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Abstract

Insightful Evaluation of Advantages and Challenges of
Reconfigurable Transistor for Analog/RF Applications

Over the last few years, the practice of reducing the size of transistors has
reached a saturation point. This is primarily due to the severe influence of short
channel effects (SCEs) such as drain induced barrier lowering (DIBL), threshold
voltage (Vi) roll-off, etc., which significantly degrade the device performance
when scaling down in the sub-100 nm regime. An alternative method for
increasing the number of functions on a chip per unit area is to incorporate
additional functionality within the same device, instead of reducing the device
size. This is where Reconfigurable Field Effect Transistor (RFET) comes into
play. The emergence of RFET, which can demonstrate both unipolar n-type and
p-type functionality in a single device, has positioned itself as a robust rival to
modern transistor architectures due to its exceptional performance at both device
and circuit levels. RFET devices have shown promising results in a wide range of
applications spanning from digital logic to trending topics like neuromorphic
engineering. However, the effectiveness of RFET in analog/RF applications has
not gained enough attention. To date, there exists a literature gap as only a limited
number of studies have showcased the usefulness of RFET in the context of
analog and RF applications. Research on analog/RF performance of RFET
specifically at low current drives (ultra low power operation), has yet to be
conducted. To become a prominent contender for modern mixed-signal
applications (e.g. smartphones), RFET must not only enhance its digital
characteristics, but also allocate comparable attention towards its analog

functionality as well.

Although the ungated region and lower current drive of RFETs may
compromise their digital and analog/RF performance at higher current levels (>
10 pA/um), the device exhibits significant potential for analog/RF applications at
lower current levels (< 10 pA/um), where its inherent architecture becomes the

primary determinant of performance. As such, an evaluation of the analog/RF
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characteristics of RFET under low current conditions is of utmost importance.
The research work focuses on assessing the analog/RF performance of two
different RFET topologies namely three-gated (3G) and twin-gate (2G) RFET by
benchmarking important analog/RF metrics like transconductance (gm),
transconductance-to-current ratio (gm/las), Early voltage (Vea), intrinsic voltage
gain (Av), gate capacitance (Cqg) and cut-off frequency (fr) against a conventional
double-gate (DG) MOSFET for same total source-to-drain length (Lt = 100 nm)
at low current levels (102 pA/um to 10* uA/um).

Results reveal that despite RFET (3G and 2G) having a higher number of
gates in comparison to the MOSFET, its gate parasitic capacitance (Cparasitic) IS
significantly reduced. In order to comprehend this unexpected result more
effectively, an equivalent capacitance model was employed to examine the
contribution of each parasitic component to the overall parasitic capacitance in the
DG MOSFET, 3G RFET, and 2G RFET. The lower Cparasitic (or lower Cgyg) in the
RFET can be attributed to the smaller values of parasitic components in the
ungated (UG) region which greatly enhances the fr (specifically for 3G RFET). In
comparison to MOSFET, a three-gated RFET exhibits inferior Ay due to lower
values of gm/lss and Vea caused by two factors: (i) inadequate current drive and
(i) significant drain induced barrier lowering (DIBL) effect. Conversely, the
twin-gate RFET demonstrates strong resilience to the DIBL effect at low Ilgs,
resulting in a notably high Vea. However, its Av is compromised due to a sharp
decline in Vea at high lgs in addition to poor gm/les. Hence, at high lgs (> 1

HA/uUm), there exists a gain (Av) bottleneck for RFET topologies.

Analysis has been conducted on architecture optimization aimed to
overcome Av bottleneck and improve various analog/RF metrics of RFET. By
increasing the control gate length (Lce), RFET can surpass MOSFET by a
significant margin in terms of Av. Additionally, increasing the ungated region
(Lug) resulted in noteworthy enhancements in circuit delay (zr) and cut-off
frequency (fr), particularly for 3G RFET at lower current levels. Consequently,
while 3G RFET is more suitable for high-speed (fr) applications, 2G RFET is

VI



more favorable for high-gain (Av) applications. Thus, a tradeoff between choosing
RFET architecture - 3G or 2G exists. These findings offer new insights into
capacitance components and architecture optimization of RFET topologies,

enabling the enhancement of analog/RF metrics at lower current drive.
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Chapter 1

Introduction

1.1 Motivation - Analog/RF Systems

In 2022, the transistor completed 75 years [1] in the semiconductor
industry and has truly come a long way beating all the odds by encroaching into
several application areas like wireless communication, automobile, and consumer
electronics. In 1965, Gordon Moore predicted that the transistor count on a chip
would double every 18 months [2]. Increased transistor count on an integrated
chip leads to greater functionality, less computation time, and reduced
manufacturing cost. Despite obstacles, innovations by industry and researchers
have made it possible by reducing the feature size to continue Moore's Law for
almost 60 years. In modern day mobile communication systems, while processing
of the information is done using digital circuits, the front-end modules (FEM) of
wireless systems consist of analog circuits and will continue to do so for the
foreseeable future due to better efficiency of analog coding techniques [3].
Scaling down the transistor results in performance enhancement of the RF circuit
enhances due to high speed, reduced power consumption, and high circuit density.
Analog/RF device/circuit progress is hindered by limited area and power
efficiency [4, 5]. Lower voltage headroom with every generation of transistor
scaling yields analog circuits with degraded performance [6, 7]. The degraded
performance of the transistor can be attributed to the fact that the improvements
made to transistors through scaling are outweighed by the negative impacts of
second order effects and reduced supply voltage [8]. The International Roadmap
for Devices and Systems (IRDS) [9] features distinct guidelines for the scaling of

analog and digital circuits.

The wireless communication market has rapidly grown with the rise of
telecommunication technologies such as mobile phones, Wi-Fi (Wireless
Fidelity), etc. The emergence of the Internet of Things (IoT) has further increased
the demand for advanced and application-specific wireless technologies.
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Equivalent to Moore’s law on semiconductors, Edholm’s law [10] states that the
telecommunication data rates double every 18 months. Higher data rates, higher
capacity, and many more connected devices will be demanded by the next
generation of wireless technology like 5G communication standard and IoT [11].
Applications such as 10T and Wireless Sensor Networks (WSN) require low
energy consumption due to their limited power supply and intermittent operation.
Circuit power management is critical to conserve energy and extend battery life,
and directly affects the power efficiency of transistor technology. Unwanted
harmonics generated in the communication systems are suppressed using
linearization techniques. Linearity requirements ensure protection from
intermodulation products and higher-order harmonics [12]. Hence, the use of
transistors with low distortion is envisaged. The scaling of transistor parameters
makes it increasingly difficult to cope with the desired performance, and hence

mandates innovation at device/circuit level.

The RF integrated circuits (IC) performance is closely related to the
analog and high frequency characteristics of transistors. As a result, upgrading
current semiconductor technologies is necessary to meet the demands of
upcoming wireless circuits and systems that have high specifications.
Heterogeneous integration of compound semiconductors (I11-V materials) with
the existing Complementary Metal Oxide Semiconductor (CMOS) technology
which is also referred to as hybrid integration is slowly emerging as a strong
contender for next-generation mobile communication protocols like 6G
communication standard [11], [13-21]. Multigate transistor architectures are also
gaining considerable attention to replace the conventional planar transistors in
RF-FEMs [22]-[29].

1.2 Evolution of CMOS Technology for Analog/RF
Applications

In the early days, CMOS was not an obvious technology for RF millimeter-
wave applications in terms of performance, especially compared to SiGe and I11-



V technologies [30, 31]. However, in recent times, CMOS has now established
itself as a market leader due to its superior performance, excellent integration
capability, and low cost due to its firm domination in digital electronics.
MOSFETs were considered as “slow” devices due to the lower intrinsic mobility
of Silicon compared to other compound semiconductors like GaN and GaAs [32].
Due to the proximity of the inversion channel in a MOSFET to the Si/SiO;
interface, various factors such as interface roughness, crystal imperfections, and
interface traps have led to a further deterioration in the mobility of carriers within
the transistor [32]. Modern technologies have an approximate peak nMOS fr of 10
THz-nm/Lmin, indicating that the “practical” operating frequency can be roughly

estimated at 1 THz-nm/Lmin [33], where Lmin represents the minimum feature size.
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Fig. 1.1 Variation of cut-off frequency (fr) and feature size of the transistor over
the years [34].

Wireless applications in the 1990s were operating in the 1 GHz frequency
range. During that period, CMOS technology was mature enough to be used for a
transistor for its implementation in the RF domain (Fig. 1.1). Practical
implementations were seen a few years later. Modern ICs comprise a blend of
digital and analog components, encompassing a substantial digital core (including
Digital Signal Processor and memory) encircled by numerous analog interface
components (such as input-output, converters, and RF FEMSs) [12]. This complex
architecture is also called a System-on-chip (SoC). The transceiver of a wireless
cellphone is an example that consists of an SoC where the analog and RF
functions are integrated with digital logic in deep submicron CMQOS. From an



integration perspective, all these functions should be on a single die. This makes it
economically more viable. The fusion of advanced RF transistors and the capacity
to incorporate compact digital back-end features on a solitary silicon chip
amplifies the possibilities for creating intricate integrated circuits suitable for a
wide-range of mixed-signal applications [35]. CMOS technologies are
predominantly utilized for analog circuit design due to the widespread popularity
of SoC, whereas bipolar, BICMOS (Bipolar CMOS), and compound technologies

find applications in highly specialized scenarios [5].

CMOS has been crucial in digital and analog/RF electronics, with reduced
costs and ongoing advancements. Despite potential limitations, it is difficult for
alternative technologies to match CMQOS's superiority. To overcome challenges,
innovative transistors like strained silicon and high permittivity (high-k)/metal
gates enhance performance [36]. The drive for continued downscaling, cost-
effectiveness, suitability in SoC applications, and ongoing research on CMOS

technologies serve as motivating factors for its continued utilization in RF.
Table 1.1

Summary of scaling methods.

After scaling
Before i i
) Constant field | Constant voltage Generalized
scaling _ _ )
scaling method | scaling method | scaling method
Area Area/z? Area Area/z?
Power (P) P/z? ZP o’P/z?
Delay (7) iz 7% oz

1.3 Transistor Scaling

To meet the demand for high-performance applications, semiconductor
industries are compelled to innovate and produce smaller, energy-efficient
devices, driven by the trend of miniaturization that's crucial in applications such
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as mobile devices, wearables, and 10T devices where space is limited. Some of the
transistor scaling methods are mentioned in this section along with the changes in
key device parameters like area, power consumption (P), and delay (7) before and

after scaling are illustrated in Table 1.1.

> Transistor Scaling Methods:

1. Constant field scaling (CFS) method [38]: In this method, the electric field
inside the transistor is maintained the same while the voltages and the
dimensions are scaled by a scaling factor z. A significant improvement is
observed for area, P, and 7 showcasing the benefits of constant field scaling
(Table 1.1). However, there are some constraints associated with using this
method. It is observed that with each technology node, as compared to length
scaling, a hinderance is seen for voltage scaling. Scaling voltage levels below

1V poses a big challenge for device engineers [6,7].

2. Constant voltage scaling (CVS) method [38]: In this method, the terminal
voltages and operating power supply voltage are maintained same while the
device dimensions are downscaled by a scaling factor z. A major disadvantage
of the constant voltage method is that P increases z-times (Table 1.1). The
area occupied by the device also remains unchanged, defeating the very
purpose of scaling. Only 7 shows an improvement (reduces by z? times) when

using this method.

3. Generalized scaling (GS) method [38]: When transitioning from one
technology node to another, two scaling factors, « and z, are used (1 < a < 2),
instead of just one. Linear dimensions, doping concentrations, and terminal
voltages are scaled by a factor of 1/z, z, and a/z respectively. By properly
optimizing the values of e and z, a balance between P and z can be made by

using the results from Table 1.1.



1.4 Impact of Transistor Downscaling on Analog/RF

Performance

Transistor scaling in analog and RF circuit design involves a complex set
of trade-offs that must be carefully optimized to achieve optimal performance
across a range of performance parameters. Cut-off frequency (fr), intrinsic voltage
gain (Av), transconductance-to-current ratio (gm/las), linearity, noise, and device
matching are key performance matrices for RF and analog circuits. Enhancing one
of these aspects often results in a decline in the others, making it challenging to
optimize the device across all metrics [39]. Two of the main metrics for
analog/RF performance are:

e Intrinsic voltage gain (Av): Ratio of the output voltage (Vout) to the input
voltage (Vin) of a transistor. It is usually measured in decibels (dB) i.e. (Av)ds
= 20log10(! Vout/ Vinl) [38].

e Cut-off frequency (fr): The frequency at which the short circuit current gain
(IHo1l) of the transistor is equal to unity [40]. It is usually measured in GHz.

Some of the most important scaling trade-offs between analog performance

matrices are mentioned below:

1. Trade-off between voltage gain (Av) and cut-off frequency (fr):

The voltage gain of a conventional MOSFET is given by Av = gm/Qds,
where gm and ggs are the input and output transconductance respectively. By
downscaling the transistor, gm does not change much for a given current density.
For a transistor biased in a saturation region, drain current (lgs) can be obtained as

las = W Cox (Vas = Vin)Vsat (1.1)
where W is the transistor width, Cox is the gate oxide capacitance, Vgs is the gate-
to-source voltage (input bias), Vi is the threshold voltage of the device and vy, IS
the saturation velocity.

Therefore, gm (= Olas/0Vgs = WCoxVsat) depends on W and Cox. The scaling

of W is directly proportional to Ls, while the scaling of Cox is inversely



proportional to Lc [41], where Lg is the transistor length. Hence, gm does not
depend on Lg. Nevertheless, due to different physical drain leakage mechanisms,
the amplified gas in short channel MOS devices cause a reduction in Ay as shown
in Fig. 1.2(a). Unlike Av, fr (= gm/2nCqg) usually increases with transistor
downscaling. Despite gm remaining nearly unchanged, the gate capacitance (Cgyg)
scales directly proportional to Lc which leads to the enhancement in fr (Fig.
1.2(b)). Hence, when optimizing the design of a device at a specific technology

node, device engineers face a trade-off between Ay and fr.
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Fig. 1.2 Variation of (a) voltage gain (Av) and (b) cut-off frequency (fr) with
drain current (lgs) in a MOSFET for different transistor lengths (Lg) at Vs =1 V.

2. Trade-off between the speed (fr) and the power efficiency (gm/ls):

The gm/lgs ratio is known as "power efficiency” or "transconductance
efficiency” [42]. Altering the size of the transistor does not have a substantial
impact on peak gm/lgs ratio (see Fig. 1.3(a)) if SCEs are controlled. MOSFET
attains high gm/lgs value in the weak-inversion region i.e. at low Vgs. Working with
high gm/lgs significantly contributes to power reduction, but it entails a trade-off in
terms of linearity. Transistors that operate at high gm/lass demonstrate
characteristics resembling those of a bipolar junction transistor (BJT), resulting in
higher distortion compared to a MOSFET operating in strong inversion [42].

The cut-off frequency (fr) of a transistor attains a maximum value in
strong inversion region (see Fig. 1.3(a)) and generally increases with (Vgs — Vi) In
contrast to gm/lgs. This results in a fundamental trade-off between a transistor's

power efficiency, reflected in the gm/lgs ratio, and its self-loaded bandwidth,



represented by fr [42]. Consequently, achieving an optimal balance between these
two crucial parameters poses a fundamental challenge in analog design. Hence, to
gain the benefits of both gm/lgs and fr in a scenario where some compromises can
be tolerated, the product of gm/lds and fr becomes a compelling metric to consider
(Fig. 1.3(b)). gm/lgsxfr shows a peak around a gate overdrive (Vgs — Vi) of 100

mV (also referred to as “sweet spot”) across technology nodes [42].
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Fig. 1.3 Variation of (a) transconductance-to-current ratio (gm/lgs) and cut-off
frequency (fr) and (c) gm/las x fr with input bias (Vgs) in a MOSFET for different
transistor lengths (L) at Vs =1 V.

Fig. 1.4 Illustration of different leakage current mechanisms (I1 to Is) in a
conventional bulk MOSFET [43].

1.5 Challenges in Transistor Scaling

Transistor downscaling benefits include higher packaging density and
enhanced switching speed. However, it also has drawbacks such as degraded
subthreshold swing (Sswing) and Vi roll-off (dVi). These issues arise from
increased off-leakage currents and SCEs that impact performance when MOSFET

is scaled down in sub-100 nm gate length. The variation in the off-state current
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(lorF) directly affects Vin and Sswing, making it the primary limiting factor for
downsizing (Fig. 1.4) [37].

Fig. 1.5 BTBT in a reversed biased pn-junction of a MOSFET with heavily doped
substrate at high Vas. Vi and Vapp are built-in and applied voltage respectively.

1. Leakage current in reverse-biased pn junction (I1):

The MOS transistor is characterized by two pn junctions: drain and source
connected to the channel/body. Typically, these junctions are biased in the reverse
direction, leading to leakage current consisting of two primary components i)
Minority carrier diffusion near the depletion region edge and ii) electron-hole pair
generation occurs within the reverse-biased depletion region [44]. Reverse bias
leakage current of pn junction (Irev) depends on junction area and doping
concentration [44]. In cases where both n and p regions are heavily doped, band-
to-band tunneling (BTBT) becomes the dominant factor in pn junction leakage
[38] (Fig. 1.5). The pn junction in scaled devices experiences a notable tunneling
current due to the combined effect of high doping and abrupt doping

configurations [44].

2. Subthreshold current (l2):

Irrespective of the length of the gate, the subthreshold off-state component
is inevitable in MOSFET. Subthreshold current occurs between the source and the
drain of the MOSFET when it operates below threshold voltage (Vgs < Vin). Unlike
drift component which dominates the current between drain and source in the

strong inversion region, diffusion dominates the current component in the



subthreshold region. For an n-type classical MOSFET device, the subthreshold

current (lgs) can be expressed as [38]:
(Vgs— Vin) Vs
lao = oo m = Dp e  mr (12 &) @)
G

where m is the body factor, which can be obtained as

Esi
m=1+2=1+ Wam 1 4 3Tox (1.3)

Wam

where , is the low field mobility, v; = kT/q is the thermal voltage, Vi is the
threshold voltage, Cam is the depletion layer capacitance, Wam is the maximum
depletion layer width, Tox is the oxide thickness, k is the Boltzmann’s constant, g

is the electron charge and T is the temperature.
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Fig. 1.6 Transfer characteristics (las-Vgs) of a MOSFET for gate lengths (L) of 30
nmand 90 nmat Vgs =1 V.

Subthreshold swing (Sswing) refers to a measure of how efficiently a
transistor can control the flow of current in its subthreshold region. It is a metric
that quantifies the steepness of the transistor. Sswing is determined by the inverse of
the subthreshold slope (SS) i.e. Sswing= 1/SS. In simpler terms, Sswing represents the
gate voltage required to change subthreshold current by one decade [38]. The

expression for Sswing IS given by:

-1
_ (dUogiolas) _ kT _ kT Cam
Sswing = (—dvgs ) = 23m% = 235 (1+ —Cox) (1.4)
Sawing ~ 60 (1+ ?—m) mV /decade @ 300 K (1.5)
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For long-channel devices, Wgm attain a high value due to low substrate
doping (Na ~ 10 cm). Hence, Cgm is very low compared to Cox and Sswing
approaches 60 mV/decade at T = 300 K as per Eg. (1.5). As per Dennard scaling
theory [45], the substrate doping must be upscaled for short channel devices. This
increases Cam, and therefore, for short channel devices, Sswing IS usually found in
the range of 70 to 120 mV/dec [46]. As technology generations advance, both
supply voltage and Vi need to be proportionally reduced in order to ensure a high
drive current capability. The degradation of Sswing and the increase in lorr of a
scaled MOSFET can be observed in Fig. 1.6 when the device dimensions are
scaled down. Short channel devices exhibit inadequate electrostatic control of the
gate on the conducting