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ABSTRACT 

Polymer gears possess numerous advantages over metal gears, including 

their low weight, low vibration and noise, affordability high corrosion re-

sistance, and ease of manufacturing. These characteristics make polymer 

gears highly suitable for power transmission applications in various do-

mains such as aviation, electric vehicles, textile machines, windshield wip-

ers, printers, packaging machines, and mixers. Over the past few decades, 

extensive research has been conducted on polymer gear materials, loading 

conditions, the influence of gear pairs, and tooth modifications. Among 

these studies, researchers have identified that polymer gears often fail due 

to wear, pitting, and thermal damage. Researchers have employed a variety 

of techniques to modify the teeth of polymer gears, such as inserting steel 

pins into the internal holes of the gear teeth. This modification aims to en-

hance gear durability by mitigating thermal effects on the teeth. However, 

surprisingly, there is a significant gap in research exploring how these tooth 

modifications affect gear noise and vibration levels. Apart from that, only a 

few research studies have been conducted on detecting faults in polymer 

gears. Therefore, the objective of this thesis is to investigate the influence 

of tooth modification on the noise and vibration characteristics of polymer 

gears. Furthermore, the study aims to develop approaches for detecting and 

classifying faults in polymer gears.  

To achieve this, first a test rig was designed and constructed specif-

ically for conducting polymer gear tests under various load and speed con-

ditions. To explore tooth modifications in polymer gears, Two tooth modi-

fications and one without tooth modification gear were explored in terms of 

their vibration and noise levels. The results obtained from these modified 

gears were compared with those of unmodified gears, both in polymer-pol-

ymer gear pairs and polymer-metal gear pairs.  

Furthermore, the early detection of faults in polymer gears using vi-

bration analysis is crucial to avoid catastrophic failures. However, the 
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vibration signals of polymer gears are typically weak and susceptible to am-

bient noise, especially at the early stages of fault development. This poses 

challenges in extracting signal features using traditional signal analysis 

methods. Therefore, in this study, the following methods have been devel-

oped for polymer gear fault classification: One of the approaches to early 

polymer gear pitting fault detection is by kurtosis based variational mode 

decomposition (VMD). Firstly, acquired polymer gear vibration signals are 

decomposed by VMD. After that select the informative decomposed signals 

using kurtosis and obtained a more sensitive signal. Subsequently, condition 

indicators, namely kurtosis and crest factor, are extracted from the more 

sensitive signal. The analysis reveals that both indicators exhibit an increase 

in values corresponding to the severity of faults. The first step involves de-

composing the acquired signal using empirical wavelet transform (EWT) 

and selecting a sensitive signal. Various features are then extracted from the 

selected signal. These features are divided into three feature sets. The first 

set includes root mean square (RMS), crest factor, shape factor, and kurto-

sis. The second set consists of Hjorth parameters (HP)-based features, while 

the third feature set combines the features from the first and second sets. 

Subsequently, different machine learning models, namely K-nearest neigh-

bors (KNN), linear discriminant analysis (LDA), and support vector ma-

chine (SVM), are trained using the three distinct feature sets to classify the 

polymer gear faults. The results demonstrate that when the EWT decompo-

sition method is combined with KNN, there is a significant improvement in 

classification accuracy. Specifically, the third feature set achieves a superior 

accuracy rate of 99.3%. Furthermore, a comparison is made between the 

classification accuracy of empirical mode decomposition (EMD) and the 

raw signal-based method. Next, to develop a classification model for clas-

sifying the one healthy and five different levels of simulated pitting faults 

of polymer gear with maximum accuracy. In the case of the healthy gear, 

there were no pits present on the tooth surface. However, in the case of Fault 

1 through Fault 5, the number of pits on the tooth surface ranged from one 
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to five. A double decomposition technique with an ensemble learning model 

has been proposed. To achieve this, a double decomposition technique has 

been employed, combining EMD and Discrete Wavelet Transform (DWT). 

This process enables the extraction of a set of entropy features (EF) and HP 

are extracted following the decomposition. After that, different machine 

learning classifiers namely SVM, ensemble learning, and decision tree were 

trained with three different feature sets (EF, HP, and a combination of EF 

and HP) to classify the early pitting faults of polymer gears. The perfor-

mance of the double decomposition technique is evaluated and compared 

with EMD and DWT-based decompositions separately. The result reveals 

that the best classification accuracy is achieved by double decomposition 

with ensemble learning classifiers and trained with a combination of EF and 

HP feature sets. Furthermore, six different deep learning models have been 

developed, tested, and compared for the classification of polymer gear mul-

ticlass faults with minimum computational time. For this, the first complete 

ensemble empirical mode decomposition with the adaptive noise 

(CEEMDAN) is used for signal decomposition and getting an enhanced sig-

nal. The results show that the hybrid design deep learning model, combining 

long short-term memory (LSTM) and gated recurrent unit (GRU), gives im-

pressive accuracy. The hybrid model achieved a maximum accuracy of 

99.6% while significantly minimizing computational time compared to the 

other designed models. Furthermore, the proposed model was also com-

pared to traditional machine learning models. The findings support the su-

periority of the deep learning model in terms of both accuracy and compu-

tational efficiency. In this manner, the thesis provides experimental and 

data-driven approaches for the fault classification of polymer gears. 

Keywords: Polymer gear; teeth modification; noise; vibration; fault classi-

fication; VMD; EWT; double decomposition; Hjorth parameters; LSTM; 

GRU.  
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Chapter 1   

Introduction and literature review 

 

1.1 Introduction 

Gears are mechanical components designed to transmit motion and power 

between shafts through the gradual engagement of teeth [1]. While early 

gear designs prioritized reliability, the performance requirements for gears 

have evolved over time. Modern transmission systems now demand gears 

with increased load-carrying capacity, higher operational speeds, mini-

mized noise and vibration, lighter weight, and cost-effectiveness in produc-

tion and operation. 

In response to these demands, engineers have developed innovative 

methods to enhance the power density of vehicle powertrains while reduc-

ing the mass of components. One such approach involves leveraging plastic 

materials in gear manufacturing, enabling the creation of lightweight de-

signs that are both cost-effective and efficient. 

1.2 Polymer gears and their usages  

Polymers have always attracted a lot of interest from gear designers because 

of their low material density and lower material costs. Polymer gears (PGs) 

were first introduced in the 1950s and have since undergone rapid develop-

ment, with advantages such as the ability to operate with minimal or no 

lubrication, high resilience, and internal damping capacity [2–4]. Despite 

these benefits, certain inherent limitations, such as inadequate flexural 

strength and surface durability, have limited the load-carrying capacity of 

PGs, resulting in their early use being restricted to lightly loaded motion 

transmission applications. 
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However, recent advancements in polymer materials, lubrication 

conditions, and manufacturing processes have led to the development of 

polymer resins with superior and consistent material properties, signifi-

cantly improving the load-carrying capacity of PGs [5]. As a result, PGs 

have become viable alternatives to metal gears in power transmission appli-

cations, such as textile industries, vehicle engines, and motorbikes [6–8]. 

For instance, the use of polymer gears in automobile engineering has led to 

a reduction of 70% in mass, 80% in inertia, and 9% in fuel consumption [9]. 

The combination of high load-carrying ability and low weight is opening 

new avenues for polymer gears in industries, including e-bikes, aviation, 

and new energy vehicles. 

In addition to that, the choice of material for the mating gear has a 

significant impact on various parameters of polymer gear (PG) perfor-

mance, including fatigue life, operating temperature, and failure mode [10]. 

PGs can be used in two types of material engagements: metal-polymer and 

polymer-polymer pairings, each offering specific advantages in terms of op-

erational performance and cost. Depending on the specific application, a 

polymer-polymer gear pair can offer greater benefits compared to a metal-

polymer gear pair, such as reduced weight, cost savings, and overall cost-

effectiveness. Furthermore, utilizing materials with similar stiffness for 

both the driver and driven gears helps to prevent the stiffness mismatch 

commonly observed in metal-polymer gear pairs. 

1.3 Failure modes of PGs 

Under harsh working conditions, such as heavy loads, high running speeds, 

and elevated temperatures, PGs may experience catastrophic failure due to 

various reasons, including cracking at the root, wear, pitting, and cracking 

at the pitch circle, as depicted in Figure 1.1 [11]. During operation, the pitch 

point of the gear experiences elevated temperatures, which can weaken the 

material strength and lead to cracking at the pitch circle. Singh et al. [11] 

have shown that unlubricated gears fail due to surface wear, local melting, 
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and pitting, whereas lubricated conditions lead to failures primarily at the 

root. Lu et al. [12] conducted experiments and observed slight pitting 

around the pitch line in polymer gears. As the loading cycle increases, more 

pits appear near the pitch line, with a depth ranging from 1 to 2 mm. Another 

study by Illenberger et al. [13] focused on analyzing the development of 

pitting in high-performance plastic gears. They found that pitting damages 

mainly occur in the dedendum flank region of the gear in single tooth con-

tact. Furthermore, the extent of the flank area affected by pitting increases 

with the number of load cycles. It is crucial to detect these defects at an 

early stage to prevent catastrophic failures. 

 

 

Figure 1.1 Different types of polymer gear failures [11]. 
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One major drawback of PGs is their low thermal conductivity, 

which can lead to thermal failure. To overcome this limitation, researchers 

have employed various techniques to enhance the performance of PGs by 

modifying their tooth design. Kim [14] studied durability improvement 

methods for plastic spur gears. The approach involved inserting a steel pin 

into the internal hole of the gear tooth. The findings demonstrated a decrease 

in tooth surface temperature, resulting in a reduced wear rate and an in-

creased service life for the gear. Another investigation conducted by 

Senthilvelan and Gnanamoorthy [15] focused on examining the impact of 

gear tooth fillet radius on gear performance. The results revealed that gears 

with higher tooth fillet radius exhibited superior service life under all load-

ing conditions. These research efforts highlight the importance of imple-

menting tooth modifications in PGs to mitigate thermal issues and enhance 

their overall performance. 

1.4 Machine condition monitoring  

Machine condition monitoring (CM) plays a crucial role in ensuring the re-

liable and cost-effective operation of industrial facilities. CM involves con-

tinuously monitoring the machine to detect faults at an early stage, allowing 

timely action to be taken before a breakdown or catastrophic failure occurs. 

By implementing continuous CM, planned maintenance and repairs can be 

scheduled, leading to more efficient and environmentally friendly opera-

tions. Various technologies have been employed to enhance the applicabil-

ity, accuracy, and reliability of CM systems [16]. Real-time machine data 

acquisition and processing have gained wide acceptance in CM due to their 

ability to detect faults early. Selecting the most suitable CM system is crit-

ical for increasing machine availability, performance, and lifespan, reduc-

ing spare parts inventories, and preventing breakdown repairs.  

In the industry, maintenance accounts for 15-40% of the costs of man-

ufacturing [17]. Therefore, it is crucial to implement an effective mainte-

nance strategy to minimize these additional expenses. One approach to 
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achieving this goal is through the implementation of condition based 

maintenance (CBM) or maintenance based on structural health monitoring. 

CBM has gained popularity among companies due to its ability to prevent 

unnecessary breakdowns and recommend maintenance actions only when 

necessary. By adopting CBM, plants can save significant amounts of time 

and money. 

Various techniques are utilized in the industry for machine monitor-

ing. These include visual and aural inspections, temperature monitoring, 

wear debris analysis, vibration analysis, acoustic emission analysis, noise 

analysis, and more. Visual and aural inspections rely on skilled personnel 

who assess the machine's condition using their visual senses, but these 

methods have limitations in effectively detecting early-stage faults [18].  

Temperature monitoring involves the use of sensors like thermocou-

ples, thermal cameras, and thermometers to track and measure machine 

temperatures [19]. This monitoring process is essential for identifying ex-

cessive heat generation, which can serve as a significant indicator of faults. 

Wear debris analysis is another important traditional method used in 

industrial CM. It aims to determine the level of contamination and the size 

of wear particles present in the lubricant [20,21].  

Acoustic emission (AE) [22,23] monitoring involves the detection of 

stress waves generated in materials due to deformation, such as crack initi-

ation or dislocation movement. These waves typically fall within the ultra-

sonic frequency range of 20 KHz to 1 MHz. 

Vibration monitoring is a robust approach that can be applied to CM 

for all types of industrial machines. Vibration-based monitoring techniques 

are effective in detecting various types of faults, including issues with gears 

and bearings, misaligned parts, eccentric shafts, and improper clearances. 

Vibration analysis has been widely utilized in approximately 82% of fault 

diagnosis approaches [24,25].  
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1.5 Vibration analysis for gearbox fault analysis 

Gearbox failures can occur in various ways during operation, often accom-

panied by increased noise and vibration as warning signs before complete 

failure. The gearbox vibration signal is a complex non-stationary signal that 

includes multiple components under real-time operating conditions, such as 

shaft frequency, tooth meshing frequency, harmonics, fault transients, and 

noise [26,27].  The behavior of the gearbox vibration signal is influenced 

by physical characteristics such as operating speed, load, gear tooth mesh-

ing, tooth surface condition, and friction [28–33]. Additionally, the pres-

ence of other components within the gearbox, like bearings, impacts the 

gearbox vibration signal. Thus, the acquisition of vibration signals and sub-

sequent signal processing play crucial roles in detecting gear faults. 

Shipley [34] studied one of the primary causes of gearbox break-

downs is localized or widespread faults in the gear teeth. Vibration analysis 

utilizing signal processing methods has demonstrated effectiveness in iden-

tifying gearbox defects under constant speed conditions [35–39]. Vibration 

signals are captured by accelerometers mounted on the gearbox bearing cas-

ing. Operating variables, including speed variations and gear teeth meshing, 

contribute to the modulation of gearbox vibration signals [28]. These mod-

ulations can mask existing fault-related modulations [40–42]. Therefore, 

signal processing techniques are employed to analyze gearbox vibration sig-

nals for the detection of faults. 

1.6 Overview of signal processing techniques to de-

tect gear faults 

Signal processing techniques are widely used for gear fault analysis to ex-

tract valuable information from vibration signals and identify potential 

faults in gear systems. These techniques help to analyze the characteristics 

of vibration signals and detect specific patterns or anomalies associated with 

gear faults. The vibration signal from the gearbox demonstrates a mixture 
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of deterministic and random elements [43]. Random signals can be classi-

fied as stationary or non-stationary, while deterministic signals can be fur-

ther categorized as periodic or non-periodic. Signal processing techniques 

are adept at extracting important information from these signals. Several 

methods have been developed for the early detection of gearbox faults 

[21,36,44]. However, each method has its limitations. Some commonly em-

ployed signal processing techniques for gear fault analysis include: 

1.6.1 Time domain analysis 

Time domain analysis is a commonly used signal processing technique for 

detecting gear faults in machinery. It involves examining the vibration sig-

nals obtained from gear systems in the time domain to identify any abnor-

malities or patterns that indicate the presence of faults. Time domain anal-

ysis involves examining the amplitude changes of a signal over time to de-

tect transient impulses caused by fault phenomena in the time domain vi-

bration signal [45]. This approach is commonly utilized to identify the pres-

ence of gear faults. 

Another important aspect of time domain analysis is the calculation 

of statistical parameters. These parameters include root mean square (RMS) 

values, peak values, kurtosis, skewness, and crest factor. By comparing the 

statistical parameters of vibration signals from healthy gears with those 

from faulty gears, significant deviations can be detected, indicating the pres-

ence of gear faults. The most commonly used statistical parameters in gear 

fault analysis include peak value, RMS, crest factor, and kurtosis [46]. Time 

synchronous averaging (TSA) is a traditional time domain analysis tech-

nique used to extract periodic waveforms from noisy signals. TSA involves 

dividing the vibration signal into contiguous segments of equal length, 

which is usually the shaft rotation period. These segments are then averaged 

to enhance the synchro-nous vibration signal with periodic shaft movement, 

while random non-synchronous components are attenuated or canceled 

[47]. 
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1.6.2 Frequency domain analysis 

Frequency domain analysis is another signal processing technique for gear 

fault detection, which involves examining the frequency content of vibra-

tion signals to identify specific fault-related frequencies and their associated 

characteristics [48]. One of the most used techniques in frequency domain 

analysis is the Fast Fourier Transform (FFT). The FFT converts the time 

domain vibration signal into the frequency domain. In a frequency domain 

graph, the y-axis (ordinate) represents the amplitude of the displacement, 

velocity, or acceleration, while the x-axis (abscissa) represents the fre-

quency. This graph provides a visual representation of how the amplitude 

of the signal varies at different frequencies.  

In gear fault detection, the FFT can be used to identify the presence 

of specific frequencies associated with gear faults, such as the gear meshing 

frequency and its harmonics. The FFT can also be used to analyze the side-

bands around the gear meshing frequency, which can indicate the presence 

of defects such as pitting, wear, or cracks in the gear teeth [49]. 

1.6.3 Time-frequency domain analysis 

Time-frequency domain analysis is a technique used to analyze signals that 

exhibit time-varying frequency content. It combines the advantages of both 

time domain and frequency domain analyses by providing information 

about how the frequency content of a signal changes over time. A time-

frequency plot provides a comprehensive representation of a signal by de-

picting all components within a specific frequency range. It displays these 

components sequences, causality, and frequency variations over time in a 

single plot [38]. 

Time-frequency domain analysis is a powerful tool for analyzing 

non-stationary signals, such as those generated by gear faults. However, it 

can be challenging to extract meaningful information from these complex 

signals using traditional signal processing techniques. Therefore, advanced 
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signal processing methods have been developed to overcome these chal-

lenges and improve the accuracy of gear fault detection. 

One such method is wavelet transform, which is widely used for the 

time-frequency analysis of non-stationary signals. It decomposes the signal 

into different frequency bands and provides information about the ampli-

tude and phase of each component. Wavelet-based techniques have been 

successfully applied to detect gear faults [50,51]. Other advanced signal 

processing techniques include empirical mode decomposition (EMD) [52], 

ensemble empirical mode decomposition (EEMD) [53], Hilbert-Huang 

transforms (HHT) [54], and adaptive filtering algorithms, among others. 

They aim to improve the signal quality, denoise the data, and enhance the 

detection of fault-related features in the time-frequency domain. However, 

these methods require expert judgments to determine the health of the gear-

box. As a result, modern industrial applications choose fault detection meth-

ods that can determine machine health statuses automatically. Therefore, 

the gear fault diagnosis in vibration signals has been enhanced by the inte-

gration of advanced signal processing techniques with machine learning al-

gorithms. Machine learning (ML) algorithms, including artificial neural net-

works (ANN), support vector machines (SVM), decision trees (DT), and 

deep learning models, have demonstrated significant potential in automati-

cally analyzing and classifying gear faults with promising outcomes [55–

57]. 

1.7 Overview of machine learning techniques 

ML and data-driven techniques have proven to be effective in defect detec-

tion by utilizing existing sensor data. These methods enable timely and re-

liable fault detection with minimal human intervention, leading to cost sav-

ings and improved system performance. 

For ML algorithms to work effectively, access to data is crucial. ML 

algorithms require a set of features to represent the data, which can have 

continuous, discrete, or binary values. If the instances are labeled with 
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known accurate outputs, it is considered supervised learning [58], while un-

supervised learning [59] does not involve labeling the samples. 

The selection of appropriate features plays a vital role in recognizing 

fault characteristics and enhancing the performance of ML algorithms. 

These features can be extracted from the acquired signals in the time domain 

[50,60–62], frequency domain [63,64], and time-frequency[65–68]. 

To improve efficiency, feature subset selection techniques can be 

applied to remove unnecessary and redundant data, reducing dimensional-

ity. This process ensures that only relevant features are utilized in the ML 

algorithms [69]. A generalized fault detection procedure for rotating ma-

chines using ML is depicted in Figure 1.2.  

 

Figure 1.2 Fault detection procedure of rotating machine using traditional 

machine learning methods. 

Vernekar [70] conducted a study on automated fault detection of gears using 

vibration signals. Features were extracted from the signals, and the J48 al-

gorithm was employed for sensitive feature selection. Fault classification 

was performed using the ANN algorithm. In another study, Samanta [62] 

compared ANN and SVM for gear fault detection. Genetic algorithms (GA) 
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were utilized for feature extraction, and SVM exhibited higher classification 

accuracy compared to ANN. Saravanan et al. [67] investigated the effec-

tiveness of wavelet-based features for fault detection using ANN and prox-

imal SVM. Feature vectors were extracted from Morlet wavelet coeffi-

cients, and sensitive features were selected using the J48 algorithm. 

1.8 Overview of deep learning techniques 

Deep learning models can extract high-level features from raw input data 

by leveraging multiple layers within the network. This approach has found 

success in various domains, including image processing, speech recogni-

tion, and natural language processing [71,72].  

There are two common techniques for applying deep learning algo-

rithms. The first approach involves transforming the one-dimensional (1D) 

signal into a two-dimensional (2D) representation, such as a time-frequency 

representation. This transformed representation is then used to train a con-

volutional neural network (CNN) to capture underlying patterns. The sec-

ond strategy involves directly feeding the signals into deep networks, such 

as 1D CNNs or recurrent neural networks (RNNs), to extract hidden pat-

terns. CNN [73,74] is a type of feed-forward neural network that incorpo-

rates convolution operations and deep structures. Researchers [74–78] have 

utilized 1D CNNs with raw vibration signals as input and successfully de-

veloped end-to-end diagnosis models for gear fault classification. Further-

more, Li et al.  [79] investigated gear fault detection using Bi-directional 

long short-term memory (BiLSTM) and compared it with long short-term 

memory (LSTM). Other alternative deep learning techniques, such as the 

combination of CNN and Gated Recurrent Unit (GRU) for gear fault detec-

tion [80] and the utilization of autoencoders for detecting gear pitting [81], 

have also been explored in gear failure diagnosis. The fault classification 

procedure for rotating machines using deep learning is illustrated in Figure 

1.3.  
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Figure 1.3 Fault detection of rotating machine using deep learning tech-

niques. 

1.9  Conclusions  

It is found from the above literature survey; PGs have emerged as viable 

replacements for metal gears in power transmission applications. This is due 

to advancements in polymer materials, lubrication conditions, and manu-

facturing techniques. However, it is important to note that PGs can experi-

ence catastrophic failure under harsh working conditions during long-term 

operations. The main types of failure observed in PGs are cracking at the 

root, wear, cracking at the pitch circle, and pitting. 

In the field of gear fault diagnosis, vibration signal analysis has 

proven to be a valuable tool for early and reliable defect identification. 

Three different approaches have been employed for gear fault detection: the 

signal processing method-based approach, the machine learning-based ap-

proach, and the deep learning-based approach. Within the signal processing 

approach, three different analysis methods have been utilized: time-domain 

analysis, frequency-domain analysis, and time-frequency domain analysis.  
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ML approaches have demonstrated the ability to accurately identify 

gear defects with minimal human intervention. Various ML algorithms have 

been explored, and the selection of the most suitable algorithm depends on 

factors such as data availability, desired learning rate, desired accuracy 

level, types of defects being addressed, and the engineer's comfort with the 

techniques. The ML process typically involves data collection, feature ex-

traction, and fault classification. 

Deep learning techniques have been applied to construct end-to-end 

diagnosis models that can automatically learn features from collected data 

and recognize the health status of machines. 

1.10   Outcomes of the literature review 

The existing literature on PGs, including their applications and failure 

modes, has been thoroughly examined. Additionally, a comprehensive re-

view of various condition monitoring methods, with a specific focus on vi-

bration-based monitoring techniques, has been conducted. The significance 

of vibration-based techniques in detecting various faults in gears is pre-

sented in detail. Here are the key findings derived from the literature review. 

• Temperature is a critical factor influencing the failure of PGs. To 

enhance the lifespan of PGs and reduce tooth surface temperature, 

several tooth modification methods have been developed. 

• However, there is a lack of research on how tooth modification in 

PGs affects other properties such as vibration and noise. Therefore, 

it is crucial to investigate the impact of tooth modification on the 

vibration and noise generated by gears under different operating 

conditions. 

• PGs have established themselves as an attractive alternative to tra-

ditional metal gears in a plethora of applications. During operation, 

PGs mainly fail due to pitting, wear, cracking at the root, and crack-

ing at the pitch circle. But, there is a lack of research on PGs fault 

detection. 
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• Commonly acquired signals for gear fault analysis include vibration, 

noise, motor current signature, and acoustic emission. Vibration sig-

nals carry detailed fault information and are widely used in the con-

dition monitoring of metal gears. However, it is important to focus 

on analyzing vibration signals specifically for polymer gear fault de-

tection. 

• Identifying the severity of faults is crucial for initiating appropriate 

corrective actions. However, the literature lacks sufficient infor-

mation on severity identification for PG faults. 

• In the literature, fault detection techniques for metal gears are typi-

cally categorized into signal processing-based, machine learning-

based, and deep learning-based methods. Therefore, there is much 

scope in these techniques for PGs fault detection. 

• ML techniques typically involve three main steps: (i) acquiring the 

signal, (ii) pre-processing the acquired signal and extracting relevant 

features, and (iii) utilizing these feature data to train the ML algo-

rithm. The success of the ML algorithm in classifying different gear 

faults depends on factors such as the signal types, the sensitivity of 

the selected features, and the domain from which the features are 

extracted. The domains commonly used for feature extraction are 

time, frequency, and time-frequency. However, it is important to 

note that not all ML models perform equally well in all cases. There-

fore, there is a need to develop a reliable learning algorithm that 

gives a higher accuracy with fewer features and which is robust to 

gear operating conditions and surrounding noise. 

• From the literature review in the case of DNN, features are extracted 

from CNN there is no need for manual feature extraction. However, 

it is beneficial to reduce the dimensionality and variability of the 

data to facilitate faster and more efficient training of RNNs. This 

can be achieved through dimensionality reduction techniques or 

manual feature extraction from the signals. However, there is 
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limited investigation into manual feature extraction approaches spe-

cifically within the context of DNN techniques. Developing a DNN 

model that achieves high classification accuracy while minimizing 

computational time is therefore crucial. 

Based on the literature outcomes, the aims and objectives of the thesis work 

can be derived and presented in the subsequent section. 

1.11   Objectives  

The current research aims to improve fault detection in polymer gears 

through the development and application of advanced signal processing and 

machine learning techniques. Based on the literature review and the out-

comes discussed, the following objectives have been derived: 

i. Investigate the impact of teeth modifications on the vibration and 

noise characteristics of polymer gears, aiming to understand how 

these modifications affect the level of vibration and noise under dif-

ferent operating conditions. 

ii. Develop a robust fault detection method for polymer gears using ad-

vanced signal processing techniques, focusing on extracting relevant 

features from the vibration signals to accurately identify faults. 

iii. Compare the performance of different ML classifiers using various 

feature sets extracted from decomposed signals, aiming to identify 

the most effective combination of features and classifier for polymer 

gear fault classification. 

iv. Develop a novel approach that combines double decomposition with 

supervised machine learning techniques, to achieve early fault clas-

sification in polymer gears and improve the overall accuracy of the 

fault detection process. 

v. Design and develop a deep learning model specifically tailored for 

polymer gear fault detection, with a focus on achieving high classi-

fication accuracy while minimizing computational time. 
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1.12   Organization of thesis 

The thesis is organized into the following chapters: 

Chapter 1: Introduction and literature review 

This chapter provides an introduction to the research topic and reviews pre-

vious works related to polymer gears. It discusses different methods of gear 

fault detection, including signal processing methods, machine learning 

methods, and deep learning methods. The chapter concludes with the re-

search motivation and objectives of the thesis. 

Chapter 2: Effect of teeth modifications on vibration and acoustic char-

acteristics 

In this chapter, the impact of teeth modifications on the vibration and acous-

tic characteristics of polymer gears is investigated. The design and devel-

opment of an experimental setup for evaluating noise and vibration charac-

teristics are described in detail. A comparison is made between different 

types of engagements, such as metal-polymer and polymer-polymer mate-

rial pairs, with modified and unmodified gears. The chapter concludes with 

a summary of the findings. 

Chapter 3: Early pitting fault detection using kurtosis based VMD 

This chapter presents the methodology for detecting early pitting faults in 

polymer gears using kurtosis based VMD. A comparison is made between 

the proposed method, empirical mode decomposition (EMD), and raw sig-

nal for polymer gear fault detection. The chapter concludes with a summary 

of the findings. 

Chapter 4: Supervised machine learning model for early fault detection 

In this chapter, a supervised ML model for early fault detection in polymer 

gears using vibration signals is presented. Different classifiers and combi-

nations of feature sets are analyzed, and the effect of different 
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decomposition methods on classifier accuracy is studied. The chapter con-

cludes with a summary of the findings. 

Chapter 5: Classification of polymer gear pitting faults using double 

decomposition and Hjorth parameters 

This chapter demonstrates the use of the double decomposition method 

combined with Hjorth parameters and entropy features for polymer gear 

fault classification. The chapter concludes with a summary of the findings. 

Chapter 6: Hybrid deep learning model for polymer gear multiclass 

fault classification 

In this chapter, a hybrid deep-learning model is developed for multiclass 

fault detection in polymer gears with high accuracy and low computational 

time. A comparison is made between the deep learning model and the hy-

brid deep learning model in terms of accuracy and computational time. Var-

ious ML classifiers are also compared with the proposed model. The chapter 

concludes with a summary of the findings. 

Chapter 7: Conclusion and Future Scope 

This chapter provides an overall conclusion of the thesis and discusses the 

future scope of the study. 
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Chapter 2   

Effect of teeth modifications on vibration and 

acoustic characteristics of polymer gears 

 

2.1 Introduction 

Several studies have been conducted to explore different aspects of PGs, 

including materials [82], teeth modification [14,15,83–85], and perfor-

mance parameters such as the effect of gear-pair [86–89], rotational speed, 

loading condition [90–93], and reinforcement [94–98]. Recent research by 

Hriberšek and Kulovec [99] has investigated the impact of voids on the du-

rability of PGs. 

In recent decades, researchers have placed great emphasis on inves-

tigating wear and thermal damage in polymer gears [3,100]. Many research-

ers have reported plastic gear failures caused by high temperatures resulting 

from the low thermal conductivity of polymer materials, which shortens 

their lifespan [101]. Therefore, some investigations have focused on devel-

oping novel design methods to reduce excessive heat accumulation and in-

crease the service life of PGs. For instance, Kim [14] proposed a durability 

improvement method by drilling an internal hole or inserting a steel pin into 

the teeth surface. This study indicates that reducing teeth surface tempera-

ture and modification enhances the service life. Koffi et al. [102] investi-

gated the influence of five different teeth configurations on temperature and 

mechanical behaviors, including teeth with no hole, axial cooling hole, 

tapped axial hole, radial and axial cooling hole, and tapped radial and tapped 

axial cooling hole. Furthermore, Mertens and Senthilvelan [103]  experi-

mentally studied the impact of air cooling on the performance of polymer 

gears, while Düzcükoǧlu [104] modified polyamide gears by drilling cool-

ing holes across the face width of the pitch circle and below the root circle. 
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The results indicated that the modified gear exhibited 5-20⸰C lower surface 

temperature and improved wear resistance compared to the unmodified 

gear. 

In addition to wear and tooth modification analysis, noise generation 

is a significant concern for machines using PGs. Researchers have investi-

gated the effects of different materials and gear pairs on noise generation in 

polymer gears. For example, Dearn [105]  compared the sound pressure lev-

els (SPL) of polyoxymethylene (POM) against POM, POM against dissim-

ilar material, and POM against steel gear pairs, and found that the SPL for 

POM against POM was higher. Nozawa et al. [106] investigated the effect 

of a polymer sheet-adhered gear paired with a steel gear operating under 

constant rotational speed with varying torque and observed a significant re-

duction in noise during operation. Hoskins et al. [107] studied the dynamic 

behavior of polymer gears in terms of noise and found that SPL increases 

with increased load and speed at all operating conditions. Singh and Sid-

dhartha [108] investigated the noise emissions of functionally graded mate-

rials during operation and observed that the noise is directly proportional to 

speed and not influenced by torque.  

After reviewing the existing literature, it can be observed that various 

studies have focused on improving the performance of PGs by modifying 

gear teeth, using different gear materials, and pairing gears with dissimilar 

materials. However, there is a lack of research on the vibration and noise 

emissions from PGs. Excessive gear vibration and noise can significantly 

impact machine performance. Thus, it is crucial to study the vibration and 

noise levels produced by polymer gears. To the best of the author's 

knowledge, no prior study has investigated the effect of teeth modification 

on the acoustic noise and vibration characteristics of polymer gears. The 

present study aims to fill this research gap by examining the impact of two 

types of tooth modifications, namely, hole-type pinion and insert steel pin-

type pinion, on the vibration and noise levels of various gear pairs. The 
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study will experimentally measure the vibration and noise levels of polymer 

gear pairs under different operating conditions, such as speed and torque. 

2.2 Details of the test gears 

2.2.1 Gear material 

This study examines two different gear-pairing materials: polymer and steel 

gear (SG) material. The material used for polymer gear (PG) in this research 

is MC901 (Nylatron), a modified nylon 6 grade known for its stable prop-

erties, mechanical strength, flexibility, and damping characteristics. MC901 

is commonly used in bearings, gears, wheels, and custom parts and is iden-

tified by its blue color. The material used for SG in this study is S45C, a 

carbon steel that contains 0.45% carbon. Table 2.1 provides the material 

properties of MC901 and S45C gears, and Table 2.2 outlines the specifica-

tions of the pinion and gear utilized in this study. 

Table 2.1 Material properties of the MC901 and S45C. 

Material properties MC901 (Nylatron) S45C (Carbon 

steel) 

Hardness 120 (R scale) 220 (Brinell) 

Poisson’s ratio 0.40 0.30 

Thermal conductivity (W/mK) 0.23 49.8 

Tensile strength (MPa) 96 690 

 

2.2.2 Specimen preparation  

This study investigates the effect of tooth modifications on vibration and 

noise levels of PG by employing two types of modifications: polymer pin-

ion with a hole (PPH) and polymer pinion (PP) with a steel pin inserted in 

a hole (PPSP). Figure 2.1 shows the location and size of the holes in the 

pinion teeth, which have a radius of 0.5 mm and are drilled at the junction 
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of the base circle and the centerline of the pinion teeth. Figure 2.2 presents 

the PP gear in its unmodified form and with the two modifications, PPH and 

PPSP, shown in Figure 2.2 (b) and Figure 2.2 (c), respectively. Table 2.3 

provides an overview of the various gear pairs tested in this study. 

Table 2.2 Specification of pinion and gear. 

Gear parameters Pinion Gear 

Face width (mm) 20 20 

Pitch circle diameter (mm) 40 60 

Bore diameter (mm) 14 14 

Number of teeth 20 30 

Pressure angle 20⸰ 20⸰ 

Module (mm) 2 2 

 

 

Figure 2.1 Schematic illustration of location and dimension of drilled holes 

in the pinion. 
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Figure 2.2 (a) Polymer pinion without modification (PP), (b) Polymer pin-

ion with hole (PPH), (c) Polymer pinion with steel pin inserted in the hole 

(PPSP). 

 

Table 2. 3 Overview of the various test gear pairs. 

Gear 

pair 

Description 

A Polymer pinion paired with polymer gear (PP/PG). 

B Polymer pinion with a hole paired with polymer gear 

(PPH/PG). 

C polymer pinion with a steel pin inserted in the hole paired 

with polymer gear (PPSP/PG). 

D Polymer pinion paired with steel gear (PP/SG). 

E Polymer pinion with a hole paired with steel gear (PPH/SG). 

F Polymer pinion with steel pin inserted in the hole paired with 

steel gear (PPSP/SG). 

 

2.3 Gear test rig and testing procedure 

2.3.1 Gear test rig  

To conduct the experiments, a gear test rig has been developed in the Gear 

Fault Diagnosis Laboratory at IIT Indore, as shown in Figure 2.3. The test 
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rig is composed of an AC motor, a variable frequency drive (VFD), a bear-

ing housing plate, a fixed plate, a gearbox, and a magnetic brake. The CAD 

design of the fixed plate, split bearing housing plate, bearing housing plate, 

and gearbox is presented in Figure 2.4. The split-bearing housing plate con-

sists of two components: a top plate and a bottom plate. The housing plate 

is designed in a way that allows for easy removal of the shaft, making it 

convenient to change gears for testing purposes frequently. The AC motor 

is capable of running at speeds up to 2900 rpm and is connected to the input 

shaft of the gear through a coupling. The output shaft is linked to a manually 

adjustable magnetic brake, which applies the required test torque. A VFD 

is utilized to regulate the motor speed. The technical information of the var-

ious components of the experiment is specified in Table 2.4. 

 

 

Figure 2.3 Experimental setup with DAQ. 
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Figure 2.4 CAD designs (a) fixed plate (b) split-bearing housing plate(c) 

bearing housing plate and (d) gearbox. 

2.3.2 Surface roughness measurement 

All the tested gears are directly purchased from KHK, which is manufac-

tured by hobbing process. To minimize gear noise, surface roughness 

should be kept to a minimum. Therefore, the maximum surface roughness 

(Rmax) and average surface roughness (Ra) of the test gears are measured. 

The values of Rmax and the Ra of the test gears are measured by using Mar-

surf LD-130 (from Mahr Metrology, Germany). The value of Rmax and Ra 

of a polymer spur gear before and after tip relieving is measured by tracing 

a 2 μm diameter probe for a section length of 2mm on the left and right 

flank surfaces of its randomly chosen two teeth. A total of four values of 

Rmax and four values of Ra are measured, and their arithmetic mean is used 

for further analysis. The Rmax and Ra values for each gear are listed in Table 

2.5. 
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Table 2.4 Technical specifications of various components of the experi-

mental setup. 

S. No Component name Technical specification 

Electrical equipment 

1 Induction motor Three phase, 0.75 HP, pre-wired, rpm range 

0-2900 rpm 

2 VFD Variable frequency drive with multi-fea-

tured front panel programmable controller  

3 Tachometer  

4 Data acquisition 

system 

NVGate OR-34, 4 channels, 102.4 KS/s  

Mechanical equipment (Bearing housing components) 

1 Shaft Step shaft with different diameter, 14 mm di-

ameter 

2 Bearings Four deep groove ball bearing (bearing num-

ber is 6003-2Z and 6300-2Z) mounted in an 

aluminum horizontal split housing 

3 Fixed plate 210×152×20 mm is the dimension of a fixed 

plate  

4 Split-bearing 

housing plate 

Two parts- Top and bottom parts made with 

aluminum material  

5 Bearing housing 

plate 

Assembled the top and bottom parts of split 

bearing housing by the bolt. 180×20×100 

mm is the dimension. 

 

Table 2.5 The values of surface roughness. 

Surface roughness pa-

rameters 

Polymer Pinion 

(PP) 

Polymer gear 

(PG) 

Steel gear 

(SG) 

Rmax (µm) 2.615 2.847 2.998 

Ra (µm) 0.383 0.473 0.493 
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2.3.3 Vibration measurement 

Vibration measurements are performed to analyze the vibration of the test 

PGs. The tri-axial accelerometer (PCB-Piezotronics 356A26, S/N: 355339) 

is mounted on the top of the bearing housing, as shown in Figure 2.5 (a), to 

capture the vibration signals. The accelerometer is connected to an OROS-

OR34 data acquisition system (DAQ) to acquire the vibration signature of 

the test polymer gears. The DAQ is further connected to a laptop with NV 

Gate software for analyzing the captured signals. The test gears are run at 

different rotating shaft speeds (500 rpm, 800 rpm, 1100 rpm, and 1400 rpm) 

with applied torque levels of 2 Nm, 3 Nm, and 4 Nm. The vibration signa-

ture of 10 seconds is captured from various gear pairs (A-F), with a sam-

pling frequency of 12.8 kHz. 

2.3.4 Acoustic measurements 

For acoustic measurements, a microphone (PCB model number-378A21) is 

placed 5 cm away from the test gear, as illustrated in Figure 2.5 (b).  

 

Figure 2.5 (a) Vibration measurement using a tri-axial accelerometer and 

(b) Acoustic measurement using a microphone. 

The microphone is connected to an OROS-OR34 data acquisition system 

(DAQ) to record the noise signature of the test polymer gears. The DAQ is 

further connected to a laptop with NV Gate software for analyzing the 
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captured signals. Acoustic signals are recorded for all six gear pairs at 

various speeds and torques mentioned in section 2.2.3. 

2.4 Results and discussion 

This section presents the analysis of experimentally recorded vibration and 

acoustic data from various gear pairs under different operating conditions.  

2.4.1 Vibration signal analysis 

In this experimental study, vibration signals were acquired in three different 

directions: the x-axis, y-axis, and z-axis. The signals along the z-axis were 

used in the analysis as they contained the highest amplitude vibration sig-

nals. Figure 2.6 shows the time-domain vibration signals for A and D type 

gear pairs at various speeds and a constant 4 Nm torque. It can be observed 

that the amplitude of time-domain signals of A and D type gear pairs in-

creases with an increase in speed.  

 

Figure 2.6 Time-domain vibration signal for A and D type gear pairs with 

various speeds at 4 Nm. 
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Figure 2.7 shows the time-domain vibration signals of A and D type 

gear pairs at different applied torque and a constant 1400 rpm speed. Figure 

2.7 (a) indicates that the amplitude slightly increases with load. Figure 2.7 

(b) reveals that the amplitude is nearly constant for 2 Nm and 3 Nm, but it 

increases at 4 Nm. This suggests that the loading conditions do not signifi-

cantly affect the time-domain signal of A type and D type gear pairs. 

Figure 2.8 illustrates the time-domain waveform of different gear 

pairs (A to F) at 1400 rpm speed and at 4 Nm torque. The A gear pair has 

the lowest amplitude (-20 m/s2 to 20 m/s2), while the E gear pair has the 

highest amplitude (-50 m/s2 to 50 m/s2) compared to the other gear pairs. 

The B-type gear pair has the highest amplitude among the A, B, and C type 

gear pairs, whereas the A type has the lowest amplitude. Similarly, when 

comparing the D, E, and F type gear pairs, the E type gear pair has the high-

est amplitude, while the D type gear pair has the lowest. Relying only on 

vibration amplitude to study the impact of teeth modification may mislead 

the analysis because the amplitude is also affected by the speed. 

Figure 2.7 Time-domain vibration signal for A and D gear pairs under var-

ious torques at 1400 rpm. 
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Figure 2.8 Comparison of different types of gear pairs (A to F) at 1400 rpm 

under 4 Nm. 

Typically, the root mean square (RMS) [109] values of vibration 

signals are utilized to assess the overall vibration level of gearboxes. There-

fore, in this study, the RMS value is calculated from the vibration signals 

obtained at various operating conditions. The RMS value is considered to 

be the most informative because it is directly related to the energy content 

of the vibration signal. 

( )
N

2

i

i=1

1
RMS= y

N

 
 
 
                                                                                 2.1 

Where N is the sample number, and y is the vibration signal. 

To compare the impact of teeth modification on vibration, the RMS 

has been computed for all experimental conditions. Table 2.6 presents the 

RMS values obtained from vibration signals for A, B, and C type gear pairs 

under different conditions. Across all experimental conditions, the percent-

age increase in RMS for the B type gear pair relative to A is greater than 

that of the C type gear pair relative to A. The results in Table 2.6 reveal that 

the % increase in RMS for the B-type gear pair relative to A ranges between 
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5.3 to 20, while for the C type gear pair, it ranges between 0.22 to 17.2. The 

analysis of RMS performance for A, B, and C type gear pairs at different 

speeds and torques is shown in Figure 2.9. From Figure 2.9 (a–c), it can be 

observed that for all applied torques, the values of RMS increase as the ro-

tational speed increases. The A-type gear pair has the minimum RMS value 

at every speed, while the B-type gear pair has the maximum RMS value. 

The RMS values of A, B, and C type gear pairs exhibit only minor changes 

at all input speeds under all loading conditions. When comparing the RMS 

values of A, B, and C type gear pairs, the values are as follows: A < C < B. 

 

Table 2.6 RMS values of A, B, and C-type gear pairs. 

 

Experimental con-

ditions 

Gear pair conditions % Increase with re-

spect to A 

Torque  Speed 

(rpm) 

A B C B C 

 

   2 Nm 

500  1.026 1.232 1.097 20.044 6.92 

800  2.094 2.205 2.168 5.299 3.53 

1100  3.229 3.750 3.72 16.159 15.233 

1400  4.233 4.894 4.747 15.61 12.14 

 

3 Nm 

500  1.228 1.398 1.28 13.8 4.225 

800  2.382 2.539 2.523 6.618 5.928 

1100  3.654 4.147 3.687 13.494 0.91 

1400  4.664 5.49 5.466 17.727 17.196 

 

4 Nm 

500  1.424 1.59 1.43 11.175 0.438 

800  2.484 2.884 2.616 16.094 5.334 

1100  3.754 4.212 3.762 12.218 0.22 

1400  4.934 5.792 5.681 17.388 15.122 
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Table 2.7 presents the RMS values and their percentage increase for 

D, E, and F type gear pairs under various experimental conditions. The table 

reveals that the E type gear pair shows a higher percentage increase in RMS 

values with respect to the A type gear pair compared to the F type gear pair 

under all experimental conditions. Specifically, the % increase in RMS val-

ues for the E type gear pair with respect to the D type gear pair ranges from 

7.63 to 101.6, while for the F type gear pair, it ranges from 0.04 to 47.22. 

At 500 rpm under all applied torque conditions, the % increase in RMS val-

ues for both E and F-type gear pairs is minimal. 

 

 

 

 

 

 

 

 

Figure 2.9 Performance of A, B, and C type gear pairs at different speeds 

and different torques (a) 2 Nm, (b) 3 Nm, and (c) 4 Nm. 
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Table 2.7 RMS values of D, E, and F type gear pairs. 

Experimental condi-

tions 

Gear pair conditions % Increase with re-

spect to A 

Torque Speed 

(rpm) 

D E F E F 

 

2 Nm 

500 1.1 1.24 1.213 12.915 10.69 

800  1.86 3.75 2.479 101.6 33.17 

1100  3.37 5.54 3.633 64.243 7.73 

1400  4.239 7.66 6.24 80.7 47.2 

 

3 Nm 

500  1.18 1.36 1.35 15.316 14.4 

800  1.993 2.91 2.935 46.05 47.225 

1100  3.827 6.57 4.451 71.61 16.322 

1400  4.85 8.49 7.266 75.13 49.8 

 

4 Nm 

500  1.484 1.6 1.485 7.63 0.043 

800  2.235 3.474 3.112 55.48 39.27 

1100  4.54 7.41 5.365 63.13 18.18 

1400  8.871 11.94 10.31 34.59 16.157 

 

The performance comparison of D, E, and F type gear pairs at vari-

ous speeds and torques is shown in Figure 2.10. It can be observed that the 

RMS values for the E and F type gear pairs are higher than that of the D 

type gear pair for a given speed and torque condition. The E type gear pair 

has the highest RMS value at all speeds and torques. There is minimal var-

iation in the RMS value for D, E, and F type gear pairs at 500 rpm for all 

applied torques. The RMS values increase with increasing speed and torque.  
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Figure 2.10 Performance of D, E, and F type gear pairs at different speeds 

and different torques (a) 2 Nm, (b) 3 Nm, and (c) 4 Nm. 

2.4.2 Acoustic signal analysis  

To investigate the impact of teeth modifications on noise generation, acous-

tic signals were captured under various speed and torque conditions. Figure 

2.11 shows the time-domain acoustic signals for A and D type gear pairs at 

4 Nm and different speeds. The X-axis indicates the time in seconds (s), 

while the Y-axis represents the acoustic pressure in Pascals (Pa). As speed 

increases, the amplitude of the acoustic pressure also increases. The D type 

gear pair exhibits slightly higher acoustic signal amplitude compared to the 

A type gear pair. At 1400 rpm, the maximum amplitude of the A-type gear 
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pair ranges from -1.37 Pa to 1.37 Pa, while the D type gear pair ranges from 

-2 Pa to 2 Pa.  

 

Figure 2.11 Time-domain acoustic signal for A and D type gear pairs at 

various speeds at 4 Nm. 

Figure 2.12 shows the time-domain acoustic signal for gear pairs A 

to F operating at 1400 rpm and a torque of 4 Nm. At 1400 rpm and 3 Nm, 

gear pairs of both A, B, and C types and D, E, and F types have little impact 

on the magnitude of the acoustic signal. However, the D, E, and F-type gear 

pairs exhibit slightly higher amplitude than the A, B, and C type gear pairs. 

The sound pressure level (SPL) in dBA was then calculated from the cap-

tured acoustic signals for all experimental conditions. 

Table 2.8 presents the SPL (dBA) values of A, B, and C type gear 

pairs, as well as their percentage increase for different speed and torque 

conditions.  The results show that the percentage increase in SPL for the B-

type gear pair with respect to A is higher than the C type gear pair with 

respect to the A type gear pair under all experimental conditions. The 
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percentage increase in SPL with respect to the A-type gear pair for the B 

type gear pair ranges from 0.56 dBA to 5.17 dBA, while for the C type gear 

pair, it ranges from 0.36 dBA to 2.30 dBA.  

 

Figure 2.12 Time-domain acoustic signal of various gear pairs (A to F) at 

1400 rpm under 3 Nm. 

Figure 2.13 depicts the impact of rotational speed and applied load 

on the sound pressure level (SPL) for the A, B, and C type gear pairs. As 

the rotational speed and applied torque increased, the SPL of all gear pairs 

also increased.  The result indicates that the A-type gear has lower SPL as 

compared to B and C type gear paired under all experimental conditions. 

Moreover, the B-type gear pair generated the highest noise levels among all 

gear pairs for all rotational speeds and applied torques. 

Table 2.9 presents the SPL (dBA) values for D, E, and F type gear 

pairs and the percentage increase in SPL for E and F type gear pairs with 

respect to the D type gear pair under various speed and torque conditions. 

The percentage increase in SPL for the E type gear pair is higher than that 

of the F type gear pair under all experimental conditions. From Table 2.9, it 

can be observed that the E type gear pair and the F type gear pair exhibit a 
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percentage increase in SPL ranging from 0.92 dBA to 4.69 dBA and 0.47 

dBA to 3.61 dBA, respectively, with respect to the D type gear pair. 

Table 2.8 SPL (dBA) values of A, B, and C type gear pairs. 

Experimental conditions Gear pair conditions % Increase with 

respect to A 

Torque Speed (rpm) A B C B C 

 

2 Nm 

500  73.2 74.4 74.2 1.6 1.4 

800  79.1 80.1 79.8 1.3 0.9 

1100  80.1 81.1 80.8 1.3 0.94 

1400  82.5 85.9 84.4 4.1 2.3 

 

3 Nm 

500  74.3 76.1 75.5 2.4 1.6 

800  80.5 84.6 81.7 5.5 1.5 

1100  81.1 82.6 81.8 1.9 0.9 

1400  84 87.2 85 3.81 1.2 

 

4 Nm 

500  75.9 77.6 77.1 2.1 1.5 

800  80.5 82.2 81.5 2.1 1 

1100  83.2 83.7 83.5 0.6 0.4 

1400  86 87.7 86.5 1.9 0.6 

 

In Figure 2.14, the impact of D, E, and F type gear pairs on sound 

pressure level (SPL) is depicted under various speeds and torques. The 

graph shows how changes in rotational speed affect the noise emissions of 

these gear pairs. As the rotational speed increases, the SPL (dBA) of all 

three gear pairs (D, E, and F) also increases. This correlation suggests that 

the noise emissions are influenced by the speed at which the gears rotate. 

The D type gear pair generally exhibits lower noise emissions across vari-

ous experimental conditions, while the E type gear pair produces higher 

noise emissions. This study provides insights into the noise characteristics 

of different gear and can be valuable for designing quieter gear systems or 

selecting appropriate gear pairs for specific applications. 
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Figure 2.13 Effect of applied load and rotational speed on SPL for A, B, 

and C-type gear pairs at (a) 2 Nm, (b) 3 Nm, and (c) 4 Nm. 
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Table 2.9 SPL (dBA) values of D, E, and F type gear. 

Experimental conditions Gear pair conditions % Increase 

with respect to 

D 

Torque Speed (rpm) D E F E F 

 

2 Nm 

500  75.3 76.6 75.65 1.73 0.47 

800  78.95 82.55 81.8 4.56 3.61 

1100  82.05 85.9 84.1 4.69 2.5 

1400  84.85 87.8 87.3 3.48 2.89 

 

3 Nm 

500  76.6 77.4 77 1.05 0.52 

800  81.3 83.9 83.55 3.2 2.77 

1100  83.25 86.9 85.35 4.38 2.52 

1400  85 88.4 87.95 4 3.47 

 

4 Nm 

500  76.65 78.5 77.3 2.41 0.85 

800  82.8 84.6 84.25 2.17 1.75 

1100  86.25 87.7 87 1.68 0.87 

1400  87.4 88.2 88.05 0.92 0.74 
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Figure 2.14 Effect of applied load and rotational speed on sound pressure 

level (SPL) for D, E, and F-type gear pairs (a) 2Nm, (b) 3 Nm, and (c) 4Nm. 

 

2.5 Conclusions 

This chapter presents the findings of an experimental study con-

ducted to evaluate the impact of teeth modifications on noise and 

vibration levels of PGs. The study involved testing various gear 

combinations (A, B, C, D, E, and F) under different speeds and load 

conditions. The following conclusions were drawn from the study: 
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• Firstly, it was found that the vibration and noise levels of all gear 

pairs (A, B, C, D, E, and F) increased with an increase in rotational 

speed and torque. This suggests that higher speeds and loads result 

in greater vibration and noise levels. This phenomenon can be ex-

plained by the fact that as speed escalates, the gear teeth engage and 

disengage more frequently. This rapid interaction occurs because 

the teeth rotate at a faster pace, increasing the frequency of contact 

between them. Simultaneously, higher torque exerts a stronger force 

on the gear teeth. When these factors combine increased speed and 

torque the frequency of impacts or contacts among the gear teeth 

rises significantly. These repeated impacts generate vibrations 

within the system. 

• Secondly, when comparing the vibration and noise levels of gear 

pairs A, B, and C, the results indicated that the B-type gear pair ex-

hibited the maximum noise and vibration level under all operating 

conditions, while the A-type gear pair had the minimum noise and 

vibration level. The increased noise and vibration in the B-type gear 

pair can be attributed to enhanced tooth deflection, a result of the 

presence of holes in the gear teeth. These holes lead to amplified 

gear vibration and noise, underlining their significant impact on the 

overall performance of the gear system. 

• Thirdly, when comparing the vibration and noise levels of gear pairs 

D, E, and F, the E-type gear pair demonstrated the maximum noise 

and vibration level under all operating conditions, while the D-type 

gear pair exhibited the minimum noise and vibration level. In the 

case of E-type gear paired the tooth deflection is increased caused 

by the presence of the hole, thus amplifying the overall gear vibra-

tion and noise. 
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Chapter 3   

Polymer gear early pitting fault detection using 

kurtosis based VMD   

 

3.1 Introduction 

PGs may experience catastrophic failure under harsh working conditions, 

such as heavy loads, high running speeds, and high temperatures. In various 

studies, pitting is a common failure in PGs [12,13]. Therefore, detecting 

these defects at an early stage is important to prevent catastrophic failure. 

Detecting faults in PGs using vibration signals is challenging due to 

the generation of weak signals as compared to metallic gear. Furthermore, 

local defects can cause non-stationary signals that are difficult to distinguish 

from heavy noise generated by machine components and the operating en-

vironment. Therefore, a suitable signal denoising technique is necessary to 

cancel out the noise and highlight the fault features present in the signal.  

Empirical Mode Decomposition (EMD) is a robust time-frequency 

analysis technique that enables the decomposition of a non-stationary and 

non-linear signal into a number of intrinsic mode functions (IMFs) and re-

siduals [110]. IMFs usually gain a better signal-to-noise compared with that 

raw vibration signals, making the fault frequencies easy to obtain. Parey et 

al. [111] have conducted experimentation and simulation to authenticate the 

effectiveness of the EMD process, to detect the gear fault severity. Statisti-

cal parameters such as kurtosis and crest factor values of signals were taken 

for fault diagnosis. Singampalli et al. [112] studied the application of EMD 

based condition indicators (CIs) for the prediction of fault severity in a spur 

gear through vibration signals. However, EMD has a disadvantage called 

the mode mixing phenomenon, thereby leading to a misinterpretation of the 

signal’s physical characteristics. Variational mode decomposition (VMD) 
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is an improved IMF extraction technique that overcomes the mode mixing 

and reconstruction errors of EMD. The major characteristics of VMD are 

ensuring maximum bandwidth for the computed IMF and excellent perfor-

mance in the presence of nonstationary signals [113]. However, selecting a 

proper IMF is a challenging task, and the fault signature is weak in sensor-

acquired signals. The extraction of CIs plays a crucial role in identifying 

faults in polymer gears. Previous research [110,114] has shown that kurtosis 

and crest factor are highly sensitive CIs for fault detection, and thus are used 

in this study. 

The above work encouraged us to apply the VMD technique to ana-

lyze a polymer gear fault. The present work focuses on the in-depth inves-

tigation, of the fault detection of a polymer spur gear through vibration sig-

nals. Once acquiring the vibration signals, employ the VMD algorithm to 

decompose the signal into a number of variational mode functions (VMFs). 

Thereafter, VMFs have been selected using the kurtosis method. After that 

CIs are extracted from the sensitive VMF and analyzed for fault detection. 

Furthermore, compared the CIs extracted from raw signal and kurtosis 

based EMD with those obtained from the kurtosis based VMD technique. 

3.2 The background of EMD, and VMD 

3.2.1 Empirical mode decomposition  

EMD is a signal processing method used to analyze nonlinear and non-sta-

tionary signals by decomposing them into smaller forms known as intrinsic 

mode functions (IMFs). It was proposed by Huang et al. [115]. The method 

involves decomposing the vibration signals into several IMFs through a 

shifting process. The IMFs have two defining characteristics: (a) the differ-

ence between the extreme values at zero crossings must be equal to or less 

than one, and (b) their mean value, which is obtained by averaging the upper 

and lower envelopes, is zero. The sifting process for the EMD method is 

described in the following step-by-step process: 
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1. Identify all the local maxima and local minima of a signal y(𝑡). 

2. Upper envelope 𝑢𝑒(𝑡)  is generated by connecting all local maxima, while 

a lower envelope 𝑙𝑒(𝑡) is generated by connecting all local minima via cubic 

spline interpolation. 

3. The mean envelope 𝑚1 determine by equation 3.1.  

  𝑚1(𝑡) =
𝑢𝑒(𝑡)+𝑙𝑒(𝑡)

2
                                                                                     3.1 

4. The first component ℎ1(𝑡) is determined by equation 3.2. 

 ℎ1(𝑡) = 𝑦(𝑡) − 𝑚1(𝑡)                                                                                 3.2 

5. Check to see if ℎ1(𝑡) satisfies the criteria of an IMF. 

6. If ℎ1(𝑡) is an IMF, it is designated as the first IMF.  

𝑐1(𝑡) = ℎ1(𝑡)                                                                                               3.3 

If ℎ1(𝑡) is not an IMF, take it as the original signal 𝑦(𝑡) and repeat the 

procedures (1)-(4) up to the k times to components ℎ𝑘(𝑡) until the first IMF 

𝑐1(𝑡) that meets the IMF criteria is found. 

7. The residue function 𝑟1(𝑡) is determined by equation 3.4. 

𝑟1(𝑡) = 𝑦(𝑡) − 𝑐1(𝑡)                                                                                   3.4 

Consider 𝑟1(𝑡) to be a new signal 𝑦(𝑡) and repeat the procedures (1)-(6) to 

find the other IMFs likes 𝑐2(𝑡), 𝑐3(𝑡), 𝑐4(𝑡), …….𝑐𝑗(𝑡). As a result, 

 𝑟2(𝑡) = 𝑟1(𝑡) − 𝑐2(𝑡)                                                                               3.5 

 𝑟3(𝑡) = 𝑟2(𝑡) − 𝑐3(𝑡) 

  …………………. 

  …………………. 

  𝑟𝑗(𝑡) = 𝑟𝑗−1(𝑡) − 𝑐𝑗(𝑡) 
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When the monotonic function is achieved for the residue 𝑟𝑗(𝑡), the shifting 

process will come to an end. 

8. The last step, by adding all the IMFs and residue, gets the EMD of the 

original signal. 

𝑦(𝑡) = ∑ 𝑐𝑖(𝑡) + 𝑟𝑗(𝑡)
𝑗
𝑖=1                                                                             3.6 

where ( )x t is a signal, which is the sum of IMFs, ( )ic t  symbolizes the IMF 

and ( )jr t  represents the residual component. The last IMF ( nc ) has the low-

est frequency components, whereas the first IMF ( 1c ) has the highest fre-

quency components. 

3.2.2 Variational mode decomposition  

The VMD decomposes a real value input signal y(𝑡) into several discrete 

modes yk (t) or variational intrinsic mode functions (VMFs) that hold spe-

cific sparsity features. Each VMF is compact around the center frequencies 

ωk. The process of decomposition steps are as follows [113],  

   
( ) ( ) ( )

2

min +  

 2






 
    −     
    

j j tt y t e kt ktky
k k

                                3.7 

Where, 
1

( )
=

=
k

k

k

Y t y ,    ,....
1

=y y y
k k

 is the set of all modes and 

   k 1 k
ω = ω ,....ω  are center frequencies. 

To solve the reconstructing constraint, Lagrangian multipliers ( )  are em-

ployed. The extended Lagrangian, on the other hand, is written as [113]: 
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                                  3.8                                                                                                                                    

In equation 3.8 α denotes the penalty factor. During the n+1 iteration, the 

predicted component and associated center frequency may be calculated as 

follows: 

( )
( ) ( )

( )

( )

ˆ ˆ
1 2ˆ

2
1 2

 
 



  

− + + =

+ −

x yi kn iy
k

k

                                                        3.9 

( )

( )

2
ˆ d01

2
ˆ d0

  


 


+ =



y
kn

k
y
k

                                                                                      3.10 

( )ˆ x , ( )ˆ ks , ( )ˆ ks  and ( )̂   a representation of Fourier transform of 

( )x t , ( )ky t , ( )1+n

ky t and ( ) t  respectively, in Equ. 3.9 and 3.10. The fol-

lowing expression can be used to represent the update   : 

( ) ( ) ( ) ( )1 1ˆ ˆ ˆ      
 + += + − 
  

n n nx y
k

k

                                                3.11 

letter n denotes the number of iterations.  

In this study, the parameters, namely, the mode number K are set to 

4, noise tolerance  is set to 0, and the moderate bandwidth restriction   is 

set to be default value 2000. 
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3.3 Condition indicators  

3.3.1 Kurtosis 

Kurtosis is a statistical tool used to analyze the signal, defined as the signal's 

fourth normalized moment. Its mathematical expression is shown in equa-

tion 3.12. 

 
( )

( )

4

1

2
2

1

N

i
i

N

i
i

N y y

Kurtosis

y y

=

=

−

=
 

− 
 





                                                                      3.12 

Where   N     is the number of points in the time vibration signal y, 

yi is the ith point in the time domain-based signal y, and y  is the 

mean of the signal. 

3.3.2 Crest factor 

The ratio of a signal's peak value to its RMS value is known as the crest 

factor (CF), which is mathematically expressed in equation 3.13. 

( )

( )

max y
iCF=

N 2
y
i

i=1
N



                                                                                   3.13 

Where   N is the number of points in the time vibration signal y 

               yi is the ith point in the time domain-based signal y. 

3.4 Experimental study 

3.4.1 Test setup 

The experimental setup used in this study is depicted in Figure 3.1. To drive 

the experimental setup, an AC motor with a maximum rotational speed of 

2850 rpm was used. The motor was connected to a 19-mm shaft with a 
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tolerance of 0.05 mm through a flexible coupling to minimize the effects of 

misalignment and vibration transmission from the motor. On the other end 

of the shaft, a pulley and belt arrangement were mounted, which was further 

coupled with a newly designed spur gear assembly. A magnetic brake was 

used on the output shaft of the gear assembly to apply the torque during 

testing. 

3.4.2 Gear material and measurement conditions 

In the previous chapter, section 2.2, the gear material, specification, and 

properties were discussed in detail. This chapter focuses on the examination 

of three types of gear faults, namely no fault, slight pitting, and severe pit-

ting using vibration signals. The polymer gear signals are obtained for all 

three types of faults, at various operating conditions. To conduct the exper-

iments, the gear assembly is driven by an AC motor at three different 

speeds, 25 Hz, 30 Hz, and 35 Hz, while three torque conditions, 1 Nm, 2 

Nm, and 3 Nm, are used at each speed. The tachometer is used to monitor 

the speed of the gear input shaft. To measure the vibration signals, a tri-

axial accelerometer (PCB-Piezotronics 355339) is fixed on the bearing 

housing using adhesive, as shown in Figure 3.1(b). 

The sampling frequency of signal acquisition is 12.8 kHz. To simu-

late circular pits, a micro-milling machine is used to artificially form the 

pits on the pinion gear tooth surface while keeping the size within an ac-

ceptable range, as illustrated in Figure 3.2. A circular pit has a diameter and 

depth of approximately 2 mm and 0.2 mm, respectively. The gear in Figure 

3.2 (a) represents the no-fault condition. For slight pitting, three pits are 

seeded on a single tooth surface, as shown in Figure 3.2 (b). To represent 

the progress of the fault, i.e., severe pitting fault, five pits are seeded on the 

same tooth surface, as seen in Figure 3.2 (c). 
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Figure 3.1 Experimental setup with designed gear assembly setup. 

3.4.1 The proposed methodology 

In this study, a method is proposed to address the challenge of selecting an 

appropriate VMF from a range of VMFs, which is a difficult task in tradi-

tional signal decomposition techniques. The objective is to achieve early 

fault detection in polymer gears using vibration signals. The method is 

based on the concept of kurtosis, which serves as an indicator of the non-

Gaussian behavior of vibration signals.  

Initially, the acquired signal is decomposed using VMD to obtain a 

set of VMFs. Among these VMFs, the two VMFs with the highest kurtosis 
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values are selected for further analysis. The VMF with the highest kurtosis 

is expected to contain the most fault-related information among all the de-

composed VMFs. Additionally, considering the presence of noise interfer-

ence during weak fault diagnosis, the VMF with the second-highest kurtosis 

value is also included. Therefore, two VMFs are chosen as the most in-

formative for fault detection. By focusing on these selected VMFs, the 

method reduces the computational cost associated with analyzing all the 

VMFs. It enables a focused investigation of crucial frequency bands for ex-

tracting fault features. Furthermore, these selected VMFs are combined to 

obtain a more sensitive signal. Subsequently, CIs are computed from the 

sensitive signal. The analysis of these CIs is conducted to detect faults in 

polymer gears. The methodology employed in this study is depicted in Fig-

ure 3.3. 

 

Figure 3.2 Schematic view corresponding to polymer gear with artificially 

fabricated pitting faults. 
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Figure 3.3 Methodology for the pitting fault detection of the polymer spur 

gear. 

3.5 Results and discussion 

To detect early pitting faults in polymer gear, vibration signals were ac-

quired under different speed and torque combinations, using a tri-axial ac-

celerometer. Although the amplitude of the captured vibration signals var-

ied in three directions (x-axis, y-axis, and z-axis), the z-axis signal seemed 

most relevant, as the tangential force acts along this axis at the pinion and 

gear interface. Therefore, only the z-axis signals were examined and ana-

lyzed for further analysis of the polymer gear fault detection. 

The vibration signals obtained at 3 Nm torque and 25 Hz speed for 

various levels of pitting faults in the polymer gear are illustrated in Figure 
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3.4. As shown, the signal amplitude increased with the severity of pitting. 

However, relying solely on the vibration amplitude may not be sufficient 

for accurate diagnosis due to its sensitivity to speed variations.  

 

Figure 3.4 Raw time signal of polymer gear, (a) No fault, (b) slight pitting, 

(c) severe pitting. 

Therefore, the use of appropriate CIs is crucial for detecting pitting 

in polymer gears. In this study, kurtosis and crest factor are two essential 

CIs that can be utilized to identify faults in polymer gears. 

Table 3.1 displays the CIs obtained from a raw signal. However, the 

values of CIs do not exhibit a consistent trend with the advancement of pit-

ting faults, which may be due to material properties, vibration, and noise 

from other components. To overcome this unreliable trend, this study pro-

poses the kurtosis based VMD.  
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Table 3.1 CIs values of raw vibration signals at 30 Hz speed. 

CIs  Torque (Nm) 

 Gear conditions 1 (Nm) 2 (Nm) 3 (Nm) 

 No fault 7.40 6.10 7.33 

Kurtosis Slight pitting 7.20 6.65 6.05 

 Severe pitting 6.86 6.15 9.95 

 No fault 6.01 6.97 7.61 

Crest factor Slight pitting 6.16 6.81 7.12 

 Severe pitting 9.29 8.49 15.05 

 

3.5.1 IMF extraction  

In this study, the acquired signals are decomposed into corresponding 

VMFs by using VMD to have a better understanding of the fault character-

istics. Each acquired signal under different operating conditions and fault 

conditions is decomposed into 4 VMFs by using VMD, as shown in Figure 

3.5. Figures 3.5 (a) and 3.5 (b) display the VMF components for no-fault 

and severe pitting faults at 3 Nm torque and 30 Hz speed, respectively. Each 

IMF carries different information about the original signal. In the literature, 

several methods, such as correlation coefficient, entropy, and standard de-

viation, are used to select an optimum IMF from the decomposed ones. Kur-

tosis is a robust index used to determine this impulsive behavior in vibration 

signals. Therefore, in this study focus on the two VMFs with maximum 

kurtosis value, is used to determine the maximum kurtosis in VMFs. The 

analysis was conducted using MATLAB R2020b software. 

A list of kurtosis results is presented in Table 4. VMF 3 and VMF 

4, hold the maximum kurtosis values, which are 3.5 and 4.9 for healthy and 

9.6 and 8.7 for severe pitting, similarly, the kurtosis value is also extracted 

for slight pitting conditions. After that add these selected VMFs and ob-

tained a sensitive signal for further fault detection because they indicate the 
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maximum deviation from the Gaussian behavior for a random signal and 

the presence of the highest impulsiveness. The sensitive signal is analyzed 

in the time and envelope spectrum as shown in Figure 3.6 at 3 Nm torque 

and 30Hz speed. 

 

 

Figure 3.5 The VMD decomposition results in (a) no-fault and (b) severe 

pitting fault conditions. 
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Table 3.2 Kurtosis results for VMFs at 30 Hz speed and 3 Nm torque. 

 VMF 

VMF-1 VMF-2 VMF-3 VMF-4 

No fault 2 2.4 3.5 4.9 

Severe pitting 3.5 3.7 9.6 8.7 

 

Specifically, Figure 3.6 (a-c) presents the time-domain waveform of 

the sensitive signal under 30 Hz speed and 3 Nm torque for no fault, slight 

fault, and severe fault conditions. The waveform reveals an increase in 

spikes with fault severity. Additionally, Figure 3.6 (d-f) demonstrates the 

envelope spectrum of the sensitive signals for different gear conditions at 3 

Nm torque and 30 Hz speed. The envelope spectrum highlights the gear 

mesh frequency (fgm) and its harmonics (2fgm, 3fgm). The amplitude of fgm is 

0.157 m/s2 for the no-fault gear. However, for polymer gears with slight and 

severe pitting faults, the amplitude of fgm increases with an increase in fault 

severity. Specifically, for slight and severe pitting, the fgm amplitude is 

0.279 m/s2 and 0.362 m/s2, respectively. Apart from that, simultaneously 

extracting the CIs namely kurtosis and crest factor from the sensitive signals 

for identifying the polymer gear faults. 

3.5.2 CIs extraction from sensitive signals and identification 

of polymer gear faults 

The CIs extracted from the sensitive signals are presented in Table 3.3. The 

results indicate that the CI values are at a minimum when there are no faults 

present and increase as the severity of pitting faults increases. This trend 

holds true for all three torque and speed conditions evaluated. Based on 

these findings, it can be concluded that the CIs derived from the sensitive 

signals are effective in detecting early pitting faults in polymer gears. 
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Figure 3.6 Time waveform and envelope spectrum of kurtosis-VMD-based reconstructed signals at 3 Nm speed and 30Hz torque. 



58 

 

Table 3.3 Performance of CIs for kurtosis-VMD-based reconstructed sig-

nals at 30 Hz speed. 

CIs Gear conditions Loads (Nm) 

1 (Nm) 2 (Nm) 3 (Nm) 

 No fault 3.66 3.77 3.82 

Kurtosis Slight pitting 9.25 8.83 6.93 

 Severe pitting 14.15 16.38 16.93 

 No fault 4.08 4.36 4.95 

Crest factor Slight pitting 7.44 6.44 6.6 

 Severe pitting 14.63 17.56 15.1 

 

The study also compares the effectiveness of CIs obtained from the 

sensitive signal which is obtained from kurtosis based VMD method with 

those obtained from the raw signal and kurtosis based EMD method under 

different experimental scenarios.  

The comparison of kurtosis and crest factor performance between 

the raw and decomposed signals which is based on kurtosis based VMD and 

EMD is shown in the Figures. 3.7 and 3.8, respectively. In these figures, the 

torque varies row-wise while the speed is constant, and the speed varies 

column-wise while the torque is constant.  

As shown in Fig. 3.7 (a-i), the kurtosis extracted from the raw sig-

nals and the sensitive signal generated using kurtosis based EMD method 

exhibit an irregular trend with varying fault conditions. In contrast, the kur-

tosis indicator value obtained from the sensitive signal generated using kur-

tosis based VMD method increases with the severity level of pitting. Spe-

cifically, the kurtosis value is lowest for the no-fault condition and highest 

for the severe pitting condition, consistent with all three torque and speed 

combinations. 
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Figure 3.7 Comparison of kurtosis performance between raw and decom-

posed signals. 

 

Based on Figure 3.8 (a-i), it is evident that the crest factor values obtained 

from raw signals and sensitive signal which is based on kurtosis based EMD 

show an irregular pattern with the severity of faults. In contrast, for a sensi-

tive signal, which is obtained by kurtosis based VMD, the crest factor value 
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is the smallest for no-fault and increases with the severity of the fault. The 

comparison of CIs extracted from raw signal and kurtosis based EMD fails 

to detect early pitting faults in polymer gear. However, the CIs extracted 

from the kurtosis based VMD are effective in detecting early pitting faults 

at different speeds and loads.  

 

 

Figure 3.8 Comparison of the crest factor performance between raw and 

decomposed signals. 
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The proposed method-based result demonstrates the detection of gear de-

fects under various experimental situations. 

3.6 Conclusion 

To meet the high-reliability criteria of the polymer gears, this study presents 

a novel method to detect early pitting faults in polymer gear using kurtosis 

based VMD. The proposed method consists of two primary steps. In the 

first step, the raw vibration signals are decomposed using VMD. The kur-

tosis of each decomposed signal, namely VMF, is retrieved, and the first 

two VMFs with higher kurtosis values are picked and added to obtain a 

more sensitive signal. In the second step, the CIs, namely kurtosis and crest 

factor, is extracted from the sensitive signal, and analysis is performed for 

early fault detection of polymer gear. In addition, upon a newly constructed 

signal, the envelope spectrum is investigated to detect the early fault based 

on the gear mesh frequency noticed. To verify the performance of the pro-

posed method, the CIs are compared which are extracted from kurtosis 

based EMD, and raw signal. The raw signal-based CIs, such as kurtosis and 

crest factor, failed to detect the level of faults. Similar behavior is also ob-

served when the CIs are extracted from kurtosis based EMD. 

On the other hand, when CIs are computed from kurtosis based 

VMD, the CIs values increase with fault severity. The experimental results 

show that the proposed fault detection methods can detect polymer gear’s 

fault more effectively, which will reduce any catastrophic failure. The pro-

posed fault detection approach is further validated in the presence of addi-

tive noise at various levels. 
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Chapter 4   

Supervised machine learning model for early 

fault detection  

 

4.1 Introduction 

Traditional fault detection methods rely on specialists to diagnose rotating 

machine faults correctly and take a long time. Additionally, traditional 

maintenance procedures are complicated, time-consuming, and expensive. 

To address these challenges, In recent years, researchers have stud-

ied a large number of fault classification algorithms. Among them, the gear 

fault classification algorithms mainly include support vector machine 

(SVM) [116], artificial neural network (ANN) [67], and deep learning 

[117]. Chen et al. [68] proposed a gearbox fault diagnosis model based on 

a wavelet support vector machine. The results show that it has a stronger 

generalization ability and higher diagnostic accuracy than artificial neural 

networks and support vector machines with random extraction parameters. 

Lie and Zuo [118] studied the identification of gear crack level using K 

nearest neighbor classification algorithm.  

In recent years, a variety of statistical features (SF) have been used 

to classify gear faults, including mean, variance, skewness, kurtosis, crest 

factor, shape factor, sample entropy, fuzzy entropy, Shannon entropy, and 

approximate entropy.  

Hjorth parameters (HP) are a set of features based on statistical cal-

culations that have been used in many studies to effectively describe the 

characteristics of the EEG signal [119]. In recent years, many studies have 

used HP to extract information from different bio-signals and have achieved 
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successful results, including the detection of the heart rate from the electro-

cardiogram (ECG) signal [120]. 

Finally, at the classification phase, an appropriate classification 

model is developed for each class by one of several classification methods. 

In previous studies, different classification methods have been used to clas-

sify the faults, including K-nearest neighbors (KNN), SVM, linear discri-

minant analysis (LDA), quadratic discriminant analysis (QDA), and deci-

sion tree.  

Most of the studies are focused on the fault classification of metal 

gears using vibration signals. The main challenge in fault classification 

from the vibration signals is the detection of faults with high accuracy in 

the early stages. 

This chapter proposes an innovative approach to detect early pitting 

faults by utilizing vibration signals from a polymer gear setup. The meth-

odology adopted for fault detection and classification is shown in Figure 

4.1. To accomplish this, two decomposition methods viz., EMD and empir-

ical wavelet transform (EWT) are applied on the raw signals to obtain the 

mode functions (MFs). Based on the energy ratio most sensitive MF, is se-

lected which will be referred to as representative MF in the rest of this study. 

The most sensitive MF is then used for extracting the common SF and HP. 

After extracting the features, classifiers like LDA, KNN, and SVM are used 

to classify the polymer gear faults i.e., healthy, slight pitting, moderate pit-

ting, and severe pitting. Also, classification accuracy is compared with the 

raw signal (without decomposition) based method. 

4.2 Experimental study  

This study examines one healthy gear and three gears with simulated pitting 

faults, including slight, moderate, and severe pitting. The pitting faults are 

created on the pinion gear tooth surface using a micro-milling machine with 

a pit depth of 0.2 mm and a diameter of 2 mm. The healthy gear has no 
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faults, while the slight pitting gear has two pits, the moderate pitting gear 

has four pits, and the severe pitting gear has five pits on the tooth surface, 

as depicted in Figure 4.2. 

 

Figure 4.1 Methodology adapted for fault detection in polymer gears. 

The vibration signals are captured using a tri-axial accelerometer 

(PCB-Piezotronics 355339) installed vertically on the top of the bearing 

housing through a direct adhesive mounting technique, as depicted in Figure 

3.1. OROS-OR34 data acquisition system (DAQ) is used to record the vi-

bration signature of the test gears, and the captured signals are visualized 

using NV Gate software on a laptop. The study captures raw vibration sig-

nals at three different speeds (10 Hz, 20 Hz, and 30 Hz) and a combination 
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of four applied torque (no load, 1 Nm, 2 Nm, and 3 Nm) from a healthy gear 

and three faulty gear conditions. Each vibration signal is captured for 10 

seconds with a sampling frequency of 12.8 kHz. The detailed specification 

of the test gears is described in Table 2.2. To extract more suitable features, 

each acquired signal is decomposed into frequency sub bands using two 

methods: empirical wavelet transforms (EWT) and empirical mode decom-

position (EMD). 

 

Figure 4.2 Simulated tooth pitting on polymer gears. 

 

4.3 Signal decompositions 

4.3.1 Empirical mode decomposition  

A comprehensive explanation of EMD has been previously discussed in 

Section 3.2.1. In this study, the vibration signal was decomposed into 10 

mode functions (MFs), and the first 6 MFs are displayed in Figure 4.3. The 

most sensitive MF was selected based on an energy ratio criterion to extract 

the optimal features of the signal. 
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Figure 4.3 EMD-based MFs extracted from polymer gear vibration signal 

at 30 Hz speed and 3 Nm load condition. 

4.3.2 Empirical wavelet transform  

EWT is a signal decomposition technique that adapts to the signal being 

analyzed and it was developed by Gilles [121]. EWT uses segmentations of 

the Fourier spectrum of the original signal to create a wavelet filter bank 

that can divide the signal into sub-signals with a compact support Fourier 

spectrum. The primary steps involved in EWT are as follows: 
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Bandpass filters are built using empirical wavelets. In each segment, the 

empirical scaling function 𝜑𝑛(𝜔) and wavelet function ψ
𝑛

(𝜔) are defined 

as follows: 
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

  
  
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
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
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     
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


n n
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n n

                                         4.2 

Where the function 𝛽(𝑦) is defined as: 

( ) ( )4 2 3

0, y 0

y = 35 84 70 20 , 0<y<1

1, y 1






− + −




y y y y                                                     4.3                            

For obtaining the tight frame 𝜑𝑛(𝜔) and ψ
𝑛

(𝜔), the limiting condition of 

parameter 𝛾 is as follows: 

1min

1

  −
+  =

  +
+ 

n n
n

n n

                                                                                    4.4 
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Find the approximate coefficient ( )0,  
f

A t  and details coefficients 

( ),  
f

D n t . The ( )0,  
f

A t  is found by the inner product of the original sig-

nal and 𝜑𝑛(𝜔) and the ( ),  
f

D n t  obtained by inner product of original sig-

nal and ψ
𝑛

(𝜔). The mathematical formula is given as: 

( ) ( ) ( )1
0,  t  

f
A f t d   = −                                                                   4.5 

( ) ( ) ( ),  t  
f n

D n f t d   = −                                                                  4.6 

Calculate the sub-signals (empirical mode functions). The first sub-signal is 

denoted by 
1

f (t)  and the nth sub-signal is denoted by f (t)
n

: 

1 1
f (t)=A (0,  t) ( )

f
t                                                                               4.7 

f (t)=D ( ,  t) ( )
n f n

n t                                                                               4.8 

In this study, vibration signals are decomposed into six MF by EWT as 

shown in Figure 4.4. 

4.4 Mode function selection method based on the en-

ergy ratio 

To identify the MF that is most sensitive to fault information, an energy 

ratio-based approach is utilized to select the most informative MF. The MFs 

with a high energy ratio are preferred as they represent the dominant signal 

components. The energy ratio is calculated using Equation (4.9). 

N 2xi
i=1=
N 2yi

i=1

 Energy ratio




                                                                               4.9 

where yi represents the vibration signal, xi represents a decomposed signal, 

and N is a number of modes. 
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Figure 4.4 EWT-based MFs extracted from polymer gear vibration signal 

at 30 Hz speed and 3 Nm load condition. 

Tables 4.1 and 4.2 present the energy ratio for each MF obtained 

through the EMD and EWT methods, respectively.  

Table 4.1 Energy ratio of each MF decomposed by EMD at 30 Hz speed 

and 3 Nm torque condition.  

Gear conditions MF1 MF2 MF3 MF4 MF5 MF6 

Healthy 0.923 0.059 0.036 0.015 0.005 0.002 

Severe pitting 0.538 0.234 0.179 0.069 0.009 0.003 
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Table 4.2 Energy ratio of each MF decomposed by EWT at 30 Hz speed and 

3 Nm torque condition.  

Gear conditions MF1 MF2 MF3 MF4 MF5 MF6 

Healthy 0.348 0.129 0.132 0.057 0.04 0.225 

Severe pitting 0.572 0.057 0.055 0.056 0.042 0.209 

 

Based on the results from Tables 4.1 and Table 4.2, MF1 is identi-

fied as the most sensitive MF. The next step is to extract features from the 

selected MF for further analysis. 

4.5 Feature extraction 

This section focuses on detecting polymer gear faults using five relevant 

features, namely RMS, crest factor, shape factor, kurtosis, and Hjorth pa-

rameters [122]. While kurtosis and crest factor are well-defined in section 

3.3, this section will discuss the shape factor and Hjorth parameters. 

4.5.1 Shape factor 

Shape factor: It is described by the ratio of RMS to the absolute mean of 

signal iy and mathematically represented [123]: 

( )
N

i

i=1

N 21
y
iN i=1SF=

1
y

N




                                                                                   4.10 

4.5.2 Hjorth parameters 

The HP, which were introduced by Hjorth [122], are commonly used for 

analyzing biological signals and measuring signal complexity in the time 

domain. The HP consist of three components: Activity, Mobility, and Com-

plexity. 
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• ( )( )Activity=Var y t                                                                                    

4.11 

 

• 

( )

( )( )

dy t
Var

dt
Mobility=

Var y t

 
 
 

                                                                             4.12 

 

• 

( )

( )( )

dy t
Mobility

dt
Complexity=

Mobility y t

 
 
 

                                                                 4.13 

Where y(t) is the signal.  

Activity quantifies the overall power or amplitude of the signal. It is calcu-

lated by computing the variance of the signal. Mobility reflects the changes 

in signal amplitude or frequency over time. It is calculated by dividing the 

standard deviation of the first derivative of the signal by the standard devi-

ation of the signal. Complexity represents the changes in signal complexity 

or irregularity over time. It is calculated by dividing the mobility of the first 

derivative of the signal by the mobility of the signal. 

4.6 Classification 

The extracted features from the signal are utilized as input for the classifi-

cation process, where three distinct classification methods are employed in 

this section: SVM, KNN, and LDA. 

4.6.1 Support vector machine 

SVM is a powerful machine learning algorithm that is commonly used for 

classification and regression tasks. The main goal of SVM is to find a hy-

perplane in the n-dimensional space, where n is the number of features, that 

separates the different classes of data points in the best way possible. In the 

context of classification, SVM is designed to find the hyperplane that 
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maximizes the margin between the closest points from each class, known as 

support vectors. This means that SVM tries to find the decision boundary 

that has the largest distance from the nearest data points from each class. By 

doing so, SVM can produce a clear and robust classification model that is 

less likely to overfit or underfit the data. SVM can be used for both binary 

and multi-class classification problems. For multi-class classification, SVM 

uses a one-against-one (OAO) or one-against -all (OAA) approach to train 

multiple binary classifiers and combine their outputs to make the final clas-

sification decision. In this study, the one-against-one (OAO) approach is 

utilized to create a multi-class classifier. 

4.6.2 K-nearest neighbors  

KNN is a supervised machine learning algorithm used for classification and 

regression problems. In the case of classification, given a new data point, 

the KNN algorithm searches for the K closest points in the training dataset 

and assigns a class to the new data point based on the majority class among 

its K neighbors. The value of K can be any positive integer and is typically 

chosen based on the characteristics of the dataset. The distance metric used 

to measure the distance between data points can vary, but Euclidean dis-

tance is the most commonly used. Once the K nearest neighbors are identi-

fied, the algorithm assigns the class label based on the majority class among 

the neighbors. The KNN algorithm is simple and easy to implement, and it 

can work well with a small dataset. However, it can be computationally ex-

pensive when dealing with large datasets, and it requires careful selection 

of the value of K to avoid underfitting or overfitting. In this study, K is set 

to 1. 

4.6.3 Linear discriminant analysis  

LDA is a versatile technique that performs both as a dimensionality reduc-

tion method and a robust supervised machine learning classifier [124]. It 

can also serve as a data visualization technique in some cases. As a dimen-

sionality reduction method, LDA reduces the number of dimensions from 
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the original to j-1 features, where j represents the number of classes. The 

reduced features are then used to train a classifier to classify the data. As a 

classifier, LDA performs well on linearly separable data with high accuracy 

and less computation time. However, if the data is not linearly separable, 

LDA attempts to project it into another space with the maximum possible 

linear separability. In this study, LDA is chosen as the supervised machine 

learning classifier.  

4.7 Results and discussion 

In this study, the dataset consisted of 144 samples, which included healthy 

and three stages of pitting faults in polymer gear vibrations. To denoise the 

signals, two methods are compared, namely EMD and EWT, which decom-

posed the signals into sub-bands. The effectiveness of the decomposition 

methods was compared with no decomposition. The extracted features, in-

cluding RMS, kurtosis, crest factor, shape factor, and Hjorth parameters, 

were then computed from selected MF after decomposition. The data were 

then classified into four classes namely, healthy, slight pitting, moderate 

pitting, and severe pitting using three classifiers: SVM, KNN, and LDA. 

The accuracy of these classifiers was evaluated using a 10-fold cross-vali-

dation method for data preparation. 10-fold cross-validation is a commonly 

used method in machine learning to evaluate the performance of a model. 

In this approach, the available data is divided into 10 equal subsets or folds. 

In each iteration, one of the subsets is used as the testing data, while the 

remaining 9 subsets are used as training data. This process is repeated 10 

times, with each of the 10 subsets used once for testing. The results obtained 

from all 10 iterations are then averaged to give a final performance measure. 

In this study, the performance of selected classifiers was evaluated 

to assess the potential of using HP as a novel feature for detecting faults in 

polymer gears. Three sets of features were considered for evaluation: the 

first set consisted of traditional features such as RMS, kurtosis, crest factor, 
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and shape factor; the second set included HP, while the third set was a com-

bination of the first and second sets.  

The classification results are evaluated using widely used standard 

metrics, accuracy. The accuracy is utilized to assess the performance of the 

classification model. Tables 4.3, Tables 4.4, and Tables 4.5 show the eval-

uation results for the first, second, and third feature sets, respectively, using 

three different classifiers and three decomposition strategies.  

Table 4.3 indicates that the wavelet-based decomposition technique 

was found to perform better than other methods in differentiating between 

the four classes of polymer gear, while the non-decomposition mode re-

sulted in the lowest accuracy. Furthermore, the KNN classifier performed 

better than LDA and SVM classifiers in the case of non-decomposition, 

EMD, and EWT-based decomposition modes. 

Table 4.3 The results of different classifiers for fault detection using first 

feature sets. 

 Accuracy (%) 

KNN SVM LDA 

No decomposition 88.2 84 59 

EMD 92.4 91.7 65.2 

EWT 97.2 97.2 69.4 

 

Table 4.4 illustrates that the KNN classifier outperforms the other 

classifiers in differentiating the four classes of polymer gear using a second 

feature set i.e., HP in all signal decomposition and non-decomposition 

modes. The accuracy of various signal decomposition models and non-de-

composition is compared, and the results reveal that the EWT-based decom-

position mode achieves the highest accuracy in detecting faults in polymer 

gears. Table 4.5 reveals that the KNN classifier achieves higher accuracy 

than other classifiers in all signal decomposition and non-decomposition 
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modes when using the third feature set. In terms of signal decomposition, 

the EWT-based method is found to have the highest accuracy in detecting 

faults in polymer gears, compared to EMD and non-decomposition meth-

ods. 

Table 4.4 The results of different classifiers for fault detection using second 

feature sets. 

 Accuracy (%) 

KNN SVM LDA 

Raw signal 87.3 86.1 61.1 

EMD 93.6 91.7 64.2 

EWT 97.4 96.2 70.3 

 

The comparison of results in Tables 4.3, 4.4, and 4.5 indicates that 

all classifiers perform better when HP is included as a feature, regardless of 

the decomposition mode. Among the three feature sets, the third one (com-

bining traditional features and HP) results in the highest accuracy. The 

EWT-based decomposition mode with a KNN classifier achieves the best 

performance, with an accuracy of 99.3%. 

Table 4.5 The third feature set of various classifiers with different signal 

decomposition methods. 

 Accuracy (%) 

KNN SVM LDA 

Raw signal 93.4 93.1 67.4 

EMD 97.2 94.4 69.4 

EWT 99.3 98.6 75.7 

 

The accuracy results for the KNN classifier and various decomposition 

techniques applied to the first, second, and third feature sets are depicted in 
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Figure 4.5. The x-axis represents different signal decomposition methods, 

while the y-axis represents the classification accuracy. The result indicate 

that the utilization of the EWT decomposition method with the third feature 

set and the KNN classifier demonstrates greater effectiveness in early de-

tection of polymer gear faults. However, total classification accuracy does 

not provide a realistic view of the accuracy of each class.  

 

Figure 4.5 The accuracy of the different feature sets for polymer gear fault 

detection using KNN classifiers. 

Additionally, the confusion matrices are analyzed for individual 

classes of gear fault. Figure 4.6 shows the confusion matrix of different 

classifiers trained using the third feature set with the EWT-based decompo-

sition method. The number in each rectangle represents the number of tests. 

A blue rectangle in each confusion matrix indicates that the four health con-

ditions of polymer gears, i.e., healthy (H), slight pitting (F1), moderate pit-

ting (F2), and severe pitting (F3), are correctly identified. A dark purple 

rectangle indicates that at least one of the H, F1, F2, and F3 health categories 

is incorrectly identified. Figure 4.6 (a) illustrates the confusion matrix of the 

KNN classifiers, indicating that the F1 category achieved 35 correct predic-

tions out of 36, while H, F2, and F3 achieved 36 accurate predictions out of 

36. Similarly, Figure 4.6 (b) displays the confusion matrix of the SVM 
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classifiers, showing that the F1 and F2 fault categories are accurately clas-

sified at 97.23%, while H and F3 achieve a 100% accuracy rate. Further-

more, Figure 4.6 (c) presents the confusion matrix of the LDA classifiers, 

revealing accurate classifications of 67%, 69%, 83%, and 92% for F1, F2, 

F3, and H, respectively. 

To assess the reliability of the proposed methodology, a comparative 

study is conducted between the proposed method and previous methods. Table 

4.6 presents a summary of the proposed method and the previous methods. The 

results indicate that the proposed method outperforms the other studies in terms 

of fault detection effectiveness. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Confusion matrix of different classifiers trained using third fea-

tures set with EWT based decomposition method. 

(a) KNN 
(b) SVM 

(c) LDA 
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Table 4.6 Comparison of the results of the proposed work with other previ-

ously published work. 

Proposed/Existing 

work 

Features Measured 

signal 

Classifier Accuracy 

(%) 

Ramteke et. al. [125] VMD based features Vibration Random 

forest 

96..5 

Li et al. [61] 10-time domain features Vibration KDA 95.59 

Cherrez et al. [126] Various Time domain, 

frequency domain, and 

time-frequency domain 

features 

Vibration 

and acous-

tics 

LDA 95.6 

Proposed work EWT based features Vibration KNN 99.3 

 

4.8 Conclusions 

Detecting faults in polymer gear at an early stage of pitting is a challenging 

task due to the non-stationary nature of the vibration signal and the good 

damping resistance of polymer gear. To address this issue, this experimental 

study employed three classifiers and three signal decomposition techniques 

to analyze polymer gear fault detection. Three different sets of features were 

used to train the classifiers. The following conclusions can be drawn from 

the study: 

▪ The EWT-based signal decomposition method yielded the best fault 

detection accuracy, followed by EMD and raw signals. The KNN 

classifier achieved the highest accuracy among the three classifiers 

for all feature sets. 
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▪ The EWT-based decomposition with the KNN classifier achieved 

the highest accuracy (99.3%) when using the third feature set, while 

the lowest accuracy (97.2%) was achieved when using the first fea-

ture set. 

▪ Among all the combinations of decomposition methods, classifiers, 

and feature sets, raw signals with LDA had the lowest accuracy of 

59%. 

▪ The proposed method demonstrated a significant improvement in 

accuracy compared to previous works. 
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Chapter 5   

Classification of polymer gear pitting faults us-

ing double decomposition and Hjorth parame-

ters 

 

5.1  Introduction 

Several techniques have been proposed in the literature [50,127–129] for 

identifying gear faults from non-stationary vibration signals. Another pow-

erful tool for condition monitoring and fault diagnosis is wavelet transform. 

It effectively represents various transient patterns present in vibration sig-

nals associated with gearbox faults. The key advantage of wavelet transform 

in signal analysis lies in its ability to provide multi-resolution localization 

of short-time components, allowing for the detection of diverse gear faults 

using a single time-scale distribution derived from the transform. Wang et. 

al. [130] have outlined the utilization of wavelet transforms for analyzing 

both distributed and localized faults in helicopter gearboxes.  

This study utilizes a double decomposition method to extract the 

most sensitive signal. The process begins with the application EMD on the 

acquired vibration signal, resulting in a decomposition into a set of IMFs 

with specific frequencies. Next, IMFs with higher correlation coefficients 

undergoes Discrete Wavelet Transform (DWT), generating DWT sub-

bands. The energy ratio estimation technique is then employed on these de-

composed sub-bands to identify the most sensitive vibration signals and cre-

ate a feature vector. This feature vector is subsequently used as input for 

training and testing classifiers. 

To evaluate the effectiveness of the proposed methodology, a com-

parison is conducted with ordinary EMD and DWT techniques. The 
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classification of pitting faults in polymer gears using the double decompo-

sition method is depicted in Figure 5.1. 

Moreover, this study focuses on the utilization of MC901 material-

based polymer gears. Detailed information regarding the material properties 

and specifications can be found in Table 2.1 and Table 2.2. 

 

 

Figure 5.1 Flow chart of the proposed polymer gear fault classification 

method. 



84 

 

5.2 Experimental study 

The experimental setup depicted in Figure 5.2 is utilized in this study to 

capture vibration signals from different polymer gear pitting faults under 

various experimental conditions. 

 

Figure 5.2 Experimental setup. 

A total of five gear pairs are analyzed: gear in healthy condition, and pinion 

with various simulated pitting faults namely Fault 1, Fault 2, Fault 3, Fault 

4, and Fault 5. The simulated pits were created on the pinion gear tooth 

surface using a micro-milling machine, with a pit depth of 0.2 mm and a 

diameter of 2 mm. In the case of the healthy gear, there were no pits present 

on the tooth surface. However, in the case of Fault 1 through Fault 5, the 

number of pits on the tooth surface ranged from one to five. The simulated 

tooth pitting on the polymer gears is depicted in Figure 5.3. Vibration sig-

nals were captured from each gear at four different speeds (10 Hz, 20 Hz, 

30 Hz, and 40 Hz) while at a constant torque of 3 Nm. Each acquired signal 

had a length of 20 seconds and was sampled at a frequency of 12.8 kHz.  
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Figure 5.3 Simulated tooth pitting on polymer gears. 

5.3 Features extraction 

To train the classifier for fault classification, this study utilizes entropy and 

Hjorth parameters-based features. The extracted features consist of log en-

ergy entropy, threshold entropy, sure entropy, norm entropy, Shannon en-

tropy, and HPs. Entropy is used to measure the degree of disorder present 

in the system. Sharma et al. [131] have described the use of entropy-based 

features for fault detection. These features are defined as follows:  

5.3.1 Log energy entropy (ELe) 

The level of complexity in gear signals is calculated by ELe. Mathematically 

it can be written as. 

2E log( )
le

1

= 
=

N
y
i

i

                                                                                       5.1 
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where N is the length of the signal and yi is the ith signal sample.  

5.3.2 Threshold entropy (Eth) 

The signals threshold entropy is defined as, 

1, f ,and
E

th
0,elsewhere

 
= 


i y v
i                                                                                  5.2 

where v  is the threshold. 

5.3.3 Sure entropy (Esure) 

It is a common measuring tool for quantifying properties related to infor-

mation for a perfect representation of a signal. Esure of a signal is mathemat-

ically expressed as  

  ( )2 2- £ min ,

1

=  + 
=

       
N

E N i such that y v y v
sure i i

i

                     5.3 

where, ε is a positive threshold value. In this study, ε is 0.2. 

5.3.4 Norm entropy (Ene) 

The power and energy content of a signal is provided by norm entropy. It 

can be calculated as, 

ne
=

v
E y

i
                                                                                                    5.4 

5.3.5 Shannon entropy (Esha) 

Shannon entropy is utilized to assess the level of uncertainty associated with 

an event. It analyzes the information and the probability distribution of data, 

with higher entropy values indicating a greater degree of uncertainty. Con-

versely, data with a narrow and peaked distribution exhibit low entropy 

value. Esha can be mathematically expressed as:  

2 2 log  (y )

1

= − 
=

N
E y

sha i i
i

                                                                   5.5 
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5.3.6 Hjorth parameters  

The HPs are explicitly defined in section 4.5.2 of this thesis, providing clear 

explanations and descriptions of their characteristics and calculations. 

5.4 Feature extraction process 

This section discusses the different techniques for feature extraction. Spe-

cifically, decomposition techniques such as EMD, DWT, and the double 

decomposition method i.e., EMD-DWT are utilized for feature extraction.  

5.4.1 Feature extraction using the EMD approach 

Section 3.2.1 provides detailed information about EMD and its shifting pro-

cess. In this study, acquired vibration signals are decomposed into ten IMFs. 

Figure 5.4 depicts the first five IMFs of healthy and Fault 1 gear signal at 

40 Hz speed and 3 Nm torque conditions. The first column indicates the 

healthy gear vibration signals and their IMFs, similarly second column in-

dicates the Fault 1 gear vibration signals and their IMFs. The X-axis repre-

sents the number of samples, and the Y-axis represents the signal amplitude 

in m/s2. Similarly, other signals are also decomposed. 

Selecting the most sensitive IMF after decomposing the raw signal 

and obtaining all the IMFs is a crucial task that captures the most sensitive 

fault information. Several methods have been developed by researchers to 

select the sensitive IMF. This study employs the correlation coefficient-

based method to select the sensitive IMF, which measures the similarity 

between IMFs and the raw signal. Zheng et al. [49] define a correlation co-

efficient (CC) as a measure of the similarity between two signals. The math-

ematical expression for CC is given by equation 5.6. 

( ) (c )

1

2 2( )  (c )

1 1

− −
==

− − 
= =

j

j

N
y y c
i ji

iCC
N N

y y c
i ji

i i

                                                            5.6                          
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where, CC is the correlation coefficient, y represents the raw signal, 𝑦̅ is 

mean of the raw signal, 𝑐𝑗 is the jth IMF and 𝑐𝑗̅ is the mean of jth IMF. 

The correlation coefficient value for the healthy and five faulty con-

ditions at 40 Hz speed and 3 Nm torque condition is presented in Table 5.1. 

Based on this, the IMF with the highest correlation coefficient value is cho-

sen as the dominant IMF, and IMF 1 is selected as the dominating IMF. The 

entropy and Hjorth parameters are then extracted from this dominated IMF. 

This same methodology is applied to other gear fault and experimental con-

ditions. 

 

Figure 5.4 IMFs of healthy and fault 1 gear signal at 40Hz speed and 3 Nm 

torque condition. 
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Table 5.1 The correlation coefficient of the first 5 IMFs of healthy and five 

Faulty conditions at 40 Hz speed and at 3 Nm torque condition. 

Gear 

health 

IMFs 

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 

Healthy 0.928 0.218 0.137 0.097 0.048 

Fault 1 0.952 0.152 0.091 0.056 0.040 

Fault 2 0.843 0.343 0.244 0.174 0.082 

Fault 3 0.904 0.287 0.167 0.114 0.056 

Fault 4 0.868 0.292 0.253 0.163 0.059 

Fault 5 0.779 0.411 0.351 0.206 0.067 

 

5.4.2 Feature extraction using discrete wavelet transform 

approach 

 DWT [132] has been one of the most useful techniques in non-stationary 

signal analysis. This technique has emerged as one of the most essential 

tools in non-stationary signal analysis because it can extract localization in-

formation from time-domain signals at the local time and frequency. During 

the DWT process, the raw signal is analyzed by decomposed into an ap-

proximation and detailed coefficients [132]. Mathematically, approxima-

tion (
,i ja ) and details coefficient (

,i jd ) can be expressed as follows: 

( /2)

, ,( ), ( ) ( )2 (2 ) − −= = −
i i

i j i j
R

a g t t g t t j dt                                            5.7 

( /2)

, ,( ), ( ) ( )2 (2 ) − −= = −
i i

i j i j
R

d g t t g t t j dt                                           5.8 

where, ( ) t  represent the mother wavelet, ( ) t  represent basic scaling, i  

represent the scale index and j represents the translation parameter. The in-

verse DWT is provided by: 

( /2) (2 ) ( /2) (2 )

, ,( ) 2 2 − −− − − −= + 
i ii t j i t j

i j i j

j j

g t a d                                            5.9 
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To extract features from the acquired vibration signal in this section, 

the DWT technique is utilized. To achieve this, the signal was decomposed 

into 6 levels to obtain sub-band signals. The DWT decomposition was per-

formed using Daubechies-4 (db4) as the mother wavelet due to its orthogo-

nality, low computational effort, and compact time-domain support 

Daubechies et al [133].  

Figure 5.4 illustrates the six levels of decomposition obtained from 

the vibration signals of healthy and Fault 1 gear under 40 Hz speed and 3 

Nm torque conditions. The leftmost column corresponds to the vibration 

signals and their corresponding IMFs for the healthy gear, while the second 

column represents the same for the Fault 1 gear. The X-axis denotes the 

number of samples, and the Y-axis indicates the signal amplitude measured 

in m/s2. This decomposition process is similarly applied to other acquired 

signals as well. 

Once the sub-bands of the polymer gear signal were obtained using 

DWT, the most sensitive sub-band was selected to reduce computational 

time for further data analysis. It was observed that level 1 of the decom-

posed signal corresponds to higher frequency categories and contains sen-

sitive fault information about the polymer gear system. This observation is 

supported by the calculation of the energy ratio of all decomposed levels by 

Sharma et al. [134]. A detailed discussion about the energy ratio can be 

found in section 4.4. Table 5.2 displays the energy ratio values for the 

healthy condition and five different faulty conditions observed at 40 Hz 

speed and 3 Nm torque conditions. Based on the results presented in Table 

5.2, it is apparent that level 1 exhibits the highest energy ratio value, indi-

cating its greater sensitivity as a sub-band for further analysis. From this 

specific sub-band, entropy and HPs were extracted. The same methodology 

was applied to the analysis of other experimental conditions. 



91 

 

 

Figure 5.5 Healthy and Fault 1 vibration signal and its DWT based sub-

band at 40 Hz speed and 3 Nm torque. 

 

Table 5.2 DWT sub-bands and their energy ratio with respect to the raw 

signal at 40 Hz under 3 Nm torque. 

Gear 

Health 

Sub-bands 

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Healthy 0.565 0.342 0.042 0.022 0.019 0.007 

Fault 1 0.603 0.195 0.084 0.052 0.038 0.017 

Fault 2 0.643 0.224 0.059 0.032 0.024 0.005 

Fault 3 0.605 0.216 0.063 0.053 0.048 0.008 

Fault 4 0.431 0.223 0.108 0.12 0.088 0.018 

Fault 5 0.566 0.343 0.042 0.022 0.018 0.007 
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5.4.3 Feature extraction using the EMD-DWT  

Exploring the ability of features to classify polymer gear faults using double 

decomposition techniques i.e., combined EMD-DWT would be of interest. 

The motivation behind this approach stems from the success of classifying 

various types of non-stationary signals, such as ECG and EEG, using fea-

tures extracted from hybrid time-frequency techniques. In this section, the 

decomposition of the polymer gear vibration signal was carried out in two 

steps. In the first step, the signal was decomposed into its constituent com-

ponents using EMD. Subsequently, in the second step, the dominant IMF 

obtained from the decomposition was further decomposed into sub-bands 

using DWT. Following the decomposition, the sub-band with the highest 

information content was selected based on the energy ratio criteria. This 

chosen sub-band was then utilized for feature extraction purposes. 

Figure 5.6 displays the dominant IMF and six levels of DWT de-

composition of healthy and Fault 1 gear signals at 40 Hz speed and 3 Nm 

torque conditions. The dominant IMF is obtained by analyzing the set of 

IMFs using the correlation coefficient. The horizontal axis of Figure 5.6 

represents the sample numbers, while the vertical axis represents the signal 

amplitude measured in m/s2. Upon obtaining the different levels of Discrete 

Wavelet Transform (DWT), the energy ratio is computed for each of these 

obtained signal levels. Table 5.3 displays the energy ratio values for the sub-

bands. The results from the analysis indicate that the Level 1 decomposition 

exhibits the highest energy ratio value. As a result, Level 1 is chosen as the 

most sensitive sub-band for subsequent analysis and feature extraction. 

From this selected sub-band, entropy features and HPs are extracted. The 

same methodology is also applied to experimental conditions involving fre-

quencies of 10 Hz, 20 Hz, and 30 Hz while keeping the torque constant. 

 

 



93 

 

 

Figure 5.6 The dominant IMF with the DWT coefficients of faulty5 gear 

condition at 40 Hz and 3 Nm torque condition 

 

Table 5.3 EMD-DWT sub-bands and their energy ratio with respect to dom-

inant IMF at 40 Hz and 3 Nm torque condition. 

Gear 

Health 

Sub-band name 

Level1 Level 2 Level 3 Level 4 Level 5 Level 6 

Healthy 0.606 0.351 0.027 0.012 0.004 0.002 

Fault 1 0.763 0.177 0.035 0.013 0.006 0.003 

 

 



94 

 

5.5 Machine learning models 

In this study, three distinct machine learning models are employed to predict 

faults in PGs using three different feature sets. The feature matrices are con-

structed by considering a splitting ratio of 10-fold cross-validation for the 

dataset. The details of the different machine learning models utilized in this 

study will be elaborated upon in the subsequent section. 

5.5.1 Ensemble learning classifier (Bagged tree) 

The Bagged tree classifier, which is an ensemble learning technique, is em-

ployed in this study. The goal of bagging is to create multiple subsets of 

data randomly selected from the training sample. Each subset is used to train 

a separate decision tree. These decision trees denoted as B1, B2, B3, ..., Bn, 

are derived from constructing base classifiers using bootstrap samples J1, 

J2, J3, ..., Jn, respectively, with replacement from the defined data set J. The 

resulting bagged tree model consists of a collection of all the constructed 

base classifiers, and the final prediction is determined based on majority 

voting. The ensemble model combines predictions from different decision 

trees, resulting in a more robust classifier compared to a single decision tree. 

In this study, the parameters of the Bagged tree classifier were tuned. The 

maximum number of splits was set to 239, and the number of learners (de-

cision trees) was set to 30. 

5.5.2 Decision tree classifier 

The Decision tree classifier is a popular supervised machine learning algo-

rithm used for classification tasks. It represents a tree-like structure where 

each internal node represents a feature or attribute, and each branch repre-

sents a decision rule based on that attribute. The leaves of the tree represent 

the class labels or outcomes. The decision tree algorithm works by recur-

sively partitioning the data based on different features, aiming to create ho-

mogeneous subsets at each step. The splitting criterion, such as the Gini 

index or entropy, is used to determine the best attribute to split the data. The 

selection of splits is the most crucial element [135]. In this study, the fine 
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tree method is used with a maximum number of the split is 100 and Gini’s 

diversity index is used for the split criterion. 

5.5.3 Support vector machine  

For a comprehensive understanding of SVM, refer to section 4.6.1, which 

provides detailed explanations about SVM and its functioning. 

5.6 Results and discussion 

This section explains the classification of polymer gear faults by analyzing 

the vibration signals obtained under different experimental conditions for 

various gear fault scenarios. To analyze polymer gear signals, three methods 

are used for signal decomposition: (a) EMD, (b) DWT, and (c) EMD-DWT. 

The most informative signal is selected after decomposition, and features 

are extracted from it. These features are then used to train various classifiers 

for the classification of polymer gear faults. To prevent overfitting and pro-

vides a more reliable estimate of the model's performance, the classification 

process is carried out using a 10-fold cross-validation approach. Accuracy 

is the most commonly used measure for evaluating classification perfor-

mance, and it can be computed using the following equation: 

 
+

=
+ + +

TP TN
Accuracy

TP TN FP FN
                                                                      5.10 

where TP represents true positives (the number of correctly predicted posi-

tive cases), TN denotes true negatives (the number of correctly predicted 

negative cases), FP refers to false positives (the number of incorrectly pre-

dicted positive cases), and FN represents false negatives (the number of in-

correctly predicted negative cases). 

Additionally, the effectiveness of the ensemble learning classifier, 

decision trees classifier, and SVM is assessed using three sets of features. 

The first feature set comprises entropy features, such as log energy entropy, 

threshold entropy, sure entropy, norm entropy, and Shannon entropy. The 

second feature set consists of the Hjorth parameters. Finally, in the third 
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feature set, both the first and second feature sets are employed together in 

training the classifiers for fault classifications. 

The results of the evaluation of the three types of decomposition 

coupled with three classifiers utilizing the first, second, and third feature 

sets are presented in Tables 5.4, Table 5.5, and Table 5.6, respectively. 

Based on the results presented in Table 5.4, all classifiers were 

trained using the first feature set. The findings demonstrate that the fine tree 

classifier yielded the highest accuracy, reaching 90%, as compared to the 

SVM and bagged tree classifiers when coupled with the EMD-DWT de-

composition method. The bagged tree classifier achieved the maximum ac-

curacy of 92.9% when coupled with DWT and attained the highest accuracy 

of 90% when using EMD. However, SVM with EMD obtained the lowest 

accuracy 26.2% among all classifiers. 

Table 5.4 Accuracy of classifiers for fault detection using first feature sets. 

 Accuracy (%) 

Bagged tree Fine tree SVM 

EMD 90 85.4 26.2 

DWT 92.9 87.9 35.4 

EMD-DWT 89.6 90 35.8 

 

Table 5.5 shows the evaluation results for the second feature set. The 

bagged tree classifier coupled with EMD-DWT achieved the highest accu-

racy of 93.3% for classifying the polymer gear faults. On the other hand, 

SVM classifiers had lower accuracy compared to other classifiers. When 

using EMD and DWT separately, the bagged tree achieved 92.5% accuracy 

in both cases. However, the SVM classifier with the DWT decomposition 

method trained by Hjorth parameters showed the lowest accuracy among all 

classifiers and decomposition techniques. 
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Table 5.5 Accuracy of different classifiers for fault detection using second 

feature sets. 

 Accuracy (%) 

Bagged tree Fine tree SVM 

EMD 92.5 88.8 62.5 

DWT 92.5 92.1 56.7 

EMD-DWT 93.3 85.8 65 

 

Table 5.6 presents the results of evaluating the third feature set. The 

bagged tree classifier coupled with EMD-DWT achieved the highest accu-

racy of 99.2% for identifying polymer gear faults. However, SVM classifi-

ers had a lower accuracy of 84.6% compared to other classifiers. When us-

ing EMD and DWT separately, the bagged tree achieved 97.5% and 97.9% 

accuracy, respectively. In contrast, the SVM classifier with the DWT de-

composition method trained by the third feature set showed the lowest ac-

curacy of 71.7% among all classifiers and decomposition techniques. 

Table 5.6 Accuracy of different classifiers for fault detection using third 

feature sets. 

 Accuracy (%) 

Bagged tree Fine tree SVM 

EMD 97.5 88.3 75 

DWT 97.9 88.8 71.7 

EMD-DWT 99.2 90 84.6 

 

After analyzing the results presented in Tables 5.4, 5.5, and 5.6, it 

becomes evident that the most effective approach for polymer gear fault 

detection is through the utilization of the double decomposition method 

coupled with the bagged tree classifier. The highest accuracy of 99.2% is 

attained when combining this method with the third feature set. 
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Figure 5.7 illustrates the confusion matrix obtained from various classifiers 

trained using the third feature set and utilizes the EMD-DWT signal decom-

position method. In Figure 5.10 (a), the identification rate for healthy, Fault 

1 (F1), Fault 2 (F2), Fault 3 (F3), and Fault 4 (F4) is 100%, indicating ac-

curate classification for these conditions. Furthermore, the recognition rate 

for Fault 5 (F5) gear pitting exceeds 95%.  

 

 

 

 

 

 

 

 

 

 

Figure 5.7 Confusion matrix of different classifiers trained by third feature 

set using EMD-DWT signal decomposition method. 
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Examining Figure 5.10 (b), it becomes evident that the classification accu-

racy for healthy and F1 gear conditions is 100%. However, for pitting con-

ditions F2 and F3, approximately 2.5% of instances are misclassified. Sim-

ilarly, for F4 and F5 fault conditions, approximately 20% and 35% of in-

stances are misclassified, respectively. Figure 5.10 (c) shows the SVM ac-

curacy of each class. 

5.7   Conclusion 

This study aims to develop a novel polymer ger fault classification method. 

For this, a double decomposition method i.e., EMD-DWT has been devel-

oped. The proposed method helps in the detection of early pitting defects in 

polymer gears. In this study, a total of six classes (one is healthy and the 

remaining faulty) of polymer gears have been studied for fault classifica-

tion. The well-known EMD and DWT decomposition techniques are se-

lected and developed as an EMD-DWT-based decomposition technique, for 

extracting highly discriminatory features. Three sets of features are ex-

tracted i.e., the first feature set (entropy-based feature), the second feature 

set (Hjorth parameters), and the third feature set which is a combination of 

the first and second feature sets. These feature sets are used to train three 

different classifiers: the bagged tree, fine tree, and SVM.  

The proposed method has been shown more effective for polymer 

gear fault detection, and this demonstrates that the decomposition of poly-

mer gear vibration signals through EMD-DWT before the feature extraction 

step is efficiently better than only EMD and DWT decomposition. Moreo-

ver, in most cases, the accuracy is increased when using a combination of 

entropy and Hjorth parameters as a feature for training the classifiers. It is 

found that using bagged tree classifiers, the data can be classified more ef-

fectively, and the classifier achieved 99.2 % accuracy. 

 

 



100 

 

 

 

 

 

 

 

 



101 

 

Chapter 6   

Hybrid deep learning model for polymer gear mul-

ticlass fault classification 

 

6.1 Introduction 

To overcome EMD mode mixing limitations, a new method, ensemble 

EMD (EEMD), is introduced Zhaohua [136]. The EEMD adds different se-

ries of white noise in multiple trials into the signal. While EEMD performs 

well in signal processing, calculating the large ensemble mean can be time-

consuming. To address this issue, Yeh et al. [137] developed a new novel 

noise-enhanced technique known as the complete EEMD (CEEMD).  

Furthermore, Torres et al. [138] introduced complete ensemble em-

pirical mode decomposition with adaptive noise (CEEMDAN), a noise-en-

hanced data processing method that uses adaptive noise. CEEMDAN can 

significantly reduce unwanted noise in the signal.   

In recent years, deep learning has become increasingly prevalent. 

Deep learning has been used to address the limitations of traditional meth-

ods for identifying mechanical faults. Zhang et al. [139] proposed a failure 

detection approach for rolling bearings using deep convolution neural net-

works (CNN) that eliminated the need for human feature extraction and 

achieved automatic feature learning. Liu et al. [140] proposed a bearing 

fault detection approach based on a recurrent neural network (RNN) in the 

form of an autoencoder. However, the ordinary RNN has a limitation that it 

cannot store long-term data [141]. This problem has been solved by the in-

troduction of LSTM and GRU classifiers, which use gate mechanics to store 

and remove relevant information. Compared to the traditional RNN, LSTM 

performs better. Li et al. [80] demonstrated a GRU network for detecting 

gear pitting faults. The approach also has the ability to train on a limited 
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number of samples and still attain accuracy levels above 98%. Haj et al. 

[142] studied multiclass gear fault detection using a hybrid CNN-LSTM 

network, and the accuracy of this network is more than 97%. Li et al. [77] 

proposed a Bidirectional LSTM (BiLSTM) model to gear pitting fault de-

tection using vibration signals. The overall accuracy of this proposed model 

is more than 96%, which is 4% higher than the LSTM model. 

After reviewing the literature, it is evident that DNN networks, such as 

CNN or RNN, are commonly used to extract features directly from signals. 

To enhance the training efficiency of RNNs, the data's dimensionality and 

variability are reduced using feature extraction techniques or dimensional-

ity reduction. However, this study aims to explore the use of deep learning 

for polymer gears' multiclass fault detection while minimizing computa-

tional complexity. This study proposes a novel method that combines the 

hybrid LSTM-GRU classifier model with CEEMDAN for polymer gear 

fault diagnosis. 

6.2 Experimental setup and data collection 

This experimental study involves examining various simulated faults in pol-

ymer gears at different rotating speeds and constant torque, using a test rig 

developed in-house, as depicted in Figure 6.1.  The test setup is described 

in detail in section 2.3.1, while the material properties and specifications of 

the test polymer gears can be found in Table 2.1 and 2.2 respectively. This 

experimental study investigates the effects of different faults on four poly-

mer pinion gears. One gear is a healthy gear (H), assumed to be defect-free, 

while the other three gears have different types of faults: slight abrasive 

wear (SW), moderate abrasive wear (MW), and pitting gear (PT). These 

four gear conditions are shown in Figure 6.2. The SW and MW faults are 

manually created using wide-grain sandpaper, and the degree of wear is 

measured by weight loss, which is the difference between the initial and 

final weight of the gear. In the case of PT, a circular pit is created using a 

micro-milling machine, with the diameter and depth of the pit being 
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approximately 2 mm and 0.2 mm, respectively. Table 6.1 provides a de-

tailed description of the faults present in the PGs. 

 

Figure 6.1 Picture of the experimental setup. 

The PG vibration signals were captured in this experimental study 

using a tri-axial accelerometer (PCB-Piezotronics 355339), which was di-

rectly mounted on the top of the bearing housing, while the gears were ro-

tated at three different speeds (500 rpm, 800 rpm, and 1100 rpm) and a con-

stant torque of 2 Nm. The vibration data were collected using an OROS-

OR34 data acquisition system (DAQ) and visualized on a laptop with NV 

Gate software. A 20-second vibration signature was captured from each of 

the healthy and three faulty gears at different speeds and constant torque, 

with a sampling frequency of 12.8 kHz. To analyze the captured signal, a 

sliding window approach with a duration of 0.1 seconds was employed, 

with no overlap in the signal segments. 
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Figure 6.2 Polymer test gears (a) H, (b) SW, (c) MW, and (d) PT. 

Table 6.1 Gear fault type. 

Component Type Description 

 

Polymer 

gear 

H Free from defects 

SW weight loss (0.019g) from a 

single tooth 

MW weight loss (0.029g) from a 

single tooth 

PT Four pits on a single tooth 
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6.3 Proposed method 

To identify the polymer gear faults, in this proposed method. A LSTM-

GRU model is designed and trained by various features extracted from the 

enhanced signal obtained by CEEMDAN.  The main steps of the proposed 

method are illustrated in Fig. 6.3, while the detailed explanation of each step 

is presented in the following sections. 

 

Figure 6.3 Flow diagram of the proposed method. 

6.3.1 Decomposition of vibration signal using CEEMDAN 

CEEMDAN is an effective algorithm for analyzing non-stable and nonlin-

ear signals like gear signals because it is data-driven, has a low computa-

tional cost, and does not require a prior basis function [143]. CEEMDAN 

enhances the EEMD method by eliminating the residual noise produced in 

the reconstructed signal. To increase the effectiveness of the signal decom-

position, an adaptive white noise has been included with the residual at each 

stage. Using the CEEMDAN approach, the initial decomposition of the raw 

signal y(t) is decomposed into a finite set (k = 1,2,.., K) of IMFs or modes 

( )l

kM t . Each signal component y(t) is added with a white noise realization 

of zero mean and unit variance, ( )lj t  where l = 1,2,…, N, and the noise 

added signal are characterized by equation (6.1). 
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( )   ( )0= +l ly t y t j t                                                                                                 6.1 

where 0  represents the standard deviation of white noise. 

After that, conventional EMD is used to decompose ( )ly t  until the first 

mode is reached. The first IMF is obtained by taking the mean of corre-

sponding modes ( )l

kM t , 

   1 1

1

1 N
l

i

M t M t
N =

=                                                                                   6.2                                                                                       

Equation (6.3) is used to determine the residue for the first mode, 

     1 1= −r t y t M t                                                                                    6.3                                                                                                                 

After the first mode has been evaluated, the remaining modes are recovered 

by introducing noise with various realizations to the current residue. The 

operator ( )jB • used EMD to produce pth modes. As a result, the noise-added 

residue    ( )1 1 1

lr t B j t+ is decomposed, and equation (6.4) is used to com-

pute the second CEEMDAN mode. 

     ( )( )2 1 1 1 1

1

1


=

= +
N

l

i

M t B r t B j t
N

                                                       6.4                                                                                                              

The residue is measured as  
( )

   
1k kk

r t r t M t
−

= − , for the subsequent 

stages, where k = 2,…, K. Similarly, the kth residue added with a noise real-

ization,    ( )l

k k kr t B g t+ , are decomposed and (k + 1)th mode has been 

obtained by equation (6.5), 

( )    ( )( )11
1

1 N
l

k k kk
i

M B r t B g t
N


+

=

= +                                                     6.5                                                                                                                  

When the computed residue becomes monotone, further decomposition of 

the mode functions is not possible. 

6.3.2 Selection of IMFs  

The experiment involves the acquisition of vibration signals of different 

gear faults at various speed and at a constant torque. Figure 6.4 shows the 
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raw signals of the gear along its z-axis. Each row in the figure displays the 

vibration signal of different gear fault conditions, and each column corre-

sponds to the same gear fault condition but at different rotational speeds. As 

shown in Figure 6.4, the gear's raw vibration signal amplitude increases 

with the rotational speed. Additionally, the amplitude of the healthy gear is 

higher than that of the pitting gear signal, which may be due to background 

noise in the raw signals. Therefore, it is necessary to denoise the signals 

before extracting fault features. The denoising process is carried out in the 

subsequent step. 

The CEEMDAN algorithm is employed to adaptively decompose 

the signal into 12 IMF components. However, all these IMFs are not equally 

sensitive for fault identification. Select the most informative IMFs, by using 

the correlation coefficient and threshold value. The correlation coefficient 

between each IMFi (i=1,2,…,12) component and the raw signal is calculated 

using Equation 6.6. 

 

Figure 6.4 Raw signal waveforms of healthy and faulty polymer gears. 
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                                                                              6.6 

Where, iy  and ( )m ij  represent raw signal and the IMFs signal respectively, 

and y  , m j  represent the mean of raw and IMFs signal. The IMF is selected 

by the threshold value, which is determined by equation (6.7). 

  ( )
( )

max

10 max 3
 =

 −

CC
th

CC
                                                                                                         6.7                                                                                                                                          

The IMFs are kept and treated as the most informative IMF component if 

the correlation coefficient is higher than the threshold 
th . If not, it is elimi-

nated as a false component. For all experimental settings, the correlation 

coefficient and threshold calculation results are displayed in Figure 6.5. The 

correlation coefficients of the IMF9-IMF12 components are not presented 

in Figure 6.5, since they are nearly close to zero. Using the IMFs selection 

criteria discussed earlier in this section, IMF1 to IMF6 for H, SW, and PT 

at 800 rpm is chosen as the most informative IMFs because their correlation 

coefficients exceed the threshold value of 0.21437. IMF1 to IMF5 for MW 

at 800 rpm is selected as the most informative IMF. Similarly, the IMF1 to 

IMF 4 for H under 800 rpm are sensitive IMFs and IMF1-IMF5 for SW, 

MW, and PT are the most informative IMFs. At 1100 rpm, IMF1 to IMF 4 

for H are the most informative IMFs, and IMF1-IMF5 for SW, MW, and 

PT are the most informative IMFs. 

Subsequently, the selected IMF components are summed, resulting 

in the generation of the enhanced signal for each gear class at various rota-

tional speeds, including 500 rpm, 800 rpm, and 1100 rpm. 
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Figure 6.5 The correlation coefficient of each IMF component and the cor-

relation coefficient threshold for different gear fault conditions. 
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6.3.3 Feature extraction 

Feature extraction is a crucial step in machine learning, as it directly impacts 

the success of the trained model. In this experimental study, eleven features 

are extracted from the filtered vibration signal. Seven of these features are 

standard time-domain-based features, including RMS, kurtosis, crest factor, 

shape factor, standard deviation, impulse indicator, and clearance factor. 

These features are well-documented in Sharma and Parey [109]. Two fre-

quency domain-based features namely mean frequency, and median fre-

quency. The remaining two features are multiscale-based entropy features, 

including refined composite multiscale dispersion entropy (RCMDE), and 

refined composite multiscale fuzzy entropy (RCMFE).  

RMS, crest factor, shape factor, and kurtosis are well defined in the 

previous chapter. This section only describes the rest of the features. 

6.3.3.1 Standard deviation 

 ( )
1

221
Standard deviation

1 1

 
= − 
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N
y y
iN i

                                           6.8 

6.3.3.2 Impulse indicator 

 

   
maxImpulse indicator =

y

y
                                                                                          6.9 

6.3.3.3 Clearance factor 
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                                                    6.10 

6.3.3.4 Mean frequency 

The mean frequency refers to the average frequency present in the signal 

and is calculated by summing the product of the power spectrum with the 
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corresponding frequency and dividing it by the total sum of the power in-

tensity. The mathematical expression for mean frequency is given by [144] 

    Mean frequency

1

= 
=

i i

i

M f p
p

i

                                                                              6.11 

where Pi is the power spectrum at frequency i, M is the length of 

frequency and fi is a frequency value at a frequency i. 

6.3.3.5 Median frequency 

The median frequency is defined as the frequency value at which the power 

spectrum of a signal is divided into two regions with equal integrated power. 

Mathematically, it can be expressed as [144] 

 1
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= = =

MDF M M
p p p
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                                                                     6.12 

6.3.3.6 Refined composite multiscale fuzzy entropy 

The uncertainty in a system is measured by Entropy. it is particularly valu-

able for analyzing systems with nonlinear characteristics. Fuzzy entropy is 

a type of entropy commonly employed in fault diagnosis. The mathematical 

expression representing fuzzy entropy is written as [145] 

1Fuzzy entropy=ln lnm m  +−                                                               6.13 

1 1,
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                                                     6.14 

where N is the data in a sample, m is the embedded dimension, n is the 

power of fuzzy entropy, r is the tolerance, and Dij is the degree of similarity 

calculated using a fuzzy function. 

The fundamental concept underlying the application of multiscale entropy 

involves creating progressively coarser time series by downsampling the 
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original time series [145]. RCMFE is calculated based on the standard de-

viation (σ) and is given by [145] 

( )

1

, , , , ln





− 
 = −
 −
  

m

RCMFE x m c d
m

                                                      6.15 

where embedding dimension m, category c, time delay d, and scale factor 

  . 

The specific values assigned to the parameters m, c, d, and   are 2, 2, 1, 

and 0.15, respectively [145]. 

6.3.3.7 Refined composite multiscale dispersion entropy 

RCMDE is a significantly faster entropy measure compared to other entro-

pies such as refined composite multiscale sample entropy when it comes to 

quantifying the complexity of a signal. Mathematically, RCMDE is defined 

as follows [145]: 
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Where 
, ,.......

0 1 1
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− 

p

m

represents the mean probability that each 

coarse-grained sequence will exhibit a fluctuation dispersion pattern. 

6.4 Deep learning models 

To classify the faults, a variety of machine learning (ML) methods are used. 

One type of ML is deep learning. Deep learning is based on ANN that uses 

numerous layers of processing to extract progressively higher-level features 

from input. Deep learning models may be RNN, LSTM, BiLSTM, and 

GRU. In this present study, a novel design hybrid model LSTM-GRU is 

used as a classifier and compared with different designed models namely, 
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LSTM model, BiLSTM model, GRU model, hybrid LSTM-BiLSTM 

model, and BiLSTM-GRU model. 

6.4.1 Long short-term memory 

LSTM has been proposed by Hochreiter and Schmidhuber [146]. The main 

feature of LSTM is its cell state which saves and transforms the input cell 

memory into the output cell memory. LSTM consists of three different 

gates: forget gate ( tf ), input gate ( ti ), and output gate ( to ), which control 

the path of information transmission, illustrate in Figure 6.6.  

 

Figure 6.6 Basic structure of LSTM. 

The initial stage in LSTM design should identify what data to elim-

inate using the data tx  and 1th −  as input. The activation function for these 

processes is the sigmoid (σ), which is employed in equation (6.17) in the 

forget gate layer ( tf ).  

,
1

f W h x b
t f t t f

   =  + −  
                                                                           6.17                                                                                                                        

In the second step, the input gate ti  is used to determine how much 

data must be stored at present and ti is determined by equation (6.18). Then 
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the tanh function determines the information about the candidates that will 

make up the new information given by equation (6.19). 

( ),
1

i W h x b
t i t t i

  =  +
− 

                                                                                  6.18                                                                                                                                                    

( )tanh ,
1

c W h x b
t c t t c

 =  +
− 

                                                                         6.19                                                                                                                        

The internal variable of LSTM is tc , which keeps track of infor-

mation going back to the present, determined by the equation (6.20). 

( )tanh
1

c f c i c
t t t t t
=  + 

−
                                                                                   6.20                                                                                                                                  

Finally, Equations (6.21) and (6.22) are used to produce the output data. 

 ( )1,t o t t oo W h x b −=  +                                                                                         6.21                                                                                                                                  

( )tanht t th o c=                                                                                                           6.22                                                                                                                                   

where the weight matrix is represented by W(.), and b(.) represents the bias 

term.  

6.4.2  Bidirectional LSTM 

The LSTM network retains only forward direction information. When pro-

cessing data just in one way, there is a chance of removing important infor-

mation. To address this issue BiLSTM method is used. An improved form 

of the LSTM network is called BiLSTM. The BiLSTM algorithm allows 

inputs to be processed simultaneously in two directions (forward and back-

ward), one from the past to the future and the other from the future to the 

previous. Two LSTMs outputs are combined to produce the final result.  

Figure 6.7 depicts the BiLSTM network's organizational structure. The 

BiLSTM layer produces an output vector ( )t
y , which is as follows: 

( )1t h t tth hh h
h W x W h b −= + +                                                                                   6.23                                                                                                        
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( )1t h t tth hh h
h W x W h b −= + +                                                                                   6.24                                                                                                                            

0t t tty ty
y W h W h b= + +                                                                                                 6.25          

                                                                                                                           

Figure 6.7 Basic structure of BiLSTM. 

6.4.3 Gated recurrent unit 

GRU [147] is a simplified form of the LSTM depicted in Fig. 6.8. It takes 

less training time and enhances network performance. The function of GRU 

and LSTM are similar in operation, but the architecture of GRU is different. 

The update gate in the GRU design combines the input gate and forget gate 

into one gate. GRU consists of two gates, i.e., the update gate and the reset 

gate. The hidden state of the GRU is represented by the equation (6.26): 

( ) 11t t t t th z h z h−= −  +                                                                                             6.26                                                                                                                

The update gate, which governs how much of the GRU unit is updated, is 

represented by the equation (6.27): 

 ( )1,t z t tz W h x −=                                                                                                    6.27                                                                                                                                 

The reset gate is determined by equation (6.28): 
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 ( )1,t r t tr W h x −=                                                                                                  6.28                                                                                                                                          

The hyperbolic tangent function of the reset gate is the new remember a 

gate, which is determined by Equation (6.29). 

 ( )1tanh ,t t t th W r h x−=                                                                                        6.29 

                                                                                                                                  

Figure 6.8 Basic structure of GRU. 

6.5  Proposed LSTM-GRU model. 

This study introduces a hybrid model based on LSTM-GRU for the identi-

fication of multiclass faults in polymer gears. The layout of the proposed 

model is depicted in Figure 6.9. The process begins by acquiring vibration 

signals at various speeds and at a constant torque of 2 Nm, which are then 

decomposed using CEEMDAN to generate multiple IMFs representing the 

acquired signal. In the next step, the IMFs are selected based correlation 

coefficient and its threshold limit and get the enhanced signal. Subse-

quently, features are extracted from the enhanced signal, and these feature 

vectors are utilized to train the classifiers. The proposed LSTM-GRU clas-

sifier (referred to as model VI) is presented in Figure 6.9. 
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Model VI is constructed by incorporating a single layer of the LSTM 

classifier and a single layer of the GRU classifier. The decision to limit the 

number of layers is based on the observation that increasing the layer count 

unnecessarily leads to complex networks that are prone to overfitting. A 

dropout layer with a rate of 20 percent is inserted before the second layer to 

mitigate overfitting risks. Within the network, the fully connected layer is 

connected to a hidden layer using the SoftMax activation function, facilitat-

ing the classification process. The cross-entropy loss, calculated by the clas-

sification layer, is employed in the optimization process to update the net-

work weights. For optimization, the adaptive moment estimation (Adam) 

optimizer is selected with a learning rate of 0.001. Adam adjusts the learn-

ing rate for each weight parameter individually, which helps in faster con-

vergence and better generalization. The proposed classifier's performance 

is evaluated by comparing it with other designed networks, specifically 

models I, II, III, IV, and V, as depicted in Figure 6.9.  

The network is built using the deep network designer tool in 

MATLAB 2022b. Additionally, a comparative study is carried out for fault 

classification at different rotational speeds: 500 rpm, 800 rpm, 1100 rpm, 

and fused conditions. Fused conditions refer to a scenario in which the 

model was trained using combined feature sets extracted from all speeds, 

namely 500 rpm, 800 rpm, and 1100 rpm. 
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Figure 6.9 Various design models for deep learning for fault detection of polymer gears.
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6.6 Results and discussion 

The main objective of this study is to identify the optimal model for accu-

rately and efficiently detecting PG faults. To assess the models perfor-

mance, a confusion matrix is employed as the standard decision-making 

tool. Various metrics, including accuracy, F1 score, and Kappa, are ex-

tracted from the confusion matrix to evaluate the models performance 

[148]. Equations (6.30) to (6.34) describe these metrics in detail. Accuracy 

reflects the proximity of the predicted values to the actual values during 

multiple iterations over the same dataset, without any errors. The F1 score 

represents the harmonic mean of recall and precision, striking a balance be-

tween the two. Recall, also known as the true positive rate, quantifies the 

proportion of correctly classified instances (TP) to the total number of in-

stances (TP + FN) within the same class. Precision calculates the ratio of 

correctly predicted samples to the total number of predicted samples for a 

particular class. Kappa is a measure of the agreement between predicted and 

actual class labels in a confusion matrix. 

 
+

=
+ + +

TP TN
Accuracy

TP TN FP FN
                                                                                             6.30 

 
 
 

Precision×Recall
F1 Score= 2×

Precision+Recall
                                                                                          6.31 

TP
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                                                                                           6.32 

Re
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                                                                                               6.33 
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                                                                                            6.34 
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where FP represents false positives (incorrectly anticipated positive in-

stances), FN stands for false negatives (incorrectly forecasted negative 

cases), TP stands for true positive (correctly predicted positive cases), and 

TN is for true negative (correctly predicted negative cases) (incorrectly pre-

dicted negative cases) 

In this study, multiple models were trained using feature vectors extracted 

from different speed conditions and at a constant torque of 2 Nm. The di-

mension of the feature vector for 500 rpm, 800 rpm, and 1100 rpm is 

800×11 separately, while the dimension for the fused condition is 2400×11. 

The feature vector is then randomly split, with 70% of the datasheet being 

used for training and 30% for testing. To ensure a fair comparison, constant 

hyperparameter values were maintained across all six classifiers during 

training. The hyperparameter values are presented in Table 6.2. 

Table 6.2 Configuration of the hyperparameters. 

Parameter Value 

Optimizer Adam 

Number of epochs 100 

Minibatch size 16 

Learning rate 0.001 

 

6.6.1 Analysis of the various designed models under differ-

ent speeds and at a constant torque condition 

Table 6.3 presents the experimental results and performance comparison of 

the proposed model and different design models at 500 rpm speed and 2 Nm 

torque. Figure 6.10 provides a visual representation of these results. The 

hybrid model LSTM-GRU exhibited the highest performance parameter 

value compared to other design models, as demonstrated in Figure 6.10 (a). 

Models I, II, and III had lower accuracy than hybrid models IV, V, and VI. 

The proposed model achieved a maximum accuracy of 99.6%, which is 
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3.53% higher than the LSTM model, 2.15% higher than the BiLSTM 

model, and 2.57% higher than the GRU model. Figure 6.10 (a) also demon-

strates that the BiLSTM-based model performs significantly better than the 

LSTM-based model. This is because the BiLSTM utilizes information in 

two ways, both from past to feature and from feature to past, whereas the 

LSTM only relies on information from previous inputs. On the other hand, 

the BiLSTM model consumes the maximum computational time for fault 

classification.  

The experimental outcomes of the proposed model and other de-

signed models at 800 rpm speed and 2 Nm torque are summarized in Table 

6.4, while the performance comparison is presented in Figure 6.11. In Fig-

ure 6.11 (a), it is evident that the proposed hybrid model LSTM-GRU 

achieves higher accuracy (99.58%), F1 Score (99.6), and Kappa (98.89%) 

values compared to the other designed networks. 

The proposed LSTM-GRU model demonstrates a maximum accu-

racy of 99.6%, which is 1.7% higher than that of the LSTM model, 0.8% 

higher than that of the BiLSTM model, and 1.26% higher than that of the 

GRU model. The computational time for training the different designed net-

works is displayed in Figure 6.11(b). 

Table 6.3 The values of classifiers' performance parameters and computa-

tional time at 500 rpm speed and 2 Nm torque. 

Model Accuracy 

(%) 

F1 Score 

(%) 

Kappa 

(%) 

Computational 

time (s) 

I (LSTM) 96.2 96.3 90 27 

II (BiLSTM) 97.5 97.4 93.33 48 

III (GRU) 97.1 97 92.2 26 

IV (LSTM-BiLSTM) 98.8 98.7 96.67 33 

V (BiLSTM-GRU) 97.91 97.9 94.5 31 

VI (LSTM-GRU) 99.6 99.6 98.89 24 
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Figure 6.10 Comparison between different classifiers at 500 rpm speed and 

2 Nm torque, (a) performance, and (b) computational time. 

As depicted, the proposed model requires less computing time com-

pared to other designed models. This indicates its efficiency in the training 

process. Table 6.5 presents the experimental results of the proposed LSTM-

GRU approach and a performance comparison with alternative design mod-

els at a rotational speed of 1100 rpm and a torque of 2 Nm. The correspond-

ing performance comparison is illustrated in Figure 6.12. Figure 6.12 (a) 

reveals that the hybrid LSTM-GRU model outperforms the other designed 

models. In terms of accuracy, the suggested LSTM-GRU model achieves 

the highest value of 99.16% compared to the other design models. Similarly, 

it demonstrates superior performance in terms of F1 Score (99.19%) and 

Kappa (97.8%) compared to alternative design models. Figure 6.12 (b) dis-

plays the computational time comparisons between different classifiers. It 

provides insights into the relative efficiency of each classifier in terms of 

computational time.   
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Table 6.4 The values of classifiers' performance parameters and computa-

tional time under 800 rpm speed and 2 Nm torque. 

Model Accuracy 

(%) 

F1 Score 

(%) 

Kappa 

(%) 

Computational 

time (s) 

LSTM 97.92 97.9 94.5 28 

BiLSTM 98.78 98.8 96.67 43 

GRU 98.34 98.36 95.56 28 

LSTM-BiLSTM 99.16 99.16 97.8 32 

BiLSTM-GRU 98.75 98.8 96.67 31 

LSTM-GRU 99.58 99.6 98.89 27 

 

Figure 6.11 Comparison between different classifiers at 800 rpm speed and 

2 Nm torque, (a) performance and (b) computational time 

Overall, the experimental results and performance comparisons 

highlight the superiority of the proposed LSTM-GRU approach in terms of 

accuracy, F1-Score, and Kappa, as well as its lower computational effi-

ciency. 
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Table 6.5 The values of classifiers' performance parameters and computa-

tional time at 1100 rpm speed and 2 Nm torque. 

Model Accuracy 

(%) 

F1 Score 

(%) 

Kappa 

(%) 

Computational 

time (s) 

LSTM 97.5 97.2 93.34 26 

BiLSTM 98.33 98.31 95.6 44 

GRU 97.92 97.91 94.5 25 

LSTM-

BiLSTM 

98.75 98.7 96.7 31 

BiLSTM-GRU 98.34 98.3 95.56 31 

LSTM-GRU 99.16 99.19 97.8 24 

 

Figure 6.12 Comparison between different classifiers at 1100 rpm speed 

and 2 Nm torque, (a) performance and (b) computational time 

To develop a speed-independent diagnosis model, the recorded vi-

bration signals from different speeds are fused in a consolidated manner and 

utilized for model training. The experimental results, including accuracy, 

F1-Score, and Kappa, of the proposed LSTM-GRU model and a perfor-

mance comparison with other design models, are presented in Table 6.6. 

These findings are also visualized in Figure 6.13. 
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Table 6.6 The values of classifiers' performance parameters and computa-

tional time under fused conditions. 

Model Accuracy 

(%) 

F1 Score 

(%) 

Kappa 

(%) 

Computational 

time (s) 

LSTM 94.8 94.8 86.3 69 

BiLSTM 95.8 95.8 88.9 149 

GRU 95.6 95.7 88.5 84 

LSTM-BiLSTM 96.52 96.54 90.1 104 

BiLSTM-GRU 96.11 96 89.6 98 

LSTM-GRU 97.9 97.9 94.4 77 

 

 

Figure 6.13 Comparison between different classifiers under fused condi-

tion, (a) performance and (b) computational time 

 The accuracy and F1 Score values are relatively consistent among the de-

signed models, with the proposed model attaining a maximum accuracy and 

F1-Score of 97.9%. The LSTM model exhibits the lowest accuracy of 

94.8%. Moreover, the Kappa value of the proposed model (94.4) is higher 

than that of the LSTM (9.38%), BiLSTM (6.2%), GRU (6.7%), LSTM-
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BiLSTM (4.8%), and BiLSTM-GRU (5.3%) models. Figure 6.13 (b) pre-

sents the computational time of all designed networks. The BiLSTM net-

work requires the highest computational time of 2 minutes and 48 seconds, 

while the proposed LSTM-GRU network exhibits the minimum computa-

tional time of 1 minute and 28 seconds. All experiments were conducted on 

a Dell desktop equipped with an Intel (R) Core (TM) i7-10700 processor 

with a clock rate of 2.90 GHz and 128 gigabytes of RAM. 

The total classification accuracy does not give a more realistic view of the 

accuracy of each class. As a result, the confusion matrices are examined. 

Figure 6.14 illustrates the four confusion matrices for the proposed LSTM-

GRU model at different rotational speeds. In each confusion matrix, the 

numbers within the rectangles indicate the number of tests. A blue rectangle 

indicates the correct identification of the four health conditions of polymer 

gears, namely H, SW, MW, and PT faults. A light blue rectangle indicates 

incorrect identification of at least one of these health categories. Figure 6.14 

(a) reveals that out of 240 tests, 239 (99.58%) are accurately classified. The 

H, SW, and MW fault classes are correctly identified, while there is one 

misclassification (0.42%) for the PT fault class. In the second case (800 rpm 

at 2 Nm), as shown in Figure 6.14 (b), 239 out of 240 tests (99.58%) are 

correctly classified. The H, SW, and PT fault classes are accurately identi-

fied, while the MW fault class is misclassified. For the third case (1100 rpm 

at 2 Nm), depicted in Figure 6.14 (c), 238 out of 240 tests (99.16%) are 

classified correctly. The MW and PT fault classes are correctly identified, 

but there are misclassifications for 2 tests (0.84%) in the H and MW fault 

classes. Regarding the fused class, as presented in Figure 6.14 (d), 705 out 

of 720 tests (97.9%) are accurately classified.  
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Figure 6.14 Confusion matrixes for proposed model LSTM-GRU at differ-

ent speeds and a constant torque of 2 Nm. 

6.6.2 Validation with other algorithms 

The primary aim of this research is to develop a speed-independent model. 

To achieve this, the proposed hybrid LSTM-GRU model is trained using 

fused data, and its classification accuracy is compared against other tradi-

tional machine learning techniques. To validate the effectiveness of the pro-

posed hybrid LSTM-GRU model, six different traditional classifiers (KNN, 

ensemble bagged tree (EBT), DT, SVM, linear discriminant analysis 

(LDA), and naive Bayes (NB)) are employed using the same fused data. 

Table 6.7 presents the classification accuracy of the suggested hybrid 

LSTM-GRU model and the six traditional classifiers. The results 
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demonstrate that the hybrid LSTM-GRU model outperforms the other clas-

sifiers in terms of classification accuracy for the multiclass fault detection 

of polymer gears. These findings highlight the ability of the proposed model 

to accurately identify multiclass faults in polymer gears. 

 

Table 6.7 Overall classification accuracy of different classifiers. 

Classifi-

ers 

LSTM-

GRU 

KNN EBT DT SVM LDA NB 

Accuracy 

(%) 

97.9 95.4 95.3 93.5 87.9 84.6 80.1 

 

6.6.3  Comparison of proposed work with previous studies 

The comparison study between the proposed approach and previously pub-

lished work is presented in Table 6.8. Analysis of the table reveals that the 

features extracted using the CEEDMAN-based method outperform other 

existing methods in terms of performance. Specifically, the proposed 

method achieves an accuracy of 99.6% in individual conditions and more 

than 97% in fused conditions. These results highlight the effectiveness of 

the proposed method in achieving high accuracy in fault classification. 
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Table 6.8 Comparison of the proposed study classification accuracy with 

existing works. 

Proposed/Ex-

isting work 

Features Speed 

(rpm) 

Classifier Accu-

racy 

(%) 

Ramteke et 

al.[149] 

Statistical features 

extracted from 

FAWT 

Fused LS-SVM 58 

Dalian et al. 

[150] 

Features are ex-

tracted from 

EEMD 

360 ABC-SVM 94.33 

Li et al. [77] Features are ex-

tracted from raw 

vibration signals 

1500 BiLSTM 94 

Wang et al. 

[151] 

Features extracted 

from CCEMDAN 

863 CCMEDAN-

LSTM 

99.5 

Proposed 

work 

Features extracted 

from enhanced 

signal 

500 and 

800 

LSTM-GRU 99.6 

Proposed 

work 

Features extracted 

from enhanced 

gear signal 

Fused LSTM-GRU 97.9 

*Artificial bee colony algorithm (ABC). 

 

6.7 Conclusions 

A hybrid deep learning model that is independent of rotational speed has 

been developed and tested for multiclass fault detection in polymer gears. 

The model utilizes LSTM-GRU neural networks within its framework. The 

complete design and implementation of the model have been presented in 

this study. 
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To extract features from the vibration signal, a method called 

CEEMDAN is employed, which decomposes the signal and applies a sen-

sitive IMF selection method to obtain filtered signals. This facilitates effec-

tive feature extraction. 

Among the designed models, the proposed LSTM-GRU (model VI) 

demonstrates superior performance. It achieves the highest classification 

accuracy, F1-score, and Kappa values of 99.6%, 99.6%, and 98.89% respec-

tively.  

Additionally, it exhibits the least computational time compared to 

the other designed models. On the other hand, model I displays the lowest 

performance parameters among the design models, while model II has the 

maximum computational time among the alternatives. 

In addition to the proposed design model VI, six traditional machine 

learning techniques were also investigated and compared. Among these 

techniques, KNN achieved the highest accuracy. However, the accuracy of 

the proposed model surpassed that of KNN by 2.5%. 

When comparing the results of this study with previous studies that 

utilized various methodologies, it becomes evident that the proposed model 

VI is particularly well-suited for fault detection. 

The experimental findings strongly demonstrate the effectiveness of 

the proposed fault diagnosis model in accurately identifying faults of PGs. 
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Chapter 7   

Conclusions and future scope 

 

7.1 Conclusions 

Polymer gears have gained significant attention as a viable substitute for 

conventional metal gears across diverse applications. Extensive research 

has been conducted in recent decades to explore different design aspects 

and tooth modification techniques, aiming to enhance the performance and 

durability of polymer gears. However, the impact of tooth modification on 

critical properties such as noise and vibration in polymer gears has not been 

thoroughly investigated. Furthermore, there is a notable absence of studies 

focused on fault detection techniques for polymer gears, which is crucial for 

preventing catastrophic failures.  

This thesis encompasses two main research aspects related to poly-

mer gears. The first aspect focuses on investigating the influence of teeth 

modification on vibration and noise emission in polymer gears. Two distinct 

types of polymer pinion teeth modifications were developed and tested un-

der various speed and load conditions. A comparative analysis was con-

ducted between these modified gears, unmodified gears, and gears paired 

with steel and polymer counterparts. 

The second aspect of this thesis addresses the development of fault 

detection methods specifically tailored for polymer gears. Several tech-

niques were proposed, including signal processing-based fault detection, 

machine learning approaches, and deep neural network-based condition 

monitoring. Vibration signals were acquired from polymer gears under dif-

ferent speeds and load conditions for fault detection purposes. One of the 

proposed methods involves kurtosis-based VMD and its performance was 

compared against kurtosis-based EMD and raw signal-based techniques.  
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Another significant contribution of this thesis lies in the develop-

ment of machine learning-based condition monitoring techniques. Classifi-

ers such as KNN, SVM, and LDA were trained using different sets of fea-

tures derived from decomposed signals (EMD and EWT), namely SF, HP, 

and a combination of SF and HP. The fault classifications of these algo-

rithms were compared. Additionally, a double decomposition-based method 

was devised to extract feature sets EF, HP, and a combination of EF and 

HP. These feature sets were employed to train models such as SVM, en-

semble learning, and decision tree, and their effectiveness in predicting pol-

ymer gear fault classification was evaluated. Furthermore, a novel hybrid 

deep neural network (LSTM-GRU) was developed utilizing CEEMDAN 

for polymer gear fault classification.  

Based on the findings of this study, the following key conclusions can 

be drawn: 

• The vibration and noise levels increase with an increase in rotational 

speed and a slight increase in torque for all tested gear pairs. Com-

paratively, the modified gear pairs exhibit slightly higher levels of 

noise and vibration in comparison to the unmodified gear pairs. 

•  Among the modified gear designs, the gear with a hole consistently 

demonstrates the highest levels of noise and vibration across all op-

erating conditions when compared to the modified gear with a steel 

pin. 

•  Under all experimental conditions, the proposed method of kurtosis 

based VMD outperforms fault detection in polymer gears.  

• Furthermore, the CIs extracted from kurtosis-based VMD exhibit 

good performance in detecting gear faults as compared to CIs ex-

tracted from raw signal and kurtosis-based EMD. 

• The utilization of KNN-based classification techniques proves ef-

fective in detecting faults in polymer gears by utilizing feature sets 

derived from EWT-based decomposition signals. The introduction 
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of SF and HP feature sets enhances the classification performance 

of the model. However, the LDA algorithm consistently exhibits 

lower classification accuracy across all combinations of feature sets 

explored in the study. 

• The ensemble classifier utilizing EMD-DWT exhibited higher accu-

racy in classification, whereas SVM showed comparatively lower 

accuracy. 

• The feature sets derived from EMD demonstrated lower accuracy 

for classifying faults in polymer gears compared to those derived 

from DWT. 

• Six different deep learning models were developed and evaluated 

for the multiclass fault detection of polymer gears using LSTM-

GRU neural networks. CEEMDAN was employed to decompose the 

vibration signal and extract features using a sensitive IMF selection 

method. The results demonstrated that the hybrid LSTM-GRU 

model outperformed the other designed models in terms of both per-

formance and computational time. 

• Furthermore, the hybrid model was compared to various traditional 

machine learning models, and it was found that the hybrid model 

exhibited superior performance compared to traditional machine 

learning models. 

 

7.2 Future scopes 

• This research can be extended to encompass other polymer gear 

types, including helical and worm gears, to broaden the scope of 

fault detection. Additionally, a comparative analysis could be con-

ducted to assess the classification accuracy of polymer spur gears 

compared to these other polymer gear variants. 

• Consider expanding the thesis by investigating the classification of 

polymer gear faults using noise signals instead of vibration signals, 
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utilizing the classification models developed in this work. Further-

more, perform a comparative analysis to evaluate the classification 

accuracy between vibration and noise signal-based approaches. 

• Expand the research's horizons by exploring a wider range of fault 

classes in polymer spur gears. This extension would involve devel-

oping methods to accurately classify a broader spectrum of faults, 

thereby enhancing the comprehensive health monitoring of these 

systems. 

• To enhance the model's performance and address the common issue 

of imbalanced data in fault classification problems. Investigate var-

ious techniques, such as oversampling and under-sampling, to miti-

gate the impact of imbalanced datasets on classification accuracy. 

• Explore the influence of different polymer gear materials on vibra-

tion and noise signals. Analyze how different material properties af-

fect the signals and, in turn, their impact on the accuracy of fault 

classification. 

• Evaluate the proposed methodology's performance by applying it to 

real operational polymer gear datasets. This step will provide prac-

tical insights into the effectiveness of the developed classification 

models in real-world industrial settings. 

• This methodology can be extended to developing a system-level 

fault identification technique. 
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