
Ensuring Secure and Robust Web Service Interactions

Ph.D. Thesis submitted by

Gyan Prakash Tiwary

Discipline of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

August 2021

Ensuring Secure and Robust Web Service Interactions

Thesis submitted by

Gyan Prakash Tiwary

under the guidance of

Dr. Abhishek Srivastava

in partial fulfilment of the requirements

for the award of the degree of

Doctor of Philosophy

Discipline of Computer Science and Engineering
INDIAN INSTITUTE OF TECHNOLOGY INDORE

August 2021

INDIAN INSTITUTE OF TECHNOLOGY INDORE

I hereby certify that the work which is being presented in the thesis entitled Ensuring Secure and

Robust Web Service Interactions in the partial fulfillment of the requirements for the award of the degree

of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF COMPUTER SCIENCE AND

ENGINEERING, Indian Institute of Technology Indore, is an authentic record of my own work carried

out during the time period from February 2015 to August 2021 under the supervision of Dr. Abhishek

Srivastava, Associate Professor, Indian Institute of Technology Indore, India.

 The matter presented in this thesis has not been submitted by me for the award of any other degree of

this or any other institute.

 signature of the student with date
 (Gyan Prakash Tiwary)

 This is to certify that the above statement made by the candidate is correct to the best of my/our

knowledge.

 Signature of Thesis Supervisor with date

 (Prof. Abhishek Srivastava)

Gyan Prakash Tiwary has successfully given his/her Ph.D. Oral Examination held on August 25, 2023.

 Signature of Thesis Supervisor with date

 (Prof. Abhishek Srivastava)

Abhishek Srivastava
5/8/2021

Abhishek Srivastava
25/8/2023

ACKNOWLEDGEMENTS

I am very grateful to my supervisor Dr. Abhishek Srivastava for his invaluable guidance, en-

couragement, and direction throughout this work. Working with him ultimately resulted into a

great deal of enjoyment in my dissertation research.

I would like to express my heartfelt gratitude towards my PSPC committee members Dr.

Neminath Hubballi and Dr. Vivek Kanhangad for their interesting discussions and suggestions

towards my research.

I would also like to thank my parent, wife and family member for their continuous sup-

port during the tough phases of my Ph.D. Their suggestions and their words motivated me to

continue the hard work during the course of this thesis.

I want to thank everyone who have, in one way or another, helped me to conduct this

research. I express my appreciation and indebtedness to my friends Dr. Dheeraj Rane, Dr.

Rohit Verma, Dr. Tanveer Ahmad and all who helped me in many ways during my thesis work.

i

Abstract

Web services are a programmable way to access the web. Unlike websites, web services do

not return human-friendly content such as HTML, CSS, or JavaScript in response to a request.

Web services mostly support the transfer of data in XML or JSON formats. Owing to this, the

efficacy and security of XML and JSON documents is important. XML and JSON documents

are intended for consumption by computer application and not humans. The main issue with

XML and JSON documents is that they are verbose. They are both structured documents, mean-

ing that their content can be divided into structure and data parts. In XML, the tag-name and

attribute-name constitute the structured parts of the document whereas values between the tags

and values of attributes are the data parts. JSON documents comprise structure parts as names

whereas values are data part. Compressing these documents increases the communication ef-

ficiency between web services. We review several prominent techniques of XML and JSON

compression. The idea behind XML and JSON compression techniques is to compress by ap-

propriately harnessing their structured nature instead of just compressing them like normal text.

Subsequently, we propose an XML and JSON compression technique that performs better than

existing techniques in the terms of compression ratio, especially in the case of web services.

The method of XML and JSON compression proposed is simple yet effective, especially on

small documents that constitute the bulk of such communicated content on the Internet.

In addition to efficacy in XML or JSON compression, we also need to ensure security of

such documents. There exists a W3C recommendation for XML encryption. The W3C rec-

ommendation prescribes the use of conventional encryption algorithms to encrypt such content

and present it using special XML elements. The idea is to encrypt the entire XML document

or parts of it with existing encryption algorithms and represent the encrypted data under special

XML tags. W3C’s recommendation on XML encryption has been perhaps the most promi-

nent work in this direction until now. We propose a technique of XML and JSON encryption

wherein we extend existing techniques of XML compression and employ the same for security.

i

Owing to this, the proposed approach meets all the standards for security and in addition to this

compresses the document as well.

XML and JSON encryption makes a document secure, but encrypting a document in cer-

tain scenarios is not enough. One such scenario is that of data service composition. It is common

nowadays for data service providers to provision their database services through web service

interface. Such data service providers accept queries to execute through these interfaces and

communicate the responses also in the form of web service messages. Often a data service

provider cannot on its own fulfil a client’s request. In such cases, several data service providers

compose their services and address the queries of the client. This is called data service compo-

sition. In a data service composition, a query to a service provider can be based on the output

of another service provider. When the output of one data service provider is an input to another

data service provider, the receiving provider invariably has access to substantial information on

the former. Hence. the privacy of data service providers in a composition is often compromised

and is an important issue. A mediator based data service composition approach and value gen-

eralization achieve privacy to an extent in such compositions. The major issue with such an

approach is that mediators themselves are often untrustworthy and their intervention leads to

compromise of the composition.We propose an approach to data service composition that is

able to address security and privacy issues in data service composition whilst working with an

untrustworthy mediator.

ii

Contents

Abstract i

List of Tables vii

List of Figures ix

List of Abbreviations xi

List of Symbols xiii

1 Introduction 1

1.1 Background . 1

1.2 Research objectives . 6

1.3 Thesis outline . 7

2 Review of Literature 9

2.1 Literature Survey on Compression of XML and JSON docuemnts 9

2.2 Literature Survey on XML and JSON Encryption 12

2.3 Literature Survey on Privacy Preserving Data Service Composition 13

3 Compression of XML and JSON API Responses 15

3.1 Understanding the Problem . 15

3.2 The Proposed Technique of XML and JSON Compression 17

3.2.1 Configuration . 18

3.2.2 Compression . 20

3.2.3 JSON Compression . 25

3.2.4 Compression of non-English based XML 25

iii

3.2.5 Compression of XML Containing Binary Data 27

3.3 Evaluation . 27

3.3.1 Experimental Design and Dataset . 28

3.3.2 Compressing API-response XMLs . 30

3.3.3 Compressing Document-style XMLs 34

3.3.4 Evaluating the queryable feature of the proposed technique 34

3.3.5 Evaluation of JSON Compression . 36

3.3.6 Size, Information and Compression Analysis 37

3.3.7 Complexity Analysis . 40

3.3.8 Discussion . 41

3.4 Limitations . 42

3.5 Conclusion and Future Work . 43

4 A Size efficient Encryption Technique for Structured Documents Like XML and

JSON 45

4.1 Understanding the Problem . 45

4.2 The Proposed Technique of XML and JSON Encryption 48

4.2.1 Initialization (Initial stage for both sender and receiver sides) 49

4.2.2 The Encryption (sender’s) Process . 50

4.2.3 The Decryption (receiver) Process . 52

4.3 Evaluation . 52

4.3.1 Compression Effect of the Proposed Method 53

4.3.2 Security Analysis . 54

4.4 Conclusion . 60

5 Improving Privacy in Data Service Composition 61

5.1 Understanding the Problem . 61

5.2 The Proposed Technique to Improve Privacy in Data Service Composition . . . 66

5.2.1 Mediator Generates and Shares Service Composition Plan 68

5.2.2 Service providers exchange certificates 68

5.2.3 Exchange of Secret Strings Between Parent-Child Pairs 69

5.2.4 Concatenation of Secret String and Hash Calculation 69

5.2.5 Service Providers Create In-Memory Tables 69

iv

5.2.6 Mediator picks a service provider according to service composition plan 71

5.2.7 Hashed Value Generalization using K-Anonymity 71

5.2.8 How authentication is achieved? . 73

5.2.9 How is everything working while maintaining privacy? 74

5.3 Evaluation . 75

5.3.1 Dataset . 75

5.3.2 Experimental Setup . 78

5.3.3 Security and Privacy Analysis . 78

5.3.4 Performance Analysis . 82

5.4 Conclusion . 87

6 Summary and Conclusions 89

6.1 Contributions . 90

6.2 Scope for future research . 91

List of Publications 93

Appendix A Initialization Phase of XML encryption 95

A.1 Introduction . 95

A.2 10-Element Key and Temporary Table . 95

A.3 Symbol Table Creation . 98

Appendix B Sender’s and Receiver’s Process of XML Encryption 101

B.1 Introduction . 101

B.2 The Sender’s Process (The Encryption Process) 102

B.2.1 Substitution . 102

B.2.2 Compression . 107

B.2.3 Byte level encryption of the Compressed XML 109

B.3 The Receiver’s Process (The Decryption Process) 112

B.3.1 Byte level decryption of the encrypted XML 112

B.3.2 DeCompression . 114

B.3.3 Substitution Algorithm at Receiver Side 114

Bibliography 121

v

List of Tables

3.1 The Tag Table corresponding to the flight-description XML document 19

3.2 A subset of the Symbol Table . 20

3.3 A subset of the Symbol Table having character to 3-digit number mapping . . . 26

3.4 Compression Ratio Comparison on SMCA dataset 32

3.5 Time Comparison (ms) . 33

3.6 Compression Ratio of XMLS (proposed method) vs QRFXFreeze 36

4.1 Size comparison of proposed method vs 3-DES on real world XML documents 55

4.2 Brute force time depending upon type of symbols 59

4.3 Relation between plaintext and key . 60

5.1 Privacy features available with various methods in a data service-composition

environment . 83

vii

viii

List of Figures

1.1 Service Composition Plan (Data flow between two services always happens

through mediator) . 5

3.1 The three steps of the compression process. 18

3.2 Compression Ratio Comparison on Small, Medium, Large and Very Large Group

(SMCA dataset) . 34

3.3 (SMCA vs Proposed Method) Compression Ratio Comparison on 20 XMLs of

SMCA Dataset . 35

3.4 (XMill vs Proposed Method) Compression Ratio Comparison on all 180 XMLs

of SMCA dataset . 36

3.5 (XMill vs Proposed Method) Compression Ratio Comparison on 168 XMLs

Having Sizes Less Than 60000 bytes using SMCA dataset 37

3.6 Compression ratio comparison on original XML documents (longer the bar bet-

ter is the compression ratio) . 38

3.7 Behaviour of the proposed technique on various types of similar XMLs (5000

XMLs in each set) . 40

4.1 Post initialization stages of XML encryption and decryption 49

4.2 A Subset of Symbol Table (ST) . 50

4.3 Tag Table (TAT) . 50

4.4 Different possibilities when brute forcing a nibble of encrypted XML 58

5.1 Steps in Privacy Preserving Data Service Composition 67

5.2 Mediator’s steps of execution . 76

5.3 Service Provider’s steps of execution . 77

5.4 Sequence diagram of proposed data service composition with only two members 79

ix

5.5 Security analysis of the proposed method having unethical mediator 80

5.6 Process Time of Execution vs Number of Records (DS1 has 9 Records in Output) 84

5.7 Elapsed Time of Execution vs Number of Records (DS1 has 9 Records in Output) 84

5.8 Elapsed Time of Execution vs Number of Records (K=4) 85

5.9 Process Time of Execution vs Number of Records (K=4) 85

5.10 Memory consumption for query execution (K=4) 85

5.11 Memory consumption for query execution (K=16) 86

A.1 Temporary Table (TT) . 96

A.2 Temporary Table (TT) With Group Reverse . 98

B.1 Accommodating Two Symbols in One Byte . 109

B.2 Byte Level Encryption Procedure . 111

B.3 Example of Byte Level Encryption (First Byte of Message) 111

B.4 Byte Level Decryption . 112

B.5 Example of Byte Level Decryption (First Byte of Encrypted Message 114

B.6 Converting a byte in two different symbols . 114

B.7 Algorithm: Substitution Algorithm At Receiver Side 120

x

Chapter 1

Introduction

1.1 Background

Two totally different worlds of the World Wide Web exist on the Internet. A world of the

World Wide Web in which content such as HTML, CSS and Javascript is shared that

are called websites. The focus of content shared on websites is largely on the presentation of

data. The content of websites is meant to be consumed by humans. A parallel world of the

World Wide Web exists in which the focus is on data and not its presentation. This world of

the World Wide Web is called Web Services. The content of web services mostly comprises

XML or JSON which is meant for consumption by computer programs. The importance of web

services today has greatly increased the share of XML and JSON in the content of the Internet.

The increase of XML and JSON content on the Internet has made the efficacy and security

of these documents an important topic of research. Examples of XML and JSON are shown in

listings 1.1 and 1.2 where the two represent the same content. XML and JSON are structured

documents with their content being in tag-value or name-value pairs. The main problem with

XML and JSON documents is that they are verbose in nature. The size of the XML shown in

1

Listing 1.1: API Response in XML

< A i r p o r t C i t y =" Edmonton ">

< A r r i v a l − t ime >16 : 0 2 : 3 0 < / A r r i v a l − t ime >

< D e p a r t u r e − t ime >16 : 2 2 : 3 0 < / D e p a r t u r e − t ime >

<Date >2019 −12 −24< / Date >

<Gate >6< / Gate >

<Gate >7< / Gate >

< / A i r p o r t >

Listing 1.2: API response as a JSON

{ " A i r p o r t " :

{ " A r r i v a l − t ime " : " 16 : 0 2 : 3 0 " ,

" D e p a r t u r e − t ime " : " 16 : 2 2 : 3 0 " ,

" Date " : " 2019 −12 −24 " ,

" Gate " : " 6 " ,

" Gate " : " 7 " ,

" _ C i t y " : " Edmonton " , }

}

Listing 1.1 is 169 bytes and the size of the JSON shown in Listing 1.2 is 154 bytes. The size of

the actual content that both documents are representing is only 55 bytes. Owing to this, XML

and JSON documents often need to be compressed.

XML and JSON documents are text files and can be compressed with regular text com-

pressors like bzip2 [52] and ppm [19]. Such compressors ignore the structured nature of these

documents. However if the structured nature of XML and JSON is taken into account during

compression, there is potential for superior compression. The parts of XML and JSON docu-

ments that do not normally change, such as tags in XML, attribute-names, and names in JSON,

are called structure parts of the document. Whereas the values between the tags in XML, the

values of the attributes and the values in the JSON are called data parts and these change fre-

quently. Structure parts define the structure of a document whereas the data parts contain the

actual information. In the example shown in Listings 1.1 and 1.2 “Edmonton”, “16:02:30”,

2

“16:22:30”, “2019-12-24”, “6” and “7” constitute the data part, i.e., the actual information

to be communicated. The element and attributes tags, i.e., “Airport”, “City”, “Arrival-time”,

“Departure-time”, “Date” and “Gate”, constitute the structure of the document. Compression

techniques that take advantage of the structured nature of XML are called XML-conscious com-

pressors [49]. It is important to note that the majority of compression research is done on XML

and not JSON. However, both documents can be separated into structure and data parts in much

the same way, every XML compression method is also equally effective on JSON as well. In

this thesis also, we will mostly discuss our work in terms of XML but the same would apply

equally well to JSON.

Almost all existing XML-conscious compressors use a dictionary in which the structure

part of the document is mapped to a unique number of the least possible digits. All XML-

conscious compressors, on the other hand, treat the data part of the XML differently, and obtain

different compression ratios for different types of XML. XML-concious compressors are clas-

sified into two groups based on whether or not they produce queryable compressed documents.

Queryable XML compressors maintain the structure and order of the original document in the

compressed form (partially), allowing retreival of data without having to decompress the entire

document. Queryable XML compressors are quite useful in XML-storage systems and allow

space-saving storage and quick access. XGrind [59] is the best-known queryable XML com-

pressor. XMill [37] is a well known non-queryable compressor.

Aggregation and clustering of XML documents is another approach to XML compression,

in which a large number of small XML documents are combined to make a bigger one, which

is then compressed in an XML-conscious manner. SMCA [26] is a state-of-the-art compression

technique that takes this approach. SMCA is one of the latest works in XML compression. The

best know XML technique and often regarded as the most important benchmark in compression

is XMill. Chapter 2 delves into the taxonomy of XML compressors and associated studies.

In this thesis, we introduce a new XML compression technique that is especially useful in

reducing the size of XML or JSON documents transmitted as requests and response across web

APIs. The work is driven by the requirement to enable bandwidth-efficient interactions within

service-oriented systems. The size of these documents is often small (less than 1MB), and the

content has a large proportion of structured content (element and attribute tags) to data content.

In addition to compression of XML and JSON documents during web services interac-

3

tion, another important aspect is security. Encrypting an XML document is a step towards

securing it and XML can be encrypted using existing block cipher or stream cipher. The W3C-

recommended XML encryption approach [30] is exactly this and encrypts XML documents

using existing block or stream ciphers (e.g. [31] and [20]). Everything in the XML document is

encrypted and subsequently the encryption is encoded with specific XML tags. This approach

necessitates XML canonicalization [17] in order to maintain namespace prefix bindings and at-

tribute values in the XML namespace. "Canonicalization [17] of XML comprises consistently

serialising XML into an octet stream as is required prior to encrypting XML," according to the

W3C.

In this thesis, we propose a new XML and JSON encryption technique by modifying the

well-known XML compression technique, XMill [37]. While XMill is primarily concerned

with XML compression, it can be tweaked to work with JSON as well. The proposed en-

cryption technique works with both XML and JSON. It builds upon and extends our work on

compression that we discuss in this thesis.Such encryption approaches that are built upon a

compression techniques don’t just safeguard the documents, but also appropriately compress

them. The proposed method of encryption is especially meant for structured documents that

can easily be separated into structure and data sections like XML and JSON. The structured

nature of XML or JSON is harnessed effectively for superior encryption. XML canonicaliza-

tion (or serialisation) also play an important part in XML encryption and introduces a degree of

randomization that aids in the reduction of size of the final document.

The security and compression of XML and JSON documents ensure effective and secure

interactions between web-services. In spite of this, one category of web-services that remains

vulnerable are data services. These are web-services that provide data over technology agnostic

interfaces. Secure interactions between data services is a challenge owing to compromised

privacy of data exchanged between such services. In this thesis, we also propose an approach

to ensure secure and privacy data service compositions.

There are several types of data service providers in the world: medical databases, retail

databases, demography databases, and a variety of others. The data is accessed from these

and used by clients based on their needs. The web-service based interfaces provided by data

service provides makes it much easier for clients to access databases. Furthermore, it allows

a service provider, unable to offer all of the data requested, to seamlessly access databases

4

of other service providers and respond to a client’s request. The phenomenon known as data

service composition occurs to cater to queries that require data from multiple sources over a

single interface.

A data service composition plan is created when a query requires data from more than one

data service provider. Each query has its own strategy for service composition. As depicted

in Figure 1.1, a service composition plan is a directed acyclic network in which each node

contributes to the response to the query for which it was created [55]. If the composition plan

has a directed edge ei j from a service provider DSi to DSj, then DSi is referred to as the parent

of DSj. This means that in a query response, DSi comes before DSj. DSi executes first, and

subsequently DSj executes. For example, in Figure 1.1, DS1 is the parent of DS2 and DS3.

Begin DS1
Description

DS2

Invoice, Quantity

CustomerID
DS4

DS3

Invoice

Join
(Invoice)

Invoice, InvoiceDate

Invoice

Invoice, Quantity, CustomerID,
InvoiceDate

CustomerID, Country

Join
(CustomerID)

Invoice,CustomerID

Add Quantities whose
country is France

Invoice, Quantity, CustomerID,
InvoiceDate, Country

End

Invoice Description Quantity

489434 Bulb 12
489436 Lunch Box 2
............

Invoice CustomerID

489434 13085
489436 18102
............

Invoice InvoiceDate Price
489434 2009-12-01 120
489436 2009-12-03 50
............

CustomerID Country

13085 US
18102 France
............

Figure 1.1: Service Composition Plan (Data flow between two services always happens

through mediator)

The major problem with data service composition, as mentioned earlier, is ensuring pri-

vacy of component services. In Figure 1.1, suppose a query is performed on DS1; the result

from DS1 is then used as the input to execute a query on DS2. When the result from DS1 is

used as the input to execute a query on DS2, DS2 becomes aware of the data from DS1. In

certain situations, however, DS1 would not want its data to be shared with DS2 or anyone else.

If data is not shared then data service composition becomes impossible. To overcome this, a

mediator based solution is proposed [45]. To ensure the privacy of DS1 in the earlier scenario,

the mediator first performs value generalization of the data that is sent to DS2. Value general-

5

ization implies executing a query for K inputs on DS2 in place of just the one relevant query that

has data from DS1. This is done so that DS2 does not readily come to know about DS1’s data.

The probability of DS2 knowing about DS1’s data becomes 1/K. K-Anonymity [56], and/or

its variants such as L-Diversity [39] and T-Closeness [35] are techniques that facilitate value

generalization.

Value generalization solves only a part of the problem. A mediator cannot necessarily

be trusted and therefore before sharing data with a mediator, it is secured in a manner that the

mediator cannot see it but can compare it. Further, an unethical mediator can tamper with a

service composition plan and wrongly include an alien service provider into the service compo-

sition plan. To overcome this, each parent-child pair in a service composition plan is required

to authenticate each other’s messages. We propose an approach for data service composition

that carefully considers each of these issues and addresses them effectively.

1.2 Research objectives

• To propose an XML compression technique aimed at reducing the size of XML docu-

ments transmitted as requests and response between web APIs, motivated primarily by

the requirement to enable bandwidth-efficient communications within service-oriented

systems.

• To develop an XML and JSON encryption technique that is secure as well as keeps the

encrypted document as small as possible. We create encryption techniques for XML and

JSON documents that extend the ideas of existing XML compression techniques.

• To develop a mediator based technique for data service composition that maintains the pri-

vacy of the component service providers. The proposed method ensures that an unethical

mediator cannot change the shared service composition plan or introduce an alien service

provider without the permission of the other legally participating service providers.

6

1.3 Thesis outline

The subject matter of the thesis is presented in the following five chapters,

X Chapter 1 provides an overview of the compression and encryption approaches proposed

for XML and JSON. The chapter also provides an overview of provisioning security and

privacy to an important and rather vulnerable category of web-services, namely data ser-

vices.

X Chapter 2 discusses existing literature on on compression and encryption aspects of XML

documents. Most existing research endeavours are devoted to encryption and compres-

sion of XML and these ideas are in most cases equally valid for JSON.

X Chapter 3 describes the proposed method of XML and JSON compression in detail. This

chapter also presents a comparative study of the proposed method with respect to existing

methods. This comparative study clearly shows that the proposed method outperforms

existing techniques in terms of compression ratio.

X Chapter 4 discusses encryption techniques proposed for XML and JSON documents

which are mostly extensions compression techniques discussed in Chapter 3. The chapter

also includes details on experiments performed to demonstrate the efficacy of the pro-

posed method in securing against various XML based and generic attacks.

X Chapter 5 discusses dwells upon perhaps the most vulnerable web-service offerings, data

services. Specifically, the chapter works on the data privacy aspects in data service

composition. A mediator based approach is taken to maintain privacy between service

providers and the assumption is that the is untrustworthy.

X Chapter 6 concludes the thesis and includes important pointers to future endeavours in

this direction of research.

7

This page was intentionally left blank.

Chapter 2

Review of Literature

In this Chapter, we extensively discuss existing literature on the three main components of

the thesis i.e. XML and JSON compression, XML and JSON encryption, and privacy preserving

data service composition. Literature on the three components is discussed in separate sections

for better clarity and comprehension.

2.1 Literature Survey on Compression of XML and JSON

docuemnts

Most prominent research endeavours in compression of structured documents is XML with very

little work done on JSON. It should be noted, however, that most of work on XML is equally

effective on JSON as well. In this thesis, we develop a compression technique that works on

both XML and JSON documents. Some significant contributions on XML compression are

discussed in the succeeding paragraphs.

In principle, compression techniques belong in one of two categories: general-text com-

9

pressors and XML-conscious compressors. XML is a text file, and like any other text file,

it can be compressed by any general text compressor such as bzip2 [52], ppm [19]. A gen-

eral text compressor, however, does not take advantage of the special features of XML and,

therefore, tends to result in inferior compression ratio. XML-conscious compressors, on the

other hand, utilise the structure of XML documents and therefore are able to compress XML

documents with better compression ratios. XMill, XGrind and SMCA [26] are examples of

XML-conscious compressors.

XML-conscious compressors are next divided into three categories: schema-dependent,

schema-independent and XML tree-based compressors. Schema-dependent compressors re-

quire the schema of the XML documents to effectively compress a document. rngzip and [25]

are examples of schema-dependent compressors. Schema-independent compressors, on the

other hand, do not require the schema. XMill, XGrind and SMCA are examples of schema-

independent compressors. Finally, XML tree-based compressors take advantage of the fact that

XML documents are organized in a tree-like structure and aim to make this tree smaller. This

is done by representing the XML trees as a DAG (Directed Acyclic Graph) or a FCNS (First

Child Next Sibling) list: [18], [38] and [16] are examples of XML tree-based compressors.

Furthermore, based on whether or not the resulting compressed documents support queries

such as XQuery, compressors may be categorized as queryable XML compressors and Non-

Queryable XML Compressors. XGrind is a queryable compressor while XMill and SMCA are

non-queryable compressors. Queryable compressors can be homomorphic and non-homomorphic.

The former type retain the original structure of the XML even after compression, whereas non-

homomorphic compressors do not. XGrind is a homomorphic compressor while XMill and

SMCA are non-homomorphic compressors. The XML compressor proposed in this thesis is

XML-conscious, schema independent, queryable, and homomorphic.

Much of the research done so far on XML compressors is around XMill. XMill separates

the data and structure parts of the XML and inserts the data values into different containers based

on the path and data type. A dictionary is created to assign a unique number to every unique

element and attribute name. Each container is then compressed using a back-end compressor

specialized for that data type. Most general-purpose compressors can be used as back-end

compressors. XGrind is a two-pass compressor: the output of XGrind is structured along the

lines of its input XML. Querying or parsing thus becomes possible even on the compressed

10

http://contrapunctus.net/league/haques/rngzip/

documents. XGrind encodes the element names and attributes by numbers followed by ‘T’ and

‘A’ (‘T’ for tag, ‘A’ for attribute) and compresses the values using Huffman coding. XML does

not lose its basic structure due to compression with Huffman coding, and this feature makes

XGrind queryable.

XGrind, like XMill, is a seminal piece of work on XML compression and several research

endeavours have built on it. Prominent among these are [36], [41] and [54]. Al-Shammary et.al

[5] was the first attempt at XML compression keeping in mind SOAP-based web services. In

this work, the XML tree is first converted into a binary tree, using a FCNS (First Child Next

Sibling) transformation. Subsequently, a sibling state of two bits to each node of the binary tree

is attached. Finally a Huffman code is assigned to each node and the entire XML is compressed.

The resulting compressed document is non-queryable.

This was followed by an era of aggregation-based research on SOAP messages. This line

of research is based on the principle that, if a group of XML documents is compressed instead

of compressing each XML message separately, the compression ratio will be better[1], [2], [4],

[6], [7], [8], [9] [10]. SMCA [26] is perhaps the most recent major research endeavour in

grouping based XML compression, outperforming most approaches of XML compression in

terms of compression ratio. It is the only technique that aggregates and compresses multiple

XMLs in one pass and generates a single non-queryable output. However, RESTful services

are known for single request and response, so aggregating multiple XMLs is not relevant in the

case of RESTful services.

Various XML compressors discussed in this section are not as effective at compressing

relatively small (<1MB) XML documents in terms of compression ratio. XML documents of

this size are mostly utilised in API requests and responses. The norm in ReSTful web services

is that a single request is followed by a single response. Therefore the technique of grouping

responses to several requests together is somewhat impractical. The method we propose in this

thesis overcomes the shortcomings of earlier approaches and is especially effective for relatively

small XML documents and is therefore ideal for use with API request and responses (especially

ReSTful Web services). Further, the proposed technique creates queryable compressed docu-

ments.

11

2.2 Literature Survey on XML and JSON Encryption

By far the most effective documentation on XML encryption is the W3C recommendation [30]

that has been talked about in the Chapter 1. According to W3C’s recommendation, any part

of XML or the entire XML, is encrypted with the Existing Encryption algorithms like AES

[31], DES [20] etc. The encrypted data is then represented in the form of XML under special

security-tags. Special XML security-tags with the encrypted data inside it can be made an

element of plain XML. W3C’s recommendation is not just about encrypting XML data but

also encrypting any data and representing that encryption in the form of XML with the help of

special security-tags.

Another work on XML encryption is “XML Pool Encryption" [24]. In XML pool encryp-

tion, each node of XML is encrypted separately. After that those encrypted nodes are kept in

a pool. This pool can either be an element of the plain XML, or it can be a separate docu-

ment.Elements of XML that are encrypted are removed from their place in the plain XML and

placed in the pool. While decrypting, the elements present in the pool go into their place in

plain XML.

Hashizume et. al. [27] have made W3C recommendation as base of their research. They

have worked on encrypting different tags of XML with different keys. When there are multiple

receivers of the same XML, it is necessary to encrypt different tags of that XML with different

keys. XBMRSA [44] is another method of XML encryption. They have also considered W3C

recommendation as the base of their work. They have used Multi-Prime RSA [15] technique

to achieve better and fast XML encryption. S.C. Seak et. al. [50] have also followed the

W3C recommendation in their research. They have implemented digital certificate based XML

encryption requires Public Key Infrastructure (PKI) technology [28] to secure symmetric key

that is used to encrypt the data.

There is a special standard for the encryption of JSON documents called “JSON web en-

cryption (jwe)" [32]. Encryption standard of JSON also requires serialization. There are two

types of serialization used by JWE, 1) JWE Compact serialization and 2) JWE JSON Serializa-

tion. JWE also depends on existing encryption algorithms. JWE defines 19 steps to perform

encryption, from determining the key management mode to creating the desired serialized out-

12

put. If there is no dependency between input and output of the steps, then the order of steps

does not matter.

2.3 Literature Survey on Privacy Preserving Data Service Com-

position

System of data service composition have always been a major topic of research [47]. Achieving

the privacy of data sources has always been a challenging task in this area [12]. As discussed in

Chapter 1 a mediator based solution is a better approach for data service composition because a

mediator takes many responsibilities of data service composition itself. In a research proposed

by Yau e. al.[61], the mediator acts as a data repository. The data useful for the query is

collected by the mediator from different data service providers in hashed format. The collection

of these data in hashed format prevents data from being reused in another query. However, this

technique does not prevent information leaks between different data service providers.

S. E. Tbahriti et. al. [57] have coined terminologies like “Privacy Policy" and “Privacy Re-

quirement". What operations can a data service provider perform on its own data, this policy is

called the privacy policy of that data service provider. Whereas the privacy requirement of a data

service provider implies how it wants others to use its data. Through privacy requirements, data

service providers applies their the right to conceal their data (i.e., output). The two data service

providers will integrate with each other only when the privacy requirement of the source data

service provider is compatible with the privacy policy of the destination data service provider.

A formal privacy model is defined to allow a service to define a set of privacy policy and a set of

privacy requirements. If the source and destination service providers’ privacy requirement and

privacy policy are compatible only then their composition happens. Here the mediator sets a

compatibility in the privacy requirement of the source and the privacy policy of the destination.

If this compatibility is not set, then service composition will also not be possible. In order to set

compatibility, the mediator negotiates between source and destination service providers to ease

their privacy policy and privacy requirement. While there is no provision of real security (i.e

encryption and authentication) between service providers and service consumers, it only works

with negotiation. The techniques proposed by [61] and [57] rely on centralized entity that can

13

be trusted by all the data service providers in the data integration plan.

In research works proposed by B. C. M. Fung et. al. [23] and N. Mohammed et. al. [42]

create an atomized view of data using K-Anonymity. However, service provider and service

consumer can know each other’s data in common which is not acceptable. There are few other

researches (i.e [60] and [43]) using K-Anonymity, but they all lack somewhere in efficiency and

cost effectiveness.

The research work proposed by M. Barhamgi et. al. [45] is the latest in the field of pri-

vacy in data service integration. The mediator is not considered trustworthy in the technique

proposed by [45]. Data service providers share their data with the mediator in encrypted form.

The mediator uses the data received in encrypted form for the join operation. In this research,

Order Preserving Encryption Scheme (i.e OPES) algorithm [3] has been used to encrypt iden-

tifier attributes. OPES encrypts numeric data values such that between two encrypted values

can be compared without decrypting the values, that which of them is bigger, which is smaller,

or both are equal. Authors have used dubbed K-protection mechanisms (introduced by au-

thors) to prevent data leakage between two service providers, which is the improved versions

of k-Anonymity and Private Information Retrieval (PIR) [53] mixed together. PIR provides a

primitive for accessing outsourced data from a server by a client while preventing a server to

learn about client’s access pattern. One problem with this research is that only numerical values

are encrypted here. Nothing has been said explicitly about what to do if the identifier attributes

are not numerical.

As discussed in the Chapter 1, in the all above discussed researches, the data of one service

provider is not authenticated by other data service providers in the composition plan. In such

situations, the mediator may not follow the shared service composition plan. The mediator can

introduce a foreign data service provider in the service composition plan without consent of

other service providers in service composition plan. We feel that in the above researches the

mediator has been trusted more even considering it to be a non-trusted entity.

14

Chapter 3

Compression of XML and JSON API

Responses

Effective web-service interactions are largely dependent upon compression of XML and

JSON documents. Significant literature exists on compression of these documents through

generic compression technique. Very little work is meant for XML and JSON documents specif-

ically. In this chapter we propose a technique that harnesses the structure of XML and JSON

for more effective compression. We first analyse the problem associated with existing meth-

ods of compression and subsequently explain the working of the proposed technique in detail.

We finally compare the working of the technique with existing state of the art compression

techniques and demonstrate the superiority of the proposed technique.

3.1 Understanding the Problem

To understand the problem statements of the proposed research, it is necessary to understand

the workings of XMill [37] and SMCA [26], the most significant XML compression techniques.

15

SMCA is largely based on XMill and the points below summarize the common features shared

by both of them.

• Both techniques treat the data and structure parts of XML differently.

• In both techniques, a ‘tag dictionary’ assigns numbers to the structure parts of the XML

based on their position in the document. For example, the tag dictionary correspond-

ing to the XML in Listing 4.1 comprises six tag names, i.e., Airport, City, Arrival-time,

Departure-time, Date and Gate, and their respective codes, i.e., 1, 2, 3, 4, 5 and 6.

• In both techniques, a ‘path’ to each XML data (content) point is worked out. The path

to a data point in XML is the sequence of tag names from the root tag to the parent tag

of the data element in question. For example, the data point “2019-12-24" in Listing 4.1

has the following path: “Airport/Arrival-time". Data points “6" and “7" have the same

path i.e., “Airport/Gate". An important assumption of both XMill and SMCA is that data

points with the same data path are similar.

• Both XMill and SMCA create a new container for every new path and insert all the data

that share a common path a common corresponding container.

• The major premise of both XMill and SMCA is that compressing similar data together in

a container with compressors like bgip2 [52], provides better compression.

Assuming that compressing an individual XML documents does not yield a sufficient

compression ratio, SMCA works on several similar XML documents, aggregated together. In

SMCA, the contents from multiple XML elements with the same path are put together in one

container to get better compression. Both XMill and SMCA suffer from some the following

drawbacks.

• Certain types of XML documents result in the creation of many containers, each with a

small number of data elements, a phenomenon which adversely affects the overall com-

pression ratio. The XML documents used in Web APIs (either SOAP or RESTful) tend

to suffer from this problem, since they are typically short and their data elements do not

share common paths. XMill and SMCA are, therefore, less effective in compression of

short XML documents.

16

• Assigning numbers to the structured parts of the XML document based on their order in

which they appear in the document may result in infrequent structured elements being

assigned smaller numbers, i.e., numbers with fewer digits, than more frequent elements.

This results in bulkier than necessary path containers, and therefore reduces the effective-

ness of the compression process.

• Neither XMill nor SMCA maintain the XML structure in the compressed format, and,

therefore, the compressed document is not queryable.

In view of the drawbacks of existing XML compression techniques, we raise the following

hypotheses.

• A small number of containers with a large number of similar data elements can result in

better compression.

• Better compression can be achieved if the structure tags of the XML document are as-

signed the smallest possible number (starting from 1) in the tag dictionary based on their

probable frequency. More frequent tags should be given small numbers, and vice-versa.

Using these hypothesis, in this thesis, we describe a new XML compression technique

motivated primarily by the need to enable bandwidth-efficient communications within service-

oriented systems and aims to reduce the size of the XML documents exchanged as requests and

responses between web APIs. The size of these documents is typically not very large (generally

less than 1MB) and their content typically involves a high ratio of element and attribute tags to

data content.

3.2 The Proposed Technique of XML and JSON Compres-

sion

In this section, we describe in detail our method for XML compression. The proposed method

deals with all the problem statements discussed in Section 3.1. It is designed to examine the

hypotheses discussed in Section 3.1. Our method converts the entire XML into a special type

17

XML Character
Translation

XMLN Packing
XMLS Backend

Compression
XMLB

Figure 3.1: The three steps of the compression process.

of binary encoding in a single container. A back-end compressor is then applied to the entire

container. The structure parts of XML are assigned with a smallest possible number (starting

from 1) in the tag dictionary according to their probable frequency in XML. The tag dictionary

is refereed to as “tag table" in this article. The tag table for the XML in Listing 4.1 is shown in

Table 3.1.

Note that our method relies on a simple key idea: each element and attribute tag is mapped

to a number; all closing tags are also mapped to another single number; finally, each distinct

symbol of the language, in which the free-text of the document is written, corresponds to its own

number. This translation process applies equally to XML and JSON documents, since the only

difference between the two notations is in the lack of pairs of opening/closing tags in JSON.

The method involves a configuration and a compression phase. The configuration phase

creates two dictionaries, the symbol table (i.e. Table 3.2) and the tag table (i.e. Table 3.1),

which are used for the compression process, shown in Figure 3.1.

The first step of the compression process is the character translation, wherein the origi-

nal XML document is converted into XMLN , a form comprising only 13 symbols that can be

represented by just 4 bits. In the subsequent packing step, every two contiguous symbols of

XMLN are accommodated in one byte. This is done for all symbols contained in XMLN and

the resulting document is called XMLS. Finally, the third back-end compression step involves

compression of XMLS using any one of the various back-end compressors like PPM [19] to

form the XMLB document.

3.2.1 Configuration

The configuration phase creates the symbol table, which maps each character present in the

data part of the input XML document to a unique number, and the tag table, which maps each

18

Table 3.1: The Tag Table corresponding to the flight-description XML document

Airport 2

Arrival-time 3

City 4

Date 5

Departure-time 6

Gate 1

element and attribute tag-name into a unique number.

According to a recent survey [46], 60.7% content on the web are in English. The second

most used language is Russian, which is 8.3% of total and third most used language on the web

is Turkish which is just 3.9% of total. In addition, several other languages use the Latin script.

We are not entirely sure about the programmable web, but realistically we expect the language

distribution of APIs to be along similar lines. Therefore, assuming English as the main language

of XML documents, the document characters are in the range of 32 to 127 in the ASCII table.

The symbol table, therefore, is a mapping of each character in this range of ASCII values to a

unique number. Each character in the symbol table is mapped to a two-digit number, computed

as the (ASCII value of the character - 31). Table 3.2 shows a subset of the symbol table. The

symbol table is independent of the specific XML document under compression; instead it only

depends on the language of the document. Therefore, the same symbol table is used to compress

all XML documents in a given language. Given the total number of characters in the English

alphabet, commonly used symbols, and the Arabic numerals, the range of the Symbol Table

values would be covered by two-digit numbers.

Tag tables depend on the XML schema underlying the to-be-compressed document, which,

in turn depends on the web API. In principle, a tag table could be constructed once and reused

for all documents emitted by the API. However, to accommodate XML documents that are the

result of text annotation and to take advantage of the possibility that a particular response may

not use all the tags in the schema, the tag table is constructed by scanning the XML docu-

ment and mapping every unique element and attribute to a unique number. More frequent tags

are mapped first to smaller numbers, whereas tags that appear less frequently are mapped to

subsequent larger numbers.

19

Table 3.2: A subset of the Symbol Table

. ..

E 38

d 69

m 78

o 80

. ..

To illustrate the construction of the tag table, we use the XML shown in listing 4.1. Table

3.1 shows the corresponding tag table. As “Gate" is the most frequently appearing tag in the

XML, it is mapped to the smallest number; all tags and attributes are also mapped to unique

numbers.

Considering the practicalities of the deployment of our compression method, we propose

that service providers share the symbol table and tag table of their XML response documents,

along with the documentation of their APIs.

3.2.2 Compression

The actual compression process is carried out in three steps: character translation, packing,

and back-end compression as shown in Figure 3.1.

3.2.2.1 Character Translation

In this step, the symbol table is used to translate the data part of the XML document, one

character at a time. The structure part of the XML is translated using the tag table, with an

entire element or attribute tag substituted by their corresponding number in the tag table. The

intermediate file produced by this step is called XMLN . The XMLN corresponding to the XML

document in Listing 4.1 is shown in Listing 3.1. In the XMLN ‘T’ denotes the tag name, the

number 2 following T is the tag table entry corresponding to the word “Airport” in the XML.

Similarly, ‘A’ represents an attribute name and the number following A, 4 in this case, is the tag

20

Listing 3.1: Example of the XMLN

T2 A4 1314150616070616 T3 2526272829273028 0

T6 2526272929273028 0 T5 29282534232529232935

0 T1 23 0 T1 24 0 0

table entry corresponding to the word “city” in the XML. Zero in XN indicates the closing tag

for the last (or most recently opened) tag. The remaining numbers that are neither zero nor have

an ‘A’ or ‘T’ before them represent the data part of the XML. Each character of the data parts

of the XML is substituted with the help of the symbol table. In this way, XMLN is made up of

only 13 types of symbols, the Element Start Symbol (T), the Attribute Symbol (A), Space, and

the digits 0 to 9. Element End symbol is denoted by a single 0 preceded and followed by Space.

Therefore no extra symbol is required to denote the end of an element.

The character-translation process is described formally in Algorithm 1. Every token of

XML is picked up one by one in different iterations (Line 3). If the chosen token in the current

iteration is a data part of the XML (Line 4), each character of that token is translated with the

help of the symbol table, and stored in the variable translate (Line 5). If the chosen token is a

structure part of the XML (Line 6), the entire token is translated to a minimum possible number

with the help of the tag table, and stored in the variable translate (Line 7). If the chosen token in

the current iteration is a tag of the XML (Line 8), the character ‘T’ is prepended to the current

value of translate (Line 9). If the chosen token in the current iteration is an attribute-name of the

XML (Line 10), the character ‘A’ is prepended to the current value of translate (Line 11). If the

chosen token in the current iteration is a closing tag of the XML (Line 12), the variable translate

is set to 0 (Line 13). After obtaining a proper token it is concatenated with the variable XMLN

followed by a space (Line 14). As many iterations are performed as is necessary to translate all

the tokens in the XML document, and return the value of XMLN .

3.2.2.2 Packing

As the total number of symbols in XMLN is just 13, the symbols may be represented using 4

bits. In the packing step, every two contiguous symbols of XMLN are accommodated in one

byte. Doing this for the entire content of XMLN results a ‘squeezed’ binary file called XMLS.

21

As both XMLN and XMLS retain the tree structure of the original XML, they may be parsed

with the help of the symbol and tag tables and Xquery queries (or similar) can be executed on

them.

Packing is described formally in Algorithm 2. Everything starts with mapping all the 13

different symbols used in XMLN to a unique 4-bit binary (Line 2). A cursor, denoted by the

variable cursor, points to the first symbol present in XMLN (Line 3). If this cursor is not the

end of the XMLN (Line 4) and there exists another symbol next to where the cursor is pointing

(Line 5), then the symbol next to the current cursor is pointed to by another cursor denoted

by the variable cursor1 (Line 6). The 4-bit binary mappings of the symbols being pointed by

cursor and cursor1 are accommodated in one byte (Line 7). However, if the variable cursor is

pointing to the last symbol of the XMLN (Line 9), then the byte will be created by assuming the

next 4-bit binary as 0000 (Line 10). The created byte is appended to the variable XMLS (Line

8 and 11). Because in an iteration we are picking two values from the XMLN , so for the next

iteration the cursor has to be advanced by two symbols. Finally the algorithm returns XMLS.

3.2.2.3 Back-end Compression

The this final step of the compression process, the XMLS created during the packing stage

is passed to any one of various back-end compressors. In this work, we choose PPM [19]

as the back-end compressor because of its superior compression ratio in our case. Any other

general purpose compressor may also be used for back-end compression. The output of this

step is called XMLB. Parsing XMLB or executing queries on it is not possible. SMCA, XMill,

and many other XML-compression techniques use back-end compressors. We too have used

a back-end compressor to show the effectiveness of the proposed technique against existing

techniques.

The XML schema is required to create the tag table. However, once this table is created,

the entire XML document need not be handled together for effective compression. Different

parts of an XML can be compressed separately using the tag and symbol tables. Just one tag

name of a large XML document can be substituted using the symbol table and tag table to get

the corresponding XMLN . This XMLN that represents a very small portion of the document can

be converted into XMLS followed by XMLB.

22

Algorithm 1: Character_Translation_Algorithm
Input: Plain_XML

Result: XMLN

1 var XMLN ;

2 var translate;

3 for All the tokens in Plain_XML do

4 if The token is a “data" part of the XML then

5 translate← Use Symbol Table to translate each character of the token;

6 if The token is a “structure" part of the XML then

7 translate← Use Tag Table to translate whole token;

8 if The word is a “tag" in the XML then

9 translate← ‘T ′ concatenate(+) translate;

10 if The word is a “attribute-name" in the XML then

11 translate← ‘A′ concatenate(+) translate;

12 if The word is a “Tag Closing" then

13 translate← ‘0′;

14 XMLN ← XMLN +SPACE + translate;

15 end

16 return XMLN ;

23

Algorithm 2: Packing_Algorithm
Input: XMLN

Result: XMLS

1 var XMLS← null;

2 Assign all the 13 symbols in XMLN to an unique 4-bit binary;

3 var cursor← First Symbol in XMLN ;

4 for cursor is not end of XMLN do

5 if A character at cursor+1 exists then

6 var cursor1 = cursor+1 (i.e. next symbol);

7 Accommodate 4-bit binaries equivalent of symbols pointed by cursor and

cursor1 into a single byte;

8 Concatenate the created byte with current value of XMLS;

9 if If cursor+1 is end of the XMLN then

10 Create a byte using the 4-bit binary of character at cursor and 0000;

11 Concatenate the created byte with current value of XMLS;

12 cursor = cursor+2;

13 end

14 return XMLS;

24

3.2.3 JSON Compression

The JSON document shown in Listing 4.2 conveys the same information and exhibits a parallel

structure to the XML document in Listing 4.1, both consisting of a “Data" and a “Structure"

part. The two representations can be easily converted to each other. Therefore, the character

translation technique discussed in the section 3.2.2 can be applied to both representations and

the output would be the same. However, most related research on compression is in terms of

XML, and only XML datasets are available for comparative experimentation, therefore we have

chosen to explain our work in the terms of XML, fully cognizant of the fact that mostly web

APIs exchange information in JSON.

3.2.4 Compression of non-English based XML

The effectiveness of the proposed XML compression technique depends to a large extent on

the number of digits in the entries of the symbol table. This number depends on the number of

unique characters that the XML is composed of. Each character in the symbol table is assigned

a unique number. The number assigned to these characters solely depends on number of unique

characters used in XML and is not related to the encoding of characters (e.g., UTF-8, UTF-16,

or UTF-32). Similarly, the tag table contains mappings of element and attribute names of the

XML to the smallest possible number based on the frequency of occurrence the concerned tag

and is also not related to the encoding of characters in the tag. In the proposed method, we have

only considered the English alphabet because of two reasons.

• Our work is motivated by the need to improve the performance of web applications

through the compression of API responses. Given that 60.7% of the content on the In-

ternet is in English[46] it stands to reason that most of the API responses use English

characters. With this, one can safely assume that most XML documents comprise content

only in English and this significantly helps compression as it makes the entries in the

symbol table be of just two digits.

• If we consider XML documents with non-English characters, the number of digits re-

25

Table 3.3: A subset of the Symbol Table having character to 3-digit number mapping

. ..

E 038

d 069

m 078

o 080

. ..

Listing 3.2: Example of the XMLN when Symbol Table has character to 3-digit number

mapping

T2 A4 013014015006016007006016 T3 025026027028029027030028 0 T6

025026027029029027030028 0 T5 029028025034023025029023029035 0 T1

023 0 T1 024 0 0

quired for the symbol table entries increase and the compression is not as effective. Fi-

nally, because earlier research on XML compression assumes English based content only,

we too show compression results on XML documents in English.

The proposed method can be easily updated to work on non-English characters. If the

maximum number of unique characters that an XML can have is increased to 999, which is

enough to accommodate most non-English characters, then each character in the symbol table

would be mapped to a number of three digits. The details on which three-digit number is to be

mapped with which character in the symbol table, can be worked out at the time of implemen-

tation. One possible approach to render some efficiency could be to assign a small number to

a character with a small Unicode and a large number to a character with a larger Unicode. A

subset of such a symbol table is shown in Table 3.3:

The value of XMLN ((i.e., result of character translation)) in this case is given in Listing

3.2. The compression ratio corresponding to a three-digit symbol table is shown in Table 3.4.

It is clear from table that even with a 3-digit symbol table, the proposed method is superior to

XMill and SMCA in compressing small size XML documents.

26

3.2.5 Compression of XML Containing Binary Data

XML documents may also contain binary data. It is important, therefore, that the proposed

technique for XML compression works on binary data. To denote the start of binary data in an

XML document, we introduce the fourteenth symbol in XMLN as ‘B’. ‘B’ like other contents in

XMLN is also converted into a unique 4-bit binary in XMLS. To convert binary data to XMLN ,

we apply a technique like Base-64 [33]. This involves dividing the binary data into 6-bit chunks.

If the two-digit number that a 6-bit chunk represents is N, then the number N+1 is calculated

and the two digits of N+1 are appended to XMLN . While creating groups of binary data of size

6 bits, if the last group cannot be made of 6 bits owing to very few bits remaining, then extra

0s are added to make it 6 bits long. Binary data is always represented in terms of a number

of bytes. Let us assume, for example, that the binary data here is 3 bytes long, that is, 24

bits. We make four groups of 6 bits from these 24 bits. A group of 6 bits represents a number

having two decimal digits. In our approach, we use a four-bit binary (i.e., a nibble) to represent

each decimal digit in the packing stage of compression. Two decimal digits obtained from a

group of 6 bits will, therefore, be accommodated in 8 bits. This means that it would take 8 bits

in XMLS to represent binary data 6 bits long and thus it will take 32 bits to represent binary

data of 24 bits. The number of bytes required in XMLS to represent the binary data therefore

becomes 4/3 times the actual size of the binary data. This expansion is mediated by the back-

end compression. Representing binary data with the proposed method permits 10 symbols in

a nibble. Therefore, only 100 different values are possible in a byte instead of 256 values.

Being able to accommodate only 100 values in a byte increases the probability of repetition of

a byte. Repeating bytes in a binary document are very well handled by back-end compressors

like PPMD [19]. Since previous research does not consider compression of binary data, we

have not been able to conduct a comparative study of our technique in this regard.

3.3 Evaluation

Experiments are conducted in this section to evaluate the hypotheses raised in Section 3.1. In the

experiments conducted, we demonstrate that better compression is achieved if fewer containers

27

are used to compress an XML. The experiments also show that in large size XML documents

with a relatively small number of containers, the number of containers does not influence the

compression ratio. The experiments demonstrate that, given the independence of the proposed

technique from the use of containers for compression, the proposed technique performs very

well on compression of small size web API XMLs.

3.3.1 Experimental Design and Dataset

To assess the efficacy of the proposed technique, we apply it to two benchmark datasets: the

first is the one used in SMCA [26] (Section 3.3.2); and the second is the one used in the survey

paper of S.Sakr et al.[49] (section 3.3.3). The proposed compression technique is implemented

using Python3. It is important to note that in the experiments, we calculate the compression

ratio as the fraction of the size of the original XML document over the size of the compressed

document (CompressionRatio(CR) = XMLSize/CompressedSize); a higher compression ratio,

therefore, implies a better compression. The configuration of the system used for the experi-

ments comprises: an i3-4005U CPU @ 1.70 GHz processor and a 4 GB DDR4 RAM.

3.3.1.1 The First Benchmark Dataset

The first benchmark that we compare our technique against is the SMCA [6] method. We choose

SMCA because it is the leading XML compression technique in terms of compression ratio.

We were unable to find an implementation of SMCA and therefore compared the compression

ratios achieved for our proposed technique with the ratios reported in SMCA [6]. The results are

included in Section IV-B. The dataset used to compute the compression ratios of our technique

is the same used by SMCA.

The dataset used by SMCA [26] comprises 160 XML documents, 1.xml, 2.xml, and so

on, divided into four groups of 40 XMLs each, labelled "small", "medium", "large", and "very

large", to indicate four different size ranges. The XML documents in each of these groups are

then aggregated to form four new XML documents, i.e., small.xml, medium.xml, large.xml,

and vlarge.xml. In addition, 16 more XML documents, S1.xml to S16.xml, are created by

combining the first 10, 20, 30 and 40 XMLs of each of the above groups; i.e., S1.xml combines

28

the first 10 documents of the small set, 1.xml to 10.xml. The XMLs S5.xml to S8.xml are

created by combining all 40 XMLs of the small group and respectively the first 10, 20, 30

and 40 XMLs of the medium group (for example: s5.xml is a combination of the 40 XML

documents of the small group and the first 10 documents of the medium group; s6.xml is a

combination of the 40 XML documents of the small group and the first 20 XML documents

of the medium group and so on until s8.xml). Similarly, S9.xml to S12.xml are combinations

of all the XMLs of the small and medium groups and respectively the first 10, 20, 30 and 40

XMLs of the large group. Finally, S13.xml to S16.xml are combinations of all the XMLs of the

small, medium, and large groups and respectively the first 10, 20, 30 and 40 XMLs of the vlarge

group. Therefore, in this way the first dataset contains a total of 180 XMLs. The original 160

documents, small.xml to vlarge.xml and S1.xml to S16.xml.

As Table 3.4 shows, the dataset contains XML documents ranging from 4673 bytes to

2072248 bytes. The number of containers in each of these XML documents depends on the

number of independent unique paths in each document. This number (18, in this dataset) is the

same in all XML documents in spite of large variations in terms of amount of data. For a small

XML document, 18 containers have a negative impact on compression because each container

has very little data. Therefore, the compression results of SMCA which utilizes containers for

compression is inferior for small XML documents. The proposed technique, on the other hand,

only uses one container (i.e., XMLS) for compression and thus does much better than SMCA

with small XML documents. As the size of the XML increases, the data content in the 18 con-

tainers used by SMCA starts to increase, and so does the compression ratio. The 18 containers

soon become insignificant when the size of the XML becomes very large. Conversely, the pro-

posed technique continues to use one container for large XML documents and its compression

ratio starts to converge with that of SMCA. Figure 3.3 shows a comparison of compression

ratios of the proposed compression technique with SMCA. The proposed technique maps fre-

quently appearing XML tags with numbers having a small number of digits in the tag table. This

further improves the compression as tags appearing a large number of times are represented by

short numbers that take less space. In this way the Hypotheses raised in Section 3.1 are verified.

29

3.3.1.2 The Second Benchmark Dataset

The second benchmark dataset comprises 24 XML documents, three of which could not be

downloaded. We use 21 of these documents, therefore, and the range in size from 533,579 to

137,538,931 bytes. This dataset was used to evaluate an earlier generation of XML compressors

[49]. We choose the XMill XML compression algorithm from this generation of compression

algorithm. This is because XMill is widely considered to be a standard XML compression tech-

nique and consistently maintains a good compression ratio. Furthermore, the implementation

of XMill is easily available. We downloaded the XMill implementation from the following url:

https://sourceforge.net/projects/xmill/ and compared the compression ratios and run-times of

both methods. The results of these experiments are reported in Section 3.3.3. Figure 3.6 shows

a comparison of the proposed method and XMill on the second dataset.

3.3.2 Compressing API-response XMLs

Certain compression techniques are specifically designed for compression of XML documents,

produced and consumed by SOAP-based web services. Today, the state-of-the-art in such tech-

niques is SMCA[26]. The thesis demonstrates the efficacy of SMCA using a dataset comprising

SOAP requests and responses from various sources. These requests and responses are systemat-

ically aggregated to form documents of varying sizes. The dataset is now considered a standard

and several compression algorithms have been tested against it, e.g., [5] and [1], with SMCA

leading in terms of compression ratio.

According to [26], the SMCA technique was implemented using Visual Basic on an In-

tel(R) Xeon(R) CPU E5-1630 v3@ 3.70 GHz, 16 GB RAM. Tables 3.4 and 3.5 include data on

the performance of SMCA provided in [26]. The same tables include results on the performance

of our technique and these are based on actual execution on our system using this dataset. The

other significant compression technique XMill, as stated earlier, was downloaded by us on our

system (configuration of our system is provided in the previous section) using the executable

file downloaded from the sourceforge website and made to work on the same dataset.

Table 3.4 provides data on the compression ratio of our technique and that of SMCA and

XMill. The same table is graphically illustrated in the Figures 3.3 and 3.2. The compression

30

https://sourceforge.net/projects/xmill/
https://sourceforge.net/projects/xmill/
https://sourceforge.net/projects/xmill/

ratios of the three techniques are compared on 20 XML documents from the dataset namely

small.xml, medium.xml, large.xml, vlarge.xml and XMLs from S1.xml to S16.xml. The com-

pression ratio results clearly indicate that the proposed technique outperforms both SMCA and

XMill for XML documents of all sizes except very large ones where our compression ratio is

somewhat equal to that of SMCA. Our compression ratio is much superior when compared to

SMCA for small size XML documents but the gap progressively reduces as the size of the XML

document increases. SMCA mostly outperforms XMill except in the case of very small XML

documents.

In web services the XML documents exchanged are mostly small in size and thus the

proposed technique is the most appropriate. SMCA, on the other hand, does not perform well

with small XML documents and hence is not suitable to be used with web-services. As both

SMCA and XMill use text compressors at the back-end, we compare their compression results

with XMLB.

In terms of the time required for compression, Table 3.5 shows that our technique takes

longer than SMCA and XMill. This is mainly because our technique supports parsing and

querying even in the compressed form (more precisely, parsing and querying are supported

until the stage that XMLS is formed as described in the relevant section earlier). SMCA, on the

other hand, forms compressed documents that do not support parsing and querying and hence

the shorter time for compression.

Comparison of the compression ratio of our proposed technique with that of XMill is

shown in Figure 3.4. The graphs have been traced over all the 180 XML document of the

dataset. The proposed technique achieves a much better compression ratio across the dataset.

Most XML documents in the dataset are smaller than 60000 bytes and therefore for better

visualisation and more detailed analysis we compare the two techniques for XML documents

smaller than 60000 bytes in Figure 3.5. Such documents make up 168 of the total 180 XML

documents in the dataset and our proposed technique is seen to perform much better than XMill.

31

Table 3.4: Compression Ratio Comparison on SMCA dataset

XML

file

Size

(bytes)

Our method

CR (2 Digit

Symbol

Table) (Only

English)

Our method

CR (3 Digit

Symbol

Table)(Non-

English)

SMCA

CR

XMill

CR

S1 4673 6.49 5.45 4.07 4.69

S2 8567 8.61 7.40 5.45 6.38

S3 12147 9.72 8.53 6.24 7.22

S4 16475 10.84 9.68 6.93 8.02

S5 33563 13.59 12.41 9.39 10.04

S6 50716 15.09 13.79 10.79 10.06

S7 71528 16.33 15.00 12.13 9.68

S8 90785 17.13 15.78 13.20 9.06

S9 211795 19.61 18.05 17.04 10.41

S10 336198 20.63 19.01 18.85 10.97

S11 456942 21.15 19.47 19.91 11.36

S12 555800 21.54 19.82 20.56 11.42

S13 939150 22.31 20.54 21.96 12.46

S14 1339834 22.75 20.88 22.59 13.08

S15 1717316 22.96 21.05 22.84 13.43

S16 2072248 23.15 21.20 23.10 13.69

small 16475 10.87 9.68 6.94 8.02

medium 74311 16.54 15.20 13.03 8.59

large 465016 21.45 19.38 20.66 11.31

very large 1516449 22.85 20.79 23.36 13.26

32

Table 3.5: Time Comparison (ms)

XML file XML Size(bytes) Our method SMCA XMill

S1 4673 71 13 27

S2 8567 70 15 25

S3 12147 80 20 24

S4 16475 71 27 25

S5 33563 90 45 26

S6 50716 130 62 28

S7 71528 140 76 33

S8 90785 142 78 32

S9 211795 150 91 43

S10 336198 226 138 45

S11 456942 240 187 51

S12 555800 312 219 58

S13 939150 420 311 70

S14 1339834 688 405 90

S15 1717316 812 500 102

S16 2072248 1013 655 125

33

Dataset

C
om

pr
es

si
on

 R
at

io
 (

C
R

)

0

5

10

15

20

25

Small Medium Large Very Large

XMill CR SMCA CR Our Method CR

Figure 3.2: Compression Ratio Comparison on Small, Medium, Large and Very Large Group

(SMCA dataset)

3.3.3 Compressing Document-style XMLs

The 24 XMLs used by [49] exist in two forms each, the original documents and the structured

documents. Original XML documents are full XML documents comprising both structure and

data parts. Structured XML documents, on the other hand, consist of only opening and closing

tags. These documents, therefore, only have structure information and no data part.

We compare the compression ratios of the proposed technique with that of XMill using

only the original XML documents, the ones with both structure and data parts. The results are

shown in Figure 3.6. It is clear that our technique outperforms XMill in terms of compression

ratio with every XML document except two. These two documents have a large number of tags

with relatively small sized free text data between the tags.

3.3.4 Evaluating the queryable feature of the proposed technique

The proposed technique maintains the characteristic of being queryable up to the stage of XMLS

(the various stages of compression are shown in Figure 3.1). After applying back-end compres-

sion, however, the compressed document is no longer queryable. The compression ratios for

34

XML Size (bytes)

C
o

m
p

re
ss

io
n

 R
a

tio
 (

C
R

)

0.00

5.00

10.00

15.00

20.00

25.00

0 500000 1000000 1500000

SMCA CR Our Method CR

Figure 3.3: (SMCA vs Proposed Method) Compression Ratio Comparison on 20 XMLs of

SMCA Dataset

documents at the stage of forming XMLS are naturally smaller than the final compression ratios

which also incorporate back-end compression. The significance of the documents at this stage,

as stated earlier, is that they are queryable as opposed to the document formed after back-end

compression.

XGrind is perhaps the oldest and most significant research endeavour in the direction of

Queryable XML Compressors, whereas QRFXFreeze [51] is a more recent technique and out-

performs most queryable compressors in terms of compression ratio. The compression ratio

of the proposed technique, at the stage of XMLS, is compared with the compression ratio of

QRFXFreeze. The dataset that is used to compare QRFXFreeze with other queryable compres-

sion algorithms in [51] is also used here to compare the proposed technique with QRFXFreeze.

Table 3.6 shows this comparison and XMLS of the proposed technique has a better compression

ratio than QRFXFreeze for four out of the five XML documents used. In [51] the compression

ratio is calculated using the following formula:

cr = [1− sizeo f (compressed f ile)
sizeo f (original f ile)

]∗100

To make this consistent with our technique we calculated:

sizeo f (original f ile)
sizeo f (compressed f ile)

=
100

(100− cr)

35

XML Size (bytes)

C
o

m
p

re
ss

io
n

 R
a

tio

0.00

5.00

10.00

15.00

20.00

25.00

0 500000 1000000 1500000 2000000

Our Method CR XMill CR

Figure 3.4: (XMill vs Proposed Method) Compression Ratio Comparison on all 180 XMLs of

SMCA dataset

Table 3.6: Compression Ratio of XMLS (proposed method) vs QRFXFreeze

XML file XML Size (MB) XMLS CR QRFXFreeze

XMark 118 2.45 2.38

DBLP 138 1.91 1.92

TreeBank 89 2.20 1.17

Shakespeare 7.9 2.38 2.22

SwissPort 109 2.18 2.13

Further

sizeo f (original f ile)
sizeo f (compressed f ile)

is compared with the compression ratio of the proposed technique.

3.3.5 Evaluation of JSON Compression

A JSON document also contains a data part and a structure part as discussed in Section 3.2.3.

Therefore, the same outputs, XMLN (subsequently XMLS and XMLB), are generated irrespec-

36

XML Size (bytes)

C
o

m
p

re
ss

io
n

 R
a

tio

0.00

5.00

10.00

15.00

20.00

25.00

0 20000 40000 60000

Our Method CR XMill CR

Figure 3.5: (XMill vs Proposed Method) Compression Ratio Comparison on 168 XMLs

Having Sizes Less Than 60000 bytes using SMCA dataset

tive of whether XML and JSON representation is used. However, as major research endeavours

use XML compression, we have also evaluated our research using XML.

3.3.6 Size, Information and Compression Analysis

XML documents may vary in their nature based on the number of characters dedicated to their

data part and the number of characters dedicated to their structure part. The structure part of

an XML comprises tags and attributes whereas the data part is the content between tags. An

XML document may have a large data part with a large number of characters and very few

tags and attributes. Another document may have a large number of tags and attributes with a

large number of characters dedicated to these and very few characters for data. Certain XML

documents may have a small number of tags and attributes but the size of each tag and/or

attribute may be very large and hence a large number of characters dedicated to the same.

Our proposed technique for XML compression varies in its compression efficacy with

different types of XML. In this section, we seek to understand the behaviour of the technique

in this respect. To this end, we create synthetic XML documents of varying characteristics

as described above. We start with a template XML document consisting of n slots. A slot

can be filled with any one of the following elements of an XML document: an opening tag, a

37

XML Data

C
o

m
p

re
ss

io
n

 R
a

tio

0.00

20.00

40.00

60.00

80.00

USH
ou

se

Ba
se

ba
ll

EX
I-I
nv

oic
e

EX
I-W

eb
log

EX
I-F

ac
tbo

ok

Sh
ak

es
pe

ar
e

EX
I-T

ele
co

mp

XB
en

ch
-D

CSD
-

XB
en

ch
-T

CSD
-

XM
ar
k1

Ran
do

m-R
1

EX
I-A

rra
y

NAS
A

Lin
eit

em

Ran
do

m-R
2

Tr
ee

ba
nk

Ran
do

m-R
3

XB
en

ch
-D

CSD
-

XB
en

ch
-T

CSD
-

XM
ar
k2

DBL
P

Our technique CR XMill CR

Figure 3.6: Compression ratio comparison on original XML documents (longer the bar better

is the compression ratio)

closing tag, an attribute name, a single character of an attribute value, or a single character of

data content. It is important to note that irrespective of the size of an opening tag, closing tag,

and attribute value, each occupies a single slot; whereas one character of the data occupies a

single slot. This means that if a single element of data comprises 10 characters, 10 slots would

be required to accommodate the data element. Conversely, if an opening tag, closing tag, or

attribute name is of size 10 characters, it would be accommodated in just 1 slot. The intent of

defining slots in this manner is to understand the varying nature of XML documents and the

variation in the effectiveness of the proposed technique with such varying documents.

We start with a document comprising only opening and closing tags that fill all the slots,

resulting in an XML of n/2 opening and n/2 closing tags. The next XML document is created

by substituting one pair of opening and closing tags with two data characters (as stated earlier,

one slot can accommodate an entire opening or closing tag but only one character of data). Next

another pair of opening and closing tags is substituted with data characters. This is done with

successive pairs of opening and closing tags being replaced with data characters until n/2 XML

documents are created with the first one comprising only tags and n/2 empty elements, and the

last one containing a single element (just one pair of opening and closing tags) and n-2 data

characters.

To understand the behaviour of the proposed technique, we express the nature of the XML

documents in terms of Information. To do this, let us assume that an XML document with n

38

slots has a total of t tags with an average size of x characters per tag, a total of a attributes with

an average size of y characters per attribute, and has a total of d characters in the data part of the

XML. Following this assumption, the total size of an XML with n slots is (t ∗ x+a∗ y+d) and

2t+a+d = n as it is assumed that the n slots are filled with the given number of tags, attributes,

and data characters. The ratio (t +a+d)/(t ∗ x+a∗ y+d) represents the information that the

XML carries and this ranges between 0 and 1. Among XML documents with n slots, the XML

that has a smaller value of (t ∗ x+a∗ y+d), carries more information and we notice that such

documents (that carry more information) perform poorly in terms of compression ratio with the

proposed compression technique. When t and a are both 0, all the slots in the XML document

are filled with single characters of data and exhibits the maximum information, i.e., 1. With

such documents, the proposed technique returns the worst compression ratio. Similarly when

d = 0 and t << 2t ∗x, a << a∗y, then all the n slots are filled with large tags or attribute names

and the information that the XML document carries is small, i.e., close to zero. In such cases

we notice that the proposed technique gives good compression ratios.

We seek to understand the behaviour of the proposed technique in a little more detail by

studying the variation of its compression ratio with varying information. To do this, three sets

of XML documents are created each with the number of slots n being set at 10000. Each set

comprises 5000 XML documents created in a manner described earlier: the first document in

each set comprises only opening and closing tags; in a document with 10000 slots, this works

out to 5000 of each opening and closing tags. For successive XML documents, tags are replaced

with data characters and the next document has 4999 opening and closing tags and 2 characters

of data. This is continued until the last (5000th) XML document in each set has just 1 opening

and closing tag and 9998 data characters.

Each set of XML documents created through this process is populated with tags from

three different schemas. The first set of documents is created using the “XBench-TCSD-

Normal_Structural.xml" document from the survey paper [49] and comprises very small sized

tags of average length 2 characters per tag. The second set is created using the “S16.xml" doc-

ument used with SMCA [26] that comprises medium-size tags. The average length of tags in

“S16.xml" is 10 characters per tags. Finally the third set uses the “EXI-factbook_Structural.xml"

document again from the survey paper [49] that comprises large tags with an average size of

24.56 characters per tag.

39

Information

C
om

pr
es

si
on

 R
at

io

0

200

400

600

800

0.2 0.4 0.6 0.8 1

Medium Tag XML Large Tag XML Small Tag XML

Figure 3.7: Behaviour of the proposed technique on various types of similar XMLs (5000

XMLs in each set)

Figure 3.7 demonstrates the behaviour of the proposed compression technique. For the

same value of information, an XML with a large tag size results in a better compression ratio.

The compression ratios for the XML documents of all three sets decrease with an increase in the

value of information. This is very apparent for the sets with large and medium sized tags and

less apparent for the documents with the set of documents with small tags. The same relation

holds true for small tag documents but the graph appears like a straight line because of the

small compression ratios. In Figure 3.7, a surge appears in the compression ratio for documents

whose value of Information is close to 1. This is because XML documents are created for our

experiments by successively reducing the number of tags one at a time and replacing these and

thus increasing the data content of the document one character at a time. When the number of

tags is sufficiently small and the data content sufficiently large, a further decrease in number of

tags and their replacement with data characters does not significantly reduce the size of the new

XML, while resulting in comparable improvement in compression. This results in what appears

to be a little like a surge in the compression ratio.

3.3.7 Complexity Analysis

Decompression of compressed document is the reverse of compression and involves the follow-

ing procedure: the back-end decompressor is first used on the XMLB document to get XMLS;

40

next the nibbles from XMLS are extracted one-by-one to get XMLN ; and finally, the symbol and

tag tables are used to get the original XML. The complexity of both the compression and decom-

pression processes depends on: the number of slots in the XML document, and the complexity

of the PPM algorithm, O(n) where n is the number of bytes in XMLS. Slots are the substitutable

entities of an XML that are substituted using symbol and tag tables. These include tag names,

attribute names, a character in data, and others. The slots of an XML are more comprehen-

sively described and formally defined in Section IV-F. Both compression and decompression

involve substitution followed by PPM compression or decompression. The number of slots is

the same both in plain XML and in XMLS. Therefore, the complexity of both the compression

and decompression processes is O(s+n).

3.3.8 Discussion

We compare the efficacy of our method against state-of-the-art competitors like XMill [37],

QRFXFreeze [51], and the recent SMCA [26]. XMill is the pioneer among XML compression

techniques and continues to serve as a benchmark. SMCA is the latest and the state of the art

in XML compression. The Figure labeled “(SMCA vs Proposed Method) Compression Ratio

Comparison on 20 XMLs of SMCA Dataset" i.e. the Figure 3 clearly indicates that our method

is superior to SMCA in terms of compression ratio for small and medium size documents. For

large documents, however, the proposed method performs similarly to SMCA, and in some

cases SMCA performs marginally better. Figures 2 and 5 show that our method performs better

than XMill on documents of all sizes. QRFXFreeze, unlike SMCA and XMill, is a queryable

XML compressor. The proposed method is also queryable until the final back-end compression

stage and hence we compare the queryable form (which we called XMLS, shown in Figure 1 of

the proposed method with QRFXFreeze. QRFXFreeze has only been tested on XML documents

of very large size and we, therefore, compare XMLS with QRFXFreeze for such documents.

We notice that XMLS comfortably outperforms QRFXFreeze in terms of compression ratio as

shown in Figure or Table 3.6.

Note that SMCA and XMill, as stated earlier, are non-queryable and hence we compare

their outputs with XMLB, the final, non-queryable, output of our method, as produced by the

last stage of back-end compression is done.

41

In Section 3.3.6, we try to gain some insight on the kinds of documents that are most

amenable to compression and hence provide superior compression ratios. We find that our

method gives inferior compression ratios for XML documents with a relatively large number of

characters in the data part, as compared to the structure part. On the other hand, if the structure

part of the XML documents has a large number of characters our method works better.

It is important to remember that JSON documents, like XML documents, are divided into

structure and data parts, hence the proposed method is equally applicable and effective on JSON

documents as well. Recently, a new encoding method, the Google Protocol Buffer [34], was

introduced. This can be used to represent messages in a format that is shorter than JSON. In

Google protocol buffer messages are represented in a binary form, in terms of key-value pairs

of structured and free-text data. Different types of data are represented using different encoding

schemes in Google protocol buffer. Although the Google Protocol Buffer is an interesting

option for resource representation, but it is not as popular and is seldom used in web services.

Messages between web services are still mostly transferred as JSON or XML.

3.4 Limitations

Although the proposed method performs better for small XMLs of web-based APIs, it has some

limitations.

• As the number of characters in the XML increases, the digit count in the numbers used in

the symbol tables increases. Therefore, the effectiveness of the proposed method in cases

where a large number of characters is required is a little suspect. An example of this is its

use for cases where non-English characters need to be used in the data part of the XML.

This would make the compression less effective.

• When binary data is compressed with the proposed method, the size of the binary content

in the intermediate XMLS increases by 1.33 times instead of decreasing. The back-end

compression partially compensates for this expansion.

• The compression ratio of the proposed method on small XML documents is better than

SMCA. However, in case of large XML documents, especially those larger than 2MB,

42

the compression ratio of the proposed method is mostly equal to that of SMCA.

3.5 Conclusion and Future Work

The key contribution of this work is a novel compression technique for structured documents

like XML and JSON. The design is motivated by the need to improve the efficiency of network

usage during service message exchange.

The proposed technique takes advantage of the structure of XML documents and relies

on the intuition that the natural language underlying the messages exchanged requires fewer

characters than the complete ASCII character set, under the realistic assumption that most ser-

vice APIs are based on the English language. This, therefore, enables us to map structure tags

and characters of the data elements into a much smaller character set. Beyond this translation

step, the proposed technique further reduces the size of the document through a byte-packing

step. This results in a significantly compressed document that importantly retains its queryable

characteristic. The size of the document may further be reduced using a traditional compression

algorithm but at this stage the document loses the property of being queryable.

Our experiments demonstrate that our method comfortably outperforms the current state-

of-the-art compression technique, SMCA, in terms of compression ratio on files smaller than 1

MB (Table 3.4). On files larger than 1 MB, the proposed technique returns a compression ratio

on par with that of SMCA. It is important to note that, for the most part, XML messages gener-

ated during interactions between ReST services are quite small. The proposed technique, there-

fore, is quite effective in improving the utilization of network resources in Service-Oriented

systems which are mostly ReSTful in nature today, as compared to SMCA.

For document-style XML, the proposed technique outperforms XMill, long considered a

standard compression technique for such XML documents, in terms of compression ratio (Fig-

ure 3.6). In this case, however, the final form of the compressed document using the proposed

technique is non-queryable. This is because the final stage of compression involves utilising a

traditional text-compression algorithm.

The stage of compression just before this final stage (as shown in Figure 3.1) results in

43

a document that is queryable. The compression ratios for these queryable compressed docu-

ments are compared with the compression ratios of the state-of-the-art query-friendly compres-

sor XQRFFreeze [51]. The results (Table 3.6) show that the proposed technique compression

ratios at the queryable stage outperforms the best in literature.

In the future, we will attempt to address the limitations mentioned above. Better compres-

sion of the binary data being transferred through XML or JSON can be an important avenue for

future research. In addition, the compression of XML or JSON documents using non-English

characters can be improved.

44

Chapter 4

A Size efficient Encryption Technique for

Structured Documents Like XML and

JSON

Security of XML and JSON documents plays an equal if not more important role than

compression in ensuring effective web service interaction. In this chapter we proposed a new

technique for encryption of XML and JSON documents. We extend the compression technique

discussed in Chapter 3 in a manner that it is effectively harnessed for encryption.

4.1 Understanding the Problem

The need to secure contents of documents from unauthorized access is a fairly common issue

nowadays. Security of documents comprises upholding the following three tenets: confidential-

ity, integrity and availability. Confidentiality implies that a conversation between the sender and

receiver makes no sense to a potential intruder eavesdropping on the conversation or a stored

45

Listing 4.1: XML1

< r o o t a t t r 1 =" v a l u e 1 " a t t r 2 =" v a l u e 2 ">

<name> i i t i < / name>

< v a l u e >2< / v a l u e >

< / r o o t >

Listing 4.2: JSON1

{

" r o o t " : {

"− a t t r 1 " : " v a l u e 1 " ,

"− a t t r 2 " : " v a l u e 2 " ,

" name " : " i i t i " ,

" v a l u e " : " 2 "

} ,

}

document on a machine. Confidentiality is provided by encryption of a message; Integrity im-

plies that a message in transit between a receiver and a sender remains unchanged during transit.

Integrity is the assurance that the information is trustworthy and accurate. Digital signatures,

checksum are examples of methods that ensure integrity and authenticity; Finally, availability

is a guarantee of reliable access to the document by authorized personnel.

There are mainly two types of encryption algorithms: symmetric key encryption and asym-

metric key encryption algorithms. In asymmetric key encryption, the sender maintains two keys

of which one is ‘public’ and the other ‘private’. The sender makes the public key available to

all, and the private key is kept hidden. A message that is encrypted using the public key can only

be decrypted using the private key. In symmetric key encryption, both the sender and receiver

maintain a shared secret key between them called the symmetric session key. The symmetric

session key is used both for encryption and decryption. To send a message, the receiver encrypts

the message with this key and upon reaching the sender, the same key is used for decryption. A

few examples of symmetric key algorithms include DES [20] and AES [31]. RSA [48] is the

most popular asymmetric key cryptography algorithm.

46

XML and JSON are structured documents wherein elements are arranged in a parent-child

or name-value relationship (Listing 4.1 and 4.2). An example of XML is shown in Listing 4.1

and its corresponding JSON is shown in Listing 4.2. XML or JSON are encrypted like a sim-

ple document and alternatively their structured nature is harnessed in the encryption process.

There exists a W3C recommendation for XML encryption [30] that prescribes using existing

blocks or stream ciphers to encrypt a document. Two such algorithms are Advanced Encryption

Algorithm (AES) [31], and Data Encryption Algorithm DES [20]. The XML encryption rec-

ommendation also includes different versions of the Standard Hash Algorithm [22] for creating

a message digest. The XML encryption recommended by W3C works on an XML document

as a whole, on a part of the XML document, or even on binary documents. The idea of the

W3C recommendation is to encrypt documents using existing algorithms and to represent the

encryption in XML using special XML tags. The W3C recommended approach requires XML

canonicalization [17] to preserve the namespace prefix bindings and the value of attributes in the

“xml” namespace. According to W3C “A Canonicalization of XML is a method of consistently

serializing XML into an octet stream as is necessary prior to encrypting XML.” XML canoni-

calization is an approach of serializing XML to create a standard canonical representation of an

XML document.

In this chapter, we develop a new technique for XML and JSON encryption by making

certain changes to the well known XML compression technique, XMill [37]. XMill only deals

with XML documents, but it can easily be modified to be applicable to JSON as well. The pro-

posed technique extends the ideas of XMill and harnesses these for encryption in a manner that

it is equally effective for both XML and JSON. The technique mostly builds upon the compres-

sion technique proposed by G.P. Tiwary et. al. [58] for XML and JSON documents generated

by web APIs. The XML and JSON compression technique proposed in [58] outperforms XMill

[37] on web API based XML documents in terms of compression ratio. The encryption tech-

nique proposed effectively encrypts the documents in addition to also compressing them.

The restriction with the proposed technique is that it only works on structured documents

that are divided into “structure” and “data” parts (as in XML and JSON). In this chapter, we

harness this structured nature of XML or JSON for more effective encryption. In the proposed

method of encryption, serialization process of XML also introduces a degree of randomization

in overall encryption and also helps to reduce the size of final result of encryption.

47

The major contributions of this chapter incldue:

• An encryption technique for structured documents like XML or JSON is proposed

• The proposed technique, in addition to encryption, very effectively compresses structured

documents as well.

4.2 The Proposed Technique of XML and JSON Encryption

In this chapter, a method of symmetric key encryption is proposed to encrypt XML and JSON

documents. The method both encrypts and compresses XML and JSON documents. The goal

of this work is to come up with an encryption technique that not only makes XML and JSON

documents secure but also generates encryptions that are much smaller in size compared to

other encryption techniques. We make the following major changes to the well known XMill

[37] compression technique and to the method proposed by G.P. Tiwary et. al. [58] with the

intent of simultaneously encrypting and compressing XML and JSON documents:

• A dictionary that maps the structure parts of the document to numbers is generated sepa-

rately with the help of a symmetric key, on both the sender and receiver sides.

• One more dictionary is generated in which every character in the XML or JSON document

is mapped to a number. This dictionary is also generated with the help of a symmetric

key, separately on both the sender and receiver sides.

• The entire XML or JSON document is converted into a special binary document in a

manner similar to that in [58].

• The final binary is then passed through a byte level encryption process.

• In a manner similar to XMill and [58], text based compression (e.g. bzip, gzip) is per-

formed on the final binary before the byte level encryption process.

There are mainly four stages of encryption and decryption for the sender and receiver

respectively. For the sender these stages are Initialization, Substitution, Compression, and Byte-

48

Sender

Substitution

Compression

Byte-Level Encryption

XML

Substituted
XML

Compressed
XML

Receiver

Substitution

Decompression

Byte-Level Decryption

XML

Substituted
XML

Compressed
XML

Encrypted
XML

Full
Encryption

Full
Encryption

Figure 4.1: Post initialization stages of XML encryption and decryption

level encryption. For the receiver, these four stages are Initialization, Byte-level decryption,

Decompression and Substitution. Figure 4.1 shows the stages barring the initialization stage.

4.2.1 Initialization (Initial stage for both sender and receiver sides)

The Initialization stage is the initial setup for both the sender and receiver. This stage is the

pre-encryption or pre-decryption stage for both the parties. Before exchanging the actual XML

document both the sender and receiver share a secret key called the “10-element key”. It is

assumed that the receiver and the sender can securely share the secret key. Thereafter both

the sender and receiver populate two dictionaries called the “Temporary Table” and “Symbol

Table” with the help of the shared “10-element key”. The contents of tables created during

initialization are the same at both ends. The steps of initialization are discussed in detail in

49

Figure 4.2: A Subset of Symbol Table (ST)

Appendix A. A Symbol Table (Figure 4.2) is a mapping of each character in the XML or JSON

document to a unique number. Once the Symbol Table is created the Temporary Table is deleted.

In addition to the Temporary and Symbol Tables, both the receiver and sender maintain

another table called the “Tag Table” (Fig 4.3). The Tag Table maintains a mapping between the

“structure” parts in the XML or JSON document to a unique number. The Tag Table structure

and creation are discussed in detail in Appendices A and B. The creation and use of the Tag

Table happens at the substitution stage at both the sender and receiver ends.

root 4

name 5

value 6

attr1 8

attr2 9

Figure 4.3: Tag Table (TAT)

4.2.2 The Encryption (sender’s) Process

After initialization, both the encryption and decryption processes execute at the sender and

receiver ends respectively in the next three stages as shown in Figure 4.1. A detailed discussion

of each post initialization stage at the sender side (i.e. stages of encryption) is included in

Appendix B with only a high level discussion of each stage is included here.

50

1. Substitution: The substitution step has three purposes.

(a) The first is to create a serialized form of the XML.

(b) The second is to represent the entire XML with 15 different symbols.

(c) The third is to introduce a degree of randomness in the final result of encryption.

In the substitution step, the sender substitutes the characters of the “data” part of the

XML using the Symbol Table, substitutes the characters of the “structure” part of the

XML whose entry is not present in the Tag Table using the Symbol Table, and at the

same time updates the Tag Table with the new entry. If an entry corresponding to the

“structure" part of the XML is already present in the Tag Table, the entire “structure"

part is substituted using the “Tag Table". For example, in XML1 if the entry for the

structure part “root” is not present in the Tag Table then every character of “root” is

substituted using the Symbol Table (Figure 4.2) as “T117126126104”. At the same time

the Tag Table entry for “root” is calculated. If the Tag Table entry for “root” already

exists then “root” is substituted using the Tag Table (Fig 4.3) as “T4”. Here T represents

Tag. Notice that the structure and the data parts of XML can be easily distinguished after

the substitution stage. The document that is created in the substitution stage is called

“Substituted XML". The process of substitution is discussed in detail in Appendix B.

2. Compression: The purpose of this step is to decrease the size of the final encryption. The

“Substituted XML" stage includes only 15 different symbols. One symbol is represented

using 4 bits. The sender, therefore, can accommodate two symbols in the result of the

substitution stage into one byte. The document that is created at the compression stage

is called “Compressed XML". The process of compression is also discussed in detail in

Appendix B.

3. Byte Level Encryption: The “Compressed XML" has a good level of encryption but

can still reveal several aspects of the original XML. Further, upto the substitution stage

the proposed technique does not add a property of confusion and diffusion to the final

encryption. That is why each byte of the “Compressed XML" is selected one by one

and the selected byte is encrypted again according to the value of the key. The final

result of the encryption subsequent to byte-level encryption never exposes the relationship

between the key and the ciphertext or between the plaintext and ciphertext. The document

51

at the “Byte Level Encryption” stage is the final “Encrypted XML”. Details on byte level

encryption are included in Appendix B.

4.2.3 The Decryption (receiver) Process

A detailed discussion of each of the post initialization stages at the receiver side (i.e. stages of

decryption) is included in Appendix B and only a high level description of each stage is done

here.

1. Byte Level Decryption: The receiver decrypts the received “Encrypted XML”. The

result of Byte Level Decryption is called “Compressed XML”. The process of “Byte Level

Decryption" is discussed in detail in Appendix B.

2. Decompression: The “Compressed XML” after the “Byte Level Decryption” stage is

decompressed and converted into “Substituted XML” which forms the output of the sub-

stitution stage at the sender-side. The process of “Decompression" is again discussed in

detail in Appendix B.

3. Substitution: The characters of the “data" part of the “Compressed XML” are substi-

tuted using the Symbol Table. The characters of the “structure” part of the “Compressed

XML” are substituted using the Symbol Table for those characters that do not have a

corresponding entry in the Tag Table. In such cases the Tag Table is also updated with

the new entry. If an entry corresponding to a character in the “structure” part is already

present in the Tag Table then the character is substituted using the Tag Table. The process

of “Substitution” at the receiver end is discussed in detail in Appendix B.

4.3 Evaluation

We evaluate the working of the proposed approach along two aspects: 1) compression efficacy;

and 2) security analysis against generic and XML/JSON specific attacks. These analyses are

discussed in the following subsections.

52

4.3.1 Compression Effect of the Proposed Method

4.3.1.1 Dataset and methodology

We use three types of datasets for evaluating the proposed method. The first dataset comprises

SOAP based requests and responses. This dataset is used by SMCA [26], a recent endeavour

directed at aggregation and compression of XML. The authors of SMCA were very kind and

shared the dataset with us. A second dataset was synthesized by us. This comprises XML

documents of various types. The idea behind synthesising the dataset by ourselves was that the

proposed method has different compression effects on different types of XML. We therefore

included all kinds of XML documents in the synthetic dataset to comprehensively assess the

working of the proposed method. The third dataset comprises XML or JSON that constitute the

Request and Response documents for widely used REST APIs (these include APIs of Amazon,

Google, and other popular web sites).

The size of encrypted XML depends on the value of key[8] as explained earlier in Section

4.2. If less than 100 unique characters are used in the XML document, the value of key[8] is

at least 2, whereas if less than 1000 characters are used in the XML, the value of key[8] is at

least 3. Setting the value of key[8] to the minimum possible does not affect the security, as

discussed earlier. According to W3Techs survey on Jan 31, 2021, 60.6% of the content on the

Internet is in English. We feel that this percentage is probably even larger in the case of the

programmable web. If only English is used in an XML, then the number of unique characters

in an XML is mostly less than 99. Further, it is practically impossible for more than 999 unique

characters to be used in an XML. Therefore, in this chapter, we discuss the compression effect

of the proposed method with the value of key[8] being 2 or 3.

The proposed XML encryption technique is implemented using Python3. It is important

to note that in conducted experiments, we calculate the compression ratio as the fraction of

the size of the original XML document to the size of the compressed document as shown in

Equation 4.1.

53

https://w3techs.com/technologies/overview/content_language

CompressionRatio(CR) =
XML Size

Compressed Size
(4.1)

A high compression ratio implies a better compression. The experiments were conducted

on an i3-4005U CPU @ 1.70GHz processor with a 4GB DDR4 RAM.

4.3.1.2 Compression ratio comparison against established XML compressors

The compression effect of the proposed encryption techniques for XML and JSON is similar

to that discussed in Chapter 3. The validation of the compression effects are also similar and

hence we do not include the same here.

4.3.1.3 Size comparison against 3-DES Encryption

We assess the working of the proposed method on 562 real world XML documents (Table 4.1).

We encrypt the entire dataset using the proposed method and do the same with a 3-DES en-

cryption. It is important to note that we do not use a backend compressor in this case. We use

a value of key[8] = 3 for the execution. We find that in more than 90% of the cases, the pro-

posed approach gives an encrypted document that is smaller size than that given by the 3-DES

algorithm. The complete comparison between the two algorithms in terms of encryption size is

available at: https://drive.google.com/open?id=1mm9ZOteOoafAvZspX8ZF-LFGGtTHxMaN.

Also, if an API supports JSON then the JSON document is encrypted by first converting it to

XML and subsequently following the same sequence of steps. The size of the resulting encryp-

tion is compared with the size of actual JSON. In a similar manner, the JSON is also encrypted

using the 2-DES algorithm.

4.3.2 Security Analysis

The proposed encryption technique needs to be secure enough to protect the contents of the

XML. In this section, the security features of the proposed algorithm are put to test. Our ap-

54

Table 4.1: Size comparison of proposed method vs 3-DES on real world XML documents

API Name
Number

of Tested

Docu-

ments

Size of

proposed

method

< 3-DES

Size of

proposed

method

<

3-DES/2

Amazon Product Advertising API 43 41 22

Amazon Alexa Music Skill API 62 62 28

Amazon Alexa Home Skills API 156 156 82

Paypal 133 130 42

AngleCam 96 54 34

Google Maps 13 13 9

YouTube 16 10 0

Gmail 18 15 10

CIMS California 10 10 10

CubeSensors API 4 4 4

Wise Orchard API 11 11 11

Total 562 506 252

55

proach uses three levels of encryption: the first level comprises substitution of the “data" and

“structure" parts of the XML with numbers; the second level accommodates two numbers gen-

erated during the substitution phase into one byte ; and finally at the third level, the bit positions

are swapped in each byte long data based on a function that depends on the value of the key

and with proper XOR operations. The combination of these three levels ensures a high degree

of security. In this section, security analysis of the proposed method is done by subjecting the

encrypted content to various possible attacks.

4.3.2.1 Assumptions

Here we assume that the 10-element key is exchanged securely and successfully between two

communicating parties. The Symbol Tables and Tag Tables are also considered secure at both

ends. It is important to note that both character substitution cipher (substitution stage) and block

cipher (byte level encryption stage) are used in the proposed method of XML encryption. That

is why the security of the proposed approach depends on both these techniques.

4.3.2.2 No relation between entries in the Symbol Table and Tag Table

Substitution, however, is the intermediate stage of the proposed method of encryption, and the

substituted XML remains hidden from the rest of the world. Nevertheless, their security aspects

have been tested in this section.

If the corresponding number of one character in ST is somehow found by an intruder, then

it cannot guess the corresponding number of the other character in it. The reason behind it is a

number corresponding to a character in the ST depends upon its “row header(rh)" and “column

header(ch)" in the “Temporary Table" and the “key[9]" as: (rh)key[9]+(ch)key[9] = ST Entry. The

values of “rh" and “ch" of a character in the “Temporary Table" depends upon various elements

of the 10-element key. The result of above expression is further cut down to “key[8]" digits.

Therefore just by knowing the value “STEntry" for one character it is impossible to find the

values of “rh", “ch" and key[9]. The Tag Table entry of a structure part of XML is calculated

by summation of Symbol Table entries of its various constituent characters. The summation is

further cut down according to number of entries already present in the Tag Table. Therefore Tag

Table entries of structure parts cannot be related to each other. Therefore, looking at one entry

56

of a Symbol Table or a Tag Table, its other entries cannot be guessed.

4.3.2.3 No trivial relation between plain XML and encrypted XML

The lack of a trivial relation between the plain XMKL and the encrypted XML is explained bet-

ter with an example. Let’s assume a situation in which the value of the key is “[12,6,1,1,1,14,4,1,3,2]"

and a text “a1" is to be encrypted. The steps of this encryption are shown below:

• Plain XML is a1

• Substituted XML is 152340

• Compressed XML is 00010101 00100011 01000000

• After swapping the content is 10101000 00100011 01000000

• Final encrypted XML is 10100010 01100000 01100100

The two numbers of the symbol table and the tag table are not at all related to each other,

which introduces a fair amount of randomness in the substituted XML. Subsequently, the var-

ious swapping and XOR operations make the byte even more random. If ‘a’ is made into ‘e’

in the above example, then the encrypted XML with the same key is changed to 00100010

11100010 11100110, which is significantly different from the previous encryption. Further, the

Initialization Vector changes the final result for each new encryption done with the same key.

4.3.2.4 To Brute-force a block of byte level encryption

The size of a block is assumed to be 8-bit during byte level encryption (Figure B.2). Only 256

possibilities of this 8-bit block are possible. It seems easy to ‘brute-force’ a block. However,

even after 256 different permutations (one correct byte with 255 wrong cases.), only a part of

the substituted XML is found, and not even that of the plain XML. To get a part of the plain

XML, the substituted XML has to be ‘brute-forced’ again.

The different possibilities of ‘brute-forcing’ a nibble (not the whole byte) are shown in

Figure 4.4. There are infinite possibilities related to each nibble of the encrypted XML. Further,

the entire encrypted XML is ‘brute-forced’ only when the correct value for each nibble in it

57

is obtained. The knowledge of the XML schema does help a little in brute force, and this is

discussed in later subsections.

A Nibble of encrypted byte

Tag Indicator Tag End Indicator A value from 0-9 Attribute Indicator Space Indicator

A single digit of infinite
possible words of Tag Table

A single digit of various possible
characters in Symbol Table

Figure 4.4: Different possibilities when brute forcing a nibble of encrypted XML

4.3.2.5 Intruder with XML schema tries to guess the encryption

The XML schema is often publicly available. In such cases, an intruder tries to get an idea of

the various parts of the XML by looking at its encrypted form. For example, the binary of the

encrypted XML corresponding to the XML in Listing 1 is shown below:

00100111 01111010 00100111 01100000 01011001 00001100 11001011 00010010 01000100

00000000 10001000 11000000 11000100 01001010 00000010 11111011 00100010 011110000

1011000 00001101 01101110 10011101

“0010” is the first nibble of the ciphertext. By assuming that it is an encryption of the tag

start symbol (i.e 1011), the intruder tries to find this binary pattern (0010) in other places of the

ciphertext. To do this, the binary pattern must either be the first 4-bits of the byte or the last

4-bits. Owing to shifting of bits and several XOR operations, 0010 appear at various places in

the ciphertext that do not belong to the tag-start symbols. Even at positions where the ciphertext

of the tag-start symbol is present, it may or may not be 0010. This binary pattern is found at 5

places in the ciphertext shown. The same happens with other binary patterns.

4.3.2.6 Intruder with XML schema tries to guess the data parts of the XML

The symbol table mostly contains numbers of only two or three digits. Therefore, if the XML

schema is known, the start and end points of the data part of an encrypted XML can be easily

58

guessed. If the start and end points of the data part of the XML are known, the number of

symbols in the data part of the plain XML can also be easily known. If the data in the plain

XML is made up of a small number symbols, it can be ‘brute-forced’ and discovered.

There is a solution to this. Padding the data part (with nibbles representing “1010”) in the

ciphertext makes so big that it looks like having at least 17 different symbols in plaintext. If

the size of the variable word in plaintext is less than 17, then padding is done to make it 17. 17

symbols is quite safe even when all symbols are digits in plaintext. Even if the intruder knows

that all the symbols are digits, it will take 3 years to ‘brute-force’ 1 billion values per second.

If more than one space is found in the Compressed XML during decryption at the receiver side,

it is considered to be a single space.

For example, “iiti” only has 4 characters that are encrypted into 12 nibbles (if key[8] =

3). Depending on the value of key[8] the result of the compression does some space-padding

using 1010. It should appear to the intruder to be a 17 symbol data. If key[8] = 3 then three

nibbles represent one plaintext symbol. Therefore 17 plaintext symbols require 51 nibbles in

the ciphertext to be properly represented. In the case of “iiti” if key[8] = 3, we need 51−12 =

39 extra padding bits of 1010. On the other hand, if key[8] = 2 then 2 nibbles in ciphertext

represents one symbol in the plaintext. Therefore, 17 symbols in plaintext require 34 nibbles in

ciphertext. In the case of our example, “iiti”, with key[8] = 2, 34−8 = 26 extra padding bits of

1010 are required.

If every variable part of an XML is encrypted in such a way that it appears to be of at

least 17 symbols in plaintext, then it is very difficult to get the plaintext from ciphertext using

‘brute-force’ (even at the rate of 1 billion tries per seconds). Table 5.1 shows the time taken to

‘brute-force’ variable parts of different types.

Content of ciphertext Brute Force Time

All 17 Symbols are digits 3 Years

All 17 Symbols are small alphabets 35953428 years

All 17 Symbols are capital letters 35953428 years

All 17 Symbols are alpha numeric 9.372428e+13 years

All 17 Symbols are ASCII characters 2.1074772e+19 years

Table 4.2: Brute force time depending upon type of symbols

59

4.3.2.7 No trivial relation between the key and ciphertext

A small change in the 10-element key results in a completely different ciphertext. A perfect

example is shown in Table 4.3. A total of 15-bits change at the random points in the ciphertext

of “iiti” because of a change in 1-bit of the 10-element key. For even the slightest change

in the key, a large number of bits are affected in the encrypted message. This is a desirable

characteristic and attests the security provisioning capabilities of the proposed algorithm.

Plaintext 10-element key Ciphertext in bits Bit difference from

the key

[12,6,1,1,1,14,4,1,3,2]

iiti [12,6,1,1,1,14,4,1,3,2] 010000101100101010

000010100001100000

100001000000

0

iiti [12,6,1,1,1,14,4,0,3,2] 110000100100000010

100000101001000010

111011001110

15

Table 4.3: Relation between plaintext and key

4.4 Conclusion

In this thesis, a novel approach for XML and JSON encryption is proposed. The proposed

method modifies existing XML compression algorithms to implement XML and JSON encryp-

tion. In addition to encrypting the document, the method is also compresses the same. In some

ways, the proposed method is an efficient means of providing secure compressions. The ef-

ficacy of the approach is validated through a systematic analysis of the same against various

possible security attacks both generic and specific to XML or JSON document. The anaysis

clearly demonstrates the capabilities of the method to counter these attacks. In addition to this

we also assess the compression efficacy of the method. It is similar to the approach proposed

by us earlier in [58] and the method continues to provide superior compression ratios.

60

Chapter 5

Improving Privacy in Data Service

Composition

To properly secure interactions between web services, concerted efforts are required to en-

sure security and privacy of web-service compositions. This is especially true for web-services

that provision data more commonly known as data services. Ensuring security and privacy of

such data is imperative as data that gets exchanged is often sensitive and critical. We look at

this aspect of securing web-services in this chapter.

5.1 Understanding the Problem

Data of various types is available in a variety of domains, including medical databases, retail

databases, demographic databases, and others. Clients can access and use this data, based on

their specific application requirements, through web-service interfaces provisioned by the data

owners. Typically, complex applications require information beyond what any single provider

may own and offer; in such cases, multiple data services must be composed to provide a com-

61

plete solution meeting the client needs. The term "data-service composition" refers to a unified

interface that invokes multiple data providers and synthesizes their data to deliver to the client

all the data it needs in response to a single request message, as if it were available withing a

single source.

U. Srivastava et. al. [55] formally define a “Service Composition Plan" as: “an arrange-

ment of the web services in the query into a directed acyclic graph (DAG) H with parallel

dispatch of data denoted by multiple outgoing edges from a single web service, and rejoining of

data denoted by multiple incoming edges into a web service". Each query has its own service

composition plan. A directed edge ei j from a service provider DSi to DSj establishes DSi as the

parent of DSj and implies that, while the plan is executed in response to a query, DSi precedes

DSj and that DSj consumes the data produced by DSi.

An example service composition plan is diagrammatically depicted as a directed acyclic

graph H in in Figure 1.1. In Figure 1.1, there are four data service providers (DS1, DS2,

DS3 and DS4) that provide details of a retail store. If a client requests information on “how

many lunchboxes were purchased by people belonging to France on December 3, 2012", the

execution of this query requires the involvement of all the four data service providers. The

service composition plan for the query is shown in the Figure 1.1. DS1 is invoked first with a

“Lunch Box" description to retrieve the “Invoice" and "Quantity" of the purchases. Next, DS2

and DS3 are invoked with “Invoice" as the input to obtain “CustomerID" and “InvoiceDate" for

the invoices corresponding to “Lunch Box". The outputs from DS1, DS2 and DS3 are joined

together to produce a table T1(“Invoice", “Quantity", “CustomerID", “InvoiceDate"). DS4 is

then invoked with “CustomerID" as the input and results in T2(“Custo-merID", “Country"). T1

and T2 are joined to get T3(“Invoice", “Quantity", “CustomerID", “InvoiceDate", “Country").

Finally, the sum of the “Quantity” value in table T3 that corresponds to “Country” as France

gives the final result to be returned to the invoking client.

The service-oriented architecture style dictates that providers, involved in a composition

for the purpose of fulfilling a client’s needs, should not be aware of each other. Furthermore,

data service compositions impose additional privacy-related constraints that further enforce this

requirement [57]. More specifically, a service provider may encrypt the data it contributes to

the service composition, in order to prevent other participants to gain any information. Alter-

natively, a service provider may allow the sharing of some attribute values, except in the case

62

of specific queries. Furthermore, a service provider may disallow the sharing of some attribute

values with some specific service providers participating in the service composition plan. To

support these requirements, it is essential that the participating service providers have a right to

know the service composition plan, which should be shared before the execution of the plan.

Privacy is an important concern in data service composition: a service provider DSi, par-

ticipating in a service composition plan, should be able to choose whether to hide one or more

of its attributes from all, or some of, the other service providers in the composition plan. An

attribute that a data service provider does not want to share is called a "privacy critical attribute".

Privacy is a major challenge to the smooth execution of a service composition plan. For

example, in Figure 1.1, if “Invoice" is a privacy critical attribute of DS1, then this implies that

DS1 does not want to share its values with anyone else. However, according to the service

composition plan, DS1 needs to connect with service DS2 and share the relevant invoice num-

ber (489436 in this example) in order to get the corresponding “customer ID” related to the

lunchbox purchased with the above invoice. This sharing would be a direct infringement of the

privacy of DS1, which raises the question: how can this service composition plan be executed?

An approach to address the issue of privacy in data service composition is through the use

of privacy models such as K-Anonymity [56], and/or its variants such as L-Diversity [39] and

T-Closeness [35]. K-Anonymity is explained as follows: in a service composition plan where

DSi is the parent of DSj, a query is executed on DSj using as input information produced aa

output of DSi. In such a situation, to preserve the privacy of DSi, the K-Anonymity approach

prescribes that instead of querying for just the one attribute value of DSj corresponding to the

output attribute value of DSi, K attribute values of DSj are queried. These K attributes include

the value corresponding to the output of DSi and K-1 other attributes. The parent (i.e., DSi)

determines the value of K.

K-Anonymity can be explained using the example shown in Figure 1.1. DS1 is queried for

the “Invoice" of a lunchbox (invoice number 489436). Subsequently, database DS2 is queried

for the “CustomerID" of the same “Invoice" (i.e., 489436). Conforming to the K-Anonymity ap-

proach, a query on the data service provider DS2 is not just executed for invoice number 489436

which is of interest here, but for K different values where K>1. For example in Figure 1.1, when

K is 3, queries on DS2 are executed for 3 different values of the attribute “Invoice” (say 489435,

489436 and 489437), among which the actual invoice of interest,489436, is included. All the

63

three values of “invoice” are such that they are present in the DS2 database. In such a scenario,

therefore, DS2 knows that a certain value belongs to DS1 only with a probability of 1/K (in this

example 1/3 as K is 3). DS1, that needs to protect the privacy of its “Invoice” data, determines

the value of K. K-Anonymity is also referred to as K-Protection or the Value Generalization

Method. Several research methods have been developed relying on K-Anonymity for privacy

preservation and are discussed in greater detail in chapter 2.

Executing a data service composition involves several tasks such as, selection of service

providers, development of the service composition plan, invocation of queries on the various

data service providers, storing the intermediate query results, performing join operations on

data received by different providers, and maintaining the privacy of service providers through

value generalization. Responsible for the above tasks is a special service, called the mediator.

Mediators can be trusted or untrusted. If a mediator is trusted, it can be used as a warehouse to

place the intermediate results of the query in plain form. If a mediator is untrusted the providers’

data is encrypted before it is stored in the warehouse. If the mediator is untrusted, there is little

or no expectation that it should contribute towards privacy preservation. Most research today

on mediators is towards improving the working of untrusted mediators.

Managing encrypted intermediate data is a major challenge with untrusted mediators be-

cause the mediator needs to handle encrypted intermediate data in queries or join operations

without seeing the content. To overcome this, M. Barhamgi et. al. [45] developed OPES [3],

an encryption method for numerical data in a manner that preserves the order of the encrypted

values. This means that the comparison of two encrypted values will produce the same result

as the comparison of the corresponding decrypted values. M. Barhamgi et. al. [45] use OPES

for query execution, join operations, and deciding on the value of K for K-Anonymity. A major

limitation with OPES is that it can only be used to encrypt numerical data. Using OPES, there-

fore, a service provider is able to secure only its numerical privacy-critical attributes. In this

chapter, we propose to overcome this limitation by making use of hashing. Each parent-child

pair in a service composition plan shares a secret string unknown to the mediator. This secret

string is appended to each value of the privacy critical attributes and its hash (e.g., SHA-256)

is calculated. As the secret string is the same for a parent-child pair, the hash of a certain value

will be the same for both service providers. In this way, the hash values of non numerical data

can also be compared lexicographically by the mediator without seeing their actual values.

64

Another major limitation of existing data service composition approaches is the assump-

tion that the mediator is adhering to the service composition plan. Service providers do not,

therefore, authenticate each other. They do utilise value generalizations (mostly using K-

Anonymity) to protect data from each other by encrypting and sharing data with the mediator

using OPES [3], but do not check whether the mediator is adhering to the shared composi-

tion plan. It is therefore possible that a mediator can share a false service composition plan

and introduce a fake service provider in the composition. If a service composition, for example,

consists of four services DS1, DS2, DS3, and DS4, and DS1→DS2→DS3→DS4 is the actual

service composition plan. An unethical mediator can invoke another service provider DS5 into

the composition about which the remaining four service providers are unaware. Alternatively,

an unethical mediator can also surreptitiously change the shared service composition plan (e.g.

DS1→ DS4→ DS2→ DS3) without the knowledge of DS1.

In this chapter, we describe a method for supporting data-service composition through an

untrusted mediator, as follows.

1. During data service composition, the data of one service provider needs to be protected

from other service providers. The mediator facilitates the maintenance of privacy between

service providers in addition to taking on various responsibilities such as service selection,

creation of the service composition plan, querying, joining, and communication between

service providers. The mediator is untrusted and is not allowed to see any data; therefore,

all data exchanges are encrypted.

2. Only numeric data can be secured using the current standard of OPES [3]. We propose

concatenation of a secret string with data followed by hashing. Therefore, privacy criti-

cal attributes in our case do not necessarily need to be numeric. The proposed approach

enables the mediator to perform operations such as join, query execution, or value gener-

alization using K-Anonymity without seeing the actual data values.

3. It is the right of every service provider to review and agree on the service composition plan

before participating in a composition. The service providers should be able to validate that

they are participating only in the composition plan to which they have agreed. The service

providers should be able to validate that their input data is originating from their parent

service provider and that their output data is sent to their children service providers, based

65

on the agreed upon composition plan.

5.2 The Proposed Technique to Improve Privacy in Data Ser-

vice Composition

We use a mediator-based approach for data service composition. We consider the mediator

to be untrustworthy. Intermediate data is shared with the mediator in a secure manner such

that the mediator can orchestrate the data composition plan, perform join operations on the

collected data without accessing the data. Our approach is similar to that of M. Barhamgi

et.al [45] but our method considers privacy-critical attributes of any type, not only numerical.

Similar to [45], our methods uses K-Anonymity, more specifically the “Dataset-based identifier

generalization" method discussed in [45], for value generalization to preserve the privacy of

data service providers during data service composition. In addition, our approach also ensures

authentication of the intermediate input and output data during data service composition. The

service providers participating in the composition plan authenticate their respective parent(s)

(the preceding data service in the composition plan) and child(ren) (the succeeding data service

in the composition plan). The proposed approach also ensures that the mediator strictly adheres

to the shared service composition plan and does not introduce illegitimate, external service

providers.

In spite of being ‘untrustworthy’, it is the mediator’s responsibility to orchestrate the data

service composition. A client application queries the mediator and the mediator returns privacy

sanitized results, without gaining access to intermediate privacy critical data. Algorithm shown

in the Figure 5.2 describes the mediator’s role in detail in data service composition; and Algo-

rithm shown in the Figure 5.3 describes the part that the service providers play. The detailed

steps followed by the mediator during the Service Composition are described in detail in the

following subsections.

66

Service providers exchange
certificates

Mediator generates and shares
service composition plan

Exchange of secret string
between parent-child pairs

Service providers create in-
memory tables

Mediator picks a service
provider

Value generalization using K-
Anonymity on child

Concatenation of secret string
and Hash calculation.

Mediator receives Hashed
Intermediate results

No

Mediator joins hashed
Intermediate results

Yes

Start

End

Exhausted service
composition plan?

Execute Query using all the
generalized values

A child shares number of
generalized values securely

with its parent

Figure 5.1: Steps in Privacy Preserving Data Service Composition

67

5.2.1 Mediator Generates and Shares Service Composition Plan

It is the responsibility of the mediator to prepare a service-composition plan to execute the client

query (Steps 3 and 6 of Algorithm 5.2, Steps 1 and 2 of Algorithm 5.3). The mediator maintains

a mapping table to keep a record of services along their properties such “service name", “input",

“output", and the like (Step 1 of Algorithm 5.2). The mediator next selects a set of services from

the mapping table to execute the requested query. The selection of services is based on their

properties such as input, output, and content. The input query is broken into several sub-queries

and the sub-queries are assigned to different service providers. This process is called query

rewriting (Step 12 of Algorithm 5.2). In this chapter, our focus is only on improving privacy in

data service composition and we do not dwell upon service selection and query rewriting. We

adopt these from [14], [55], and [13].

Subsequent to service selection and query rewriting, the mediator decides the order of

execution of sub-queries on the selected services. This ordering forms a directed acyclic graph

of data service providers called the Service Composition Plan (Figure 1.1). An edge between

two nodes DSi and DSj (nodes represent the service providers) in the Service Composition Plan

indicates that the output of DSi is an input to DSj. For example, In Figure 1.1 the input to

DS2 and DS3 is the output of DS1. We adopt the composition plan generation technique from

Srivastava et. al. [55]. The mediator shares the Service Composition Plan with the selected data

service providers (Step 6 of Algorithm 5.2).

5.2.2 Service providers exchange certificates

Service providers in a service composition plan exchange their respective authentication certifi-

cates with each other through the mediator (Step 7 of Algorithm 5.2, Step 2 of Algorithm 5.3).

The mediator requests the X.509 certificates of all service providers in the composition plan

[29] which is one of the possible certification mechanisms to authenticate the service providers

in the composition plan. The mediator shares the certificate of each service provider with all

the other service providers i.e. the certificate of each service provider DSi is shared with service

providers {DS1, DS2,, DSn}-{DSi}.

68

5.2.3 Exchange of Secret Strings Between Parent-Child Pairs

All the parent-child pairs in the service composition plan share a common secret string between

them (Steps 8, 9, and 10 of Algorithm 5.2, Steps 4, 5, 6, and 12 of Algorithm 5.3). The

mediator facilitates the exchange of the secret strings between them, without it seeing the secret

string. To create the secret string each parent service provider chooses a random secret string

and encrypts it using the public key of its respective child(ren). This encryption is followed by

another encryption with its own private key (i.e.,

PRIparent(PUBchild(SecretString))). This doubly encrypted secret key is then passed on to the

mediator that distributes it to the parent’s child(ren). If a service provider happens to be playing

the role of both a parent and child in the composition plan, it is associated with two secret

strings: one that it receives from its parent and the other that it shares with its child(ren).

5.2.4 Concatenation of Secret String and Hash Calculation

All service providers append the secret strings of their respective parents to the entries of the

privacy critical attributes (Step 13 of Algorithm 5.3). Next, an SHA-256 hashing of each value

of the privacy critical attribute appended with the secret string is created. The same hash string

is created for values that are present with the both the parent and child of the parent-child pair.

The mediator does not know the attribute values nor the concatenations of the values and the

secret string, but it is able to compare or execute join operations on the hashed values. Every

new data service composition has a new secret string between a parent-child pair.

5.2.5 Service Providers Create In-Memory Tables

Each service provider maintains a table for its privacy-critical attributes (Steps 14 and 15 of

Algorithm 5.3) and a second table comprising the “hashed-value" and the actual ‘value" of the

privacy critical attributes. The hashed-value, as mentioned earlier, is created by concatenating

the secret string from the parent with the value of the attribute and following it with applying

69

SHA-256 to it. This additional table for hash values ensures that the original table is untouched.

For example, in Figure 1.1 DS2 maintains an in-memory table comprising T(Invoice-Hash,

Invoice). The table remains sorted (lexicographical sorting) with respect to the hashed-value

(i.e., “InvoiceHash" in the case of DS1). When the mediator needs to execute a query for a

value, it executes the same with the help of the hashed values (this is because the mediator only

has hashed value). The service provider is able to know the actual value of the attribute with

the help of tables in the memory and executes the query. There are several advantages of using

an in-memory tables. First, the original table need not be sorted. Second, a service provider

can maintain different in-memory tables for different composition plans. Different in-memory

tables have hash values created, each with a different secret string. Third, the in-memory table

protects our method from the privacy breech mentioned in detail in Section 5.2.7.

The use of the secret string is explained through the following example. In Figure 1.1,

DS1 encrypts a secret string, SecretStringDS1−DS2−DS3, with the public keys of DS2 and DS3

and passes these on to the mediator. The mediator shares these encryptions with DS2 and DS3.

All three service providers append the secret string to the values of their respective privacy-

critical attributes such as “Invoice” and “CustomerID”. For instance, Invoice “489434", be-

comes “489434Secret" if SecretStringDS1−DS2−DS3 = Secret. Next, each service provider cal-

culates the SHA-256 (hashing algorithm) values of their respective privacy-critical attributes

appended with the secret string (e.g., “489434Secret" for the example invoice value). Each

service provider maintains a sorted table in the memory comprising the privacy critical at-

tributes and the hash values of their respective appended forms. in Figure 1.1 DS1 maintains a

table T(InvoiceHash, Invoice), DS2 maintains two such tables as T(InvoiceHash, Invoice) and

T(CustomerIDHash, CustomerID), where “InvoiceHash" is created using SecretStringDS1−DS2−DS3

and “CustomerIDHash" is created using SecretStringDS2−DS4. The mediator executes a query

on the databases with the hashed appended values as the input instead of the actual attribute

values. For example, the mediator queries DS2 with the “InvoiceHash" as input instead the

“Invoice" as input.

70

5.2.6 Mediator picks a service provider according to service composition

plan

To execute an input query, the mediator executes a number of sub-queries on individual data

service providers based on the service composition plan (Steps 12, 13, and 14 of Algorithm

shown in the Figure 5.2). For example, in Figure 1.1 a sub-query is executed on DS1 with

“description" as input. Next, a sub-query is executed on DS2 by using the output of DS1 i.e

Hash(Invoice + SecretStringDS1−DS2−DS3). A sub-query is also executed on DS3 using the

same output of DS1. Finally, a sub-query is executed on DS4 using the output of DS2 as input,

Hash(CustomerID+SecretStringDS2−DS4).

5.2.7 Hashed Value Generalization using K-Anonymity

Value generalization is the process wherein the mediator queries a generalized (at least K values)

set of values from a data service provider, instead of just querying one specific value of interest x

(Steps 18 and 19 of Algorithm 5.2, Steps 16 and 17 of Algorithm 5.3). In other words, if a query

is to be executed using an input value x on a Data Service Provider DSj, then generalization

results in the query being executed using K-1 values in addition to the query with x. All the

K possible values belong to DSj and K is called the maximum protection factor required by

the parents of DSj in the service composition plan (Figure 1.1). The mediator computes the

generalization of a value with the help of DSj in such a manner that DSj is unable to know which

of the K values is the value x for which the query needed to be really executed. This ensures

privacy to the extent that DSj can only guess (with a probability of 1/K of being correct) the

values of x.

Why Hashed Value Generalization? Assuming two service providers, DSi and DSj, where DSi

is the parent of DSj. The mediator shares the service composition plan with all the participating

service providers including DSi and DSj. If the mediator executes a query on DSj using an

output from DSi (DSj’s parent), then DSj comes to know that DSi has information on this value.

This is possible because both DSi and DSj have the hash for a common value. This infringes

upon the requirement of privacy and needs to be avoided. Hence, hash value generalization

71

is used that results in DSj only being able to make a guess on the value of input data, with a

probability of 1/K of being correct. After a query is executed on a service provider with K,

the mediator discards the K-1 extraneous results and holds on to just the one actual result, by

filtering the false positives.

Selectivity (Se) is an important factor that needs to be defined before a detailed description of

Hashed Value Generalization is provided. Selectivity represents the number of output values

from an in-memory table of a service provider over a given range. Se(DSi, R) is the number of

output values in the range R of the in-memory table of DSi. For example, the value of Se(DSi,

[−∞,+∞]) is total number of elements in table whereas Se(DSi, [319e5, 6e093]) is total number

of elements between “319e5" and “6e093".

Hashed Value Generalization: For a given in-memory table of a child data service provider,

the mediator follows the procedure below for hashed value generalization.

1. Mediator queries the selectivity of a service provider DSi with respect to the wide range of

privacy critical values i.e Se(DSi, [−∞,+∞]) (i.e the whole table) along with the middle

value value (say mid) in the range of]−∞,+∞[).

2. If the selectivity value returned is no less than 2*K, and the mid value is lexicographically

more than x, then step 1 is repeated with the new range]−∞,mid].

3. Else, if the returned selectivity value is no less than 2*K, and the mid value is lexico-

graphically less than or equal to x, then step 1 is repeated with the new range [mid,+∞[.

4. Else, if the returned selectivity value is less than 2*K, then the current range comprises

the generalized values of x. Instead of just x, the service provider DSi is queried with all

the values in the range.

5. The mediator removes every result except that of x. This is called the removal of false-

positives.

We have largely adopted this method from - M. Barhamgi et. al. [45]. A limitation with

their implementation is that it is susceptible to a privacy breach whereas we overcome it using

an in-memory table and hashed values (discussed in 5.2.7).

72

Privacy Analysis of Hashed Value Generalization: According to [45] the only privacy issue

with the method is that the result of generalization changes with a change in table. If the

mediator does value generalization with a value (say x) twice from the same table with the

data in the table being different the two times, then this results in value generalization with

two different sets of data. However, one value remains common in both the results and that

is the actual value being protected. This would enable the child service provider to guess that

the common value is the actual value. The solution to this problem is that the result of value

generalization should not change even when there is change in the table. To realise this, we use

‘in-memory’ tables to perform value generalization. The in-memory table remains unchanged

for a given data service composition. Even when there is a change in the original table, the

in-memory table remains unchanged for that data service composition. A new in-memory table

is used for the next composition. Further, a child in a service composition plan shares with its

parent the value of the number of queries executed on it by the mediator. This number, in an

ideal scenario, is equal to K and represents the instructions given by the parent service to the

mediator on the number of queries to be executed. If the value shared by the child is different

from K, it indicates improper adherence to the K-Anonymity mechanism.

5.2.8 How authentication is achieved?

Hashed Value Generalization, as discussed in Section 5.2.7, only protects the value of a par-

ent data service provider from the child data service provider in a service-composition plan.

Authentication between two service providers is actually achieved using a secret string shared

between the parent-child pairs (discussed in Section 5.2.3). Owing to the shared secret string

between parent-child pairs, the mediator is not be able to introduce a service provider from

beyond the agreed upon service-composition plan. If, in a service composition plan, service

provider DSi is the parent of service provider DSj, then the following steps provision security

between DSi and DSj and this security is denoted by Sij.

1. DSi picks a secret string and shares it with DSj by encrypting it using PRIDSi(PUBDS j(SecretString)).

2. Both DSi and DSj concatenate the secret string with the privacy critical attributes.

3. Both DSi and DSj compute the hash of the concatenation in the above step.

73

4. DSj shares the number of queries executed on it by the mediator with DSi.

Whenever the mediator executes a query on DSi, the same returns the result of the query

to the mediator after securing it using Sij. By doing this, DSi and DSj authenticate each other in

the following way:

1. The parent DSi gets confirmation that no one can use its output other than DSj.

2. DSi also gets to know whether the mediator is following the value of K or not.

3. DSj also gets confirmation that the input for which the value is being generalized using

K-Anonymity, is coming from DSi. This is because all the hashed values in DSj’s in-

memory table, on which value generalization is be performed, are secured by Sij.

5.2.9 How is everything working while maintaining privacy?

The operations of a mediator and the service providers in a service-composition plan are de-

scribed in detail in Algorithms shown in the Figure 5.2 and 5.3 respectively. The following

example describes the communication between these components done whilst maintaining se-

curity in Figure 1.1. In Figure 1.1 the security between DS1, DS2 and DS3 is denoted by S123

for convenience of illustration. The three services share a common secret string because DS2

and DS3 are children of DS1. A query is executed on DS1 with “Description" as the input. The

result of DS1 is Table T1[“Description", “S123(Invoice)", “Quantity"]. It is important to note

that the mediator cannot see the value of “Invoice". The mediator performs value generalization

(using K-Anonymity) of “S123(Invoice)" on both DS2 and DS3 based on the value received

from DS1. It then queries DS2 using the generalized values of “S123(Invoice)" as input. DS2

creates table T2[“S123(Invoice)", “S24(CustomerID)"] for all the generalized values. Similarly,

the mediator queries DS3 using the generalized values of “S123(Invoice)” as input. DS3 cre-

ates table T3[“S123(Invoice)", “InvoiceDate"] for all the generalized values. The mediator then

performs value generalization (using K-Anonymity) of “S24(CustomerID)" on DS4 based on

the value received from DS2. Next the mediator queries DS4 using the generalized values of

“S24(CustomerID)" as input. DS4 creates table T4[“S24(CustomerID)", “Country"]. In all the

cases, the mediator eliminates the respective K-1 data used for generalization and only retains

74

the actual data. Finally, the mediator joins T1, T2, T3, and T4 to get the final result of the query.

A simplified sequence diagram of the proposed method having only one parent and one child is

shown in the Figure 5.4.

5.3 Evaluation

In this section, the proposed service composition method is evaluated on the criteria of security,

privacy, and performance. The privacy and security aspects of the proposed method are first

evaluated by assessing the behaviour of the system under standard likely ‘threat’ circumstances.

This is followed by comparing the proposed method with existing state-of-the-art techniques in

terms of various aspects of security and privacy. Finally, the proposed method is evaluated in

terms of its performance wherein the execution time and resource requirements are assessed

and shown to be within reasonable bounds.

5.3.1 Dataset

To evaluate the proposed method for privacy in data service composition, we downloaded an

online retail dataset from the UCI Machine Learning Repository (link of the dataset). There

is only one table in this dataset that contains 1,067,371 records. The schema of this table

is as follows: R(Invoice, StockCode, Description, Quantity, InvoiceDate, Price Customer, ID,

Country). From this table, we created four different schemas: R1(Invoice, Description, Quan-

tity), R2(Invoice, CustomerID), R3(Invoice, InvoiceDate, Price), R4(CustomerID, Country). R1

includes the description and quantity of an invoice, R2 includes the customer identification as-

sociated with the invoice, R3 includes the price and date of an invoice, and R4 has information

on the country that a customer belongs to. We create four tables corresponding to the four

schemas.We insert 65K, 130K, 195K, 260K, 325K, 390K, 455K and 520K records in each of

tables. That is, the first time that the query is executed 65 thousand records are inserted in each

of the four tables, the next time 130 thousand records are inserted, and so on.

75

https://archive.ics.uci.edu/ml/datasets/Online+Retail+II

Figure 5.2: Mediator’s steps of execution

76

Figure 5.3: Service Provider’s steps of execution

77

5.3.2 Experimental Setup

We simulate a data service-composition scenario by by providing the four schemas to four

different data service providers to maintain, DS1, DS2, DS3, and DS4, correspondingly. The

four services and a mediator are deployed as five standalone applications in Java on the same

machine. The datasets are stored in a MySql server. All the processes described in Section

5.2 are implemented using appropriate Java APIs. For example, cryptography is implemented

using packages “java.security", and “java.crypto". We run the experiments on an AMD Ryzen

7 3700U, 2.3GHZ processor running Windows 10 with 12GB RAM.

5.3.3 Security and Privacy Analysis

This section first examines how the proposed method overcomes certain standard security chal-

lenges in data service composition. We use sequence diagrams to depict the normal flow (Figure

5.4) of a composition and to depict the various threats that a data service composition has to face

(Figure 5.5). These threats comprise unethical behaviour of the mediator. The idea of using se-

quence diagrams for these representations is taken from the AVISPA tool [11]. For simplicity, a

scenario of one mediator and two data service providers is assumed where one service provider

is the parent and the other is the child.

The threats depicted in the sequence diagram are described below along with a brief dis-

cussion on how the proposed method overcomes them.

• Threat: The mediator attempts to insert an alien service provider into the composition

Resolution: The mediator is unable to do this because the latter is not aware of the

common secret key shared between the services and therefore cannot share this with the

alien service. The only way that the alien service can gain access to the secret key is by

sharing its certificate with one of the members of the service composition.

• Threat: The mediator attempts to surreptitiously change the service-composition plan

by changes the relationships between the participating service providers, from Parent→

Child→ Alien to Parent→ Alien→ Child

78

Service Composition Plan

Service Composition Plan

par

Certificate containing PUBparent

Certificate containing PUBchild

Mediator Child

Certificate of Child containing PUBchild

Certificate of Parent containing PUBparent

par

Parent

[K!=X] or cannot decrypt the X using PUBchild

(PRIparent(PUBchild(OK)))

Update the Range (R)

(PUBchild(PRIparent(Secret)))

(PUBchild(PRIparent(Secret)))

Calculate Hash(Attrib+Secret) for all
values of a privacy critical attribute

Calculate Hash(Attrib+Secret) for
all values a privacy critical attribute

par

query

Sorted Hash(Attrib+Secret)] table
and (PUBchild(PRIparent(K)))

Request Selectivity (Se) and mid
over a given range R =]- , + [

of Hash(Attrib+Secret)

Se and mid

Select a Secret String say "Secret"

loop

[Se=K]

X = Number of iterations in
above loop

PUBparent(PRIchild(X))

PUBparent(PRIchild(X))

alt

(PRIparent(PUBchild(Abort)))
(PRIparent(PUBchild(Abort)))

[else]

(PRIparent(PUBchild(OK)))

Execute queries on all the values in
a range of Hash(Attrib+Secret) in the

selected Range of K values

Results

Remove false positives

[If child received OK signal from the parent]

alt

[else]

AbortAbort

Calculate in-memort sorted table
[Attrib, Hash(Attrib+Secret)] and

decide the value of K

(PUBchild(PRIparent(K)))

Figure 5.4: Sequence diagram of proposed data service composition with only two members

79

Mediator ChildParent Alien

That doesn't make sense.
Give me the secret string

I cannot,
that is encrypted using

public keys of parent and
child

Give me the intermediate
data

Hash(Attrib+Secret)]

OK Add me to the
composition

For that you have to give
your certificate signed by

a reputed authority.

Certificate with PUBAlien

Certificate of Alien
containing PUBAlien Certificate of Alien

containing PUBAlien

Sorry, I cannot add this guy in the middle of service
composition Sorry, I cannot add this guy in

the middle of service
composition

Mediator unethically tries to introduce an alien service provider

Alien is a member of the service composition plan: parent -> child -> alien.
But mediator unethically tries to execute parent -> alien -> child

Sorted Hash(Attrib+Secret)] table and
(PUBchild(PRIparent(K)))

query

(PUBchild(PRIparent(K)))

Sorry, that doesn't make
sense

Alien is a member of the service composition plan: parent -> child -> alien.
But mediator somehow manage to alien as parent of child

Sorry, that doesn't make
sense

PUBparent(PRIchild(No. of
iteration in value generalization))

PUBparent(PRIchild(No. of
iteration in value generalization))

Figure 5.5: Security analysis of the proposed method having unethical mediator

80

Resolution: The legitimate Child of Parent, waits for a message (i.e PUBChild(PRIParent(K)))

from the Parent before supporting the mediator in value generalization. As the value is en-

crypted using Child’s public key it does not make sense to Alien. Therefore the mediator

is unable to change the service composition in this manner.

• Threat: This is another scenario wherein the mediator attempts to surreptitiously change

the service-composition plan in the following manner: here also, Alien is considered a

legitimate member of the composition plan and the correct plan is Parent → Child →

Alien. This is modified to Alien→ Child by the mediator and this modification happens

after the Child has received a message from the Parent and needs to respond. The Alien

replaces Parent and becomes the new parent of the child.

Resolution: In this case, the Child still considers the Parent as its parent. The Child

sends a message (i.e PUBparent(PRIchild(No. of iteration in value generalization))) to the

Parent after assisting the mediator with value generalization. As the value is encrypted

using the Parent’s public key it does not make sense to the Alien. Therefore the mediator

is unable to change the service composition in this manner.

The vulnerabilities and threats discussed above are by no means comprehensive and rep-

resent a small sample of possible threats. They are included to demonstrate the working of the

proposed method.

Apart from overcoming the threats described, the proposed method ensures complete pri-

vacy between communicating service providers. No message exchanged between these service

providers gets leaked. The proposed method ensure this privacy through value generalization

by the mediator. The only thing that the mediator is trusted with is the encrypted intermediate

value of messages exchanged between service providers in the composition.

5.3.3.1 Comparison with existing techniques

Let us now compare our work, in terms security and privacy, against other related methods in

terms of the functionalities they provide. The work proposed by Stephen S. Yau et. al. [61]

on data service composition is quite similar to our method, with the exception of two main

differences.

81

• Stephen S. Yau et. al. [61] use a unique random factor is between each parent-child pairs

which is analogous to the Secret in the proposed method.

• The major difference between our method and [61] is that the latter does not do value

generalization and it is not able to maintain privacy between two service providers.

S. E. Tbahriti et. al. [57] propose an approach that employs formal models for ensuring

privacy. When two services lack compatibility in ensuring privacy, the approach prescribes that

the mediator negotiate and make amends. This approach is quite different from ours in that

there is no real cryptography involved.

The method proposed by M. Barhamgi et. al. [45] is the latest in the field of data service

composition.

• The technique uses OPES [3] encryption instead of “Hashing with a common secret",

to hide intermediate data from the mediator. OPES encrypts data in a manner that two

encrypted values can be compared without the need to be decrypted. The limitation of

this technique, however, is that it cannot be used for encrypting non-numeric data.

• Just like our method, this technique also ensures privacy between two service providers

through value generalization.

• The absence of the system of a common secret in this technique makes it vulnerable

to the illegitimate inclusion of an alien service into a shared composition plan by an

untrustworthy mediator.

• Also, the absence of authentication messages between parent and child exposes the service-

composition plan to illegitimate alteration by an mediator.

Table 5.1 summarises the endeavours of various approaches at ensuring security and pri-

vacy in data service composition.

5.3.4 Performance Analysis

To analyse the performance of the proposed method, we recorded the execution time of a query

with and without the applying the proposed method on the experimental data service composi-

82

Stephen S. Yau et.al. (2008) SE Tbahriti et.al (2014) M Barhamgi et.al (2019) Proposed Method

Intermediate data is Visible to the mediator No Yes No No

Privacy between a parent-child pair in a service composition is preserved No No Yes Yes

Value generalization Used No No Yes Yes

Encryption of the Intermediate data Yes No Yes Yes

Common secret shared among participating services yes No No Yes

Supported type of Intermediate data Any Any Integer Any

Authentication between Service providers Yes No No Yes

Source service has assurance about destination of its output data Yes No No Yes

Source service has assurance about the proper use of K-Anonymity No No No Yes

Possibility of Replay attack by mediator Yes Yes Yes No

Trust on mediator Average Very High Average Low

Mutual trust among services High Very High Average Low

Table 5.1: Privacy features available with various methods in a data service-composition

environment

tion set-up described earlier in this section. The query executed is: how many lunchboxes were

purchased by people of France on December 3, 2012?. The execution of this query requires

the involvement of all four service providers discussed in Section 5.1. The service-composition

plan to execute this query is shown in Figure 1.1. In the performance analysis results reported,

the process time graphs show the actual CPU time expended to complete the execution of a

query, whereas the elapsed time graphs shows the total time interval between the start and finish

of query execution.

Figures 5.6, and 5.7 show that irrespective of whether it is the elapsed time or the process

time, the required execution time increases with the number of queries executed. As the value

of K is large, a large number queries is executed and the time of execution is long. Further,

while performing value generalization, the number records in the database plays an important

role. The more the number of records there are in the database, the more time that value gen-

eralization takes for a given value of K. Therefore, for a given value of K, the execution time

increases as the number of records increases. On the other hand if no privacy is incorporated,

the execution time remains constant.

Execution time also depends on the number of privacy critical data used in service com-

position. A large number of privacy critical data results in more value generalization and hence

a large number of queries that need to be executed. In Figure 1.1, DS1 has a privacy critical

attribute “Invoice". Figures 5.8 and 5.9 show that a large number of outputs from DS1 results

in longer execution time for a given value of K. The Execution time of the proposed method is

better than M. Barhamgi et. al. [45]. Where to execute a query the method proposed by [45]

83

takes more than an hour in its most secure form, the same proposed method takes hardly few

minutes.

Figure 5.6: Process Time of Execution vs Number of Records (DS1 has 9 Records in Output)

Figure 5.7: Elapsed Time of Execution vs Number of Records (DS1 has 9 Records in Output)

84

Figure 5.8: Elapsed Time of Execution vs Number of Records (K=4)

Figure 5.9: Process Time of Execution vs Number of Records (K=4)

Figure 5.10: Memory consumption for query execution (K=4)

85

800
860

925
1000 1040

1110
1160

1255

600 600 600 600 600 600 600 600

0

200

400

600

800

1000

1200

1400

65 130 195 260 325 390 455 520

M
em

or
y

re
qu

ir
ed

 in
 M

B

Number of records in database

Memory Secured Memory Plain

Figure 5.11: Memory consumption for query execution (K=16)

Therefore, the time required to execute a query depends on the following: 1) the number

of actual execution instances, which is K times the number of privacy critical attributes; 2)

the total number of service providers in the service-composition plan; 3) the total number of

records in the database of each service provider, as the mediator performs a binary search on

it for value generalization; and 4) the cost of the authentication process, which is a constant

since it involves a fixed number of messages. If the number of privacy-critical attributes is

P, a number of service providers in the service-composition plan is S, the average number of

records per service provider is R, and K is the value of K in value generalization, then the time

complexity of query execution is O(P*K*S + log(R)). This is the time complexity of the whole

system of data service composition. The time taken to sort the in-memory table is not counted in

the time complexity, as it is a separate one-time activity of each service provider. Each service

provider also has to maintain a sorted table in memory, which contains all the records of that

service provider. So each service provider has a space complexity of O(R).

The entire service composition set up is installed on the same Windows 10 system as dis-

cussed earlier. By executing the service composition, we are able to assess the total memory

requirements. As is evident from Figures 5.10 and 5.11, if the value is not generalized, the mem-

ory requirements do not change with increasing number of records. With value generalization,

however, an in-memory table needs to be maintained and therefore the memory requirements

increase with increasing records.

86

5.4 Conclusion

This chapter proposes a method for data service composition that maintains privacy between

data service providers. The method assumes an untrustworthy mediator and, relying on the

k-anonymity algorithm for value generalization and basic authentication and encryption, it pro-

vides for effective privacy in data service composition, mitigating the risks of the mediator

sharing participant data with external entities and violating the predefined and agreed upon

service-composition plan. Our method meets the key privacy requirements of sensitive-data

providers participating in data service compositions and its feasibility has been demonstrated

through experimental evaluation with real-world data services.

87

This page was intentionally left blank.

Chapter 6

Summary and Conclusions

This thesis deals with the efficacy, privacy and security aspects of web-services and their

composition. Most requests and responses between web-services are in the form of XML and

JSON. To maintain effective interaction between web-services we propose new compression

technique for XML and JSON documents. The proposed techniques provide compression ratio

superior to existing state of the art techniques, especially those meant for web API based XML

and JSON.

Subsequently, a novel XML and JSON encryption technique is proposed by extending

the ideas of existing XML and JSON compressors. The proposed technique of encryption

secures XML and JSON documents in addition to effectively compressing them. We conducted

extensive security analysis of the proposed technique and analyzed the technique along varied

security aspects. We also tested the technique against attacks that are especially meant for XML.

We found the proposed technique to be secure in all these aspects.

We finally looked at security and privacy aspects of data services during compositions.

This is especially important because this is one category of web-services that is especially vul-

nerable particularly in terms of data privacy. Data service providers are popular means of pro-

visioning data and accept and respond to queries through web service interfaces. Often data

89

service providers have to form compositions amongst themselves to effectively execute a query.

This phenomenon is called data service composition. The biggest challenge during data ser-

vice composition is the privacy of the service providers. In this thesis, we provide a means

for effective authentication, privacy and security between data service providers in a service

composition plan.

6.1 Contributions

The points below depict main contribution of this thesis.

• In this thesis, we describe a new XML compression technique motivated primarily by

the need to enable bandwidth-efficient communications within service-oriented systems

and aims to reduce the size of the XML documents exchanged as requests and responses

between web APIs. The size of these documents is typically small (less than 1 MB) and

their content involves a high ratio of element and attribute tags to data content.

• By extending XML and JSON compression technique, we developed a novel XML and

JSON encryption technique. The proposed encryption technique secures XML and JSON

documents and compresses as well.

• The following are the contributions of this thesis in terms of data service composition. We

describe a method for supporting data-service composition through an untrusted mediator,

as follows.

– During data service composition, the data of one service provider needs to be pro-

tected from other service providers. The mediator facilitates the maintenance of

privacy between service providers in addition to taking on various responsibilities

such as service selection, creation of the service composition plan, querying, join-

ing, and communication between service providers. The mediator is untrusted and

is not allowed to see any data; therefore, all data exchanges are encrypted.

– Only numeric data can be secured using the current standard of OPES [3]. We

propose concatenation of a secret string with data followed by hashing. Therefore,

privacy critical attributes in our case do not necessarily need to be numeric. The

90

proposed approach enables the mediator to perform operations such as join, query

execution, or value generalization using K-Anonymity without seeing the actual data

values.

– It is the right of every service provider to review and agree on the service compo-

sition plan before participating in a composition. The service providers should be

able to validate that they are participating only in the composition plan to which they

have agreed. The service providers should be able to validate that their input data

is originating from their parent service provider and that their output data is sent to

their children service providers, based on the agreed upon composition plan.

6.2 Scope for future research

• For XML and JSON compression and encryption, coming up with appropriate compres-

sion techniques for binary data being transferred through XML or JSON is an important

avenue for future research. In addition to this, the compression of XML or JSON docu-

ments using non-English characters needs to be worked upon and improved.

• There is plenty of scope to work towards reducing the time and memory required to

execute data service composition.

91

This page was intentionally left blank.

List of Publications

International Journals

1. G. P. Tiwary, E. Stroulia, A. Srivastava. “Compression of XML and JSON API Re-

sponses. ”, IEEE Access. 2021 Apr 13;9:57426-39, (Published)

2. G. P. Tiwary, E. Stroulia, A. Srivastava. “A Size efficient Encryption Technique for

Structured Documents Like XML and JSON. ”, Under Prepration, (In Press)

3. G. P. Tiwary, E. Stroulia, A. Srivastava. “Improving Privacy in Data Service Composi-

tion. ”, IEEE Access., (In Press)

93

This page was intentionally left blank.

Appendix A

Initialization Phase of XML encryption

A.1 Introduction

The sender and receiver make some initial settings before exchanging XML data, e.g. to create

and share the key, creating “Temporary Table" and “Symbol Table" in the “Initialization" stage.

XML encryption and decryption is done using a shared symmetric key among parties. It is

assumed that a symmetric key can be securely exchanged between the sender and the receiver

of the XML. We have chosen to call the shared key as “10-element key".

A.2 10-Element Key and Temporary Table

In the proposed method of XML encryption, we have used a 59 bit symmetric shared key. The

59 bits present in the key are divided into 10 different parts discussed later in this section. In

this way, we have called this key a “10-element key". Therefore 10 integers of different range

can be various elements of this key. For Example : ([12,6,1,1,1,14,4,0,3,2]) is a “10-element

95

Figure A.1: Temporary Table (TT)

key". The symmetric key is at the heart of the proposed method of encryption and comprises 10

elements. Here different elements of the key are referred to by using indexing starting from 0,

for example key[0] is 12, key[1] is 6 etc.

Using this key, both the sender and the receiver create two tables, “Temporary Table"

(Figure A.1) and “Symbol Table". (“Temporary Table" is discussed in the section A.2 whereas

“Symbol Table" is discussed in the section A.3). The “Temporary Table" is created using only

“10-element key" while “Symbol Table" is created using both “Temporary Table" and “10-

element key". The value of the “10-element key" determines the number of rows and number of

columns in the “Temporary Table". The “Temporary Table" will be filled with which characters

and what will be the order of these characters in table also depends on the key itself. A fully

prepared “Temporary Table" using the “10-element key" ([12,6,1,1,1,14,4,0,3,2]) is shown in

figure A.1. The coloured cells of the “Temporary Table" are used to store table headers, whereas

the white cells are for normal entries. There are two types of headers in “Temporary Table" ,

one is a “row_header" and the other is a “column_header".

Different element of the key has been discussed one by one in the points given below and

its participation has been explained in the formation of “Temporary Table" and “Symbol Table".

• key[0]: First 15 bits of the key i.e. key[0] specifies the number of rows in “Temporary

Table". The number of rows in “Temporary Table" = key[0] + 1.

• key[1]: Second 15 bits of the key i.e. key[1] specifies the number of columns in “Tem-

porary Table". The number of columns in “Temporary Table" = key[1] + 1.

• key[2]: As part of the encryption process, both “row header" and “column header" of

“Temporary Table" need to be numbered. Numbering always starts with 1. Numbering

can start from either “row header" or “column header" depending upon the value of one

96

bit key[2]. The header numbering of “Temporary Table" starts with “row header" if the

value of key[2] is 0 and it starts with “column header" if the value of key[2] is 1.

• key[3]: If one bit key[3] is 0 then the “row header" numbering in “Temporary Table"

starts from the top row (top to bottom) and if key[3] is 1 then the “row header" numbering

starts from the bottom row (bottom to top).

• key[4]: If one bit key[4] is 0 then the “column header" numbering in “Temporary

Table" starts from the the extreme left column (left to right) and if key[4] is 1 then the

“row header" numbering starts from the extreme right column (right to left).

• key[5]: The key[5] is 6 bits in length. The non-header entries to be entered in “Tempo-

rary Table" are divided into 4 sets: “small English alphabet", “capital English alphabet",

“digits", and “special symbols". The set “special symbols" contains characters from every

language in the world except English. Different permutations of these sets will be entered

in the “Temporary Table" for different values of the key[5]. Symbols of any one set will

be entered in the “Temporary Table" according to their Unicode codepoints. The entry

always start from the left top non-header cell of the “Temporary Table".

• key[6]: After inserting different symbols into the “Temporary Table", they are slightly

shuffled into table using the key[6]. Various groups of consecutive elements in “Tempo-

rary Table" are created. Each group has a size indicated by key[6]. The last group of a

“Temporary Table" can have fewer elements than key[6]. Figure A.1 shows the various

groups as alternate consecutive underlined and non-underlined elements. The consecutive

elements 0,1,2,3 (underlined) are in the same group and 4,5,6,7 (non-underlined) are in a

different group.

• key[7]: If the value of one bit key[7] is 1, then all the elements of the group will be

reversed in the respect of their old position in the group. If the value of key[7] is 0,

there will be no such reverse operation. For key = [12,6,1,1,1,14,4,1,3,2] the groups are

reversed and the corresponding “Temporary Table" is shown in Figure A.2.

• key[8]: The 3-bit key[8] has two purposes in this encryption process. It determines

the number of digits of the numbers corresponding to characters in the “Symbol Table"

(Figure 4.2). key[8] is also used as increment value of the initialization vector during

the byte-level encryption and decryption (sections B.2.3 and B.3.1). Because the key[8]

97

decides the size of final encryption, therefore, its value depends on how much size the

sender and receiver need for the encryption result.

• key[9]: The key[9] is 8-bits in length. For every non-header entry in Table-1, a num-

ber is calculated using this formula: (rowheader)key[9]+(columnheader)key[9]. Powering

column header and row header with key[9] has a security benefit that: For the equation

(A)n+(B)n =C

By knowing a values of C its not possible to find A, B and n.

Figure A.2: Temporary Table (TT) With Group Reverse

A.3 Symbol Table Creation

After the creation of “Temporary Table" on both the sender and receiver sides, now it is the turn

to create “Symbol Table" on both sides. The procedure for creating “Symbol Table" is discussed

with an example. The “10-element key" ([12,6,1,1,1,14,4,1,3,2]) and the “Temporary Table"

created using this “10-element key" (Figure A.2) have been used to create the “Symbol Table"

here. The procedure for creating “Symbol Table" is discussed below:

1. From each non-header and non-empty cell of the “Temporary Table", The character is

taken and a unique integer corresponding to it is calculated as:

value = (row_header)key[9]+(column_header)key[9].

For example “Temporary Table" in Figure A.2, character ‘j’ has row_header = 11 and col-

umn_header = 2. The calculated value = (11)2+(2)2. Therefore the value corresponding

to ‘j’ in “Temporary Table" is 125 in “Symbol Table".

98

2. The number of digits in value is made the same as the value of key[8]. In doing this, diff

= key[8]-(no. of digits in value) is first calculated and the procedure advances to Step 3.

For example if key = [12,6,1,1,1,14,4,1,3,2] (key[8] is 3) then diff = 3-3 = 0.

3. The final value that is to be inserted in “Symbol Table" corresponding to the given non-

header character of “Temporary Table" is calculated as follows: final_value = value×10di f f .

For example final_value of ‘j’ is 125×100 = 125 .

4. The final record to insert in the “Symbol Table" is the (character, final_value) pair. If a

record in the “Symbol Table" exists with the same final_value then the procedure advances

to Step 5 otherwise to Step 6 .

For example (‘j’,125) is inserted in “Symbol Table". Before insertion of this record,

it needs to be checked if a record in “Symbol Table" exists with the same final_value

(i.e 125). For the running example, it is assumed that no such record exists, and the

procedure advances to Step 6. If (‘j’,125) is already in ST and (‘o’,125) is to be inserted,

the procedure advances to Step 5.

5. When a record with the same final_value already exists in the “Symbol Table", the fi-

nal_value of the record is incremented by 1 and checked for its uniqueness. This is

continued until a unique final_value is found. Subsequently, Step 6 is executed.

For example before inserting a record for character ‘o’, its final_value is increased to 126.

If a record with final_value 126 also exists then (‘o’,127) is inserted, otherwise the record

is (‘o’,126) gets inserted in the “Symbol Table" and procedure advances to Step 6.

6. The record (character, final_value) is inserted in “Symbol Table".

7. Both the sender and the receiver delete the “Temporary Table" after creation of the “Sym-

bol Table".

A subset of “Symbol Table" is shown in Figure 4.2.

99

This page was intentionally left blank.

Appendix B

Sender’s and Receiver’s Process of XML

Encryption

B.1 Introduction

As discussed in the Appendix A both the sender and receiver have executed the Initialization

stage and have the same “10-element key" and the “Symbol Table". Before sending the XML,

the sender goes through three steps of encryption as shown in the Figure 4.1. All the three steps

have been talked about one by one in this section. Further in this document the “data" and

the “structure" parts of XML are together addressed as “words".

101

B.2 The Sender’s Process (The Encryption Process)

B.2.1 Substitution

Substitution converts whole XML in a document of just 15 symbols (i.e. 0 to 9, T (tag start),

A (attribute name), "SPACE", E (end of latest opened tag)). We choose to call this document

as the “Substituted XML". In the XML1 (Listing 4.1) the order of occurrence of the words are

“root", “attr1", “value1", “attr2", “value2", “name", “iiti", “/name", “value", “2", “/value"

and “/root". During the substitution process, “words" of the XML document are taken in the

same order in which they appear in the document. The substitution process is described in the

Algorithm 3.

In order to convert XML to “Substituted XML", the sender passes the XML as an input

to algorithm 3 and executes algorithm 3. The sender always substitutes the characters of the

“data" parts of an XML to numbers using the “Symbol Table" . The first time the sender finds

a “structure" part in the XML that does not have an entry in the “Tag Table", the sender first

substitutes the characters of such “structure" parts to numbers using the “Symbol Table", as

well as it calculates the “Tag Table" mapping of new “structure" part. But if a “structure" part

of an XML has already an entry in the “Tag Table", then the sender substitutes it to a number

using the “Tag Table".

The “Substituted XML" is made up of only 15 types of symbols:

1. Digits from 0 to 9

2. SPACE

3. Tag indicator (T)

4. Attribute name indicator (A)

5. Tag end indicator (E)

6. Binary data indicator (B)

102

Algorithm 3: Substitution_Algorithm
Input: Plain_XML

Result: Substituted_XML

1 var substituted_xml;

2 var substituted_part;

3 var sum;

4 for All the words in Plain_XML do

5 if The word is a “data" part of the XML then

6 substituted_part← Call Symbol_Table_Based_Substitution_Algorithm with

word as input;

7 if The word is a “structure" part of the XML then

8 if The “structure" part has an entry in the Tag Table then

9 substituted_part← Number Corresponding to this word in Tag Table;

10 if The “structure" part does not have an entry in the Tag Table then

11 substituted_part← Call Symbol_Table_Based_Substitution_Algorithm

with word as input;

12 sum← Call Find_Number_Equivalent_Of_Word Algorithm with

substituted_part as input;

13 Insert (“word", “sum") entry in the Tag Table;

14 if The word is a “tag" in the XML then

15 substituted_part← ‘T ′ concatenate(+) substituted_part;

16 if The word is a “attribute-name" in the XML then

17 substituted_part← ‘A′ concatenate(+) substituted_part;

18 if The word is a “value" in the XML then

19 substituted_part← substituted_part;

20 if The word is a “Tag Closing" then

21 substituted_part← ‘E ′;

22 substituted_xml← substituted_xml +SPACE + substituted_part;

23 end

24 return substituted_xml;

103

The algorithm 4 describes steps to substitute a word of XML with numbers using the

“Symbol Table". This algorithm converts the input word of XML into a string of numbers using

“Symbol Table" and returns that string of numbers. Algorithm 3 calls the algorithm 4 for all

“data" words in XML and Algorithm 3 also calls algorithm 4 for all “structure" words whose

entries are not yet present in the “Tag Table". The variable STEnc present in the algorithm 4 is

to store the final result of the algorithm whose initial value we have assumed to be null.

Algorithm 4: Symbol_Table_Based_Substitution_Algorithm
Input: Word

Result: Symbol Table Based Substitution of Word

1 var word←Word;

2 var ST Enc← null;

3 for All the characters in word do

4 ST Enc← ST Enc concatenate(+) Number corresponding to this character in

“Symbol Table" ;

5 end

6 return ST Enc;

Algorithm 5 finds “Tag Table" entry for “structure" words. Algorithm 5 calculates the

minimum “Tag Table" number for the passed word and returns it to the algorithm 3. The

Algorithm 3 further stores the (word, number) entry in the “Tag Table".

In order to understand the substitution process better, it is assumed that the “10-element

key" key = [12,6,1,1,1,14,4,1,3,2] already has been shared between sender and receiver and a

“Symbol Table" shown in the figure 4.2 already has been created at both sides. It is also assumed

that the entry of the “data" part “root" of XML1 is currently not present in the “Tag Table".

Algorithm 3 is executed with XML1 (Listing 4.1) as input. For the first word of the XML1 (i.e

“root") the flow of algorithms 3, 4 and 5 goes as below:

1. “root" is a “structure" part of the XML (step 7, Algo 3).

2. We have already assumed that the entry of any “structure" part is not in the “Tag Table"

(step 10, Algo 3).

3. The algorithm 3 calls the algorithm 4 with “root" as input (step 11, Algo 3).

104

Algorithm 5: Find_Number_Equivalent_Of_Word
Input: String_o f _Number

Result: Number equivalent of Given Word in Tag Table

1 var word← String_o f _Number;

2 var x stores the number of entries already present in the Tag Table;

3 var y number of digits required for this Tag Table entry;

4 var sum Number equivalent of Given Word in Tag Table;

5 var di f f ;

6 Divide the word into key[8] equal parts and covert all of them into integers;

7 Add all the integers found in the previous step and store the result of this addition in

the variable sum;

8 x← “the number of entries already present in Tag Table" + 1;

9 y← log10 (x+1);

10 di f f ← y-(no. of digits in sum);

11 sum← sum×10di f f ;

12 if A record is already present in “Tag Table" with same value of “sum" then

13 Keep on increasing the value of sum as sum← (sum+1)% 10y until sum gets a

unique value other than 0;

14 return sum;

105

4. The word “root" consists of four characters ‘r’, ‘o’, ‘o’ and ‘t’. The “Symbol Table"

entries corresponding to these characters are ‘117’, ‘126’, ‘126’ and ‘104’ respectively .

5. These numbers get concatenated as “117126126104" (step 3 to step 5, Algo 4).

6. Algorithm 4 returns “117126126104" to algorithm 1 which will be stored in the variable

substituted_part (step 11, Algo 3)).

7. Algorithm 3) calls algorithm 5 as “117126126104" as input (step 12, Algo 3)).

8. Divide the string “117126126104" in key[8]=3 characters each. i.e 117, 126, 126, and

104 (step 6, Algo 3).

9. The value of the variable sum is: sum = 117 + 126 + 126 + 104 = 473 (step 7, Algo 5).

10. x = number of entries already present in the Tag Table (0) + 1 = 1 (step 8, Algo 5).

11. y = log10 (1+1) = 1 (step 9, Algo 5).

12. diff = 1-3 = -2 (step 10, Algo 5).

13. sum = 473×10−2 = 4 (step 11, Algo 5).

14. If another entry were indeed present in “Tag Table" with sum = 4, then the next value of

sum would be 4+1 = 5 (step 12 and 13, Algo 5).

15. Because no other record is present in the “Tag Table" with a value of 4 therefore algorithm

3 returns the value 4 ((step 14, Algo 5)).

16. The record (root, 4) is stored in “Tag Table"((step 13, Algo 3)).

17. “root" is a tag Therefore “T" will be prefixed in the variable substituted_part. New value

of variable substituted_part is “T117126126104" (step 13, Algo 3).

18. E is used to represent the closing of a tag (step 21, Algo 4).

19. The variable result_of_substitution gets updated (step 22, Algo 3).

Like this, the algorithm 3 execute for other words of the XML. If it is assumed that no

“structure" part was already present in the “Tag Table", then the final result of the substitution

will be this :

106

result_of_substitution = “T117126126104 A153104104117340 850153137820146340 A153104104117349

850153137820146349 T11615310 122122104122 E T850153137820146 349 E

E". At the same time, “Tag Table" entry for each “structure" part will also be created. The

“Tag Table" is created along with substitution as shown in the Figure 4.3. The “Tag Table"

stores the agreed upon integers corresponding to each “structure" part of the XML.

On the other hand if it is assumed that the entry of all the “structure" parts were present in

the “Tag Table", then the final result of substitution will be something like this. result_of_substitution

= “T4 A8 850153137820146340 A9 850153137820146349 T5 122122104122

E T6 349 E T116850 153340 E E".

B.2.2 Compression

The result of the “Substitution_Algorithm" (i.e the “Substituted XML") is a document always

made up of 14 symbols. Therefore every character present in the “Substituted XML" can be

represented with just 4-bits. Using this property, Compression_Algorithm (i.e the Algorithm 6)

compresses the “Substituted_XML" to create another document we choose to call “Compressed

XML". The “Compressed XML" is a binary document.

For example, in the message (“T4 A8 850153137820146340 A9 850153137820146349 T5

122122104122 E T6 349 E T116850 153340 E E".), “T" and “4" can be collected together in a

byte as “10110100" as shown in the figure B.1. This is how two symbols are represented in a

single byte and that is how the above-encrypted data is represented in just 46 bytes. The size is,

in fact, much smaller than the actual size of the XML (i.e 78 characters). After incorporating

all the symbols of the encrypted data byte pairs if one last symbol remains unaccommodating,

then it will be paired with “0000". The odd one remaining is always the end of the root tag (i.e.

E) (i.e “1111"). Therefore it assumed that a byte “11110000" also denotes the end of the XML

(Figure B.1). Here we assume each number of the symbol table to be three digits. If the symbol

table was to map each character with a number of two digits, then this result would have been

even smaller.

107

Algorithm 6: Compression_Algorithm
Input: Substituted XML

Result: Compressed XML

1 var compressedXml← null;

2 Consider all characters between 0 and 9 in the document of 14 symbols as a 4-bit

binary between 0000 and 1001 ;

3 Consider the SPACE in the document of 14 symbols as a 4-bit binary 1010 ;

4 Consider the Tag Start Symbol in the document of 14 symbols (i.e the prefix T) as a

4-bit binary 1011 ;

5 Consider the Attribute name Symbol in the document of 14 symbols (i.e the prefix A)

as a 4-bit binary 1100 ;

6 Consider the Closing of a tag in the document of 14 symbols (i.e the E) as a 4-bit

binary 1111 ;

7 var cursor← First_Symbol_in_the_Substituted_XML;

8 for cursor is not end of “Substituted XML" do

9 if A character at cursor+1 exists then

10 var cursor1 = cursor+1 (i.e. next symbol);

11 Accommodate 4-bit binaries equivalent of symbols pointed by cursor and

cursor1 into a single byte;

12 Concatenate the created byte with current value of compressedXml;

13 if If cursor+1 is end of the “Substituted XML" then

14 Create a byte using the 4-bit binary of current symbol and 0000;

15 Concatenate the created byte with current value of compressedXml;

16 cursor = cursor+2;

17 end

18 return compressedXml;

108

Tag Start 41011 0100-> ->

10110100

Figure B.1: Accommodating Two Symbols in One Byte

B.2.3 Byte level encryption of the Compressed XML

The substitution (section B.2.1) and compression (section B.2.2) stages of encryption introduce

several security benefits (Chapter 4). Important security features that need to be incorporated

in addition to the ones mentioned include “Diffusion" and “Confusion" [5]. Diffusion hides

the relationship between the ciphertext and plaintext, whereas Confusion hides the relationship

between the ciphertext and the key. The encryption procedures discussed until this point are

all substitution ciphers that cannot provide confusion and diffusion effects. Apart from this, the

documents “Substituted XML" and “Compressed XML" reveals the nature of the “Plain XML",

i.e which part of the document is a tag, which part is an attribute name etc.

In order to make encryption more unpredictable and add “Diffusion" and “Confusion"

properties to final encryption, we introduced byte level encryption as the third stage of proposed

method of XML encryption. The same shared key 10-element key (for example [12,6,1,1,1,14,4,1,3,2])

is used for the byte level encryption. Steps of byte level encryption is described in the Algorithm

7.

The process of byte level encryption is depicted in the Figure B.2. Encryption is applied

to every byte of “Compressed XML". Considering the first byte to be encrypted through byte

level encryption is “00000100". Subsequent to the steps 9, 10, 11 and 12 of algorithm 7 byte

“00000100" becomes “00100000". Rest of the byte level encryption procedure is shown in the

figure B.3.

The permutation is followed by an XOR operation with an earlier byte of the encrypted

stream (Step 20, Algo 7). For the first byte, same XOR operation happens with the least sig-

nificant 8-bits of the second element of the key (i.e. key[1]) (Step 14 and 15, Algo 7). This is

followed by an XOR operation on the byte with the least significant 8-bits of the first element

of the key (i.e. key[0]) (Step 16 and 21, Algo 7). Figure B.3 shows byte level encryption of one

109

Algorithm 7: Byte_Level_Encryption_Algorithm
Input: Compressed XML, 10-element key

Result: Encrypted XML

1 var encrypted_Xml← null;

2 var byte1← null ;

3 var XOR1← null;

4 var XOR2← null;

5 var priviousByteEncryption← null;

6 for every byte of the “Compressed XML" do

7 byte1← byte_selected_in_current_iteration ;

8 If key[2] is 1 then the first bit of byte1 is swapped with the eighth bit. And if

key[2] is 0 then there will be no such swapping. ;

9 If key[3] is 1 then the second bit of byte1 is swapped with the seventh bit. And if

key[3] is 0 then there will be no such swapping. ;

10 If key[4] is 1 then the third bit of byte1 is swapped with the sixth bit. And if

key[4] is 0 then there will be no such swapping. ;

11 If key[7] is 1 then the fourth bit of byte1 is swapped with the fifth bit. And if

key[7] is 0 then there will be no such swapping. ;

12 if The byte1 is the first byte of the “Compressed XML" then

13 priviousByteEncryption← “eight least significant bits of key[1]";

14 XOR1← “priviousByteEncryption”⊕byte1;

15 XOR2← “XOR1”⊕ “eight least significant bits of key[0]";

16 encrypted_Xml← encrypted_Xml concatenates(+) priviousByteEncryption;

17 priviousByteEncryption← XOR2;

18 end

19 return encrypted_Xml;

110

Swap operations on input
byte using key[2], key[3],

key[4] and key[7].

XOR

First 8-bit Input

8 least significant
bits of key[0]

8-bits

8-bits

First 8-bit Output

8-bits

8-bits

XOR

8 least significant
bits of key[1]

(Initialization vector)

8-bits

Swap operations on input
byte using key[2], key[3],

key[4] and key[7].

XOR

Second 8-bit Input

8 least significant
bits of key[0]

8-bits

8-bits

Second 8-bit Output

8-bits

8-bits

XOR

8-bits 8-bits

Swap operations on input
byte using key[2], key[3],

key[4] and key[7].

XOR

Second 8-bit Input

8 least significant
bits of key[0]

8-bits

8-bits

Second 8-bit Output

8-bits

8-bits

XOR

8-bits

Figure B.2: Byte Level Encryption Procedure

byte (i.e first byte). In this case key[0] is 12 (i.e 00001100), key[1] is 6 (i.e 00000110).

10110100 Result of
Compression

00101101 swap
operation

00101101 00000110
=

00101011

XOR with least
significant 8-bits of

key[1]. i.e 6

00101011 00001100
=

00100111

XOR with least
significant 8-bits
of key[0]. i.e 12

Final
Encryption

Figure B.3: Example of Byte Level Encryption (First Byte of Message)

In this case, CBC mode of encryption is used where the least significant byte of the key[1]

is used as “Initialization vector (IV)" (nonce) [40]. If there is continuation of the conversation

between receiver and sender with the same key then the next “Initialization vector (IV)" will

be "Previous Initialization vector"+ key[8]. Therefore in the proposed approach the "Initial-

ization Vector" gets created using the secret key and not known to the outside world. Other

implementations may apply other modes of encryption [21].

111

Swap operations on input
byte using key[2], key[3],

key[4] and key[7].

XOR

First 8-bit Input

8 least significant
bits of key[0]

8-bits

8-bits

First 8-bit Output

8-bits

8-bits

XOR

8 least significant
bits of key[1]

(Initialization vector)

8-bits

Swap operations on input
byte using key[2], key[3],

key[4] and key[7].

XOR

Second 8-bit Input

8 least significant
bits of key[0]

8-bits

8-bits

Second 8-bit Output

8-bits

8-bits

XOR

8-bits

Figure B.4: Byte Level Decryption

B.3 The Receiver’s Process (The Decryption Process)

Encrypted XML now accessed by the receiver. To read an encrypted XML it is necessary to

decrypt it. For decryption, the receiver goes through three steps of decryption as shown in the

figure 4.1. All the three steps have been talked about one by one in this section.

B.3.1 Byte level decryption of the encrypted XML

Byte level encrypted XML is received by the receiver. Therefore the first step to decrypt the

XML at receiver side is byte level decryption (Figure 4.1). The procedure of byte level decryp-

tion of XML is given in the algorithm 8.

The procedure discussed in algorithm 8 is the reverse of the procedure discussed in algo-

rithm 7. The process discussed in the algorithm 8 is depicted in figure B.4. And the example of

decrypting the first byte of a message is shown in figure B.5. Result of “Byte Level decryption

Algorithm" is “Compressed XML".

112

Algorithm 8: Byte_Level_Decryption_Algorithm
Input: Encrypted_XML, 10-element key

Result: Compressed_XML

1 var compressed_Xml← null;

2 var byte1← null ;

3 var XOR1← null;

4 var XOR2← null;

5 var priviousByteO f Input← null;

6 for every byte of the Encrypted_XML do

7 byte1← byte_selected_in_current_iteration ;

8 if The byte1 is the first byte in the Encrypted_XML then

9 priviousByteO f Input← “eight least significant bits of key[1]";

10 else

11 priviousByteO f Input← byte_selected_in_previous_iteration;

12 XOR1← “byte1”⊕ priviousByteO f Input;

13 XOR2← “XOR1”⊕ “eight least significant bits of key[0]";

14 If key[2] is 1 then the first bit of XOR2 is swapped with the eighth bit. And if

key[2] is 0 then there will be no such swapping. ;

15 If key[3] is 1 then the second bit of XOR2 is swapped with the seventh bit. And if

key[3] is 0 then there will be no such swapping. ;

16 If key[4] is 1 then the third bit of XOR2 is swapped with the sixth bit. And if

key[4] is 0 then there will be no such swapping. ;

17 If key[7] is 1 then the fourth bit of XOR2 is swapped with the fifth bit. And if

key[7] is 0 then there will be no such swapping. ;

18 compressed_Xml← compressed_Xml concatenates(+) XOR2;

19 end

20 return compressed_Xml;

113

00100111

00100111 00001100
=

XOR with least
significant 8-bits of

key[0]. i.e 12

00101011

Encrypted First Byte

00101011 00000110
=

00101101

XOR with least
significant 8-bits of

key[1]. i.e 6

10110100 Swapping

Figure B.5: Example of Byte Level Decryption (First Byte of Encrypted Message

Tag Start 4

1011 0100

10110100

Figure B.6: Converting a byte in two different symbols

B.3.2 DeCompression

Algorithm 9 shows the decompression process at the receiver side. Algorithm 9 which is the

inverse procedure of the algorithm 6, reads all the bytes of the “Compressed XML" one by one.

Each byte is then divided into two nibbles. According to the assumptions made in algorithm 6

(i.e 1010 for SPACE, 1011 for Tag start, etc), algorithm 9 then decides which symbol to add to

the result of DeCompression. The result of DeCompression (Algorithm 9) at the receiver side

is “Substituted XML". Figure B.6 shows the decompression process of a byte.

B.3.3 Substitution Algorithm at Receiver Side

The output of the algorithm 9 is “Substituted XML" that the substitution algorithm (i.e algorithm

B.7) on the receiver side converts into “Plain XML". While reading the “Substituted XML", the

114

Algorithm 9: DeCompression_Algorithm
Input: Compressed XML

Result: Substituted XML

1 var nibble1← null;

2 var nibble2← null;

3 var substituted_Xml← null;

4 for All the bytes in “Compressed XML" do

5 nibble1← left 4-bits of current byte;

6 nibble2← right 4-bits of current byte;

7 if nibble1 is between 0000 to 1001 then

8 substituted_Xml← substituted_Xml concatenates(+) 0 to 9 depends upon

decimal value of nibble1;

9 if nibble1 is 1010 then

10 substituted_Xml← substituted_Xml concatenates(+) SPACE;

11 if nibble1 is 1011 then

12 substituted_Xml← substituted_Xml concatenates(+) T ;

13 if nibble1 is 1100 then

14 substituted_Xml← substituted_Xml concatenates(+) A;

15 if nibble1 is 1111 then

16 substituted_Xml← substituted_Xml concatenates(+) SPACE concatenates(+)

E;

17 Repeat above If blocks also for nibble2;

18 end

19 return substituted_Xml;

115

algorithm B.7) looks at the various space separated words. The algorithm can differentiate

between “data" or “structure" words by looking at the preceding T , A or E in each word of

the “Substituted XML". For “structure" words in the “Substituted XML", the algorithm B.7)

first searches the corresponding number in the “Tag Table". If the number is found in the “Tag

Table", the algorithm B.7 uses the “Tag Table" for substitution of such number. Otherwise the

algorithm B.7 calls the algorithm 10 with number as input and also calls the algorithm 11 to

create a new “Tag Table" entry.

“T4", “A8", “122122104122", “0" etc. are the various words in the following “Substi-

tuted XML".

“T4 A8 850153137820146340 A9 850153137820146349 T5 122122102122 E T6

349 E E".

Algorithm 10 accepts one word from “Substituted XML" as input. Further the algorithm 10

substitutes every character of a word in substituted_XML using “Symbol Table". The algorithm

11 accepts one word from “Substituted XML" as input and creates a Tag Table entry for that

word.

Algorithm 10: Symbol Table Based Substitution Algorithm For Receiver
Input: A word in “Substituted XML"

Result: Symbol Table Based Substitution of input word

1 var ST Dec← null;

2 Slice the word into sub-strings of key[8] character each;

3 Turn the sub-strings into corresponding integers;

4 Use the “Symbol Table" to find the corresponding character of the number in the

previous step;

5 Concatenate the characters obtained in the previous step and store the result in

variable ST Dec;

6 return ST Dec;

For better understanding of algorithms we assume the following substituted XML (created

by substitution using Symbol Table) is taken as the input to the algorithm B.7. substituted_XML

= “T117126126104 A153104104117340 850153137820146340 A153104104117349

850153137820146349 T11615310 122122104122 E T850153137820146 349 E

116

Algorithm 11: Find XML Equivalent Of a Word in “Substituted XML" at Receiver

Side
Input: A word of “Substituted XML"

Result: Tag Table number equivalent to input word

1 var word← Input_Word;

2 var x stores the number of entries already present in the Tag Table;

3 var y number of digits required for this Tag Table entry;

4 var sum Number equivalent of Given Word in Tag Table;

5 var di f f ;

6 Divide the word into key[8] equal parts and covert all of them into integers;

7 Add all the integers found in the previous step and store the result of this addition in

the variable sum;

8 x← “the number of entries already present in Tag Table" + 1;

9 y← log10 (x+1);

10 di f f ← y-(no. of digits in sum);

11 sum← sum×10di f f ;

12 if A record is already present in “Tag Table" with same value of “sum" then

13 Keep on increasing the value of sum as sum← (sum+1)% 10y until sum gets a

unique value other than 0;

14 return sum;

117

E". Here the whole “Substituted XML" has been substituted by the sender using the “Symbol

Table". The following steps show the execution of two algorithms:

1. The word T117126126104 starts with a T, it implies a tag.

2. The preceding T is removed from the word. The word T117126126104 becomes 117126126104.

3. The number 117126126104 does not have an entry in “Tag Table".

4. Therefore Algorithm B.7 calls the algorithms 10 and 11 with the word 117126126104 as

input.

5. The remaining word 117126126104 is sliced into substrings of three characters each be-

cause key[8] in this case is 3. Post slicing the receiver gets the following four sub-strings:

“117", “126", “126" and “104".

6. The corresponding character for each number found after slicing the word is identified in

Symbol Table. In the number 117126126104 for example, “117" belongs to “r", “126"

belongs to “o" and “104" belongs to “t".

7. The encrypted number 117126126104 the characters “r", “o", “o" and “t" are concate-

nated to make it “root". STDec = “root" (Algo B.7, step 11).

8. For the word 117126126104, sum = 117 + 126 + 126 + 104 = 473.

9. noOfNonVars = number of new non-variable parts introduced in the current message (7)

+ number of entries already present in the TAT (0) = 7.

10. x = log10 (7+1) = 1.

11. diff = 1-3 = -2.

12. sum = 473×10−2 = 4.

13. The record (root, 4)is inserted into the tag table.

14. Algorithm 11 returns “root".

15. The word 0117126126104 is the first word in the series of numbers therefore new value

of the variable “result_of_substitution" is “<root".

118

16. New value of the variable closed is 0.

17. The word root is pushed onto the stack.

18. Similarly, the variable “plain_Xml" will be updated for each number of the series of

numbers and finally XML will be found as plaintext.

“plain_Xml" = “<root attr1=‘value1’

attr2=‘value2’><name>iiti</name><value>2</value>

</root>".

19. The created TAT is the same as that of the sender and is shown in Figure 4.3.

20. If the “non-variable" already has an entry in the Tag Table then then use Tag Table to

replace number with whole word.

119

 Algorithm: Substitution Algorithm at Receiver Side

 Input: Substituted XML

 Result: Plain XML

 1 var plain_Xml <- null, substituted_part <- null, stack \leftarrow null, closed <- 0, sum <- 0;

 2 for All the words in Substituted_XML do

 3 if The word is a ̀ `structure" part of the Substituted_XML then

 4 Remove the prefix ``T" or ``A" from the word\;

 5 if The chosen ``structure" part has an entry in the Tag Table then

 6 substituted_part <- Mapping corresponding to this word in Tag Table;

 7 if The choosen ``structure" part does not have an entry in the Tag Table then

 8 substituted_part <- Call Algorithm 11 with word as input;

 9 sum <- Call Algorithm 12 with word as input;

10 Insert (``subst_part", ̀ `sum") entry in the Tag Table;

11 if The number is the first word in Output of Substituted_XML then

12 plain_Xml <- '<' + substituted_part ; closed <- 0; push substituted_part on stack;

13 continue to the next iteration;

14 if The ``structure" part is a Tag then

15 if Variable ̀ `closed" is 0 then

16 plain_Xml <- plain_Xml + '>' + '<' + substituted_part ;

17 if Variable ̀ `closed" is 1 then

18 plain_Xml <- plain_Xml + '<' + substituted_part;

19 closed <- 0;

20 push substituted_part on stack;

21 if The ``structure" part is an Attribute-name then

22 plain_Xml <- plain_Xml + SPACE + substituted_part + ̀ `=" + ``'";

23 if The word is a ``data" part of the Substituted_XML then

24 substituted_part <- Call Algorithm 11 with word as input;

25 if Value of the variable ``closed" is 0 then

26 plain_Xml <- plain_Xml$ + $'>'$ + $substituted_part$ \;

27 if Value of the variable ̀ `closed" is 1 then

28 plain_Xml \leftarrow plain_Xml$ + $substituted_part$ \;

29 closed <- 1;

30 if The word is ̀ `E" (i.e ̀ `Tag Closing") then

31 if The variable ``closed" is 0 then

32 plain_Xml <- plain_Xml + '>'+'<\'+ pop(stack)+'>';

33 if The variable ``closed" is 1 then

34 plain_Xml <- plain_Xml + '</'+pop(stack)+'>';

35 closed <- 1;

36 return plain_Xml;

Figure B.7: Algorithm: Substitution Algorithm At Receiver Side

120

Bibliography
[1] Abbas, A. M., Bakar, A. A., Ahmad, M. Z., 2014. Fast dynamic clustering soap messages

based compression and aggregation model for enhanced performance of web services.

Journal of Network and Computer Applications 41, 80–88.

[2] Aggarwal, C. C., Ta, N., Wang, J., Feng, J., Zaki, M., 2007. Xproj: a framework for pro-

jected structural clustering of xml documents. In: Proceedings of the 13th ACM SIGKDD

international conference on Knowledge discovery and data mining. pp. 46–55.

[3] Agrawal, R., Kiernan, J., Srikant, R., Xu, Y., 2004. Order preserving encryption for nu-

meric data. In: Proceedings of the 2004 ACM SIGMOD international conference on Man-

agement of data. pp. 563–574.

[4] Al-Shammari, A., Liu, C., Naseriparsa, M., Vo, B. Q., Anwar, T., Zhou, R., 2017. A

framework for clustering and dynamic maintenance of xml documents. In: International

Conference on Advanced Data Mining and Applications. Springer, pp. 399–412.

[5] Al-Shammary, D., Khalil, I., 2010. Soap web services compression using variable and

fixed length coding. In: 2010 Ninth IEEE International Symposium on Network Comput-

ing and Applications. IEEE, pp. 84–91.

[6] Al-Shammary, D., Khalil, I., 2011. Dynamic fractal clustering technique for soap web

messages. In: 2011 IEEE International Conference on Services Computing. IEEE, pp.

96–103.

[7] Al-Shammary, D., Khalil, I., 2012. Redundancy-aware soap messages compression and

aggregation for enhanced performance. Journal of network and computer applications

35 (1), 365–381.

[8] Al-Shammary, D., Khalil, I., Tari, Z., 2014. A distributed aggregation and fast fractal

clustering approach for soap traffic. Journal of Network and Computer Applications 41,

1–14.

121

[9] Al-Shammary, D., Khalil, I., Tari, Z., Zomaya, A. Y., 2013. Fractal self-similarity mea-

surements based clustering technique for soap web messages. Journal of Parallel and Dis-

tributed Computing 73 (5), 664–676.

[10] Algergawy, A., Mesiti, M., Nayak, R., Saake, G., 2011. Xml data clustering: An overview.

ACM Computing Surveys (CSUR) 43 (4), 1–41.

[11] Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma,

P. H., Héam, P.-C., Kouchnarenko, O., Mantovani, J., et al., 2005. The avispa tool for

the automated validation of internet security protocols and applications. In: International

conference on computer aided verification. Springer, pp. 281–285.

[12] Barhamgi, M., Bandara, A. K., Yu, Y., Belhajjame, K., Nuseibeh, B., 2016. Protecting

privacy in the cloud: Current practices, future directions. Computer 49 (2), 68–72.

[13] Barhamgi, M., Benslimane, D., Amghar, Y., Cuppens-Boulahia, N., Cuppens, F., 2013.

Privcomp: a privacy-aware data service composition system. In: Proceedings of the 16th

International Conference on Extending Database Technology. pp. 757–760.

[14] Barhamgi, M., Benslimane, D., Medjahed, B., 2010. A query rewriting approach for web

service composition. IEEE Transactions on Services Computing 3 (3), 206–222.

[15] Boneh, D., Shacham, H., 2002. Fast variants of rsa. CryptoBytes 5 (1), 1–9.

[16] Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E., 2015. Xml compression via

directed acyclic graphs. Theory of Computing Systems 57 (4), 1322–1371.

[17] Boyer, J., Marcy, G., Datta, P., Hirsch, F., accessed 15 February 2019. Canonical xml

version 2.0. https://www.w3.org/TR/xml-c14n2/.

[18] Busatto, G., Lohrey, M., Maneth, S., 2008. Efficient memory representation of xml docu-

ment trees. Information Systems 33 (4-5), 456–474.

[19] Cleary, J., Witten, I., 1984. Data compression using adaptive coding and partial string

matching. IEEE transactions on Communications 32 (4), 396–402.

[20] Coppersmith, D., 1994. The data encryption standard (des) and its strength against attacks.

IBM journal of research and development 38 (3), 243–250.

122

[21] Dworkin, M., 2001. Recommendation for block cipher modes of operation. methods and

techniques. Tech. rep., National Inst of Standards and Technology Gaithersburg MD Com-

puter security Div.

[22] Eastlake, D., Hansen, T., 2011. Us secure hash algorithms (sha and sha-based hmac and

hkdf). Tech. rep., RFC 6234, May.

[23] Fung, B. C., Trojer, T., Hung, P. C., Xiong, L., Al-Hussaeni, K., Dssouli, R., 2011.

Service-oriented architecture for high-dimensional private data mashup. IEEE Transac-

tions on Services Computing 5 (3), 373–386.

[24] Geuer-Pollmann, C., 2002. Xml pool encryption. In: Proceedings of the 2002 ACM Work-

shop on XML Security. pp. 1–9.

[25] Girardot, M., Sundaresan, N., 2000. Millau: an encoding format for efficient representa-

tion and exchange of xml over the web. Computer Networks 33 (1-6), 747–765.

[26] Haroune-Belkacem, N., Semchedine, F., Al-Shammari, A., Aissani, D., 2019. Smca: An

efficient soap messages compression and aggregation technique for improving web ser-

vices performance. Journal of Parallel and Distributed Computing 133, 149–158.

[27] Hashizume, K., Fernandez, E. B., 2009. Symmetric encryption and xml encryption pat-

terns. In: Proceedings of the 16th Conference on Pattern Languages of Programs. pp. 1–8.

[28] Housley, R., 2004. Public key infrastructure (pki). The internet encyclopedia.

[29] Housley, R., Ford, W., Polk, W., Solo, D., 1999. Internet x. 509 public key infrastructure

certificate and crl profile. Tech. rep., RFC 2459, January.

[30] Imamura, T., Dillaway, B., Simon, E., Kelvin, Y., Nyström, M., Eastlake, D., Reagle, J.,

Hirsch, F., Roessler, T., 2013. Xml encryption syntax and processing version 1.1. W3C,

Recommendation.

[31] Joan, D., Vincent, R., 2002. The design of rijndael: Aes-the advanced encryption standard.

In: Information Security and Cryptography. springer.

[32] Jones, M., Hildebrand, J., 2015. Json web encryption (jwe). Internet Requests for Com-

ments, RFC 7516.

123

[33] Josefsson, S., et al., 2006. The base16, base32, and base64 data encodings. Tech. rep.,

RFC 4648, October.

[34] Kaur, G., Fuad, M. M., 2010. An evaluation of protocol buffer. In: Proceedings of the ieee

southeastcon 2010 (southeastcon). IEEE, pp. 459–462.

[35] Li, N., Li, T., Venkatasubramanian, S., 2007. t-closeness: Privacy beyond k-anonymity

and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering. IEEE,

pp. 106–115.

[36] Li, W., 2003. Xcomp: An xml compression tool. Ph.D. thesis, University of Waterloo

[School of Computer Science].

[37] Liefke, H., Suciu, D., 2000. Xmill: an efficient compressor for xml data. In: Proceedings

of the 2000 ACM SIGMOD international conference on Management of data. pp. 153–

164.

[38] Lohrey, M., Maneth, S., Mennicke, R., 2013. Xml tree structure compression using repair.

Information Systems 38 (8), 1150–1167.

[39] Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M., 2007. l-diversity:

Privacy beyond k-anonymity. ACM Transactions on Knowledge Discovery from Data

(TKDD) 1 (1), 3–es.

[40] Madson, C., Doraswamy, N., 1998. The esp des-cbc cipher algorithm with explicit iv.

Tech. rep., RFC 2405, November.

[41] Min, J.-K., Park, M.-J., Chung, C.-W., 2003. Xpress: A queriable compression for xml

data. In: Proceedings of the 2003 ACM SIGMOD international conference on Manage-

ment of data. pp. 122–133.

[42] Mohammed, N., Jiang, X., Chen, R., Fung, B. C., Ohno-Machado, L., 2013. Privacy-

preserving heterogeneous health data sharing. Journal of the American Medical Informat-

ics Association 20 (3), 462–469.

[43] Nayak, K., Wang, X. S., Ioannidis, S., Weinsberg, U., Taft, N., Shi, E., 2015. Graphsc:

Parallel secure computation made easy. In: 2015 IEEE Symposium on Security and Pri-

vacy. IEEE, pp. 377–394.

124

[44] Nithin, N., Bongale, A. M., 2012. Xbmrsa: A new xml encryption algorithm. In: 2012

World Congress on Information and Communication Technologies. IEEE, pp. 567–571.

[45] Perera, C., Yu, C.-M., Benslimane, D., Camacho, D., Bonnet, C., et al., 2019. Privacy in

data service composition. IEEE Transactions on Services Computing 13 (4), 639–652.

[46] Q-Success, 2021. W3techs—world wide web technology surveys.

URL https://w3techs.com/technologies/overview/content_language

[47] Ranjan, R., Rana, O., Nepal, S., Yousif, M., James, P., Wen, Z., Barr, S., Watson, P.,

Jayaraman, P. P., Georgakopoulos, D., et al., 2018. The next grand challenges: Integrating

the internet of things and data science. IEEE Cloud Computing 5 (3), 12–26.

[48] Rivest, R. L., Shamir, A., Adleman, L., 1978. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM 21 (2), 120–126.

[49] Sakr, S., 2009. Xml compression techniques: A survey and comparison. Journal of Com-

puter and System Sciences 75 (5), 303–322.

[50] Seak, S. C., Siong, N. K., 2011. A file-based implementation of xml encryption. In: 2011

Malaysian Conference in Software Engineering. IEEE, pp. 418–422.

[51] Senthilkumar, R., Nandagopal, G., Ronald, D., 2015. Qrfxfreeze: queryable compressor

for rfx. The Scientific World Journal 2015.

[52] Seward, J., 1996. bzip2 and libbzip2. avaliable at http://www. bzip. org.

[53] Sion, R., Carbunar, B., 2007. On the computational practicality of private information

retrieval. In: Proceedings of the Network and Distributed Systems Security Symposium.

Internet Society, pp. 2006–06.

[54] Skibiński, P., Swacha, J., 2007. Combining efficient xml compression with query process-

ing. In: East European Conference on Advances in Databases and Information Systems.

Springer, pp. 330–342.

[55] Srivastava, U., Widom, J., Munagala, K., Motwani, R., 2005. Query optimization over

web services. Tech. rep., Stanford.

125

https://w3techs.com/technologies/overview/content_language

[56] Sweeney, L., 2002. k-anonymity: A model for protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems 10 (05), 557–570.

[57] Tbahriti, S.-E., Ghedira, C., Medjahed, B., Mrissa, M., 2013. Privacy-enhanced web ser-

vice composition. IEEE Transactions on Services Computing 7 (2), 210–222.

[58] Tiwary, G. P., Stroulia, E., Srivastava, A., 2021. Compression of XML and JSON API

responses. IEEE Access 9, 57426–57439.

[59] Tolani, P. M., Haritsa, J. R., 2002. Xgrind: A query-friendly xml compressor. In: Proceed-

ings 18th International Conference on Data Engineering. IEEE, pp. 225–234.

[60] Wang, S., Agrawal, D., El Abbadi, A., 2014. Towards practical private processing of

database queries over public data. Distributed and Parallel Databases 32 (1), 65–89.

[61] Yau, S. S., Yin, Y., 2008. A privacy preserving repository for data integration across data

sharing services. IEEE Transactions on Services Computing 1 (3), 130–140.

126

	Abstract
	List of Tables
	List of Figures
	Introduction
	Background
	Research objectives
	Thesis outline

	Review of Literature
	Literature Survey on Compression of XML and JSON docuemnts
	Literature Survey on XML and JSON Encryption
	Literature Survey on Privacy Preserving Data Service Composition

	Compression of XML and JSON API Responses
	Understanding the Problem
	The Proposed Technique of XML and JSON Compression
	Configuration
	Compression
	JSON Compression
	Compression of non-English based XML
	Compression of XML Containing Binary Data

	Evaluation
	Experimental Design and Dataset
	Compressing API-response XMLs
	Compressing Document-style XMLs
	Evaluating the queryable feature of the proposed technique
	Evaluation of JSON Compression
	Size, Information and Compression Analysis
	Complexity Analysis
	Discussion

	Limitations
	Conclusion and Future Work

	A Size efficient Encryption Technique for Structured Documents Like XML and JSON
	Understanding the Problem
	The Proposed Technique of XML and JSON Encryption
	Initialization (Initial stage for both sender and receiver sides)
	The Encryption (sender's) Process
	The Decryption (receiver) Process

	Evaluation
	Compression Effect of the Proposed Method
	Security Analysis

	Conclusion

	Improving Privacy in Data Service Composition
	Understanding the Problem
	The Proposed Technique to Improve Privacy in Data Service Composition
	Mediator Generates and Shares Service Composition Plan
	Service providers exchange certificates
	Exchange of Secret Strings Between Parent-Child Pairs
	Concatenation of Secret String and Hash Calculation
	Service Providers Create In-Memory Tables
	Mediator picks a service provider according to service composition plan
	Hashed Value Generalization using K-Anonymity
	How authentication is achieved?
	How is everything working while maintaining privacy?

	Evaluation
	Dataset
	Experimental Setup
	Security and Privacy Analysis
	Performance Analysis

	Conclusion

	Summary and Conclusions
	Contributions
	Scope for future research

	List of Publications
	Appendix Initialization Phase of XML encryption
	Introduction
	10-Element Key and Temporary Table
	Symbol Table Creation

	Appendix Sender's and Receiver's Process of XML Encryption
	Introduction
	The Sender's Process (The Encryption Process)
	Substitution
	Compression
	Byte level encryption of the Compressed XML

	The Receiver's Process (The Decryption Process)
	Byte level decryption of the encrypted XML
	DeCompression
	Substitution Algorithm at Receiver Side

	Bibliography

