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ABSTRACT

The agricultural sector holds significant global importance as it serves as a founda-

tion for various industries, plays a crucial role in ensuring food security, and acts as a

catalyst for economic growth. In India, agriculture assumes paramount significance

by providing livelihood opportunities, making substantial contributions to the coun-

try’s gross value added (GVA), and providing crucial economic sustenance to the

low-income population. However, seed-borne pathogens, including bacteria, fungi,

and viruses, significantly challenges crop production. These pathogens adversely

affect seed germination and seedling establishment, resulting in low crop yields and

reduced productivity. Soybean, a crucial crop worldwide, serves various purposes

such as food security, animal feed, biofuel production, and sustainable agriculture.

Seed-borne diseases in soybeans are transmitted through infected seeds and pose

threats to plant health, vigor, and overall productivity. Enhancing productivity and

satisfying global food demands depend on addressing these challenges and ensuring

healthy and high-quality seeds.

Seed-borne pathogens in crops and seeds pose a challenge to high crop yields.

Conventional techniques such as visual inspection, microscopic examination, seed-

soaking methods, serological testing, and bioassays are used to detect these pathogens

but have limitations in terms of testing time, labor, and accuracy. Modern molecular

diagnostic techniques based on polymerase chain reaction (PCR) and deoxyribonu-

cleic acid (DNA) analysis offer advantages such as rapid and specific identification

of seed-borne pathogens. However, they can be expensive, labor-intensive, and

destructive to samples. Non-destructive methods like near-infrared spectroscopy

(NIRS), fluorescence spectroscopy (FS), Raman spectroscopy (RS), and hyperspec-

tral imaging (HSI) provide alternatives. These techniques can detect contaminants

and infections without sample destruction and have shown promise in detecting afla-

toxin contamination and fungal infections. However, they also have limitations, such

as interference from background elements, limited detection capabilities, and cost.

Laser biospeckle technique offers advantages like high resolution, cost-effectiveness,

and the ability to track biological and morphological changes in samples, making it

a valuable tool for studying dynamic processes in agricultural systems.

This study uses laser biospeckle imaging combined with deep learning (DL) tech-

niques to detect seed-borne diseases. The aim is to develop a reliable and precise

model capable of analyzing biospeckle data while considering the impact of data

noise on model’s performance. Various DL architectures, such as neural networks,

convolutional neural networks (CNNs) with long-short term memory (LSTM), three-

dimensional convolutional neural networks (3-D CNNs), and convolutional LSTM

(ConvLSTM), are employed to analyze the spatio-temporal aspects of the biospeckle

data. The ConvLSTM model achieves an impressive accuracy of 97.72% on the test
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data and demonstrates robustness to different types of noise, with accuracies ranging

from 94.31% to 98.86%. Additionally, the model’s robustness is evaluated by vary-

ing experimental data parameters such as frame rate, frame size, and the number of

frames used. The ConvLSTM model is sensitive in detecting biospeckle activity of

different orders, achieving an average test accuracy of 99% for classifying four dif-

ferent classes. This study highlights the potential of combining biospeckle imaging

and DL for the automated and accurate detection of seed-borne diseases in seeds.

Keywords: Agriculture, Biospeckle, Convolutional neural network, Deep learning,

Long-short term memory, Neural network, Noise, Photonics, Seed-borne fungi.
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Chapter 1

Introduction

1.1 Importance of agriculture

Agriculture holds immense importance from a global, industrial, and economic per-

spective. Globally, agriculture is vital for food security, providing sustenance to a

growing population. The agricultural sector also plays a crucial role in industrial

production, supplying raw materials for various industries such as textiles, phar-

maceuticals, and biofuels. Additionally, agriculture contributes significantly to the

global economy. Achieving global development goals requires establishing healthy,

sustainable, and inclusive food systems. Agricultural development is a powerful tool

in eradicating extreme poverty, promoting shared prosperity, and providing nourish-

ment for an estimated 9.7 billion people by 2050. In terms of poverty reduction, the

agriculture sector demonstrates a significant advantage, with income growth among

the poorest populations being two to four times higher than other sectors. Further-

more, agriculture is critical in driving economic growth, contributing approximately

4% to the global gross domestic product (GDP). In some least-developed countries,

this contribution can exceed 25% of the GDP [1].

Agriculture holds immense importance from India’s perspective, playing a piv-

otal role in its population’s livelihood and economic growth. With a population of

over 1.3 billion people, a significant portion depends on agriculture for their sus-

tenance and income. According to the Annual Report 2020-21 of the Department

of Agriculture, Cooperation & Farmers’ Welfare, approximately 54.6% of the coun-

try’s workforce is involved in agricultural and allied sector activities. Moreover, this

sector contributes around 17.8% to India’s gross value added (GVA) for 2019-20

[2]. Agriculture provides employment opportunities and income for millions of rural

households, serving as a crucial source of livelihood.
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1.2. EXISTING CHALLENGES IN AGRICULTURE SECTOR

Figure 1.1: GVA of agriculture and allied sectors and its share in total GVA of the
country [2].

1.2 Existing challenges in agriculture sector

Crop growth and productivity can be negatively impacted by a range of environmen-

tal challenges. These challenges can be broadly categorized into biotic stress and

abiotic stress. Biotic stress refers to the harmful effects caused by living organisms

such as pathogens (viruses, bacteria, fungi), pests (insects, nematodes, weeds), and

other herbivores. These organisms directly affect the plant’s health by depriving

it of nutrients and can lead to crop losses. In response, plants have developed de-

fense mechanisms encoded in their genetic code to counteract biotic stress. On the

other hand, abiotic stress is caused by non-living factors such as extreme tempera-

tures, drought, flooding, salinity, and mineral toxicity. These environmental factors

can disrupt plant growth, development, and physiological processes. Plants have

evolved various adaptive mechanisms to cope with abiotic stress, such as adjusting

their water balance, modifying gene expression, and altering metabolic pathways.

Biotic and abiotic stresses significantly impact plant health and can result in re-

duced yields, crop losses, and adverse economic consequences [3]. Understanding

and managing these stresses is crucial for ensuring sustainable agricultural practices

and food security in a changing climate.

Seeds play a crucial role in food crop production, as they are the source of

new plants. However, the presence of seed-borne pathogens presents a significant

challenge to ensuring the availability of healthy seeds. Bacteria, fungi, and viruses

are examples of pathogens that can infect seeds and cause biotic stress. These

pathogens negatively affect seed germination and seedling establishment, leading

to weak and uneven growth and ultimately reducing crop yield [4]. Healthy seeds

are vital for enhancing crop productivity and ensuring the overall health of crops.

2



CHAPTER 1. INTRODUCTION

Healthy seeds are characterized by their freedom from diseases, pests, and genetic

abnormalities, enabling optimal plant growth and development. They offer numer-

ous advantages for crop productivity improvement. Firstly, healthy seeds exhibit a

higher germination rate, resulting in more successful seedlings and improved stand

establishment, ultimately leading to higher yields. Secondly, using healthy seeds

contributes to effective disease management by reducing the risk of introducing or

spreading pathogens in the field, thus promoting healthier plants throughout the

growing season. Additionally, healthy seeds possess enhanced vigor and resilience,

enabling them to withstand environmental stresses like drought, heat, and cold,

reducing crop losses and increasing productivity [3].

To ensure the availability of healthy seeds and promote sustainable agriculture,

the development of a robust, low-cost, and industrial-level automated technique for

seed identification and quality assessment is of utmost importance. Such a technique

would be a standardized seed quality evaluation and health monitoring method. By

implementing an automated system, identifying healthy and high-quality seeds can

be streamlined, enabling efficient and reliable assessment on a large scale. Such a

technique will provide farmers with accurate information about the health and via-

bility of their seeds, saving time and resources. An automated technique would also

help in detecting and managing seed-borne pathogens, ensuring that only disease-

free seeds are distributed and planted. By establishing a standard for seed qual-

ity and health monitoring through an industrial-level automated approach, farmers

would have access to reliable and consistent seed evaluations, leading to improved

crop productivity and reduced crop losses. Moreover, such a system would enable

seed producers, distributors, and regulatory bodies to maintain a high level of qual-

ity control and ensure the availability of healthy seeds to support sustainable and

inclusive food systems.

1.3 Importance of Soybean in agriculture sector

Soybean holds immense significance in global and Indian economies, offering mul-

tiple benefits. With annual production exceeding 350 million metric tons in 2020,

soybean is a primary protein source and accounts for 60% of total oilseed produc-

tion [5]. Its contributions extend beyond nutrition, as soybean is crucial in ensuring

food security by providing essential protein for human consumption and serving

as high-quality animal feed. Furthermore, soybeans support the biofuel industry,

contributing to sustainable agriculture and economic development. The nutritional

value of soybean, coupled with increasing consumption patterns, has driven the de-

mand for its production. Soybean has substantial oil content and high protein levels,

making it a valuable source of vegetable oil and animal protein feed. Its versatility

is evident in applications such as aquaculture, biofuel production, and inclusion in

3



1.4. MOTIVATION

Figure 1.2: Worldwide soybean production over last five years [5].

the human diet as a protein source. Overall, soybean’s importance lies in its role

as a vital protein source, vegetable oil production, animal feed, biofuel production,

and its potential for sustainable agriculture, making it a crop of global significance

[6].

In terms of production, the USA, Brazil, Argentina, China, and India are among

the leading nations, collectively accounting for over 92% of the world’s soybean

production [7]. Furthermore, soybean cultivation benefits from biological nitrogen

fixation, reducing reliance on chemical fertilizers and promoting sustainability in

agricultural systems. Ongoing research and advancements in soybean production

techniques, including the use of more efficient inoculants, contribute to improving

crop yields and environmental sustainability. However, seed-borne diseases pose

a threat to soybean crops, as they can spread through infected seeds and lead to

plant infections, reduced vigor, and decreased productivity [6]. Efforts to manage

and prevent seed-borne diseases are essential for required soybean production and

maintain its contributions to various sectors.

1.4 Motivation

The agricultural sector has witnessed remarkable technological advancements in re-

cent years, significantly improving agricultural practices and crop monitoring. In-

tegrating sensors, equipment, machines, and computers have transformed modern

agriculture into a data-centric industry that requires precise and advanced data ac-

quisition and processing technologies, ultimately enhancing productivity. New-age

technologies such as artificial intelligence (AI), the Internet of Things (IoT), ma-

chine vision, robotics, and unmanned aerial vehicles (UAVs) have rapidly advanced
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the agricultural industry. These technologies have reshaped the agricultural sector

and driven the adoption of quantitative approaches for monitoring and evaluating

agricultural processes, surpassing traditional statistical methods [8].

This radical transformation in the agriculture sector has proven its importance

by enhancing productivity and promoting sustainability. However, despite the sig-

nificant advancements, there remains a considerable gap in implementing techno-

logical reforms in the agricultural sector, with many farming procedures and crop

monitoring still reliant on conventional techniques. To bridge this gap, replacing

conventional methods with photonics-based approaches and AI techniques can rev-

olutionize the agriculture sector [9]. The monitoring of seeds and crops can be

transformed by leveraging photonics sensing techniques alongside machine learning

(ML) and deep learning (DL) algorithms.

This thesis explores AI’s advantages in automating disease identification in seeds,

specifically focusing on providing high-quality and healthy seeds to farmers at an

industrial level. By leveraging AI technologies, such as ML and DL, in conjunc-

tion with laser biospeckle techniques, the agricultural industry can benefit from the

automated and accurate identification of diseases in seeds. This automation stream-

lines the seed selection and classification process, ensuring farmers receive seeds free

from diseases and other quality issues. AI techniques eliminate manual inspection

and introduce efficient, data-driven approaches for disease identification, resulting

in improved seed quality control and increased productivity. By embracing AI-based

practices, the agriculture sector can enhance the supply chain, provide farmers with

superior seeds, and ultimately contribute to the overall health and sustainability of

crop cultivation.

1.4.1 Conventional methods for detection of seed-borne in-

fection in seeds

Visual inspection, microscopic examination, seed-soaking methods, serological test-

ing, and bioassays are conventional techniques used to determine the presence of

seed-borne pathogens. Visual inspection is a simple and quick method that identi-

fies visible signs of infection, such as discoloration or mold growth on the seeds. The

microscopic examination allows for a more detailed analysis, using a microscope to

observe fungal spores, bacteria, or other pathogens on or within the seeds. Seed

soaking methods involve incubating seeds in a solution that encourages pathogen

growth and subsequent examination for infection symptoms. Serological testing

employs specific antibodies or antigens to detect pathogens based on their unique

proteins or molecules, providing precise results. Bioassays utilize controlled condi-

tions to grow seeds or seedlings and observe their response to pathogenic infection,

identifying abnormalities in growth patterns or disease symptoms. However, conven-
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tional techniques for determining seed-borne pathogens are time-consuming, labor-

intensive, and subjective. Visual inspection, microscopic examination, seed-soaking

methods, serological testing, and bioassays have limitations such as unreliable visible

signs, limited pathogen detection, inaccurate seed germination reflection, antibody

availability issues, environmental influences on bioassays, and low sensitivity and

specificity [10]. These limitations of conventional techniques emphasize the neces-

sity for alternative approaches to address the challenges associated with large-scale

and broad-range infection detection in seeds.

1.4.2 Molecular diagnostic techniques

Modern molecular diagnostic techniques based on polymerase chain reaction (PCR)

and deoxyribonucleic acid (DNA) analysis have revolutionized the field of diagnos-

tics, providing numerous advantages over conventional methods. These techniques

include conventional PCR, nested PCR, real-time PCR, magnetic-capture hybridiza-

tion PCR, and loop-mediated isothermal amplification (LAMP). They provide rapid

and specific identification of seed-borne pathogens, enabling the detection of closely

related organisms. Various modifications have been developed to overcome PCR

inhibitors in seed DNA extracts, including using specific DNA extraction meth-

ods, adding reagents to PCR buffers, and commercial DNA extraction kits. Bio

PCR, a susceptible technique, involves a pre-assay incubation step to increase the

biomass of the fungal pathogen on the seeds. Nested PCR improves the sensitiv-

ity and specificity of the assay, allowing the detection of low levels of target DNA.

Real-time PCR offers quantitative data and reduces the risk of cross-contamination.

Magnetic-capture hybridization PCR facilitates the detection of specific DNA se-

quences, especially in the presence of PCR inhibitory compounds. LAMP provides

a simple, cost-effective, and rapid method for specific detection of genomic DNA

[11].

Despite their numerous advantages, molecular diagnostic techniques have limi-

tations. They can be expensive, especially when selective media or commercial kits

are required. Some techniques, such as nested PCR and LAMP, are more labor-

intensive and prone to contamination. The detection of low levels of target fungus

on seeds can lead to false negatives, and these techniques do not provide accurate

information about the percentage of contaminated seeds, which is essential for seed

producers and trading companies. Furthermore, the presence of compounds that

inhibit DNA amplification in seeds can result in false negatives, necessitating the

use of additional modifications and reagents. One additional disadvantage of molec-

ular diagnostic techniques is their destructive nature. These methods often require

the destruction of the tested sample for DNA extraction from seeds. Consequently,

the sample cannot be used for other purposes, limiting its utility and potentially
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increasing the overall analysis cost [11].

1.4.3 Photonics in agriculture

Photonics is the branch of science and technology that deals with generating, ma-

nipulating, and detecting photons, which are entities of light. It involves studying

and applying various light-related phenomena, such as emission, transmission, mod-

ulation, amplification, and detection. Photonices encompasses many technologies

and devices, including lasers, optical fibers, photodetectors, sensors, and communi-

cation systems. It has numerous applications in telecommunications, information

processing, medicine, manufacturing, defense, and environmental monitoring.

Figure 1.3: Optical techniques used in agriculture.

Non-destructive methods for the detection of contamination in a variety of agri-

cultural products include optical techniques like near-infrared spectroscopy (NIRS),

fluorescence spectroscopy (FS), Raman spectroscopy (RS), and hyperspectral imag-

ing (HSI) [12–15]. FS has gained popularity in food science due to its ability to

analyze chemical components, identify hazards, and authenticate samples. It oper-

ates by emitting light through a fluorophore upon absorbing ultraviolet or visible

light. FS displays potential in aflatoxin contamination detection by leveraging the

fluorescence properties of aflatoxins.

NIRS operates in the near-infrared region and detect different chemical bonds by

absorption or emission of light. It has proven helpful in detecting aflatoxin contami-

nation and fungal infection in agricultural products, and it is utilized for qualitative
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and quantitative evaluation of food quality and safety aspects. Chemometric tech-

niques are often employed to interpret and analyze complex NIR spectra. HSI inte-

grates spectroscopic and imaging techniques, simultaneously providing spectral and

spatial information. It enables the mapping of chemical components in the tested

sample, making it valuable for detecting unevenly distributed contaminants like afla-

toxin. HSI can be implemented in different modes, such as reflectance, transmission,

scattering, and fluorescence. Various methods, including point-scan, line-scan, and

area-scan, acquire 3-D hypercubes of spatial-spectral data [16].

RS is a vibrational spectroscopy technique that provides spectral information

through Raman’s effect. It involves the scattering of light by molecules in the

sample, where inelastic scattering results in energy changes and vibrational shifts.

This technique allows for identifying molecular structures based on characteristic

wavenumbers. RS is advantageous as it can be performed without a solvent, provides

instantaneous results, and allows for intensity enhancement [14].

However, these techniques have certain limitations. In FS, the fluorescent back-

ground elements from the tested sample can interfere with the obtained aflatoxin

fluorescence spectra, leading to mixed or shifted fluorescence peaks. Proper chemo-

metric techniques are needed to handle the fluorescence spectral data accurately.

NIRS relies on point detection and may have limitations in accurately detecting

the inhomogeneous distribution of contaminants in different parts of the sample.

Multi-point detection may be necessary for better prediction of overall contamina-

tion levels. While helpful in mapping contaminants, HSI remains expensive and has

yet to be widely implemented in automatic sorting lines. Additionally, detecting low

levels of aflatoxin contamination and early stages of fungal infection still presents

challenges and requires further improvement through advancements in hardware,

software, and chemometric techniques [16]. Furthermore, most of these techniques

cannot trace the biological activity inside samples generated due to physiological

and morphological changes.

The laser biospeckle technique stands out from other optical-based non-destructive

techniques due to its advantages such as lower memory requirements, higher spatial

and temporal resolution, cost-effectiveness, simplicity of experimental setup, and

the ability to track biological and morphological changes in the sample [17]. These

features make it a valuable tool for studying dynamic processes in biological systems.

1.5 Laser biospeckle technique

The laser backscattering technique is based on the speckle phenomenon, which arises

when a highly coherent light source, such as a laser, illuminates an object with

a diffusely reflected rough surface. This results in an interference pattern called

”speckle,” characterized by granular structures of dark and bright spots. Speckle
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Figure 1.4: Generation of speckle pattern by a coherent light source.

formation occurs due to the interference of different light waves of the same frequency

but different phases and amplitudes. The intensity changes in the speckle pattern are

random and depend on the properties of the light-scattering medium. By analyzing

the speckle pattern, information about deformations and changes in the illuminated

surface can be obtained [18]. The speckle pattern carries a signature of biological

and non-biological phenomena occurring inside the object under study, whether

in a static or dynamic state. The laser backscattering technique utilizes the spatial

properties of speckle images to extract valuable information about the sample under

observation.

The speckle pattern observed at a specific point, P0(x, y, z), is formed by the

summation of multiple components with different phase shifts δϕn and amplitudes

ak scattered from various points on the field. Mathematically, the speckle signal at

point P , generated by surface element k, can be expressed as [19]:

Uk(P0) =
N∑

n=1

ake
(iδϕn) (1.1)

where, i =
√

( − 1), and N is the total number of independent secondary wave

sources generated on the illuminated surface.

The characteristics of speckles, including intensity changes, contrast, roughness,

speckle grain size, and structure, as well as temporal and spatial variations of pixels,

are utilized to extract valuable information from the speckle pattern. Contrast of a

speckle image is calculated as [20]:
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C =
σ

⟨i⟩
(1.2)

where ⟨i⟩ and σ denote the spatial average and standard deviation of the gray level

intensity for each selected analysis window, respectively.

Furthermore, the size of the speckle is determined by the f-number (F ) of the

camera lens used in the detection system [21]. The relationship between the speckle

size (Ssize) and F is given as:

Ssize = 1.22× λ ×(1 +M)× F (1.3)

where, λ is the wavelength of the laser source, and M is the optical magnification.

Value of F is determined by the following equation [21]:

F =
f

d
(1.4)

where, d is the size of the aperture and f the focal length of imaging lens.

The laser biospeckle phenomenon occurs when coherent laser light illuminates

a biological material, resulting in a speckle pattern on an observation plane. This

pattern is formed by the backscattering of light from the surface and internal inho-

mogeneities within the material. In the case of living organisms, the speckle pattern

also includes a dynamic component caused by the movement of particles inside cells.

This dynamic behavior is primarily attributed to Doppler shifts of the light inter-

acting with these moving particles. The activity of bio speckles reflects the physical

movements and absorption variations of tissue pigments, providing valuable insights

into the underlying biological processes occurring within cells [20].

The experimental setup for laser biospeckle imaging includes a He-Ne laser, vari-

able attenuator, spatial filtering arrangement, charged-coupled device (CCD) cam-

era, and a data acquisition unit. Biospeckle patterns from the observation plane

of the sample are recorded by CCD camera. The setup allows for high frame rate

recording of temporal information in the speckle images. The laser backscattering

technique differs as it records a single speckle image based on spatial properties.

Detailed information about experimental setup and data acquisition is mentioned

in Section 2.1 of Chapter 2.

In biospeckle analysis, factors like pixel saturation, under-exposure, homogeneity,

camera frame rate, and contrast of the grains can affect the accuracy of calculated

indexes or activity maps. A quality test protocol (QTP) is adapted to standardize

these parameters and eliminate subjectivity [22]. The QTP introduces three quality

parameters (saturation, contrast, and homogeneity) to ensure the acquisition of

high-quality speckle images. This protocol helps obtain the best quality images for

accurate analysis and interpretation in biospeckle studies.
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(a)

(b)

Figure 1.5: Experimental setup for laser biospeckle imaging (a) Forward scattering
arrangement (b) Back scattering arrangement.

1. Saturation: This test determines if any portion of the image is underexposed

or saturated. Saturation occurs when pixels have values of either 0 or 255, rep-

resenting the lower and upper levels of the grayscale, respectively. Identifying

saturated areas is crucial because they can compromise the accuracy of the

analysis. This parameter is calculated by dividing speckle images into small

windows of pixel size M×N and classifying the image areas into saturation,

normal, and sub-exposition based on pixel values. Discarding saturated or

sub-exposed speckles and readjusting parameters is essential for optimal re-

sults.
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Figure 1.6: Steps involved in biospeckle data analysis.

(a) (b) (c) (d)

Figure 1.7: (a) Image of soybean seed, (b) high quality, (c) over-exposed, and (d)
under exposed speckle image.

2. Contrast: Contrast is a measure of activity in the speckle pattern. It evalu-

ates the integration period of the camera and provides information about the

activity of the material under observation. The test assesses the contrast of

the speckle grains in a single image to ensure that the activity is adequately ex-

pressed. Low contrast indicates a higher velocity of the monitored phenomenon

than expected, leading to potentially erroneous conclusions during the image

analysis. Contrast of speckle image is calculated by using the Equation 1.2.

3. Homogeneity: This test assesses the level of homogeneity in the whole image.

It identifies areas where the activity measured by numerical methods (such as

inertia moment (IM) [23] or absolute value of difference (AVD) [24]) differs

significantly from the borders of areas with different activities. The test helps

associate graphical and numerical results by evaluating homogeneity, particu-

larly when analyzing heterogeneous samples.
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Figure 1.8: Image processing-based methods.

1.5.1 Image processing-based methods for assessment of bio-

speckle data

The two methods commonly used in literature to examine the dynamicity of a

biospeckle pattern are numerical indexing and visual inspection-based methods.

1. Numerical techniques: Numerical indexing techniques are commonly used

to analyze and quantify activity levels in biospeckle patterns. Popular tech-

niques are random time history of speckle pattern (RTHSP) [25] and RTHSP

combined with IM [26], Wavelet Entropy (WE) [27], Correlation Coefficient

(CC), and AVD. THSP is created by arranging successive images of dynamic

biospeckle phenomena, with each image contributing a column of pixels placed

side by side. The resulting matrix represents the time evolution of biospeckle

intensity fluctuations. IM is calculated using a co-occurrence matrix (COM)

derived from the THSP. The COM shows the spread of non-zero values, with

low activity concentrated around the diagonal and high activity resembling a

cloud. The IM is defined as the sum of the matrix values multiplied by the

squared distance from the principal diagonal.

An alternative method to IM is AVD, which calculates the absolute value of

the distance from the principal diagonal. AVD aims to avoid the potential

distortion caused by the square operation in the IM method. It has shown

better results in some cases of biospeckle activity, particularly when the THSP

matrix has no data at high frequencies. WE is another indexing technique

proposed for dynamic speckle phenomenon analysis. It measures the order

and disorder in a multifrequency signal of speckle activity. Each row of the

THSP is treated as an individual time series, and the mean value of WE

from all rows is calculated as a single image descriptor. WE method has

demonstrated better agreement with experimental data compared to IM for

changes in low-frequency biospeckle patterns.
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From experimentally recorded biospeckle data, RTHSP and COM for healthy

and diseased sample are represented in Figure 1.9.

(a) (b) (c) (d)

Figure 1.9: RTHSP for (a) healthy seed sample, (b) diseased seed sample ; COM
for (c) healthy seed sample, (d) diseased seed sample

2. Visual methods: Visual analysis of biospeckle activity involves using various

full-field indexing techniques that utilize every pixel of each speckle frame to

assess the activity. These visual analysis methods offer higher accuracy, zero

standard deviation, and the ability to handle homogeneous and heterogeneous

activities. Here are some of the commonly used visual analysis techniques:

(a) Fujii’s Method: Fujii’s method calculates a weighted sum of the dif-

ferences between two consecutive elements of the time sequence of in-

tensities for each pixel. The resulting index represents regions of high

and low speckle intensity while preserving the contours of the tested ob-

ject. However, this method may produce false activity in darker regions

due to the nonlinear response and can be improved by using frequency

decomposition with wavelet transform [28].

(b) Generalized difference (GD): The GD method eliminates the weight-

ing process and calculates the cumulative sum of absolute differences be-

tween pixel intensities among all frames. It includes differences between

non-consecutive frames, but the appearance order is not considered. The

resulting activity map shows the spread of values without temporal in-

formation about the frequency of transitions [29].

(c) Laser speckle contrast analysis (LASCA): LASCA is based on cal-

culating spatial or temporal contrast over a local window of pixels. The

contrast value is computed for each pixel using a moving window, and

the resulting values are averaged or smoothed. LASCA can be derived

from a single image or a set of collected frames. The method is computa-

tionally fast and is suitable for real-time monitoring but results in a loss

of resolution [30].
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(d) Subtraction average (SA): SA algorithm is used to process the image

sequence. It calculates the absolute difference between the pixels of two

consecutive images Ik and Ik−1 and sums them up. This generates a

2-D visual activity map (SA(x, y)) that represents the spatio-temporal

variations in the sample. A numerical index (A′
SA) is presented to quantify

the overall dynamic activity by taking the spatial average of the complete

activity map. Based on the SA algorithm, this index provides a measure

of the overall dynamism of the sample [31]. This method is used in Section

2.3 to find order of biospeckle activity in different samples. Mathematical

equations for SA(x, y) and A′
SA are given as:

SA(x, y) =
n∑

k=1

|Ik(x, y)− Ik−1(x, y)| (1.5)

A′
SA =

1

(r × c)

r∑
x=1

c∑
y=1

n∑
k=1

|Ik(x, y)− Ik−1(x, y)| (1.6)

where k is image sequence index, x and y are the coordinate of image Ik,

r is the number of rows, and c is the number of columns of 2-D visual

activity map (SA(x, y)).

(a) (b)

Figure 1.10: Visual activity map for soybean seeds (a) healthy sample , (b) diseased
sample.

Numerical methods used in the biospeckle analysis have limitations such as the

inability to handle sample inhomogeneity, low sensitivity towards low and medium

activity levels, high standard deviation, and manual procedures for analysis. They

also depend on the type of sample being analyzed, which can limit their applicability.

On the other hand, visual methods suffer from disadvantages such as manual region

of interest (ROI) selection, dependence on various experimental conditions, reliance

on temporal variations of speckle frames, and sensitivity to the shape and size of the

sample. Manual ROI selection is prone to human error, while automatic selection re-

quires higher computational time and power. Undesired background noise can lead
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Figure 1.11: Artificial intelligence and its application in agriculture.

to false ROIs and erroneous activity measurements. Most visual techniques pro-

vide only qualitative information and lack quantitative measures of activity, making

them unsuitable for comparing samples over different time durations. Extracting

numerical values from visual techniques adds complexity and computation time to

the analysis procedure. Both numerical and visual methods have limitations that

restrict their accuracy and applicability in biospeckle analysis.

1.6 Artificial intelligence in agriculture

AI refers to developing intelligent machines that can simulate human-like intelli-

gence and perform tasks that typically require human intelligence, such as learning,

reasoning, problem-solving, and decision-making. AI finds various applications in

agriculture and offers solutions to improve productivity, efficiency, and decision-

making. Through precision agriculture, AI helps farmers optimize crop selection,

irrigation, pest control, and harvesting by utilizing sensor data and monitoring sys-

tems. It enables real-time monitoring of weather conditions, soil health, and crop

growth. AI-powered drones and robots assist in crop monitoring, data collection,

and labor-intensive tasks. Predictive analytics and forecasting enable businesses to

anticipate pricing trends, manage supply chains, and optimize production. With

its ability to process and interpret large amounts of data, AI empowers farmers to

overcome traditional challenges, increase productivity, and meet the demands of a

growing global population [32].

AI revolutionizes image and data processing by leveraging its ability to learn

from large datasets and identify complex patterns. AI algorithms such as ML and

DL in image processing enable automatic feature extraction, object classification,

and anomaly detection with enhanced precision and speed. In data processing, AI

handles diverse datasets, extracting valuable insights and making accurate predic-

tions. It excels in processing unstructured and complex data, such as sensor data
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Figure 1.12: Type of machine learning.

or satellite imagery, enabling real-time and comprehensive analysis. AI automation

reduces manual effort and errors while continuously improving performance.

The laser backscattering technique analyzes speckle images based on their spa-

tial properties, such as intensity changes, contrast, roughness, and size of speckle

grains. Manually extracting limited features from speckle images is inadequate for

accurately characterizing biological samples. Visual and numerical analysis methods

analyze the dynamicity of the samples, but they have limitations and are influenced

by various experimental and processing factors. To address these challenges and

minimize subjective biases, a processing pipeline leveraging ML and DL techniques

has been developed. These algorithms enhance accuracy and eliminate subjectivity

by automatically extracting and analyzing intricate patterns in speckle images.

1.6.1 Machine learning

ML is a fundamental component of AI that focuses on developing algorithms and

models capable of learning from data and making intelligent decisions without ex-

plicit programming. It is a subset of AI that enables systems to automatically

analyze and interpret data, identify patterns, and make predictions or actions based

on the learned patterns. ML algorithms use statistical techniques to iteratively

learn from data, improve performance, and adapt to new information or changing

environments.

Three primary types of machine learning algorithms are supervised, unsuper-

vised, and reinforcement learning. Supervised learning involves training a model

with labeled examples to make predictions or classifications. The algorithm learns

from the input-output pairs provided during training and then predicts the output

for new, unseen inputs. On the other hand, unsupervised learning deals with un-

labeled data and aims to discover patterns or structures within the data without

explicit guidance. It involves clustering data points based on similarities or finding
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hidden patterns. Reinforcement learning involves an agent learning to interact with

an environment through trial and error. The agent receives feedback through re-

wards or penalties, allowing it to learn optimal actions to maximize its cumulative

reward over time [33]. These three types of machine learning algorithms provide

a foundation for various applications and enable systems to learn from data, make

informed decisions, and adapt to different scenarios.

ML-based analysis of biospeckle data has been used in the agriculture sector

for various applications, including early identification of seed fungal infection [34],

detection of chilling and freezing disorders in orange [35] and seed viability assess-

ment [36]. ML automates decision-making process by extracting features from data.

However, the traditional approach of manually crafting features is time-consuming,

semi-automated, and limited to known features. It requires expert knowledge and

is susceptible to noise, leading to decreased performance of ML models in noisy

environments. DL-based end-to-end models offer process automation and enhanced

model robustness.

1.6.2 Deep learning

DL-based methods have the advantage of automated feature extraction and decision-

making processes by allowing the model to learn and extract valuable features di-

rectly from the data. This eliminates the need for manual feature extraction tech-

niques, which can be subjective and limited in their ability to capture complex

patterns. DL-based analysis of biospeckle data has been used to assess seed quality

[17] and detection of defects in apples [37]. These studies have utilized DL-based

methods that leverage spatial information from a single speckle frame. However,

using only a single speckle frame for the biospeckle activity assessment is prone to

noise and lacks the dynamic component of biospeckle activity for its assessment.

This investigation aims to develop a non-destructive, real-time automated tech-

nique for detecting fungal-infected soybean seeds using a combination of DL and

laser biospeckle technique. The objectives of this study include developing DL-

based spatio-temporal analysis on biospeckle data using different models, evaluat-

ing the models’ robustness against noise in data acquisition, assessing the impact

of experimental parameters (such as frame size, frame rate, and number of frames)

on the performance of the best robust model, and extending the model to detect

the biospeckle activity of different orders in multi-class data. This research high-

lights the potential of DL-based methods in real-time seed contamination detection,

offering promising applications in agriculture.
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1.7 Thesis outline and contributions

This thesis is organized in 4 chapters, which are briefly described with their contri-

butions as follows:

Chapter 1. Introduction: This chapter highlights the significance of agri-

culture, the challenges posed by stress factors in crop production, and the need for

effective seed infection detection methods. It discusses the limitations of conven-

tional and molecular diagnostic techniques currently used in agriculture. It also

introduces the motivation behind the thesis and proposes utilizing photonics tech-

niques and artificial intelligence as potential solutions.

Chapter 2. Data acquisition and deep learning based spatio-temporal

analysis of biospeckle data: This chapter focuses on the experimental setup,

data acquisition process, and the addition of noise in the test data. It introduces a

DL-based strategy for the spatio-temporal analysis of biospeckle data and describes

various DL-based networks and models developed for the analysis.

Chapter 3. Result and discussion: This chapter presents the results of ML

and DL models, including the classification of healthy and diseased seeds using ML,

the performance and robustness of various DL models, the evaluation of the best

robust model under different experimental parameters, and the sensitivity analysis

of the best model for the biospeckle activity of different orders.

Chapter 4. Conclusions and Future Works: This chapter summarizes the

thesis contributions, highlighting key insights and significant observations. Conclu-

sions are drawn based on the findings, and the future scope of work is discussed,

indicating potential areas for further research and development.
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Chapter 2

Data acquisition and deep learning

based spatio-temporal analysis of

biospeckle data

2.1 Experiment setup and data acquisition

Majority of anthracnose disease in soybean seeds is caused by the seed-borne fungus

Colletotrichum truncatum (C. truncatum) [38]. In this study, we obtained 1000 soy-

bean seeds of JS 20-29 variety from the ICAR-Indian Institute of Soybean Research

(IISR) plant field in Indore, India. These seeds underwent a series of treatments

for experimental purposes. First, they were disinfected using a solution of sodium

hypochlorite and distilled water in equal proportions. Then, they were surface ster-

ilized with distilled water and dried at room temperature on sterilized filter paper.

Further, these seeds were divided into two groups; one was healthy, and the other

was infected with C. truncatum. The experiment followed a completely randomized

design (CRD) and consisted of five replications, each containing twenty seeds. A 20

ml spore solution of C. truncatum with a concentration of 106 was uniformly applied

to the seeds to induce infection in the diseased seed group.

The experimental setup arrangement is shown in Figure 2.1, which consists of a

He- Ne laser source (wavelength = 632.8 nm and power = 15 mW), variable atten-

uator, spatial filtering arrangement (microscopic objects (m= 40X and aperture=

10 µm), collimation lens), and CCD camera (Basler Corp., frame rate= 32 frames

per sec (fps); resolution= 1294x964). A spatial filtering arrangement creates a fil-

tered and enlarged laser beam by applying beam-filtering techniques to suppress

noise components. A neutral density filter (Thorlabs, USA) is employed to absorb

light in the visible and near-IR range, reducing the optical power of the incident

beam. This ensures the samples are neither under nor over-exposed, preventing

inaccurate results. A precision achromatic doublet lens with specific parameters
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(focal length = 250 mm, diameter = 50 mm) collects and focuses the expanded

laser beam. Vibration-isolation tabletop is utilized during the experimental setup

to mitigate errors caused by vibrations from the surrounding environment.

Figure 2.1: Experimental setup for data acquisition.

The laser was used to illuminate seed samples, and a camera lens captured the re-

sulting backscattered light. A high frame rate CCD camera was employed to capture

sequential speckle images at different time intervals for each sample. Quality charac-

teristics, such as contrast and saturation, are significantly influenced by the recording

angle and size of the speckle grain, which directly affects the biospeckle activity [39].

Therefore, these quality parameters were optimized before data acquisition. Block

diagram in Figure 2.2 represents the data acquisition process. Biospeckle activity

within healthy and diseased samples exhibits different orders due to variations in

physiological and biochemical processes inside the samples. Some initial frames from

the biospeckle image stack for both sample types and the original sample images

are shown in Figures 2.3 and 2.4, respectively.

Figure 2.2: Block diagram for data acquisition process.

22



CHAPTER 2. DATA ACQUISITION AND DEEP LEARNING BASED
SPATIO-TEMPORAL ANALYSIS OF BIOSPECKLE DATA

(a) (b)

Figure 2.3: Original images of samples.

(a)

(b)

Figure 2.4: Temporal variation in recorded speckle frames for (a) healthy sample
(b) diseased sample.

2.2 Noise addition and noised test data prepara-

tion

The quality of a laser image can be affected by several factors, including the sensitiv-

ity of intensified CCDs, atmospheric turbulence, laser energy, structural character-

istics of the optical receiving system, and non-uniformity of the illumination. These

factors can reduce the signal-to-noise ratio (SNR), resulting in decreased contrast

and brightness, which poses challenges to the quality of speckle images and results

in noise addition. There are mainly three types of noises (impulsive noise, Gaus-

sian noise, and speckle noise) that affect the image quality in laser active imaging

systems [40].

In Laser Speckle Imaging (LSI), the formation of speckle patterns is primarily

influenced by multiple backscattered and forward scattering of light, which introduce

random delays in the propagation of the forward and returning beams. Temporal

coherence of the light source, phase aberrations, and detector’s aperture are other

factors affecting speckle patterns. The resulting speckle image in LSI contains both

noise and information. Noisy speckle patterns reduce intensity variations and hinder

the correspondence between local density scatters, limiting the visibility of small,

low-contrast structures within the speckle pattern [41].
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CCD photosensors undergo multiple stages of signal conversion to transform

incident photons into digital signals. This conversion process involves converting

photons-to-electrons, electrons-to-voltages, and voltages-to-digital signals. However,

at each conversion stage, several noises get introduced, including photon shot noise,

dark current noise, sense node reset noise, and non-linear behavior of gain values.

Photon shot noise arises from the random nature of photon detection, while dark

current noises result from thermal effects in the sensor. Sense node reset noises

occur during charge resetting, and non-linearity refers to deviations from an ideal

linear response. These noise sources can introduce fluctuations, background signals,

variations in charge level, and distortions in the sensor’s response, impacting the ac-

curacy and fidelity of captured images or signals. When creating simulation models

for CCD photosensors, these noise sources are typically represented using probability

distributions such as Poisson, Gaussian, log-normal, and inverse Gaussian distribu-

tions [42]. These distributions help to accurately model the random nature and

characteristics of the noise introduced during the signal conversion stages in CCD

photosensors.

The noise in data can significantly impact the performance of DL based models.

To assess the robustness of the model, four additional test datasets were created by

adding spatial noises to the biospeckle video frames of the original test data. These

noise-added test datasets are described as follows:

2.2.1 Gaussian noised test dataset

Gaussian noise is added to each pixel in the image by summing random values

from a Gaussian distribution with the actual pixel values [43]. The probability

density function (PDF) of Gaussian noise is mathematically represented by a normal

distribution which is given as:

P (g) =
1

σ
√
2π

e
−(g−µ)2

2σ2 , (2.1)

where g is the noise pixel gray value, µ and σ are the mean and standard deviation,

respectively.

2.2.2 Salt and pepper noised test dataset

Salt and pepper noise, also known as impulsive noise, is added to the image by ran-

domly inserting bright (255-pixel value) and dark (0-pixel value) values throughout
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the image. Salt and pepper noise is represented as [43] :

P (g) =


Pa if g = a

Pb if g = b

0 if otherwise

, (2.2)

where P (g) is the PDF, Pa and Pb represent two peak values in PDF at low gray

level ‘a’ (high pixel value region) and high gray level ‘b’ (low pixel value region),

and g is the pixel gray value.

2.2.3 Speckle noised test dataset

Speckle noise is a multiplicative noise generated by multiplying random pixel values

with different pixels of the image. It is represented by a combination of the original

image and Gaussian-distributed noise as:

K (i, j) = I (i, j) +N (i, j)× I (i, j) , (2.3)

where I (i, j) is the original image, K (i, j) is speckle noised image, and N (i, j) is

Gaussian distributed noise.

2.2.4 Multiple noises added test dataset

This test dataset is prepared using multiple noises considered for modeling of CCD

photosensor. Image I (i, j) is used as the λ parameter for generating Poisson random

numbers to simulate shot noise in the sample frames. Furthermore, Poisson noised

test samples are added with log-normal and Gaussian-distributed noises.

The PDF of log-normal distributed noise is given as:

PX (x) =
1

xσ′
√
2π

exp

(
−(ln(x)− µ′)2

2σ′2

)
, (2.4)

where µ′ and σ′ are mean and standard deviation of the natural logarithm of random

variable X, respectively.

The PDF of Poisson distributed noise is given as:

P (X = k, λ) =
e−λ λk

k!
, (2.5)

where λ is the mean number of events, and k is the number of occurrences.

Parameters such as SNR, peak signal-to-noise ratio (PSNR), mean square error

(MSE), correlation coefficient (CC), and structural similarity index (SSI) can be used

to analyze the effects of noise in the images [41]. These parameters are calculated,
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and their mean values across all sample frames are used to evaluate the extent

and impact of noise addition in the test samples. Table 2.1 provides the values of

these parameters for a single sample from different noise-added test datasets. Figure

2.5 depicts the changes in pixel intensity values for a single frame in the sample.

Figure 2.6 represents the number of pixels affected by adding different noises through

histogram plot. These noise-added test datasets allow for robustness analysis and

evaluation of DL models under varying noise conditions, providing insights into the

model’s performance and ability to handle noisy input data.

Noise Used Signal-
to-Noise
Ratio
(SNR(dB))

Peak
Signal-to-
Noise Ratio
(PSNR(dB))

Correlation
Coefficient
(CC)

Mean
Square
Error
(MSE)

Structural
Similarity
Index
(SSI)

Gaussian noise 14.440 30.656 0.957 55.899 0.7196
Salt and pep-
per noise

4.715 20.930 0.736 526.30 0.6402

Speckle noise 10.025 26.240 0.8985 154.537 0.7325
Multiple added
noise

15.053 31.273 0.968 48.47 0.7931

Table 2.1: Numerical quantification of noise addition using different parameters for
noised test dataset samples.

Figure 2.5: Effect of adding different noises on pixel values in a single frame of a
test sample.

2.3 Synthetic biospeckle data generation to ex-

tend the dataset to multi-class

Amodel is said to be sensitive to the detection of biospeckle activity if that can easily

identify the biospeckle activity of different orders. To evaluate the sensitivity of the

model, the dataset is extended to multi classes by generating synthetic data. The

biospeckle activity is quantitatively measured using the biospeckle activity index

(BSAI), calculated using the subtraction average algorithm [44]. The BSAI values

of healthy and diseased samples are determined. To create additional classes with

higher BSAI values, the standard rotating diffuser model [45] is utilized. This model
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Figure 2.6: Histogram plot for different noise addition in a single frame of a test
sample.

allows the generation of virtual biospeckle specimens that resembles original samples.

The steps for the generation of synthetic speckle patterns are as follows:

1. Generate a speckle pattern using the equation:

I1 (a, b) = FT−1
{
H × FT

{
ej×φ(a,b)

}}
, (2.6)

where a, b are the pixel coordinates, H is the coherent transfer function,

FT−1{.} and FT{.} denote inverse and direct Fourier transform respectively,

and φ (a, b) ∈ [0, 2π] is random phase matrix.

2. Rotate each generated speckle pattern by an angle to introduce variation in

the correlation between speckle images in a stack S.

S = [I1, I2, I3, . . . , In] (2.7)

For H = 250, we get a synthetic speckle pattern of frame size=200x200 with 96

frames. Table 2.2 represents the experimental data and two extended classes

with their BSAI values.
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(a) (b)

Figure 2.7: Artificial speckle pattern generated through mathematical modeling for
(a) Class 2 and (b) Class 3

Experimental data Synthetic data
Healthy
samples
(Class 0)

Diseased
samples
(Class 1)

Class 2 Class 3

Approx.
BSAI (×103)

0.5-0.8 1.0-1.6 2.0-2.6 3.3-3.8

Samples 300 300 240 240

Table 2.2: Four class dataset having biospeckle activity of different orders.

2.4 Spatio-temporal analysis of biospeckle data

using supervised learning algorithms

For our work, we used supervised learning to develop ML and DL models. Figure

2.8 shows the typical workflow for implementing the supervised learning process

to classify the labeled data. The process of supervised learning involves several

essential steps. First, the dataset is prepared by dividing it into training, validation,

and testing sets, ensuring the labels are correctly assigned to the corresponding

input features. Then, a suitable model is selected based on the problem, such as

linear regression, decision trees, or neural networks. The model is initialized with

random parameters and trained on the labeled training data through an iterative

process known as optimization, where it adjusts its parameters to minimize the

difference between predicted and actual labels. This is done by applying a chosen

optimization algorithm and a loss function that quantifies the model’s performance.

Once the model is trained, its effectiveness is evaluated using the testing set to

assess its performance on unseen data. If the performance is satisfactory on the

evaluation matrices, the model can be deployed to make predictions or classifications

on new, unlabeled data [33]. Regularization techniques and hyperparameter tuning

are often applied to improve the model’s accuracy and prevent overfitting, which

can be monitored using the model’s performance on validation data.
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Figure 2.8: Overall workflow of supervised learning process.

2.4.1 Machine learning based classification

ML-based processing involves several steps, including data pre-processing, feature

extraction, predictive model development, and evaluation. Speckle frames are pre-

processed by removing unwanted spatial information to convert frame size to 150×
100. Spatial and temporal features such as temporal AVD, contrast, entropy, rough-

ness, IM, and spatial AVD are extracted from each sample. Various ML classifiers,

including k-nearest neighbor (KNN), support vector machine (SVM), decision tree

(DT), random forest (RF), Gaussian naive bayes (GNB), and artificial neural net-

work (ANN), are trained on normalized features and tested under normal and noisy

conditions. Results in Table 3.1 demonstrate that ML-based classifiers are accurate

for data recorded in ideal conditions but fail to handle noisy data conditions. This

shows that ML-based models are not robust to noise in data.

2.4.2 Deep learning based strategy for robust spatio-temporal

analysis

After ML-based classification, this work is extended to DL-based analysis for accu-

rate and robust spatio-temporal analysis of biospeckle data. Figure 2.9 shows the

detailed strategy developed for the DL-based analysis. The main objectives of the

study are as follows:

1. Development of DL-based models: Different DL networks, including neural

networks, convolutional neural networks (CNN), long short-term memory net-

works (LSTM), and transfer learning techniques, are utilized to develop four

different models for the spatio-temporal analysis of biospeckle data. These

models are designed to capture both spatial and temporal information present

in the data.

29



2.5. DEEP LEARNING NETWORKS USED FOR SPATIO-TEMPORAL
ANALYSIS

Figure 2.9: Flow chart of the strategy developed for robust spatio-temporal analysis
of biospeckle data based on a DL-based framework.

2. Comparison of models for robustness: The developed models are compared

to assess their robustness against noise in the data acquisition process. The

models are evaluated under different noise conditions to determine their per-

formance and identify the most robust model.

3. Impact of data parameters: This study further investigates the impact of

experimental data parameters, such as frame size, frame rate, and the number

of frames used, on the performance of the best robust model. This analysis

helps understand the influence of these parameters on the model’s accuracy

and effectiveness.

4. Sensitivity to biospeckle activity of different orders: The robust model is fur-

ther examined to evaluate its sensitivity in detecting biospeckle activity of

different orders by evaluating its performance on an extended dataset with

four different classes.

2.5 Deep learning networks used for spatio-temporal

analysis

This Section describes the DL networks and techniques used for spatio-temporal

analysis of biospeckle data, including neural networks, CNN, LSTM, 3-D convolu-

tional neural network (3-D CNN), Convolutional LSTM (ConvLSTM) network, and

transfer learning.

2.5.1 Neural Network

In a multi-layer perceptron (MLP) neural network, which is a type of feedforward

neural network [46], there are typically three types of layers:

1. Input Layer: The input layer receives the input vector [x1, . . . , xp], which

consists of the features of the data. Each neuron in the input layer represents

a feature from the feature vector.
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2. Hidden Layers: The hidden layers are between the input and output lay-

ers. They consist of multiple neurons or nodes that perform computations

on the input data. Each neuron in the hidden layers is connected to all the

neurons in the previous layer (either the input or the previous hidden layer)

through weighted connections. These weights (wij) determine the strength of

the connections between neurons. The input values from the previous layer

are multiplied by the corresponding weights, and the weighted sums are then

accumulated. The bias term (bi) is added to the weighted sum to obtain a com-

bined value (uj). This combined value is passed through an activation function

(Θ) to introduce non-linearity, and the output of the activation function (hj)

becomes the neuron’s output in the hidden layer.

3. Output Layer: This layer receives the outputs from the last hidden layer as

their inputs. It performs similar computations as the hidden layers, where

each neuron in the output layer takes the combined outputs from the hidden

layer neurons, computes a weighted sum with the corresponding weights, adds

the bias term, passes it through an activation function, and produces the final

output of the neural network.

Figure 2.10 represent a two layer MLP neural network and computations in a

two layer MLP network are given in Equation 2.8.

Figure 2.10: A two layer MLP neural network.

U [1] = W [1]X + b[1],H [1] = θ
(
U [1]

)
,

U [2] = W [2]H [1] + b[2],H [2] = θ
(
U [2]

)
= Y,

(2.8)

where W [i], b[i] are weight and bias matrices associated with the ith layer, respec-

tively. U [i] and H [i] are vectorized version of ui and hi , X is vectorized input

matrix with p number of features for each sample, and θ is activation function.
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2.5.2 Convolutional neural networks

CNNs are developed to process information that is presented in various arrays, such

as 1-D for signals and sequences, 2-D for images or audio spectrograms, and 3-D for

videos or volumetric images. CNNs leverage four key ideas to process and extract

features from these arrays effectively [47], which are described below.

1. Local connections: CNNs exploit the local spatial correlations in the input

data. Each neuron in a convolutional layer is connected only to a small local

receptive field in the previous layer, capturing local patterns and features. This

local connectivity helps the network focus on specific regions of the input.

2. Shared weights: CNNs use shared parameters to detect the same feature across

different spatial locations. The same set of weights (convolutional filters) is

applied to different parts of the input data. This weight-sharing significantly

reduces the number of parameters in the network, making it more efficient.

3. Pooling: Pooling layers reduce the spatial dimensions of the feature maps while

preserving important information. Common pooling operations include max-

pooling, which selects the maximum value from each local region, and average

pooling, which computes the average value. Pooling helps to downsample

the feature maps and make the network invariant to small translations and

distortions in the input.

4. Many layers: CNNs are typically deep networks with multiple layers. The

deep architecture allows the network to learn hierarchical representations of

the input data, with each layer capturing increasingly complex and abstract

features. Using many layers enables CNNs to solve complex problems by

learning high-level representations.

CNNs are designed for image and spatial data analysis. They use a series of

convolutional, pooling, and fully connected layers to extract features from the input

data for target class recognition. In a CNN, the convolutional layers consist of units

arranged in feature maps. Each unit in a feature map is connected to local patches

or receptive fields in the feature maps of the previous layer through weights of convo-

lutional filters. These filters, also known as kernels, perform convolution operations

by sliding over the input feature maps and computing dot products between the fil-

ter weights and the input values within their receptive fields. By applying different

filters, CNNs can extract various features, such as edges, textures, and patterns,

from the input data.

Pooling layers are inserted between convolutional layers to downsample the fea-

ture maps and reduce their spatial dimensions. Pooling helps to combine seman-
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tically similar features into a single representative value while preserving valuable

information. A popular CNN architecture (VGG16 [48]) is shown in Figure 2.11.

The parameters of the convolutional kernels (weights and biases) are learned

during the training process using the backpropagation algorithm. During training,

the network adjusts these parameters to minimize the error or loss between the

predicted output and the true output labels. This process involves computing gra-

dients and propagating them backward through the network to update the kernel

weights and biases. By leveraging the hierarchical structure of convolutional layers

and pooling layers, CNNs can automatically learn and extract relevant and discrim-

inative features from the input data. This makes CNNs highly effective in image

classification, object detection, and image segmentation tasks.

During the convolution operation in convolutional layers, the value at the posi-

tion (x, y) in the jth feature map in the ith layer, denoted as F xy
ij , is given as:

Fxy
ij = θ

(
bij +

∑
m

Hi−1∑
h=0

Wi−1∑
w=0

whw
ijm F

(x+h)(y+w)
(i−1)m

)
, (2.9)

Fij = max
j∈m

(
F(i−1)(j)

)
, (2.10)

where θ is the activation function used after the convolutional operation, bij is the

bias for the current feature map, m is number of feature maps in the (i− 1)thlayer,

whw
ijk is the value at the position (h,w) of the kernel connected to the kth feature

map, max() is a max-pooling function. Hi and Wi are the height and width of the

kernel, respectively.

Figure 2.11: Architecture of VGG16 network.
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2.5.3 Transfer learning

Transfer learning is a technique in deep learning that utilizes pre-trained models

on large labeled datasets to address related tasks. It overcomes challenges asso-

ciated with training large CNN models from scratch by leveraging the weights of

pre-trained models. These models, already trained on datasets like ImageNet [49],

possess knowledge of extracting general image features. The model can benefit from

the learned features by initializing the CNN with these pre-trained weights, saving

time and computational resources while improving performance on similar tasks.

Transfer learning indeed offers several advantages [50]. It saves time and com-

putational resources by leveraging pre-trained models that already possess effective

feature extraction capabilities. This results in enhanced performance as the pre-

trained models capture valuable feature representations. Moreover, transfer learning

enables improved generalization to new data, particularly when labeled examples are

limited. By utilizing large pre-trained models as powerful feature extractors, trans-

fer learning accelerates the development of new models while optimizing resource

utilization.

Various pre-trained CNN models are available for transfer learning in popular

deep learning frameworks. In our study, we have used several pre-trained mod-

els such as VGG16 [48], ResNet50 [51], DenseNet121 [52], Inception V3, Incep-

tion ResNet V2 [53], EfficientNet [53], MobileNet [54], and Xception [55], which

were pre-trained on the ImageNet dataset [49]. These models have already learned

rich representations of features and are used as spatial feature extractors in stage 1

of Model 2 described in Section 2.6.2.

2.5.4 Long short-term memory network

Traditional deep neural networks, such as feedforward neural network and CNNs,

assume that inputs and outputs are independent. However, for sequential data, the

output at a given time step depends on the current and previous inputs within the

sequence. Recurrent Neural Networks (RNNs) are specifically designed to handle

sequential data by incorporating a ”memory” mechanism. In RNNs, each neuron in

a layer receives input from the current and previous time steps, allowing the network

to retain information from previous inputs. This enables RNNs to model temporal

dependencies and capture the sequential nature of the data. One key aspect of

RNNs is that they share the same weight parameters across all time steps within a

layer.

LSTM is a special type of RNN architecture that addresses some of the limi-

tations of traditional RNNs, such as the vanishing gradient problem. The LSTM

architecture includes memory cells (denoted as ct) that store and propagate informa-

tion across different time steps. These memory cells are controlled by parameterized
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gates. The input gate (denoted as it) controls the flow of new information into the

memory cell . The forget gate (denoted as f t) determines whether or not the pre-

vious cell state ct−1 should be forgotten or retained. The output gate (denoted as

ot) determines whether the current cell output ct should be propagated to the final

state ht [56]. Figure 2.12 represents a single LSTM cell. Different configurations of

deep LSTM networks can be formed by combining LSTM cells based on sequential

data and the task at hand. One such network is shown in Figure 2.13.

Figure 2.12: Block diagram of single LSTM cell.

Figure 2.13: A typical deep LSTM network.

The multivariate LSTM structure consists of 1-D vectors for input, cell output,

and states, also referred to as fully connected LSTM (FC-LSTM) networks due to

the dense connections between input-to-state and state-to-state transitions. The

LSTM cell performs memory cell and gate computations using a set of operations,
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which are described as follows:

it = σ
(
Wxix

t +Whih
t−1 +Wcic

t−1 + bi
)
,

f t = σ
(
Wxfx

t +Whfh
t−1 +Wcfc

t−1 + bf
)
,

ct = f tct−1 + ittanh
(
Wxcx

t +Whch
t−1 + bc

)
,

ot = σ
(
Wxox

t +Whoh
t−1 +Wcoc

t−1 + bo
)
,

ht = ottanh
(
ct
)
,

(2.11)

where tanh is hyperbolic tangent function.

2.5.5 3-D Convolutional neural network

A 3-D CNN is an extension of the traditional 2-D CNN that enables extracting fea-

tures from both the spatial and temporal dimensions of the input data. While 2-D

CNNs focus solely on spatial features represented by 2-D feature maps, 3-D CNNs

are designed to capture the temporal variations in data, making them suitable for

tasks involving time-dependent information. 3-D CNNs have greatly succeeded in

various applications, including video analysis, action recognition, medical imaging,

and volumetric data analysis. By considering the temporal or volumetric informa-

tion, they can capture spatio-temporal or volumetric features and learn complex

patterns in the data, making them well-suited for biospeckle activity analysis.

By performing 3-D convolutions in CNNs, we can simultaneously compute fea-

tures from both the spatial and temporal dimensions. This is achieved by convolving

a 3-D kernel with the cube formed by stacking contiguous frames from the preced-

ing layer, considering both the spatial and temporal dimensions. The result of this

convolution operation is the generation of 3-D spatio-temporal feature maps, which

capture the combined spatial and temporal information of the input data [57]. A

typical 3-D CNN architecture is shown in Figure 2.14.

In 3-D convolution, the value at position (x, y, z) on the jth feature map in the

ith layer is given by:

Fxyz
ij = θ

(
bij +

∑
m

Hi−1∑
h=0

Wi−1∑
w=0

Di−1∑
d=0

whwd
ijm F

(x+h)(y+w)(z+d)
(i−1)m

)
, (2.12)

where Di is the size of the 3-D kernel along the temporal dimension, whwd
ijm is the

(h,w, d)th value of the kernel connected to the mth feature map in the previous layer.

2.5.6 Convolutional LSTM network

The FC-LSTM network has limitations in encoding spatial information. It exhibits

high data redundancy for spatial data due to the dense connections in input-to-
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Figure 2.14: A typical 3-D CNN architecture.

state and state-to-state transitions. ConvLSTM networks have been introduced to

overcome these limitations. These networks incorporate convolutional operations

in both the input-to-state and state-to-state transitions, allowing them to encode

spatial information and reduce data redundancy effectively [58].

In contrast to the FC-LSTM, which uses fully connected connections, the ConvL-

STM operates on 3-D tensors. The inputs [X1 . . . Xt], cell outputs [C1 . . . Ct], hidden

states [H1 . . . Ht], and gates it, f t, ot of the ConvLSTM are all 3-D tensors, where

the last two dimensions correspond to the spatial dimensions (rows and columns).

This design allows the ConvLSTM network to effectively encode and process spatial

information within the network, making it more suitable for spatio-temporal data

analysis.

Figure 2.15: Block diagram of single ConvLSTM cell.

The key equations of ConvLSTM cell are mentioned in Equation 2.13, where ’∗’
denotes the convolution operator.
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it = σ
(
Wxi ∗ xt +Whi ∗ ht−1 +Wci ∗ ct−1 + bi

)
f t = σ

(
Wxf ∗ xt +Whf ∗ ht−1 +Wcf ∗ ct−1 + bf

)
ct = f tct−1 + ittanh

(
Wxc ∗ xt +Whc ∗ ht−1 + bc

)
ot = σ

(
Wxo ∗ xt +Who ∗ ht−1 +Wco ∗ ct−1 + bo

)
ht = ottanh

(
ct
)

(2.13)

2.6 Architecture of four different models devel-

oped for analysis

In Section 2.5, various deep learning networks were discussed, each with different

capabilities. CNNs excel at extracting spatial features from data, while LSTMs effec-

tively process temporal features. Additionally, 3-D CNNs and ConvLSTM networks

can extract spatial and temporal features simultaneously. Four different models were

developed using these networks, which are described as:

2.6.1 Model 1 (Neural network with LSTM)

The end-to-end model for spatio-temporal analysis of biospeckle data consists of

three stages:

1. Stage 1: In this stage, spatial features are extracted from the frames of video

samples. These individual frames are used as input to a temporal distributed

neural network, which includes densely connected layers. Dropout layers are

inserted between the densely connected layers to prevent overfitting and im-

prove generalization. The output of this stage is a set of 1-D vectors repre-

senting the spatial features extracted from the sample frames.

2. Stage 2: In the second stage, the extracted 1-D spatial features from stage

1 are used as input to the LSTM network. The LSTM network comprises

multiple layers of LSTM units, which capture the temporal correlations in

the data. By analyzing the sequential nature of the data, the LSTM network

extracts the correlated temporal features.

3. Stage 3: The features extracted from stage 2, which have the spatial and tem-

poral information captured by the previous stages, are fed to densely connected

layers at stage 3 for classification.
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Figure 2.16: Model block diagram of neural network with LSTM network.

2.6.2 Model 2 (CNN with LSTM)

This model consists of CNN, LSTM, and a densely connected network in 3 stages

described as:

1. Stage 1: In this stage, spatial features are extracted from the frames of a

sample using a temporally distributed CNN network. The CNN network pro-

cesses the frames and generates feature maps capturing spatial information.

To convert the feature maps into 1-D vectors, a global average pooling layer

is applied, which takes the average of each feature map along the spatial di-

mension. This process allows for the extraction of spatial features in the form

of 1-D vectors.

2. Stage 2: This involves passing 1-D spatial features from stage 1 through an

LSTM network to capture temporal dependencies and extract correlated tem-

poral features.

3. Stage 3: At last stage, features from stage 2 are fed into densely connected

layers for the final classification task, integrating spatial and temporal infor-

mation for accurate predictions.

Figure 2.17: Model block diagram of CNN with LSTM network.
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DL model Stage 1 Stage 2 Stage 3
Model 1 Temporal distributed

dense layers (48
and 32 nodes), two
dropout layers with
10% dropout proba-
bility

Two LSTM layers
(56 and 32 nodes),
dropout (10%) in
input-to-state and
state-to-state dense
connections

Two dense layers
(16 and 1 nodes)

Model 2 Temporal distributed
CNNs (pretrained and
trained from scratch)
followed by global av-
erage pooling2D layer

Two LSTM layers
(64 and 32 nodes),
dropout (15%) in
input-to-state and
state-to-state dense
connections

Two dense layers
(16 and 1 nodes)

Table 2.3: Network configuration details for model 1 and 2.

2.6.3 Model 3 (3-D Convolutional neural network)

The model architecture includes blocks, namely block 1, block 2, and block 3. Each

block consists of a 3-D convolution layer, batch normalization, and a 3-D max pool-

ing layer. These layers extract features from spatial and temporal dimensions, re-

sulting in 3-D feature maps. 32 feature maps of size (2, 4, 2) are obtained from third

block. These feature maps are converted into a 1-D vector using a flatten layer. The

classification layers utilize the resulting 1-D vector to make decisions for seeds.

Figure 2.18: Model block diagram of 3-D CNN, where s is stride and d is dilation
rate.

2.6.4 Model 4 (Convolutional LSTM network)

In the ConvLSTM model architecture, as depicted in Figure 2.19, the initial two

blocks consist of three layers; the ConvLSTM layer, batch normalization, and the 3-

D max pooling layer. The ConvLSTM layer processes the spatial data and produces
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2-D feature maps for each frame, while the 3-D max pooling layer reduces the spatial

dimensions of the feature maps. The output from the last unit of the ConvLSTM

layer in block 3, containing encoded spatial and temporal features, undergoes spatial

dimension reduction using the 2-D max pooling layer. Finally, the 2-D encoded

spatial and temporal feature maps are converted into 1-D vectors through the 2-D

average pooling layer for the classification task.

Figure 2.19: Model block diagram of Convolutional LSTM network.

2.7 Model performance evaluation

The model’s performance is evaluated using standard measures such as classification

accuracy, precision, recall, F1-score, and the area under the receiver operating char-

acteristic curve (AUC). These measures are calculated using a confusion matrix,

which contains information about true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN).

Figure 2.20: Confusion matrix for binary classification.

Accuracy indicates the proportion of correctly predicted classes and gives an

overall measure of the model’s performance. Precision measures the accuracy of

the model’s predictions for the positive class, focusing on false positives. Recall,

also known as sensitivity, provides insight into false negatives by measuring the

proportion of positive instances correctly predicted by the model. Mathematical

formulas for performance measures are given as:

Accuracy(%) =
TP + TN

TP + TN + FP + FN
× 100 (2.14)
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Precision(%) =
TP

TP + FP
× 100 (2.15)

Recall(%) =
TP

TP + FN
× 100 (2.16)

F1− Score(%) =
2× Precision×Recall

Precision+Recall
× 100 (2.17)

True positive rate =
TP

TP + FN
(2.18)

False positive rate =
FP

TN + FP
(2.19)

The model’s predictions are obtained by converting the output probabilities into

class predictions using a cut-off threshold. However, evaluating performance based

on a single threshold may not provide a complete understanding of the class separa-

tion. By using receiver operating characteristics (ROC) curve analysis, the model’s

performance can be assessed across various threshold values, plotting the true pos-

itive rate (TPR) against the false positive rate (FPR). The AUC measures the

classifier’s ability to differentiate between classes. A higher AUC value indicates

better discrimination between positive and negative categories, offering an overall

assessment of the model’s performance across different classification thresholds.
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Result and discussion

The experimental dataset used in this study consists of 300 healthy and 300 infected

soybean seed samples recorded using the experimental setup shown in Figure 2.1.

The recorded biospeckle activity videos are processed to a frame size of 150x100

to remove unnecessary background information and reduce computational overhead

during training. The dataset is divided into three subsets, with a ratio of 70% for

the training set (424 samples), 15% for the validation set (88 samples), and 15%

for the test set (88 samples). Each sample in the dataset contains a biospeckle

activity record of 3 seconds captured at a frame rate of 32 fps. For robustness

analysis, four additional test datasets with different types of noise are created using

original test dataset described in Section 2.2. The DL-related work is conducted

using TensorFlow [59] on the Google Colab Pro platform with a Tesla T4 graphics

processing unit (GPU) with 32 GB of memory.

3.1 Machine Learning based classification for healthy

and diseased seeds

As described in Section 2.4.1, for ML-based classification, we have extracted six

different features such as temporal AVD, contrast, entropy, roughness, IM, and

spatial AVD from each sample. Different classifiers, including KNN, SVM, DT,

RF, GNB, and ANN, are trained on normalized features and tested under normal

and noisy conditions. Results in Table 3.1 demonstrate that ML-based classifiers are

accurate for data recorded in ideal conditions but fail to handle noisy data conditions.

This shows that ML-based classifiers are not robust to noise in biospeckle data.
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Table 3.1: Performance of different machine learning models on the test and noised
test datasets.

ML models
Performance on test datasets

Original test dataset (in %) Noised test datasets (Accuracy in %)
Accuracy Precision Recall Gaussian

Noised
Salt and
Pepper
Noised

Speckle
Noised

Multiple
Noise
Added

GNB 89.77 81.25 100 51.13 89.77 51.13 51.13
SVM 1 98.86 100 97.82 51.13 98.86 51.13 51.13
SVM 2 98.86 97.82 100 51.13 48.86 51.13 51.13
DT 100 100 100 51.13 80.68 51.13 51.13
RF 100 100 100 51.13 93.18 51.13 51.13
KNN 98.86 100 97.82 55.68 78.40 51.13 54.54
ANN 98.86 100 97.82 48.86 48.86 48.86 48.86
1 Radial basis function kernel of degree = 3 is used.
2 Polynomial kernel of degree = 3 is used.

3.2 Performance and robustness of different deep

learning models

In Section 2.6, all the models mentioned are trained using the experimental dataset

without any data pre-processing. DL models are trained on the training data, and

their performance is evaluated using the validation data after each epoch. The

validation set is used during training to assess the model’s performance and make

decisions about hyperparameter tuning or model selection. It helps monitor the

model’s progress, detect overfitting or underfitting, and make adjustments to im-

prove its generalization ability. Hyperparameter tuning involves finding the optimal

values for hyperparameters, which are parameters set before the training process

and cannot be learned from the data. Fine-tuning these hyperparameters can sig-

nificantly impact the model’s performance. Table 3.2 shows the hyperparameter

details for different models. Their optimal values for DL models are mentioned in

Figures 2.18 and 2.19, and Table 2.3.

During training, binary cross-entropy (Equation 3.1) is used as the cost function,

and the Adam optimizer [60] is employed. The experimental data has a frame size

of 150x100 pixels, a frame rate of 32 fps, and a total of 96 frames are utilized. The

initial learning rate for the optimizer is set to 0.001. Different batch sizes of 32, 4,

6, and 2 are used for model 1, model 2, model 3, and model 4, respectively. The

performance of the models on the test dataset, as well as on the noise test datasets,

is summarized in Table 3.3. This provides an assessment of the model’s performance

on unseen data and their robustness to different noise conditions.

Binary cross-entropy (lossbc) and categorical cross-entropy (losscc) loss functions
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Hyperparameters
for model 1

Number of layers in stage 1 and stage 2, number of nodes in
layers of stage 1 and stage 2, dropout factor, regularization
factor

Hyperparameters
for model 2

Pre trained CNNs: [VGG16, Resnet50, Densenet121, In-
ception V3, Efficient Net, Mobile Net, Inception Resnet V2,
Xception],dropout factor, regularization factor

Hyperparameters
for model 3

Filters size, number of filters, dropout and regularization in
3-D convolution and dense layers

Hyperparameters
for model 4

Filters size, number of filters, dropout and regularization pa-
rameter in ConvLSTM layers, number of ConvLstm layers

Table 3.2: Hyperparameter details for different models.

are defined as:

lossbc = −(y log(p) + (1− y) log(1− p)), (3.1)

losscc = −
M∑
c=1

yo,c log(po,c), (3.2)

where p is class predictions, y is class labels , and M is number of classes.

Figure 3.1 shows the loss and accuracy plots of training and validation for dif-

ferent models. In model 1, overfitting is observed due to the dense connections

throughout the model, resulting in a large number of parameters. This leads to

overfitting of the model on the training data, and its accuracy cannot be improved

beyond 90% even after hyperparameter tuning. Model 2 replaces the dense layers

with CNNs for spatio-temporalal feature extraction at stage 1 to address this is-

sue, improving the model’s performance on test data above 94%. However, when

tested under noisy conditions, the model’s performance degrades drastically, indi-

cating that the model is not robust to noise in data. Different CNNs are explored for

spatial feature extraction, and some are also trained from scratch to find whether

the model performance can be improved in noisy conditions.

Tables 3.4 and 3.5 show that different variations of CNNs for spatial feature

extraction and even training the model from scratch specifically for biospeckle data

cannot improve the model performance in noisy conditions. The spatial information

of frames is passed as 1-D vectors at stage 2 of the model for temporal processing

resulting in loss of spatial information. To overcome this, spatio-temporal feature

extraction or processing is required at each model layer instead of extracting both

information separately at different parts of the network.

In contrast, the ConvLSTM model incorporates convolutional operations at all

stages, preventing the loss of spatial information. The frame-wise spatial and tem-

poral feature processing within the ConvLSTM layer enhances the robustness of the

extracted features to noise. This model achieves an accuracy of 97.72% on the test

dataset and demonstrates good performance on the noised test datasets as well, with
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Figure 3.1: Loss and accuracy plots of training and validation for different models.
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an accuracy of 97.72%, 94.31%, 98.86%, and 96.59% (Table 3.3). Figure 3.2 shows

the ROC plots of different models on original and noised test datasets. ConvLSTM

model has excellent class distinction capability having AUC values close to 1 for all

test scenarios.
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Figure 3.2: Comparison of different models using ROC plots (a) ROC plot of model
1, (b) ROC plot of model 2a, (c) ROC plot of model 2b, (d) ROC plot of model 3,
(e) ROC plot of model 4.
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Table 3.3: Performance of different models on the test and noised test datasets.

DL models
Performance on test datasets

Original test dataset (in %) Noised test datasets (Accuracy in %)
Accuracy Precision Recall Gaussian

Noised
Salt and
Pepper
Noised

Speckle
Noised

Multiple
Noise
Added

Model 1 89.77 86.95 93.02 90.90 75.00 88.63 84.09
Model 2a1 94.31 91.30 97.67 77.27 56.81 57.95 86.36
Model 2b2 93.18 93.02 93.02 80.68 56.81 68.18 89.77
Model 3 97.72 95.55 100 96.59 51.13 57.95 93.18
Model 4 97.72 100 95.34 97.72 94.31 98.86 96.59
1 Model 2a uses pre-trained Resnet50 as CNN at stage 1.
2 Model 2b uses Resnet50 trained from scratch as CNN at stage 1.

DL models
Performance on test datasets

Original test dataset (in %) Noised test datasets (Accuracy in %)
Accuracy Precision Recall Gaussian

Noised
Salt and
Pepper
Noised

Speckle
Noised

Multiple
Noise
Added

Vgg16 93.18 91.11 95.34 87.50 52.27 69.31 90.90
Resnet50 94.31 91.30 97.67 77.27 56.81 57.95 86.36
Densenet121 90.90 87.23 95.34 51.13 47.72 52.27 52.27
Inception V3 89.77 85.41 95.34 63.63 47.72 48.86 80.68
Efficient
Net

94.31 93.18 95.34 59.09 75.00 75.00 81.81

Mobile Net 97.72 95.55 100 62.50 78.40 59.09 78.40
Inception
Resnet V2

47.72 0 0 44.31 50.00 36.36 43.18

Xception 93.18 91.11 95.34 79.54 47.72 48.86 85.22

Table 3.4: Performance of model 2 with different pretrained CNNs on test dataset
and noised test datasets.

3.3 Performance of ConvLSTM model with ex-

perimental parameter variation of data

Image processing-based biospeckle analysis methods have relied on experimental

data parameters, such as the number of temporal frames and selecting ROI, to

achieve precise and accurate results. In contrast, DL-based biospeckle activity anal-

ysis offers the advantage of overcoming this dependency on data parameters, leading

to more accurate outcomes. This study considered three significant factors; frame

size, frame rate, and the number of frames. To investigate the effect of these pa-

rameters, different datasets were created from the original experimental dataset by

varying these factors. To reduce computational and training time, the data was
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DL models
Performance on test datasets

Original test dataset (in %) Noised test datasets (Accuracy in %)
Accuracy Precision Recall Gaussian

Noised
Salt and
Pepper
Noised

Speckle
Noised

Multiple
Noise
Added

Resnet50 93.18 93.02 93.02 80.68 56.81 68.18 89.77
Densenet121 93.18 93.02 93.02 78.40 48.86 55.68 95.45
Inception V3 95.45 93.33 97.67 51.13 48.86 48.86 61.36
Mobile Net 88.63 86.66 90.69 73.86 51.13 73.86 79.54
Vgg16 51.13 0 0 51.13 51.13 51.13 51.13

Table 3.5: Performance of model 2 with different CNNs trained from scratch on test
and noised test datasets.

normalized using z-score normalization. This normalization technique ensures that

the data has a mean of zero and a standard deviation of one, thus bringing the data

to a standard scale.

Z-score normalization is mathematically expressed as: Z = X − µ
σ

, where X is

original data sample, µ and σ are mean and standard deviation of data sample,

respectively.

In this study, experimental data parameters, including frame size, frame rate,

and number of frames, were considered to assess their impact on the performance

of the ConvLSTM model.

3.3.1 Variation in frame number

Three different datasets were created by keeping the frame size and frame rate

constant and varying the number of frames used. The data parameters considered

were a frame size of 150x100, a frame rate of 32 fps, and frames used of 96, 64, and

32. The training plots and the performance on the test dataset are shown in Figure

3.3 and Table 3.6, respectively.

Frames
used

Performance on test dataset (in %)
Accuracy Precision Recall F1 score

96 96.59 100 93.02 96.38
64 96.59 97.61 95.34 96.46
32 97.72 97.67 97.67 97.67

Table 3.6: Performance of ConvLSTM model on test dataset for frame number
variation.
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Figure 3.3: Training and validation plots for ConvLSTM model for frame number
variation.

3.3.2 Variation in frame rate

The frame rate was varied while keeping the frame size and frames used at their

maximum values. The frame rates considered were 32, 16, and 8. Figure 3.5 and

Table 3.7 illustrate the training plots and the test dataset performance, respectively.

Frame
rate

Performance on test dataset (in %)
Accuracy Precision Recall F1 score

32 96.59 100 93.02 96.38
16 97.72 100 95.34 97.61
8 97.72 95.55 100 97.72

Table 3.7: Performance of ConvLSTMmodel on test dataset for frame rate variation.

3.3.3 Variation in frame size

The frame size was varied while maintaining a frame rate of 16 fps and using

48 frames. Different frame sizes considered were 100x100, 150x100, 150x150, and

175x175. The training plots and the performance on the test dataset are presented
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in Figure 3.4 and Table 3.8, respectively.

Frame size used
Performance on test dataset (in %)

Accuracy Precision Recall F1 score
100x100 96.59 97.61 95.34 96.46
150x100 96.59 100 93.02 96.38
150x150 95.23 100 91.48 95.55
175x175 95.45 95.34 95.34 95.34

Table 3.8: Performance of ConvLSTM on test dataset for frame size variation.
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Figure 3.4: Training and validation plots for ConvLSTM model for frame size vari-
ation.

The results obtained from the ConvLSTM model demonstrate its robustness to

variations in the experimental data parameters. The model achieves high accuracies

of 97.72%, 97.72%, and 96.59% on the test dataset for the minimum values of the

considered frame number, frame rate, and frame size, respectively. This indicates

that even with a reduced number of frames (24) at a lower frame rate (8 fps) and a

smaller spatial dimension (150x100), the model can still provide accurate results.

The findings from Tables 3.6, 3.7, and 3.8 highlight that the ConvLSTM model

maintains a consistent performance with test accuracies ranging from 95.45% to

97.72% across different variations in data parameters. This information can be used
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Figure 3.5: Training and validation plots for ConvLSTM model for frame rate vari-
ation.

to design a computationally efficient ConvLSTM network that inputs only 24 frames

at 8 fps. By reducing the number of frames and the frame rate, the computational

load on the GPU and the training time can be minimized without sacrificing the

model’s accuracy. These results offer valuable insights for optimizing the design and

implementation of the ConvLSTM network, making it more efficient and practical

for real-world applications in seed-borne disease detection using biospeckle imaging.

3.4 Sensitivity analysis of ConvLSTM model for

biospeckle activity of different orders.

The extended dataset, as described in Section 2.3, which includes different orders

of BSAI values, was used to evaluate the sensitivity of the ConvLSTM model. The

multi-class dataset consists of 1080 samples, divided into training, validation, and

test splits, with a ratio of 70/15/15 (%). The training dataset contains 756 sam-

ples, the validation dataset contains 162 samples, and the test dataset contains 162

samples. Each sample in the dataset represents a 3-second biospeckle activity data
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recorded at 32 fps. During training, the data is normalized using z-score normaliza-

tion.

The ConvLSTM model is trained using categorical cross-entropy (Equation 3.2)

as the cost function and the Adam optimizer with an initial learning rate of 0.001.

The model is trained for 80 epochs with a batch size of 4. The data parameters used

for training are frame size = 150x100, frame number = 48, and frame rate = 32 fps.

Classification report on test dataset
Class name Precision Recall F1-score Test sample count
Class 0 98.00 100 99.00 46
Class 1 100 97.00 99.00 40
Class 2 100 100 100 41
Class 3 100 100 100 35

Average test accuracy = 99%

Table 3.9: Performance of ConvLSTM model on test dataset for multi-class dataset.
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Figure 3.6: Training and validation plots of ConvLSTM model on multi-class
dataset.

The training and test results of the ConvLSTM model are presented in Figure 3.6

and Table 3.9, respectively. The model achieves an impressive average test accuracy

of 99% on the multi-class data without hyperparameter tuning. This indicates

that the ConvLSTM model is highly effective in identifying and classifying BSAI of

different orders.
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Chapter 4

Conclusions and Future Works

4.1 Conclusions

Accurate assessment of biospeckle activity in seed-borne fungal infection relies on

integrating both spatial and temporal features. Combining the laser bio-speckle

technique with DL has emerged as a promising approach for the real-time detec-

tion of fungal infection in seeds. This study utilizes DL-based methods to robustly

analyze the spatio-temporal patterns of biospeckle data in soybean seeds. Among

the DL models considered, the ConvLSTM model demonstrates exceptional perfor-

mance, achieving an accuracy of 97.72% on the test dataset. Moreover, the model

proves its resilience by maintaining high accuracies of 97.72%, 94.31%, 98.86%, and

96.59% on four distinct noised test datasets, highlighting its robustness to noise in

data. Additionally, the ConvLSTM model is adaptable to variations in experimental

parameters such as frame size, frame rate, and the number of frames used, indicating

its versatility for different data settings.

Furthermore, this study extends the analysis to multi-class data, aiming to assess

the sensitivity of the ConvLSTM model in detecting the bio-speckle activity of

different orders. By training the model on a diverse dataset with varying levels of

bio-speckle activity, the ConvLSTM model achieves an exceptional test accuracy of

99%. This result highlights the model’s ability to accurately analyze and differentiate

biospeckle activity of different orders. This model holds the potential for analyzing

time-varying bio-speckle activity and facilitating seed quality assessment for diverse

crop seeds simultaneously in the future.

4.2 Future Works

� The current study utilized a dataset specific to soybean seeds. To enhance the

generalizability of the ConvLSTM model, future work could include a more

diverse range of crop seeds, encompassing different species and varieties. The
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model’s ability to assess seed quality across various agricultural contexts can

be evaluated by incorporating multiple crop seeds.

� Real-time noise addition can be considered by performing experiments in non-

ideal conditions, including uneven illumination conditions, and using a low-

resolution CCD camera for recording data. Evaluating the model’s perfor-

mance on this recorded data will give more insights into the robustness of the

model.

� Exploration of noise reduction techniques, such as denoising algorithms or data

augmentation methods, can enhance the model’s resilience and accuracy when

applied to real-world scenarios with varying noise levels.

� The ConvLSTM model demonstrated adaptability to variations in frame size,

frame rate, and frames used. However, future work can investigate optimizing

these experimental parameters to determine the most efficient and effective

configurations. This optimization process can lead to a computationally ef-

ficient ConvLSTM network that requires fewer frames and reduces training

time while maintaining high accuracy.

� One of the significant advantages of the biospeckle technique combined with

deep learning is its potential for the real-time detection of fungal infections

in seeds. Future work can focus on developing a real-time implementation

framework using the ConvLSTM model. Integration with suitable hardware

platforms and optimization for efficient inference can be potentially applied in

seed quality assessment during production or post-harvest stages.

� The application of the laser biospeckle technique and ConvLSTM model can

be extended to investigate various agricultural aspects, such as seed and plant

stress, fruit ripening, seed priming, and germination, by analyzing biospeckle

activity variations over time.
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González, C. Weber, M. Trivi, H. Rabal, and L. I. Passoni, “Dynamic speckle

image segmentation using self-organizing maps,” Journal of Optics, vol. 18,

no. 8, p. 085606, 2016.

[45] A. Chatterjee, P. Singh, V. Bhatia, and S. Prakash, “An efficient automated

biospeckle indexing strategy using morphological and geo-statistical descrip-

tors,” Optics and Lasers in Engineering, vol. 134, p. 106217, 2020.

[46] I. El-Feghi, A. Tahar, and M. Ahmadi, “Efficient features extraction for finger-

print classification with multi layer perceptron neural network,” in ISSCS 2011-

International Symposium on Signals, Circuits and Systems, pp. 1–4, IEEE,

2011.

[47] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.

[48] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[49] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A

large-scale hierarchical image database,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 248–255, 2009.

[50] J. Chen, J. Chen, D. Zhang, Y. Sun, and Y. A. Nanehkaran, “Using deep

transfer learning for image-based plant disease identification,” Computers and

Electronics in Agriculture, vol. 173, p. 105393, 2020.

[51] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-

tion,” in Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 770–778, 2016.

[52] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 4700–4708, 2017.

[53] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional

neural networks,” in International Conference on Machine Learning (ICML),

pp. 6105–6114, PMLR, 2019.

61



BIBLIOGRAPHY

[54] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand,

M. Andreetto, and H. Adam, “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.

[55] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 1251–1258, 2017.

[56] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[57] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for hu-

man action recognition,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 35, no. 1, pp. 221–231, 2012.

[58] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c. Woo, “Con-

volutional lstm network: A machine learning approach for precipitation now-

casting,” Advances in Neural Information Processing Systems (NIPS), vol. 28,

2015.

[59] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,

M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
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