carboxylation reaction. Finally, to demonstrate
the solvation effects on the reaction mechanism, the self-consistent
continuum solvation model was applied on the DFT optimized
structures, as shown in Figure 5.17 by utilizing both formic acid and
benzene as the solvation medium for the reaction.[56] We showed that

implicit solvation effects do not change the reaction pathway energetics.
5.4. Conclusions

In summary, we utilize synthesis, characterization, and catalytic
experiments together with first principles calculations to report the first
example of direct carboxylation of benzene on bimetallic CuNi-11
nanocatalyst. The reaction proceeds through the activation of both
benzene and formic acid with desorption of molecular Hz. The CuNi-11
nanocatalyst is highly efficient, recyclable, and cost-effective. Our work
advances the field of arene functionalization by introducing an activator-
, additive- and solvent-free carboxylation reaction at mild conditions
using a recyclable bimetallic CuNi-11 catalyst, while providing a

mechanistic understanding of the reaction.
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55. GC-MS analysis of all substituted benzene

carboxylation products
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5.6. 'H and *C-NMR data of all carboxylated benzene

products

After completion of reaction all the products were cooled to room
temperature and diluted with ethyl acetate and residue was purified with
silica gel chromatography. The resulting product were then given for
NMR analysis with DMSO-d6 and the data was analysed with the

references. 1’19

Benzoic acid: *H NMR (400 MHz, DMSO-d6): & 12.93 (s, 1H), 7.95
(2H), 7.61 (1H), 7.50 (2H).13C NMR (400 MHz, DMSO-d6): § 167.78,
133.32, 131.24, 129.75, 129.03.
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4-methyl benzoic acid: *H NMR (400 MHz, DMSO-d6): & 12.80 (s,
1H), 7.85 (d, 2H), 7.28 (d, 2H), 2.36 (s, 3H). *C NMR (400 MHz,
DMSO-d6): 6 167.79, 143.35, 129.79, 129.56, 128.49, 21.56.
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4-bromo benzoic acid: *H NMR (400 MHz, DMSO-d6): § 13.19 (s,
1H), 7.88 (d, 2H), 7.70 (d, 2H). 3C NMR (400 MHz, DMSO-d6): &
167.01, 132.16, 131.76, 130.45, 127.35.
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4-chloro benzoic acid: *H NMR (400 MHz, DMSO-d6): §13.17 (s, 1H),
7.95 (d, 2H), 7.54 (d, 2H). *C NMR (400 MHz, DMSO-d6): & 166.68,
138.08, 131.41, 129.94, 128.97.
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4-fluoro benzoic acid: *H NMR (500 MHz, MeOH-d4): & 7.98 (m, 2H),
7.06-7.10 (m, 2H). **C NMR (500 MHz, MeOH-d4): § 167.34, 166.77,
164.77, 132.10, 132.03, 127.00, 126.97, 115.07, 114.90.
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4-amino benzoic acid: *H NMR (500 MHz, MeOH-d4): § 7.66 (d, 2H),
6.54 (d, 2H). *C NMR (500 MHz, MeOH-d4): § 169.35, 153.17,
131.41, 117.67, 113.00.
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4-hydroxy benzoic acid: *H NMR (500 MHz, MeOH-d4): & 7.81 (d,
2H), 6.73 (d, 2H). *C NMR (500 MHz, MeOH-d4): § 168.95, 161.95,
131.72,121.25, 114.74.
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4-pyridine carboxylic acid: *H NMR (500 MHz, DMSO-d6): § 7.82 (s,
2H), 8.79 (s, 2H), 13.67 (s, 1H). *C NMR (500 MHz, DMSO-d6): &
166.66, 151.07, 138.56, 123.22.
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1-naphthoic acid: *H NMR (400 MHz, DMSO-dé6): & 13.18 (s, 1H),
8.88 (d, 1H), 8.16 (m, 2H), 8.08-8.00 (m, 1H), 7.66-7.57 (m, 3H). 13C
NMR (400 MHz, DMSO-d6): 6 169.17, 133.94, 133.41, 131.17, 130.36,
129.08, 129.08, 128.19, 128.03, 126.65, 125.98, 125.35.
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CHAPTER 6
Precisely Designed Cobalt Single Atom on
ZrQO; Support for Chemical CO; Fixation

6.1. Introduction

Heterogeneous catalysis has entered a new phase with the development
of single-atom catalysts (SACs), in which the isolated active metal
atoms are anchored to supports.* In SACs, every surface atomic site is
accessible which delivers superior catalytic performance and the highest
atom utilization efficiency.>® SACs act as a bridge between
homogeneous and heterogeneous catalysts as they posesses properties
of both type of materials i.e. recyclability and easy recoverability,
thermal stability and better exposure of active sites.”® For industrial
applications, recyclability and cost-effectiveness and catalytic
performance are the key requirements. In comparison to nano particle
catalysts, SACs have demonstrated impressive enhancements in
catalytic activity in various catalytic processes due to their distinct
structural characteristics and fully exposed active sites.”1° However, the
synthesis and stabilization of SACs is a challenging task due to the high
surface energy of the isolated atoms, resulting in agrregation of SACs
and decrease in catalytic activity.***3 For synthesizing SACs, various
stratagies like doping, utilization of defects and spatial confinement
have been utilized to stabilize the single atom over different
supports.tt143> Moreover, characterization of SACs remains a daunting
task since it requires atomic level high resolution in techniques like
STEM-HAADF and EELS. The conventional transmission electron
mircoscopes are unable to observe single atoms on supported materials
owing to their contrast mechanisms.'® Aberration-corrected HAADF-
STEM is extremely sensitive to atomic number of the atoms present in
the sample. However, it is still challenging to observe single atoms when
the difference in atomic numbers of the isolated atoms and the support
is not enough to provide sufficient contrast.!’ Since AC-STEM is a local
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technique, it is necessary to combine information with techniques that
provide an average over the entire sample, like EXAFS, and XANES
while also yielding information on oxidation states and bond distances

for nearest neighbors for the supported single atoms.*8

Recently, SACs were explored for electrocatalytic, thermal and
photocatalytic CO. hydrogenation and valorization reactions due to their
enhanced catalytic performance.*'*2* SACs provide more exposure to
active sites and result in product selectivity and enhancement in catalytic
activity. An ideal catalyst would have a low energy barrier, selectivity
towards the desired product, easy synthesis, recoverability and cost-
effectiveness.?* SACs of non-noble metals have all these advantanges,
which can reduce the process cost while increasing the catalytic
performance without compromising selectivity towards desired
products.?>? Hence, SACs of non-noble metals are the best choice for
CO2 conversion into value-added products. Carbon dioxide is the major
greenhouse gas which leads to climate change and global warming.
Thus, the conversion of CO; into value-added products can help achieve
sustainablity and carbon neutrality. Previous efforts to utilize or capture
CO2 have explored the production of value added products like cyclic
caronates, urea, methanol, etc.. However, owing to its high
thermodynamic stability, the conversion of COz requires high pressure
and temperture. Also, achieving selectivity towards one product is a
desirable goal for CO2 conversion, otherwise in the case of CO>
hydrogenation we can produce methanol, methane, formate, formic acid,

etc 27,28

CO. fixation and reaction with epoxides to yield cyclic
carbonates has potential to produce many commercial products since
there are few undesirable side products.?® The cycloaddition of CO2 with
epoxides is useful for the synthesis of plastics, cosmetics and
adhesives.®>®! These are useful as intermiadiates for various synthetic
processes and also as electrolytes in lithium-ion batteries.Cyclic
carbonates have also been utilized to synthesize commercially

significant compounds including polycarbonates, polyurethanes, and

183



dialkyl carbonates etc.>? Traditionally cyclic carbonates were
synthesized using highly toxic phosgene, which is banned in many
countries. Hence, the synthesis of cyclic carbonates from cycloaddition
reaction of epoxides and carbon dioxide is a promising pathway.

Recently, various metal organic frameworks (MOFs) of Cu®3,
PA@Eu**, Ca based®, Yittrium®, thulium®, Zn®% and Ln based
coordinated polymers* have been explored for the CO; fixation of
expoxides with tetrabuthylammonium halogen containing reagent
(TBAX) at 70-100°C for 4-24 hours and under solvent-free reaction
conditions. Furthermore, CuCo204 spinel*®, phenolated lignin NPs*,
ligated Ti coated Bi-oxo cores*?, PABA@a-Fe,03* and N,S co-doped
bifunctional carbon catalyst** were also explored using TBAX at room
temperature to 105 °C for 3-24 hours. In all cases moderate to good yield
was obtained but the reaction time and TBAX amount required was
reatively high even at high reaction temperature. However, ionic liquid-
based and halide-free reactions were also reported at 60-90 °C and 12-
48 hours reaction times with poor substrate scopes.?*#°4¢ Several SACs
were recently reported for cycloaddition of CO: into epoxides;*>°
however, these all showed narrow substrate scope or required solvents
like DCM and DMF.

Herein, we synthesized a Co/ZrO, SAC via a facile coprecicipitation
method and characterized extensively it with EXAFS, STEM, HAADF
and XANES techniques to confirm the presence of single atoms and
utilized it for catalytic conversion of epoxides into cyclic carbonates.
The single atom catalyst showed superior catalytic activity compared to
undoped ZrO; and Co0304/ZrO: catalyst. The Co/ZrO, SAC showed
100% conversion with 100% selectivity towards cyclic carbonate
product with minimal amount of TBAB (0.06 mmol) in solvent-free
conditions which makes it cost-effective, greener, and environmentally
benign**>!, whereas undoped ZrO, and Co304/ZrO; catalyst showed less
than 50% conversion, confirming that the single atom catalyst provides
more active sites. The catalyst showed broad substrate scope with

excellent yield in all the cases with recyclability of up to six cycles.
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6.2. Experimental section
6.2.1. Materials

Cobalt nitrate hexahydrate (Co(NOs)2. 6H20) >99% pure and zirconyl
nitrate hydrate (ZrO(NOs3).. xH20) anhydrous >99.99% pure were
purchased from SRL chemicals, India. Ammonia solution was
purchased from Merck, India. Reagents and epoxides compounds >98-
100% pure were purchased from Sigma-Aldrich and TCI, India. All

solvents were used as received.
6.2.2. Catalyst preparation
6.2.2.1 Synthesis of Co doped ZrOz

For synthesizing Co doped ZrO,, firstly Cobalt nitrate hexahydrate and
Zirconyl nitrates hydrates (1:9 molar ratio) were taken in round bottom
flask in 50 mL water and stirred the mixture for 20 minutes. To maintain
the pH ~ 9, ammonia solution was added dropwise with continuous
stirring. During this addition of ammonia solution colour changes from
light pink to bluish pink colour. After stirring the mixture for next 1
hour, the solution was centrifuged and washed several times with water
till pH~7 and then dried overnight at 100 °C. Thereafter, the solid
precipitate was calcined at 500 °C for 3 hours with ramping temperature
2 °C/min. The synthesized catalyst is named as Co/ZrO> single atom
catalyst.

6.2.2.2. Synthesis of undoped ZrO2

The undoped ZrO> catalyst was synthesized using zirconyl nitrate with

above mentioned method without using cobalt nitrate.
6.2.2.3. Synthesis of Co3Oa4 supported on ZrO2

For synthesizing cobalt impregnated ZrO: catalyst, as synthesized ZrO-
was initially taken in round bottom flask and stirred it into water for 20
minutes at room temperature. In another beaker, Co(NOs3).. 6H20 was
dissolved in 10 mL water and added dropwise to the above dispersed

solution of ZrO; and allowed to stir the mixture for another 1 hour. After
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1 hour, the solution was evaporated under reduced pressure and the
precipitates were dried overnight at 100 °C and then calcined at 500 °C
for 3 hours with ramping temperature 2 °C/min. The synthesized catalyst

is named as C0304/ZrO> catalyst.
6.2.3. General catalytic reaction

In a general CO> fixation reaction, epoxides substrates (10 mmol) were
added with catalyst (15 mg), TBAB (0.06 mmol) in stainless steel
containing teflon reaction vessel pressure reactor attached with
thermocouple at magnetic stirring bar. After closing the reactor, the
reaction vessel was flushed three times with CO; to replace the existing
air and then pressurized with 2 bar pressure and keep it for stirring at 80
°C for required reaction time. After completion of reaction, the reactor
was cooled down to room temperature and pressure was released. The
reaction mixture was centrifuged for catalyst separation and then
catalyst was washed, dried and used for next cycle. The reaction mixture
was diluted with ethyl acetate and dried under rota evaporator and given
for GC-Ms and NMR analysis.

6.2.4. Physicochemical characterization

The details about the PXRD, FE-SEM, HR-TEM, BET characterization
and utilized instruments have been discussed in Chapter 2 in
physicochemical measurements section. The details about TGA, XPS
and VSM analysis were discussed already in Chapter 3 in
physicochemical measurements section and the details about ICP-AES,
GC-MS was discussed in Chapter 4, physicochemical section. The
formation of substituted products was confirmed by *H and *C NMR
analysis using NMR Spectrometer, Model AVANCE NEO Ascend 500
Bruker BioSpin International AG. Samples were dispersed in ethanol
and mounted on holey carbon grids for examination in a JEOL
NEOARM 200CF transmission electron microscope equipped with
spherical aberration correction to allow atomic resolution imaging, and
an Oxford Aztec Energy Dispersive System (EDS) for elemental

analysis. The microscope is equipped with two large area JEOL EDS
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detectors for higher throughput in acquisition of x-ray fluorescence
signals. Images were recorded in annular dark field (ADF) mode and in
annular bright field (ABF) mode. XAS experiments were performed at
5BM-D beamline of DND-CAT at beamline 5 BM-D (DND-CAT) of
the Advanced Photon Source (APS) of Argonne National Laboratory, at
Co K (7709 eV) edge. Co/ZrO2 and Co304/ZrO2 samples were ground
to a fine powder by using a pestle and mortar, then evenly spread on
long Scotch tape (3M Corp) to form a uniform sample layer. The tape
was folded to create a uniform surface to produce adequate absorption.
The sample was mounted vertically on a sample holder with its surface
normal bisecting the 90 angles between the X-ray incidence and photon
detecting directions. A double crystal Si (111) monochromator was used
for energy selection. Both Co K-edge XANES and EXAFS were
measured under fluorescence mode by a Vortex ME4 detector. Metal Co
foil transmission spectrum for energy calibration was collected along
with each sample. XAS data were processed using WinXAS software.>
Simulated phase and amplitude functions for Co-O scattering were
extracted using Feff6.5® The extracted chi was k?>-weighted and Fourier
transformed over a k range of 2.5 to 10 A% for the samples. The S¢? value
was determined by fitting the Co foil reference compound. Fitting was
performed in g-space to determine the Debye-Waller factor, Ac®. The

final EXAFS fits were conducted in R-space.
6.3. Results and discussion

6.3.1. Characterization of catalyst

The single-atom catalyst Co/ZrO2 was synthesized via coprecipitation
method as shown in Scheme 6.1. For comparison, undoped ZrO> and
Co304 impregnated ZrO, was synthezised via incipent wetness
impregnation (See supporting information).

187



Cobalt nitrate

Add NH,OH

Dissolve L
to maintain pH~9

in water
+ — v —

Metal salt

Calcine at 500°C J
for3h Centrifuge and dry

e — 3t 100°C overnight

e

Co doped on ZrO, catalyst

& Co atom
S ZrO, support

Scheme 6.1. Schematic representation of the synthesis of Co/ZrO>

catalyst.

All three catalysts i.e., single atom Co/ZrO; catalyst, undoped ZrO> and
C0304/ZrO; catalyst were characterized using powder X-ray diffraction
as shown in Figure 6.1. As shown in Figure 6.1A, undoped ZrO;
catalyst showed peaks at 30.31°, 35.29° 50.40° 60.36° and 63.11°
corresponding to the (101), (110), (200), (211) and (202) reflections of
tetragonal ZrO, in agreement with JCPDS# 01-080-0965.>4% In
contrast, the cobalt doped catalyst was analysed and there was no peak
corresponding to any cobalt phase, which confirms that the Co was
doped into the ZrO; surface. The XRD pattern shows that there is shift
in the (101) plane of ZrO> to higher 26 value, further confirming the
doping of cobalt as shown in Figure 6.1B. This peak shift is observed
due to a decrease in the interplanar spacing in ZrO; due to cobalt
doping.*5° The ionic radii of Co*?is 0.74 A, less than the ionic radius
of 0.84 A for Zr** and which leads to change in lattice constant and
results in shift of t-ZrO, plane to a higher 20 value.®® In the cobalt doped
catalyst, no peak of CosOs was observed.> This absence of cobalt and
cobalt oxide peaks in the Co/ZrO2, supports the inference of doping of
cobalt on the zirconia support. For comparison, Cos04 impregnated
ZrO, was also synthesized and analysed, showing sharp peaks at 36.88°,
44.95° 59.51° and 65.11° corresponding to the (311), (400), (511) and
(440) planes of Co304 in agreement with JCPDS# 043-1003 as shown
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in Figure 6.1A.%°%1 When compared with the Co/ZrO; catalyst, the
powder XRD peak of Co3O4 for (311) plane was absent in case of
Co/ZrO, suggesting the absence of nanoparticles in Co/ZrO>
catalyst.%?The average crystallite size was calculated using the Scherrer
equation®® and it was found to be 17 nm, 20 nm and 12 nm for Co/ZrOx,

undoped ZrO; and Co304/ZrO> respectively.

The thermal stability of Co doped ZrO; catalyst was analyzed by
heating from 30 °C to 700 °C temperature under a nitrogen atmosphere.
The thermogravimetric analysis indicates only 4% weight loss, which
confirm the high thermal stability of the Co doped ZrO: catalyst as
shown in Figure 6.2. There was initial weight loss up to 200°C due to
removal of adsorbed water and further weight loss was observed due to

removal of trapped organic species inside the pores of ZrO2 support

material.>*
A (101) Co/zrO, B ColzrO,
ZrO2
(110) @00) 244
(202)
S
3 101) C0304IZr02 g
L
= >
2 a1 &1 1) =
‘? (200) ﬁ( (440) 2
§ \ (400) A 8
£ £
(101) ZrO2
(200)
(211) (202)
(110) .
—_— T 7T
20 40 60 80 27 28 29 30 31 32 33 34

20 (degree) 20 (degree)

Figure 6.1. (A) PXRD of Co/ZrO; single atom catalyst, C0304
supported on ZrO2 and undoped ZrO; and (B) shifting of (101) plane of
ZrO2 with doping of cobalt.
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Figure 6.2. Thermogravimetric analysis of Co/ZrO, single atom
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catalyst.

K temperature after degassing at 300 °C temperature to determine
surface area, pore size and pore volume (Figure 6.3). Cobalt doped ZrO-
catalyst has a high surface area of 76 m?/g with pore size and pore
volume of 3.4 nm, and 0.061 cm?®g respectively. The N, adsorption-
desorption curve followed a type IV isotherm suggesting the formation

of mesopores, which is in good agreement with the Barrett-Joyner-

N2 adsorption-desorption was performed at 1 bar pressure at 77
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Figure 6.3. N2 adsorption-desorption study for (A) surface area and (B)
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also analyzed, and all three-catalysts showed the same type of isotherm.

Moreover, the undoped ZrO; and Co304 impregnated ZrO, was
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Moreover, the calculated surface area, pore size and pore volume were
found to be 69 m?/g, 3.4 nm and 0.061 cc/g respectively for undoped
ZrO; (see Figure 6.4(A-B)). Additionally, the specific surface area of
C0304/ZrO; catalyst was also calculated using the BET equation and

was estimated as 46 m?/g with a pore size and pore volume of 3.4 nm

and 0.057 cc/g respectively (see Figure 6.4(C-D)).
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Figure 6.4. N2 adsorption-desorption study for (A-C) surface area and
(B-D) Pore size distribution of undoped ZrO; and Co304/ZrO; catalyst.

To confirm the atomic dispersion of cobalt atom on zirconia,
aberration corrected scanning transmission electron microscopy (AC-
STEM) was performed. Annular dark field (ADF) and simultaneous
annular bright field (ABF) STEM images were recorded as shown in
Figure 6.5. In ABF mode, the crystalline morphology of ZrO> can be
seen clearly as indicated by the lattice fringes (Figure 6.5(A-B)). In
ADF mode, there were no identifiable single Co atoms on ZrO; as shown
in Figure 6.5(C-D) as a result of the lower atomic number of Co relative
to Zr. It is important to note that no clusters of cobalt oxide were
observed anywhere in the Co doped catalyst.
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10 nm

Figure 6.5. (A-B) STEM images in ABF mode and (C-D) STEM

images in ADF mode of Co/ZO> single atom catalyst.

Further, to confirm the dispersion of Co, Energy-dispersive X-
ray spectroscopy (EDS) was performed in different regions of Co/ZrO>

at various magnifications, as shown in Figure 6.6.
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Figure 6.6. STEM mapping of Zirconium, Cobalt, and Oxygen element
of Co doped ZrO, catalyst at different regions at higher magnifications

with scale bars of (A) 250 nm, (B) 500 nm, (C) 10 nm and (D) 25 nm.

In each elemental mapping, the cobalt distribution was uniform
(i.e., ~7 wt%) on ZrO> and no detectable Co particles on ZrO, were
observed in the cobalt map. Similarly, the EDS results of HR-TEM and
FE-SEM analysis were consistent for Co distribution on ZrO; as shown
in Figure 6.7 and Figure 6.8 respectively, which suggests the atomic
dispersion of cobalt on the ZrO> support. The lattice fringe of 0.287 nm
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corresponding to the (101) planes of t-ZrO. are shown in Figure 6.7B,
which is in agreement with PXRD spectra of the Co single atom catalyst
(Figure 6.1). The colour mapping of Co doped ZrO- catalyst showed
uniform distribution of Co on ZrO: catalyst as shown in Figure 6.7C.
The SAED pattern of the Co/ZrO> catalyst show the concentric rings
expected from the crystalline zirconia support as shown in Figure 6.7D

inset.

0.287 hm

Figure 6.7. HR-TEM images of single atom Co/ZrO; catalyst at (A-B)
5 nm, (C) Elemental mapping and (D) EDS spectra (inset selected area
electron diffraction (SAED) pattern at 5 1/nm).

ZrLal Co Kal O Kal

Figure 6.8. FE-SEM mapping and elemental analysis of Zirconium,

Cobalt, and Oxygen of Co doped ZrO; catalyst.
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For comparison, STEM images of Co30s impregnated ZrO;
were also recorded, which revealed that the catalyst has two types of
morphology: one with small pores and the other with more open pore
structures as shown in Figure 6.9A. The morphology is quite distinct as
seen in this figure and in some cases the two phases are joined to each
other, as shown in Figure 6.9B. The EDS analysis shows that the open
pore structure comes from the CosO4 phase since its concentration
increases as we zoom into the open pore structure (Figure 6.3C and
6.3D). The particles of C0304 can be as large as the ZrO; particles
(Figure 6.10A). However, EDS analysis shows that smaller Co304
aggregates could be dispersed on the ZrO» (Figure 6.10C). Also, in
some regions of ZrO; there were regions suggestive of atomically
dispersed Co (Figure 6.10D). In summary, while the cobalt doped ZrO>
catalyst contains exclusively atomically dispersed Co, whereas in the
impregnated catalyst we see phase separation of Co03z0s and ZrOo.
Additionally, we also see atomically dispersed Co on the ZrO> in the
impregnated catalyst These results are in good agreement with PXRD
data where the sharp (311) peak corresponding to large CozO4 particles

in C0304/Zr0- is not seen in case of the Co doped on ZrOx.

57.1 wt% ZrO, 31.9 wt% ZrO,
68.1 wt% Co;0,
R

0.0 Zr0,
100.0 Co;0,
#

Figure 6.9. (A-B) STEM images of impregnated Co3z04/ZrO; catalyst at

different magnifications as indicated by the scale bars of (A-B) 200 nm,

195



(C) 50 nm, and (D) 20 nm with elemental analysis of each field of view

listed on the image.
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Figure 6.10. STEM mapping of Zirconium, Cobalt, and Oxygen
element of Cosz0s impregnated ZrO; catalyst at different regions at
higher magnifications with scale bar (A) 500 nm, (B) 250 nm, (C) 50
nm and (D) 25 nm.

The local Co coordination and oxidation state were analyzed via

Co K-edge X-ray absorption near-edge structure (XANES) and
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extended X-ray absorption fine structure (EXAFS) spectroscopy, as
shown in Figure 6.11. The XANES energy corresponds to the dipole
allowed electromagnetic transition for ionization of a 1s electron to the
4p vacant orbitals and is taken as the first inflection point of the leading
edge. For 3d compounds, the 1s to 3d dipole forbidden transition gives
a pre-edge peak. The energy of the pre-edge peak can be used to
determine the oxidation state.% The XANES spectra of Co foil (metallic
Co) show no obvious pre-edge peak and the leading edge represents the
XANES energy at 7709 eV as shown in Figure 6.11A. The Co3z04/ZrO;
reference XANES spectra shows the peak for both Co*? and Co*® ions.
Co*?is resolved in the spectrum, while Co*? pre-edge peak overlaps with
the Co*? pre-edge peak and the leading edge of the XANES spectrum as
indicated in Figure 6.11A. For Co/ZrO,, the pre-edge peak has the same
energy as Co*? with no evidence of a Co*™ pre-edge peak. Also, the
XANES spectrum of Co/ZrO> is shifted to lower energy i.e. 7724 eV
consistent with Co*2 ions present on isolated Co* on Zr0,.%° Further,
Co K-edge EXAFS spectra for Co doped ZrO2 and Co304 impregnated
ZrO» catalyst were derived as shown in Figure 6.11B and Figure 6.12
and the Fourier transform first shell fitting results of Co doped ZrO;
catalyst along with Co304/ZrO> and Co foil are described in Table 6.1.

0.03

Co Foil A B ——ColZr0,
Co,0,2r0,

ColZrO,
C0,0,/2r0,

o
o
N
L

0.5

Normalized absorption
=]
8

Fourier transform [k2 c(k)]

0.0+
0.00

T T T T T
7.69 7.70 7.7 7.72 7.73 7.74 7.75 2
Photon energy (keV) R (A)

Figure 6.11. (A) Co K-edge XANES spectrum of Co/ZrO, single atom
catalyst (red), Cos04/ZrO> impregnated catalyst (blue) along with Co
foil (black) as references and (B) Fourier transform of Co K-edge
EXAFS spectra of Co/ZrO; single atom catalyst where k% Ak = 2.55 to
10.0 At and Co304/ZrO; catalyst where k% Ak = 2.7 to 10.2 At in R-

space.
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Figure 6.12. Fourier transform of Co K-edge EXAFS spectra of (A)
Co/ZrO; single atom catalyst where k?: Ak = 2.55 to 10.0 A, (B)

C0304/ZrO; catalyst where k?: Ak = 2.7 to 10.2 A%, and (C-D) Fourier
transform of Co K-edge EXAFS spectra with corresponding fitting in R-

space.

EXAFS first-shell fitting results indicate 4 Co-O bonds at 2.03
A of Co/ZrO,. For comparison, there are 6 Co-O bonds at 2.13 A in the
CoO reference, while half of the Cobalt in Co3O4 has 4 Co-O at 1.94 A
and 6 Co-O at 1.92 A with higher shell Co-O-Co peaks at 2.86 and 3.31
A. Thus, the Co-O bond distance in Co/ZrO; is shorter and number of
bonds is smaller than those in the CoO reference. In Co/ZrO,, there is
also a very small second-shell Co-O-Zr peak at 3.42 A indicating
isolated Co*2 ions. C0304/ZrO, has 50% Co with 4 bonds and 50% Co
with 6 bonds for an average Co-O coordination of 5 at 1.91 A. In
addition, there are two Co-O-Co higher shell bond distances at 2.87 A
and 3.38 A consistent with Co3O4 oxide nanoparticles. The EXAFS fits
are given in Table 6.1. These results confirmed that Co/ZrO; catalysts
have no structure reminiscent of CoO and Co030s4 confirming the

presence of isolated Co* in the Co doped ZrO; single atom catalyst .
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Table 6.1. Co K-edge first shell EXAFS fitting results for Co/ZrO3,
C0304/ZrO; and reference Co foil where (k?: Ak =2.5-9.7 A and AR
=0.9-2.1A)and"S, = 0.80.

Sample XANES | Edge |Scatter | CN | R | AEo c
Pre- | Energy A) | V)
Edge eV)
Energy
(eV)
Co foil” - 7709.0 | Co-Co | 12.0 | 2.49 | 5.7 | 0.0065
Co-O | 48 |191| 5.0 | 0.005
C0s04/Zr0; | 7709.3 | 7717.6 | €00~ | 40 | 287 35 1 0.004
Co
Co-O- | 40 | 3.38| 3.5 | 0.004
Co
Co-O | 39 |204|-1.3| 0.012
Co/ZrO2 7709.3 | 7716.4 CoO- 137 3421 12 | 0.016
Zr

Additionally, the X-ray photoelectron spectra (XPS) of the Co/ZrO-

catalyst were obtained. The XPS spectra of Co 2p, Zr 3d and O 1s is

shown in Figure 6.13. The Co 2p spectra displays two peaks at 781.4

eV and 796.6 eV for Co 2p3r and Co 2p1s» respectively indicating the

presence of Co*2 shown in Figure 6.13A.6"% The Zr 3d spectra
exhibited two peaks at 182.4 eV and 184.7 eV for Zr 3ds2 and Zr 3dsp

for tetragonal Zr** as shown in Figure 6.13B.%°
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Figure 6.13. XPS analysis of fresh single atom Co/ZrO; catalyst (A) Co
2p spectrum and (B) Zr 2p spectrum and (C) O 1s spectrum.

All characterization results are therefore consistent with the Co doped
ZrO; being a single atom catalyst with uniform isolated Co*? ions with
no of Cos04 or CoO clusters. The impregnated catalyst has a mixed

structure with non-uniform dispersion of Co304 on ZrOx.
6.3.2. Catalytic CO:2 fixation

The undoped ZrO- along with Co/ZrO> and C0304/ZrO- catalysts were
tested for catalytic CO> fixation of epoxides to yield cyclic carbonates
using tetrabutylammonium bromide (TBAB) as a co-catalyst under
solvent-free conditions. The reaction conditions were optimized by
varying temperature, substrate, TBAB and catalyst amounts and type of
TBA halide ion. The effect on conversion is shown in Figure 6.14. For
the CO: fixation reaction, epichlorohydrin was utilized as model
substrate. Initially, the reaction was performed using 10 mmol of
epichlorohydrin with 0.25 mmol of TBAB with using 15 mg of Co/ZrO-
catalyst at 80 °C temperature for different reaction times from 1-6 hours
as shown in Figure 6.14A. With decreasing the reaction time, the

conversion decreases from 100 to 55%, respectively. Additional
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reactions were performed using different reagents i.e.
tetrabutylammonium iodide (TBAI), tetrabutylammonium fluoride
(TBAF), tetrabutylammonium  bromide (TBAB) and 4-
Dimethylaminopyridine (DMAP) for 4 hours as shown in Figure 6.14B.
In absence of TBAB, there was no conversion observed indicating that
TBAB is essential for the reaction and can be considered as co-catalyst
for the reaction. TBAB gave the highest epichlorohydrin conversion,
e.g., 100% into its cyclic carbonate. Hence, further optimizations were
conducted using TBAB. The amount of TBAB was optimized by
varying the concentration from 0.25 mmol to 0.04 mmol. At 0.04 mmol,
conversion was 94% while at 0.06 mmol, the conversion 100%, see
Figure 6.14C. Therefore, 0.06 mmol is the optimum amount for the
conversion for 10 mmol of epichlorohydrin into its cyclic carbonate.
Addition of DMAP gave 65% epichlorohydrin conversion, which may
be due to stronger affinity of nitrogen than that of oxygen with epoxide
substrate resulting in lower conversion. It appears that DMAP
coordinates with catalyst’s acidic sites inhibiting the adsorption of
epoxide substrate.*#’® The amount of catalyst and substrate were
optimized for different reaction times as shown in Figure 6.14(D-F). As
the catalyst amount decreases from 15 mg to 5 mg, the conversion
decreases from 100% to 89%. While increasing the substrate amount
from 10 mmol to 20 mmol, there is also a decrease in conversion. At
room temperature, there is only 30% conversion indicating that higher
reaction temperatures are required to affect epoxide, ring-opening and
CO- fixation. The optimized reaction conditions were 10 mmol of
epichlorohydrin, 12 mg of Co/ZrO; catalyst, 0.06 mmol of TBAB with
2 bar CO; at 80 °C with solvent-free reaction condition wherein 100%

conversion was observed with 100% selectivity.
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Figure 6.14. Catalytic optimization of CO: fixation reaction at various
reaction conditions. Reaction conditions: (A) substrate = 10 mmol,
catalyst (Co/ZrO2) = 15 mg, TBAB = 0.25 mmol, temperature = 80 °C,
time = 1-6 h, CO2 = 2 bar. (B) substrate = 10 mmol, catalyst (Co/ZrO>)
=15 mg, TBAB = 0.25 mmol, temp. = 80 °C, time =4 h, CO2 = 2 bar.
(C) substrate = 10 mmol, catalyst (Co/ZrO2) = 15 mg, TBAB = 0.25-
0.04 mmol, temperature = 80 °C, time =4 h, CO = 2 bar. (D) substrate
= 10 mmol, catalyst (Co/ZrO;) = 5-15 mg, TBAB = 0.06 mmol,
temperature = 80 °C, time = 4 h, CO, = 2 bar. (E) substrate = 10-20
mmol, catalyst (Co/ZrO2) = 12 mg, TBAB = 0.06 mmol, temperature =
80 °C, time = 4 h, CO2 = 2 bar. (F) substrate = 10 mmol, catalyst
(Co/zZrOz) =12 mg, TBAB = 0.06 mmol, temperature = 30-80 °C, time
=4h, CO2 =2 bar.

The effect of catalyst composition, e.g., undoped ZrO, and
Co304 impregnated ZrO», was also evaluated and is shown in Figure
6.15. For undoped ZrO;, the conversion was 38%; while for
C0304/ZrO3, the conversion was 47%. The slightly higher conversion
may be due to small fraction of single Co*? ions. However, Co doped
ZrO; single atom catalyst showed superior catalytic activity over both
undoped ZrO, and Co304/ZrO> catalysts. These results revealed that Co
doped ZrO. single atom catalyst is most suitable catalyst for
cycloaddition of CO: to cyclic epoxides to yield cyclic carbonate with

minimal amount of TBAB under solvent-free conditions.
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Figure 6.15. Effect of different catalysts on CO. fixation of
epichlorohydrin. Reaction conditions: Substrate = 10 mmol, catalyst
(Co/ZrOz) = 12 mg, CO2 = 2 bar, TBAB = 0.06 mmol (20 mg),
temperature = 80 °C, time =4 h.

To check the scope of the reaction, various substituted epoxides
were utilized for the CO> fixation reaction as shown in Table 6.2. All
substrates were converted into their corresponding cyclic carbonates at
100% conversion and 100% selectivity under mild reaction conditions
with minimal amount of TBAB. Both -chloro and -bromo substituted
epoxides gave 100% conversion and selectivity towards cyclic
carbonates in 4 hours (Table 6.2, Entry 1-2). Similarly, aliphatic
substituted epoxides gave 100% conversion into their corresponding
carbonates in 4-6 hours (Table 6.2, Entry 3-7). However, as the
aliphatic chain size increases from epoxypropane (propylene oxide) to
epoxy hexane, the reaction time increases, perhaps, due to steric
hindrance near the epoxide ring.”* Hydroxide substituted epoxide took
longer reaction times than that of aliphatic and halide substituted
epoxides (Table 6.2, Entry 8).4%" Finally, styrene oxide, allyl glycidyl
ether, tert-Butyl glycidyl ether and phenyl glycidyl ether and other
aromatic epoxides i.e. 3,6-Dioxabicyclo[3.1.0]hexane were also
converted 100% into corresponding carbonates (Table 6.2, Entry 9-14).
As the bulky substitute increases, the reaction time increases with

decreasing catalytic activity. The effect of the bulky group was
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observed, in all the substrates, but complete conversions were obtained
with 100% selectivity. All the conversion and selectivity were
determined using *H and **C NMR (Section 6.5). The general catalytic
reaction of conversion of epoxides into cyclic carbonates shown as
Scheme 6.2.

0 Co/ZrO, o)
R .
e TBAB O>¥O
R
R = -Cl, -Br, -H, -Me, CO,, 80 °C

-CH,CH3;, -CH,CH,CH3,
-OH, -CH2CH2=CH2, -Ph

TBAB
CO,, 80 °C

o) Co/ZrO, >\\ o
O\
N0 O\/K/O\R
R = t-Bu, -Ph, -CH,CH,=CH,

Scheme 6.2. General catalytic reaction of cycloaddition of CO> to

epoxides.

Table 6.2. Substrate scope on CO> fixation of epichlorohydrin

Entry Substrate Product Time | Conv
(h) (%)
1 Cl o) 4 100
o) >\\o
o_l_c
2 Br o) 4 100
> )>—o
) Br
3 o) O._0 4 100
> in
o]
4 (\)>_/ OYO 4 100
OJ_/
5 M oﬁ/O 5 100
O\)I
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Reaction conditions: Substrate = 10 mmol, Catalyst (Co/ZrOy) = 12
mg, CO. =2 bar, TBAB = 0.06 mmol (20 mg), temperature =80 °C, time

=4-15h, CO2 = 2 bar. All the conversion and selectivity were analysed
from *H and *C NMR.

Based on previous literature studies, the reaction mechanism of CO:
fixation is shown in Scheme 6.3.3033424672-74 |njtjally, the epoxide
substrate adsorbs on the Lewis acidic site with oxygen atom of the
epoxide. Here, in Co/ZrO,, the single Co*? ion is the active site.
Subsequently, nucleophilic attack of bromide ion occurs, which leads to
ring opening of epoxide substrate. Adsorbed CO: reacts with the epoxy
intermediate forming the cyclic carbonate product with loss of bromide
ion and completing the catalytic cycle.
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Scheme 6.3. A plausible mechanism of CO> fixation of epoxides into

cyclic carbonates.
6.3.3. Recycle study and leaching test

To study the recyclability of the catalyst for CO» fixation of
epichlorohydrin, after completion of reaction, the reactor was cooled to
room temperature and reaction mixture was centrifuged and filtered. The
filtrate was sent for GC-MS analysis and the solid residue was washed
several times and dried overnight at room temperature. This solid
residue or catalyst was then utilized for the next catalytic cycle. The
catalyst was recyclable up to six cycles as shown in Figure 6.16. The
small loss in conversion with each regeneration is likely due to small
losses in the amount of catalyst during the separation and washing of the

catalyst.
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Figure 6.16. Catalyst reusability of the CO- fixation in epichlorohydrin
for all the cyclic runs. Reaction conditions: Substrate = 10 mmol,
catalyst (Co/ZrOz) = 12 mg, CO2 = 2 bar, TBAB = 0.06 mmol (20 mg),
temperature = 80°C, time =4 h, CO>= 2 bar.

Leaching tests of the catalyst were also performed using hot
filtration in which the reaction was conducted for 1 hour. After that,
reaction mixture was filtered, and the filtrate was allowed to proceed
further in presence of CO, without catalyst.>! After completion, the
conversion and selectivity were determined and confirmed that there
was no significant conversion after removal of catalyst. The amount of
Co in the filtrate was determined by Inductively Coupled Plasma Atomic
Emission Spectroscopy (ICP-AES) and was less than 1 ppm, Table 6.3.
These studies confirm that the Co doped ZrO; single atom catalyst is

recyclable for the cycloaddition reaction of CO, to epoxides.

Table 6.3. ICP-AES analysis for leaching of Co doped single atom

catalyst.
Sample ICP-AES (ppm)
Co/ZrO2 Co Zr
0.996 0.103
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In Table 6.4, we compare our results on CO, fixation of
epoxides with those previously reported in the literature. Cui et al.
reported zinc single atoms on N-doped carbon via simple pyrolysis of
active-carbon-supported phenanthroline-ligated Zn(OAc). complex
procedure for cycloaddition of CO, and epoxides.*” The reaction was
performed in solvent-free conditions at comparatively high pressure and
temperature i.e. 5 bar and 100°C using TBAB as additive. All the
substrates (16 substrates) were converted in good to excellent yield,
however only 5 mmol of substrate was utilized for the reaction (Table
6.4, Entry 1). Yang et al. synthesized a ZIF-8 metal organic framework
and derived hollow porous carbon (HPC) with uniform N-doping and
loading of Zn SACs via pyrolysis.*® The reaction was performed with
epibromohydrin as substrate under light irradiation at RT, however,
reaction was performed in DMF solvent and required 10 hours to
achieve 94% conversion (Table 6.4, Entry 2). Li et al. synthesized
Au19Ags(S-Adm)s clusters, AuzoAgi(S-Adm)is cluster and  Auai(S-
Adm)is with 1-adamantanethiolate (S-Adm).*® In Au19Aga(S-Adm)ss,
all Ag sites are open on surface, in Auz20Ag1(S-Adm)1s partially open Ag
sites and in Au21(S-Adm)is no Ag sites are present. Based on present
Ag sites, their catalytic activity was in order of Aui19Ags(S-Adm)is >
Auz0A01(S-Adm)is > Auzi(S-Adm)is. The reaction was performed with
0.3 mmol of substrates (3 substrates) using DCM/DMF solvent mixture
and all three substrates showed ~80% conversion in 24 hours with 10
mol% of TBAB. The reaction involved harmful solvent and involved
high reaction time despite the lower amount of substrate (Table 6.4,
Entry 3-5). Xu et al. explored the strong electronic metal-support
interaction in iridium single atom catalyst supported on WO3 for CO>
cycloaddition reaction.>® The reaction was performed in neat condition
for 1 mmol of substrate at 40 °C with 10 mg of TBAB. All substrate (6
substrates) were showed moderate to excellent yield (40-100%) in high

reaction time i.e. 15 hours (Table 6.4, Entry 6).

Previous literature results utilized either low amounts of

substrate with high amount of TBAB and high reaction time or utilized
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S

No.

toxic solvents like DCM and DMF. Also, the synthesis process of
previous SACs involved multistep procedures whereas our catalyst was
synthesized at room temperature with using much simpler methods.
Based on this, our results indicate superior catalytic performance with
balanced reaction condition for chemical fixation reaction. The Co/ZrO»
SAC is capable to convert 10 mmol of substrates (14 substrate) with
trace amount of TBAB (0.06 mmol) with 100% conversion under

solvent-free conditions.

Table 6.4. Comparative results of some earlier reported single-atom

catalysts

Catalyst

Zn-
SAC@N
C-700

HPC-800
(Zn
SACs)

Au10Aga(
S-

Adm) 15 C
luster

AU2OAg1(
S-
Adm)15 C
luster

AUzl(S-
Adm)15 ©
luster

Ir/WOs
SAC

Co/ZrO,

Substrate

Epichloroh
ydrin (5
mmol)

Epibromoh
ydrin (0.15
mmol)

Epichloroh
ydrin (0.3
mmol)

Epichloroh
ydrin (0.3
mmol)

Epichloroh
ydrin (0.3
mmol)

Epichloroh
ydrin (1
mmol)

Epichloroh
ydrin (10
mmol)

TBAB Temp
‘O
2 100
mol%
0.1 300
mmol mW/c
m2
10 60
mol%
10 60
mol%
10 60
mol%
0.03 40
mmol
0.06 80
mmol
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6.4. Conclusions

We have successfully synthesized Co doped ZrO> single atom catalyst
via co-precipitation and characterized via STEM, XANES and EXAFS
to confirm the Co is present in the form of single atoms. The EXAFS
data revealed the presence of isolated Co*2 ions with 4 Co-O bonds at
2.04 A. EDS elemental mapping confirmed the uniform dispersion of
Co on ZrO; support. The as synthesized single atom catalyst was utilized
for CO> fixation into epoxides in solvent-free condition to give high
rates and selectivity of cyclic carbonates. For comparison, undoped
ZrO; and Co0304/ZrO, catalyst were utilized which were much less
active for CO; fixation. These results suggest that the single atom Co*2

catalyst is superior to other reported single atom CO; fixation catalysts.
6.5. 'H and *C-NMR data of all cyclic carbonate products

After completion of reaction all the products were cooled to room
temperature and diluted with ethyl acetate and residue was purified with
silica gel chromatography. The resulting product were then given for
NMR analysis with CDCls and the data was analysed with the

references.29'33'35'43'75'76
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'H NMR of 4-(chloromethyl)-1,3-dioxolan-2-one:
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'H NMR of 4-(bromomethyl)-1,3-dioxolan-2-one:
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'H NMR of 4-methyl-1,3-dioxolan-2-one:
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'H NMR of 4-ethyl-1,3-dioxolan-2-one:
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'H NMR of 4-propyl-1,3-dioxolan-2-one:
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'H NMR of 4-butyl-1,3-dioxolan-2-one:
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'H NMR of 4-(but-3-en-1-yl)-1,3-dioxolan-2-one:
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'H NMR of 4-(hydroxymethyl)-1,3-dioxolan-2-one
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'H NMR of 4-phenyl-1,3-dioxolan-2-one:
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'H NMR of 4-((allyloxy)methyl)-1,3-dioxolan-2-one:
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'H NMR of 4-(tert-butoxymethyl)-1,3-dioxolan-2-one:
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'H NMR of 4-(phenoxymethyl)-1,3-dioxolan-2-one:
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'H NMR of Hexahydro benzo[d][1,3]dioxol-2-one
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'H NMR of Tetrahydrofuro[3,4-d][1,3]dioxol-2-one:
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CHAPTER 7

Conclusions and Future Outlook

This thesis focuses on design and synthesis of heterogeneous bimetallic,
recyclable catalysts for various organic transformations. Initially, ZnO-
Cu(OH)CI/MCM-41 was synthesized via wetness impregnated method
at room temperature. As synthesized catalysts has MCM-41 as silica
support where Zn and Cu are incorporated. The synthesized catalyst was
utilized for ketone hydrogenation with using water as solvent with mild
reaction conditions. The catalyst showed high surface area with high
catalytic activity with recyclability up to five cycles. Furthermore,
bimetallic CoNi nanoflower was synthesized via liquid phase reduction
method and morphological study confirmed the formation of flower like
structure. As synthesized catalyst showed excellent catalytic activity for
the conversion of terminal alkynes with 100% conversion and 100%
selectivity towards alkane product. The catalyst is magnetically
separable and recyclable up to six cycles. After this, bimetallic,
magnetically separable CuNi nanocatalysts were synthesized with three
molar ratios (1:1, 1:2 and 2:1) and their catalytic activity have been
compared for biomass derived aldehydes and CuNi-12 showed higher
catalytic activity. Also, the synergistic effect in between existing metals
was observed when compared with monometallic Cu and Ni catalyst.
The catalyst is recyclable up to seven cycles. Furthermore, all three
catalysts were utilized for direct carboxylation of arenes and CuNi-11
catalysts showed high conversion in comparison to other composites and
monometallic systems. This again confirm that bimetallic system
showed superior catalytic activity over monometallic systems. The
catalytic reaction involved the use of formic acid and showed unique
mechanism with C-H activation of benzene and formic acid with gas-
free, activator-free and solvent-free conditions. After this work, Co
doped ZrO, SAC as synthesized and utilized for CO> fixation into
epoxides. Also, for comparison undoped ZrO; and Co3O4 impregnated

ZrO; catalyst was utilized, and the results confirmed that SACs showed

233



greater catalytic activity over other catalysts in solvent-free conditions

and recyclability up to six cycles.

Above utilized all catalysts can be modified further by varying their
synthesis parameters to tune their surface area, particle size,
morphology, and properties for the utilization in various catalytic
applications. All the catalysts are bimetallic, cost-effective, easy to
synthesize, reusable and recyclable and hence, can be utilized for bulk
scale applications. Likewise, these bimetallic materials can be utilized
in several other applications like supercapacitor, sensing,
photocatalysis, water splitting or electrocatalysis.
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APPENDIX 1

Table Al
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Table Al. Permissions for re-producing the materials

Figure 1.2

Representation of bimetallic alloys

and intermetallics.

Reproduced from Ref. [7]: Chapter 1,
with permission from the American

Chemical Society

Figure 1.3

Comparative results of
monometallic  and  bimetallic
catalyst for deoxygenation

reaction.

Reproduced from Ref. [18]: Chapter
1, with permission from the American

Chemical Society

Figure 1.4

Representation of (a) supported
nanocatalyst and (b) modified

nanocatalyst

Reproduced from Ref. [7]: Chapter 1,
with permission from the American

Chemical Society

Figure 1.5

Bimetallic catalyst separations

using external magnet.

Reproduced from Ref. [31]: Chapter
1, with permission from the Royal

Society of Chemistry

Figure 1.6

Applications of supported and
unsupported  nanoparticles in

catalysis.

Reproduced from Ref. [33]: Chapter
1, with permission from the American

Chemical Society

Figure 1.7

Comparative  geometrical and
electronic structures of
nanoparticles, cluster, and single
atom catalyst.

Reproduced from Ref. [33]: Chapter
1, with permission from the American

Chemical Society

Figure 1.8

The effects of support on
stabilizing single atoms and
changes in surface free energy and
specific activity per metal atom

with metal particle size.

Reproduced from Ref. [43]: Chapter
1, with permission from the American

Chemical Society

Figure 1.9

Different types of SACs are
illustrated by schematic diagrams:
(A) Metal single atoms anchored to
graphene, (B) metal surfaces, and

(C) metal oxides, respectively.

Reproduced from Ref. [43]: Chapter
1, with permission from the American

Chemical Society
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Figure 1.10 | Characterization techniques for | Reproduced from Ref. [46]: Chapter
analyzing single atom catalysis. 1, with permission from the American

Chemical Society
Figure 1.11 | Chemoselectivity pattern from | Reproduced from Ref. [7]: Chapter 1,

nanocatalysts to single atom

catalysts.

with permission from the American

Chemical Society
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