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Abstract

Artificial Neural Network (ANN) is one of the most popular and promising

areas of research in artificial intelligence. ANN has been widely used for the

classification task due to its characteristic of massive parallelism, learning abil-

ity, generalization ability, and fault tolerance. For solving classification task,

many models have been used like Backpropagation, Perceptron, Recurrent Neu-

ral Network and these models have been successfully applied in several fields like

economics, defense, stock market, engineering, and medical. The neural network

is formed using several learning parameters like connection weights, the thresh-

old of the neuron, number of layers, number of hidden layer neurons. Finding

optimal classification results need the optimal value of these learning parame-

ters. Several training techniques have been proposed to find the optimal value

of these parameters within different neural network architectures. However, it

is still an open area of research to find the optimal value of neural network

parameters. The evolutionary algorithms like genetic algorithm, particle swarm

optimization, ant colony optimization are also used by many researchers to find

the optimal value of neural network learning parameters. Recently the quantum

evolutionary algorithm (QEA) has been applied to many classification problems

and producing very promising results. QEA is a population-based probabilistic

EA that integrates concepts from quantum computing for higher representation

power and robust search. QEAs are characterized by population dynamics, in-

dividual representation, and evaluation function. Initially, QEA can represent

diverse individuals probabilistically because a quantum bit (Q) individual is

made up of several qubits (q) represents the linear superposition of all possible

states with the same probability. The observation process used here gives a

large search space to find the optimal value of required parameter. The quan-

tum rotational gate provide exploitation to restrict the algorithm to stuck with
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the problem of local minima and maxima.

We proposed neural network architecture using quantum computing concept.

The connection weights are evolved first using evolutionary quantum comput-

ing concept and neural network is formed constructively by adding neurons in

the hidden layer one by one. However, the threshold of neurons has been de-

cided manually which may lead solution to local minima and maxima problem.

Therefore the work has been extended by evolving threshold of neuron along

with connection weights. Finding a range of search space is also an important

issue. Therefore, to evolve threshold of neuron optimally, the existing work is

enhanced and threshold boundary parameter is proposed. The algorithm has

been used to classify offline signature dataset.

For complex datasets, having noisy samples there are chances of overlapping

in samples from multiple classes. In order to handle such problem, a neural

network architecture using quantum and fuzzy concept has been proposed for

two-class dataset having overlapped samples. The fuzzy concept has been used

to evolve connection weight or learning of neural network whereas the fuzzy algo-

rithm is optimized using evolutionary quantum computing concept. The fuzzifier

parameter which decided overlapping between clusters has been evolved using

evolutionary quantum computing concept. The fuzzy concept has one more pa-

rameter that is cluster centroids, which is generally initialized randomly. This

work has been extended by proposing a quantum-inspired fuzzy based neural

network learning algorithm for multi-class dataset having overlapped samples.

In this, along with fuzzifier parameter, the cluster centroids which act as connec-

tion weights in the neural network are being evolved using quantum computing

concept.

To deal with complex dataset like image dataset, web dataset, face reorgani-

zation object identification, and speech reorganization, deep neural network are

proposed. However, the learning algorithm of deep neural network has some pa-

rameter like learning rate parameter which is initialized manually. We proposed

quantum inspired deep neural network using stacked auto-encoder to solve the

problem of classification of complex dataset. The learning algorithm of stacked

auto-encoder has been optimized using evolutionary quantum computing con-

cept.

The proposed algorithms are tested on benchmark datasets along with one

x



real life dataset that is offline signature dataset which is prepared manually. The

proposed algorithms are compared with other state-of-the-art approaches and it

is found that, proposed algorithms perform well in comparison to other state-of-

the-art approaches. The proposed algorithms perform better due to optimizing

their learning parameter using the evolutionary quantum computing concept.

The quantum computing concept is characterized by population dynamics, in-

dividual representation, evaluation function. It provides a large search space to

find the optimal value of a parameter using an observation process thus, explo-

ration is achieved. On the other hand, the quantum rotational gate provides

exploitation to evolve the optimal value of neural network parameters.
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Chapter 1

Introduction

Classification is an ordered set of related categories used to group data according

to its similarities. There are several real-life situations where we can see that

the concept of classification is being utilized such as classification of medical

data for disease diagnosis, classification of biometric identity, vehicle recogni-

tion, and face recognition [1, 2]. In some areas like disease diagnosis, defense,

and automated airline operations the high accuracy and reliability is required

which cannot be achieved by simple programming based on conditions or hu-

man interaction. For solving such classification problems, several soft computing

techniques like ANN, fuzzy clustering, deep neural network learning algorithms,

and EAs inspired by nature have been proposed in the last decades [3–9].

The ANN gained popularity in recent decades and successfully applied to

various problems such as pattern classification, pattern matching, associative

memories, optimization, and function approximation [10, 11]. Several architec-

tures have been proposed like Perceptron, Backpropagation, and RNN to solve

the problem from various fields like mathematics, medicine, economics, com-

puter science, image classification like face recognitions, and many more. The

performance of the neural network in the mentioned areas depends upon several

parameters such as network architecture, input data, the number of neurons

in the hidden layer, the number of hidden layers, activation function, and the

connection weights [12–15]. Finding an optimal neural network structure is an

open area of research. Since the last decade nature inspired EAs like GA, PSO,

ACO, ABCA, CSA, and QEA have been successfully applied to optimize neu-

ral network parameters [16–23]. EAs are principally a stochastic search and
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optimization algorithm based on the principles of natural biological evolution.

EAs are robust, global, and may be applied without resource to domain-specific

heuristics. EAs operate on a population of potential solutions, using the princi-

ple of survival of the fittest to produce successively better approximations to a

solution. At each generation of the EA, a new set of approximations is created

by the process of selecting individuals according to their level of fitness in the

problem domain and reproducing them using variation operators. This process

may lead to the evolution of populations of individuals that are better suited to

their environment than the individuals from which they were created, just as in

natural adaptation. EAs are characterized by the representation of the individ-

ual, the evaluation function representing the fitness level of the individuals, and

the population dynamics. These components should be appropriately designed

to have a proper balance between exploration and exploitation.

Recently the QEA has been applied to many classification problems and pro-

ducing very promising results [11, 23]. QEA is a population-based probabilistic

EA that integrates concepts from quantum computing for higher representation

power and robust search. QEA are characterized by population dynamics, indi-

vidual representation, evaluation function. Initially, QEA can represent diverse

individuals probabilistically because a quantum bit (Q) individual is made up of

several qubits (q) represents the linear superposition of all possible states with

the same probability. As the probability of each qubit approaches either 1 or 0

by the quantum rotational gate, the qubit individual converges to a single state,

and the diversity property disappears gradually. By this inherent mechanism,

QEA can treat the balance between exploration and exploitation. In this re-

search work, we have proposed neural network learning algorithms for solving

classification problems of two class and multi-class by evolving learning param-

eters using the quantum computing concept. The proposed learning algorithms

are tested on benchmark datasets along with one real life dataset. The proposed

algorithms perform better when compared to other state-of-the-art approaches

in terms of classification accuracy.

2



CHAPTER 1. INTRODUCTION

1.1 Motivation and Scope

This thesis is a study of neural network learning algorithms using the quantum

computing concept. Learning of neural network for solving various classifica-

tion problems is an open area of research since last decades. In other words,

it is found that the, performance of the neural network learning algorithms de-

pends on many parameters like the selection of connection weights, threshold,

number of hidden layer neurons, the architecture of neural network, learning

rate parameters, etc. The classification accuracy is an important factor in some

cases like disease diagnosis where wrong classification results may lead to in-

correct treatment. It is also observed that, the performance of neural network

decreases for the multiple class dataset in which samples belong to more than

one classes. This causes due to occurrence of overlapped samples in multiple

classes of dataset. In such cases, forming a neural network structure required

different learning strategies. Now a days the complexity of datasets is increasing

day by day. The accurate classification of such dataset is not possible through

traditional neural network learning algorithm. Thus, in this thesis novel neural

network learning algorithms are proposed.

Recently QEA gained attraction of many researchers. QEA is based on the

concept and principles of quantum computing, such as a quantum bit and super-

position of states. Like other EAs, QEA is also characterized by the represen-

tation of the individual, the evaluation function, and the population dynamics.

However, instead of binary, numeric, or symbolic representation, QEA uses a

quantum bit (Q) which is made of several qubits (q) and shows probabilistic

representation. A quantum bit (Q) individual is defined by a string of qubits

(q). The quantum bit (Q) individual has the advantage that it can represent

a linear superposition of states (binary solutions) in a search space probabilis-

tically. Thus, the quantum bit (Q) representation has a better characteristic

of population diversity than other representations. A quantum bit (Q) is also

defined as a variation operator of QEA to drive the individuals toward better

solutions and eventually to a single state. Initially, QEA can represent diverse

individuals probabilistically because a quantum bit (Q) individual represents

the linear superposition of all possible states with the same probability. As the

probability of each qubit (q) approaches either 1 or 0 by the quantum rota-
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tiongate, the qubit (q) individual converges to a single state and the diversity

property disappears gradually. By this inherent mechanism, QEA can treat the

balance between exploration and exploitation. In this thesis, the QEA is used

in optimizing the different type of neural network learning parameters which

helps to get better classification accuracy. Thus, based on quantum computing

concept, various novel neural network learning algorithm are proposed to tackle

two class, multi-class as well as complex dataset.

1.2 Objectives

The research work is addressed to design neural network learning algorithms for

solving classification problem which make use of quantum computing concept

to tackle issue of parameters optimization. It involves finding optimal connec-

tion weights and threshold of the neurons in the neural network formed. The

performance of neural network decreases for the multiple class dataset in which

samples belong to more than one classes [24,25]. This causes due to occurrence

of overlapped samples in multiple classes of dataset. Thus, there is a need to

apply fuzzy concept for handling such multiple class dataset which are hav-

ing overlapped samples. Further, algorithms are proposed herein to handle the

problem of overlapped samples in classification problems. For the classification

of complex and large dataset like images, signal, voice, deep neural network

architectures have been proposed [7, 26–28]. However, there are some learn-

ing parameters in deep neural network learning algorithm which are initialized

manually. One of the deep neural network architecture based on stacked auto-

encoders is enhanced by proposing optimization of its learning parameters using

the quantum computing concept. Related literature has been investigated and

based on it; following objectives were identified in our research:

1. To form a neural network with optimal connection weights, we propose a

quantum inspired neural network learning algorithm. In this, connection

weights of the neural network are evolved using the quantum computing

concept.

2. To form a neural network with the optimal value of threshold along with

optimal connection weights, we propose another novel quantum inspired
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neural network learning algorithm.

3. To propose and develop a quantum inspired fuzzy based neural network

learning algorithm for solving two class classification problem. The fuzzy

concept is utilized to handle the samples which are overlapped to different

class regions. In this, the fuzzifier parameter is evolved using the quantum

computing concept.

4. To propose and develop a quantum inspired fuzzy based neural network

learning algorithm for solving multi-class problem which can also handle

the issue of overlapped samples. The problem of overlapping of samples in

multi-class dataset is solved using the fuzzy concept. In this, neurons are

visualized as fuzzy clusters of data samples. The centroids of such clusters

are optimized using the quantum computing concept.

5. To propose and develop a quantum inspired stacked auto-encoder based

deep neural network learning algorithm for handling complex dataset. It

involves the optimization of learning rate parameter using the quantum

computing concept.

6. To propose and develop an enhanced quantum inspired neural network

learning algorithm with the concept of threshold boundary parameter for

optimizing the threshold of neurons in the neural network. The proposed

algorithm is applied for classification of the offline signature dataset.

1.3 Contributions

In this research work, we address the number of issues related to the optimization

of neural network parameters in various learning algorithms which are based on

the quantum computing concept. The details are presented as follows:

1. Proposed Quantum inspired Binary Neural Network Learning Algorithm

(Q-BNN) for solving two class classification problem. This algorithm uses

the quantum computing concept to evolve the connection weights from a

large search space. The number of hidden layer neurons is decided con-

structively by adding neurons in the hidden layer as per the requirement.
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2. Proposed a Novel Quantum inspired Binary Neural Network Algorithm

(NQ-BNN) for solving two class classification problem. In this work, we

have enhanced our proposed Q-BNN by evolving threshold of neurons

along with connection weights of the neural network using the quantum

computing concept.

3. Proposed Quantum inspired Fuzzy based Neural Network Learning Algo-

rithm (Q-FNN) for solving two class classification problem. The proposed

algorithm forms three layer neural network structure and uses the fuzzy

concept to handle the samples which are overlapped to different class re-

gions. The fuzzy concept helps to the classify such samples by assigning

membership degree according to the class from which these samples be-

long. However, there is parameter in the fuzzy concept like fuzzifier param-

eter which is initialized randomly. Hence, fuzzifier parameter is evolved

using the quantum computing concept.

4. Proposed Quantum inspired Fuzzy based Neural Network Learning Algo-

rithm for Multi-class classification problem (Q-FNNM). In this, Q-FNN

algorithm is further enhanced here for solving multi-class problem which

can also handle the issue of overlapped samples. The problem of overlap-

ping of samples in multi-class dataset is solved using the fuzzy concept by

assigning membership degree to the samples according to class from which

the samples belong. In the proposed Q-FNNM, both connection weights

which are taken as cluster centroids and fuzzifier parameter (m) have been

optimized using the quantum computing concept.

5. Proposed a Quantum inspired Stacked Auto-Encoder based Neural Net-

work Learning Algorithm (Q-DNN), to classify the complex dataset. The

learning algorithm of stacked auto-encoder is optimized by evolving the

learning rate parameter using the quantum computing concept.

6. Proposed an Enhanced Quantum inspired Neural Network Learning Al-

gorithm (EQNN-S). In this work, we have enhanced our proposed NQ-

BNN algorithm by proposing threshold boundary parameter for evolving

threshold of the neurons optimally. The proposed EQNN-S has been used

to classify offline signature dataset.
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1.4 Organization of the Thesis

In this thesis, we proposed several novel neural network learning algorithm by

making use of the quantum computing concept to optimize the learning process.

This thesis is carried out an extensive literature review.

Chapter 2 addresses the background study of previous and related work in

the field of optimization of parameters in the neural network learning algo-

rithms. This chapter starts with neural network architectures and its parame-

ters. After that, an overview is given of the recent and existing methodologies

for optimization of neural network parameters. A survey of quantum-inspired

evolutionary algorithm is discussed. This chapter also introduced the discussion

of the fuzzy based neural network and similar methodologies and deep neural

network algorithms. A survey related to offline signature verification methods

is also discussed.

Chapter 3, incorporates the discussion of proposed Q-BNN algorithm. The

proposed quantum inspired learning algorithm helps to find optimal connec-

tion weights. This chapter also discusses the issue of selection of the optimal

threshold. The enhanced Q-BNN algorithm and proposed NQ-BNN to finds the

threshold of neurons along with connection weights. At the end of this chapter,

the performance of the proposed work is compared with other state-of-the-art

approaches.

In chapter 4, we have proposed one more novel neural network learning

algorithm named as Q-FNN for two-class classification problems. The fuzzy

concept is used to form neural network architecture. The fuzzy algorithm uses

a fuzzifier parameter which is initialized manually. The random initialization of

fuzzifier parameter may leads to solution in local maxima problem. Therefore,

the quantum computing concept has been utilized to evolved fuzzifier parameter.

The chapter, finally reports the experimental evaluation, which compares the

classification accuracy with other state-of-the-art approaches.

In chapter 5, we have proposed the Q-FNNM for multi-class classification

problem which can also handle the issue of overlapped samples. The problem of

overlapping of samples in multi-class dataset is solved using the fuzzy concept.

In this, neurons are visualized as fuzzy clusters of data samples. The cluster

centroids are evolved using the quantum computing concept rather than initial-
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izing randomly. At the end of the chapter, the result of the proposed algorithm

is compared with other related state-of-the-art approaches.

In chapter 6, we have proposed a Q-DNN algorithm. We form a deep neural

network architecture using auto-encoders. The learning of deep neural network

is done in two phases, i.e., the first phase is for the pre-training of each auto-

encoder and the second phase is for the fine-tuning process. The learning algo-

rithm used here is a gradient descent algorithm. In this, learning rate parameter

of the gradient descent algorithm has been optimized using the quantum com-

puting concept. The comparative evaluation of the proposed algorithm is done

with some other deep neural network models and shallow architecture neural

network models on benchmark dataset along with complex image dataset.

In chapter 7, we have proposed a enhanced quantum inspired neural network

learning algorithm which is used for offline signature verification. In this pro-

posed algorithm a threshold boundary parameter is introduced to get optimal

value of threshold. The proposed algorithm is used for offline signature verifica-

tion. In this, we have extracted unique features of an offline signature like pixel

density, number of loops, and angle with horizontal. The classification of these

features has been done using the enhanced quantum inspired neural network

learning algorithm. The result of proposed algorithm is compared with other

state-of-the-art approaches.

In chapter 8, conclusions are drawn regarding the research results of each of

the addressed problems and the overall work in the thesis. The contributions to

the state-of-the-art of the tackled subjects are outlined, and some future work

directions are also highlighted.

Chapter 8 is followed with the references, appendix A, and appendix B.

Appendix A consist the discussion about the benchmark dataset along with one

real life dataset that is offline signature dataset. Appendix B consist various

validation methods.
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Chapter 2

Literature Survey

In this chapter, the review has been carried out for the related work. This chap-

ter starts with the discussion of some well-known models of the neural network.

Then we discuss about the learning algorithms of the neural network which helps

to decide the parameters of the neural network like connection weights, thresh-

old, number of hidden layer neurons during learning. After that, we discuss

how the EA optimizes neural network architecture and its parameters. Further,

the quantum computing concept is discussed which is utilized in the quantum

inspired evolutionary algorithm to form a neural network architecture. The

performance of neural network decreases for the multiple class dataset in which

samples belong to more than one classes. This causes due to the occurrence

of overlapped samples in multiple classes of the dataset. Thus, there is a need

to apply the fuzzy concept for handling such multiple classes dataset which are

having overlapped samples. Thus, our discussion proceeds with the basics of

the fuzzy concept and issues related to its parameters are discussed further in

detail. For the classification of complex and large dataset like images, signal,

and voice, several deep neural network models have been proposed. One of the

models is stacked auto-encoder based deep neural network which is enhanced

by optimizing its learning algorithm using the quantum computing concept in

our proposed work. Therefore, we discuss about stacked auto-encoder based

deep neural network and issue related to its learning algorithms. The proposed

algorithms are tested on various benchmark datasets and one of the algorithms

is tested on real-life dataset that is an offline signature dataset. For the exper-

imental evaluation of the proposed algorithms, the performance measures are
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presented.

2.1 Neural Network Concepts and Learning Al-

gorithms

Neural Networks models are inspired by the working of the brain, although they

do not pretend to be the accurate models of the central nervous system. Even

if they are biologically inspired systems, they are best regarded as primarily

nonlinear statistical models [29]. The neural network can be considered as a

combination of neurons and synaptic connections, which are capable of trans-

mitting data through multiple layers. Several researchers have proposed neural

network learning models in last eight decade. First work was carried out by

Warren McCulloch and Walter Pitts in 1943 [30]. They proposed a basic neural

network structure, which consists of three layers, i.e., an input layer, a hidden

layer, and an output layer. For learning of this neural network in 1949 Don-

ald Hebb demonstrate the rule for updating connection strengths (connection

weights) between neurons [31]. His rule, now called Hebbian learning, remains

an influential model to this day. Hebbian learning methods were enhanced by

Bernie Widrow, named as networks adalines, and by Frank Rosenblatt (1962)

with his Perceptrons [32, 33]. The connection weights are updated by mapping

input samples and desired output. Perceptron performs well with linearly sep-

arable classes, but its performance decreases with non-linear separable classes.

In the mid-1980s at least four different groups reinvented the Backpropagation

learning algorithm first found in 1969 by Bryson and Ho [34]. Backpropagation

is a method used in neural networks to calculate the error contribution of each

neuron after a batch of data is processed. In the context of learning, Back-

propagation is commonly used by the gradient descent optimization algorithm

to adjust the weight of neurons by calculating the gradient of the loss function.

This technique is also sometimes called backward propagation of errors because

the error is calculated at the output and distributed back through the network

layers. However, there are some parameters in the Backpropagation learning

algorithm whose value is initialized manually. Even on increasing the number

of hidden layers it faces vanishing gradient problem. Due to vanishing gradient

10



CHAPTER 2. LITERATURE SURVEY

problem the learning performance decreases. In the Backpropagation learning

algorithm finding the number of hidden layers, and the number of neurons to

get optimal results is also an open issue. In 1988, Broomhead and Lowe devel-

oped Radial Basis Function (RBF) an ANN which uses radial basis functions

as activation functions [35]. The output of the network is a linear combination

of radial basis functions of the inputs and neuron parameters. It typically has

three layers: an input layer, a hidden layer with a non-linear RBF activation

function, and a linear output layer. In this learning model, the crisp clustering is

used to form hidden layer neurons. This causes inefficient learning with multiple

class dataset in which samples belong to more than one classes [24, 25]. This

causes due to the occurrence of overlapped samples in multiple classes of the

dataset. This problem is resolved by researchers using the fuzzy concept to form

hybrid neural networks based Neuro-fuzzy concept [36–38]. The fuzzy concept

helps to the classify such samples by assigning membership degree according to

the class from which these samples belong. However, there are some parame-

ters in the fuzzy concept like fuzzifier parameter which controls the extent of

overlapping among fuzzy clusters [39] and initial cluster centroids which are ini-

tialized manually. Initializations of these parameters causes the decrement in

the performance of neuro-fuzzy based learning algorithms. The complexity of

dataset increases by the time. The researchers have shown that multilayered

architectures trained using unsuitable learning algorithms not performed well

when dealing with complex datasets such as image, signals, speech, video, and

Web data [7,40]. To deal with such complex problem deep neural network learn-

ing algorithms were proposed [7]. However, these learning algorithms initialize

its learning parameter randomly which may or may not give optimal results.

With the development of neural network learning algorithms, the perfor-

mance of these algorithms became the major issue. The performance of learning

algorithms depends on several parameters like connection weight, the threshold

of neurons, the number of hidden layer neurons, and neural network architec-

ture. Several new techniques have been proposed to optimize these parameters.

However, the most successful technique used to optimize these parameters is

using EAs. EAs are inspired by the nature inspired Evolutionary Computation

(EC), which is discussed in detail subsequently.

EC is the study of the computational system based on the idea of natu-
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ral evolution and adaptation [29,41–43]. Neo-Darwinian paradigm represents a

widely accepted collection of evolutionary theories that define the evolutionary

processes of reproduction, mutation, and selection as the main physical processes

operating within individuals in a population [44]. As compared to conventional

methods, the major advantages of EC are the computational simplicity, well

applicability to broad classes of problems, the capability of self-optimization,

and hybridization with other methods [45]. EAs are especially useful for opti-

mization problems where the number of parameters is large, and the optimal

solutions are difficult to obtain. At the algorithmic level, they differ mainly in

their representations of potential solutions and their operators. EAs are the pop-

ulation based algorithm, it uses the collective learning process of a population

of individuals. The strength of EAs is due to updating the whole population of

possible solutions at each generation. This is equivalent to parallel explorations

of the overall search space in a problem. Initial population may be either a

random sample of the solution space or a specific value. The population evolves

on the basis of the fitness function and its operator, and its update continues

till the optimal solution is achieved. The application area of EAs is very wide, it

is applied in the problem of neural network parameter optimization, economics,

medical, and mathematics.

As discussed above, the EAs are used in many fields along with ANN to

evolved neural network parameters optimally and called as Evolutionary Arti-

ficial Neural Networks (EANN) [46]. The search of the optimal network struc-

ture is known to be a complex, non-differentiable, and multi-modal optimization

problem. In the structural design, EAs are employed in two ways: to evolve the

structures only [47] and to evolve both the structures and the connection weights

simultaneously [48]. In general, when EAs are used to determine the structures

only, the training error is calculated by performing a random initialization of

weights, which are then determined by a learning algorithm [49]. However, as

indicated in [50], the training results depend on the random initial weights and

the choice of the learning algorithm. Leung et al. presented an improved GA

to tune the structure and parameters simultaneously [51]. Angeline et al. [48]

suggested that genetic algorithms are not well suited for evolving networks and

proposed an evolutionary program, called GeNeralized Acquisition of Recurrent

Links (GNARL), to acquire both the structure and weights. Li et al. used an
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improved PSO algorithm to learn ANNs parameters that are weights and bias,

and it is used a binary PSO algorithm to evolve the architecture, simultane-

ously [52].

Although evolving both structures and weights cause the permutation prob-

lem [53–55]. Some researchers have avoided crossover and only adopted muta-

tions in the evolution of structures [56,57]. Also, in most EAs, the fitness value

governs the evolutionary search [50, 58]. However, in the case of the simultane-

ous evolution of structures and connection weights, a good fitness value does not

necessarily represent the quality of the structure. Often, the fitness of a neural

network with a good structure and bad weights may be worse than the fitness

of a network with a bad structure, and a good set of weights [59]. As a result,

some potential structures may be discarded if only fitness is used.

In last decades, QEA are proposed as evolutionary algorithm to optimize

neural network parameters. Similar to the general EAs, the QEA is character-

ized by the individuals, the evaluation function, and the population dynamics.

However, instead of binary, numeric, or symbolic representation, it uses a prob-

abilistic quantum bit representation. The QEA has distinct advantages over

general EAs when it is used in evolving the neural networks. First, an individ-

ual in the QNN is composed of quantum bits that represent the probability of

parameter subspace rather than a specific value. So, if the network has a bad

fitness problem, QEA modifies the quantum states rather than discarding the

network as occurs in other EAs. Thus, the risk of throwing away a potential

structure or network parameters is mitigated. Second, instead of the crossover

and mutation, the QEA uses observation to create a new network. Thus, the

negative impact of the permutation problem is reduced. Third, a partitioning

strategy is used to find the near-optimal network parameters. It explores each

network parameter space region-by-region and rapidly finds the promising sub-

space for further exploitation. This is helpful to provide a set of appropriate

network parameters when evolving the network structure. The detailed discus-

sion about the quantum computing concept is discussed next.
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2.2 Quantum Computing Concept

Inspired by the quantum physics concept, the quantum mechanical computers

were proposed in the 1980s [60] and it is formalized in 1985 [61]. Many efforts

on quantum computers have progressed actively since the early 1990s because

these computers were shown to be more powerful than classical computers with

various specialized problems. There are well-known quantum algorithms such

as Shor’s quantum factoring algorithm [62] and Grover’s database search al-

gorithm [63]. The quantum computing field can be classified into two fields.

One concentrates on generating new quantum algorithms using the automatic

programming techniques. Second one concentrates on QEA for a classical com-

puter, a branch of study in evolutionary computing that is characterized by

certain principles of quantum mechanics [23, 64]. QEA uses a quantum bit for

probabilistic representation. A quantum bit individual is defined by a string of

qubits. The quantum bit individual has the advantage that it can represent a

linear superposition of states (binary solutions) in a search space probabilisti-

cally. Thus, the Q-bit representation has a better characteristic of population

diversity than other representations.

The quantum bit (Qi) can be represented by several qubits (q).

Qi = (qi1|qi2|......|qik) (2.1)

Here, the k number of qubits which represent a quantum bit (Q). A single qubit

(qij) where j=1,2.....k, is the smallest unit for representing information. A qubit

is fundamentally different from the binary bit used in traditional classical/digital

computers in the sense of representing data. A single binary bit can represent

only two states, “0” and “1”, whereas the qubit (qij) can represent the linear

superposition of two states simultaneously, which is determined by probability

model [23]. Thus, qubit qij can be represented as

qij = αij | 0〉+ βij | 1〉 =

[αij

βij

]
(2.2)

where, α and β are the complex numbers representing the probability of a qubit

in “0” state and “1” state, respectively. A probability model is applied which
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shows the qubit in “0” state by α2 and in “1” state by β2, where

α2
ij + β2

ij=1; 0 ≤ αij ≤ 1, 0 ≤ βij ≤ 1

As discussed above, a quantum bit (Qi) formed using a single qubit (qi1)

where j=1,2,...,k, and (k=1) can represent two states, e.g., “0” state and “1”

state. A quantum bit (Qi) having two qubits (qi1|qi2), can represent four states,

e.g., “00”, “01”, “10”, and “11”. In the same way, three-qubits (qi1|qi2|qi3), can

represent eight states, thus n qubits (qi1|qi2|....|qin), can represent 2n states. For

example, an individual quantum bit Qi has two qubits can be represented as

follows:

Qi =

〈
αi1|αi2
βi1|βi2

〉
(2.3)

The below example shows the representation of the four states of a quantum bit

(Qi) having two qubits (qi1|qi2).

Qi = (αi1 × αi2)〈00〉+ (αi1 × βi2)〈01〉+ (βi1 × αi2)〈10〉+ (βi1 × βi2)〈11〉 (2.4)

It is noted that qubit (qij) is made of two components αij and βij, where each

component value lies between “0” and “1”. The quantum bit (Qi) having two

qubits (qi1|qi2) can be initialized with a random value between 0 and 1 as dis-

cussed above. Here αi1, αi2, βi1, and βi2 is initialized as follows:

Qi =

〈
1/
√

2|1/
√

2|1/
√

2

1/
√

2|1/
√

2|1/
√

2

〉
(2.5)

With respect to Eq. (2.4) and Eq. (2.5), the state representation of a quantum

bit (Qi) is defined as follows:

Qi = (1/2
√

2)〈000〉+ (1/2
√

2)〈001〉+ (1/2
√

2)〈010〉+ (1/2
√

2)〈011〉

+(1/2
√

2)〈100〉+ (1/2
√

2)〈101〉+ (1/2
√

2)〈110〉+ (1/2
√

2)〈111〉
(2.6)

A Quantum bit a further converted into real coded value to get exploration

using the observation process which is presented next.
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2.2.1 Real Coded Value Generation: Observation Pro-

cess

To get exploration and real coded value, there is a need to convert qubit (q)

into a real coded value qreal. The conversion of a real coded value from a qubit

has been done with the help of the observation process [23] as presented in

Algorithm 2.1.

Algorithm 2.1 Algorithm for Observation Process.

1: begin
2: qij, link=0 and random number matrix rij.
3: for j=1:k
4: qij=αij; 0 ≤ αij ≤ 1
5: rij=rand();
6: This rand function generates a uniform value between 0 and 1.
7: endfor
8: for j=1:k
9: if (rij <(αij*αij))

10: sij=1;
11: else
12: sij=0;
13: endif
14: if(link∼=0)
15: qrealij = N(µlink, σlink);
16: endif
17: endfor

This process starts by taking a random number matrix Ri, where Ri=

[ri1ri2....rik], corresponding to Qi = (αj1 | αi2 | ...... | αik). The value of rij

is selected with the help of a random function which generates uniform number

between 0 to 1. Then, a further mapping is done by using a binary matrix Si

where Si = [si1si2....sik]. The value of matrix Si is generated as follows:

if(rij ≤ (αij)
2) then sij = 1 else sij = 0. (2.7)

To select weights from binary values, the Gaussian random generator has

been used with mean value µ and variance σ, represented as N(µ, σ). The

observation process shows the process of conversion of a single qubit (qij). As

shown in Eq. (2.2) the qubit (qij) is formed by using two components αij and

βij. For processing of qubits, the αij component is considered because the value

of second component βij will be
√

1− α2
ij. This observation process is called
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for the conversion of all the qubits of Qi into real coded value. Thus, this Qi

is utilized for getting a real coded value of the learning parameters of neural

network algorithms.

The observation process can be understood with the help of an example. Let

a quantum bit of length two qubits is represented as Q =〈0.707|.707〉, therefore

a random number matrix is generated using a random number R=[0.85 0.02].

Now using Eq. (2.7), the binary matrix is generated as S=[01]. Once the binary

matrix is achieved, then the formula is used here to convert a binary number

to a decimal value (bin2dec(S)+1). This returns a number between 1 to 4

and corresponding four Gaussian random values are also mentioned for example

N(0.25, 0.03), N(0.40, 0.03), N(0.55, 0.03), and N(0.70, 0.03). As a binary value

achieved here return two as the decimal value, therefore the real coded value

Qreal corresponding to quantum bit Q is selected from N(0.40, 0.03).

2.2.2 Qubit Update Process

This observation process helps to achieve exploration, and it converts qubits

into real coded values. The value of quantum bit gets evolved for achieving

the best value of learning parameters of a neural network from a large search

space in several generations. Thus during the generations, quantum bit value

gets updated. The new value of a quantum bit is generated through the quan-

tum update function [23]. To update Qg+1 from Qg, quantum rotation gate is

required, which is described as follows:

U(∆θ) =

∣∣∣∣∣∣cos ∆θ − sin ∆θ

sin ∆θ cos ∆θ

∣∣∣∣∣∣ (2.8)

where ∆θ is a rotation angle which is used to generate Qg+1 from Qg.

∣∣∣∣αg+1
ij

βg+1
ij

∣∣∣∣ =

∣∣∣∣∣∣cos ∆θ − sin ∆θ

sin ∆θ cos ∆θ

∣∣∣∣∣∣ ∗
∣∣∣∣αg

ij

βg
ij

∣∣∣∣ (2.9)

As presented in Lu et al. [11], ∆θ is calculated on the basis of the objective

function F ∗ and Fg. The objective function F ∗ represent the best or global

objective function during all generations (g) and Fg is the objective function

value of the current generation. As shown in the observation process, each qubit

αij is associated with a binary value sij, therefore a mapping is done between F ∗
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and binary bit value s to update individual qubit. If the objective function values

Fg is worse than that of objective function value in F ∗, and state of sij is zero,

and best objective function state of s∗ij is one, then decrement in the probability

of αij may produce the worst result. Therefore, to increase the probability of

αij to one, ∆θ made negative. While, if the objective function value Fg is better

than the objective function in F ∗, and state of sij is one, and the best objective

function state s∗ij is zero, then increasing the probability of αij to one, may

produce the worst result. Therefore, to update αij, angular displacement made

positive ∆θ. In other cases, angular displacement will remain zero. The value

of angular displacement must be selected in such a way so that it can cover

the maximum value of α in the range of (0 1) and also should not take many

iterations to cover these values [11]. Therefore, ∆θ must be initialized between

(0.01×π, 0.05×π). The quantum bit update process is explained in the tabular

form in Table 2.1.

For preventing the quantum bit αgi from acquiring values 0 or 1, following

constraints are applied:

αij =


√
ε, if αij <

√
ε

αij if
√
ε ≤ αij ≤

√
1− ε

√
1− ε if αij >

√
1− ε

(2.10)

where ε is assigned a very small value (approximately approaching to zero), so

that it can cover maximum value in the range of (0, 1).

The performance of neural network decreases for the multiple class dataset

in which samples belong to more than one classes [24,25]. This causes due to the

Table 2.1: Qubits Update.

sij s∗ij Fg < F ∗ ∆θ

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0.03 ∗ Π
1 0 true 0
1 1 false 0
1 1 true 0
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occurrence of overlapped samples in multiple classes of dataset. Thus, there is a

need to apply the fuzzy concept for handling such multiple class dataset which

are having overlapped samples. The fuzzy concept helps to classify such samples

by assigning membership degrees according to the class from which these sam-

ples belong. Based on the features of fuzzy concept and neural network many

researchers has proposed neuro-fuzzy model to deal with real-life problems such

as speed prediction [65], oil consumption estimation, policy making [66], fore-

casting electricity loads [67], and medical diagnosis. Jang et al. [68] proposed a

Neuro-fuzzy System (NFS) by integrating neural networks and fuzzy systems to

exploit best features of both the approaches and offer several advantages such

as better intelligibility, adaptability, quick convergence, and higher accuracy.

Kahramanli and Allahverdi [69], proposed a new hybrid neural network that

includes ANN and Fuzzy Neural Network (FNN) and obtained good classifica-

tion accuracy for PID dataset. Luukka [70], proposed a classification method in

which data is first preprocessed using the Fuzzy Robust Principal Component

Analysis (FRPCA) algorithms to obtain data in a more feasible form, and was

then classified using a similarity classifier.

However, there are parameters in the fuzzy concept like fuzzifier parameter,

cluster centroids which are initialized randomly but initialization in such a way

does not guarantee to get optimal results. Therefore we proposed to optimize

the fuzzy parameters which are based on Fuzzy C-Means of these parameters

the quantum computing concept has been utilized. The detailed discussion of

the fuzzy parameters along with the FCM algorithm is presented next.

2.3 Fuzzy Clustering

Fuzzy clustering is based on the fuzzy set theory that allows an object to have

varying grades of membership in a set [71]. The fuzzy set theory is used in the

clustering algorithm so that a sample can belong to the multiple clusters [72].

A fuzzy clustering produces a fuzzy partition that can be expressed by the

membership matrix, U . The degree of membership of sample i in cluster j is

represented by uij. This is subjected to the following constraints [39,73]:

uij ∈ [0, 1], 1 ≤ i ≤ n, 1 ≤ j ≤ c (2.11)
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c∑
j=1

uij = 1, 1 ≤ i ≤ n (2.12)

n∑
i=1

uij > 0, 1 ≤ j ≤ c (2.13)

where c is the number of clusters, n is the total number of samples in a dataset,

and uij denotes the membership of the ith sample belonging to the jth cluster

such that i = 1, 2, .., n and j = 1, 2, .., c.

Fuzzy cluster analysis gives the flexibility to express that the samples in a

dataset can belong to more than one cluster at the same time. In addition to

this, the membership degrees can also express how ambiguously or definitely

a sample should belong to a cluster. The concept of fuzzy analysis has been

successfully integrated into many clustering algorithms [74–77]. One of the

most widely used fuzzy clustering algorithms is discussed next.

FCM algorithm

The FCM algorithm was initially presented by Dunn [78] and completed by

Bezdek [39]. The FCM partitions the collection of n sample xi, i = 1, ..., n into

c fuzzy clusters and finds a set of cluster centers. The FCM executes iteratively

until the difference in the cluster centers of previous and the current iteration

is less than the defined termination criteria (ε
′
) [73]. The aim is to minimize

an objective function of dissimilarity measure. In FCM, the membership degree

uij can take any values between 0 and 1. The objective function of FCM can be

formulated as follows:

Jm(U, V
′
) =

n∑
i=1

c∑
j=1

(uij)
m‖xi − v

′

j‖2 (2.14)

The FCM algorithm is based on the iterative optimization of objective function

given in Eq. (2.14) by updating the membership matrix U and cluster centers

to get a set of final cluster centers V
′
. The parameters related to FCM are

presented in Table 2.2. Algorithm 2.2, presents the steps of FCM algorithm.

Algorithm 2.2 Algorithm for FCM to Iteratively Minimize Jm(U, V
′
)

1: Input: X, V , c, m, ε
′

2: Output: U, V
′

3: Begin
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Algorithm 2.2 (Continued)

4: Randomly initialize cluster centers V = {v1, v2.., vc}.
5: Compute the cluster membership matrix U .

uij =
‖ xi − vj ‖

−2
m−1∑c

k=1 ‖ xi − vk ‖
−2

m−1

,∀i, j (2.15)

6: Check the constraint
c∑
j=1

uij = 1 (2.16)

7: Compute the cluster centers v
′
j for j = 1, 2, .., c.

v
′

j =

∑n
i=1[uij]

mxi∑n
i=1[uij]

m
,∀j ∈ [1, c] (2.17)

8: If improvement in Jm(U, V
′
) is less than ε or if ‖ V ′ − V ‖< ε

′
, then

stop; Else : V = V ′ and go to Line 5.
9: Return U, V

′

10: End

The fuzzifier parameter (m) controls the degree of fuzziness of every sample

between the fuzzy clusters and reflects the partition percentages of every sample

in each cluster, and it drastically affects the clustering results. However, there

are some parameters in the FCM which needs to be initialized properly because

it may affect the performance of the algorithm.

2.3.1 About Fuzzifier Parameter

One of the most important parameters in FCM is the fuzzifier denoted by m.

It is also called as weighting exponent and has a significant impact on the per-

formance of FCM. The FCM is sensitive to the initialization of m and usually

gets trapped in local optima due to improper selection of m. When m is se-

Table 2.2: Parameters Specification for FCM.

Parameters Description Values

ε Termination criteria 0.001 [39]
m Weighting exponent m ∈ [1.5, 2.5] [79]
cmin Minimum number of clusters 2
cmax Maximum number of clusters

√
n [80]

n Number of data samples Size of dataset
c Number of clusters c ∈ [cmin, cmax] [81]
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lected close to one, the FCM approaches the crisp clustering algorithm and if m

approach infinity, then the only solution for the FCM is the mass center of the

dataset. Hence, choosing a suitable weighting exponent is a very challenging

task when implementing FCM. However, different methods have been adopted

by the researchers to select an appropriate value of fuzzifier for the execution of

FCM.

Pal and Bezdek [79] have given heuristic guideline regarding best choice of

m, they consider various cluster validity index to analyze the best choice of

the fuzzifier. On the basis of experimental evaluation, they found that suitable

value for m is selected in the range of [1.5, 2.5]. Similar recommendations have

been given by other researchers [82, 83], but these recommendations are based

on empirical studies and may not be appropriate in general for all the datasets.

Yu et al. [84] developed a new theoretical and practical approach for selecting

the fuzzifier parameter in FCM. In this approach, a new local optimality test of

solutions for the FCM is proposed. Based on this test, one obtains theoretical

rules for selecting the fuzzifier parameter in FCM, which show that a proper

m depends on the dataset itself. However, theoretical analysis and numerical

experimental results show that m = 2 is not a reasonable heuristic guideline.

On the basis of robust analysis of FCM, Wu [85] proposed a new guideline

for selecting parameter m. This guideline suggested that a large value of m

makes FCM more robust to noise and outliers. However, considerably large

m values that are greater than theoretical upper bound makes sample mean a

unique optimizer. In the case of large theoretical upper bound, when a dataset

contains noise and outliers, the fuzzifier m = 4 is recommended for FCM.

2.3.2 Deciding Initial Cluster Centroids

In FCM, one more parameter needs to be initialized, i.e., cluster centroids in

addition to m, which significantly affects clustering results. Choosing the ini-

tial cluster centroids is extremely important as it has a direct impact on the

formation of final clusters. The major problem with FCM is that it is sensitive

to initialization cluster centroids. The random selection of initial cluster cen-

troids does not guarantee unique clustering results. This makes FCM algorithm

to converge at local optimal solutions. Many methods have been proposed by
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the researchers [86–89] that automatically determine the number of clusters and

locations of cluster centroids. However, they do not provide good generalization

capabilities in obtaining appropriate centroids [86].

Thus, there is no exact method available for the selection of the optimal

global solution of fuzzifier and initial cluster centers. Based on the concept of

fuzzy clustering we proposed two algorithms, i.e., Q-FNN for solving two class

classification problem and the Q-FNNM for solving multi-class classification

problem. In these algorithms, the neural network is formed using the fuzzy

clustering in which parameters are optimized using the quantum computing

concept.

2.4 Deep Neural Network

Neural network learning techniques have been widely applied in a variety of

areas such as pattern recognition, natural language processing, and computa-

tional learning. During the past decades, machine learning brings enormous

influence on our daily life. Nevertheless, when it comes to the human infor-

mation processing mechanisms (e.g., speech and vision), the performance of

traditional machine learning techniques is far from satisfactory. For example,

gradient descent algorithm which has played an important role in ANNs since

last 3-4 decade. However, due to improper initialization of its parameters it

does not perform well and get trapped in the problem of local optima

Although the training accuracy is high of this, but the performance of the

gradient descent algorithm when applied to the testing data might not be sat-

isfactory because, with random initialization of its parameters, the algorithm

often gets trapped in local optima.

These learning algorithms are used to form neural network architectures with

one hidden layer as well as with multiple hidden layers. The scientific research

has shown that multilayered architectures trained using unsuitable learning al-

gorithms performed poorly [7,90]. The single layer neural network architecture,

unable to solve such problem. Also increasing the number of layers in multilay-

ered architecture degrade the performance.

Inspired by deep hierarchical structures of human speech perception and

production systems, the concept of deep learning algorithms was introduced [7].
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Deep neural networks do not necessarily have multiple hidden layers; here deep

word shows that this concept is introduced by deeply analyzing several existing

neural network models [91]. Larochelle et al. (2007), Vincent et al. (2008),

and Kim et al. (2015), have proposed deep neural network with few numbers

of hidden layers [26–28]. Breakthroughs in deep learning have been achieved

since 2006 when Hinton proposed a novel deep structured learning architecture

[92]. In this, he gives a basic idea of the layer-wise-greedy-learning is that

unsupervised learning should be performed for network pre-training before the

subsequent layer-by-layer training. By extracting features from the inputs, the

data dimension is reduced, and a compact representation is hence obtained.

Then, export the features to the next layer, after that all the samples will be

labeled, and the network will be fine-tuned with the labeled data. However, to

deal with a complex dataset like image dataset, the dimensions of a dataset is

an important issue. The dimension of a input data set plays an important role

in the classification.

To deal with such dataset auto-encoder is proposed which can efficiently

handle the datasets which requires dimensional reduction for better classification

accuracy [7, 40, 93,94].

The deep neural network using stacked auto-encoder performs well, but

proper selection of learning parameters is required for good performance. The

deep neural network using stacked auto-encoder uses gradient descent algorithm

as learning algorithm [28,40]. In the gradient descent algorithm, parameters are

like learning rate parameter is initialized randomly. If the appropriate selection

of this parameter is not done, then the problem of over-fitting or under-fitting

may occurs and sometime with no convergence . It may also happen that algo-

rithm may provide good training accuracy, but bad testing accuracy. Without

proper selection of this parameter, the machine learning algorithms give the re-

sult with poor generalization accuracy [95,96]. In this thesis the auto-encoder is

enhanced by evolving its learning rate parameter using the quantum computing

concept. Hence, the framework of auto-encoder is discussed below:

The auto-encoder neural network is an unsupervised learning algorithm [97,

98]. In this algorithm, dimensions of the target output are equal to the dimen-

sions of the input dataset. Assuming Y is output, then it must be equal to

the input X (Yi = Xi). The number of hidden layer neurons is lesser than the
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number of input layer neurons. Therefore, auto-encoders are theorized to learn

a better feature representation of data. The auto-encoder consists of two parts,

i.e., the encoder part and the decoder part.

The encoder part maps Z from X as follows:

φ : X 7→ Z (2.18)

The decoder part maps Y from Z as follows:

ψ : Z 7→ Y (2.19)

To minimize the objective function (||X − (φoψ)Y ||2)

arg min||X − (φoψ)Y ||2) (2.20)

Mathematically, a n-p-n auto-encoder is given by the encoder; which takes a

X ∈ Rn as input and encodes it into a Z ∈ Rp, where n is the number of

neurons in the input and output layer and p is the numbers of neurons in the

hidden layer.

Z = σ1(WX + b) (2.21)

Whereas the decoder part expands the compressed representation back into

a Y ∈ Rn and can be written as follows.

Y = σ2(W
′Z + b′) (2.22)

The auto-encoder tries to minimize the Mean Squared Error (MSE) of re-

construction of the input given by Eq. (2.20) and can be written as follows.

L(X ,Y) = ||X − Y ||2 = ||X − σ2(W ′(σ1(WX + b) + b′))||2 (2.23)

There are various ways to train the auto-encoder, one of such algorithms is

discussed below.
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Training of an Auto-encoder

A simple n-p-n auto-encoder can be thought of as a multilayer Perceptron

with a single hidden layer and therefore can be trained using gradient de-

scent/Backpropagation learning algorithm. Mathematically, weights connecting

neuron i to j are updated using the following equation.

W ij(t+ 1) = W ij(t)− η ∗
∂E

∂W ij

(2.24)

where W ij(t) is the connection weight between the ith node to the jth hidden

layer neuron at iteration t. Here, E shows the error or difference between the

expected output and original output. The learning rate parameter is represented

as η which is chosen on a trial basis between 0 and 1 for the learning of neural

network. In general, the value of the learning rate parameter chosen once at

the beginning of execution is fixed throughout the execution of the process.

Choosing the learning rate parameter in this way may lead to the local minima.

Thus, there is a need to design some mechanism for assuming the appropriate

setting of these parameters.

Pre-Training

To avoid local optimal solutions in deep neural networks, layer-wise pre-training

is done [99]. The unsupervised pre-training helps to overcome the challenges of

deep learning. The unsupervised pre-training gives a region of parameter space

in which not only training error is better, but also testing error is reduced.

It involves the training of each auto-encoder individually. Deep architectures

contain similar units stacked on top of each other, this is known as vertical

composition. A stacked auto-encoder consists of auto-encoders stacked on top

of each other and trained in a greedy layer-wise manner. Then it is fine-tuned

for classification which is given next [97].

Fine-Tuning

The fine-tuning process is also called as supervised learning in the deep neural

network. As discussed above, the fine-tuning process is done when all the hidden

layers are finalized using the unsupervised (pre-training) process. These auto-
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encoders are connected in the bottom-up fashion, and the top hidden layer is

connected to an output layer which represents class information. Thus, fixing the

weights (evolved during pre-training) of all layers by adding auto-encoders in the

bottom-up fashion and then initialize connection weights from the last hidden

layer to the output layer [100]. This brings neural network architecture in the

vicinity of global optima, but before finally adding a classifier layer on the top

which acts as the output layer, fine-tuning of the entire network is required using

the Backpropagation. In this thesis the auto-encoder is enhanced by evolving its

learning rate parameter using the quantum computing concept and it is named

as Q-DNN. The Q-DNN proposed here follows the steps of pre-training and fine-

tuning. Also, along with this, the optimized selection of learning rate parameter

is done using the quantum computing concept.

Till now the reviewed literature is presenting the concepts and preliminaries

which are used to design novel quantum inspired learning algorithms. One of

such novel learning algorithm NQ-BNN is further enhanced to apply on a real

life problem of signature verification. Hence, a primer on signature verification

is discussed next.

2.5 Offline Signature Verification

The offline signature has been an ancient biometric hallmark for authenticating

individuals and documents. Scientists and researchers have worked for many

years in the field of offline signature verification. Several methods and technolo-

gies have been proposed in this area, and some of them include elastic match-

ing [101], synthetic discriminant functions [102], and grid features [103]. Other

new methods have been proposed, such as geometric measure-based approaches,

grid-based approaches, techniques based on granulometric size distributions,

neural classifiers, and dynamic time warping [104,105]. Some researchers worked

on finding appropriate features of a signature. Ferrer et al. [106] proposed a

technique in which grayscale features such as local binary pattern and local

directional pattern are analyzed.

Finding appropriate static features from a signature image is still an open

area of research. With the advancement of technology, the extraction of features

opens a new dimension of research. Finding appropriate static features from
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Figure 2.1: Conversion from RGB to Black and White.

a signature image is still an open area of research. Moreover, the efficiency

of matching two signature images is an important parameter in any signature

verification technique.

To extract features of any offline signature, there is a requirement of bringing

all on the same scale. The document consists of the signatures may be of

different color, noise, variation in the signatures width due to variation in the

pen. Therefore, to get images on the same scale, we pre-process all images. The

following steps are followed for the pre-processing of the signature image.

Conversion from RGB to Black and White

To pre-process the signature image first its color is made uniform. Therefore,

each signature image of the different color is firstly converted into a black and

white image as shown in Figure 2.1.

Noise Removal

The noise removal process is performed after converting all images uniformly,

i.e., in the black and white color. The signature images have noise due to the two

main sources: first, the background of paper on which the signature is taken and

Second, the noise arises while scanning the paper having signatures as shown

in Figure 2.2. This noise will hinder the training and testing of signatures and

hence must be removed.

Thinning

A signature impression may be made with pens of varying tips. However, the

difference in tip size shouldn’t be a factor to distinguish signatures. The thick-

ness of every stroke in a signature is reduced to a width of a single pixel as

shown in Figure 2.3.
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Figure 2.2: Noise Removal of Signature.

Figure 2.3: Thinning of Signature.

2.6 Performance Evaluation

The proposed quantum inspired neural network learning algorithms is tested

on several benchmarks datasets which are presented in detail in appendix A.

To judge its performance proposed algorithms, these are compared with several

state-of-the-arts approaches on different measures which is discussed next:

2.6.1 Two Class Dataset Evaluation

To compare and evaluate the performance of the proposed system, classification

accuracy alone is not an adequate measure, some more appropriate performance

measures are used here that compares predicted value to true labels. We consider

here classification accuracy, sensitivity, specificity, and confusion matrix. The

formulations of these measures are defined as follows:

Accuracy

It measures the proportion of correctly classified samples.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100 (2.25)
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Sensitivity

It measures the fraction of positive data that are classified as positive.

Sensitivity =
TP

TP + FN
× 100 (2.26)

Specificity

It measures the fraction of negative data classified as negative.

Specificity =
TN

TN + FP
× 100 (2.27)

where, TP, TN, FP and FN denote True positive, True negative, False pos-

itive and False negative.

• True Positive (TP): It denotes the correct classification of positive data.

• True Negative (TN): It denotes the correct classification of negative data.

• False Positive (FP): It denotes the incorrect classification of positive data

that are classified as negative.

• False Negative (FN): It denotes the incorrect classification of negative data

that are classified as positive.

Confusion Matrix

A confusion matrix is a table describing the performance of a classifier on a set

of test data in terms of actual and predicted classification. The performance of

a classifier is commonly evaluated using the data in the matrix. The confusion

matrix for the two class problem is given in Table 2.3.

Table 2.3: Confusion Matrix for Two Class Dataset.

Predicted Negative Predicted Positive

Actual negative True Negative (TN) False Positive (FP)

Actual positive False Negative (FN) True Positive (TP)
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2.6.2 Multi-class Dataset Evaluation

The parameters used for evaluating the performance of a algorithm are computed

with the help of the confusion matrix. This matrix contains information about

actual and predicted classification performed by the classifier [107].

The confusion matrix evolves around four simple concepts. The confusion

matrix for the multi-class problem is given in Table 2.4.

1. True Positive(tp): It denotes the correct classification of positive data of

the class. In the case of multi-class classification problem, the diagonal

element of the matrix represents the true positive for each class.

2. True Negative(tn): It denotes the correct classification of negative data of

the class. In the case of multi-class classification problem, true negative

for a particular Ath class is evaluated as follows:

tnA = εBC + εCB + tpB + tpC

3. False Positive(fp): It denotes the incorrect classification of negative data

of class that is classified as positive. The parameter in case of multi-class

classification problem is evaluated for a particular Ath class is defined as

follows:

fpA = εBA + εCA

4. False Negative(fn): It denotes the incorrect classification of positive data

of class that is classified as negative. In case of multi-class classification

problem, false negative for a particular Ath class is evaluated as follows:

fnA = εAB + εAC

Table 2.4: Confusion Matrix for Multi-Class Dataset.

Predicted

A B C

A
ct

u
al A tpA εAB εAC

B εBA tpB εBC

C εCA εCB tpC
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The parameters used to compare the performance of an algorithm are described

henceforth with the use of following parameter:

Average Accuracy:

It is used to measure the ability of the classifier to produce an accurate diagnosis.

AverageAccuracy =
1

n

n∑
i=1

tpi + tni
tpi + tni + fpi + fni

(2.28)

Error Rate

It is defined as the average ratio of false classification of each class to the total

number of data in each class.

ErrorRate =
1

n

n∑
i=1

fpi + fni
tpi + tni + fpi + fni

(2.29)

Precision/Positive Predicted Value(PPV):

It is the ratio of the times when a data sample is correctly predicted to the

number of times a data sample is predicted to be true.

PPVM =
1

n

n∑
i=1

tpi
tpi + fpi

(2.30)

PPVµ =

∑n
i=1 tpi∑n

i=1(tpi + fpi)
(2.31)

Recall/Sensitivity

It is the percentage of the time when a data sample is predicted to be true when

a data sample is actually true.

RecallM =
1

n

n∑
i=1

tpi
tpi + fni

(2.32)

Recallµ =

∑n
i=1 tpi∑n

i=1(tpi + fni)
(2.33)
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Specificity

It specifies the number of times when the a data sample is predicted to be false

and is actually false.

SpecificityM =
1

n

n∑
i=1

tni
fpi + tni

(2.34)

Specificityµ =

∑n
i=1 tni∑n

i=1(fpi + tni)
(2.35)

Negative Predicted Value(NPV)

It is the ratio of the number of times a data sample is predicted to be false to

the number of times a data sample is predicted to be false.

NPVM =
1

n

n∑
i=1

tni
tni + fni

(2.36)

NPVµ =

∑n
i=1 tni∑n

i=1(tni + fni)
(2.37)

F-score

It can be interpreted as a weighted mean of precision and sensitivity. It reaches

its best value at 1 and worst at 0.

F − scoreM =
(β2 + 1)× PPVM ×RecallM
β2 × (PPVM +RecallM)

(2.38)

F − scoreµ =
(β2 + 1)× PPVµ ×Recallµ
β2 × (PPVµ +Recallµ)

(2.39)
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Chapter 3

Quantum inspired Binary Neural

Network Learning Algorithm

3.1 Introduction

ANNs have been successfully applied to problems in pattern classification, pat-

tern matching, associative memories, optimization, and function approxima-

tion [10, 11, 108]. To solve the problem from various fields like mathematics,

economics, computer science, and many more, several architectures have been

proposed like Perceptron, Backpropagation, and RNN. The performance of the

neural network in the mentioned areas mainly depends upon parameters like

network architecture, connection weights, and the threshold of neurons [12–15].

Deciding connection weights and threshold in an optimized manner is a chal-

lenging task.

The search of optimal connection weights is known to be a complex, non-

differentiable, and multi-modal optimization problem. Therefore, in this chapter

to solve the problem of finding the optimal connection weights of neural network

we propose a algorithm which is named as Quantum inspired Binary Neural Net-

work Learning Algorithm (Q-BNN). It forms three layer network structure and

works for two class problem. The proposed method makes use of evolution-

ary quantum computing concept for evolving optimal connection weights and

threshold of neurons is decided manually. Deciding threshold of neurons man-

ually may leads an algorithm to the problem of local maxima. Therefore, to

solve this problem, we enhanced our proposed Q-BNN algorithm and proposed
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a Novel Quantum inspired Binary Neural Network Algorithm (NQ-BNN). It also

forms a three layers neural network architecture and works for two class classi-

fication problem. The basic architecture of Q-BNN and NQ-BNN is shown in

Figure 3.1. In the proposed approach for finding the optimal value of threshold

a new parameter, i.e., a quantum separability parameter is introduced.

3.2 Proposed Quantum inspired Binary Neural

Network Learning Algorithms

In the proposed Q-BNN we make use of the quantum computing concept to

find the connection weights of the neural network and its architecture is formed

constructively by adding the hidden layer neuron one by one. The quantum

computing concept has been used in the form of the QEA. In the Q-BNN algo-

rithm, we formed a three layers neural network for solving two class classification

problems. The connection weights of the neurons are evolved using the quantum

computing concept. First, we add one neuron in the hidden layer and initialize

its connection weights W quant
i in terms of a quantum bit. Then we apply the

observation process as discussed in Sections 2.2, using which we get proper ex-

ploration and connection weight W real
i in terms of real values. We have also used

here the step activation function as the threshold. Here, sum∗ and sumg are

the objective function value which depends on parameters conut1 and count2
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Figure 3.1: Architecture of Q-BNN and NQ-BNN.
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showing the number of learned sample. To evolve optimal connection weights

in serval generation, we use the quantum update function as discussed in Sec-

tions 2.2. If all samples do not learned using one hidden layer neuron, then we

add another hidden layer neuron for the unlearned sample and apply the same

process of learning. However, here for the learning of neuron, the threshold is

decided manually using input sample and connection weights. Therefore, there

is a chance to get trapped in the problem of local maxima.

To overcome this issue, we proposed an enhanced version of proposed the Q-

BNN algorithm and named as Novel Quantum inspired Binary Neural Network

Algorithm (NQ-BNN). In this algorithm, along with connection weights W quant
i

of the neural network the threshold λquanti of neurons is also evolved using the

quantum computing concept. The neural network architecture is formed con-

structively. To find the threshold of neurons optimally, we proposed a quantum

separability parameter. In this algorithm, we use objective functions as sum∗

and sumg for connection weights, and sum∗λ and sumt are used for the threshold

of the neurons. Here, g is the number of generations taken for evolving connec-

tion weights and t is the number of generations taken for evolving the threshold

of neurons using the quantum separability parameter. In this algorithm, the

connection weights are evolved in generations g=1:100. During each generation

of evolution of connection weights, the threshold of neurons is evolved in genera-

tions t=1:100. Here, to get exploration for evolving connection weights and the

threshold we use the observation process. To get exploitation, we use quantum

rotation gate which updates the qubits of connection weights and the thresh-

old using the fitness function sum∗, sumg, sum
∗
λ, and sumt, respectively. The

details of proposed algorithms with initialization of parameters are presented

next.

3.2.1 Representation of Connection Weights and Thresh-

old in Terms of qubits

In this section, we have used an evolutionary principle of quantum computing to

represent connection weights and threshold of the neurons. The preliminaries

related to quantum computing concept are already discussed in Sections 2.2.

Here, X=(X1, X2, X3, ...., Xc1) and Y=(Y1, Y2, Y3, ...., Yc2) denotes the instance
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of input samples of two different classes. Let, Xi and Yi are one of the instances

of class A and class B, respectively. Each instance of Xi= (x1, x2, x3, ...., xn)

and Yi = (y1, y2, y3, ...., yn) have n attributes. As each instance has n attributes,

therefore input nodes will be equal to n. For ith hidden layer neuron, connection

weights for generation g are denoted as follows:

(W real
i )g = ((W real

i1 )g, (W real
i2 )g, (W real

i3 )g, ...., (W real
in )g) (3.1)

The weight matrix corresponding to Eq. (3.1) of ith hidden layer neuron in

the form of quantum bits Qg can be represented as:

(W quant
i )g = (Qg

i1, Q
g
i2, Q

g
i3, ......, Q

g
in); (3.2)

The quantum bit (Qg
i ) can be represented by several qubits (qgij).

Qg
i = (qgi1|q

g
i2|......|q

g
ik) (3.3)

Here, the k number of qubits represents a quantum bit (Qg
i ). A single qubit

(qgij) where j=1,2.....k, is the smallest unit for representing information.

In the proposed learning algorithms, we make use of the step function as an

activation function for forming the neuron which is given as follows.

neti =
n∑
i=1

W real
i ×Xi (3.4)

f(neti) =


1 if netj ≤ λreali

0 if neti > λreali

(3.5)

The threshold of the neurons is a crucial parameter for learning. The random

selection of the value of this parameter may lead the solution to the problem of

local maxima. Therefore, we evolved threshold of neurons using the quantum

computing concept. The threshold of neurons is initialized in terms of qubits

for generation t as follow:

(λquanti )t = (αti | αti+1); (3.6)
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We only use quantum threshold in NQ-BNN algorithm (λquanti )t, the thresh-

old in Q-BNN is decided manually.

It is required that a quantum bit of (W quant
i )g and (λquanti )t has to be con-

verted into a real coded value. This conversion is carried out with the help

of observation process discussed in Section 2.2, that helps to achieving explo-

ration [11].

The connection weights and the threshold of neurons with real coded value

are represented as (W real
i )g and the threshold (λreali )t, and their corresponding

quantum weights and quantum thresholds are represented as (W quant
i )g and

(λquanti )t, respectively.

The real coded values of connection weights (W real
i )g are used in both the

algorithms, i.e., Q-BNN and NQ-BNN. On the other hand, the real coded value

of threshold (λreali )t is used only in NQ-BNN. However, the real coded value

generated in the first generation may or may not be optimal. Therefore, we

need to find the optimal value of it by updating qubits of connection weights and

threshold of neurons in several generations. The qubits are updated using the

quantum update process discussed in Section 2.2, which provides exploitation.

It is used to generate (W quant
i )g+1 from (W quant

i )g and (λquanti )t+1 from (λquanti )t.

It forces qubit to update in such direction so that it leads to optimal results.

The quantum update process required objective function therefore we are only

presenting here quantum bit update Table 3.1, according to objective functions

of Q-BNN and NQ-BNN.

3.2.2 Quantum inspired Binary Neural Network Learn-

ing Algorithm

In this section, Q-BNN algorithm is discussed. This algorithm makes use of

the evolutionary quantum computing concept for constructing the neural net-

work. It forms a three layers network structure consists of input, hidden, and

an output layer. Here, X=(X1, X2, X3, ...., Xc1) and Y=(Y1, Y2, Y3, ...., Yc2) de-

notes the instance of input samples of two different classes. Let, Xi and Yi

are one of the instances of class A and class B, respectively. Each instance of

Xi= (x1, x2, x3, ...., xn) and Yi = (y1, y2, y3, ...., yn) have n attributes. As each

instance has n attributes, therefore input nodes will be equal to n. The number
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Table 3.1: Qubits Update for Q-BNN and NQ-BNN.

sgij s∗ij sumg < sum∗ ∆θ
sumt < sum∗λ

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0
1 0 true 0.03 ∗ Π
1 1 false 0
1 1 true 0

of neurons in the hidden layer are decided constructively. The proposed system

deals with two class problem therefore only one neuron required at the output

layer.

Training starts by firstly taking a single neuron in the hidden layer. The

weights of this neuron are initialized as (W quant
i )g = (Qg

i1, Q
g
i2, Q

g
i3,......,Q

g
in),

where Q1
i = (q1i1|q1i2) with k=2 and g=1. Here k is a subspace selection of

weights, and g (user-defined variable) is the maximum number of generations

to update quantum weights to get an optimized result. After initialization of

quantum bits, we apply the observation process discussed in Section 2.2, to get

a real coded value of connection weights (W real
i )g. Then whole samples of class

A and class B is applied to the neuron along with weight (W real
i )g. Thus, after

finalizing a neuron, it is checked against samples of both the classes A and B.

We make use of the step activation function where f(neti) is compared with

threshold λ which is defined manually.

Here, two parameters count1 and count2 have been taken, which describe the

number of learned samples of class A and B, respectively. The local objective

function is taken as sumg, and the global objective function is taken as sum∗. To

update the qubits of connection weights we make use of these objective function

and their binary bits as shown in Table 3.1. The best fitness is selected as

follows.

sum∗ = max(sum∗, sumg) (3.7)

The overall process of Q-BNN in the form of Algorithm 3.1 is presented next.
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Algorithm 3.1 Algorithm for Q-BNN.

1: Take the input samples as (X1, X2, X3, ...., Xc1) and (Y1, Y2, Y3, ...., Yc2).
2: Take the first neuron in the hidden layer and initialize it with the weights
W quant
g in terms of quantum bits as follows:

(W quant
i )g = (Qg

i1, Q
g
i2, Q

g
i3, ......, Q

g
in) (3.8)

3: where g = 1, ...,m; m is the number of generations to update weights.
4: sum∗ = 0
5: S∗ = 0
6: for g=1 to m
7: Call observation process (W quant

i )g

8: for i=1 to c1
9: netA(i) =

∑
(W real

i )g ×Xi

10: if(netA(i) > λ)
11: increase count1 by 1;
12: endif
13: endfor
14: for j=1 to c2
15: netB(j) =

∑
(W quant

i )g × Yj
16: if(netB(j) ≤ λ)
17: increase count2 by 1;
18: endif
19: endfor
20: (sumg = count1 + count2);
21: if(sumg ≥ (c1 + c2) )
22: Stop learning.
23: else
24: sum∗=max(sum∗, sumg)
25: Evaluate sumg, sum

∗, binary bits and update quantum bits to evolved
the quantum weight (W quant

i )g+1 using the Table 3.1.
26: endif
27: g=g+1
28: endfor
29: if ((g == m) ∧ (sumg ≤ (c1 + c2) ))
30: Add new neuron for unlearned samples ((c1 + c2)-sum

∗) and finalize its
weights by using the Step-1 to Step-28.

31: endif

In the above-discussed Q-BNN algorithm the threshold is decided manually.

Finding the threshold by using such formulation does not guarantee for optimal

result. Therefore to overcome the drawback of Q-BNN, an enhanced NQ-BNN

algorithm is proposed which is discussed next.
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3.2.3 Novel Quantum inspired Binary Neural Network

Learning Algorithm

In the proposed NQ-BNN algorithm we apply the evolutionary quantum com-

puting concept to evolve two parameters of the neural network, i.e., connection

weights and threshold. In this algorithm, we introduce novel quantum separa-

bility parameter (λquanti )t for evolving optimal value of threshold of neurons. We

initialize it in terms of qubits as represented in Eq. (3.6). After initialization

of quantum bits for quantum separability parameter (λquanti )t, the observation

process is used as discussed in Section 2.2, to achieve exploration and the real

coded value of separability parameter (λreali )t. The real coded value of separabil-

ity parameter (λreali )t is compared with netA corresponding to class A and netB

corresponding to class B at g = 1 to find out the optimal separability plane

between two classes. In this algorithm, the connection weights (W quant
i )g are

evolved in generations g=1:100. During each generation of evolution of connec-

tion weights, the quantum separability parameter (λquanti )t of neurons is evolved

in generations t=1:100. After completion all generations to update quantum

separability parameter t, the best value of (λreali )t is selected corresponding to

the best value of the objective function. Now, quantum weights are updated

for generation g = 2 and again the same process is implemented to find out the

best value of (λreali )t in all generations of t. The process will continue for the

generations g to find out the best value of weights (W real
i )g and quantum separa-

bility parameter (λreali )t. To update quantum weights, (W quant
i )g and quantum

separability parameter (λquanti )t quantum update Table 3.1 is used.

The NQ-BNN is designed to solve two class classification problem using the

quantum computing concept. In this algorithm, some necessary parameters have

been used, which are Xi and Yj as the input samples of class A and class B,

respectively. Two values count1 and count2 have been taken, which describe

the number of samples of class A and B that are learned. Here, to update

connection weights, the objective functions are taken as sumg and sum∗. The

sumg is the objective function corresponding to weight update process in each

generation, whereas, sum∗ the best objective function for all the generations

(g=1 to the current generation). To update quantum separability parameter,

the objective function are sum∗λ and sumt. The sumt is the objective function
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of the current generation (t) whereas, sum∗λ is the best objective function to

update the separability parameter in all the generations of t (generation t=1 to

the current generation). The overall process of NQ-BNN in the form of Algo-

rithm 3.2 is presented next.

Algorithm 3.2 Algorithm for NQ-BNN.

1: Take input samples as (X1, X2, X3, ...., Xc1) and (Y1, Y2, Y3, ...., Yc2).
2: Take the first neuron at hidden layer and initialize it with the weights W quant

g

in terms of quantum bits as follows:

(W quant
i )g = (Qg

i1, Q
g
i2, Q

g
i3, ......, Q

g
in) (3.9)

3: where g = 1, ...,m; m is the number of generations to update weights.
4: sum∗ = 0
5: S∗ = 0
6: for g=1 to m
7: Call observation process (W quant

i )g.
8: Call Quantum Separability Parameter (W real

i )g.
9: sum∗=max(sum∗, sumg).

10: if(sum∗ ≥ (c1 + c2) )
11: Stop learning.
12: else
13: Evaluate sumg, sum

∗, sg,ik , s∗,ik and update quantum bits to evolve
the quantum weight (W real

i )g+1 by using (sumg, sum
∗), and

14: Table 3.1 for the same neuron.
15: endif
16: g=g+1
17: endfor
18: if ((g == m) ∧ (sum∗ ≤ (c1 + c2) ))
19: Add new neuron for unlearned sample ((c1 + c2)-sum

∗) and finalize its
weight by using the Step-1 to Step-16.

20: endif

Quantum Separability Parameter (W real
i )g.

Step-1 : Initialization of different parameters.

for t=1 to z

z is generation to update (λquanti )t

(λquanti )t = (αti | αti+1);

count1=0;

count2=0;

sum∗λ = 0;

Call observation process (λquanti )t to generate real coded value
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(λreali )t

for i=1 to c1

netA(i) =
∑

(W real
i )g ×Xi

if(netA(i) > (λreali )t)

increase count1 by 1;

endif

endfor

for j=1 to c2

netB(j) =
∑

(W real
i )g × Yj

if(netB(j)(λreali )t)

increase count2 by 1;

endif

endfor

(sumt = count1 + count2);

sum∗λ=max(sum∗λ, sum
t)

update quantum bits for (λquanti )t+1 by using (sumt, sum∗λ),

quantum update Table 3.1, and observation discussed in

Section 2.2 to get real coded value it.

sumg=sum
∗
λ

t = t+ 1

endfor

return sumg;

3.3 Experimental Evaluation

The proposed algorithms Q-BNN and NQ-BNN are tested on benchmark dataset

like Breast Cancer dataset, Heart disease dataset, PIMA Indian diabetes dataset,

and BUPA liver dataset. To evaluate the performance of proposed Q-BNN

and NQ-BNN the comparison is made with other state-of-the-art approaches

[11,109–111].
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3.3.1 Datasets and Experimental Settings

The experiment is carried on Intel core, I-5 processor with 4 GB RAM on

Windows-7 operating system. The qubits of connection weights (W quant
i )g and

quantum separability parameter (λquanti )t are initialized as 0.707|0.707. The dis-

placement angle (∆θ) has been used as 0.03 ∗Π. During this update process to

ensure that qubit must not converge to “0” and “1” the limiting parameter ε

has been taken as 0.001. The maximum number of generations for g and t are

taken as 100.

3.3.2 Experimental Results and Discussion

In this section, first, the result and comparative analysis of the Q-BNN algorithm

is presented, and then we present the results and comparative analysis of the

NQ-BNN algorithm.

Results of Q-BNN algorithm

In this section, the performance of the Q-BNN algorithm is discussed on three

benchmark datasets like Breast Cancer dataset, PIMA Indian diabetes dataset,

and Heart disease dataset. The experiments are conducted using the 10-fold

cross-validation scheme.

Table 3.2, shows the classification results on Breast Cancer dataset. It is

observed that the best classification accuracy is achieved with set-4 and set-6 is

100%, and worst classification accuracy is achieved for set-7 is 99.254%.

Table 3.2, shows the classification results on PIMA Indian diabetes dataset.

It is observed that the best classification accuracy is achieved with set-3 which

is 97.91% and the worst classification accuracy is achieved with set-8 is 93.85%.

Table 3.2, shows the classification results on Heart disease dataset. It can

be observed from Table 3.2, that the best classification accuracy is achieved

for set-7, and set-9 is 92.64% and the worst classification accuracy achieved is

85.29% by set-1. In all the cases we see only few number of hidden layer neurons

are required.
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Comparative Result of Q-BNN Algorithm

The Q-BNN algorithm is compared with evolutionary quantum neural network

learning algorithm [11]. The comparison is made on the parameters like the

number of neurons in the hidden layer and testing accuracy. It can be observed

from the Table 3.3, that the proposed Q-BNN algorithm perform better in terms

of all parameters used for comparison. The constructive approach used here

helps to get better accuracy with few numbers of hidden layer neurons. The

number of neurons in the hidden layer to form a neural network architecture by

the Q-BNN is 2, 2, and 2 whereas the number of neurons in the hidden layer

required by the QNN algorithm is 12, 3, and 2 for the Breast Cancer, PIMA

Indian Diabetes Dataset, and Heart disease dataset, respectively.

It is observed that in case of Breast Cancer dataset, number of hidden layer

neurons are drastically reduced. The Q-BNN algorithm achieves better clas-

sification accuracy with respect to the QNN algorithm. The classification ac-

curacy for the Breast Cancer dataset obtained by the Q-BNN algorithm and

QNN algorithm is 99.63% and 99.59%, respectively. The classification accu-

racy for PIMA Indian Diabetes dataset obtained by the Q-BNN and the QNN

algorithm is 85.6% and 76%, respectively. For the Heart disease dataset, the Q-

BNN achieves 92.65 %, and the QNN achieves 79.41% classification accuracy. It

can be observed that Q-BNN in all tested datasets achieves better classification

accuracy with respect to QNN.

46



C
H

A
P

T
E

R
3.

Q
U

A
N

T
U

M
IN

S
P

IR
E

D
B

IN
A

R
Y

N
E

U
R

A
L

N
E

T
W

O
R

K
L

E
A

R
N

IN
G

A
L

G
O

R
IT

H
M

Table 3.2: Classification Accuracy and Number of Hidden Layer Neurons.

Breast Cancer Dataset PIMA Indian Diabetes Dataset Heart Disease Dataset

Classification Number of hidden Classification Number of hidden Classification Number of hidden

Accuracy (%) layer neurons Accuracy (%) layer neurons Accuracy (%) layer neurons

set-1 99.325 2 96.354 2 85.294 2

set-2 99.895 2 96.547 2 89.705 2

set-3 99.473 2 97.916 2 91.176 2

set-4 100 2 96.352 2 88.235 2

set-5 99.985 2 96.625 2 89.705 2

set-6 100 2 95.312 2 88.235 2

set-7 99.254 2 96.875 2 92.647 2

set-8 99.524 2 93.857 2 89.705 2

set-9 99.521 2 95.521 2 92.647 2

set-10 98.375 2 94.257 2 91.176 2
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Table 3.3: Comparison of Q-BNN with QNN in Terms of Classification Accuracy.

Comparison for Breast Comparison for Comparison for

Cancer Dataset PIMA Indian Diabetes Dataset Heart Disease Dataset

Parameter QNN Q-BNN QNN Q-BNN QNN Q-BNN

Number of neurons 12 2 3 2 2 2

at hidden layer

Classification Accuracy 99.59% 99.63% 76.00% 85.60% 79.41% 92.65%

Result of NQ-BNN Algorithm

In this section, we discussed the performance of NQ-BNN on three benchmark

datasets, Breast Cancer dataset, PIMA Indian Diabetes dataset, and BUPA liver

dataset. We also compare the proposed algorithm with the Q-BNN algorithm

along with other state-of-the-art approaches in terms of classification accuracy.

Classification of Breast Cancer Dataset

In this experiment, the dataset has been split into 10-folds. The training of neu-

ral network with Breast Cancer dataset produces best results with two numbers

of hidden layer neurons.

Table 3.4, shows the classification result in terms of various parameters as

classification accuracy, and the number of neurons in the hidden layer. As shown

in Table 3.4, the best classification accuracy is 99.95%, and worst classification

accuracy is 98.65%. Table 3.5, shows the comparison of the proposed NQ-BNN

with a novel discretization technique using the class attribute interval average

Table 3.4: Results of NQ-BNN for Breast Cancer Dataset.

Hidden layer neuron Classification Accuracy (%)

set-1 2 99.95
set-2 2 99.84
set-3 2 99.95
set-4 2 99.95
set-5 2 99.82
set-6 2 99.81
set-7 2 98.65
set-8 2 99.58
set-9 2 99.94
set-10 2 98.95

Average 99.65
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and the Q-BNN in terms of classification accuracy [109, 112]. Table 3.5, shows

that the proposed NQ-BNN achieves classification accuracy as 99.65%, which is

far better than other state-of-the-art approaches.

Classification of PIMA Indian Diabetes Dataset

For the training and the testing purpose, the dataset has been split into 10

fold. Table 3.6, shows the classification results in terms of various parameters

as classification accuracy, and the number of neurons in the hidden layer. The

best results are achieved with three numbers of hidden layer neurons. Table 3.6,

shows the best classification accuracy is 89.54%, and the worst classification ac-

curacy is 87.21% and the average classification accuracy is 88.28%. It is observed

that the proposed NQ-BNN produces good results in terms of training and clas-

sification accuracy. The proposed NQ-BNN is compared with MTiling-real al-

gorithm [110, 112]. Table 3.7, shows the classification accuracy as compared to

the MTiling-real algorithm. It is observed that it produces better results that

is 88.29%.

Classification of BUPA Liver Dataset

For the training and the testing purpose, the dataset has been split into 10

fold. The training of neural network formed for BUPA liver dataset produces

the best results with three numbers of hidden layer neurons. Table 3.8, shows

the classification accuracy and number of hidden layer neurons of the proposed

algorithm.

The best classification accuracy is achieved as 95.68%, and the worst clas-

sification accuracy is 93.47% and the average classification accuracy is 94.82%.

Table 3.9, shows the comparison of classification accuracy with other state-of-

the-art approaches [111, 113]. It is observed that the proposed NQ-BNN pro-

duces better results in terms of classification accuracy as 94.83% than other

state-of-the-art approaches mentioned in Table 3.9.
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Table 3.5: Comparison of Various Learning Algorithms with NQ-BNN on Breast Cancer Dataset in Terms of Classification Accuracy.

Classification Accuracy (%)

Methods MLP Classifier Naive Bayes Classifier Decision Tree Classifier Radial Basis Function Classifier

NQ-BNN* 99.65

Q-BNN* 99.63

EW 94.57 97.28 91.30 95.00

EF 94.71 96.28 90.80 95.00

ChiMerge 92.89 91.88 93.00 92.00

IEM 74.69 81.68 93.60 80.98

CAIM 93.56 93.99 93.80 93.42

CACC 95.14 95.28 94.10 94.85

CAIA 95.42 96.57 96.57 95.99
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Table 3.6: Results of NQ-BNN for PIMA Indian Diabetes.

Hidden layer neuron Classification Accuracy (%)

set-1 3 88.58
set-2 3 88.73
set-3 3 88.56
set-4 3 89.34
set-5 3 89.54
set-6 3 88.21
set-7 3 87.54
set-8 3 87.65
set-9 3 87.25
set-10 3 87.41

Average 88.28

Table 3.7: Comparison of Various Learning Algorithms with NQ-BNN on PIMA
Indian Diabetes Dataset in Terms of Classification Accuracy.

Methods Classification Accuracy (%)

NQ-BNN 88.29

Q-BNN 85.6

MTiling-real 80.6

MPyramid-real 80.3

Perceptron 80.9

Table 3.8: Results of NQ-BNN for BUPA Liver Dataset.

Hidden layer neuron Classification Accuracy (%)

set-1 3 95.34
set-2 3 95.24
set-3 3 95.24
set-4 3 95.68
set-5 3 94.62
set-6 3 94.78
set-7 3 94.25
set-8 3 95.21
set-9 3 94.36
set-10 3 93.47

Average 94.82
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Table 3.9: Comparison Of Various Learning Algorithms with NQ-BNN on BUPA
Liver Dataset in Terms of Classification Accuracy.

Classification Algorithm Accuracy (%)

NQ-BNN 94.83

QBNN-L 90.35

Logistic 67.39

Linear Logistic Regression 69.57

Gaussian Processes 73.91

Logistic Model Trees 68.12

Multilayer Perceptron 68.84

K-STAR 59.42

Rule Induction 64.49

SVM 69.23

Classification and Regression Trees 66.35

Discussion

Table 3.5, 3.7, and Table 3.9, shows the performance of the NQ-BNN algorithm.

The results show that the performance of NQ-BNN is better as compared to the

other state-of-the-art algorithms including the Q-BNN. The results are bet-

ter due to the three main reasons. First, selection of connection weights and

threshold using the evolutionary quantum computing concept. The quantum

computing concept is characterized by population dynamics, individual repre-

sentation, evaluation function. The observation process gives exploration by

proving a large search space to find the optimal value of parameters. The quan-

tum rotation gate provides exploitation to avoid the algorithm to stuck in the

problem of local minima and maxima. Second, due to the constructive forma-

tion of network architecture. The constructive formation of neural network help

to avoid adding of hidden layer neurons unnecessarily thus, good results are

achieved with few numbers of neurons. There is also the possibility to get more

neurons at the hidden layer which is not required actually to solve the problem.

3.4 Summary

In this chapter, first we have presented the Q-BNN algorithm. In the Q-BNN

algorithm, we have used the evolutionary quantum computing concept to evolve

connection weights of the neural network. The neural network is formed con-
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structively by adding neuron one by one in the hidden layer. The proposed Q-

BNN algorithm is trained and tested on benchmark datasets like Breast Cancer,

PIMA Indian Diabetes dataset, and Heart disease dataset. The proposed algo-

rithm performs well in comparison to other evolutionary algorithms as shown in

the comparative study. In the Q-BNN, the threshold of the neuron is decided

manually. Deciding threshold of the neuron does not guarantee for the opti-

mal solution. To overcome this issue, the NQ-BNN algorithm is presented in

this algorithm along with the connection weights of the neural network and the

threshold of the neurons is decided using the quantum computing concept which

is named as quantum separability parameter. Deciding separability parameter

using the evolutionary quantum computing concept helps to achieve an optimal

value of this parameter. The proposed NQ-BNN algorithm is trained and tested

using benchmark dataset like Breast Cancer, PIMA Indian Diabetes dataset,

and BUPA Liver dataset. The proposed performs better than the proposed

Q-BNN algorithm as shown in comparative results. The proposed NQ-BNN al-

gorithm is also compared with other state-of-the-art approaches, and it is found

that the NQ-BNN performs better other state-of-the-art approaches.
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Chapter 4

Quantum inspired Fuzzy based

Neural Network Learning

Algorithm for Two Class

Classification Problem

4.1 Introduction

As discussed in the previous chapter, for forming a neural network architecture

the quantum computing concept has been utilized which evolves the connection

weights and threshold of the neurons. The performance of neural network de-

creases for the multiple class dataset in which samples belong to more than one

classes [24, 69, 114]. This causes due to the occurrence of overlapped samples

in multiple classes of dataset. Thus, there is a need to apply fuzzy concept

for handling such multiple class dataset which are having overlapped samples.

The fuzzy concept helps to the classify such samples by assigning membership

degrees according to the class from which these samples belong.

In the fuzzy clustering algorithm, there is an important parameter, that is

fuzzifier (m) which is defined manually. The fuzzifier parameter (m) of fuzzy

concept controls the extent of overlapping among fuzzy clusters [39]. The ca-

pability of handling overlapped samples using the fuzzy concept is dependent

on value of m. Therefore, in this chapter, an algorithm is designed for the two

class classification which makes use of the fuzzy concept by proposing a mech-
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anism to decide fuzzifier value by using the quantum computing concept. The

algorithm is named as Quantum inspired Fuzzy based Neural Network Learning

Algorithm (Q-FNN). The Q-FNN forms three layers neural network architec-

ture where neurons are considered as fuzzy neurons and the fuzzy clustering is

utilized to decide the connection weights of the hidden layer neurons. The basic

architecture of Q-FNN is shown in Figure 4.1.

4.2 Proposed Work

This section presents details of a proposed Q-FNN algorithm for solving two

class classification problem. The proposed algorithm forms three layers neural

network architecture using the fuzzy concept and the quantum computing con-

cept. Here, the connection weights are considered as cluster centroids which

are obtained using the fuzzy clustering and the fuzzifier (m) is evolved using

the quantum computing concept. The Q-FNN uses concept of fuzzy clustering,

which is discussed in brief as follows:

The fuzzy clustering attempts to partition a finite collection of n data sam-

ples X = {x1, x2, ..., xn} into c fuzzy clusters with V = {v1, v2, .., vc} cluster

centroids. The inclusion of data samples in a cluster is described by a fuzzy par-

tition matrix U = [µij]n×c where µij is the degree of membership at which data
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Figure 4.1: Architecture of Q-FNN.
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sample xi belongs to the cluster vj. The membership degree is allowed to have

any values between 0 and 1. The FCM algorithm is based on the minimization

of following objective function, defined as follows:

Jm(U, V ) =
c∑
i=1

n∑
j=1

(µij)
m‖xj − vi‖2,m > 1 (4.1)

where, m (m > 1) is a fuzzifier parameter controls the fuzziness of resulting

clusters. The fuzzy clustering algorithm is based on the iterative optimization

of objective function given in Eq. (4.1) by updating the membership matrix U

and cluster centroid V . The fuzzy clustering algorithm is discussed in detail in

the form of pseudo code in Section 2.3.

The Q-FNN architecture consists of three layers: an input layer, a hidden

layer, and an output layer. Let X = {x1, ...xn} is the training set consists of total

n number of data samples, where each data sample xi ∈ RK and K represents

the dimensionality of the data sample. The training patterns xi belongs to one

of the l classes. The nodes in the input layer are equal to the dimensions (K)

of the data samples. The learning of hidden layer and output layer is detailed

in coming sections.

4.2.1 Learning of Hidden Layer

In the proposed Q-FNN architecture, hidden layer training is done by using the

concept of fuzzy clustering. Since fuzzy clustering is used for the hidden layer

learning, therefore at least two neurons (clusters) are required initially to start

the learning of the hidden layer. Then, we add more neurons in the hidden layer

if all samples of the training set are not learned with the existing neurons. The

learning of a hidden layer comprised of the following steps: deciding weights

of the neurons, weight update process, and handling unclassified samples. The

detailed description of these steps is presented as follows.

Step a: Deciding weights of the neurons

Suppose, training set X = {x1, ...xn} composed of unclassified data samples

belongs to two classes, i.e., A and B. Let us denote class A which is made up of

data samples (xA1 ,....,xAi ) and class B is composed of data samples (xBi+1,....,x
B
n ).
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The initial connection weights for the hidden layer neurons composed of data

samples belong to class A is computed as follows:

xminAj = min(xA1j, ...., x
A
ij) (4.2)

xmaxAj = max(xA1j, ...., x
A
ij) (4.3)

where xminAj and xmaxAj are the minimum and maximum values on a jth di-

mension of all data samples belong to class A.

wAj =
xminAj + xmaxAj

2
(4.4)

where wAj denote the connection weight in a jth dimension of the neuron belongs

to class A. The weight vector for a neuron associated with class A is represented

as:

wA = [wA1 , ...., w
A
K ] (4.5)

Similarly, the initial value of connection weights for the hidden layer neuron

belongs to class B is defined as:

xminBj = min(xBi+1j, ...., x
B
nj) (4.6)

xmaxBj = max(xBi+1j, ...., x
B
nj) (4.7)

where xminBj and xmaxBj denote the minimum and maximum values on a jth

dimension of all data samples belong to class B.

wBj =
xminBj + xmaxBj

2
(4.8)

where wBj denotes the connection weight in a jth dimension of the neuron belong

to class B. Initially, we associate one neuron with class B and denote the weight

vector for that neuron as:

wB = [wB1 , ...., w
B
K ] (4.9)
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Finally, the set of weight vector Wh for the hidden layer is represented as

Wh =

wA1 wA2 ... wAK

wB1 wB2 ... wBK


Step b: Weight update process

In Q-FNN architecture, the learning of the hidden layer starts by using the

concept of fuzzy clustering. In this architecture, as the fuzzy clustering concept

is used for learning, therefore the neurons in the hidden layer represent the

fuzzy clusters (c). The weight matrix (Wh) of the hidden layer neurons are

taken equivalent to cluster centroids (V ). The fuzzifier parameter (m) plays an

important role in the performance of the fuzzy clustering algorithm. Therefore,

the fuzzifier parameter is evolved using the quantum computing concept, and it

is represented in terms of quantum bits as follows:

mg = Qg
i (4.10)

where Qg
i consists of two-qubits which are represented as follows:

Qg
i = (qgi1|q

g
i2) (4.11)

In Q-FNN, the two qubits are enough to represent the fuzzifier parameter

(m) to find its value in the range of [1.5, 2.5] [79]. These two qubits divide search

space into four subspaces and find the value of m from these subspaces prob-

abilistically rather than sequentially. Using the observation process discussed

in Section 2.2, we get a real coded value of fuzzifier parameter (mg), and it is

represented as (M g
real).

After initialization of all the parameters, update the weights of the hid-

den layer by executing the fuzzy clustering stated in Section 2.3, with a real

coded value of fuzzifier parameter evolved using the quantum computing con-

cept. After updating the weights using the fuzzy clustering for a generation

(g), the cluster membership matrix corresponding to the trained data samples

is obtained. On the basis of obtained cluster membership matrix, the degree of

overlap corresponding to each data sample is computed to determine the num-

ber of learned samples corresponding to the formed clusters or neurons. The
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degree of overlap δ(xi) corresponding to each data sample is computed using the

inter-cluster overlap measure [115]. The overlap of each data sample xi in the

generation (g) between the two fuzzy clusters Fl and Fr is computed as follows:

Domg
min(xi) = min(µgFl

(xi), µ
g
Fr

(xi)) (4.12)

Domg
max(xi) = max(µgFl

(xi), µ
g
Fr

(xi)) (4.13)

where, µgFl
(xi) and µgFr

(xi) represents the membership degree corresponding to

fuzzy clusters Fl and Fr, Dom
g
max(xi) and Domg

min(xi) is the maximum and

minimum degree of membership of each data sample xi. If a data sample is

highly vague, i.e., Domg
max(xi)=0.5, it means that data sample belongs to both

the clusters with an equal degree of membership, then a degree of overlap δ(xi) =

1 otherwise the degree of overlap δ(xi) is considered as 0. If data sample has

δ(xi) = 1, then the data sample is considered as unclassified. If δ(xi) 6= 1 then

data sample is considered learned to the respective neuron if the data sample

actual class is perfectly matched to the neuron class otherwise, it is considered

as unclassified. Thus, on the basis of δ(xi), we proposed the modified step

activation function of the neuron by taking care of overlapped samples, which

is defined as follows:

netjh = δ(xi) (4.14)

f(netjh) =

 (1 or 2) ( class number) if netjh 6= 1

0 (miss− classified) if netjh = 1
(4.15)

where, f(netjh) is the activation function for the hidden layer, such that j=1, 2, 3, .., T ,

T is the number of neurons in the hidden layer.

Here, in the proposed algorithm the Number Of Correctly Learned Samples

(NCLS) is calculated as the fitness function. It is most challenging, and yet

an essential concept in learning algorithm is the fitness function. In Q-FNN

architecture, the NCLS in each generation represents the local fitness function

denoted by F g
Lbest(M

g
real, V

g) and is defined as:

F g
Lbest(M

g
real, V

g) = NCLS (4.16)

In Q-FNN, we compute a global fitness function which stores the maximum

60



CHAPTER 4. QUANTUM INSPIRED FUZZY BASED NEURAL
NETWORK LEARNING ALGORITHM FOR TWO CLASS
CLASSIFICATION PROBLEM

Table 4.1: Qubits Update for Q-FNN.

sgi sglobali FGbest((Mreal)
best, Vbest) > F g

Lbest(M
g
real, V

g)) ∆θ

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0
1 0 true 0.03 ∗ Π
1 1 false 0
1 1 true 0

NCLS among all the generations represented by FGbest((Mreal)
best, Vbest) and is

defined as:

FGbest((Mreal)
best, Vbest) = max(FGbest((Mreal)

best, Vbest), F
g
Lbest(M

g
real, V

g))

(4.17)

where (Mreal)
best and Vbest denote the best value of fuzziness parameter and

cluster centroids generated corresponding to the formed clusters or neurons.

The value of fitness functions depends on the optimal value of fuzzifier pa-

rameter which is evolved using the quantum computing concept. The real coded

value of fuzzifier parameter in the first generation may or may not be optimal.

Therefore, to get optimal value of it, we need to update qubits of fuzzifier param-

eter. The qubits are updated using quantum update process discussed in Section

2.2 and Table 4.1. The quantum update process provides proper exploitation to

search a global optimal value of fuzzifier parameters in several generations.

Step c: Handling unclassified samples

Suppose, unclassified data samples left in the training set X that is not

learned with the existing neurons. So, for the training of these data samples in

the hidden layer, we are using again the fuzzy clustering. Therefore, at least

two additional neurons (clusters) are required in the hidden layer. It might be

possible that the unclassified data samples present in the training set X belongs

to two classes or it may consist of data samples belong to only one class. Thus,

on the basis of two possibilities, the weights of the neurons are decided as follows:
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1. Unclassified data samples belong to two classes: If the unclassified

data samples present in set X belongs to two classes, then the weights of

the neurons for the training of these data samples is decided by using Step

a, and the weights of the neurons are updated by using Step b.

2. Unclassified data samples belong to single class: If unclassified data

samples present in set X belong to a single class. Then for the training

of these data samples, the connection weights of neurons are computed as

follows:

(a) Compute the Euclidean distance of each data sample xi from the

origin (O), i.e., (0,0) which is computed as follows:

d(xi, O) = ‖xi −O‖ (4.18)

(b) Find the nearest and farthest data samples from the origin on the

basis of Euclidean distance and separate these data samples from

other data samples. Let xp and xq be the near and far data sample

from the origin.

(c) Calculate the Euclidean distance of the rest of the data samples from

xp and xq.

(d) On the basis of Euclidean distance, separate the data samples which

are closer to the xp from the data samples closer to the xq. Let

XN = {x1, .., xp} and XF = {xq, .., xs} be the set of data samples

closer to the near and far data sample.

(e) Compute the average of all the data samples present in the set XN .

wN =
1

p

p∑
i=1

xi (4.19)

(f) Compute the average of all the data samples present in the set XF .

wF =
1

s

s∑
i=q

xi (4.20)
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(g) Finally, the weight vector wh for the hidden layer is denoted by

Wh =

wN1 wN2 ... wNK

wF1 wF2 ... wFK


After deciding the weights of neurons for the unclassified data samples belong

to only one class, the learning of these neurons and the weight update process is

performed using Step b. The overall process of Q-FNN in the form of Algorithm

4.1, is presented next.

Algorithm 4.1 Algorithm for Q-FNN

1: Input Training data X={x1, ..xn}.
2: Output Q-FNN architecture.
3: Begin
4: Initialize the nodes in the input layer equal to the dimensions (K) of data

sample xi where i = 1, .., n and xi ∈ RK .
5: Initialize neurons in the hidden layer
6: Xprevious=φ
7: while (X 6= φ) do
8: Initialize the weights of hidden layer neurons.
9: if data samples in X belong to two classes then

10: Decide the weights of the neurons using step a
11: else if data samples in X belong to only single class then
12: Decide the weights of the neurons using point 2 of step c
13: end if
14: Start learning of hidden layer by initializing weight matrix (Wh) as cluster

centroids for generations (g=1) denoted by V g and fuzziness parameter
using Eq. (4.10) and Eq. (4.11) denoted by Qg

i .
15: repeat
16: Obtain real coded value M g

real corresponding to the quantum value
of fuzziness parameter mg using an observation process.

17: Update weights by executing FCM algorithm (Algorithm 2) using the
parameters M g

real and V g.
18: Compute the degree of overlap of each data samples using Eq. (4.12)

and Eq. (4.13).
19: Compute the number of correctly learned sample with the proposed

step activation function discussed in Eq. (4.14) and Eq. (4.15).
20: Fitness Evaluation Compute local and global fitness function using

Eq. (4.16) and Eq. (4.17) to find the number of correctly learned sample
in generation (g).

21: Store the best cluster centroid and fuzziness parameter in each
generation g.

22: if (F g
Lbest(M

g
real, V

g) ≥ FGbest((Mreal)
best, Vbest)) then

23: V g+1 = V g

24: Vbest = V g

25: (Mreal)
best = M g

real

26: else
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Algorithm 4.1 (Continued)

27: V g+1=Vbest
28: Vbest=Vbest
29: (Mreal)

best = (Mreal)
best

30: end if
31: Update the quantum bit of fuzziness parameter using Table 4.1.
32: if ((FGbest((Mreal)

best, Vbest)==n) or (g==gmax)) then
33: break
34: else
35: g=g+1
36: end if
37: until((g > gmax) or (FGbest((Mreal)

best, Vbest) == n))
38: Separate the learned data samples from set X and store the unclassified

data samples in set Xprevious.
39: if(X == XPrevious)
40: break
41: end if
42: X = Xprevious

43: Again add two neurons in the hidden layer for learning of remaining data
samples present in set X.

44: end while
45: return
46: End

After learning of the hidden layer, the total number of clusters (c) represents

the final number of hidden layer neurons, and the final cluster centroids (V )

represents the final connection weights (Wh) from the input layer to the hidden

layers. Thus, each hidden layer neuron will produce an output (Oj
h) (where

j = 1, 2, .., t, t is the number of neurons in the hidden layer) in the following

manner: if a data sample is classified on the basis of f(netjh) to class 1, then

hidden layer neuron (Oj
h) will produce output +1 else 0. Similarly, if a data

sample is classified on the basis of f(netjh) to class 2, then hidden layer neuron

(Oj
h) gives an output -1 else 0.

4.2.2 Learning of Output Layer

The proposed Q-FNN classifier is designed to solve the two-class classification

problems. So, only one output neuron is required in the output layer which will

combine the outputs of all hidden layer neurons. The weights from each hidden

neuron to the output neuron is set to 1 and denoted by wjO where j = 1, 2, .., t
′
,

t
′
is the number of neurons in the hidden layer. In output layer, we calculate the

output value of neuron (netO) by summing the product of (Oj
h) and the weight
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link wjO and applying the step activation function. If the output of (netO) is

greater than 0, the value of f(netO) becomes 1 and data samples belongs to

class A otherwise it becomes 2 and data samples belong to class B.

4.3 Experimental Evaluation

In this section, we evaluate the performance of the proposed Q-FNN algorithm

on two class datasets. The performance of the proposed algorithm is also com-

pared with other state-of-the-art approaches [116–120].

4.3.1 Datasets and Experimental Settings

The performance of the proposed algorithm is tested on WBCD, Sonar, Hep-

atitis, Ionosphere, and Heart dataset. The experiments implemented in MAT-

LAB R2014a were conducted on Intel core, I-5 processor with 4 GB RAM on

Windows-7 operating system. To compute the generalizability of the proposed

approach in comparison with existing work in literature, we divided the training

and testing data into two different partitions, i.e., 60-40 training-testing parti-

tion and 10-fold cross validation. In 10-fold cross validation, the entire dataset is

divided into ten blocks of approximately equal size. During the implementation

of our algorithm, 90% of the data is used to train our model while the rest 10%

data is used for testing. The same process is repeated 10 times and each time a

different set of data is used for training and testing. The maximum number of

generations for g is taken as 100.

4.3.2 Performance on Benchmark Datasets

We evaluate the classification capability of the Q-FNN classifier on bench-

mark datasets. The performance of Q-FNN is evaluated and reported on these

datasets for different training and testing partitions in terms of classification

accuracy, sensitivity, and specificity in Table 4.2. It can be seen from the results

that Q-FNN achieves more than 90% accuracy for Sonar, Hepatitis, WBCD, and

Heart dataset. The classification accuracy achieved for WBCD, Sonar, Hepati-

tis, and Heart is 99.85%, 94.74%, 97.75%, and 94.44%, respectively. For other

datasets like Ionosphere, the classification accuracy achieved more as 86.21%.
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Table 4.2: Classification Results of Q-FNN on Different Training-Testing partitions.

Datasets Partitions Classification Accuracy (%) Sensitivity (%) Specificity (%)

(# samples x # features x # class)

WBCD (683x9x2) 60-40 96.94 98.15 94.01

10-fold 99.85 99.91 98.89

Sonar (208x60x2) 60-40 94.05 95.56 92.31

10-fold 94.74 90.00 100

Hepatitis (80x19x2) 60-40 86.67 92.59 81.82

10-fold 97.75 100 87.50

Ionosphere (351x33x2) 60-40 85.00 96.00 78.89

10-fold 86.21 92.31 81.25

Heart (270x13x2) 60-40 94.44 95.83 93.33

10-fold 85.19 91.67 80.00
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Table 4.3: Comparison of Various Learning Algorithms with Q-FNN on Datasets
in Terms of Classification Accuracy.

Classifier
Dataset

WBCD Sonar Hepatitis Ionosphere Heart

Q-FNN 99.85 94.74 97.75 86.21 94.44

NQ-BNN 99.65 79.81 76.55 80.32 92.95

SOM-INN 95 86 89 - 79

SCSR 97 78 - 93.2 81.7

GaX 99.54 81.12 90.7 89.89 87.7

SaX 97.52 81.15 90.61 89.66 87.25

Multitree GP 97.95 79.81 - 91.74 82.96

Thus, it can be inferred from the results that Q-FNN achieves remarkable

results on almost all the datasets. Also, Q-FNN achieved good sensitivity and

specificity for all the datasets.

Furthermore, the classification performance of Q-FNN is compared with sev-

eral classifiers on 5 benchmark datasets and reported in Table 4.3. It can be

seen from the reported results that performance of proposed Q-FNN model is

compared with the variety of classifiers such as hybrid NFS, evolutionary ap-

proach, i.e., GA, PSO, QNN, and many more. The results show that Q-FNN

achieved remarkable results, this improvement is mainly because the proposed

method finds the optimal weights of the network by performing learning using

the fuzzy clustering with an evolution of fuzzifier parameter using the quantum

computing concept.

4.3.3 Discussion

This can be easily observed that Q-FNN can produce a compact neural network

structure with good accuracy on most of the datasets. This is because of four

major features of Q-FNN. Firstly, the basic idea of forming a neural network

architecture using the fuzzy concept. The fuzzy concept helps to classify such

samples by assigning membership degrees according to the class from which these

samples belong. Thus, the neural network formed using this concept learned for

almost all training samples, which helps to get better generalization accuracy.

Secondly, the selection of fuzzifier parameter using the quantum computing
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concept. The observation process provides exploration by providing region-by-

region promising subspaces. On the other hand, the quantum rotation gate

helps to achieve exploitation. The optimal value of fuzziness parameter con-

trols the overlapping among the formed clusters or neurons. Thus, it proves the

high generalization ability. Thirdly, the initialization and selection of connection

weights. Here, connection weights have been taken as the centroid of clusters

of two classes using the fuzzy concept. The random initialization of cluster cen-

troids increases the number of iterations to find optimal centroids. Therefore,

in this algorithm, the initialization of cluster centroids or connection weights

by finding the minimum and maximum point helps to reduce unnecessary iter-

ations to reach stable or optimal centroids or connection weights. Fourthly, is

selection of the number of hidden layer neurons constructively to neural network

architecture. In addition to this, the proposed modified step activation function

is composed of membership degree and fuzzifier parameter that helps in the

formation of hidden layer neurons.

4.3.4 Summary

In this chapter, we have presented Q-FNN algorithm to solve the two-class

classification problem. In the Q-FNN algorithm, the neural network architec-

ture is formed constructively by integrating the concept of fuzzy clustering and

quantum computing. The fuzzy concept is used to find the connection weights

and architecture of the neural network. In addition to this, the evolutionary

quantum computing is used for evolving the fuzzifier parameter m in several

generations. A series of empirical studies on 5 benchmark datasets has been

conducted to evaluate the performance of the Q-FNN. Different experimental

configurations have been adopted to provide a fair comparison with the vari-

ety of state-of-the-art approaches. The empirical findings reveal that Q-FNN

yields better performance in comparison with reported approaches in terms of

classification accuracy. The proposed model achieves remarkable classification

accuracy, using 10-fold cross validation scheme. From the empirical evaluation,

we conclude that our proposed Q-FNN obtains very high accuracy for most of

the datasets.
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Chapter 5

Quantum inspired Fuzzy Based

Neural Network Learning

Algorithm for Multi-class

Classification Problem

5.1 Introduction

In the real-life application, there are several examples of multi-class problems

like disease diagnosis, document classification, handwriting recognition, human

face recognition, etc. In multi-class problems, there is more probability that

dataset samples belong to more than one classes. This causes due to the oc-

currence of overlapped samples in multiple classes of the dataset. The Q-FNN

algorithm presented in the previous chapter is unable to handle the multi-class

dataset. In Q-FNN, connection weights/cluster centroids have been evolved us-

ing the fuzzy concept, which was initialized manually by finding midpoints of

data samples and the fuzzifier parameter m has been optimized using the quan-

tum computing concept. The major problem with the fuzzy based algorithms is

that the algorithms are sensitive to the initialization of parameters. Choosing

the initial cluster centroids is extremely important as it has a direct impact on

the formation of final clusters which are considered as neurons of the hidden

layer. The random selection of these parameters does not guarantee unique

clustering results.
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Here, in this chapter, to overcome both the issues, i.e., classification of the

multi-class dataset and optimal selection of cluster centroids, we enhanced our

Q-FNN algorithm and proposed the Quantum inspired Fuzzy based Neural Net-

work Learning Algorithm for Multi-class classification problems (Q-FNNM). In

this algorithm, the cluster centroids/connection weights are evolved using the

quantum computing concept along with fuzzifier parameter. The proposed al-

gorithm is discussed in detail next.

5.2 Proposed Work

In the proposed Q-FNNM algorithm the fuzzy clustering algorithm has been

used for learning of neural network. The quantum computing concept has been

used to optimize the parameters of fuzzy clustering. The quantum computing

concept helps to find the optimal value of the cluster centroids V real
g and fuzzi-

fier parameter M g
real. These cluster centroids V real

g are considered as connection

weights (W real
g )h of the hidden layer neurons. The detail description of initial-

ization of various parameters and learning of neural network learning algorithm

is discussed next.

5.2.1 Preliminaries

The proposed algorithm is trained and tested for the diagnosis of the multi-class

dataset. Let X = {x1, ...xn} is the training set consists of total n number of data

samples, where each data sample xi ∈ RK and K represents the dimensionality

of the data sample. The training patterns xi belongs to one of the classes.

5.2.2 Learning of Hidden Layer

The learning of neural network starts with the initialization of parameters using

the quantum computing concept. Thus, quantum bits are used to represent these

parameters. It is further converted to real coded value using the observation

process discussed in Section 2.2. The real coded value is utilized in the learning

of hidden layer neurons which are treated in the form of fuzzy clusters. Before

discussing the learning algorithm, first initialization of parameters has been

discussed in detail.
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Initialization of Parameters

The Q-FNNM consists of three layers: an input layer, a hidden layer, and an

output layer. Here input dataset consists of n number of data samples and each

data sample xi have K dimensionality. Thus, the number of input nodes are

equal to the dimension K of the data samples. Here, the number of neurons in

the hidden layer is decided constructively. Initially, in the hidden layer, we take

the number of neurons equal to the number of classes of the input dataset. The

basic architecture of Q-FNN is shown in Figure 5.1. More neurons are added

constructively during learning if all data samples are not learned.

Let’s denote the training set X = {x1, ...xn} composed of data samples hav-

ing three classes, i.e., A, B, and C. It is represented as (xA1 ,....,xAe ), (xBf+1,....,x
B
f ),

and (xCf+1,....,x
C
n ), respectively. In this algorithm, the centroids of each class are

considered as the connection weights of the hidden layer. Each centroid or

connection weight is represented in terms of quantum bits.

(W quant
g )cn = (V quant

g )cn (5.1)

(V quant
g )cn = (Qgw)cn (5.2)

Where g is the number of generations to evolve the connection weights and
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Figure 5.1: Architecture of Q-FNNM.
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cn shows the class number. The quantum bit is made of qubits, so we have

represented a quantum bit with the help of two qubits as follows:

(Qgw)cn = ((qgw1 )cn|(qgw2 )cn) (5.3)

The four search spaces are provided by a quantum bit to search the optimal

value of centroids/connection weights. The search spaces are formed using input

data samples. These search spaces are created with the help of the minimum

sample value of the dataset and the maximum sample value of the dataset.

For example, the search spaces to find centroid of class A, is generated by

finding the minimum data sample value of class A as xminAj and maximum

data sample value of class A as xmaxAj . We divide the obtained space between

these minimum and maximum data samples into four search spaces using the

following formulations.

xminAj = min(xA1j, ...., x
A
ij) (5.4)

xmaxAj = max(xA1j, ...., x
A
ij) (5.5)

z = (xmaxAj − xminAj )/4 (5.6)

Thus, the four search spaces are used here for finding the connection weights

are 1 - (xminAj , xminAj + t), 2 - (xminAj + t, xminAj + 2t) 3 - (xminAj + 2t,

xminAj + 3t), and 4 - (xminAj + 3t, xmaxAi ). Similarly the search spaces are

created for class B and class C, respectively.

These weight matrix (W quant
g )h for all hidden layer neurons are converted

into real coded value using the observation process and represented as (W real
g )h.

Here, h shows the connection weights of all hidden layer neurons. The real value

corresponding to quantum centroid (V quant
g )cn is (V real

g )cn.

(W quant
g )h =

(V quant
1 )A (V quant

2 )A ... (V quant
e )A

(V quant
1 )B (V quant

2 )B ... (V quant
f )B

(V quant
1 )C (V quant

2 )C ... (V quant
n )C

 =

(Qw
1 )A (Qw

2 )A ... (Qw
e )A

(Qw
1 )B (Qw

2 )B ... (Qw
f )B

(Qw
1 )C (Qw

2 )C ... (Qw
n )C


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Similarly, the real value matrix can be represented as follows:

(W real
g )h =


(V real

1 )A (V real
2 )A ... (V real

e )A

(V real
1 )B (V real

2 )B ... (V real
f )B

(V real
1 )C (V real

2 )C ... (V real
n )C


Similarly, the fuzzifier parameter is also represented in terms of a quantum

bit as (mg). It plays an important role in fuzzy clustering, as it controls the

degree of overlapping.

mg = Qgm (5.7)

Qgm = (qgm1 |q
gm
2 ) (5.8)

The real coded value corresponding to the quantum fuzzifier parameter is

represented as M g
real, which is evolved using the observation process. The search

space for finding the optimal value of M g
real is selected between [1.5,2.5] as sug-

gested by Pal and Bezdek [79]. For finding the optimal value of M g
real, the

quantum bit is represented in terms of two qubits. It means that the value of

M g
real is found from the four search spaces.

Learning Process

Once, the real coded value of connection weight matrix (W real
g )h and fuzzifier

parameterM g
real is achieved, it is used in fuzzy clustering to perform the learning.

Now, we execute the fuzzy clustering for evolving the parameters. The fuzzy

clustering is executed and a membership matrix is achieved corresponding to

each data sample of each class. On the basis of membership matrix, the degree

of overlap is computed corresponding to each data sample. The degree of overlap

shows the number of samples learned corresponding to the formed clusters or

neurons. The degree of overlap is computed using the inter-cluster overlap

measure as suggested by Bharill et al. [115]. The overlap of each data sample

xi between three fuzzy clusters F1, F2, and F3 is computed as follows:

Domg
min(xi) = min(µgF1

(xi), µ
g
F2

(xi), µ
g
F3

(xi)) (5.9)

Domg
max(xi) = max(µgF1

(xi), µ
g
F2

(xi), µ
g
F3

(xi)) (5.10)
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where, Domg
max(xi) and Domg

min(xi) represent the minimum and maximum

degree of membership of data sample xi and µgFj
(xi) represents the membership

degree corresponding to fuzzy clusters Fj where j=1,..,3. If Domg
max(xi) ≥ 0.5,

means there is no overlapping and a data sample has been learned for a cluster

or neuron whose membership degree is µgFj
(xi) ≥ 0.5 else a data sample is not

learned for any cluster or neuron. Here, f(netcni ) is a parameter which acts as

an output of the hidden layer neuron, and it shows the number of data samples

learned. It can be represented as a step activation function of neurons as follows:

f(netcni ) =

 (j class number) if µg
Fj

(Xi) ≥ 0.5

0 (miss− classified) if µg
Fj

(Xi) < 0.5
(5.11)

Here, value of f(netcni ) shows the number of learned samples, but it does

not show the number of correctly learned samples. For example, if a sample xi

belongs to class A, then it belongs to a neuron 1 or cluster 1. If it is learned in

class B, then f(netBi ) will show value 2 using Eq. (5.11) which shows sample

learned in class B. It means that it is not correctly learned. To solve this issue,

here a fitness function is introduced which shows the NCLS corresponding to

the correct neuron. The local fitness function corresponding to each generation

is denoted as F g
Lbest.

F g
Lbest = NCLS (5.12)

As discussed in Section 2.2, that the real value of (W real
g )h and M g

real obtained

in the first generation (g=1) may or may not be optimal. Therefore, there is

a need to evolve both the parameters in several generations for better learning

of neural network. To evolve the new value of these parameter we require to

update the qubit of centroids or weights and the fuzzifier parameter. Here, we

use a quantum update process as discussed in Section 2.2 and Table 5.1 which

is required in current fitness value F g
Lbest, and the best fitness value F g

Gbest that

shows the best fitness among all the previous generations. The best fitness value

which stores the maximum number of learned samples among all the previous

generations.

F g
Gbest = max(F g

Gbest, F
g
Lbest) (5.13)

Here we also store the quantum value and real coded of connection weights

74



CHAPTER 5. QUANTUM INSPIRED FUZZY BASED NEURAL
NETWORK LEARNING ALGORITHM FOR MULTI-CLASS
CLASSIFICATION PROBLEM

Table 5.1: Qubits Update for Q-FNNM.

sgw/s
g
m sglobalw /sglobalm F g

Gbest > F g
Lbest ∆θ

0 0 false 0

0 0 true 0

0 1 false −0.03 ∗ Π

0 1 true 0

1 0 false 0

1 0 true 0.03 ∗ Π

1 1 false 0

1 1 true 0

parameter as W quant
global , W

real
global and fuzzifier parameter as mquant

global, M
real
global corre-

sponding to the best fitness value. These values are required to evolve the

qubits and real coded value of connection weights and fuzzifier parameter using

the quantum update process.

The F g
Lbest shows the number of samples learned in the current generation. If

F g
Lbest shows that all samples that are learned with the number of neurons taken

initially in the hidden layer, then we stop learning else, we compare the current

fitness value (F g
Lbest) with the global fitness value (F g

Gbest) and accordingly we

update the connection weights and fuzzifier parameter using the qubit update

process.

Still if we find the number of samples unlearned after completion of all gener-

ations which evolve W quant
g and mg then in such condition, we check the number

of samples remained unlearned and their corresponding class. If samples of all

the three classes are unlearned, then we add three more hidden layer neurons.

After this, we follow the same process for the learning of unlearned samples as

discussed above.

The overall process of Q-FNNM in the form of Algorithm 5.1, is presented

next.

Algorithm 5.1 Algorithm for Q-FNNM.

1: Input Training data X={x1, x2, ...., xn}
2: Output Q-FNNM architecture.
3: Begin
4: Initialize the nodes in the input layer equal to the dimensions (K) of data

sample Xi where i = 1, .., n and xi ∈ RK .
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Algorithm 5.1 (Continued)

5: Initialize neurons in the hidden layer equals to the number of classes of the
dataset.

6: (F g
Gbest)=0

7: (W quant
global )

h =0, (W real
global)

h=0

8: Xunlearned=φ
9: Initialize the weights (W quant

1 )h of hidden layer neurons in terms of quan-
tum bits.

10: Initialize the (mg) in terms of a quantum bit.
11: While g=1:y
12: Repeat
13: Apply the observation process to get a real coded value of connection

weight (W real
g )h and fuzzifier parameter (mg).

14: Executing fuzzy clustering using the parameters (M g
real) and (W real

g )h

as cluster centroid.
15: Compute the degree of overlap or membership of each sample

using Eq. (5.9) and Eq. (5.10).
16: Compute the NCLS with the step activation function discussed in

Eq. (5.11).
17: Fitness Evaluation Compute local and global fitness function

using Eq. (5.12) and Eq. (5.13) to find the NCLS in generation (g).
18: Store the best connection weight (W quant

global )
h, (W real

global)
h and fuzzifier

parameter mquant
global, M

real
global in each generation g.

19: if ((F g
Gbest==n) or (g==y)) then

20: break
21: else
22: if (F g

Lbest ≥ F g
Gbest) then

23: (W quant
global )

h=(W quant
g )h

24: (W real
global)

h=(W real
g )h

25: mquant
global=m

g

26: M real
global=M

g
real

27: F g
Gbest=F

g
Lbest

28: else
29: (W quant

global )
h=(W quant

global )
h

30: (W real
global)

h=(W real
global)

h

31: mquant
global=m

quant
global

32: M real
global=M

real
global

33: end if
34: g=g+1
35: Update the quantum bit of connection weights and fuzzifier parameter

using quantum update process.
36: end if
37: until((g > y) or (F g

Gbest == n))
38: Separate the learned samples from set X and store the unclassified

samples in set Xunlearned.
39: X = Xunlearned

76



CHAPTER 5. QUANTUM INSPIRED FUZZY BASED NEURAL
NETWORK LEARNING ALGORITHM FOR MULTI-CLASS
CLASSIFICATION PROBLEM

Algorithm 5.1 (Continued)

40: Again add new neurons in the hidden layer according to unlearned
samples classes for learning of remaining samples present in set X.

41: end while
42: Apply the same process from step-11 to step-41 for unlearned samples.
43: return
44: End

The number of neurons in the hidden layer shows the possible number of

clusters of the dataset. The final cluster centroids show the connection weights

(W real
global)

h between the hidden layer and the input layer. After completion of

hidden layer learning, we start the learning of the output layer which is discussed

next.

5.2.3 Learning of Output Layer

In the output layer, we keep the number of neurons equals to the number of

classes of the dataset. The connection weights between the hidden layer and the

output layer are initialized as unity. Here, each neuron in the output layer gives

the output as 1 or 0. The output of the output layer neuron will depends upon

the output from the hidden layer neurons. The correctly learned output from

the hidden layer neurons is considered as (Oi
h). This gives output as the class

number of correctly classified samples from the hidden layer. For example, let

the total six hidden layer neurons (two for each class) are formed, for the three

class dataset. Then at the time of testing only one neuron will give output as

class number and other will give output 0. The output of hidden layer neurons

(Oi
h) is multiplied with connection weights Woutput of the output layer.

netoutput =
∑

(Oi
h) ∗Woutput (5.14)

The output layer neuron which is taken equal to the number of classes of

the dataset will receive netoutput as input. If it is equal to the class number for

which the output neuron is formed, then it gives output 1 else 0. For example,

if class-1 or A dataset has been given as input and it is correctly classified, then

the value of (Oi
h) and netoutput will be 1. In this case, the neuron of class 1 at

output layer gives output as 1 else 0. Thus, the output layer gives output 100

which shows that the sample belongs to class-1 or A. Similarly, if output layer
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gives the output as 010, and 001 it means that the sample belongs to class 2 or

B, and class 3 or C, respectively.

5.3 Experimental Evaluation

In the experiments, we evaluate the performance of proposed Q-FNNM frame-

work on various benchmark datasets are IRIS, WINE, Glass, and Dermatology

using several measures like accuracy, sensitivity, specificity, precision, and F-

measure. In addition to this, the performance of proposed Q-FNNM is compared

with the other state-of-the-art approaches.

5.3.1 Experimental Setup

The proposed Q-FNNM classifier is implemented in Matlab and on an Intel core,

I-5 processor with 4 GB RAM on the Windows-7 operating system. To evaluate

the performance of the proposed approach on different validation methods, it

is very common to partition the dataset into two separate sets: a training set

and a testing set. These training and testing sets are divided according to the

three different validation methods. We divide the dataset into 60-40 and 70-30

training-testing ratios where 60% and 70% part of the dataset has been taken

for the training purpose, whereas 40%, and 30% part of the dataset has been

considered for testing purpose. Here, a 10-fold cross validation technique is

also used to evaluate the performance of the proposed classifier. While training

our proposed Q-FNNM approach, we use 90% of data for the training of the

algorithm and the rest 10% data has been taken for the testing purpose.

5.3.2 Parameters Specification

To evolve the connection weights (W real
g )h and fuzzifier parameter M g

real, we fix

the maximum number of generations gmax to 100 in the proposed Q-FNNM algo-

rithm. The connection weights are initialized in the range of the minimum and

maximum value of samples of the dataset. The value of fuzzifier parameter has

been selected in the range of 1.5 to 2.5 according to the study suggested by Pal

and Bezdek [79]. We have fixed the value of termination criteria T = 0.001 for

all the datasets which are proven to be work well for most of the datasets [121].
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The value of ∆θ is taken as 0.03× π.

5.3.3 Performance on Benchmark Datasets

We evaluated the performance of proposed Q-FNNM classifier using the four

benchmark datasets. Table 5.2 shows the performance of the Q-FNNM on the

various parameters using the three different dataset partitions. The best mean

accuracy of IRIS dataset is achieved as 98.36% for data partitions 70-30%. For

the WINE and Dermatology datasets, the best mean accuracy is achieved in 10-

fold cross validation scheme as 98.35%, and 99.504%, respectively. The Glass

dataset achieves the best mean accuracy as 89.814% for the dataset partitions

70-30%. The best value of sensitivity and specificity for the datasets IRIS,

WINE, Glass, and Dermatology are 97.631% 98.88%, 97.253% 98.621%, 64.964%

92.702%, and 98.388% 99.707%, respectively. Similarly, for the datasets IRIS,

WINE, Glass, and Dermatology the best value of Precision, and F-measure

are 98.111% 98.71%, 97.542% 96.7%, 67.912% 66.3%, and 98.609% 98.4%, re-

spectively. From the results, it can be observed that the proposed algorithm

Q-FNNM perform well for the above-mentioned datasets.

The proposed algorithm is compared with the state-of-the-art approaches

and reported in Table 5.3. It can be observed that the proposed algorithm

performs well for most of the datasets. The mean classification accuracy of

the proposed algorithm on datasets like WINE, Glass, and Dermatology are far

better than other state-of-the-art methods.
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Table 5.2: Results of Q-FNNM on Various Parameters.

Classification Accuracy of Q-FNNM.

Performance Training-testing Dataset

Measures partition IRIS WINE Glass Dermatology

Mean Std dev. Mean Std dev. Mean Std dev. Mean Std dev.

Classification 60-40 97.14 1.6334 97.716 1.789 88.362 0.351 99.027 0.313

accuracy 70-30 98.36 1.4111 97.979 1.467 89.814 1.125 99.235 0.396

10-fold 98.12 1.212 98.35 1.816 88.72 1.034 99.504 0.525

cross validation

Sensitivity 60-40 95.662 1.8421 97.253 1.188 58.174 6.198 96.552 1.019

70-30 97.631 2.147 97.014 2.339 64.964 5.001 97.528 1.254

10-fold 96.359 1.6289 94.731 2.409 63.231 6.033 98.388 1.75

cross validation

Specificity 60-40 97.809 1.029 98.44 0.728 91.735 0.458 99.435 0.181

70-30 98.68 1.1248 98.621 0.9864 92.702 0.619 99.549 0.227

10-fold 98.88 1.205 98.047 1.871 92.023 0.632 99.707 0.31

cross validation

Precision 60-40 95.427 1.9469 95.917 2.116 63.346 7.418 96.587 1.126

70-30 97.988 1.7281 96.547 2.462 67.912 8.413 97.523 1.485

10-fold 98.111 2.151 97.542 2.148 66.562 7.3423 98.609 1.512

cross validation

F-measure 60-40 95.56 1.932 96.5 1.6 60.0 1.7 96.5 1.0

70-30 97.8 1.94 96.7 2.3 66.3 6.5 97.5 1.3

10-fold 98.71 1.72 96.01 2.09 65.1 5.3 98.4 1.5

cross validation
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Table 5.3: Comparison of Q-FNNM with State-of-the-Art Approaches in Terms
of Classification Accuracy.

Approaches
Dataset

IRIS WINE Glass Dermatology

Q-FNNM 98.12 98.35 88.72 99.504

Backpropagation 95.3 - 61 93.04

Binary coded
96 - 61.8 90

GA

Real coded
97 - 64.5 92.5

GA

Two Stage
96 85 64 -

GP

Hybrid Decision
98.66 90.17 76.27 -

tree classifier

Hybrid Naive
98 86.41 52.33 -

Bayes classifier

SVM 97.27 - 72.24 96.04

GONN 99.2 94.95 86.25 97.98

5.3.4 Discussion

It can be observed from Table 5.3, that the proposed Q-FNNM perform well

in comparison to other state-of-the-art approaches. The improvement in the

results is due to the proper selection of connection weights. Here, the connection

weights are taken as cluster centroids, which is generally selected randomly in

the fuzzy clustering algorithm. The selection of cluster centroids in this way

may lead the solution in local maxima. It is also important to select an optimal

value of fuzzifier parameter for better performance of the fuzzy clustering. The

selection of both the parameters using the quantum computing concept gives the

optimal value from a large search space provided by this evolutionary method.

The quantum gate provides exploitation, due to which the optimal values can

be found in few generations only.

5.3.5 Summary

In this chapter, we have presented a Q-FNNM algorithm to solve multi-class

classification problem. In the Q-FNNM algorithm, we have used the fuzzy clus-

tering concept to form the neural network architecture, whereas the parameter of
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fuzzy clustering, i.e., cluster centroids V and fuzzifier parameter m is optimized

using the evolutionary quantum computing concept. In the proposed algorithm

first, we take the number of hidden layer neurons equals to the number of classes

of the dataset. Further, the number of hidden layer neurons are taken on the

basis of classes of the unlearned samples. The connection weights are consid-

ered as cluster centroids taken in the fuzzy clustering, which is evolved using

the evolutionary quantum computing concept. The performance of the proposed

algorithm is tested on four multi-class datasets, e.g., IRIS, WINE, Glass, and

Dermatology. The performance of the dataset is evaluated on the parameters

that are accuracy, sensitivity, specificity, precision, and F-measure, respectively.

The proposed algorithm is also compared with other state-of-the-art approaches,

and it is found that the proposed algorithm outperforms in comparison to the

other state-of-the-art approaches.
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Chapter 6

Quantum inspired Stacked

Auto-encoder based Deep

Neural Network Algorithm

6.1 Introduction

Neural network learning techniques have been widely applied in a variety of

areas such as pattern recognition, natural language processing, and computa-

tional learning. Nowadays, the real-life datasets (e.g., image, signal, Web data)

are very complex, the classification of such dataset is very difficult with the con-

ventional neural network. The conventional neural network does not perform

well for complex datasets even on increasing number of hidden layers [7,90]. For

complex datasets such as image, signals, speech, video, Web data, the learning

of finer details can be done in more appropriate manner using the deep learning

concept [7]. Several researchers have proposed deep neural network with few

numbers of hidden layers [26–28]. Breakthroughs in deep learning have been

achieved since 2006 when Hinton proposed a novel deep structured learning ar-

chitecture [92]. Thus, only with few numbers of hidden layers, the complex data

can be classified efficiently. For classification of the complex dataset, dimen-

sions of the dataset is an important issue. To deal with such dataset stacked

auto-encoder based deep neural network is proposed. It can efficiently deal with

the dataset which requires dimensional reduction for better classification accu-

racy [7,40,93,94]. However, deep neural network based on stacked auto-encoder
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perform well on complex datasets, but proper selection of its learning parame-

ters is required to improve the performance. The deep neural structure designed

with the stacked auto-encoder uses gradient descent as the learning algorithm,

which need a proper selection of its learning rate parameter η to achieve good

performance [28,40,95,96,122]. In General the value of learning rate parameter

η is selected randomly between 0 and 1. Selection of the learning rate param-

eter in this way may cause the problem. If the appropriate selection of this

parameter is not done, then the problem of over-fitting or under-fitting with no

convergence may arise.

Therefore, to deal with this problem, this chapter presents a deep neural

network learning algorithm using stacked auto-encoder is further enhanced by

applying the quantum computing concept for evolving the learning rate param-

eter and it is named as Quantum inspired Stacked Auto-encoder based Deep

Neural Network Algorithm (Q-DNN). The Q-DNN formed using stacked auto-

encoder, in which gradient descent learning algorithm is being applied along

with the quantum computing concept to optimize its learning process. The

deep neural network formed using the stacked auto-encoder require three steps.

In the first step, unsupervised (pre-training) of each auto-encoder is done. The

pre-training process ensures lower training error as compared to the network

trained without pre-training process. Now, after training of each auto-encoder,

they are stacked on top of each other, and the output layer is added to the last

hidden layer of the stacked auto-encoder. Once, this network is formed, the su-

pervised learning (fine-tuning) of the whole network using the Backpropagation

algorithm is done to optimize learning parameters [28, 98, 99]. The proposed

algorithm is discussed in detail in subsequent sections.

6.2 Proposed Algorithm

Here, Q-DNN learning algorithm is proposed. The proposed algorithm forms

deep neural network architecture using the stacked auto-encoders. The training

of stacked auto-encoders is done using the gradient descent/Backpropagation

learning algorithm which is optimized using the quantum computing concept.

The evolutionary quantum computing concept is used to evolve the learning

rate parameter which is represented as ηquantt . The proposed Q-DNN is used to
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solve the two class problems as well as the multi-class problem. First of all, few

notations are discussed then the learning of proposed Q-DNN is discussed which

involves initialization of connection weights and learning rate parameter ηquantt .

6.2.1 Preliminaries

As first step is to do pre-training process of each stacked auto-encoder. There-

fore, during the pre-training process, the input dataset in the first layer is rep-

resented as X=(X1, X2, X3,........., X l), where each X i has n attributes rep-

resented as X i= (xi1, x
i
2,......, x

i
n). The basic architecture of pre-training of

Q-DNN is shown in Figure 6.1. However, the stacked auto-encoder consists of

auto-encoders stacked on top of each other where each encoder is trained sep-

arately. During the fine-tuning process, the input layer is only one, therefore,

the input dataset is X=(X1, X2, X3,........., X l), where each X i has n attributes

represented as X i= (xi1, x
i
2, ......, xin). The basic architecture of fine-tuning of

Q-DNN is shown in Figure 6.2.

6.2.2 Q-DNN Learning

The proposed algorithm involves the number of steps in forming the quantum

inspired stacked auto-encoder based deep neural network like, initialization of
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Figure 6.1: Pre-training of Q-DNN.
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Figure 6.2: Fine-tuning of Q-DNN.

parameters, pre-training process, and fine-tuning process which are discussed

next.

Initialization of Parameters

Before start training, we initialize connection weights, and learning rate param-

eter ηquantt for the pre-training of each auto-encoder using the following formu-

lation.

Wtj = rand(); (6.1)

The Wtj is the connection weights between the input layer and hidden layer.

The connection weights (Wjt)
′

between the hidden layer and output layer can

be represented as follows [97]:

(Wjt)
′
= (Wtj)

Transpose (6.2)

Once the connection weights (Wtj) of hidden layer and (Wjt)
′

of output layer is

decided, the learning rate parameter ηquantt can be represented in terms of the

qubit as follows:

ηquantt = (q1t |q2t ) (6.3)
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To evolve the value of the learning rate parameter ηquantt , here two qubits have

been used. As the real coded value of the learning rate parameter ηrealt must

be between (0 1). Thus, using two qubits the search space between 0 and 1 is

divided between four subspaces to find the real coded value of the learning rate

parameter ηrealt using the observation process which is discussed in Section 2.2.

The real coded value of the learning rate parameter ηrealt may or may not be

optimal in the first generation. Therefore, we need to update qubit of learning

rate parameter ηquantt . The qubit of ηquantt is updated using the error value of

each generation Et, global error value Eglobal and corresponding binary values

st and sglobalt of their qubit. The qubits of ηrealt are updated using the quantum

update process discussed in Section 2.2 and with the help of Table 6.1.

Along with initialization of connection weights and learning rate parameter

in terms of qubits ηquantt , some more parameters are initialized. The parameter

like the error is initialized as Eglobal=∞ of pre-training, binary bits value matrix

of the quantum bit corresponding to the value of error sglobalt = 0, the connection

weight matrix W h
global[ ]= [0], and learning rate parameter ηrealglobal = 0 are also

initialized. Here global word in parameters represent the best value of these

parameters in all generations. Using all above parameters, the pre-training

algorithm is discussed next:

Pre-training Algorithm for Auto-encoder

As discussed earlier a deep neural network architecture using the stacked auto-

encoder is made of auto-encoders stacked on top of each other. Therefore,

training of each auto-encoder is required which is called pre-training. Here,

Table 6.1: Qubits Update for Q-DNN.

st sglobalt (Et > Eglobal) or (Efine−tune
t > Efine−tune

global ) ∆θ

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0.03 ∗ Π
1 0 true 0
1 1 false 0
1 1 true 0
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the following algorithm shows the pre-training process of an auto-encoder with

evolutionary quantum computing concept. The overall process of pre-training

of Q-DNN in the form of Algorithm 6.1 is presented next.

Algorithm 6.1 Algorithm for Pre-training.

1: Take Input sample as X=(X1, X2, X3,........., X l) where X i= (xi1, x
i
2,......,

xin).
2: Select number of nodes in input layer equals to number of features (n) of

the input dataset.
3: Select number of neurons in an auto-encoder (hidden layer) equals to half

of its number of input nodes.
4: Select number of output layer neurons equals to numbers of nodes in input

layer.
5: Initialization of parameters.
6: Eglobal= ∞
7: Sglobalt = 0;
8: W h

global[ ]= [0]
9: h is index for hidden layer.

10: ηrealglobal = 0

11: Initialize the connection weights, learning rate parameters ηquantt using
qubits.

12: Wtj[ ]= rand();
13: (Wjt[ ])

′
= (Wtj[ ])Transpose

14: for t= 1 to z
15: Apply observation process as discussed in Section 2.2, to get real coded

value of ηquantt .
16: Execute the gradient descent algorithm to evaluate connection weights

and fitness function (Et).
17: If (Eglobal ≤ Et)
18: W h

global[ ]= Wt[ ]

19: ηrealglobal = ηrealt

20: Eglobal = Et
21: Update qubit for ηquantt+1 using qubit update process by selecting proper

value of ∆θ using Table 6.1
22: else
23: update qubit for ηquantt+1 using qubit update process by selecting proper

value of ∆θ and Table 6.1
24: endif
25: endfor
26: Repeat the Step-11 to Step-25 until no change is found in Eglobal in consec-

utive iterations or till user define generations (z).
27: return(Eglobal, Wglobal[ ], ηrealglobal)

The above algorithm shows the pre-training process of an auto-encoder,

the same process is followed for each auto-encoder. Using this, the connec-

tion weights for the first hidden layer of deep neural network architecture is

obtained. Now, we apply the same algorithm for the second auto-encoder by
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assuming the hidden layer of the previous auto-encoder as the input layer of

the new auto-encoder. The number of hidden layer neurons in auto-encoder is

selected equal to the half of the input layer nodes. The number of output layer

neurons are equal to the nodes in the input layer. In the proposed Q-DNN

we have trained three auto-encoders. Thus, we have formed three deep neural

networks having a single layer, two layers, and three layers.

Once, the pre-training process of each auto-encoder is done, we apply the

fine-tuning process for the final training of Q-DNN. The hidden layer and con-

nection weights evolved during pre-training of each auto-encoder are fixed in

the bottom-up fashion. The top hidden layer is connected to the output layer

in which the number of neurons will be equal to the number of classes of input

dataset [100]. Initialization of random weights for output layer is also done.

Once, all these layers and connection weights are fixed, the fine-tuning process

starts. The fine-tuning process starts with the initialization of some parameters

and which is discussed next:

Fine-tuning Process

The fine-tuning process starts with initialization of some parameters as er-

ror (Eglobal)
Fine−tune= ∞ of fine-tuning process, the binary bits matrix cor-

responding to quantum bit of error value (Sglobalt )Fine−tune = 0, the connec-

tion weights (W h
global[ ])Fine−tune= [0] of fine-tuning process, learning parameter

(ηglobal)
Fine−tune = 0 of fine-tuning. The overall process of fine-tuning of Q-DNN

in the form of Algorithm 6.2 is presented next.

Algorithm 6.2 Algorithm for Fine-tuning.

1: Take Input sample as X=(X1, X2, X3,........., X l) where X i= (xi1, x
i
2,......,

xin).
2: Connect last hidden layer to the output layer.
3: Initialization of parameters.
4: (Eglobal)

Fine−tune= ∞
5: (Sglobalt )Fine−tune = 0;
6: (W h

global[ ])Fine−tune = [0]
7: (ηglobal)

Fine−tune = 0
8: Initialize connection weights (W h[ ])Fine−tune= (W h

global[ ]) (final weights for
particular hidden layer achieved during pre-training process of auto-encoders
along output layer weights which is initialized randomly.

9: for t= 1 to z
10: Apply observation process discussed in Section 2.2, to get real coded

value of (ηquantt )Fine−tune.
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Algorithm 6.2 (Continued)

11: Execute the Backpropagation algorithm to evaluate connection weights
and fitness function (Et)

Fine−tune.
12: If((Eglobal)

Fine−tune ≤ (Et)
Fine−tune)

13: (W h
global[ ])Fine−tune= (Wt[ ])Fine−tune

14: (Wt[ ])Fine−tune is weight matrix achieved after completion of Back-
propagation.

15: (ηFine−tuneglobal )real = (ηt)
Fine−tune)real

16: (Eglobal)
Fine−tune = (Et)

Fine−tune

17: Update qubit for (ηt+1)
Fine−tune using qubit update process as dis-

cussed in Section 2.2 and Table 6.1.
18: else
19: Update qubit for (ηt+1)

Fine−tune using qubit update process as dis-
cussed in Section 2.2 and Table 6.1.

20: endif
21: endfor
22: Repeat the step-10 to step-21 until no change found in (Eglobal)

Fine−tune

value or till user defined generations.
23: return ((Eglobal)

Fine−tune, (W h
global[ ])Fine−tune, and (ηFine−tuneglobal )real).

In this way, the fine-tuning process of the stacked auto-encoder based deep

neural network is done. After completion of the fine-tuning process, the weights

and learning rate parameter are evolved as (W h
global[ ])Fine−tune and (ηFine−tuneglobal )real,

respectively. Thus, using these parameters, the Q-DNN architecture is formed.

Now, the performance of proposed Q-DNN is evaluated on benchmark datasets

which are discussed in detailed next.

6.3 Experiment Evaluation

6.3.1 Experiment Setup

The proposed Q-DNN is implemented in Matlab and on an Intel core, I-5 pro-

cessor with 8 GB RAM on the Windows-7 operating system. The performance

of proposed Q-DNN is evaluated on, the BUPA Liver Disorder dataset, Iono-

sphere dataset, and the PIMA Indians Diabetes dataset [123]. Along with these

datasets, the MNIST dataset is also used to evaluate the performance of pro-

posed Q-DNN approach.

To evaluate the performance of proposed Q-DNN, we have divided BUPA

Liver Disorder dataset, Ionosphere dataset, and PIMA Indians Diabetes dataset,

into 70-30 training-testing ratio. The training set of MNIST dataset is composed
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of 6000 out of 60000 samples (600 samples from each class randomly). Similarly,

testing data is composed of 1000 samples out of 10000 samples (100 sample from

each class randomly).

6.3.2 Results

The performance of the proposed Q-DNN has been evaluated for three different

neural network architectures. Firstly, with a single hidden layer architecture

and then with two hidden layers architecture and then with three hidden layers

architecture. The performance of the proposed Q-DNN in terms of accuracy

with average and maximum value is presented in Table 6.2. It can be observed

from the results that mean best results for the BUPA Liver Disorder dataset

is achieved as 95.66% with neural network architecture having two numbers of

hidden layers. In addition to this, the mean worst result for BUPA Liver Disor-

der dataset obtained as 91.58 % with neural network architecture having three

numbers of hidden layers. Similarly, for the Ionosphere dataset, and PIMA In-

dians Diabetes dataset the mean best results obtained are 97.53 % and 92.15

%, respectively with neural network architecture having two numbers of hidden

layers. The mean worst results achieved for Ionosphere dataset and PIMA Indi-

ans Diabetes dataset are 91.22 % and 86.47 %, respectively with neural network

architecture having three numbers of hidden layers. The results for the BUPA

Liver Disorder dataset, Ionosphere dataset, and PIMA Indians Diabetes dataset

in terms of sensitivity and specificity are shown in Table 6.3. The results for

the BUPA Liver Disorder dataset in terms of the maximum value of sensitivity

and specificity are 95.16 % and 97.56 % with two numbers of hidden layers.

Table 6.2: Classification Accuracy of Q-DNN.

BUPA Liver Disorder Ionosphere dataset PIMA Indians Diabetes

One Layer Max 95.14 93.26 90.4

Mean 94.25 92.58 88.99

Two Layers
Max 96.11 98.07 93.4

Mean 95.66 97.53 92.15

Three Layers
Max 92.33 92.3 87.8

Mean 91.58 91.22 86.47
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The results in terms of the minimum value of sensitivity and specificity with

neural network architecture having three number of hidden layers are 90.98 %

and 92.68 %. The maximum value of sensitivity and specificity for Ionosphere

dataset and PIMA Indians Diabetes dataset are 98 %, 98 % and 95 %, 92.3 %,

respectively with neural network architecture having two numbers of hidden lay-

ers. The minimum value for the same dataset achieved as 90.3 %, 94.23 % and

92 %, 84.6 %, respectively with neural network architecture having three num-

bers of hidden layers. It shows that the performance of the proposed Q-DNN

may decreases when number of hidden layers for small datasets increases.

In the same way, the proposed Q-DNN is tested on MNIST dataset. We

have already discussed that only 6000 samples have been taken for the training

of Q-DNN and 1000 samples have been taken for the testing purpose. The

results for MNIST dataset is presented in terms of multi-class parameters which

are presented in Table 6.4. It can be observed from the results of the MNIST

dataset that, the best value of average accuracy is 99.04 % with three numbers

of hidden layers and worst value of average accuracy is 96.8 % with one hidden

layer. The other parameters like the error, PPV, NPV, sensitivity, specificity,

and F − score [107] are also reported for the MNIST dataset in Table 6.4.

It can be easily observed from the results that the proposed Q-DNN perform

better on MNIST dataset if the number of hidden layers increases. It means

the performance of the proposed Q-DNN increases by increasing the number of

hidden layers for large datasets.

6.3.3 Comparison with State-of-the-Art Approaches

The performance of the proposed Q-DNN in terms of average accuracy is com-

pared with some existing approaches. Table 6.5, shows a comparison of the

proposed Q-DNN in terms of average accuracy with various algorithms as Naive

Bayes, SVM, Deep belief network, SVM with CPON, Q-BNN, AQ-BNN, Back-

propagation algorithm, and stacked auto-encoder using Backpropagation algo-

rithm [27,124].
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Table 6.3: Sensitivity and Specificity of Q-DNN.

No of Hidden Layer Parameters BUPA Liver Disorder Ionosphere dataset PIMA Indians Diabetes

One Layer

Sensitivity
Max 95.16 92.3 90

Mean 94.255 91.55 89.11

Specificity
Max 95.12 94.2 90.7

Mean 94.652 92.89 88.862

Two Layers

Sensitivity
Max 95.16 98 95

Mean 93.99 97.154 94.51

Specificity
Max 97.56 98 92.3

Mean 96.48 97.256 91.26

Three Layers

Sensitivity
Max 91.9 90.3 92

Mean 90.98 89.46 91.456

Specificity
Max 92.68 94.23 84.6

Mean 91.226 93.295 83.24
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Table 6.4: MNIST Dataset Results of Q-DNN.

One Layer Two Layers Three Layers

Accuracy 96.8 97.6 99.04

Error Rate 0.0318 0.234 0.0096

PPVµ 84.1 88.3 95.2

NPVµ 98.23 98.7 99.46

Sensitivityµ 84.1 88.3 95.2

Specificityµ 98.23 98.7 99.46

F − scoreµ 84.1 88.3 95.2

PPVM 84.53 88.74 95.31

NPVM 98.23 98.7 99.46

SensitivityM 84.1 88.3 95.2

SpecificityM 98.23 98.7 99.46

F − scoreM 84.13 88.52 95.25

There are three different Q-DNN architectures are formed by varying the

number of hidden layers as one, two, and three. Therefore, the comparison is

made between all Q-DNN architecture with stacked auto-encoder using back-

propagation with one, two, and three hidden layers as shown in Table 6.5. The

proposed Q-DNN with two hidden layers gives the best results in terms of av-

erage accuracy for datasets like BUPA Liver Disorder, and PIMA Indians Di-

abetes in comparison to other methods. In the case of Ionosphere dataset, the

best result in terms of the average accuracy is achieved by Deep belief net-

works while the result of Q-DNN is close to the best result. On the other hand,

for MNIST dataset, the proposed Q-DNN with three hidden layers gives best

results in terms of average accuracy in comparison with other methods. It is

also observed that the Backpropagation algorithm with the random value of the

learning parameter gets trapped in the problem of local minima which leads to

unsatisfactory results. It is also observed from the results that the proposed

Q-DNN perform better for all datasets in comparison to stacked auto-encoder

for all three architectures having one, two and three hidden layers.
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Table 6.5: Comparison of Proposed Algorithm with other Classifiers in Terms of Classification Accuracy.

Algorithm PIMA Indians Diabetes BUPA Liver Disorder Ionosphere dataset MNIST dataset

Naive Bayes 76.62 57.14 77.78 -

Single-layer SVM 74.03 69.6 88.89 95.3

Deep belief networks 70.7 58.77 98.45 96.54

SVM with CPON 83.11 77.14 97.22 98.84

Q-BNN 86.2 90.83 93.15 -

AQ-BNN 88.89 95.08 93.81 -

Backpropagation algorithm 88.61 83.54 92.2 93.2

Stacked Auto-encoder using Backpropagation

85.34a 92.13a 87.15a 91.32a

87.13b 93.22b 89.74b 92.58b

86.51c 91.72c 87.22c 94.33c

Proposed Algorithm (Q-DNN)

88.99a 94.25a 92.58a 96.8a

92.15b 95.66b 97.53b 97.6b

86.47c 91.58c 91.22c 99.04c

a Results of Stacked Auto-encoder using Backpropagation and Q-DNN having single layer.
b Results of Stacked Auto-encoder using Backpropagation and Q-DNN having two hidden layers.
c Results of Stacked Auto-encoder using Backpropagation and Q-DNN having three hidden layers.
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The results show that the proposed Q-DNN performs far better in terms of

accuracy with respect to other state-of-the-art approaches. The proposed algo-

rithm forms, three deep neural network architectures with a single layer, two

layers, and three layers. Here, deep neural network with two hidden layers gives

good results for small size dataset while the deep neural network with three

hidden layers gives good results for MNIST dataset. The small dataset faces

the problem of overfitting as the number of hidden layer increases in the deep

neural network [125, 126]. Therefore the performance decreases on increasing

more number of hidden layers for classification of the small dataset. Here, the

comparison is also made on classification accuracy of proposed Q-DNN with

other deep learning algorithms [27, 127–131] on the MNIST dataset as shown

in Table 6.6. It can be observed from Table 6.6, that there is a difference be-

tween classification accuracy of the stacked auto-encoder using Backpropagation

tested in our approach and stacked denoising auto-encoder tested by [127]. The

difference between the accuracy of both stacked auto-encoders is due to the

different value of the learning rate parameter (η). Evolving the (η) using the

quantum computing concept helps to get optimal results. Thus, the proposed

Q-DNN achieves better classification accuracy as compared to the classification

accuracy achieved by both the stacked auto-encoders with few numbers of hid-

Table 6.6: Comparison of Q-DNN with Deep Learning Algorithm on MNIST
Dataset.

Method Classification Accuracy (%)

SVM with CPON (4 layers) 98.84

Stacked Denoising Auto-encoder (3 layers) 98.72

Deep Boltzmann Machines 99.05

k-Sparse Auto-encoder 98.65

Shallow Denoising/Dropout Auto-encoder 98.4

Stacked FC-WTA Auto-encoder 98.89

Restricted Boltzmann Machines 98.4

Winner-Take-All Restricted Boltzmann Machines 98.02

Transformation 97.56

Stacked Auto-encoder using Backpropagation (3 layers) 94.33

Q-DNN (3 layers) 99.04
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den layers. The layer-wise unsupervised learning (per-training) and supervised

learning (fine-tuning) help to get optimal results with few numbers of hidden

layers [99]. It can also be observed from Table 6.6, that the classification accu-

racy of proposed Q-DNN and Deep Boltzmann Machines [128] are very similar.

However, the proposed Q-DNN achieves this classification accuracy with few

numbers of hidden layer neurons as compared to Deep Boltzmann Machines.

6.4 Summary

In this chapter, we have enhanced deep neural network using stacked auto-

encoder by applying the quantum computing concept for evolving the learning

rate parameter which is named as Q-DNN. The proposed Q-DNN use to solve

the two class problem as well as the multi-class problem. In the proposed algo-

rithm first, we learn each auto-encoder using the pre-training process. Then after

learning of each auto-encoder, we stacked it, top of each other and connect with

output layer. Then we perform the fine-tuning process with optimized learning

algorithm using the quantum computing concept. Using the proposed algorithm

three deep neural network architectures are formed having a single layer, two

layers, and three layers. The Q-DNN forms deep neural network architecture

with few numbers of hidden layers using the layer-wise unsupervised learning

(pre-training) and supervised learning (fine-tuning). The performance of pro-

posed Q-DNN is evaluated on benchmark two class datasets like PIMA Indians

Diabetes, BUPA Liver Disorder, and Ionosphere dataset along with multi-class

MNIST dataset. The proposed Q-DNN gives good results for small size datasets

with two numbers of hidden layers and for MNIST dataset with three numbers

of hidden layers. The performance of proposed Q-DNN is compared with other

state-of-the-art approaches, and it is found that proposed Q-DNN outperform

in comparison of other state-of-the-art approaches.
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Chapter 7

Offline Signature Verification

System using Enhanced

Quantum inspired Neural

Network

7.1 Introduction

In this chapter, we proposed an Enhanced Quantum inspired Neural Network

Learning Algorithm (EQNN-S) which is used to develop offline signature veri-

fication system. This algorithm is enhanced version of proposed NQ-BNN al-

gorithm by introducing a new threshold boundary parameter to get optimal

value of the threshold. The proposed EQNN-S forms a neural network archi-

tecture constructively by adding neurons in the hidden layer. The proposed

EQNN-S is four layer architecture with one input layer, two hidden layers and

an output layer. The connection weights and threshold have been evolved using

the quantum computing concept. The proposed EQNN-S algorithm is used to

develop an offline signature verification system. However, to develop efficient

offline signature verification system, extraction of unique features is required.

In the proposed EQNN-S we have extracted unique features like the number of

loops, dimensions, dense patches, angle, and bounding caps. The performance

of proposed EQNN-S is compared with other state-of-the-art approaches, and it

is found that proposed algorithm performs better in comparison with other ap-

proaches. The proposed EQNN-S algorithm with threshold boundary parameter

is discussed next.
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7.2 Proposed Approach

The proposed algorithm works in three phases, in first phase pre-processing of

the signature is done which is discussed in Section 2.5. In second phase extrac-

tion of unique features is done and then in the third phase, the classification

of these features is done using the proposed EQNN-S. The basic architecture of

the proposed system is shown in Fig. 7.1.

7.2.1 Analysis of Features for Signature Images

Firstly, original and forged signatures of a few people have been collected in the

form of paper, then these are scanned to get signatures in the form of an image.

Due to variation in the pen, discrepancies, and background noise in the images

we first make these images on the same scale [132]. To bring images on the same

scale, we pre-process all the images as discussed in Section 2.5.

The pre-processing helps to standardize a given signature image. Once the

pre-processing is done, the feature extraction process [106, 133, 134] is carried

out. This process involves analysis of the number of loops, dimensions, dense

patches, angle, and bounding caps of signature which is discussed next.

Number of Loops

The number of loops in a signature is counted, and this serves as the first feature

of the signature as shown in Fig. 7.2.

Dimensions

The exact height and width of the signature are calculated. The image is also

cropped according to the exact width and height for further use as shown in

Fig. 7.3.

Figure 7.1: Basic Architecture of EQNN-S.
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Fig. 7.2: Counting the Number of Loops.

Figure 7.3: Signature’s exact Width and Height.

Vertical and Horizontal Dense Strips

This particular computation gives 20 feature values. Horizontal stripes running

across the image are considered. Among these, the density of the five most dense

strips is recorded. Furthermore, the distances of these strips from the origin are

also noted. Similarly, the vertical stripes give the other ten feature values.

Dense Patch

Like the previous one, square patches of a defined size have been taken into

consideration. The density of black pixels in these patches is calculated as

shown in Fig. 7.4. The density of the most five dense regions serves as feature

values along with their x and y coordinates. This process gives us 15 feature

values.

Angle

On any given vertical line of pixels, the topmost and bottommost black pixels are

considered. The average of their distance from the top is calculated. This gives

the approximate middle point of the signature that lies on that vertical line.

This computation is repeated for each vertical line. The computed center points

Fig. 7.4: Square Dense Patch of Signature.
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Fig. 7.5: Bounding Caps of Signature.

of the signature on each vertical line are interpolated to give a straight line. The

angle that this line makes with the base gives the angle of the signature.

Bounding Caps

The image is divided into four vertical patches of uniform width. The three lines

that help to make the strips, the distance of the first black pixel from the top

is calculated. These three distances serve as feature values. Similarly, distances

are calculated for the first pixel from the bottom of the signature as shown in

Fig. 7.5. Here, the search for the first black pixel is done only till half the height

of the image. In case, no such pixel is found, the corresponding value is set to

a fixed value indicating no pixel has been found.

As presented in Table 7.1, total 45 feature values serve to define a signature

image. These values are used as the input for the EQNN-S.

7.2.2 Preliminaries

The signature classification belongs to a multi-class problem, as each person is

considered as an individual class. This multi-class problem is solved using the

multiple two-class classification problems. The signatures corresponding to e

persons represents the e number of classes. For solving a multi-class classification

problem as multiple two-class classification problems, let us assume that samples

P=(P1, P2, P3, ...., Pe) denotes the categories of e persons corresponding to their

Table 7.1: Description of Extracted Features.

Feature Description Count of features

Number of loops The number of loops in the given signature image 1

Angle The angle that the image makes with the base line 1

Dimensions The exact width and height of the signature 2

Dense patch Square patch with highest densities 15 (5 density and 5 of each coordinate)

Horizontal strips The most dense horizontal strips 10 (5 density and 5 y-coordinates)

Vertical strips The most dense vertical strips 10 (5 density and 5 x-coordinates)

Bounding Caps The distances from fixed points on the top and bottom edges 6

Total 45 values
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signatures. Let a category of lth person denoted by (Pl), is a collection of varia-

tion of signatures of lth person. Let this is denoted by Pl=(X1
l , X

2
l , X

3
l , ...., X

c1
l )

having c1 number of signatures, whereX i
l=(xli, x

2
i , x

3
i , ...., x

n
i ) where n is the num-

ber of attributes in one signature of input sample. The signature corresponding

to the lth person, (Pl) is considered as one class while signatures corresponding

to P -Pl represent other class. The basic architecture neural network of E-QNNS

is shown in Figure 7.6.

7.2.3 Learning of Hidden Layers

Hidden layer learning of multiple two class classification problems is initiated

by considering the individual e number of two class classification problems. It

means when learning for the signature corresponding to the first person P1,

its sample (X1
1 , X

2
1 , X

3
1 , ...., X

c1
1 ), where X i

1= (x1i , x
2
i , x

3
i , ...., x

n
i ) are taken as in-

stances for say class A. The remaining samples corresponding to signatures of

persons (P −P1) =(Y 1
1 , Y

2
1 , Y

3
1 , ...., Y

c2
1 ), where Y i

1= (y1i , y
2
i , y

3
i , ...., y

n
i ), are taken

as instances for the class B. Thus, the number of input layer nodes is equal to

n. The total samples belonging to categories of P are divided into two classes

A and B. The learning of hidden layer is done with initialization of parameters

as follows:
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Figure 7.6: Architecture of EQNN-S Neural Network.
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Initialization and Representation of Parameters

Firstly, a neuron is selected in the first hidden layer, and its quantum weights

(W quant
i )g are initialized in terms of quantum bits. Along with initialization of

quantum weights, the parameters sum∗, sumg, max netA, min netA, max netB,

andmin netB are also initialized. The parametersmax netA, min netA, max netB

and min netB are used as boundary parameters for finding the proper thresh-

old of neurons. Now, the quantum weights (W quant
i )g are converted into a real

weights represented as (W real
i )g using the observation process discussed in Sec-

tion 2.2. Now, the real weights (W real
i )g is applied to input dataset to calculate

the boundary parameters for finding the threshold.

Boundary Parameters Calculation

The threshold (λreali )t of the neuron is evolved using the quantum computing con-

cept and boundary parameters. Here, to select threshold, min net and max net

parameters are introduced. These parameters are initialized as ∞ and −∞, re-

spectively. Now, the value of these parameters is found from the cartesian

product of input sample of both classes and connection weights (W real
i )g. These

values help to find out actual distribution of projection of input dataset with

connection weights. Thus, it gives more diversity to search appropriate value of

threshold and avoid local maxima problem.

This parameter helps to find the boundary of the projection of input sample

with connection weights and helps to select a threshold within this range. Thus,

it helps to find the threshold in the defined range. The following formulations

shows the calculation of boundary parameter.

(TBP )maxg = max(max netA,max netB); (7.1)

(TBP )ming = min(min netA,min netB); (7.2)

Thus, the threshold in terms of these boundary parameters is formulated as

follows:

(λreali )t =


(TBP )ming if (λreali )t < (TBP )ming

(TBP )g if (TBP )ming ≤ (λreali )t ≤ (TBP )maxg

(TBP )maxg if (λreali )t > (TBP )maxg

(7.3)

The TBPmin
g , and TBPmax

g parameters are calculated corresponding to the

weights and input dataset. Now, the quantum threshold (λquanti )t is initialized in

terms of qubits. Along with these parameters, some more parameters count1=0,

count2=0, sumt, and sum∗λ are also initialized. Using the boundary parameter
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Table 7.2: Qubits Update for EQNN-S.

sgij s∗ij sumg < sum∗ ∆θ
sumt < sum∗λ

0 0 false 0
0 0 true 0
0 1 false −0.03 ∗ Π
0 1 true 0
1 0 false 0
1 0 true 0.03 ∗ Π
1 1 false 0
1 1 true 0

and observation process, the real coded value of threshold (λreali )t is achieved.

However, this is not final value of the threshold; the threshold is finalized using

Eq.(7.1), Eq.(7.2), and Eq.(7.3). After getting the final value of the threshold,

the real value weight matrix is applied to input dataset and then netA and netB

values are calculated. This netA and netB values are compared with (λreali )t

for learning of the system and the parameters count1, count2, and sumt are

obtained. Here we are using step activation function for this comparison. We

assign the maximum value to sum∗λ by comparing the value of sumt and sum∗λ.

The qubits of the threshold are updated using the quantum update process

as discussed in Section 2.2 and Table 7.2. The threshold function returns the

sumg as output by assigning the value of sum∗λ to sumg. The value of sumg is

compared with the total number of the input sample. If its learn we stop learning

process else, we check the number of generations to update quantum weights

using the quantum update process as discussed in Section 2.2 and Table 7.2. If

all samples are not learned of class (P1) and (P−P1), then we add more neurons

for unlearned samples and follow the same process of initialization of connection

weights and threshold using the quantum computing concept for subsequent

neurons. Once the learning for dataset P1 and P − P1 is over, we add new

neuron for the learning of dataset P2 and P − P2 in the existing architecture.

Learning of Second Hidden Layer

The second hidden layer contains one neuron corresponding to each sub-neural

network. The sub-neural network is the number of neurons in first hidden layer

corresponding to signature of each person. If there are x sub-neural networks,

then there will be x number of neurons in the second hidden layer. The same

process is applied here for deciding connection weights of second hidden layer

neuron as applied to the first hidden layer learning. The output of each second

hidden layer number will be a unique number which is according to the person

for which a particular sub-neural network is trained. If the sub-neural network
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trained for P1, then output from the second hidden layer neuron is 1 if the

signature matches, else it will be 0. In the same way, if the sub-neural network

is trained for Pl person, then the output from the second hidden neuron is l if

the signature matches, else 0.

The overall process is explained in the form of Algorithm 7.1 is presented

next :

Algorithm 7.1 Algorithm for EQNN-S.

1: Take input sample as (X1
1 , X

2
1 , X

3
1 , ...., X

c1
1 ) and (Y 1

1 , Y
2
1 , Y

3
1 , ...., Y

c2
1 )

corresponding to each person.
2: Take first neuron with the weights W quant

g as W quant
g =

(Qw1, Qw2, Qw3, ......, Qwe) where g = 1, ...,m; m is the number of
iterations to update connection weights.

3: sum∗ = 0.
4: for g=1 to m
5: Initialization of more parameters.
6: max netA = −∞;
7: min netA =∞;
8: max netB = −∞;
9: min netB =∞;

10: Call observation process((W quant
i )g)

11: for i=1 to c1
12: netA(i) =

∑
(W real

i )g ×X i
1

13: max netA = max(max netA, netA(i))
14: min netA = min(min netA, netA(i))
15: endfor
16: for i=1 to c2
17: netB(i) =

∑
(W real

i )g × Y i
1

18: max netB=max(max netB, netB(i))
19: min netB=min(min netB, netB(i))
20: endfor
21: Call Quantum Separability Parameter((W real

i )g)
22: if(sumg ≥ (c1 + c2) )
23: Stop learning.
24: Assigned new dataset to class A as Pl+1 and class B as (P − Pl+1).
25: Repeat Step-1 to Step-23 for learning of class Pl+1 and (P − Pl+1).
26: else
27: Evaluate sumg, sum∗ update quantum bits of weights by using

Table 7.2.
28: sum∗ = max(sum∗, sumg)
29: endif
30: if ((g == m) ∧ (sum∗ ≤ (c1 + c2) ))
31: Add new neuron for unlearned samples ((c1 + c2)-sum

∗) and finalize
its weights Step-2 to Step-29.

32: For second neuron the number of samples will be ((c1 +c2)-sum
∗) not

(c1 + c2).
33: endif
34: g=g+1
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Algorithm 7.1 (Continued)

35: endfor
36: Repeat the process of adding hidden layer neurons for each person from

Step-1 to Step-35.

Quantum Separability Parameter()

Step-1 : Initialization of different parameters

for t=1 to z

z is user defined variable to update (λquanti )t

(λquanti )t = (αti | αti+1);

count1=0;

count2=0;

sum∗λ = 0;

Call observation process(λquanti ) to generate real value (λreali )t

using Eq.(7.1), Eq.(7.2), and Eq.(7.3)

for i=1 to c1

netA(i) =
∑

(W real
i )g ×X i

1

if(netA(i) ≤ (λreali )t)

increase count1 by 1;

endif

endfor

for i=1 to c2

netB(i) =
∑

(W real
i )g × Y i

1

if(netB(j) > (λreali )t)

increase count2 by 1;

endif

endfor

sumt = count1 + count2

sum∗λ=max(sum∗λ, sum
t)

update quantum bits for (λquanti )t+1 by using Table 7.2.

Generate updated real coded value of (λreali )t+1 corresponding to

(λquanti )t+1 by using observation process and Eq.(7.1), Eq.(7.2), and

Eq.(7.3).

sumg=sum
∗
λ

t=t+1

endfor

return sumg;
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7.2.4 Output Layer Learning

Once samples of all the classes are learned to form the hidden layer for data

P1 to Pe, then the learning of output layer starts. The proposed algorithm

classify the signature as original or forge. Therefore only one neuron is required

at the output layer. The connection weights between the second hidden layer

and the output layer neuron are unity. The second hidden layer neurons give

output as person number of class number. Hence, during testing, according to

input signature, the output layer will get a unique number or 0, which specifies

whether a signature is correctly classified or not.

7.3 Experimental Evaluation and Discussion

7.3.1 Experimental Setup

The proposed algorithm has been implemented in two parts. The first part in-

cludes processing of the signature image and extraction of features which are

implemented in Matlab (Version 7.12.0.635 (R2011a)). The second part consists

of training of the neural network and then its testing, which has been imple-

mented in Java (Version 1.8.0 40). The two implementations are done on Intel

i-5 4th generation processor with 6 GB RAM. The algorithm is tested on a

manually prepared database of signatures.

To train and test the proposed algorithm, we have taken the signatures

of 250 people. Ten signatures (seven original + three forged) of each people

have been taken. Since all the signatures are collected in the copy form, these

signatures are scanned to get in image form. These signatures are then pre-

processed, and the required features are extracted. Table 7.1, shows the number

of extracted features, which is given as input to the proposed neural network

learning algorithm.

To judge the performance of the proposed algorithm, the dataset is divided

into three different sets. In the first case, known as 60-40, 60% dataset is used

for training and the rest 40% for testing. In the second case 70-30, 70% dataset

serves as training data, and the remaining 30% serves as testing data. In the

third case, 10-fold cross-validation scheme is applied in which 90% of data has

been used for training purpose and remaining 10% is used for testing purposes.

This process is repeated ten times. The partitioning detail of the dataset is

given in Table 7.3.
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Table 7.3: Distribution of Signature Dataset.

Data Partition Training Testing

60-40 1400 1000

70-30 1700 700

10-fold cross validation 2160 240

Furthermore, to compare the results, the same partitions of the dataset is

used to investigate the classification performance using SVM, MLP, BPNN, and

Naive Bayes classifier.

It is clear from the results presented in Table 7.4 that EQNN-S outperforms

the established SVM, MLP, Backpropagation, and Naive Bayes classifier. This

improvement in classification is mainly due to the two reasons. Firstly, the

unique features have been selected to characterize signature. Secondly, the clas-

sification of the signature dataset using the evolutionary quantum-based neural

network classifier. The quantum computing concept provides exploration due

to which the large search space is achieved to get the optimal value. The quan-

tum rotation gate helps to achieve exploitation which saves the algorithm from

getting trapped in the local maxima problem. The classification accuracy for

60-40% partition is 95.55%.

The classification accuracy of EQNN-S for 70-30% partition is 95.83%, which

is higher than 60-40% and hence reflects the necessity of a proper training set.

In the 10-fold cross-validation test, the accuracy reaches to 96.23% which shows

improvement with the increase in the training set. The SVM, MLP, Backpropa-

gation, and Naive Bayes classifier also show an improvement in the classification

accuracy when the training data set is increased. However, the results are still

overshadowed by the performance of EQNN-S. This further supports our previ-

ous result that accuracy improves if the training set is increased in size.
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Table 7.4: Performance of EQNN-S with Other Classifiers on Different Parameters.

Parameters 60-40 70-30 10-fold cross validation

EQNN-S SVM MLP BPNN Naive Bayes EQNN-S SVM MLP BPNN Naive Bayes EQNN-S SVM MLP BPNN Naive Bayes

Average Accuracy 95.55 71.11 85.24 88.56 82.2 95.83 72.61 86.73 89.48 82.6 96.23 72.91 87.52 89.91 73.61

PPVµ 93.1 78.89 85.15 78.25 95.31 92.31 78.70 84.52 78.55 81.81 92.31 55.81 84.11 78.54 58.47

NPVµ 96.12 59.25 65.87 58.97 88.40 96.56 69.41 73.52 63.58 83.44 97.21 81.54 78.24 69.81 66.27

Sensitivityµ 93.25 59.26 84.68 75.42 82.43 94.12 63.89 87.61 78.51 85.13 95.01 66.67 89.46 80.75 76.48

Specificityµ 88.89 78.89 84.25 81.45 83.78 91.67 81.94 85.91 82.46 81.08 91.67 73.61 87.52 83.16 72.83

F − scoreµ 93.17 71.11 78.25 75.26 88.40 93.21 70.229 79.81 77.16 83.44 93.64 60.76 80.54 79.28 66.27

PPVM 94.44 78.05 85.46 83.15 95.83 94.44 80.09 88.19 84.16 84.72 94.44 83.33 89.55 85.54 75.93

NPVM 97.27 71.06 91.46 85.61 57.65 97.30 73.61 92.58 88.16 83.33 97.33 79.73 93.46 90.15 72.71

SensitivityM 93.50 59.26 66.85 63.75 81.94 94.31 63.89 68.24 64.21 84.72 95.46 66.67 70.15 67.82 75.83

SpecificityM 88.89 78.89 85.54 81.25 83.33 91.67 81.94 86.75 82.65 80.55 91.67 73.61 87.21 83.35 72.5

F − scoreM 93.97 72.41 85.46 81.46 88.34 94.37 71.08 87.26 82.46 84.72 94.95 73.22 88.53 83.56 75.88
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Table 7.5: Performance of EQNN-S with Other Classifiers.

Data Partition EQNN-S SVM MLP Backpropagation Naive Bayes

Min Average Max Min Average Max Min Average Max Min Average Max Min Average Max

60-40 93.63 95.55 97.45 69.36 71.11 73.54 83.15 85.15 88.15 82.54 83.72 86.54 80.15 82.22 83.27

70-30 94.01 95.83 97.98 70.89 72.61 74.44 84.38 86.41 89.46 83.44 84.65 86.67 81.49 82.63 83.34

10-fold cross validation 94.10 96.23 98.01 71.03 72.91 73.12 86.27 87.22 90.14 84.57 86.74 89.35 72.51 73.61 74.62
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Table 7.6: Performance of EQNN-S with other Approaches in Terms of Classi-
fication Accuracy.

Methods Training-Testing Partition (%) Classification Accuracy (%)

EQNN-S

60-40 95.55

70-30 95.83

10-fold cross validation 96.23

Q-BNN

60-40 93.11

70-30 93.84

10-fold cross validation 94.55

PMT

60-40 89.95

70-30 90.15

10-fold cross validation 91.42

OSVNN

60-40 86.47

70-30 89.55

10-fold cross validation 92.54

The values mentioned in Table 7.5, shows minimum, average, and maximum

values of accuracy for EQNN-S, SVM MLP, Backpropagation and Naive Bayes

classifier on different size of partition of training and testing set of the dataset is

presented. It is seen that EQNN-S beats the results of SVM, MLP, Backpropa-

gation, and Naive Bayes classifier. Hence, the results confirm that the proposed

algorithm can be very useful to assist in verification of offline signatures.

7.3.2 Comparison with other Methods

To judge the performance of the proposed algorithm with respect to other clas-

sifier available for signature verification, it is compared with some other recent

approaches presented in the literature. Table 7.6, shows the results of the pro-

posed algorithm and other approaches Q-BNN [112], PMT [135], OSVNN [136]

in terms of minimum, maximum, and average accuracy. The proposed algorithm

achieves maximum accuracy with respect to 60-40%, 70-30%, and 10-fold-cross-

validation scheme are 97.45%, 97.98%, and 98.01%, respectively. The results

show that with respect to all three data partitions, the EQNN-S outperforms as

compared to existing methods [112,135,136].

7.4 Summary

In this chapter, we have enhanced our proposed NQ-BNN learning algorithm by

introducing a new threshold boundary parameter by proposing EQNN-S algo-
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rithm. The threshold boundary parameter helps to get optimal value of thresh-

old by providing optimal range to find threshold using the quantum computing

concept. The proposed EQNN-S forms four layers neural network architecture

with a input layer, two hidden layers, and an output layer. The proposed EQNN-

S algorithm is used to develop a signature verification system. In this we have

prepared signature database manually by scanning signatures of the persons on

the paper. Then we applied pre-processing to bring all images on the same

scale. Once pre-processing is done, then we extracted unique features of offline

signature like the number of loops, angle, dense square patches, dimensions,

horizontal and vertical dense strips. Once all features are extracted, then we

used the EQNN-S for signature verification. The performance of the proposed

algorithm is compared with other state-of-the-art approaches and found that

the proposed EQNN-S outperforms over other approaches.
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Chapter 8

Conclusion

8.1 Contributions

In this research work, we have proposed neural network learning algorithms us-

ing the quantum computing concept for solving classification problems of two

class and multi-class. We have proposed a Q-BNN algorithm for solving two

class classification problems by evolving connection weights using the quantum

computing concept. The neural network learning algorithm is enhanced named

as NQ-BNN by evolving threshold of neurons along with connection weights

using the quantum computing concept for solving two class classification prob-

lem. The proposed Q-BNN and NQ-BNN algorithm are tested on benchmark

dataset like Breast Cancer dataset, Heart disease dataset, PIMA Indian diabetes

dataset, and BUPA liver dataset. The performance of proposed algorithm is also

compared with other state-of-the-art approaches and it is found that proposed

algorithm perform better in terms of classification accuracy with few numbers

of hidden layer neurons.

The performance of neural network decreases for the multiple class dataset

in which samples belong to more than one classes. This causes due to the oc-

currence of overlapped samples in multiple classes of the dataset. To solve such

problems, the fuzzy concept has been utilized. Thus, we have proposed the

Quantum inspired Fuzzy based Neural Network Learning Algorithm (Q-FNN)

for solving two class classification problem. The proposed learning algorithm

forms a three layer neural network structure and uses the fuzzy concept to han-

dle the samples which are overlapped to different class regions. In this neural
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network learning algorithm, neurons are treated as fuzzy neurons. The connec-

tion weights are updated using the fuzzy concept and the fuzzifier parameter

used in the fuzzy concept is evolved using the quantum computing concept. The

proposed algorithm is tested on benchmark dataset like WBCD, Sonar, Hepati-

tis, Ionosphere, and Heart dataset. The performance of proposed algorithm

is compared with other evolutionary state-of-the-art approaches and it is found

that proposed algorithm perform better than other evolutionary state-of-the-art

approaches.

The Q-FNN algorithm is further enhanced here for solving multi-class classi-

fication problems named as Q-FNNM algorithm. This can also handle the issue

of overlapped samples. In this neural network learning algorithm, connection

weights are taken as cluster centroids which is evolved using the evolutionary

quantum computing concept along with fuzzifier parameter. The proposed algo-

rithm is tested on benchmark dataset like IRIS, WINE, Glass, and Dermatology

and compared with other state-of-the-art approaches. The proposed Q-FNNM

outperform in comparison with other state-of-the-art algorithm.

We enhanced stacked auto-encoder based deep learning algorithm to solve

the problem of classification of complex images, by proposing a Quantum in-

spired Stacked Auto-encoder based Deep Neural Network Learning Algorithm

(Q-DNN). The stacked auto-encoder based deep neural network uses gradient

descent algorithm for its learning. In gradient descent algorithm, the learning

rate parameter is initialized randomly between 1 and 0. In the proposed al-

gorithm, we evolve the learning rate parameter using the quantum computing

concept. The deep learning architecture is formed with the help of unsupervised

pre-training and supervised fine-tuning process. These help to form deep neural

network architecture with only few numbers of hidden layers. Q-DNN forms

three different neural network architecture with one hidden layer, two hidden

layers, and three hidden layers. The proposed Q-DNN is tested on benchmark

dataset BUPA Liver Disorder dataset, Ionosphere dataset, and the PIMA Indi-

ans Diabetes dataset along with MNIST dataset. The performance of proposed

Q-DNN is compared with other state-of-the-art approaches along with deep

neural network algorithms. The Q-DNN outperform in terms of classification

accuracy in comparison to other approaches in few numbers of hidden layers.

We enchanted our proposed NQ-BNN by introducing a threshold boundary
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parameter by proposing EQNN-S algorithm. The threshold bonary parame-

ter helps to get optimal value of threshold by providing optimal range to find

threshold using the quantum computing concept. The proposed EQNN-S forms

four layers neural network architecture with a input layer, two hidden layers,

and an output layer. The proposed EQNN-S algorithm is used to develop a

signature verification system. We have extracted unique features of signatures

as number of loops, angle, dense square patches, dimensions, horizontal and

vertical dense strips. The performance of the proposed algorithm is compared

with other state-of-the-art approaches and found that the proposed EQNN-S

outperforms over other approaches.

The proposed algorithms perform better due to optimizing their learning

parameter using the evolutionary quantum computing concept. The use of the

quantum computing concept helps to find optimal value of the parameters. The

quantum computing concept is characterized by population dynamics, individual

representation, evaluation function. It provides a large search space to find the

optimal value of a parameter using an observation process thus, exploration is

achieved. On the other hand, the quantum rotational gate provides exploitation

to evolve the optimal value of neural network parameters.

8.2 Future Work

There is number of possible extensions of proposed approaches presented in the

previous chapters. One of the most obvious extensions is the hardware real-

ization of the proposed algorithms. The quantum algorithm is achieving very

promising results thus it can be used to make a dedicated hardware device which

can work for the specific purpose. The hardware realization of the quantum al-

gorithms and its application as offline signature verification can work for the

many organizations to check forged signatures. Similarly, due to the high accu-

racy achieved using the quantum computing concept, it can be used to develop

recommended systems, especially for the disease diagnosis. The proposed algo-

rithms perform well for two class dataset, multi-class dataset along with complex

dataset. Thus it can be extended up to solve the problem of big data classifi-

cation too. We can also propose the quantum based soft computing algorithms

which work on actual computers by executing them on a simulator which gives
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environment of quantum computers.
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Appendix A

Datasets

In this section, we present datasets on which we have tested our algorithms and

compared it with the state-of-the-art approches. In all, total thirteen dataset

were used in the experiments. Eleven datasets are taken from the UCI Machine

Learning Repository [123] and MNIST is taken from [137] and the remaining one

is being prepared manually. The description of all datasets is given in Table A.1.

These datasets containing small, medium, large, and complex data are required

to show the generalization ability of our approaches. The brief discussion about

these datasets are as follows:

Table A.1: Characteristics of the Datasets.

Datasets # Samples # Features # Classes

Breast Cancer Wisconsin Original (WBCD) 699 9 2

PIMA Indian Diabetes (PID) 768 8 2

Sonar 208 60 2

BUPA Liver Disorders 345 6 2

Hepatitis 80 19 2

Ionosphere 351 33 2

Heart Disease 270 13 2

IRIS 270 13 3

WINE 178 13 3

Glass 214 9 7

Dermatology 366 34 6

MNIST 70000 784 10

Offline Signature 2500 45 250
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Breast Cancer Wisconsin Original (WBCD)

The dataset consists of 699 samples with 9 features of each sample. It is a two

class dataset. Each instance has one of the two possible classes that is benign

or malignant. The percentage of the benign dataset 65.5% and the percentage

of the malignant dataset is 34.5%.

PIMA Indian Diabetes

It consists of 768 data samples that belong to only female patients suffering from

diabetes. It has 8 numerical features per sample. Each sample contains a label

which indicates the class of the sample. The dataset has two classes where the

first class is labeled as “negative to diabetes” and the second one is labeled as

“positive to diabetes”.

BUPA Liver Disorders Dataset

The dataset consist of 345 samples with 6 features are measured for each sample.

The first 5 features are all blood tests which are thought to be sensitive to

liver disorders that might arise from excessive alcohol consumption while the

last attribute includes daily alcohol consumption. Each sample constitutes the

record of a single male individual.

Heart Disease

This dataset has total 270 samples, and each sample has 13 attributes. The

dataset has been taken of people belongs to an age group of 29 to 77. The

dataset has been collected from male and female both.

Sonar

This dataset has total 208 samples, and each sample has 60 features. This

dataset contains signals obtained from a variety of different aspect angles, span-

ning 90 degrees for mines and 180 degrees for rocks. Each pattern is a set of

60 numbers in the range 0.0 to 1.0, where each number represents the energy

within a particular frequency band, integrated over a certain period of time.

The two classes are R and M represents rock and mine (metal cylinder).
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Hepatitis

This dataset has total 80 samples, and each sample has 19 features. Actually,

this dataset has 155 samples, but non-missing attribute samples are only 80.

This dataset contains a mixture of integer and real-valued attributes, with in-

formation about patients affected by the Hepatitis disease. The task is to predict

if these patients will die (1) or survive (2).

Ionosphere

This dataset has total 351 samples, and each sample is characterized by 33

features. A system collected this radar data in Goose Bay, Labrador. This

system consists of a phased array of 16 high-frequency antennas with a total

transmitted power on the order of 6.4 kilowatts. The two classes represent a

good and a bad signal.

IRIS

The well-known Fishers IRIS dataset is a multivariate dataset for discriminant

analysis. It consists of 150 samples belongs to 3 classes of IRIS flowers and four

features were measured corresponding to each sample. The classes are IRIS

Setosa, IRIS Versicolour, and IRIS Virginica. The features are sepal length,

sepal width, petal length, and petal width. The data set contains 50 instances

of each of the three classes.

WINE

This dataset is the result of a chemical analysis of wines grown in the same

region in Italy but derived from three different cultivators and consists of 178

samples. The analysis determined the quantities of 13 constituents found in

each of the three types of wines.

GLASS

The dataset consists of 214 samples, for each sample, 10 features are measured.

All the samples are divided into 6 classes. The study of classification of types

of glass was motivated by the criminological investigation. At the scene of the

crime, the glass left can be used as evidence, if it is correctly identified.
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Dermatology

This database contains 366 instances, for each instance 34 features are measured.

This dataset is divided into 6 classes. The differential diagnosis of erythemato-

squamous diseases is a real problem in dermatology. They all share the clinical

features of erythema and scaling, with very little differences. The diseases in this

group are psoriasis, seboreic dermatitis, lichen planus, pityriasis rosea, cronic

dermatitis, and pityriasis rubra pilaris.

MNIST

The MNIST database (Modified National Institute of Standards and Technology

database) is a large database of handwritten digits that is commonly used for

training various image processing systems. It was created by re-mixing the

samples from NIST’s original datasets. The creators felt that since NIST’s

training dataset was taken from American Census Bureau employees, while the

testing dataset was taken from American high school students. It is having total

70000 samples with 10 class where each sample has 784 features.

Offline Signature

This dataset is created by own which has a collection of 250 people signatures.

Ten signature (seven original + three forged) of each people have been taken.

Since all the signatures are collected on paper, these signatures are scanned to

get in image form. These signatures are first pre-processed, and then total 45

features are extracted. The features are the number of loops, dense patches,

angle, bounding caps, dimensions, etc.
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Appendix B

Validation Methods

In machine learning field, it is common to partition the dataset into two separate

sets: a training set and a testing set. To evaluate the generalizability of our ap-

proach and to compare our work with existing work in literature, we divided the

training and testing data into four different partitions. The reason for dividing

training and testing samples into different partitions is that we want to mea-

sure the quality of our proposed algorithms with different amount of training

samples. The validation methods used for experimentation are discussed below.

50-50 training-testing partition

In standard 50-50 methodology, half of the samples are used for training the

classifier and the rest for testing.

60-40 training-testing partition

In 60-40 training-testing methodology, 60% of the samples are used for training

the classifier and the rest 40% for testing.

70-30 training-testing partition

In 70-30 training-testing methodology, 70% of the samples are used for training

the classifier and the rest 30% for testing.

10-fold cross validation

In 10-fold cross validation technique entire dataset is divided into ten blocks of

approximately equal size. The 90% of data is used to train the model and the
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rest 10% for testing. This process is repeated 10 times, with a different data

block left out for testing every time.
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