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PROLOGUE  

The systematic and easy to use tool condition monitoring systems and integrated 

methods developed in this thesis are radically essential for manufacturing 

industries. At its most fundamental level, it enables ‘data-centric real-time 

integration of diagnostics, prognostics, and process quality control, to realize a 

holistic view of intelligent manufacturing to machinists, thereby forming the basis 

for building an autonomous decision-support system and serves as a guide for 

joint consideration of critical strategic operational policies and several additional 

progressions in the contemporary state-of-the-art. More specifically, the thesis 

resulted in the following contributions:  

a) A methodology for dynamic optimisation of process quality control and 

maintenance planning, considering the real-time health state of the system is 

formulated and experimentally validated.  

b) Solved one of the standing and non-trivial problems of literature viz. 

prognostics (predicting remaining useful life) under dynamic operating 

profiles. The proposed generic prognostic approach encompasses all real-

world industrial scenarios.   

c) A novel integrated diagnostics and prognostics system based on the 

relationship between product quality and tool degradation is proposed and 

validated.  

In essence, the outcomes of the research in this thesis advances the existing 

body of knowledge by developing an autonomous decision-support system and 

methods for systematic expansion of intelligent manufacturing in diverse real-

world production environments. 
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ABSTRACT 

Tool Condition Monitoring (TCM) is an essential technology enabling estimates 

of the health state (diagnostics) and Remaining Useful Life (RUL) (prognostics) 

of cutting tools. The available TCM systems do not suffice the adequacy to be 

viable in a real-world manufacturing environment, mainly due to complexity (viz. 

the high cost of embedding sensor technology into the prevailing systems), 

inadequate generalisation competences (viz. the vast majority of systems are 

strictly designed on the impression that along the entire lifespan of the cutting 

tool, the prevailing operating conditions or profiles are unvarying or does not 

affect the degradation), and applicability (viz. low accuracy, high computational 

time). Also, tool degradation has a significant effect on the product quality (viz. 

surface roughness). Along these lines, economic advantages may be obtained by 

developing efficient process quality control based on the real-time health state of 

the tool as a function of its life. For instance, a variable process quality control 

strategy may be economical compared to the uniform strategy throughout the life 

of the tool. From the TCM viewpoint, the routinely measured product quality 

characteristics can also serve as valuable inputs for cutting tool diagnostics and 

prognostics. Similarly, the operating parameters viz. cutting speed, feed and depth 

of cut have significant effects on tool life, product quality characteristics and in 

turn on shop floor operations policies.   

It can be easily comprehended from the above discussion that a good 

understanding of interdependencies among cutting tool diagnostics, prognostics, 

process variables, and shop floor level operations policies (for example, process 

quality control) is required to comprehend the holistic view of the machining and 

manufacturing operations. These interdependencies, if explored and modelled 

appropriately, may help the manufacturing industries in striding towards their 

goal of intelligent manufacturing. Given that, in this thesis, these challenges are 

circumvented by forming the basis for building an autonomous decision-support 

system and integrated methods that serve as a guide for joint consideration of 
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diagnostics, prognostics, and process quality control in dynamic and diverse 

production environments.  

The available TCM systems focus exclusively on the diagnostics or the 

prognostics tasks. Consequently, an integrated TCM system is non-existent. To 

overcome this bottleneck, the first advancement progressed in this thesis to the 

current state-of-the-art was the invention of a cognitive integrated monitoring 

system centred on the untapped relationship between product quality and tool 

degradation. This part of the research is a pioneering effort towards designing a 

simple, easily comprehensible monitoring system utilising minimum resources, 

expediting the smooth realisation of the intelligent manufacturing even in medium 

and small scale manufacturing industries. To do so, the first-hand design of a 

cost-efficient experimental strategy concerning high-speed CNC milling 

machining was implemented. Subsequently, a comprehensive correlation 

investigation was performed; revealing strong positive relationship exists between 

product quality and tool degradation. Mapping this untapped relationship, an 

integrated TCM system pertaining to diagnostics and prognostics was formulated. 

Herein, for the first time, the diagnostic reliability was enhanced by researching 

on the use of a multi-level categorisation of degradation. The prognostic 

competence was enhanced by formulating it explicitly for the tools critical zone as 

a function of tool life. The system is integrated in a manner that, whenever the 

degradation curve of the tool reaches the critical zone, prognostics module is 

triggered, and RUL is assessed instantaneously. An experimentation centred 

performance investigation showed that the system provides a robust problem-

solving framework. In succession, the contributions carried an excellent 

prescience that will enrich the existing TCM systems by considering the product 

quality as a new element for health monitoring.  

The next advancement circumvents the standing non-trivial challenge of 

inadequate generalization competences in the present-day state-of-the-art viz. the 

vast majorities of available TCM systems are strictly designed on the impression 

that along the entire lifespan of the cutting tool, the prevailing operating profiles 
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are unvarying or does not affect the degradation. Thus, their applications are 

restricted in diverse practical manufacturing scenarios viz. batch or job production 

environments where the operating profiles are highly time-variant. Thus, it would 

be of practical value to equip the TCM systems with intelligence that allows 

responding to the uncertainty of time-variant operating profiles and adaptable 

under various real-world scenarios. Accordingly, a novel and a generic TCM 

system under the dynamic operating profile is invented to guarantee the expansion 

of intelligent manufacturing in diverse real-world scenarios viz. batch production, 

job production, micro to medium-scale production environments. In contrast to 

the existing literature, the methodology offered in this part of the work is 

conceptually unique, as the offered system explicitly addresses the challenges 

allied with time-variant operating profiles by integrating its physics capturing the 

uncertainty in the evolution of dynamic operating profiles, in real-time. This 

benefit in enriching the existing TCM systems to compute the cutting tool RULs 

while exploiting the prior condition-centric data, along with the future 

characteristics of operating profiles that the tool is likely to experience. For this, a 

new, adaptive, and hybrid stochastic degradation model is devised; engineered to 

unite strategic information viz. the evolution of the future profile, jerks owing to 

dynamic transitions, etc. Next, new mappings, i.e., degradation rate function, and 

jerk function to bring realistic characteristics are formulated. The other realistic 

feature is that in the model the degree of divergence in tool’s degradation is 

related to the severeness of the in-progress profile. Subsequently, a new sorting 

algorithm to order the profiles with regard to their impact on the corresponding 

degradation rate is proposed. Also, for the first time, pioneering adaptive 

functioning structures are inventively designed to incite generalisation in diverse 

real-world scenarios viz. batch production, job production, etc. The resultant 

generic system approximates the degradation and delivers the RULs, in real-time. 

The experimental study lends significant credibility to the appropriateness of 

offered approach over the traditional approach under time-variant industrial 

scenarios. Additionally, the proposed prognostic algorithm under the dynamic 
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operating profile is not only restricted to TCM but can be seen as a universal 

perspective of any prognostics research.  

Further, as these advancements endow realisation of intelligent manufacturing 

in the diverse real-world environment, it becomes necessary to invent a new 

dynamic integrated policy that can unlock the potential of data-centric real-time 

integration of diagnostics, prognostics, and process quality control, realising a 

holistic view of intelligent manufacturing in a real-world environment. Despite 

the fact that the connection among these fields is not absent, yet research on the 

integration of quality and maintenance considering real-time health state of the 

system is still very constrained. In this regard, this part of the research presents a 

novel methodology for dynamic and simultaneous optimisation of process quality 

control and maintenance planning while considering the real-time health state of 

the system deteriorating with time. This will enrich the existing integrated policy 

by instantaneously considering machine deterioration, health state, and RUL, in 

real-time. On top, benefits the manufacturers to simultaneously adopt the most 

beneficial practice for optimising the process quality control, inventory control 

and maintenance planning of their industry-specific applications. First, a new and 

a cost-efficient TCM system is built to perform instantaneous diagnostics and 

prognostics tasks. Further, the existing process quality control policy is 

customised and extended to deal with machine deterioration with time. This is 

done via a proposed residual-life based evaluation and multi-state magnitude of 

process shift schemes. Moreover, the conventional maintenance planning model is 

enhanced to capture real-time remaining life information of the tool, thereby 

leading to optimum usage of a tool’s useful life. These models are integrated and 

built in conjunction with the developed TCM system. As a result, the proposed 

dynamic integrated model evolves itself dynamically to re-evaluate the optimal 

values for the design parameters, i.e., sample size, the time between samples, 

control limit coefficient and preventive replacement interval used in the entire 

lifecycle of the manufacturing process. The implication results and guidelines 

under various real-world industrial scenarios expand the model’s realism to the 

actual production systems. In succession, the predominant contribution brought is 



xxvi 
 

the dual advantage, i.e., it reduces the lost quality cost due to machine degradation 

and also improves the manufacturing system’s reliability by protecting it against 

failures.  

In essence, the outcomes of the research in this thesis advance the existing body 

of knowledge by developing an autonomous decision-support system and 

associated methods for systematic expansion of intelligent manufacturing in 

diverse real-world production environments. An added contribution lies in 

distinguishing suitability, stability, quality, reliability, robustness, applicability 

and comprehensibility of the offered methods in real-world manufacturing 

environments, through exhaustive performance and comparative investigations 

via experimental case studies. The integrated approaches developed in the current 

research result in significant savings in overall manufacturing cost. Wherein, the 

results of dynamic integrated policy and prognostics under dynamic operating 

profiles are a breakthrough in the field of industrial engineering, prognostics and 

health management, and intelligent manufacturing.   
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Chapter 1 

Introduction 

“Intelligent manufacturing is more than just a flashy catchphrase. A confluence of 

trends and technologies promises to reshape the way things are made”. 

 Cornelius Baur, American Analyst 

In this introductory chapter, the background, motivation, theory, gaps, objectives, 

methodology, and contributions of the current research are presented to highlight 

the challenges and significance of integrating diagnostics, prognostics, and 

process quality control for intelligent manufacturing. In the end, the outline of the 

thesis is given.  
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1.1 Research Background and Motivation 

 

Innovations in manufacturing have led to improved product quality, increased 

flexibility, and higher productivity. Mainly these benefits are extremely reliant on 

the smooth functioning of several machine tool components, which go through a 

continuous degradation during their lifetime until a failure happens. Wherein, 

failures owing to cutting tool degradation are a principal source of unscheduled 

stoppage of a manufacturing system and are indeed expensive not simply 

affecting downtime, but contribute extensively to machine tool or workpiece 

damage (Rehorn et al., 2015). Additionally, the usage of dull or worn cutting tools 

directly affects the quality and the cost of the manufactured products. On that 

front, a few examinations and manufacturing industry statistics, direct that the 

extent of downtime because of cutting tool failures (both wear and breakage) on 

an average manufacturing system ranges from as low as seven percent (Yeo et al., 

2000) to as high as twenty percent (Kurada and Bradley, 1997). Whereas, the 

expense of these cutting tools and their replacements grosses about three to twelve 

percent of the overall manufacturing cost (Malekian et al., 2009). Consequently, 

precisely evaluating the pending failure of an expensive cutting tool has turned 

into a dynamic research region since the late 1980s and early 1990s (Teti et al., 

2010, Siddhpura and Paurobally, 2013). This stimulates an escalating notion of 

the so-called Tool Condition Monitoring (TCM). TCM is an empowering field of 

study comprising of innovations and strategies to investigate the reliability, 

foresee degradation progression, and lessen the operational risks in cutting tool 

life cycle. At its core, the TCM systems require systematic methods of diagnostics 

and prognostics. Diagnostics involves estimating the health condition, and 

prognostics involve assessment of the Remaining Useful Life (RUL) of the 

cutting tool. Studies have exhibited that if Computer Numerical Control (CNC) 

manufacturing systems are fortified with TCM, it can cut down seventy-five 

percent of the downtime, and boost throughput by ten to sixty percent, and even 

upraise machine availability beyond fifty percent (Rehorn et al., 2015). The 

conventional diagnostics and prognostics centered  perspective of TCM may be 

sufficient if machine availability is the only concern. However, from the 
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manufacturing operations point of view, one needs to look at various other aspects 

associated with tool degradation and its life. For example, tool degradation also 

affects product quality and in turn quality control policy for the particular 

machine. Similarly tool degradation rate and product quality characteristics will 

change with the operating conditions. Along these lines, from the shop-floor level 

operational polices perspective, economic advantages may be obtained by 

developing efficient process quality control based on the real-time health state of 

the tool as a function of its life. For instance, a dynamic process quality control 

strategy may be economical compared to the uniform strategy throughout the life 

of the tool. Similarly, operating conditions like speed, feed and depth of cut also 

affect tool life as well as process quality characteristics. It can be effectively 

grasped from the above discussion that a good understanding of interdependencies 

among cutting tool diagnostics, prognostics, process variables and shop floor level 

operations policies (viz. process quality control) is required to comprehend the 

holistic view of the machining and manufacturing operations. These 

interdependencies, if explored and modeled appropriately, may help the 

manufacturing industries in striding towards their goal of intelligent 

manufacturing- the next big change in manufacturing after three major revolutions 

brought out by the impact of mechanization, electricity, and information 

technology (Evans and Annunziata, 2012). As a result, the attention for new 

concepts and solution methodologies for real-world and integrated TCM systems 

has increased dramatically, not only in business management but also in the 

scientific community. 

1.2 Problem Description 

In the dynamic manufacturing environment, it is radically essential to equip the 

manufacturing systems with autonomous decision-support systems that are self-

aware and coupled with the knowledge of how to recognize the current health 

state and how to relate the faults and their effects on the RUL, in real-time, to 

avoid sudden failure when a deviant health state has been detected. Moreover, 

extending this knowledge for well-organized process quality control and tool 
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replacement is essential to make the manufcturing system intelligent. Though, in 

reality, the available TCM systems do not suffice the adequacy to be viable in a 

real-world manufacturing environment, mainly due to complexity (viz. the high 

cost of embedding sensor technology into the prevailing systems), inadequate 

generalisation competences (viz. the vast majority of systems are strictly designed 

on the impression that along the entire lifespan of the cutting tool, the prevailing 

operating conditions or profiles are unvarying or do not affect the degradation), 

and applicability (viz. low accuracy, high computational time). Moreover, tool 

degradation has a significant effect on the product quality. As follows, economic 

advantages may be obtained by developing efficient process quality control based 

on the real-time health state of the tool as a function of its life. For instance, a 

variable process quality control strategy may be economical compared to the 

uniform strategy throughout the life of the tool. From the TCM viewpoint, the 

routinely measured product quality characteristics can also serve as valuable 

inputs for tool diagnostics and prognostics. However, the operating parameters 

viz. cutting speed, feed and depth of cut also have significant effects on tool life, 

product quality characteristics and in turn on shop floor operations policies. 

Successively, for a holistic view of intelligent manufacturing, a good 

understanding of interdependency among process quality control, maintenance 

planning, and real-time health state of the system is required. These 

interdependencies, if explored and modelled appropriately, may help the 

manufacturing industries in striding towards their goal of intelligent 

manufacturing. Accordingly, the problem considered in this thesis is on a 

technological expansion of intelligent manufacturing to create a system capable of 

dynamic optimization of preventive tool replacement, process quality control, and 

lower manufacturing costs in diverse industrial scenarios. At its most fundamental 

level, the work aims to empower ‘data-centric real-time integration of diagnostics, 

prognostics, and process quality control, to realize a holistic view of intelligent 

manufacturing to operations manager, thereby forming the basis for building an 

autonomous decision-support system.    
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To explicitly formulate the problem a systematic literature review
1.1

 is carried 

out. Critical findings and major research gaps are as follows:  

Gap 1: The available TCM systems focus exclusively on the diagnostics or the 

prognostics or process monitoring task. Consequently, a real-time and 

integrated TCM system linking diagnostics and prognostics is non-

existent.  

Gap 2: In small and medium manufacturing industries offline quality 

measurement is very common. The inputs from quality measurements for 

diagnostics and prognostics may provide useful information, but not 

explored in TCM literature.  

Gap 3: The vast majorities of available TCM systems are strictly designed on the 

impression that along the entire lifespan of the cutting tool, the prevailing 

operating profiles are unvarying or does not affect the degradation. Thus, 

their applications are restricted in diverse practical manufacturing 

scenarios viz. batch or job production environments where the operating 

profiles are highly time-variant in nature. 

Gap 4: Despite the fact that the connection among diagnostics, prognostics and 

process quality control is not absent, the integration of quality and 

maintenance considering the real-time health state of the system entirely 

eludes literature. 

1.3 Research Objective 

Based on the findings from literature review the overall research objective is as 

follows:  

Overall Objective: Development of an autonomous decision-support system and 

integrated methods pertaining to diagnostics, prognostics and process quality 

control for diverse real-world production environments. 

                                                           
1.1

 The detailed literature review and research gaps are provided in chapter 2. 
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The overall objective is further divided into the following Sub Objectives (SO): 

SO1: Real-time integration of diagnostics and prognostics centred on the 

relationship between product quality and tool degradation. 

SO2: Development of a generic tool condition monitoring system under dynamic 

operating profile. 

SO3: Dynamic optimization of process quality control and maintenance planning 

while considering the real-time health state of the system. 

 

1.4 Theoretical Preliminaries 

Operating Profile: Relative motion is required between the cutting tool and 

workpiece to perform a machining operation. The primary motion is 

accomplished at a certain cutting speed. In addition, the cutting tool must be 

moved laterally across the workpiece. This is a much slower motion, called the 

feed. The remaining dimension of the cut is the penetration of the cutting tool 

below the original workpiece surface, called the depth of cut. Collectively, cutting 

speed, feed rate, depth of cut, etc. are called the cutting conditions or operating 

profile. For a machining process such as turning, cutting conditions like cutting 

speed, feed, depth of cut plays salient role in the efficient use of a machine tool. 

Also, it has been established experimentally that there is a definite relationship 

between the operating profile and tool life. For instance, Ojolo and Ogunkomaiya 

(2014) identified that the increment of spindle speed, feed rate and depth of cut 

value mostly will affect the tool life. Karpat and Özel (2007) showed that better 

tool life is obtained in lowest feed rate and lowest cutting speed combination. 

Most published works on metal cutting regard the cutting speed as having the 

greatest influence on tool wear and tool life (Kayhan and Budak, 2009). On that 

line, F.W. Taylor conducted extensive tool life tests based on tool wear land 

measurement and cutting speed, commonly referred as Taylor tool life equation as 

shown in Eq. (1.1) (Eker et al., 2012). 
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𝑉′𝐿𝑖
𝑛′ = 𝐶′  (1.1) 

where 𝑉′ is the cutting speed, 𝐿𝑖is the tool life, and 𝑛′, 𝐶′ are constants. 

Tool Wear (Degradation): Most failures of engineering systems result from a 

gradual and irreversible accumulation of damage that occurs during a system's life 

cycle. This process is known as degradation. In case of cutting tools, the 

degradation occurs in the form of tool wear. Tool wear can be stated as “the 

change in the shape from its original shape during a cutting process by gradual 

loss of the tool material” (Zhong et al., 2013). Tool wear in milling occurs at 

higher rate as the tool becomes dull. Due to which cutting forces and temperature 

increases and immediate loss of sharp edges occurs. After a certain point, tool 

wear can cause sudden failure of the cutting tool. (Tansel and McLaughlin, 1993, 

Ertunc and Oysu, 2004). Tool wear affects the surface roughness of the 

workpiece, which is the main concern of a machining process. The power 

consumption from motors may also increase due to tool wear (Altintas and 

Yellowley, 1989, Zhang et al. 1995). Thus, it is important to monitor and prevent 

the tool failure during cutting to achieve high product quality and efficient 

production.  

Surface Roughness: Surface roughness is defined as “the result of irregularities 

arising from the plastic flow of chips during the machining” (Lou et al., 1999). 

The most widely used parameters for surface roughness measurements are 

average surface roughness, ten point height of irregularities and maximum profile 

peak height (Zhong et al., 2013).  

Process Quality Control: Process quality control is an important methodology 

for asserting standards in manufactured products by testing some samples from 

output against the specification. Techniques provided in quality control are 

methodologies to screen an on-going production process. Control charts are most 

essential techniques of statistical process control. “The control chart is a graphical 

display of a quality characteristic that has been measured from the sample versus 

the sample number or time” (Montgomery, 2007). The chart has a centre line that 
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presents mean value of the quality characteristics corresponding to the in-control 

state. Two other horizontal lines, called the Upper Control Limit (UCL) and the 

Lower Control Limit (LCL). These limits are set so that if the process is in 

control, all of the sample points will fall between them. As long as the point plots 

within the control limits, the process is assumed to be in control, and no action is 

necessary. However, points that plot outside of the control limits is interpreted as 

evidence that the process is out of control, and investigation and corrective action 

are needed to detect and terminate the assignable cause for this behaviour.  

Great significance is attributed to the work of Walter Shewhart (Shewhart, 

1925) who developed the theory of control charts. Celano (2011) has presented a 

review of the most recent research contributions dealing with modelling the 

statistical process control. Traditionally, control charts have been designed with 

respect to statistical criteria only. This usually involves selecting the sample size 

and control limits. The frequency of sampling is rarely treated analytically. But 

the practitioners are advised to consider another factor such as a sampling 

frequency. Thus the selection of three parameters: (1) sample size (2) a sampling 

frequency or interval between samples and (3) the control limits, is usually called 

the design of the control charts. The design of control chart has economic 

consequences in which the costs of sampling and testing are associated with 

investigating out of control signals. Correcting the assignable causes and costs of 

allowing non-conforming units to reach the consumer are all affected by the 

choice of the control chart from an economic viewpoint. Duncan (1956) proposed 

the first economic model for determining the three control parameters of the X-

bar control chart that minimizes the average cost when a single out-of-control 

state (assignable cause) exists. His cost model includes the cost of sampling and 

inspection, the cost of defective products, the cost of a false alarm, the cost of 

searching for an assignable cause, and the cost of process correction. Since then, 

considerable efforts have been devoted to the optimal economic determination of 

the three parameters of different control charts. Montgomery (1980) gave a 

thorough review of the literature of the economic designs of various control 

charts. 
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Tool Condition Monitoring: TCM involves investigating the reliability, foresee 

degradation progression, and lessen the operational risks in cutting tools life 

cycle. Generally, the evolution of these manifestations can be monitored using 

sensor technology through a process known as condition monitoring. The 

observed condition-based signals are known as degradation signals and are 

usually correlated with the underlying physical degradation process. Some 

examples of degradation signals include vibration signals for monitoring 

excessive wear in rotating machinery, acoustic emissions for monitoring crack 

propagation, temperature changes and oil debris for monitoring engine 

lubrication, and many others. Typically advanced TCM system consist of four 

steps: (i) collection of data from shop floor through sensors, (ii) extraction of 

features from the signals, (iii) classification/estimation of tool wear, (iv) 

development of decision making technique. At its core, the TCM systems require 

systematic methods of diagnostics and prognostics. Diagnostics consist of 

detecting the current health state of the cutting tool, and which is done after the 

occurrence of the fault, prognostics aim at anticipating the remaining useful life of 

the cutting tool, and thus is done a priori. Herein, by realizing cutting tools health 

sate and remaining life, support activities are arranged ahead of time.  

1.5 Methodologies and Innovations 

Fig. 1.1 shows the overview of the proposed methodology. The three prime 

innovations made in this thesis with the proposed methodologies are highlighted 

as follows: 

A. Real-Time Integration of Diagnostics and Prognostics Centred on the 

Relationship between Product Quality and Tool Degradation. 

First, the diagnostic reliability is enhanced by researching on the use of a multi-

level categorization of wear. The prognostic competence is improved by 

formulating it explicitly for the tools critical zone as a function of tool life. The 

system is integrated in a manner that, whenever the degradation curve of the tool 

reaches the critical zone, prognostics module is triggered, and RUL is assessed 
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instantaneously. Moreover, to improve the integrated TCM system performance, 

it is built using support vector machine with optimal training technique. The 

proposed methodology provides an excellent prescience that will enrich the 

existing TCM systems by considering the product quality as a new element for 

tool health monitoring. On the other hand, the information obtained from the 

current research results in significant savings in cost, time and improving 

productivity for a heavily competitive manufacturing industry. The research in 

this work is a pioneering effort towards designing a simple, easily comprehensible 

monitoring system to enable easy adaptation of the technology even in medium 

and small scale manufacturing industries. Moreover, experimental tests verify the 

viability of the system.  

 

Fig. 1.1.  Overview of the proposed methodology. 
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The novelty of this research is in the invention of an integrated TCM system by 

quantifying and mapping the relationship between product quality and tool 

degradation. This system ascertains reliable health monitoring and life prediction 

of the machining system at the same time with solitary experimentation. An added 

contribution lies in the outcomes; an exhaustive performance and comparative 

investigations of the proposed integrated TCM system is presented, to distinguish 

the suitability, stability, quality, reliability, robustness, applicability and 

comprehensibility in a real industrial environment.  

B. A Generic Tool Condition Monitoring System under Dynamic Operating 

Profiles. 

First, the cutting tool degradation progression is mathematically modeled via a 

new, adaptive, and hybrid stochastic degradation model; engineered to unite 

strategic information viz. the evolution of the future profile, jerks owing to 

dynamic transitions, etc. Next, new mappings, i.e., degradation rate function, and 

jerk function to bring realistic characteristics are formulated. Subsequently, the 

physics of evolution of dynamic profiles for various scenarios is inventively 

modeled. The resulting generalized system approximates the first passage time of 

the degradation process to a threshold and provides a precise life estimate in real-

time. The proposed methodology is competent in approximating the uncertainty 

imposed by time-variant industrial scenarios. This aids in enriching the existing 

TCM systems to compute the cutting tool RULs while exploiting prior 

information, along with the future characteristics of operating profiles that the tool 

is likely to experience. Wherein, the experimental results confirmed that the 

offered approach delivers a generalized and a robust problem-solving structure for 

dynamic operating profiles. The research in this work and the promising results 

attained underneath dynamic operating profiles guarantee the expansion of an 

effective preventive maintenance plan in diverse real-world production scenarios 

viz. batch production, job production, micro to medium-scale production 

environments. On the other hand, the case study implementation lends significant 
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credibility to the appropriateness of offered approach over the traditional 

approach under time-variant industrial scenarios.  

The novelty of this research is three-fold. The first is the innovative design of a 

generic TCM system that accounts for the future characteristics of the dynamic 

operating profiles while prognosticating RULs. It is grounded in the physics of 

degradation progression and is a function of operating profiles. As a result, the 

fundamental advantage of utilizing the proposed system to deal with time-variant 

operating profiles is its proficiency to communicate the future evolution of 

dynamic operating profiles instantaneously. Second is the consideration of all-

encompassing cases of industrial scenarios. For the first time, a complex real-

world scenario of expected but fluctuating future operating profiles is well-

thought-out. Third, it is not restricted to a specific machine tool, sensor, and so 

on; rather the system is adaptive and can be rendered as a first universal 

perspective to TCM and for that matter any prognostics research. An additional 

contribution lies in the outcomes; extensive quantitative and qualitative 

performance investigations are carried out. Further, in contrast to the traditional 

approach, the implications of the offered system under different scenarios are 

experimentally examined. That magnifies the robustness and applicability of the 

offered system in diverse real-world production environments.    

C. Dynamic Optimization of Process Quality Control and Maintenance 

Planning while Considering the Real-Time Health State of the System. 

First, the existing process quality control policy is enhanced to become dynamic 

and extended to deal with machine deterioration with time. This is done via the 

proposed residual-life based evaluation and multi-state magnitude of process shift 

schemes. Furthermore, the maintenance planning model is modified to capture 

real-time remaining life information. These models are integrated and built in 

conjunction with newly developed TCM system pertaining to instantaneous 

diagnostics and prognostics. As a result, the designed dynamic integrated model 

can evolve itself to re-evaluate the optimal values for the design parameters used 
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in the entire lifecycle of the manufacturing process. The proposed methodology 

was proficient in capturing the interdependencies between process quality control 

and maintenance planning while considering the real-time health state of the 

system. This will enrich the existing integrated policy by instantaneously 

considering machine deterioration, health state, and remaining useful life. 

Wherein, the experimental results confirmed that the dynamic integrated policy is 

capable of early detection of an out-of-control process than the conventional 

usage of control charts. As a consequence, the information obtained from the 

current research results in significant cost savings in overall manufacturing cost. 

The implication of the proposed dynamic integrated policy under various real-

world industrial scenarios revealed that this policy optimizes the inspection 

frequency, moderates the loss in production, consumes the optimum life of the 

system and delivers higher economic improvements. These implication results 

and guidelines expand the model’s realism to the actual production systems. This 

will benefit the manufacturers to adopt the most beneficial practice for optimizing 

the process quality control and maintenance planning of their industry-specific 

applications.  

The novelty of this work is in the formulation of a dynamic integrated policy. 

Whenever a change in health state of the system is detected, the optimal design 

parameters of process quality control and maintenance planning are updated based 

on the current health state of the system as a function of its life. This dynamic 

integrated policy has the dual advantage, i.e., it eliminates the lost quality cost due 

to machine degradation and also improves the manufacturing system’s reliability 

by protecting it against failures. An added contribution lies in the outcomes; 

systematic performance and sensitivity investigation are presented. Moreover, the 

implication of the proposed policy in various industrial scenarios is critically 

analysed. This expands the model's robustness and relevance in manufacturing 

industries.  
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1.6 Contributions 

The systematic and easy to use tool condition monitoring systems and integrated 

methods developed in this thesis are radically essential for manufacturing 

industries. At its most fundamental level, this work enabled ‘data-centric real-time 

integration of diagnostics, prognostics, and process quality control, to realize a 

holistic view of intelligent manufacturing to machinists, and formed the basis for 

building an autonomous decision-support system and serves as a guide for joint 

consideration of critical strategic operational policies and several additional 

progressions in the contemporary state-of-the-art. More specifically, the thesis 

resulted into following contributions:  

a) A methodology for dynamic optimization of process quality control and 

preventive tool replacement while considering the real-time health state of 

the system is formulated.  

b) Solved one of the standing and non-trivial problem of literature viz. 

prognostics (predicting remaining useful life) under dynamic operating 

profiles. The proposed generic prognostics approach encompasses all real-

world industrial scenarios.   

c) A novel integrated diagnostics and prognostics system based on the 

relationship between product quality and tool degradation is proposed.  

An added contribution lies in the outcomes; an exhaustive performance and 

comparative investigations via experimental case studies are presented, to 

distinguish the suitability, stability, quality, reliability, robustness, applicability 

and comprehensibility of the offered methods in real-world manufacturing 

environments. 

1.7 Thesis Organization 

The thesis is broadly divided into seven chapters. The current chapter introduces 

the reader to the background of the work, outlines the research objectives and 

proposes the methodology with which the objectives are circumvent. 
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Chapter 2 presents a comprehensive review with emphasis on process quality 

control, maintenance planning, and TCM, in terms of the technology driving the 

transformation, its benefits, its challenges and its global status.  

Chapter 3 presents an preliminary investigation on overall performance 

enhancement of data-driven prognostics framework by concentrating on 

amelioration of data-processing, degradation assessment, and RUL prediction 

steps.  

Chapter 4 provide a cost efficient and cognitive integrated monitoring system to 

instantaneously prevent machining system performance degradation and sudden 

failures. 

Chapter 5 equip TCM systems with intelligence that allows responding to the 

time-variant operating profiles and adaptable under various real-world production 

environments.  

Chapter 6 provides a holistic view of the intelligent manufacturing, thereby 

forming the basis for building an autonomous decision-support system that serves 

as a guide for joint consideration of strategic operational policies pertaining to 

diagnostics, prognostics and process quality control.   

Chapter 7 draws conclusions and future scope on the work. 
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Chapter 2 

Literature Review 

“The problem in this business isn’t to keep people from stealing your ideas; it's 

making them steal your ideas!”. 

 Howard H. Aiken, American physicist 

To distinctly highlight the contribution of this work and its position in the 

available work, a systematic review of literature with emphasis on cutting tool 

diagnostics, prognostics, and process quality control is carried out. In the end, 

findings from literature review and detailed research gaps are outlined.  
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2.1 Introduction 

A good understanding of interdependencies among cutting tool diagnostics, 

prognostics, process variables and shop floor level operations policies (viz. 

process quality control) is required to comprehend the holistic view of intelligent 

manufacturing. Accordingly, to evidently foreground the contribution of this 

research and its position in the related research, a systematic literature review 

with emphasis on cutting tool diagnostics, prognostics, and process quality control 

is carried out in the following section. 

2.2 Cutting Tool Diagnostics, Prognostics and Process Quality Control 

Real-time health monitoring of cutting tools helps in capturing valuable 

information concerning the current health state of the tool and accordingly leads 

to preventive maintenance activities that secure the tool more efficiently against 

failures. Consequently, an efficient tool condition monitoring is essential to 

improve machining system availability, reducing downtime cost and enhancing 

operating reliability. The TCM systems require systematic methods of cutting 

tools diagnostics and prognostics. Diagnostics involves estimating the health 

condition, and prognostics involve assessment of the remaining useful life of the 

tool. The available TCM methodologies can be broadly classified as direct and 

indirect methods. Direct methods are offline, such as computer vision, etc., and 

used for wear estimation. Indirect methods are online and correlate appropriate 

measurable process signals (viz. cutting forces, vibration and acoustic emission, 

etc.) to tool wear. Since the late 1980s, numerous investigations have been 

dedicated to the development of direct and indirect method based TCM systems. 

In particular, this review emphasizes on four fundamental aspects that have 

traditionally been examined separately: a) approximating the cutting tool 

degradation progression, b) diagnosing the health status of the cutting tool, c) 

predicting the RUL and d) integrating the effects of operating profiles on cutting 

tools deterioration.   



18 
 

A plethora of research focuses on approximating tool degradation progression, 

diagnosing the health status and foreseeing the RUL (Ambhore et al. 2015, 

Anusha et al. 2016). For instance, a direct method like computer vision has been 

pursued for over three decades now. The innovation in computer vision has 

directed the advancement of several vision sensors to gather data about the 

condition of the tool. Basically, an image of the tool is apprehended to deliver 

information about the behavior or level of wear. For example, Su et al. (2006) and 

Castejón et al. (2007) utilized this technology to formulate a wear quantifying 

system for drill and cutting inserts to identify the time for its replacement. Wang 

et al. (2005) suggested a method on sequential image scrutiny for periodic 

quantification of tool wear and to identify the wear area. Doukas et al. (2013) 

proposed a method in which microscopy measurements and photos of worn 

inserts have been taken during face milling operations for the assessment of the 

wear level. Tawade et al. (2014) proposed a tool wear measurement system for 

detection of micro and macro wear using imaging methods. In these works, 

characteristic measures from the tool image are extracted for classification of tool 

health state as new-worn or broke. However, these methods fail to perform under 

the variation of surrounding conditions, radiance of light, and the existence of 

chip or dust particles, thereby restricting the application in the real industrial 

environment. Among others, Zhang et al. (2014) proposed a novel tool wear 

monitoring method in ultra-precision raster milling by using cutting chips. Their 

proposed method works on mathematical model based on chip morphology, 

which makes their method difficult and less efficient in real industrial 

environment. On this line, Shiraishi (1988) mentioned that direct method of TCM 

suffers from high inaccuracies; thus, they are unreliable.  

Following, the main line of research is focused on the analysis of real-time 

degradation signals viz. cutting forces (Muhammad et al., 2013), vibrations (Serra 

and Rmili, 2016), acoustic emission (Bhuiyan et al., 2016), etc. measured during 

cutting processes. Herein, the degradation signal derives solitary from an explicit 

sensor or their combinations and correlated with tool wear/state. In this, the 

relationship between degradation signals and tool wear/state is mapped using data 
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driven approaches (coupled with various feature selection approaches) viz. 

artificial neural networks (Fuqing et al., 2013), fuzzy systems (Yadav et al., 

2012), regression models, proportional hazard models (Wu and Tian, 2012), etc. 

For instance, Chen and Li (2009) and Rizal et al. (2013) presented tool wear 

prediction models by quantifying the cutting force deviations in various 

machining process viz. turning. Nadgir and Ozel (2000) formulated a flank wear 

prediction system explicitly based on force signal analysis; proficient for precise 

wear prediction. However, the accurateness declined as the operating conditions 

were altered considerably. Whereas, Zhai et al. (2010) and Huang et al. (2010) 

proposed a cutting force based approach for the modelling and detection of cutter 

degradation and surface integrity in high speed milling process. Čuš and Župerl 

(2011) developed an adaptive neuro fuzzy inference system based model for 

predicting the tool wear through cutting force signals in end-milling process. Li et 

al. (2009) used four approaches namely, multi regression model, back propagation 

neural network, radial basis function network and fuzzy neural network for ball 

nose end milling process. Regression based genetic algorithm technique is used 

for feature selection. Maximum force levels, total amplitude of cutting force, 

average force, standard deviation are used as the features for the wear prediction. 

Javed et al. (2012) used three approaches namely, improved-extreme learning 

machine algorithm, adaptive neuro fuzzy inference system and extreme learning 

machine for predicting the cutting tool condition from high speed CNC machine. 

Benkedjouh et al. (2013) developed a cutting force based health assessment model 

for cutting tools based on support vector regression. From these studies, it is 

observed that the cutting dynamics is governed by the deviation in the cutting 

force and can be related to wear. As per, Li et al. (2009) tool dynamometers are 

generally employed to measure cutting forces. Though, Zhong et al. (2013) in the 

recent study demonstrated that dynamometers are not appropriate for industrial 

usage, because of their higher cost, negative effect on machining framework 

rigidity, geometric constraints, etc. Whereas, Orhan et al. (2007) proposed a cutter 

wear evaluator method, through vibration data in milling process. Likewise, 

Bhattacharyya et al. (2007) developed multiple-linear regression based approach. 



20 
 

Along with, Alonso and Salgado (2008) and Wang et al. (2014a) proposed a tool 

wear evaluation model utilizing vibration investigation. Several characteristic 

measures indicative of tool wear were extracted from the processed vibration 

measurements and a strong relationship with tool wear is recognized. However, 

efficient utilization of these approaches requires placement of costly 

accelerometer sensors close to the tool-workpiece interface which becomes 

cumbersome with tools subjected to rotating motion. Consequently, Bhuiyan et al. 

(2012), and Ren et al. (2014) investigated aspects of Acoustic Emission (AE) in 

the machining process and developed new tool wear monitoring methodologies. 

The major issue with the application of these methods is the attenuation of the AE 

signal; also the AE sensor needs to be close to its source. Therefore, even with the 

realization of the AE methods, on its own, the evidence delivered by the AE 

method is not sufficient to provide a completely precise estimation of tool 

condition. Ambhore et al. (2015) verified that the data from the acoustic emission 

sensors alone is inadequate to provide an efficient wear monitoring. Accordingly, 

the multi-sensors fusion techniques have received tremendous applications in 

recent studies. Like, Vallejo et al. (2006), and Elangovan et al. (2011) developed 

diagnostic models using vibration and acoustic measurements for classifying the 

tool health conditions in different states viz. good-broke or worn-no worn or low-

high blunt. Likewise, Dey and Stori (2005) presented a Bayesian-based method 

for diagnosing the low and high level of tool wear variations using multiple 

sensor metrics. Yamaguchi et al. (2007) looked into the cutting force and acoustic 

emission data to estimate tool life. Dimla and Lister (2000) presented a tool wear 

monitoring system utilizing cutting force and vibration measurements. 

Geramifard et al. (2012) proposed a temporal probabilistic approach based on 

hidden Markov model with multiple sensors fusion (force, vibration, and 

acoustics emission) to predict the real-valued health state metric (tool wear) 

instead of discrete types or stages in a CNC milling machine. Similarly, Ghosh et 

al. (2007), Nakai et al. (2015), and Zhang et al. (2015a) describe experimental and 

analytical models for TCM based on an examination of various process signals, 

namely cutting force, vibration, AE, and power, etc. Zhong et al. (2013) 
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performed statistical analyses of the force and acoustic emission signals to 

examine the tool condition of a milling process using multi regression model. 

Correlation analysis is utilized for feature selection. Eight features from force 

(peak, peak to peak, mean of Root Mean Square (RMS), mean, standard 

deviation, absolute deviation, mean of band power and mean of RMS) and eight 

features from AE signal (kurtosis, peak to peak, mean of RMS, standard 

deviation, mean of band power, standard deviation of band power, absolute 

deviation and count) are feed as input. Chen (2011) developed a multi-model for 

wear approximation using dynamometer, accelerometer, and AE data. It is 

observed that force data is highly sensible to cutter performance compared to 

vibration and acoustics data (Dan and Mathew, 1990, Ghasempoor et al., 1998). 

Some studies deal with the angular approaches. For example, Girardin et al. 

(2010) examined the angular speed occurring without delay through the spindle 

encoder measurements. In general, these measurements are required to be 

corresponded with a reference measurement, usually cutting force, to confirm 

their precision. Duro et al. 2016 proposed a framework using multi-sensors to 

enhance the reliability of monitoring under static operating profile. Though, such 

systems are a widespread choice amongst scientists but only effective in 

laboratory environments owed to the fact that these approaches work well for 

discrete events, for instance, breakage, wear estimation etc., however, are harder 

to implement for remaining useful life prediction. In addition, these approaches 

not only cost a substantial amount of time and money on sensor setup but also 

possibly contain a substantial amount of errors because of handling complexities 

in multi-sensors setups (Sick, 2002). Teti et al. (2010) and Siddhpura and 

Paurobally, (2013) carried an informed, all-inclusive review of sensors, signal 

processing, and executive strategies for TCM. The mainstream of these researches 

are focused on continuous machining viz. turning, and these methods are not 

assured to work adequately for a semi or fully intermittent process viz. grinding, 

milling, etc., as in these operations tool wear evolution is different as the tool 

teeth go in and out repetitively during the course of the machining. Moreover, 

these works are typically designed to estimate the present wear or do 
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classification as a healthy/faulty tool based on current signal observation. As a 

result, such approaches are inflexible towards RUL expectation, and do not aid to 

the decisive function of TCM. By realizing what components need maintenance, 

support and replacement activities are arranged ahead of time, based upon the 

state of the cutting tool. Thus, goal of RUL prediction is to have the capacity to 

recognize approaching failure sufficiently early to take preventive replacement 

decisions in a convenient way. 

Following that, in literature, close attention is paid to RUL prediction of cutting 

tools. Explicitly, degradation data from a sample of cutting tools tested are used to 

infer and estimate the RUL of the population by utilizing artificial intelligence or 

statistical theory based decision-making strategies. For instance, Sun et al. 2016 

presented a method for evaluating the remaining useful life of an individual 

cutting tool while the tool is in process; using sensitive features extracted from 

force, vibration and acoustic emission signals to form characteristic matrices. 

Olufayo and Abou-El-Hossein (2015) studied the properties of the acoustic 

emission signal in the end-milling process. Based on wavelet transform, some 

features, including root mean square and mean, were extracted as inputs of the 

artificial neural network model for RUL estimation. Al-Zubaidi et al. (2014) 

adopted the adaptive neuro-fuzzy inference system to calculate the RUL for end 

milling of Ti6Al4V alloy with coated and uncoated cutting tools under dry cutting 

conditions. Likewise, some significant contributions are (Vallejo et al., 2008, 

Abellan-Nebot, and Subirón, 2010, Geramifard et al., 2012, Javed et al., 2015, 

Zhu et al., 2015, Javed et al., 2016). Although artificial intelligence based 

approaches are extensively utilized for TCM, even the utmost promising systems 

are not certainly adaptable in real-world scenarios (Wang et al., 2001, Dong et al., 

2004, Anusha et al., 2016), principally owing to inadequate generalization 

competences viz. the usage is constrained to a particular operation/sensor/machine 

tool or solitary valid for specific industrial scenarios (principally, restricted to 

high volume of productions viz. mass production, where the operating profiles are 

time-invariant). Besides, none of these models accounts for the dynamic operating 

profiles and doesn’t incorporate their effects on the degradation progression. In 
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recent years, a few probabilistic and stochastic methods are designed. For 

instance, Karandikar et al. 2013 demonstrated the random walk method that 

estimates the RUL for a selected tool based on the spindle power during 

machining. Tobon-Mejia et al. (2012) offered a significant aid for predicting tools 

RUL in a CNC center by utilizing a stochastic methodology. Lee and Whitmore 

(2006) compiled various stochastic degradation models gauging the failure 

distribution for cutting tools. Nevertheless, such frameworks address failure as a 

random incident and do not deliver statistics regarding the degradation 

progression peculiar to a tool operating in dynamic operating profiles (Noortwijk 

2009). In essence, a large cross-section of these literature, assumes that the 

operating profile is time-invariant or have no effect on degradation processes 

(Roth 2010, Li, et al., 2009, Anusha et al., 2016). As a result, their applications in 

predicting RUL and to plan other shop floor operational policies are restricted in 

diverse industrial scenarios viz. batch or job production environments where the 

operating profiles are highly nonlinear time-variant in nature.  

In distinction, the other radical of research emphases on exhibiting the effects 

of operating profiles on tool degradation or its manifestations. For instance, 

Tamizharasan et al. (2006), Palanisamy et al. (2008), and Prakash et al. (2011) 

predicted the wear as a function of operating parameters for instance cutting 

speed, etc. Kopac and Krajnik (2007) and Sivasakthivel et al., (2010) presented an 

analytical approach to predict, the tool wear, pertaining to operating parameters 

viz. helix angle, etc. Leone et al. (2011) provided an experimental technique to 

estimate wear as a function of the machining interval and tools rotating speed. 

These methods provide a good reference to model the effects of various operating 

profiles on tool wear. However, as these methods are not based on real-time 

measurements, their suitability is mainly limited to offline operating parameter 

optimization.     

The cutting tool degradation significantly influences product quality and 

machine tool performance. Thus, for shop floor efficiency and effectiveness 

modern manufacturing industries rely on the optimum and efficient design of their 
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shop floor operational policies; process quality control and maintenance planning 

are fundamental. Since the 1950s, investigation in these areas has attracted 

substantial attention. However, these policies are used in isolation. Montgomery 

(1980) presented a comprehensive review of process quality control policies, 

while Pierskalla and Voelker (1976) reviewed the literature on maintenance 

planning. It is realized that the use of these policies in isolation provides sub-

optimal solutions, as they are interrelated (Ben‐Daya and Duffuaa, 1995). 

Consequently, the integrated optimization of process quality control and 

maintenance planning is receiving the much needed momentum. For example, 

Cassady et al. (2000), Linderman et al. (2005) simultaneously optimized the 

process quality control and maintenance planning policy to reduce the overall 

cost. Zhou and Zhu (2008) suggested a method for process quality control and 

maintenance planning to examine the expense of the joint modeling for obtaining 

optimum design parameters. Panagiotidou and Nenes (2009) attempted an 

integration of the variable-parameter Shewhart control chart. Mehdi et al. (2010) 

developed a combined model designed for conforming and non-conforming items. 

Brief overviews of the literature dealing with these integrated models are reported 

in (Rahim and Ben-Daya, 2001, Budai et al., 2008, Pandey et al., 2010, and 

Hadidi, et al., 2012). Most of these integrated models are built on the assumption 

that the health state of the machine changes from working to failure with a 

constant failure rate. In other words, no degradation phenomenon is present 

except breakdown. Such assumption restricts the applicability of these integrated 

models for systems deteriorating with time (having an increasing failure rate), viz. 

cutting tools, etc. This motivated Banerjee and Rahim (1988) to extend the 

existing model (Duncan, 1956) to the Weibull shock model; though such 

extensions are passive. The active action necessary for industries is to restrict the 

unit from aging when the failure behaviour has an increasing failure rate. A 

framework that is formulated to function as a preventive maintenance program 

will only aid this purpose. Along these lines, Ben-Daya (1999) attempted the 

integration of process quality control and preventive maintenance, when the 

process failure follows increasing failure rate. In any case, such models are very 
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complex than the standard process quality control policy, as it requires calculation 

and continuous updating of the probability that the process is in the out-of-control 

state, and subsequently the policy becomes tough to execute. Recently, Pandey et 

al. (2011) proposed a jointly optimized quality and maintenance planning policy 

considering increasing process failure rate in an efficient manner. Their model is 

built utilizing the average process failure rate for the entire planning horizon. 

However, in cases of deteriorating systems viz. cutting tools, the failure rate 

increases dynamically. Thus, the more realistic approach will be to dynamically 

update the process failure rate based on the current health state of the system 

throughout its life.   

For the integrity of this widespread review of interrelated research, it is stated 

that scarce studies are accessible, associating degradation progression with the 

operating profiles. However, such studies approach the problem in a way that 

each time the degradation of a cutting tool is approximated, the future operating 

profile is assumed to be constant and equivalent to the current profile. Most recent 

works where operating profiles effects were considered are from Zhang and 

Zhang (2015), and Aramesh et al. (2016); they addressed the problem from an 

accelerated degradation testing perspective solely centered on the offline current 

observation at different operating levels. Though, they do not model the physics 

associated with the evolution of dynamic operating profiles. It would be of 

practical value to equip the TCM systems with intelligence that allows responding 

to the uncertainty of time-variant operating profiles and adaptable under various 

real-world scenarios. Moreover, many investigators (Özel and Karpat, 2005, Kaya 

et al., 2012, Tangjitsitcharoen et al., 2014) have perceived that there is a link 

between product quality and tool degradation, yet research in this area is still very 

constrained. Investigation of such relationship will be beneficial to the industries; 

as product quality is affected by tool degradation. Thus, product quality can be an 

important element in estimating the health condition of the tool. Lastly, it is stated 

that few works are available, combining process quality control with maintenance 

planning for deteriorating systems. However, they approach the problem typically 

from a quality perspective, as they solitary study quality deterioration 
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mechanisms. The most recent work in this area is from Ben-Daya and Rahim 

(2000); they aim to perform integrated optimization of the process quality control 

and the maintenance planning of deteriorating systems. However, these works do 

not consider the real-time health state of the system, which can be a new element 

for dynamically updating the optimal design parameters of integrated policy as a 

function of machine’s useful life. 

2.3 Findings from Literature Review 

It is observed that important aspects of manufacturing viz. diagnostics, 

prognostics and process quality control are studied in the isolation and needs to be 

integrated. Explicitly, based on the critical review and similar other works, 

following findings have been identified.  

1. The available TCM approaches in the literature focus exclusively on the 

diagnostics or the prognostics task. In any case, integrating diagnostics 

information with prognostics will be of great interest to advance the TCM 

system. Such integrated TCM system is not reported in the relevant literature. 

Also, there is an immediate requirement of a reliable TCM system capable of 

catering to the need of the handling complexities, at the same time; it should 

also be convenient and adaptable enough to satisfy the financial constraints 

posed by the contemporary industrial practices. Moreover, performance of the 

TCM systems in terms of accuracy and applicability are some of the major 

constraints for use in real industrial applications. Therefore, many of the 

developed indirect or direct monitoring systems are not available yet or have 

not been tested in an industrial environment. 

2. Available TCM systems either fit trends in the monitored parameters (cutting 

force, vibrations, etc.) to predict the future wear state or do classification as a 

healthy or a failed tool. The extension of such systems for the multi-level 

characterization of degradation and remaining life assessment is not 

researched satisfactorily in the relevant literature.  

3. Many investigators have perceived that there is a link between product quality 

and tool degradation, yet research in this area is still very constrained. 
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Investigation and modelling of such relationship will be beneficial to the 

industries; as product quality is affected by tool degradation. Thus, product 

quality can be an important parameter in estimating health state of the tool. 

However, no specific real-time TCM system is reported mapping such 

relationship.  

4. Traditional TCM systems are designed on the impression that along the entire 

lifespan of the cutting tool, the prevailing operating profiles are temporally 

unvarying or do not significantly affect tool degradation. Although, in reality, 

the operating profiles frequently fluctuate with operating mode conversions, 

and mostly, exert significant effects on the degradation. Still, the impact of 

time-variant operating profiles on life estimation has not received enough 

consideration. Specifically, there is a need for a system that can prognosticate 

tool RULs while exploiting prior information, along with the future 

characteristics of dynamic operating profiles under diverse real-world 

scenarios viz. batch, job, and mass production environments. In reality, a real-

time TCM system designed for prognosticating RULs under time-variant 

industrial scenarios is still an open area that needs to be addressed.  

5. A lot of the investigations integrating quality with maintenance are reported; 

such integration for machines deteriorating with time viz. cutting tools are 

scarcely reported. Available models aim at quality control problems 

concerning machine failure in terms of complete breakdown and mostly 

ignore the performance deterioration in relation to poor quality that results in 

high rejections and calls for maintenance action or change in quality control 

policy. The existing integrated model assumes a fixed value for the underlying 

design parameters. Although the initial distribution of the parameters is 

economically chosen at the beginning stage of the manufacturing process, no 

attention is given to the intermediate stages. This may be non-economical in 

practical situations, where one cannot assume a fixed value of control chart 

parameters for the entire lifecycle of the manufacturing process subjected to 

deterioration. For instance, cutting tools, where the health state of the tool 

changes due to degradation. In such cases, considering the real-time health 
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state of the system can be a new element as health assessment is not only a 

diagnostic necessity to avoid equipment failure and manufacturing loss, but 

also have a vital role which essentially influences the dimensional 

uprightness, well-functioning, and service life of the product. However, the 

health monitoring efficiency cannot be assessed in a significant manner 

without considering whether the maintenance task is satisfying the production 

demands or not. Accordingly, a proper understanding of this dependency 

between process quality control and maintenance planning, considering the 

real-time health state of the system will open a novel opportunity of a 

dynamic integrated policy, and would results in significant savings in overall 

manufacturing cost. 

These findings are summarized in the form of specific research gaps and 

highlighted in section 1.2 of chapter 1.  
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Chapter 3
*
 

 Augmenting Data-Driven Modeling from 

Degradation to Remaining Useful Life 

Approximation: Preliminary Investigation 

“In God we trust; all others must bring data”. 

William Edwards Deming, American Statistician 

In this chapter, as a part of the preliminary investigation, a new and systematic 

methodology for augmenting data-driven modeling from degradation 

approximation to RUL approximation for distinct industrial cases is offered.  

Key Highlights  

Purpose: The purpose of this investigation is to present some preliminary 

understanding of the key challenges in the execution of the tool condition 

monitoring as an enabling technology for intelligent manufacturing. Moreover, to 

account for such challenges, this investigation provides manufacturing industries 

with augmentation of data-driven modeling from degradation approximation to 

RUL approximation for distinct industrial cases.  

Methodology: A trial and error approach is proposed for dominant feature 

identification, screening and selection. New condition-based data-centric offline, 

online and semi-offline models based on artificial neural network are inventively 

designed for degradation prediction. Herein, tool degradation (wear) was 

considered as the monitoring variable in addition to the measured variables viz. 

cutting force, vibration, etc. In succession, these models are extended from 

degradation approximation to RUL approximation for distinct industrial cases:  

                                                           
* The preliminary investigation presented in this chapter is published in two parts. Firstly, under 

the title “Data driven models for prognostics of high speed milling cutters” in “International 

Journal of Performability Engineering”, Totem Publisher, USA, Vol. 12.1, pp. 3-12, 2016. 

Secondly, under the title “Predicting remaining useful life of high speed milling cutters based on 

artificial neural network” in “International Conference on Robotics, Automation, Control and 

Embedded System, 2015”, IEEE, doi: 10.1109/RACE.2015.7097283.  

http://quotes.yourdictionary.com/author/quote/570078#prognostic
http://quotes.yourdictionary.com/author/quote/570078#prognostic
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1) When only online monitoring data are available, 

2) When incidental (or planned) offline inspection data are also available.  

Findings: These models are developed and validated based on open source 

experimental data. The new trial and error approach significantly aids in 

improving the accuracy of degradation prediction. On the other hand, the 

proposed approach provides over prediction at the early age of the life which 

reduces unnecessary disturbance of the manufacturing process when the cutting 

tool is new. As the tool reaches end of its life, proposed model provides accurate 

prediction of the impending failures thereby initiating remedial action in a timely 

manner. These findings encourage the development and application of data-

driven models for intelligent manufacturing. 

Practical Implications: The accuracy of degradation prediction models so 

obtained in this research is better than those reported in the literature with same 

set of experimental data. Wherein, the most reliable semi-offline model is useful 

for optimizing planned shutdown intervals for the machine in real-world 

manufacturing environment.  

Originality and Contribution: The novelty of this investigation is in augmenting 

data-driven modeling from degradation approximation to RUL approximation. 

Wherein, RUL predictions is carried out for two distinct industrial scenarios viz., 

when only monitoring data are available and when incidental (or planned) offline 

inspection data are also available, using inventively designed and developed 

online, offline and semi-offline models. In addition, comparative studies on 

prediction performances of distinctive models show that the developed model is 

superior to different conventional models. 

Research Limitations and Future Scope: The preliminary investigations 

presented in this chapter are based on the secondary data taken from Prognostics 

and Health Management Society. Only a limited data set was available for model 

training. Moreover, various important and related dimensions of the problems 

could not be investigated because of the lack of data. For example, all the 
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samples were collected at a constant operating condition, product quality 

characteristics were not recorded, etc. Study of product quality characteristics 

(surface roughness) with tool degradation would lead to important conclusions. 

Further, such characteristics can also give important features for tool failure and 

may help in improving prediction accuracy. Also, linking the monitored 

parameters with product quality characteristics would enable dynamic process 

quality control strategies. All the samples were collected at a constant operating 

condition or profile. It precludes any possibility of predicting tool RUL based on 

future operating profile which may be varying. These observations motivate to 

develop an experimental setup and develop present research methodologies 

reported in chapter 4-6. 
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3.1 Introduction 

Effectiveness of tool condition monitoring depends on precise degradation (viz. 

tool wear) modelling of cutting tools. Wherein, data-driven modelling is largely 

used for degradation approximation of cutting tools. There exist a numerous data-

driven modelling frameworks for tool degradation approximation. Though, 

performance of these modelling frameworks in terms of robustness, reliability, 

accuracy and applicability are some of the major constraints for use in real-world 

manufacturing environment. From the comprehensive literature review (presented 

in chapter 2) in the area of tool degradation approximation, it is observed that the 

main focus of the researchers is on improving the degradation approximation 

accuracy of the data-driven modelling frameworks. In general, neural networks, 

extreme learning machine etc., based modelling frameworks are found to be more 

suitable for handling the nonlinearity present in the tool degradation (wear) data 

compared to multi regression models. It is also found that statistical feature 

selection plays an important role in the reduction of computational load and 

increasing the performance of the modelling framework. Among various feature 

selection methods, regression based genetic algorithm, correlation etc. are widely 

used. Still, there is a scope for development of an efficient feature selection 

method, to identify optimum set of inputs to be feed to the modelling framework 

for better performance with low computational load. Moreover, the available 

frameworks are stringently designed for tool degradation approximation and don’t 

deliver failure time information, which does not serve the ultimate purpose of tool 

condition monitoring. As, the failure time prediction is not only necessary to 

verify whether the mission goal(s) can be accomplished but also important to aid 

in efficient tool replacement and operations planning decisions. Accordingly, 

extending the current degradation approximation modelling frameworks to 

instantaneous remaining useful life approximation is of high practical importance. 

Thus, present investigation first aims at enhancing the performance of tool 

degradation approximation, in terms of accuracy and applicability, via an offered 

feature selection approach. And then, augment’s data-driven modeling from tool 

degradation to remaining useful life approximation for distinct industrial cases.  
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First, preliminary screening on different measured process variables viz. cutting 

force, vibration, etc. is carried out. From the screened measured process variables 

multiple significant statistical features are extracted. Next, a trial and error 

approach is proposed for dominant feature selection. Following, new condition-

based data-centric offline, online and semi-offline models based on artificial 

neural network are inventively designed for degradation prediction. Herein, tool 

degradation (wear) was considered as the monitoring variable in addition to the 

measured variables viz. cutting force, vibration, etc. Next, these models are 

extended from degradation approximation to RUL approximation for distinct 

industrial cases 1) when only online monitoring data are available; 2) when 

incidental (or planned) offline inspection data are also available. These models are 

validated based on experimental data.  

The novelty of this investigation is in augmenting data-driven modeling from 

degradation approximation to RUL approximation. To the best of the knowledge, 

so far no model has been introduced implementing the tool wear itself as a 

variable in the model in addition to the measured parameters, thereby being able 

to predict the RUL of tools based on the current tool wear value. This could be 

considered as the significant practical advantage of this model over the existing 

models, since it is capable of estimating the RUL of fielded tool, regardless of its 

usage history, with a simple tool wear measurement. The accuracy of degradation 

prediction models so obtained in this research is better than those reported in the 

literature with same set of experimental data. 

3.2 Problem Addressed 

In the present investigation open source data is used; data is taken with 

permission from the Prognostics and Health Management (PHM) society
3.1 

(PHMS-CDC, PHMS). The data was mainly collected to estimate wear of high 

speed CNC milling machine cutters using cutting force, vibration and acoustic 

                                                           
3.1

 PHM Society is a non-profit organization dedicated to the advancement of PHM as an 

engineering discipline. The milling cutter data is openly downloadable from their website (Link: 

https://www.phmsociety.org/competition/phm/10). Permission has been taken to use this data for 

the current work presented in this chapter. I acknowledge the support. 
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emission data. The data is in the form of time domain signals from dynamometer, 

accelerometer and acoustic emission sensors. The milling process in the 

experiments is to create an oblique plane surface on a workpiece by ball-nose end 

milling operation. Description of data is given in table 3.1. Some of the most 

important test details are as follows: A high speed CNC milling machine and a 6 

mm 3 flutes ball nose tungsten carbide cutter is used for machining stainless steel 

(HRC 52) workpiece, spindle speed of the cutter was 10400 RPM, feed rate was 

1555 mm/min, Y depth of cut (radial) was 0.125 mm and Z depth of cut (axial) 

was 0.2 mm. Data was acquired at 50 KHz. Further details of the apparatus and 

experimental setup can be found in Li et al. (2009). The monitored data includes 

operational data from three different milling cutters. Each cutter data consists of 

time domain signals for each cut as shown in table 3.1. The cutters flank wear 

from three flutes of cutter was measured after a complete 27,216 mm cutting 

distance using a LEICA MZ12 microscopy system. Average value of cutters flank 

wear from three flutes is considered in this study for developing models. Each 

cutter data consists of total 315 cuts. In the present study data is divided into two 

subsets: training data (2 cutters) and test data (1 cutter). The objective of this 

work is to develop accurate and applicable models for wear estimation and RUL 

prediction. The application of the models is demonstrated using two industrial 

cases: 

Case I: When only online monitoring data are available. 

Case II: When incidental (or planned) offline inspection data are also available. 

 

3.3 Methodology 

 

The overall procedure of the proposed method is illustrated in Fig. 3.1. 

Experimentation step is discussed in section 3.2. Rest of the steps is discussed in 

the following sub-sections.  

3.3.1 Preliminary Feature Identification and Screening 

To predict the cutter wear from measured process variables, statistical features are 

needed to be extracted. A statistical feature transforms raw signals into more 
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informative signatures of a system (Ding et al., 2009). Various statistical features 

from force-vibration-acoustic signals are used throughout the literature (Li et al., 

2009, Chen and Li, 2007, Tian, 2009, Prasad et al., 2012, and Zhang et al., 2015). 

Table 3.2 shows the list of some of the most important statistical features. 

 

 

Fig. 3.1.  Flow chart of the proposed method. 

TABLE 3.1 

 DESCRIPTION OF DATA 

S No. Data 

1 Force (N) in X Dimension 

2 Force (N) in Y Dimension 

3 Force (N) in Z Dimension 

4 Vibration (g) in X Dimension 

5 Vibration (g) in Y Dimension 

6 Vibration (g) in Z Dimension 

7 Acoustic Emission-Root Mean Squared (AE-RMS) (V) 

 

Step 1: Experimentation 

 Cutting Force in X, Y & Z Dimensions 

 Vibration in X, Y & Z Dimensions 

 Acoustic Emission 

 Wear 

Step 2: Preliminary Feature Identification and Screening 

Step 3: Feature Selection and Wear 

Prediction Model Development 

 Offline model 

 Online model 

 Semi-offline model 

Step 5: RUL Prediction 

a) Only online monitoring data are available 

b)  Incidental (or planned) offline inspection data are also available 

 

Step 4: Performance  

Assessment 

 MSE 

 R2 Value 

 MAPE 

 Precision 
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TABLE 3.2 

 IMPORTANT STATISTICAL FEATURES 

S. No. 
Cutting Force Signal (X, Y 

and Z Dimension) 

Vibration Signal (X, Y and Z 

Dimension) 
AE-RMS Signal 

1 Average force Root mean square Root mean square 

2 Standard deviation Standard deviation Standard deviation 

3 Skewness  Skewness Skewness 

4 Kurtosis Kurtosis Kurtosis 

5 Peak of the cutting forces  Peak Peak 

 

Literature have shown that the cutting force in the feed direction (Y direction in 

this case) is the most sensitive force signature to the change in cutting conditions 

due to its lower damping ratio during cutting process compared to the other two 

axes (Zhai et al., 2010). Therefore, features in feed direction for force and 

vibration along with acoustics are considered for further study. Although, all of 

these features are statistically significant, it has been observed that beyond a 

certain point, involvement of all these features leads to an unsatisfactory 

performance (Li et al., 2009). Therefore selection of most relevant feature is 

necessary for efficient establishment of correlation models with acceptable 

computing performance. 

3.3.2 Feature Selection and Wear Prediction Model Development  

Following three types of wear prediction models are developed in this research 

based on the test data.  

 Offline wear prediction model 

 Online wear prediction model 

 Semi-offline wear prediction model 

Artificial Neural Network (ANN) has been considered to be one of the most 

promising approaches for modelling wear due to their adaptability, nonlinearity, 

and ability of arbitrary function approximation (Rajakarunakaran et al., 2008). 

The same is therefore used in all the above three models. Three layers (input, 



37 
 

hidden and output) Feedforward Back Propagation (FFBP) neural network is used 

in this research. Fig. 3.2 shows the basic architecture of the FFBP neural network. 

 

 

Fig. 3.2.  Architecture of FFBP neural network. 

A FFBP neural network is employed due to its high performance in modelling 

complicated processes. Network weights were adjusted by error feedbacks. By 

means of revising weights of the network, actual output is closer to the expected 

output. The output is normalized between 0 and 1, which gives same order of 

magnitude variables to avoid numerical instability. Levenberg Marquardt (LM) 

learning algorithm is used to train the network. The configuration of FFBP neural 

network model uses hyperbolic tangent sigmoid transfer function in its hidden and 

linear transfer function in its output layer.  

Offline, online and semi-offline models mainly vary in terms of inputs feed to the 

network. Output in all the three models is the cutters flank wear (𝑊𝑖). These 

models are explained in brief as follows: 

Offline wear prediction model: Offline model is developed to model rate of 

change of wear. The inputs to the model are time at present (𝑇𝑖) and previous 

(𝑇𝑖−1) and wear at previous state (𝑊𝑖−1).  

Online wear prediction model: Force-vibration-acoustic properties of cutting 

process are the measurements which are monitored online (Zhai et al., 2010). 

Output Input 

n 

2 

1 

 

 

 

 

Hidden Layer 
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These measurements contain very useful information about the cutter wear. 

Various statistical features from force-vibration-acoustic are extracted as shown 

in table 3.2, for best performance significant features are needed to be identified. 

An ANN based trial and error approach is used to select the most sensitive set of 

features. Input to the model was time at present (𝑇𝑖), previous (𝑇𝑖−1) and 

force/vibration/acoustic emissions features from present and previous state. The 

model is tested with statistical features of the force-vibration-acoustic properties 

of cutting process separately and there combination (feature subset) and Mean 

Squared Error (MSE) is calculated. MSE is the average of the squares of the 

difference between the actual and predicted values. Mathematically, 

MSE =
1

N
∑(pi − ai)

2

N

i=1

 (3.1) 

where 𝑝𝑖 is the predicted value, 𝑎𝑖 is the actual value, N is the number of fitted 

points. 

Features or the feature subset with lowest mean squared error is most significant 

features to predict the cutter wear and are selected for development of online 

model. Most significant features identified for online wear prediction model are: 

 Average force (Fav) from cutting force signal. 

 Skewness (Vsk) from vibration signal 

 Standard deviation (Asd) from AE-RMS signal. 

An online wear prediction model is developed with time, average force (Fav), 

skewness (Vsk) and standard deviation (Asd) from its present and previous state as 

inputs.  

Semi-offline wear prediction model: In semi-offline model apart from statistical 

features (as used in online model), wear in the current state (𝑊𝑖−1) is considered 

as input to the model. Output is the wear in the next cut (𝑊𝑖). It is identified from 

trial and error method that in case of semi-offline model only average force with 
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wear gives best results in terms of MSE. Thus, from cutting force signal Fav with 

wear are used for semi-offline model development.  

3.3.3 Performance Assessment  

A total of 630 sets of data were selected from the total of 945 of data sets for the 

purpose of training FFBP neural network model. The other 315 sets were used for 

testing and to verify the accuracy of the predicted values of cutters wear. For 

accuracy assessment mean squared error, R-Squared value (R
2
), Mean Absolute 

Percentage Error (MAPE) and precision indices are calculated. These are defined 

as follows: 

 

Mean Squared Error: MSE is explained in previous sub-section and is 

calculated as shown in Eq. (3.1). 

R-Squared Value: R
2
 is the coefficient of determination that should be closer to 

1. Polynomial multiple regression analysis is used to calculate it.  

Mean Absolute Percentage Error: MAPE is the measure of accuracy of a 

method for constructing fitted time series values in statistics. It is calculated as 

follows. 

MAPE =
100%

N
∑|

ai − pi
ai

|

N

i=1

 (3.2) 

Precision: This measure quantifies the dispersion of the prediction error around 

its mean, as shown in Eq. (3.3). 

Precision =  
√∑ [(pi − ai) − 

1
N
∑ (pi − ai)
N
i=1 ]2

N

i=1

N
 

(3.3) 

To check the applicability of developed approach; computational time, that is the 

required time to learn dataset is also computed. Table 3.3 presents the results of 

developed models.  
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TABLE 3.3 

RESULTS OF THE DEVELOPED MODELS 

Model No. of Neurons MSE R
2
 Value MAPE Precision Time (sec) 

Offline 26 5.61×10
-05

 0.96 4.60 0.008 1 

Online 6 3.31×10
-04

 0.81 11.8 0.018 1 

Semi-offline 21 1.18×10
-06

 0.96 0.70 0.001 2 

 

Proposed models have demonstrated promising results in terms of predicting 

cutter wear. The accuracy of wear prediction models so obtained in this research 

are better than those reported in the literature with same experimental data as 

shown in table 3.4.  

TABLE 3.4 

ACCURACY OF WEAR PREDICTION MODELS REPORTED IN 

LITERATURE WITH SAME EXPERIMENTAL DATA 

 Performance Measures 

S. No.  MSE R
2
 

1 Current Approach 3.31×10
-04

 to 1.18×10
-06

 0.81to 0.96 

2 Li et al. (2009) 4.43×10
-02

 to 1.743×10
-05

 0.58 to 0.99 

3 Javed et al. (2012) - 0.45 to 0.66 

The extension and application of all the three models for RUL prediction is 

discussed in following section.  

3.3.4 Remaining Useful Life Prediction 

The main objective of prognostics of milling cutter is to predict its remaining 

useful life during its operation. The application of the model is demonstrated 

using two industrial cases: 

 

Case I: Only online monitoring data are available: In this case the developed 

online model can be used. Online model gives continuous wear prediction based 

on process variables, but it will not give the idea of time remaining till failure. For 
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that a wear threshold is fixed (it can be fixed with general experience, as at a 

particular range of tool wear it is most prone to failure); as the tool wear reaches 

this threshold the cutting tool is discarded. The predicted tool wear from online 

model, when changes significantly from the previous data point, that points could 

be taken as critical alarms indicating the degree of tool degradation, as shown in 

Fig. 3.3. Predicted wear at these points say C1 or C2 will be feed to the offline 

model as an input. Offline model will predict the future wear of the cutter. The 

predicted future wear can again be used as input for next prediction in offline 

model. The process will be repeated till the predicted wear reaches the threshold 

value. The difference of time at which threshold is reached and critical point (i.e. 

C1 or C2) will gives the remaining useful life of the cutter. 

 

Case II: Incidental (or planned) offline inspection data are also available: In 

continuous production kinds of manufacturing setup sometimes process may be 

stopped due to unavailability of raw material or due to failures of machine 

components. At such unplanned stoppages opportunities exist to monitor the 

cutting tool wear and utilizing the same along with online monitored parameters, 

semi-offline model can be used to predict the future wear. This predicted wear 

from semi-offline model is than feed to the offline model as an input and the same 

procedure as explained above can be repeated for remaining useful life prediction. 

The critical points C1 or C2 at which prediction is done in semi-offline model are 

shown in Fig. 3.4. 

 

Fig. 3.3.  Actual vs. predicted wear from online wear prediction model. 
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Fig. 3.4.  Actual vs. predicted wear from semi-offline wear prediction model. 

Such an industrial case is very common in many industries; for instance, in case 

of gas turbines during scheduled or incidental downtime or maintenance, offline 

inspection of crack growth is carried out. The offline inspected data is used for 

improving the performance of preventive maintenance. 

Table 3.5 shows the predicted RULs in both the cases from C1 and C2 both. 

Threshold value was set to be 0.21 mm; the actual time to reach this point was 

305 cuts. From the results it is clear that the RUL through semi-offline model is 

very closer to the actual RUL as compared to the online model. It is also observed 

that the prediction from point C2 is more accurate than the point C1. Hence, it is 

recommended that RUL prediction should be continuously updated with age of 

the cutter to increase the effectiveness of TCM policy. The developed models are 

accurate as well as applicable; the results from these models are not having over 

prediction which is very important for real industrial implementation.  

3.4 Preliminary Investigation Rundown 

When most of the researchers in TCM focus on wear prediction based on online 

monitored parameters, current investigation attempts to extend the same for RUL 

prediction. Also, the trial and error approach, used in the current investigation, for 

selecting the best set of features improves the accuracy of the wear prediction. 

Thus, the approach not only provides accurate estimation of cutter wear but also 

predicts the number of cuts cutter can make before the failure of predefined level 
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of wear is reached. Such estimation of RUL makes it easier to plan for tool 

replacement and also helps the production manager in efficiently managing its 

operations. Second contribution of the paper is the semi-offline model that is 

improvement over online prediction model, based on wear measured during 

planned shutdown or incidental stoppage of the machine. This can be useful for 

setting planned shutdown interval for the machine. 

TABLE 3.5 

REMAINING USEFUL LIFE ASSESSMENT 

 Predicted RUL 

Threshold Value set at 0.21 mm (305
th

 cut) 
From point C1 

(233
th

 cut) 

From point C2 

(278
th

 cut) 

Actual Remaining Useful Life 72 cuts 27 cuts 

Predicted Wear from Online Model Feed to Offline 

Model for RUL Prediction 
63 cuts 22 cuts 

Predicted Wear from Semi-offline Model Feed to 

Offline Model for RUL Prediction 
66 cuts 25 cuts 

 

The results from this study encourage the development and application of data-

driven models for intelligent condition monitoring of cutting tools. However, only 

limited data sets were available for model training. Moreover, various important 

and related dimensions of the problems could not be investigated because of the 

lack of data. For example, all the samples were collected at a constant operating 

condition, product quality characteristics were not recorded, etc. Study of product 

quality characteristics (surface roughness) with tool degradation would lead to 

important conclusions. Further, such characteristics can also give important 

features for tool failure and may help in improving prediction accuracy. This will 

be especially useful for industries that do not have costly sensors for online 

monitoring of the health of their machine. Also, linking the monitored parameter 

with product quality characteristics would enable dynamic process quality control 

strategies. All the samples were collected at a constant operating condition or 

profile. It precludes any possibility of predicting tool RUL based on future 
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operating profile which may be varying. These observations motivate to develop 

the present research problem and methodology. It also motivates to develop and 

efficient experimental setup for collection of required data. 
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Chapter 4
*
 

Real-Time Integration of Diagnostics and 

Prognostics, Centered on the Relationship between 

Product Quality and Tool Degradation 

“Out of clutter, find simplicity. From discord, find harmony. In the middle of 

difficulty lies opportunity”.   

Albert Einstein, German-born Theoretical Physicist 

This chapter describes the formulation of a novel integrated tool condition 

monitoring system pertaining to diagnostics and prognostics by quantifying and 

mapping the relationship between product quality and tool degradation. 

Moreover, based on the research gaps identified in Chapter 2, the first-hand 

design of a cost efficient experimental strategy, including its hardware, is 

described. Some new observations about association between product quality and 

tool degradation are given. In addition, an overall functionality and practicality 

of the new methodology via experimental implementation can also be obtained in 

this chapter.  

Key Highlights 

Purpose: The purpose of this chapter is to provide manufacturing industries with 

a cost efficient and cognitive integrated monitoring system to instantaneously 

prevent machining system performance degradation and sudden failures. 

Methodology: The diagnostic reliability is enhanced by researching on the use of 

a multi-level categorization of tool wear. The prognostic competence is improved 

by formulating it explicitly for the tools critical zone as a function of tool life. The 

system is integrated in a manner that, whenever the degradation curve of the tool 

                                                           
*
 The work presented in this chapter is published under the title “A novel integrated tool condition 

monitoring system” in “Journal of Intelligent Manufacturing”, Springer, doi: 10.1007/s10845-

017-1334-2. 
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reaches the critical zone, prognostics module is triggered, and RUL is assessed 

instantaneously. Moreover, to improve the integrated TCM system performance, it 

is built using support vector machine with optimal training technique. 

Findings: The proposed methodology provides an excellent prescience that will 

enrich the existing TCM systems by considering the product quality as a new 

element for tool health monitoring. On the other hand, the information obtained 

in the current research results in significant savings in cost, time and improving 

productivity for heavily competitive manufacturing industry. 

Practical Implications: The research in this work is a pioneering effort towards 

designing a simple, easily comprehensible monitoring system utilizing minimum 

resources to enable easy adaptation of the technology even in medium and small 

scale manufacturing industries. Moreover, experimental tests verify the viability 

of the system.  

Originality and Contribution: The novelty of this research is in the invention of 

an integrated TCM system by quantifying and mapping the relationship between 

product quality and tool degradation. This system ascertains reliable health 

monitoring and life prediction of the machining system at the same time with a 

solitary experimentation. An added contribution lies in the outcomes; an 

exhaustive performance and comparative investigations of the proposed 

integrated TCM system is presented, to distinguish the suitability, stability, 

quality, reliability, robustness, applicability and comprehensibility in a real 

industrial environment.  

Research Limitations and Future Scope: The restriction in this work is that the 

proposed approach is only suitable for the applications in which the operating 

conditions are fixed. The applicability of this approach can be seen in 

applications with high volume of productions. The approach can be generalized 

by considering multiple operating conditions. The same is presented in next 

chapter.  
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 4.1 Introduction 

Rendering to the discussion presented in chapter 1, that a reliable TCM system is 

significant for manufacturing industries for fault diagnostics and prognostics to 

prevent machinery performance degradation and catastrophic failures. In that line, 

chapter 2 expresses that, literature has devoted less attention to the criterion of 

integrated diagnostics and prognostics to cutting tools and has mostly ignored the 

interaction effect between product quality and tool degradation. In this chapter, it 

is aimed to bridge the gap
4.1

 and make an attempt to propose a novel integrated 

tool condition monitoring system pertaining to diagnostics and prognostics, 

centered on the relationship between product quality and tool degradation. 

Firstly, a new cost efficient experimental strategy concerning high-speed CNC 

milling machining is executed. Further, a comprehensive correlation investigation 

between product quality and tool degradation is performed; revealing the strong 

positive relationship. Mapping this relationship; a novel integrated tool condition 

monitoring system pertaining to diagnostics and prognostics is formulated. The 

diagnostic reliability is enhanced by researching on the use of a multi-level 

categorization of wear, and the prognostic competence is improved by 

formulating it explicitly for the critical zone as a function of tool life. A new Tool 

Degradation Indicator (TDI)
4.2

 with diverse functionality is introduced as the 

system input. The architecture of the proposed cognitive system comprises of 

diagnostics and prognostics modules linked together. The diagnostics module 

estimates the current health state of the tool, whenever, the degradation curve of 

the tool reaches the critical zone, the prognostics module is triggered, and 

remaining useful life is assessed instantaneously. To map the desired relationship, 

Support Vector Machine (SVM) has been utilized. An optimal training technique 

is adopted based on grid search approach to advance the system performance. The 

developed system is validated based on the experimental data, and its 

performance is critically analyzed. The implementation results show that the 

                                                           
4.1

 These gaps are briefed in chapter 2, section 2.3. 
4.2

 TDI is the set of measures (tool current age and product quality measurements) sensitive to 

cutting tool degradation. 
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enhanced maintenance performance can be obtained, which makes the system 

suitable for advance asset management in manufacturing industries.  

The novelty of this work is in the formulation of an integrated TCM system by 

quantifying and mapping the relationship between product quality and tool 

degradation. This system ascertains reliable health monitoring and life prediction 

of the machining system at the same time with a solitary experimentation. An 

added contribution lies in the outcomes; an exhaustive performance and 

comparative investigations of the proposed integrated TCM system is presented, 

to distinguish the suitability, stability, quality, reliability, robustness, applicability 

and comprehensibility in a real industrial environment. This expands the proposed 

system robustness and applicability in manufacturing industries. 

The rest of the chapter is structured as follows. In next section, the details of the 

new experimental strategy are given. Section 4.3 illustrates the investigation of 

the relationship between product quality and tool degradation. Section 4.4 shows 

detailed formulation and the architecture of the integrated TCM system. Section 

4.5 briefly discusses the implementation results. In section 4.6 contributions are 

highlighted. Lastly, section 4.7 summarizes the chapter.  

4.2 New Experimental Strategy 

The aim is to develop an experimental strategy which successfully attempts to 

provide an adaptable system in real industrial environment, at low cost and with 

minor changes in prevaling manufacturing system. In the exercise, testing and 

validation of fault diagnostics systems is anything but difficult to implement, as 

the faults can be easily introduced to the cutting tools. In any case, this is not true 

for the prognostics systems where the change in the health condition is the result 

of a long and slow degradation of cutting tool. Consequently, to test these 

strategies, it is important to create the degradation through accelerated 

degradation tests of cutting tool and quantify the health attributes throughout its 

entire life. Accordingly, in the current investigation, initially no defects are 
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introduced in the cutting tools and degraded cutting tool may contain practically 

all sorts of failures (worn-out, breakage, etc.). 

The complex high-speed CNC vertical milling machine (EMCO MILL E350) is 

utilized as the testing platform. A high-speed steel 6 mm milling cutter is utilized 

for the analysis. The milling process selected was face milling for generating a 

flat surface on the mild steel workpiece (165 x 100 mm), with fixed operating 

profile (feed = 300 mm/min, speed =1000 RPM, depth of cut = 0.25 mm) in the 

absence of coolant. Mitutoyo TM-505 Toolmakers’ microscopy system at 15x 

eyepiece magnification and a resolution of 0.001 mm, according to ISO/IEC 

17025 is used to measure the tool degradation of the tool in terms of flank wear. 

An HANDYSURF E-25A/B portable surface roughness device was utilized to 

quantify the product quality in terms of average surface roughness parameter (Ra), 

according to ISO’97 / JIS’01 / DIN. Run-to-failure tests with six milling cutters 

have been performed to investigate the degradation behavior of these tools. Two 

different failure types were witnessed namely tool worn-out and tool breakage. 

After every 1320 mm of machining distance, tool wear and average surface 

roughness of the finished product is measured and recorded. Current 

experimentation enables testing and validation of the proposed integrated TCM 

system. Fig. 4.1 shows the developed experimental setup. The current 

arrangement is cost effective, convenient and adaptable to the real industrial 

environment, as no sensor or fixture is utilized with the test bed. Likewise, the 

quantifying instruments used are not required to be installed on the test bed and 

are kept discretely in order to keep the machining system rigidity and avoid any 

sort of geometric limitations.  

4.3 Experimental Investigation 

Experimental tests conducted on milling cutters direct that even the exact same 

cutters functioned at similar operating settings demonstrate diverse wear behavior. 

Fig. 4.2 displays experimental wear measurements of two different failure types 

milling cutters. Where, Fig. 4.3 shows the average surface roughness of the 

finished product with different failure types cutting tool as a function of its life. 
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Fig. 4.3 depicts that average surface roughness value remains small and steady 

with small tool wear. Though, when tool wear moves towards moderate wear 

zone average surface roughness increases gradually, then it significantly increases 

as tool wear reaches the critical zone. This infers that some relationship exists 

between product quality and tool degradation. Experimental evidence of such 

relationship is missing in the relevant literature. Consequently, Pearson 

correlation coefficient (PCC) is employed to evaluate the strength of the 

relationship between the product quality and tool degradation. PCC value is in the 

range of −1 to 1; where value closer to 1 shows a positive correlation. The 

mathematical expression for PCC is given in Eq. (4.1).  

𝑃𝐶𝐶 (𝑃𝑅𝑎 , 𝑇𝑊) =
∑(𝑃𝑅𝑎𝑖

− 𝑃𝑅𝑎
̅̅ ̅̅ ) (𝑇𝑊𝑖 − 𝑇𝑊

̅̅ ̅̅ )

√∑(𝑃𝑅𝑎𝑖
− 𝑃𝑅𝑎
̅̅ ̅̅ )

2

(𝑇𝑊𝑖 − 𝑇𝑊
̅̅ ̅̅ )

2
 (4.1) 

where 𝑃𝑅𝑎𝑖
 is the product quality in terms of average surface roughness of the i

th
 

product, 𝑃𝑅𝑎
̅̅ ̅̅  is the mean of product quality in terms of average surface roughness, 

𝑇𝑊𝑖 is tool degradation in terms of tool wear at i
th

 cutting process and 𝑇𝑊̅̅ ̅̅  is the 

mean of tool degradation in terms of tool wear. 

To better comprehend this relationship a comprehensive correlation investigation 

is executed. Herein, three milling cutters of each failure type have been utilized to 

compute the value of PCC. Fig. 4.4 shows the detailed results of correlation 

investigation. The results depict that the value of PCC ranges from 0.584 to 0.821 

for the cutters failed owing to worn-out, while it ranges from 0.583 to 0.663 for 

the cutters failed owing to breakage. The average values of PCC in the case of 

worn-out and breakage are estimated as 0.731 and 0.628 respectively. These 

results clearly indicate that a strong positive correlation exists between product 

quality and tool degradation. 
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Fig. 4.1.  Experimental setup.
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Fig. 4.2.  Wear behaviour vs. tool life.       

 

Fig. 4.3.  Average surface roughness behavior vs. tool life. 
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To further verify these results, Spearman's Correlation Coefficient (SCC) is 

employed to gauge the strength of the monotonic relationship between product 

quality and tool degradation. It is the non-parametric version of the PCC, and its 

interpretation is similar to that of PCC. Eq. (4.2) shows the mathematical 

expression for SCC. Herein, the examination shows that the value of SCC ranges 

from 0.555 to 0.868 for the cutters failed owing to worn-out, while it ranges from 

0.532 to 0.801 for the cutters failed owing to breakage. The average values of 

SCC in the case of worn-out and breakage are estimated as 0.739 and 0.658 

respectively. These results confirm that even with different types of tools failure 

there exists a strong positive relationship between product quality and tool 

degradation. 

Mapping this relationship will be of high significance to estimate the health 

condition of the tool based on product quality.  

𝑆𝐶𝐶(𝑃𝑅𝑎 , 𝑇𝑊) = 1 − 
6∑( 𝑃𝑅𝑎𝑅𝑖

− 𝑇𝑊𝑅𝑖
)2

𝑁(𝑁2 − 1)
 (4.2) 

where 𝑃𝑅𝑎𝑅𝑖
 is the rank of the product quality in terms of average surface 

roughness of the i
th

 product, 𝑇𝑊𝑅𝑖
 is the rank of the tool degradation in terms of 

tool wear at i
th

 cutting process and N is the total number of cases in the analysis.
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Fig. 4.4.  Results of comprehensive correlation investigation. 

Worn-out tool: 1 Worn-out tool: 2 

Worn-out tool: 3 Breakage tool: 1 

Breakage tool: 2 Breakage tool: 3 
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4.4 Integrating Diagnostics and Prognostics 

An integrated TCM system is scarcely studied in the relevant literature. 

Accordingly, an integrated TCM system based on the relationship between 

product quality and tool degradation is proposed. The architecture of a proposed 

integrated TCM system consists of two intelligent modules linked together. The 

first one is the diagnostics module; it is modeled to estimate the current health 

state of the cutting tool. Second is the prognostics module; it is formulated 

explicitly for the tools critical zone to predict remaining useful life. These 

modules are linked together to function as follows: the diagnostics module 

monitors the current health state of the cutting tool, whenever the degradation 

curve of the cutting tool reaches the critical stage the prognostics module is 

triggered and remaining useful life of the tool is assessed instantaneously. To 

model the desired mappings a supervised learning system, support vector machine 

is utilized. This SVM based integrated TCM system ascertains health monitoring 

and life prediction at the same time with a solitary experimentation. Theoretical 

and mathematical foundations of the developed diagnostics and prognostics 

modules are elaborated in following sub-sections.  

4.4.1 Diagnostics Module  

A significant part of the past work on tool monitoring has regarded the problem as 

one of figuring out if the cutting tool is worn or not worn. In reality, tool wear is a 

dynamic process, with tools, moving from being new to progressively greater 

levels of wear and possibly to breakage. On that ground, and as it provides more 

valuable information to machinists, the use of a multi-level categorization of wear 

is explored. Considering the case of cutting tools, health states of the cutting tools 

are categorized in three stages as a function of tool life. Fig. 4.5 demonstrates the 

splitting of the health states with their wear scopes. It splits the health state into 

three zones viz., Stage I: slight wear zone, Stage II: moderate wear zone and 

Stage III: critical or worn-out zone. A similar idea of quantized wear levels is also 

explored in Kurada and Bradley (1997) and Al-jonid et al. (2013). These literature 

and observation of the noticeable physical change in the surface roughness of the 
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produced surface with tool degradation during experiments are the primary basis 

for selections of these wear scopes. In addition, to build the desired integrated 

TCM system, a new tool degradation indicator with diverse functionality as an 

input to represent the degradation features of the cutting tool is proposed. The 

TDI is a set of measures (current age and quality measurements), sensitive to 

cutting tool degradation. Current age (𝑇𝑖) is the current age of the tool. Product 

quality in terms of the most widely used parameter average surface roughness is 

used and defined as “the result of irregularities arising from the plastic flow of 

chips during the machining” (Lou et al., 1999). The product quality during current 

and previous inspection can be defined as follows:  

Current inspection; 

 𝑅𝑎𝑖 = 
1

𝐿
 ∫ |𝑌(𝑥)𝑖|

𝐿

0

𝑑𝑥 (4.3) 

where the parameter L is the sampling length, and function Y(x) is the coordinate 

of the roughness profile curve. 

Previous inspection; 

𝑅𝑎𝑖−1 = 
1

𝐿
 ∫ |𝑌(𝑥)𝑖−1|

𝐿

0

𝑑𝑥 (4.4) 

The proposed TDI plays a distinctive role in diagnostics module. The tool current 

age is important for diagnostics module in estimating the degradation of the 

cutting tool. While, average surface roughness measurements of the present and 

previous inspection are useful in representing the current health condition of the 

cutting tool. Herein, the TDI is normalized. The output from the diagnostics 

module is the current health state of the cutting tool. 
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Fig. 4.5.  Tool health states as a function of tool life. 

Modeling of the diagnostics module should be proficient in achieving the 

desired input-output mapping. Consequently, C-Support Vector Classification (C-

SVC) is utilized for modeling diagnostics module. Through, C-SVC, an optimum 

separating hyperplane is built in the higher-dimensional input space, for the 

classification of different health states of the milling cutter. Let the n-dimensional 

input training vectors 𝑦𝑖 ∈ S
n, 𝑖 = 1, 2… ,𝑚, (m is the number of samples) in two 

classes and a label vector 𝑧 ∈ Sm, such that 𝑧𝑖 ∈ {1,−1}, slack variable (𝜉𝑖) and 

regularization parameter C. The required optimum hyperplane is established by 

solving a convex quadratic optimization problem (Cortes and Vapnik, 1995), 

given as: 

𝑚𝑖𝑛
𝑎, 𝑏, 𝜉

               
1

2
𝑎𝑇𝑎 + 𝐶∑𝜉𝑖

𝑚

𝑖=1

 (4.5) 

Subject to             𝑧𝑖(𝑎
𝑇𝜙(𝑦𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 

                                     𝜉𝑖 ≥ 0, 𝑖 = 1,2… ,𝑚, 

 

where 𝑎 is an n-dimensional vector and 𝑏 is a scalar (utilized to decide the 

location of the separating hyperplane) and the function 𝜙(𝑦𝑖) maps 𝑦𝑖 in a higher 

dimensional space.  

Stage I (SI) 

Slight Wear Zone 

(< 0.27750mm) 

 

 

Tool Life 
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o
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Stage II (SII) 

Moderate Wear Zone 

(0.27750-0.56775mm) 

 

Stage III (SIII) 

Critical or Worn-out 

Zone 

(> 0.56775mm) 
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The variable 𝑎 is possible to have high dimensionality; thus the problem is 

simplified by converting into the equivalent Lagrange dual problem through 

Kuhn-Tucker conditions and given as: 

𝑚𝑖𝑛
𝛼
                

1

2
𝛼𝑇𝑅𝛼 − 𝑓𝑇𝛼 (4.6) 

Subject to     (𝑧𝑇 𝛼) = 0, 0 ≤ 𝛼𝑖  ≤ 𝐶, 𝑖 = 1,2… ,𝑚, 
 

where 𝛼 is Lagrange multiplier, 𝑓 = [1, … ,1]𝑇 is the vector of all ones, 𝑅 is an 𝑙 

by 𝑙 positive semi definite matrix and given as:  

𝑅𝑖𝑗 ≡ 𝑧𝑖𝑧𝑗𝐾(𝑦𝑖, 𝑦𝑗),  𝐾(𝑦𝑖, 𝑦𝑗)  ≡  𝜙(𝑦𝑖)
𝑇𝜙(𝑦𝑗) (4.7) 

The kernel function (𝐾(𝑦𝑖, 𝑦𝑗)) is used to project the data into a virtual space 

where it might be easier to separate them. Radial Basis Function (RBF) kernel is 

utilized as a part of this work to shape the decision boundary, since they are not 

sensitive to the outliers and have no equal variance requirement for the input data. 

The RBF kernel takes the following form: 

𝐾(𝑦𝑖, 𝑦𝑗) = exp
−𝛾‖𝑦𝑖−𝑦𝑗‖

2

 (4.8) 

To increase the diagnostic reliability of the system, this work research on the 

use of multi-level categorization of degradation. This makes the current problem a 

multi-class classification problem. Accordingly, a multi-class classifier from 

binary C-SVC is reconstructed. According to a comparative investigation between 

different methods for multi-class C-SVC by Hsu and Lin (2002), it is established 

that the one-against-one (building and combining numerous binary classifiers) is a 

competitive method. Consequently, the same method for binary decomposition is 

employed. Herein, if k is the number of health states of the cutting tool, then 

𝑘 ((𝑘 − 1)/2) binary classifiers are constructed and each separates each other 

overlooking entire supplementary health states. Various coupling schemes are 

used to associate binary classifiers for the global solution of this problem. Herein,  

a voting strategy is used, “each binary classification is considered to be a voting 
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where votes can be cast for all data points 𝑦, in the end a point is designated to be 

in a class with the maximum number of votes” (Chang and Lin, 2011). 

Subsequently, for the training samples of the i
th

 and the j
th

 health states, a binary 

classification problem given in Eq. (4.9) is solved. 

𝑚𝑖𝑛
   𝑎𝑖𝑗 , 𝑏𝑖𝑗 , 𝜉𝑖𝑗

       
1

2
(𝑎𝑖𝑗)𝑇𝑎𝑖𝑗 + 𝐶∑(𝜉𝑖𝑗

𝑡

)𝑡 (4.9) 

Subject to    (𝑎𝑖𝑗)𝑇𝜙(𝑦𝑡) + 𝑏
𝑖𝑗 ≥ 1 − 𝜉𝑡

𝑖𝑗
, if 𝑦𝑡 in the i

th
 class, 

(𝑎𝑖𝑗)𝑇𝜙(𝑦𝑡) + 𝑏
𝑖𝑗 ≤ −1 + 𝜉𝑡

𝑖𝑗
,  if 𝑦𝑡 in the j

th
 class, 𝜉𝑡

𝑖𝑗
≥ 0. 

 

Here, the support vectors are lesser than the training samples making C-SVC 

computationally efficient. Finally, the desired optimal decision function of the 

proposed diagnostics module is as follows: 

𝑠𝑔𝑛(𝑎𝑇𝜙(𝑦) + 𝑏) = 𝑠𝑔𝑛 (∑𝑧𝑖𝛼𝑖𝐾(𝑦𝑗 , 𝑥)

𝑙

𝑖=1

+ 𝑏) (4.10) 

This diagnostics module involves estimating the current health state of the tool; 

as the critical health state is detected, prognostic is needed to be involved in 

predicting the remaining useful life of the tool. Thus, a prognostics module is 

linked with the diagnostics module.  

4.4.2 Prognostics Module 

In most of the available work, researchers built models for future wear prediction. 

This does not assist in the definitive function of tool condition monitoring. On this 

ground, and as it will be more significant, the prognostics module is formulated to 

deliver information about the remaining useful life of the cutting tools. Herein, the 

prognostics module predicts RUL by assessing the extent of degradation from its 

expected state of health in its expected usage conditions. The life of the cutting 

tool comprises of three health states as a function of tool life. In which, the tool is 

most failure-prone in its third stage, as tool wear is in the critical zone. The 
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precise knowledge of RUL, while tool wear is in critical zone, is crucial to avoid 

failure consequences. Thus, to improve the prognostics module competence, the 

module is explicitly formulated for the critical zone as a function of tool life. This 

explicit module will be more beneficial than developing the module for the entire 

life of the tool. Also, as the module is built for a specific time frame, it will reduce 

the error in prediction. Based on real-time RUL assessment from the prognostic 

module, effective actions can be taken to minimize production loss and extend 

tool life. 

The proposed tool degradation indicator (see, Section 4.3.1) plays a diverse role 

in prognostics module. The TDI consists of the current age of the tool (𝑇𝑖) and 

product quality measurements in the present (𝑅𝑎𝑖) and previous (𝑅𝑎𝑖−1) inspection 

(see, Eq. (4.3) and (4.4)). Herein, 𝑇𝑖 is important for prognostics module in 

estimating the RUL of the cutting tool. Whereas, 𝑅𝑎𝑖 and 𝑅𝑎𝑖−1 are useful in 

representing the tool’s working condition. For the output of the prognostics 

module remaining useful life is preferred and is denoted as 𝑅𝑈𝐿, as shown in Eq. 

(4.11).  

𝑅𝑈𝐿 = 𝐹𝑡 − 𝐶𝑡𝑖 (4.11) 

where 𝐹𝑡 is the tools time-to-failure (the time for which the tool is in service) and 

𝐶𝑡𝑖 is the time from when the RUL is estimated (the current time at which the 

RUL is required). 

The RUL of a cutting tool is a non-linear function. To predict it, there is a need 

of the powerful tool which can determine the mapping relationship between the 

tool degradation indicator from the cutting tool and the RUL of the tool. To 

achieve this, the 𝑣-Support Vector Regression (𝑣-SVR) is proposed; as it is a very 

powerful tool that can determine the non-linear function of the system. 𝑣-SVR is 

centered on the structural risk minimization principle and therefore capable to 

govern the upper bound of generalization risk at the same time cutting down the 

module complexity (Cortes and Vapnik, 1995, Benkedjouh et al., 2013). Taking 
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the set of input-output pairs from the tools critical 

zone {(𝑇𝐷𝐼1, 𝑅𝑈𝐿1),… , (𝑇𝐷𝐼𝑛, 𝑅𝑈𝐿𝑛)}, the aim is to approximate the non-linear 

relationship between tool degradation indicator and remaining useful life of the 

tool given in Eq. (4.12), in a manner that 𝑓(𝑇𝐷𝐼)  must be closer to the actual 

𝑅𝑈𝐿  and must be flat to avoid over-fitting. 

𝑓(𝑇𝐷𝐼) = 𝑤𝑇𝜙(𝑇𝐷𝐼) + 𝑥 (4.12) 

where 𝑤 is the vector of weights, x is the bias and the function 𝜙(𝑇𝐷𝐼) 

characterizes the non-linear mapping function.  

For ensuring that the 𝑓(𝑇𝐷𝐼) come across the aim of closeness and flatness, the 

primal objective is to minimize (Chang and Lin, 2011): 

𝑀𝑖𝑛                 
1

2
‖𝑤‖2 + 𝐶 {𝑣. ɛ +

1

𝑛
∑(𝜉 + 𝜉∗)

𝑛

𝑖=1

} (4.13) 

Subject to        𝑅𝑈𝐿𝑖 − 〈𝑤
𝑇 .𝜙(𝑇𝐷𝐼)〉 − 𝑥 ≤ ɛ + 𝜉𝑖

∗, 

                    〈𝑤𝑇 .𝜙(𝑇𝐷𝐼)〉 + 𝑥 − 𝑅𝑈𝐿𝑖 ≤ ɛ + 𝜉𝑖 , 

𝜉𝑖
∗, 𝜉𝑖 ≥ 0. 

 

where parameter ɛ is a deviation of a function 𝑓(𝑇𝐷𝐼) from its actual value and 

𝜉, 𝜉𝑖
∗ are supplementary slack variables.  

For solving the problem in Eq. (4.13), its dual formulation is presented by 

building a Lagrange function (Bhatt et al., 2014); the dual optimization problem is 

as follows: 

𝑀𝑎𝑥     −
1

2
∑(𝛼𝑖 − 𝛼𝑖

∗). (

𝑛

𝑖,𝑗−1

𝛼𝑗 − 𝛼𝑗
∗). 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼𝑗)

+∑𝑅𝑈𝐿𝑖. (𝛼𝑖 − 𝛼𝑖
∗)

𝑛

𝑖−1

 

(4.14) 
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Subject to  

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0,

𝑛

𝑖−1

 

∑(𝛼𝑖 + 𝛼𝑖
∗) ≤ 𝐶 𝑣,

𝑛

𝑖−1

 

𝛼𝑖, 𝛼𝑖
∗ ∈ [𝑜,

𝐶

𝑛
]. 

 

where 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼𝑗)  represents the kernel function specified 

by 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼𝑗) = 𝜙(𝑇𝐷𝐼𝑖)
𝑇. 𝜙(𝑇𝐷𝐼𝑗). The solution to Eq. (4.14) produces the 

Lagrange multipliers 𝛼, 𝛼∗.  

RBF kernel with parameter gamma (γ), as given in Eq. (4.8), is selected as it 

supplies high precision and has less execution time. Putting 𝑤 in Eq. (4.12) gives 

the absolute approximated function of the proposed prognostics module, given as: 

𝑓(𝑇𝐷𝐼) =∑(𝛼𝑖 − 𝛼𝑖
∗). 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼) + 𝑥

𝑛

𝑖−1

 (4.15) 

This explicit prognostics module will lead to a more precise estimate of RUL of 

the cutting tool. Consequently, guide towards the establishment of a well-

organized preventive maintenance program based on an early warning of incipient 

defects.  

4.5 Experimental Implementation Results  

This section presents an exhaustive performance investigation of the proposed 

integrated TCM system. The tests and verification of the system are performed by 

using an Intel (R) Core (TM) i7-3770 CPU 3.40GHz PC. The principal of the 

multi-class 𝐶-SVC and 𝑣-SVR formulations are implemented by using the 

WEKA (version 3.7.12).   
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4.5.1 Optimal Module Parameters Setting  

To train the developed integrated TCM system, the module and kernel parameters 

are need to be specified, that play an imperative part in the performance of the 

system. In most work, the authors end up choosing parameter by trial and error, 

which is not efficient. In the diagnostics module, regularization parameter 𝐶 and 

RBF kernel parameter 𝛾 are the tuning parameters that need to be optimized. The 

parameter 𝐶 ranges from 0 < 𝐶 ≤ ∞, and controls over-fitting of the model; a 

high value of 𝐶 means a strict classifier that does not admit many misclassified 

points. The parameter 𝛾 controls the degree of non-linearity of the model, a small 

value of 𝛾 will lead to curved hyper planes and a high value will constrain the 

hyper planes to be straighter. Likewise, in the prognostics module, model 

parameter 𝑣 and RBF kernel parameter 𝛾 are the important tuning parameters. 

The value of 𝑣 lies between 0 and 1, and governs the number of support vectors 

and training errors; higher support vectors reduces the computational efficiency of 

the module.  

To optimize these parameters, a potential range of these parameters with the 

grid space is defined. Then, all the grid points are iterated to evaluate the one 

contributing the higher cross-validation accuracy. Finally, the parameters with the 

highest accuracy are selected for training the integrated TCM system. Usually, the 

search becomes slower as the values of these parameters become higher, thus it is 

better to restrict it to an equitable range. Accordingly, in the diagnostics module, 

the interval for the parameter 𝐶 is taken as {1 1000 1000}, this will test the 

regularization parameter from 1 to 1000 with 1000 steps. Likewise, in the 

prognostics module, the interval for the parameter 𝑣 is taken as {0.01 1 60}, this 

will test the parameter from 0.01 to 1 with 60 steps. The interval for the 

parameter 𝛾 is taken as {0.01 2 120}, this will iterate over the gamma parameter, 

using values from 0.01 to 2 with 120 steps. Employing this grid search technique, 

the optimal training parameters obtained for diagnostics module are as 𝐶 = 100, 

and 𝛾 =  0.344, and for prognostics module as 𝑣 = 0.497, and 𝛾 =  0.110 
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respectively. These optimal parameters are used to train the integrated TCM 

system to achieve the best generalization ability.  

4.5.2 Performance Investigation  

In-depth performance assessment of the integrated TCM system is significant to 

recognize the practicability of the system in a real industrial environment. 

Accordingly, an exhaustive performance investigation is executed to distinguish 

the suitability, stability, quality, reliability, robustness, applicability and 

comprehensibility of the proposed integrated TCM system, for advanced industry 

maintenance. Consequently, the performance is verified by utilizing the life data 

of six milling cutters consisting of 321 samples drawn from experiments. Herein, 

K-fold cross-validation is designated for experimentally validating the integrated 

TCM system. It is a widely used statistical technique to evaluate the classification 

and regression systems. Kohavi, (1995) has shown that 10-fold cross-validation is 

paramount to make sure the strength and consistency of the performance of the 

model; the same is employed in the current study. The investigation is carried out 

in two phases; in the first phase the diagnostics module is evaluated, in next phase 

the prognostics module is evaluated.     

4.5.2.1 Experimental Validation and Assessment of Diagnostics Module  

The effectiveness of the diagnostics module is distinguished as follows:  

a) Suitability 

The Diagnostic Accuracy (DA) is evaluated to gauge the suitability of the 

diagnostics module. DA is the extent of the samples correctly categorized among 

the total number of samples evaluated. Detailed diagnostic accuracy per health 

state of the tool is demonstrated in Fig. 4.6. The weighted average DA 

accomplished by diagnostics module is 92.84 %; higher estimation of DA puts 

forward the suitability of the diagnostics module for classifying tool health states. 

The weighted average of the diagnostic accuracy is the sum of all diagnostic 

accuracy; each weighted according to the number of instances with that particular 

class label.   
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𝐷𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 × 100 (4.16) 

where 𝑇𝑃 and 𝑇𝑁 are total number of correctly recognized true positive samples 

and true negative samples respectively, 𝐹𝑃 and 𝐹𝑁 are total number of correctly 

recognized false positive samples and false negative samples respectively. 

 

Fig. 4.6.  Detailed DA for different health states of the tool. 

b) Stability 

To illustrate the stability of the diagnostics module, Specificity (SPF), Sensitivity 

(SEN) and Precision (P) are computed. SPF evaluates the extent of negatives 

which are correctly recognized. SEN evaluates the extent of actual positives 

which are correctly recognized. P is the proportion of true positives to the total 

number of positives recognized by the module. Their weighted average values are 

95.80%, 92.80%, and 92.80%, respectively; this shows the stability of the 

diagnostics module, as it provides perfect predictions and lesser variance in 

predictions.  

𝑆𝑃𝐹 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 × 100 

(4.17) 
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𝑆𝐸𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 

(4.18) 

 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 (4.19) 

c) Quality 

For evaluating the quality of the classifications made by diagnostics module, 

Matthews Correlation Coefficient (MCC) and F-measure are calculated. MCC 

measures the quality of classifications, through the essence of correlation between 

the actual and predicted; its value lies between -1 and +1. Whereas F-Measure is 

interpreted as a weighted harmonic mean between precision and recall, its value 

stretches its best at 1 and its worst at 0. MCC value of 0.887 and F-Measure value 

of 0.928 from diagnostics module represents the good quality of predictions.  

𝑀𝐶𝐶 =
𝑇𝑃. 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 

(4.20) 

 

𝐹 −𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃 × 𝑆𝐸𝑁

(𝑃 + 𝑆𝐸𝑁)
 

(4.21) 

d) Reliability 

Reliability of the diagnostics module is verified through Kappa statistic; it is a 

chance-corrected indicator of agreement between the classified and the actual 

health states. Herein, the inter-class agreement is considered, making it more 

reliable degree. Its value lies between -1 and 1. A Kappa value of 0.888 from 

diagnostics module represents a reliable agreement for classification of tool health 

states.  

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑃𝐴 − 𝑃𝐶
1 − 𝑃𝐶

 (4.22) 

where 𝑃𝐴 is a percentage agreement and 𝑃𝐶  is chance agreement. 

e) Robustness 

Robustness of the diagnostics module is evaluated by plotting the Receiver 

Operating Characteristics (ROC) curve. ROC curve contains a lot of information 
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about the robustness of the modules predictive ability, as it provides an 

understanding of the complete spectrum of sensitivity and specificity, as all 

conceivable SEN / SPF sets for an individual examination are plotted. A worthy 

examination is one where SEN increases promptly and 1-SPF barely rises at all 

till SEN becomes high. Fig. 4.7 shows the ROC curve for different tool health 

states, it is evident that ROC curve of the diagnostics module covers a maximum 

area among all three stages. The weighted average ROC area is 0.943, which 

indicates the robustness of the diagnostics module for tool health state 

classification.  

f) Applicability 

Computational efficiency of diagnostics module is measured as 0.14 seconds in 

terms of the CPU time, making it computationally efficient to be applicable in 

real-time industrial environments. 

g) Comprehensibility 

Judging the comprehensibility of the diagnostics module is significant to see the 

performance by each health state. The best classification of a particular health 

state requires the specificity, sensitivity and precision values to be near to 100. 

Similarly, the MCC, F-Measure, and ROC area values should approach towards 1. 

As shown in table 4.1, the obtained specificity, sensitivity and precision values of 

each health state approach towards 100. Likewise, the MCC, F-Measure and ROC 

area values of each health state are very close to 1. These results underscore the 

merit of the classification performance of each health state. 
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Fig. 4.7.  ROC curve for different health states of the tool. 

TABLE 4.1 

COMPREHENSIBILITY ASSESSMENT 

Health 

State 

Specificity 

(%) 

Sensitivity 

(%) 

Precision 

(%) 

Matthews 

Correlation 

Coefficient 

F-

Measure 

ROC 

Area 

SI 96.40 96.00 94.50 0.922 0.952 0.962 

SII 94.20 90.90 91.60 0.852 0.913 0.925 

SIII 98.10 90.60 92.10 0.892 0.913 0.943 

Weighted 

Average 
95.80 92.80 92.80 0.887 0.928 0.943 

These implementation results show that the diagnostics module is capable of 

effectively monitoring the health state of the milling cutters. This performance by 

the diagnostics module proves its worth for advanced industry maintenance. 
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4.5.2.2 Experimental Validation and Assessment of Prognostics Module 

The performance of the prognostics module is distinguished in the following 

manner:  

a) Suitability  

To check the suitability of the prognostics module, Mean Absolute Error (MAE) 

is calculated. Herein, MAE measures how close RUL predictions are made by the 

module to the actual RUL. The MAE value of 1.613 from prognostics module 

shows predicted RUL is very close to the actual RUL, proving the suitability of 

the prognostics module in a real industrial environment.  

𝑀𝐴𝐸 = 
1

𝑛
 ∑|𝑅𝑈𝐿𝑃𝑖 − 𝑅𝑈𝐿𝐴𝑖|

𝑛

𝑖=1

 (4.23) 

where n is the total number of observations, 𝑅𝑈𝐿𝑃𝑖 is the predicted RUL and 

𝑅𝑈𝐿𝐴𝑖 is the actual RUL. 

b) Stability 

For stability, Relative Absolute Error (RAE) and Root Relative Squared Error 

(RRSE) are evaluated; these are the measures of the variance in the predictions. 

Error rates of 39.16 % and 45.60 % represent the lesser variance in prediction and 

showing the stability of the module.  

𝑅𝐴𝐸 = 
∑ |𝑅𝑈𝐿𝑃𝑖 − 𝑅𝑈𝐿𝐴𝑖|
𝑛
𝑖=1

∑ |𝑅𝑈𝐿𝐴̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑈𝐿𝐴𝑖|
𝑛
𝑖=1

 × 100 (4.24) 

where 𝑅𝑈𝐿𝐴̅̅ ̅̅ ̅̅ ̅ is the mean value of actual RUL. 

𝑅𝑅𝑆𝐸 = √
∑ (𝑅𝑈𝐿𝑃𝑖 − 𝑅𝑈𝐿𝐴𝑖)

2𝑛
𝑖=1

∑ (𝑅𝑈𝐿𝐴̅̅ ̅̅ ̅̅ ̅ − 𝑅𝑈𝐿𝐴𝑖)
2𝑛

𝑖=1

× 100 (4.25) 

c) Quality 

The quality of the prediction from the prognostics module is assessed through the 

goodness of fit. For which R-squared (𝑅2) correlation coefficient is calculated. 

Here, 𝑅2 equals the square of the Pearson correlation coefficient between the 
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actual and predicted RULs, 𝑅2 represents how much predicted RULs are related 

to actual RULs. The 𝑅2 value of 0.884 from prognostics module shows perfect 

linear relationship and high strength of correlation between actual and predicted 

RUL.  

d) Reliability 

Root Mean Squared Error (RMSE) is chosen to signify the reliability of the 

predictions from the prognostics module; it characterizes the standard deviation of 

the differences between predicted RULs and actual RULs. RMSE value of 2.175 

represents reliable RUL predictions.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑|𝑅𝑈𝐿𝑃𝑖 − 𝑅𝑈𝐿𝐴𝑖|

𝑛

𝑖=1

 (4.26) 

e) Applicability 

Computational efficiency of prognostics module is measured as 0.25 seconds in 

terms of the CPU time, making it computationally efficient to be applicable in 

real-time industrial environments. 

f) Comprehensibility 

Comprehensibility of the prognostics module is assessed by plotting the each 

output performance of the prognostics module, as shown in Fig. 4.8. Observation 

from this figure displays that each actual and predicted RUL are very close to 

each other. This performance shows that the prognostics module is robust in 

predicting the remaining useful life of the tool.   

These implementation results from the prognostics module are very promising. 

This will ensure the development of an efficient preventive maintenance program 

based on an early warning of incipient failures. In addition, this will improve 

machining system availability, reduce downtime cost and enhance operating 

reliability. 
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Fig. 4.8.  The output performance of prognostics module. 

4.5.3 Influence of Kernel Function 

This section presents a comparative study on the performance of the RBF kernel 

with other kernels namely sigmoid kernel and polynomial kernel. Table 4.2 shows 

the mathematical expressions for these kernels. Herein, it is considered to judge 

the best kernel that yields optimal results, as no definite way is reported to decide 

the best kernel type. The proposed integrated TCM system is tested by comparing 

different kernels on the basis of accuracy and computational time using optimal 

kernel parameters and constant model parameters (𝐶 = 100 and 𝑣 = 0.497). 

Table 4.2 shows the detailed comparative results. The experimental evaluations 

demonstrated that satisfactory results are produced by all the kernels in 

diagnostics module. Among which the polynomial kernel produced the lowest 

diagnostic accuracy. In consistency with several researches, RBF kernel yielded a 

higher diagnostic accuracy. In other words, RBF obtains almost 1.6 and 2.5 % 

better diagnostic accuracy compared with sigmoid and polynomial kernels 

respectively. In addition, RBF kernel shows the optimal results with respect to the 
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fastest computational time, as it takes less training time than other kernels. 

Likewise, in prognostics module the results clearly show that, the RBF kernel 

provides lowest mean absolute error and having about 60 % improvement in 

accuracy over other kernels. Where, the accuracies of the sigmoid and polynomial 

kernels are relatively same. Moreover, the RBF kernel is found capable of taking 

less computational time compared to other kernels. Herein, it is worth noticing 

that; polynomial kernel is not suitable for remaining useful life prediction, as it 

takes high computational time.  

On the ground of this comparative study, it can be concluded that the RBF 

kernel is proficient in achieving higher accuracy with the fastest computation. 

Consequently, the advanced performance of the integrated TCM system is the 

consequence of utilizing RBF kernel.  

 

4.5.4 Comparative Analysis 

In the direction of ensuring that the proposed integrated TCM system is having a 

robust problem-solving framework. An exhaustive comparative analysis is 

performed with widely used data-driven schemes build with the same set of 

experimental data. Herein, to verify the performance of diagnostics module it is 

compared with distinctive classification algorithms such as, Fuzzy system 

(Kaburlasos et al., 2003), Naïve Bayes (NB) (McCallum and Nigam, 1998), Rule-

based (RB) (Frank and Witten, 1998), Hidden Markov Model (HMM) (Xu and 

Ge, 2004). Moreover, the performance of the prognostics module is verified by 

comparing it with the widely used ANN (Nakai et al., 2015). The detailed 

comparative results are shown in table 4.3. From this table, it is evident that 

among all HMM has shown the worst performance with 0 MCC and Kappa value 

representing very less agreement for classification of tool health states. The low 

DA from fuzzy, NB, RB and HMM classifiers shows poor suitability, as well as 

lower values of SEN, SPF, P shows poor stability. The lesser value of F-Measure 

than 0.7 shows low classification quality. The robustness of the proposed 

diagnostics module is evident with a highest weighted average value of ROC area 
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among other classifiers. Furthermore, results in table 4.3 indicate that the high 𝑅2 

correlation coefficient from prognostics module shows that predicted RUL are 

highly related to actual RUL compared to ANN. Lower values of MSE and 

RMSE from prognostics module show higher accuracy in RUL prediction 

compared to ANN’s output. Prognostics module has lesser error rate in the RAE 

and RRSE as it provides, the more perfect predictions and lesser variance in 

predictions. Moreover, the proposed prognostics module is also computationally 

efficient to be applicable in real-time environment.  

Implementation results from this comparative study confirm that the proposed 

integrated TCM system is superior to other data-driven schemes and provides a 

robust problem-solving framework. 
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TABLE 4.2 

PROFICIENCY OF INTEGRATED TCM SYSTEM FOR DIFFERENT KERNEL FUNCTIONS 

Kernel 

function 

𝑲(𝒚𝒊, 𝒚𝒋) 

Mathematical 

expression 

Integrated TCM system 

Diagnostics module Prognostics module 

Optimal 

parameter 

value 

Diagnostics 

accuracy 

(%) 

Computational 

time (s) 

Optimal 

parameter 

value 

Mean 

absolute 

error 

Computational 

time (s) 

Radial 

basis 
See Eq. (4.8) 0.344 92.84 0.14 0.110 1.61 0.25 

Sigmoid 𝑡𝑎𝑛ℎ (
−𝑦𝑖

𝑇𝑦𝑗

𝑠
) 10.869 91.28 0.17 9.091 4.11 0.40 

Polynomial (𝑦𝑖
𝑇𝑦𝑗 + 1)

𝑝 1
st
  degree 90.34 6.98 2

nd
 degree 3.63 842.50 
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TABLE 4.3 

RESULTS OF COMPARATIVE ANALYSIS 

Diagnostics Module Prognostics Module 

Performance Measures 
Proposed 

Method 
Fuzzy NB RB HMM Performance Measures 

Proposed 

Method 
ANN 

Diagnostic Accuracy (%) 92.84 75.70 64.18 76.01 38.94 R-squared Correlation Coefficient 0.884 0.641 

Specificity (%) 95.80 75.70 64.20 76.00 38.90 Mean Absolute Error 1.613 2.826 

Sensitivity (%) 92.80 90.20 75.10 83.50 61.10 Root Mean Squared Error 2.175 3.634 

Precision (%) 92.80 79.60 77.50 62.40 15.20 Relative Absolute Error (%) 39.16 68.63 

Matthews Correlation Coefficient 0.887 0.655 0.448 0.590 0 Root Relative Squared Error (%) 45.60 76.2 

F-Measure 0.928 0.759 0.582 0.682 0.561 

Computational Time (sec) 0.25 3.06 Kappa Statistic 0.888 0.637 0.398 0.599 0 

ROC Area 0.943 0.839 0.914 0.845 0.5 
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4.6 Contributions 

In this chapter, a novel integrated tool condition monitoring system was 

formulated by quantifying and mapping the relationship between product quality 

and tool degradation. The purpose was to provide manufacturing industries with 

an intelligent integrated monitoring system to instantaneously prevent machining 

system performance degradation and sudden failures. The major contributions 

from this chapter are highlighted as follows: 

 A cost efficient experimentation strategy was implemented in an 

effort to create a simple, easily comprehensible monitoring system utilizing 

minimum resources to enable easy adaptation of the technology even in 

medium and small-scale machining industries. Where, mostly offline quality 

inspection is carried out and not much attention is given on integration of 

sensor system in the prevailing manufacturing system.  

 A comprehensive investigation of the correlation between product 

quality and tool degradation was realized; revealing the strong positive 

relationship. Based on the investigated relationship, an integrated tool 

condition monitoring system based on support vector machine with optimal 

training technique was formulated. The architecture of the proposed system 

includes a linked diagnostics module with a prognostics module. Herein, the 

diagnostic reliability was enhanced by researching on the use of a multi-level 

categorization of degradation. Whereas, the prognostics competence was 

improved by formulating it explicitly for the tools critical zone as a function 

of tool life. In addition, a new tool degradation indicator with diverse 

functionality was introduced as an input, to represent the degradation features 

of the cutting tool. The function of this integrated system was to monitor the 

current health state of the machining system, and whenever the degradation 

curve of the tool reaches the critical zone, prognostics module was triggered, 

and remaining useful life was assessed instantaneously.  

 The proposed system was thoroughly evaluated on a high-speed 

CNC milling machining system to recognize the practicability of the system in 
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a real industrial environment. Consequently, a comprehensive performance 

examination was performed to distinguish the suitability, stability, quality, 

reliability, robustness, applicability and comprehensibility of the integrated 

TCM system. This extreme performance assessment expands the system’s 

robustness and applicability to the real industrial environment. The 

implementation results showed that the proposed system can monitor the 

machining system health condition effectively and improve the precision of 

remaining useful life prediction, thus it is pertinent to advance industrial asset 

management. 

 

 4.7 Closure  

The proposed integrated TCM system was proficient in capturing the relationship 

between product quality and tool degradation and provides a robust problem-

solving framework for the intelligent machining process. This will enrich the 

existing tool condition monitoring systems by considering the product quality as a 

new element for tool health monitoring. The advancement in the knowledge 

obtained in the current research results in significant savings in cost, time and 

improving productivity in the heavily competitive manufacturing industry.  

The restriction in this work is that the proposed approach is only suitable for the 

applications in which the operating conditions are fixed. The applicability of this 

approach can be seen in applications with high volume of productions. Next 

chapter offers a generalized TCM system for a dynamic operating profile that 

enriches reliability of remaining useful life predictions while meliorating 

applicability in diverse real-world industrial scenarios. 
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Chapter 5
*
 

A Generic Tool Condition Monitoring System 

under Dynamic Operating Profile  

“The effectiveness to be aimed at calls for the application and refinement of all 

conceivable prognostic techniques for adding to knowledge of the future, 

including those which can be effectively developed over an ever-wider time 

scale”. 

Fred Polak, Dutch Futurist 

In this chapter, the critical research gap identified in chapter 2 and the restriction 

of work presented in chapter 4 is circumvented by putting forward a novel and a 

generic TCM system capable of embracing the critical problem of remaining 

useful life prediction under dynamic operating profile. Succeeding, for the first 

time, pioneering adaptive functioning structures are formulated, to incite 

applicability for various real-world scenarios viz. batch production, job 

production, etc.  In addition, the system was extensively evaluated using real-

world vibration-based degradation signals from a high-speed CNC milling 

machining centre to substantiate the claim.  

Key Highlights 

Purpose: The purpose was to equip manufacturing industries with intelligence 

that allows responding to the time-variant operating profiles and adaptable under 

various real-world production environments.  

Methodology: The cutting tool degradation progression is mathematically 

modeled via a new, adaptive, and hybrid stochastic degradation model; 

engineered to unite strategic information viz. the evolution of the future profile, 

jerks owing to dynamic transitions, etc. Next, new mappings, i.e., degradation 

                                                           
*
 The work presented in this chapter is in review under the title “A generic tool condition 

monitoring system under dynamic operating profile” from September 2018 in “IEEE Transactions 

on Reliability”, IEEE. 

http://quotes.yourdictionary.com/author/quote/570078#prognostic
http://quotes.yourdictionary.com/author/quote/570078#prognostic
http://quotes.yourdictionary.com/author/quote/570078#prognostic
http://quotes.yourdictionary.com/author/quote/570078#prognostic
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rate function, and jerk function to bring realistic characteristics of any production 

system are formulated. Subsequently, the physics of evolution of dynamic profiles 

for various scenarios is inventively modeled. The resulting generalized system 

approximates the first passage time of the degradation process to a threshold and 

provides a precise life estimate in real-time.  

 Findings: The proposed methodology is competent in approximating the 

uncertainty imposed by real-world industrial scenarios. This aids in enriching the 

existing TCM systems to compute the cutting tool RULs while exploiting prior 

information, along with the future characteristics of operating profiles that the 

tool is likely to experience. Wherein, the experimental results confirmed that the 

offered approach delivers a generalized and a robust problem-solving structure 

for dynamic operating profiles.   

Practical Implications: The research in this work and the promising results 

attained underneath dynamic operating profiles guarantee the expansion of an 

effective preventive maintenance plan in diverse real-world production scenarios 

viz. batch production, job production, micro to medium-scale production 

environments. On the other hand, the experimental case study implementation 

lends significant credibility to the appropriateness of offered approach over the 

traditional approach under diverse industrial scenarios.  

Originality and Contribution: The novelty of this research is three-fold. The first 

is the innovative design of a generic TCM system that accounts for the future 

characteristics of the dynamic operating profiles while prognosticating RULs. It 

is grounded in the physics of degradation progression and is a function of 

operating profiles. As a result, the fundamental advantage of utilizing the 

proposed system to deal with time-variant operating profiles is its proficiency to 

communicate the future evolution of dynamic operating profiles instantaneously. 

Second is the consideration of all-encompassing cases of industrial scenarios. 

For the first time, a complex real-world scenario of expected but fluctuating 

future operating profiles is well-thought-off. Third, it is not restricted to a specific 



80 
 

machine tool, sensor, and so on; rather the system is adaptive and can be 

rendered as a first universal perspective to TCM and for that matter any 

prognostics research. An additional contribution lies in the outcomes; extensive 

quantitative and qualitative performance investigations are carried out. Further, 

in contrast to the traditional approach, the implications of the offered system 

under different scenarios are experimentally examined. That magnifies the 

robustness and applicability of the offered system in diverse real-world 

production environments.    

Research Limitations and Future Scope: The proposed framework consents 

modelling of solitary sensor, in future, for further strengthening of the prediction 

performance will requires extracting the information from multi-sensors.  
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5.1 Introduction 

Recalling chapter 1, that studies have exhibited that if CNC machining systems 

are fortified with tool condition monitoring, it can cut down seventy-five percent 

of the downtime and boost throughput by ten to sixty percent, and even upraise 

machine availability beyond fifty percent. Wherein, chapter 2 gives a picture that 

even the utmost promising TCM system is not certainly adaptable in real-world 

scenarios, principally owing to inadequate generalization competences viz. the 

vast majority of systems are strictly designed on the impression that along the 

entire lifespan of the cutting tool, the prevailing operating profiles
†5.1

 are 

unvarying or does not affect the degradation. Thus, their applications are 

restricted in diverse practical industrial scenarios viz. batch or job production 

environments where the operating profiles are highly time-variant in nature. It 

would be of practical value to equip the TCM systems with intelligence that 

allows responding to the uncertainty of time-variant operating profiles and 

adaptable under various real-world scenarios. Accordingly, the aforementioned 

challenges
5.2

 are addressed by offering a novel and a generic TCM system for a 

dynamic operating profile that enriches reliability of RUL predictions while 

meliorating applicability in diverse real-world industrial scenarios.  

In contrast to existing literature, the methodology offered in this chapter is 

conceptually unique, as it explicitly address the challenges allied with time-

variant operating profiles by integrating its physics capturing the uncertainty in 

the evolution of dynamic operating profiles, in real-time. Thus, the approximated 

RUL taps past as well as the future characteristics of operating profiles. 

Accordingly, a new, adaptive, and hybrid stochastic degradation model is devised; 

engineered to unite strategic information viz. the evolution of the future profile, 

jerks owing to dynamic transitions, etc. Next, new mappings, i.e., degradation rate 

function, and jerk function to bring realistic characteristics are formulated. The 

other realistic feature is that in the model the degree of divergence in tool’s 

                                                           
5.1

 Note: operating profile or profile refers to the specific combination of the levels of the 

operating parameters viz. speed, feed, depth of cut, etc.  
5.2

 These challenges are briefed in chapter 2, section 2.3. 
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degradation is related to the severeness of the in-progress profile. Subsequently, a 

new sorting algorithm is proposed to order the profiles with regard to their impact 

on the corresponding degradation rate. Also, pioneering adaptive functioning 

structures are inventively designed to incite generalization in diverse real-world 

industrial scenarios viz. batch production, job production, micro to medium-scale 

production environments. Withal, the model is correspondingly adaptive in 

perceiving the traditional degradation model, where the operating profiles remain 

same along the lifespan, appropriate for mass production environments. The 

resultant generalized TCM system approximates the first passage time of the 

degradation process of cutting tools to a failure threshold and is used to deliver 

the RULs, in real-time. To finish, the validation of the proposed system is 

demonstrated via an experimental case study employing vibration-based 

degradation signals from a high-speed CNC milling machining center. The 

verification results direct that the proposed system incisively predict the RULs in 

all the real-world scenarios.   

The novelty of this work is three-fold. The first is the innovative design of a 

generic TCM system that accounts for the future characteristics of the dynamic 

operating profiles while prognosticating RULs. It is grounded in the physics of 

degradation progression and is a function of operating profiles. As a result, the 

fundamental advantage of utilizing the proposed system to deal with time-variant 

operating profiles is its proficiency to communicate the future evolution of 

dynamic operating profiles instantaneously. Second is the consideration of all-

encompassing cases of industrial scenarios. For the first time, a complex real-

world scenario of expected but fluctuating future operating profiles is well-

thought-off. Third, it is not restricted to a specific machine tool, sensor, and so on; 

rather the system is adaptive and can be rendered as a first universal perspective 

to TCM and for that matter any prognostics research. An additional contribution 

lies in the outcomes; extensive quantitative and qualitative performance 

investigations are carried out. Further, in contrast to the traditional approach, the 

implications of the offered system under different scenarios are experimentally 

examined. It magnifies the robustness and applicability of the offered system in 
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diverse real-world production environments.    

  The remainder of this chapter is structured as follows. In-depth formulation of 

the mathematical model and functioning structures are offered in section 5.2. In 

section 5.3, systematic and extensive performance investigations are 

demonstrated. In section 5.4 contributions are highlighted. Finally, section 5.5 

summarises the chapter.   

5.2 Methodology 

The proposed methodology is targeted at prognosticating cutting tool RULs while 

exploiting prior information, along with the future characteristics of operating 

profiles, in real-time. Necessitating innovative modeling for (1) a real-time 

sensor-based degradation progression; (2) the physics of evolution of time-variant 

operating profiles under diverse real-world scenarios. Accordingly, a realistic 

mathematical modeling framework is devised via a new, adaptive, and hybrid 

stochastic degradation model, innovatively engineered to unite following critical 

roots of information: 

 The real-time degradation signal and rate of degradation characteristics. 

 The evolution of the future operating profile. 

 Jerks owing to dynamic transitions. 

These are discussed in details here under. 

5.2.1 The Real-Time Degradation Signal and Rate of Degradation 

Characteristics 

Fig. 5.1 displays real-life vibration-based degradation signals concerning Root 

Mean Square (RMS) value from three similar cutting tools functioned under 

various profiles viz. low, medium, and severe operating profile
5.3

. Fig. 5.1 

suggests that the sensor-based degradation signals of even same tools operating 

under various profiles exhibit different functional forms. Following, the current 

                                                           
5.3

 Note that the term “low operating profile” or “medium operating profile” refers to the profile’s 

degradation inducing severity, which depends on the levels of a specific combination of the 

operating parameters viz. speed, feed, etc. 
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observation of degradation signal from the in-situ sensor is incorporated in the 

model. Also, Fig. 5.2 represents that under time-variant profile the vibration level 

of tool increases as it transits from lower profile to severe profile and vice-versa. 

It is implied that the degree of divergence in tool’s degradation is related to the 

severeness of the in-progress profile. To induce this realistic characteristic, the 

model is made to capitalize the prior information from a population of same tools 

about the tool’s rate of degradation that it will follow under a specific profile. 

Thus, a new degradation rate function is formulated and integrated it with the 

model.       

At time 𝑡, 𝐷𝑠(𝑡) is any sensor-based degradation signal and 𝐷𝑠(0) is 

deterministic current sensor-based observation.  Moreover, let ξ(𝑡) be any 

operating profile at time 𝑡 and the in-operation tool can occupy one of the profile 

from a set of profiles 𝑄 (𝑄 = {𝑞1, 𝑞2, . . . , 𝑞𝑟}, 𝑞𝑟 is the total number of profiles in 

the given set and 𝑞𝑟 < ∞. Herein, determining the precise number of profiles, and 

a meaningful ordering of the profiles in 𝑄, are important aspects of the proposed 

model. Although in general total numbers of profiles in which the manufacturing 

system will operate are known in advance. So, it is undertaken that the value 𝑞𝑟 is 

identifiable. Following that, the formulated degradation rate function is 𝜔(𝜔 ∶

𝑄 → ℝ+). So,  𝜔(ξ(𝑡)) indicates tool’s degradation rate, i.e., at any time  ξ(𝑡) =

𝑗 ∈ 𝑄, the tool degrades at rate 𝜔(𝑗) (it is presumed that 𝜔(𝑗) > 0 for each  𝑗 ∈

𝑄). In this work, the formulated degradation rate function aids in approximating a 

trend i.e., it is the change in sensor-based degradation signal for a unit change in 

time along the tool life under a specific profile. Herein, the approximation of rate 

of degradation for any sensor-based degradation signal under a distinct profile 

(𝜔(ξ (𝑡𝑖))) is projected from past historical data and given as follows: 

𝜔(𝜉(𝑡𝑖)) =
(∑𝐷𝑠(𝜉(𝑡𝑖))(∑ 𝑡𝑖

2) − (∑ 𝑡𝑖)(∑𝐷𝑠(𝜉(𝑡𝑖)) × 𝑡𝑖)

𝐿𝑠 × (∑𝐷𝑠(𝜉(𝑡𝑖))
2
) − (𝐷𝑠(𝜉(𝑡𝑖))

2
)

 
(5.1) 

where 𝐷𝑠(ξ (𝑡𝑖)) is the degradation signal under a distinct profile, 𝑡𝑖 is the time at 

𝑖𝑡ℎ  instance (𝑖 ∈ {1,… , 𝐿𝑠}), and 𝐿𝑠 is the length of the degradation signal. 
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Fig. 5.1.  Real-life degradation signals under various operating profiles. 

 

Fig. 5.2.  Real-life degradation signal in time-variant operating profiles. 

Next, an essential aspect of the modeling framework is described, namely 

determining the set of operating profiles and arranging the elements of the set 𝑄 

by ordering them according to their level of severity. In general, the degradation 

of tools in any machining system is influenced by speed, feed, depth of cut, 

lubrication, etc. Though not all of the operating parameters are necessarily 

significant, and some of these possible combinations have a similar effect on the 

degradation rate. Since a vast number of profiles might raise possible 

computational issues; only the significant operating parameters are chosen and the 

profiles are ordered. Let  𝑍1,  𝑍2, … , 𝑍𝑘′  represent 𝑘′ significant parameters and 

 𝜉(𝑚1, … ,𝑚𝑘′) denotes the profile when  𝑍1 assumes level 𝑚1,  𝑍2 assumes 
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level 𝑚2, and so forth. Now a sorting algorithm is proposed to order the 

profiles  𝜉(𝑚1, … ,𝑚𝑘′) with regard to their impact on the corresponding 

degradation rate  𝜔(𝑚1, … ,𝑚𝑘′). The observations from past historical data are 

used to perform a hypothesis test with null hypothesis being 

𝐻0:  𝜔(𝑚1, … ,𝑚𝑘′) ≥ 𝜔(𝑚1
′ , … ,𝑚𝑘′

′ ) against the alternate 

hypothesis 𝐻1:  𝜔(𝑚1, … ,𝑚𝑘′)) < 𝜔(𝑚1
′ , … ,𝑚𝑘′

′ ). If there is sufficient evidence 

to reject the 𝐻0  at the 𝛼 level of significance, it is concluded that 

profile 𝜉(𝑚1, … ,𝑚𝑘′) is less severe than the profile 𝜉(𝑚1
′ , … ,𝑚𝑘′

′ ). This 

comparision procedure can be applied pairwise to all profiles. So, all of the 

operating profiles in 𝑄 from low to high by severity can be ordered so that, for 

any two 𝑖, 𝑗 ∈ 𝑄, 𝑖 < 𝑗 implies that profile 𝑖 induces a smaller degradation rate 

than profile 𝑗.  

5.2.2 The Evolution of the Future Operating Profile 

Evident from Fig. 5.2, the transition among various profiles expressively 

contributes the degradation progression. Consenting that, the model is reinforced 

to approximate the physics of evolution of time-variant operating profiles. 

Accordingly, for the first time, adaptive functioning structures are formulated to 

incite generalization in following diverse real-world scenarios:   

 Industrial Scenario I: A deterministic, dynamic operating profile. 

 Industrial Scenario II: A randomly-varying dynamic operating profile. 

 Industrial Scenario III: An expected but fluctuating future operating 

profile. 

5.2.2.1 Industrial Scenario I: A Deterministic, Dynamic Operating Profile 

In this scenario, dynamic operating profiles that evolve in a deterministic manner 

is emphasized, i.e., there is certainty about the profile transition times, see, Fig. 

5.3 (a). Herein, the degradation rate changes when the tool is operated under 

diverse profiles, and such changes induce distinct degradation patterns that are 

usually significant, see Fig. 5.3 (b). Such a scenario exceedingly arises in a batch 

production type of environments (where the machining system runs at a particular 
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profile to meet the requirement of a specific batch and transit to other profile 

based on the prior batch scheduling decisions) which belong to repetitive 

production. It concerns with the manufacturing of products, the quantity of which 

is well-known and where same goods are made in batches by the demand of 

consumers’. Herein, one batch of goods may not resemble with the next batch, it 

means that the machining system run at a particular operating profile for a certain 

amount of time and then the product is changed, so as the operating profile to 

regulate the new requirements. Consequently, the operating profile varies 

dynamically, but in a deterministic manner, as the distinct operating profiles 

operate for a specific time, as well as the time at which it transit to other profile is 

also known/deterministic. Such a scenario is encountered in medium and heavy 

engineering industry (engaged in the manufacturing of electric motors, 

switchgear, machine tool, etc.), as these are allied with unique seasonal demand, 

or there is a requirement to manufacture diverse products. To circumvent this, the 

impact of in-progress operating profiles on the degradation rate under this 

scenario is modeled, while undertaking the evolution of the future operating 

profile, as a finite-valued deterministic and piecewise constant function. So, 

let  𝜉: [0,∞) → 𝑄 be an 𝑄-valued piecewise constant function; 𝜉(𝑡𝑖) is the profile 

at a discrete deterministic time 𝑡𝑖 (𝑖 ∈ {1, 2, … , 𝑇}). That is, in-operation the 

profiles in 𝑄 visits in a deterministic way. Following that, the finite-valued 

deterministic and piecewise constant function 𝜉(𝑡𝑖) is formulated as follows: 

𝜉(𝑡𝑖) =  ∑ 𝛼𝑖𝜒𝐴𝑖(𝑡𝑖)
𝑇
𝑖=1  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑜𝑓 𝑖.  (5.2) 

where 𝛼𝑖 is a real number such that 𝛼𝑖 ∈ 𝑄 and 𝜒𝐴𝑖is the indicator function over 

the interval 𝐴𝑖 at time instant 𝑡𝑖. 

𝜒𝐴𝑖 = {
1
0
  
𝑓𝑜𝑟 𝑡𝑖  ∈  𝐴𝑖 ,
𝑓𝑜𝑟 𝑡𝑖  ∉  𝐴𝑖 .

 

In this formulation, the intervals (𝐴𝑖) follows the following two properties: 

a) The intervals (𝐴𝑖) are pairwise disjoint set i.e. 𝐴𝑖 ∩ 𝐴𝑗 = ∅ for 𝑖 ≠  𝑗 
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b) The union of the intervals covers the whole range of positive real numbers 

i.e ⋃ 𝐴𝑖 = ℝ
+𝑇

𝑖=1 . 

 

Precisely, in accordance with Fig. 5.3, 𝜉(𝑡𝑖) is expressed as: 

𝜉(𝑡𝑖) =  

{
 

 
𝑀𝑒𝑑𝑖𝑢𝑚 (𝛼1), 𝑡1 ∈ 𝐴1
𝐿𝑜𝑤 (𝛼2), 𝑡2 ∈ 𝐴2
𝑆𝑒𝑣𝑒𝑟𝑒 (𝛼3),

𝐻𝑖𝑔ℎ (𝛼4),

𝑡3 ∈ 𝐴3
𝑡4 ∈ 𝐴4}

 

 
 

Finally, on the interval [𝑡𝑖 , 𝑇], the previously formulated rate of degradation 

function while undertaking the evolution of the future profile as a finite valued 

deterministic and piecewise constant function can be written as, ∫ 𝜔(ξ (𝑥))
𝑇

𝑡𝑖
𝑑𝑥. 
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Fig. 5.3.  Deterministic, dynamic operating profile. 
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5.2.2.2 Industrial Scenario II: A Randomly-Varying Dynamic Operating 

Profile 

In this scenario, the evolution of dynamic operating profiles is uncertain. This 

mean that the transition times in each distinct profile is exclusively random or 

time-variant, see Fig. 5.4. Such a scenario is exceptionally often in job production 

environments, which take on the manufacturing of customized products, such as a 

one-time product for a specific customer or a small batch of products by clients’ 

uncompromising demand. Herein, as each product is unique (varying in 

dimensions and material); it necessitates a distinct profile for machining. Thus, 

the operating profiles are dynamically varied in a manner to suit the uncertain 

requirements of a particular product. Aerospace and shipbuilding industries are 

recurrently lying open to such a scenario. Herein, the more prominent challenge is 

to generalize the functioning structure of scenario I by approximating the physics 

in arrears with the inherent uncertainty of randomly-varying future profiles. To 

circumvent this, under periodically monitored situations, it is undertaken that the 

randomly-varying dynamic profile progresses rendering Discrete-Time Markov 

Chain (DTMC). So, let {ξ(𝑡): 𝑡 ≥ 0} be the DTMC and 𝜉(𝑡) be the random 

operating profile. Herein, DTMC is for the set of operating profiles 𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞𝑟}, 𝑄 is discrete and have finite number of operating profiles (𝑞𝑟 <

∞). Herein, {ξ(𝑡): 𝑡 ≥ 0} is a sequence of random operating profiles, 

say, (𝑋1, 𝑋2, 𝑋3, … , 𝑋𝑁). As it is already mentioned, that the set of possible 

profiles 𝑄 of 𝑋𝑛 (where 𝑛 is the index for time) is finite and called as state space 

of the chain. The chain transition from one profile (say, 𝑞𝑖, ∀ 𝑖 ∈ {1,… , 𝑞𝑟}) to 

another profile (say, 𝑞𝑗, ∀ 𝑗 ∈ {1,… , 𝑞𝑟}) with the transition probability (say, 𝑝𝑖𝑗) 

in one step, and given as:   

𝑝𝑖𝑗 = 𝑃𝑟 ( 𝑋1 = 𝑞𝑗|𝑋0 = 𝑞𝑖) 

Subjected to 

 0 ≤ 𝑝𝑖𝑗 ≤ 1, 

and 

(5.3) 
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 ∑ 𝑝𝑖𝑗
∞

𝑗=0
= 1. 

 

Next, to represent the probability distribution of transitions from one profile to 

another a transition matrix (say, 𝜃 = (𝑝𝑖𝑗)𝑖,𝑗,) is formulated. Where, 𝜃 is a square 

matrix of dimension 𝑞𝑟 × 𝑞𝑟, where each element of position (𝑖, 𝑗) represents the 

transition probability 𝑝𝑖𝑗. In most practical cases, the transition probability matrix 

is unknown. In view of that, a method to approximate transition probability matrix 

from the historical profile transition dataset is presented. Let 𝑌𝑁 = (𝑦1, … , 𝑦𝑁) is a 

𝑞𝑟 state chain with parameter to estimate being transition probability matrix and 

constraints being:  0 ≤ 𝑝𝑖𝑗 ≤ 1 and ∑ 𝑝𝑖𝑗
𝑞𝑟
𝑗=0 = 1. So, first the likelihood function 

is formulated, which is as follows: 

𝑝(𝑌𝑁; 𝜃) = 

 𝑝(𝑦𝑛|𝑦𝑛−1; 𝜃) 𝑝(𝑦𝑛−1|𝑦𝑛−2; 𝜃)…𝑝(𝑦1|𝑦0; 𝜃) 𝑝(𝑦0; 𝜃)  

(5.4) 

Next, the log-likelihood function is formulated, as follows: 

𝑙𝑜𝑔𝑝(𝑌𝑁; 𝜃) =  ∑ 𝑙𝑜𝑔 𝑝(𝑦𝑘|𝑦𝑘−1; 𝜃)  𝑙𝑜𝑔𝑝(𝑦0; 𝜃)

𝑁

𝑘=1

 

(5.5) 

Substituting the likelihood function in Eq. (5.5) and solving gives:  

{𝛏(𝒕): 𝒕 ≥ 𝟎} 

Fig. 5.4.  Randomly-varying dynamic operating profiles. 
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=∑∑𝐽𝑖𝑗(𝑁)

𝑞𝑟

𝑗=1

𝑙𝑜𝑔𝑝𝑖𝑗

𝑞𝑟

𝑖=1

+∑𝛿(𝑦0 − 𝑖)

𝑞𝑟

𝑖=1

𝜋0(𝑖) 

where 𝐽𝑖𝑗  is total number of times the profile 𝑖 switches over profile 𝑗 from time 1 

to 𝑁. 

Then, subjected to constraints, taking the derivative and set it equal to zero as: 

 
𝑑

𝑑𝑝𝑗
𝑙𝑜𝑔𝑝(𝑌𝑁; 𝜃) = 0 

This yields the one-step transition probabilities, as follows: 

 𝑝𝑖𝑗 = 
𝐽𝑖𝑗(𝑁)

∑ 𝐽𝑖𝑗(𝑁)
𝑞𝑟
𝑗=1

= 
𝐽𝑖𝑗(𝑁)

𝐷𝑖(𝑁)
 

where, 𝐷𝑖(𝑁) is the number of visits in 𝑖. Hereafter, arranging one-step 

transition probabilities into a matrix, gives 𝜃 = [

𝑝11 ⋯ 𝑝1𝑞𝑟
⋮ ⋱ ⋮
𝑝𝑞𝑟1 ⋯ 𝑝𝑞𝑟𝑞𝑟

]. The complete 

training data is used to approximate this matrix. Finally, the randomly-varying 

process {ξ(𝑡): 𝑡 ≥ 0} is the future profile from time 𝑡0 up to some future time 𝑡 =

𝑛. The previously formulated rate of degradation function while undertaking the 

evolution of the future profile as a discreet time Markov chain can be formulated 

as, ∫  𝜔(ξ (𝑥))
𝑡

0
𝑑𝑥.  

5.2.2.3 Industrial Scenario III: An Expected but Fluctuating Future 

Operating Profile  

In the third scenario, the prior understanding of the expected future profile is 

known in advance, withal; the dynamic transitions of a profile in the future are 

subjected to uncertainty. For instance, consider a manufacturing system operating 

under two distinct profiles (say, low and high), where it is expected that along the 

lifespan of the cutting tool, it will operate a total forty percent of the time at a low 

profile, and remaining total sixty percent at the high profile. Though, there is 
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existent uncertainty in the evolution of these standard profiles, as the future 

profile fluctuates randomly amongst distinct profiles along the lifespan of the 

cutting tool but total expected duration in a specific profile is known, see Fig. 5.5. 

Such a complicated scenario is prominently realistic for almost every micro to 

medium-scale production environments (here the demand forecasting may reveal 

the total expected duration under different profiles of the machining system), 

where products are standard with customary minimum order quantity; 

nevertheless, their demands are subjected to fluctuations. In this, as all the goods 

are standard, operating profiles to machine each product is distinct. Also, as the 

manufacturer sets the customary minimum order quantity, it is expected to know 

in advance that along the lifespan of the system for how much time it will operate 

in distinct operating profiles. On top, the demands from a customer for these 

products are uncertain. As a result, the dynamic operating profiles are expected 

but fluctuating. Spare-part, jig, and fixture manufacturing industries (engaged in 

the production of various standard spare-parts/fixtures for electronic, automobile, 

railway, etc.) are vastly exposed to such a scenario; as these are associated with 

standard parts with high variations in demands. The more significant challenge 

existent here than before is in bringing together the restrictions (as per the 

expected future profiles) while approximating the physics in arrears with the 

evolution of uncertain fluctuating future profiles. To circumvent this, for the first 

time, discrete operating bins (𝜑𝑛) are characterized for respective operating 

profiles and the percentage of the time the tool will function in a particular 

operating bin is utilized as the additional statistics fed into the proposed stochastic 

degradation model while accounting the future evolution of expected but the 

fluctuating operating profile. Herein, a restriction in the evolution of the time-

variant profile based on the expected future profile is probabilistically induced. In 

the interior, the model is designed to compute the aggregate of transitions in 

respective operating profiles; the instance the expectancy of the respective 

operational profile is achieved, the transition distribution is updated 

probabilistically. The updated distribution better characterizes the standard 

expected future profile and further reduces uncertainty. To mathematically 
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illustrate this in accordance with Fig. 5.5, where, a manufacturing system 

operating under two distinct operating profiles (𝑄 = {Low (1), High (2)}) with 

the known transition probabilities (𝜃 =
Low (1)

High (2)
 [
0.7 0.3
0.5 0.5

]) is considered. 

Whereas, it is expected that the system will operate 40% of the time in low profile 

and remaining 60% in high profile. So, the operating bins are set as 𝜑1= 40% 𝜉(𝑡) 

and 𝜑2= 60% 𝜉(𝑡) and a new set of states such as (1, 𝜗) and (2, 𝜗) are introduced, 

where, 𝜗 is the number of visits in first operating bin (𝜑1). Subsequently, the 

transition probabilities of previously formulated DTMC with discrete operating 

bins ({ξ(𝑡): 𝑡 ≥ 0, 𝜑𝑛% }) changes in accordance with expected future operating 

profiles, and as follows:  

 

𝑃𝑟( ξ(𝑡 + 1) = (1,  𝜗 + 1) | ξ(𝑡) = (1,  𝜗)) = 0.7, and (5.6) 

𝑃𝑟( ξ(𝑡 + 1) = (2,  𝜗) | ξ(𝑡) = (1,  𝜗)) = 0.3. (5.7) 

Similarly, 

𝑃𝑟( ξ(𝑡 + 1) = (1,  𝜗 + 1) | ξ(𝑡) = (2,  𝜗)) = 0.5, and (5.8) 

𝑃𝑟( ξ(𝑡 + 1) = (2,  𝜗) | ξ(𝑡) = (2,  𝜗)) = 0.5. (5.9) 

As these transitions probabilities are formulated for the first operating bin (𝜑1), 𝜗 

≥ 40. Then, it turns into: 

Future Operating Profile 

Expected Future Profile 
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Fig. 5.5.  Expected but fluctuating dynamic operating profiles. 
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𝑃𝑟( ξ(𝑡 + 1) = 2 | 𝜗 > 40) = 1. (5.10) 

In the same manner, any number of operating profiles can be modeled. Finally, 

the expected, but fluctuating process {ξ(𝑡): 𝑡 ≥ 0, 𝜑𝑛% } is the future profile from 

time 𝑡0 up to some future time 𝑡 with given expected discrete operating bins (𝜑𝑛). 

The previously formulated rate of degradation function while undertaking the 

evolution of the future profile as expected, but fluctuating process can be 

formulated as, ∫ 𝜔(ξ (𝑥)) 𝜑𝑛% 
𝑡

0
𝑑𝑥.  

In essence, the impact in cooperation with the rate of degradation in diverse 

functioning structures on degradation progression is characterized and united in 

the model.  

5.2.3 Jerks Owing to Dynamic Transitions 

From Fig. 5.2, it is also prevalent that the vibration signal experiences an 

upward/downward jerk in the magnitude when the profile of the tool transit from 

lower to higher or vice versa. Accordingly, for an account of reality, it is think 

through that transition in operating profiles might bring upward/downward jerks 

in the magnitude. To account for this upward/downward shift in the magnitude of 

degradation signal, in the model, a new mapping for jerks is formulated 𝐺: 𝑄 →

ℝ+ so that 𝐺(𝜉(𝑡)) is a jerk function and the impact of jerks owing to dynamic 

transitions is captured as follows: 

𝐺(𝜉(𝑍𝑗)) = ℧ × 1
𝜏(ξ (𝑡)). (5.11) 

where 𝑍𝑗 is 𝑗𝑡ℎ transition time, ℧ is jerk magnitude which is modeled as a uniform 

random variable (℧~ 𝑈(0, 𝔞), with equal probability in the range of 0 and 𝔞, (𝔞 is 

the average jerk magnitude, estimated from training data), 1𝜏(ξ (𝑡)) is the 

indicator function for jerk direction (at particular profile transition times when the 

jerk is upward 1𝜏(ξ (𝑡)) = " + ", and when the jerk is downward 1𝜏(ξ (𝑡)) = " −

").  
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In principle, this hybrid configuration of information captures and approximates 

degradation progression under dynamic profiles. Finally, the realistic 

mathematical model for sensor-based degradation signal progression 

approximation under dynamic operating profiles is given as follows: 

𝐷𝑠(𝑡) = 𝐷𝑠(0) + ℘(𝜔(ξ (𝑥))) +∑𝐺(ξ (𝑍𝑗))

𝑌(𝑡)

𝑗=1

+∑𝜀(𝑡)

𝑇

𝑡=1

 (5.12) 

where ℘(𝜔(ξ (𝑥))) is the indicator function of rate of degradation while 

undertaking the evolution of the future profile as per the in-operation functioning 

structure (for scenario I: ℘ (𝜔(ξ (𝑥))) = ∫ 𝜔(ξ (𝑥))
𝑇

𝑡𝑖
𝑑𝑥, for scenario 

II:∫ 𝜔(ξ (𝑥))
𝑡

0
𝑑𝑥, and for scenario III: ∫ 𝜔(ξ (𝑥))𝜑𝑛%

𝑡

0
𝑑𝑥), 𝑌(𝑡) is aggregate of 

profiles transition, and  𝜀(𝑡) is white noise stochastic process. 

The white noise stochastic process 𝜀(𝑡)~𝒩(0,  𝜎), is statistically independent 

and identically distributed at different time points. Thus, Eq. (5.12) can be re-

written as: 

𝐷𝑠(𝑡) = 𝐷𝑠(0) + ℘(𝜔(ξ (𝑥))) +∑𝐺(ξ (𝑍𝑗))

𝑌(𝑡)

𝑗=1

+ 𝜀(𝑡) (5.13) 

Next, the method for estimating the unknown parameter (𝜎) of white noise 

stochastic process from real-life data utilizing maximum likelihood estimation 

technique is described. So, 𝜀(𝑡) for different time instances is as follows: 

𝜀(𝑡) = 𝐷𝑠(𝑡) − 𝐷𝑠(0) − ℘(𝜔(ξ (𝑥))) −∑𝐺 (ξ (𝑍𝑗))

𝑌(𝑡)

𝑗=1

 (5.14) 

Next, first concatenate 𝜀(𝑡) for different time instances, say, {𝑡1, … , 𝑡𝑁} in a 

vector  𝜺 = {𝜀(𝑡1), 𝜀(𝑡2),… , 𝜀(𝑡𝑁)}, and formulate the likelihood function of 𝜺, 

given as follows: 
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𝐿(𝜺|𝜎2) =  
1

(√2𝜋𝜎2)𝑁
𝑒𝑥𝑝 (−

∑ 𝜀2(𝑡𝑖)
𝑁
𝑖=1

2𝜎2
)   (5.15) 

Taking logarithm of Eq. (5.15) gives the log-likelihood function of 𝜺, which can 

be written as: 

𝑙𝑛𝐿(𝜺|𝜎2) =
𝑁

2
𝑙𝑛

1

2𝜋𝜎2
−
∑ 𝜀2(𝑡𝑖)
𝑁
𝑖=1

2𝜎2
 

.  

(5.16) 

The maximum likelihood estimate (MLE) of 𝜎2 is given by:  

 𝜎2̂𝑀𝐿𝐸 = 𝑎𝑟𝑔𝑚𝑎𝑥⏟    
𝜎2

𝑙𝑛𝐿(𝜺|𝜎2) (5.17) 

Henceforth, 𝜎2 which maximizes log-likelihood function 𝑙𝑛𝐿(𝜺|𝜎2) is obtain by 

equating the first order derivative of 𝑙𝑛𝐿(𝜺|𝜎2) to zero. Taking the derivative of 

Eq. (5.16) results in:  

𝜕

𝜕𝜎2
 𝑙𝑛𝐿(𝜺|𝜎2) = −

𝑁

2𝜎2
+
∑ 𝜀2(𝑡𝑖)
𝑁
𝑖=1

2(𝜎2)2
 (5.18) 

Equating Eq. (5.18) to zero and solving for the parameter of white noise 

stochastic process (𝜎) yields: 

�̂�𝑀𝐿𝐸 = √
1

𝑁
∑𝜀2(𝑡𝑖)

𝑁

𝑖=1

 (5.19) 

With ultimate objective being prognosticating tool RULs, the system 

approximates the first passage time of the degradation process to a threshold 𝐹𝑇, 

i.e., the failure time and provides a precise life estimate in real-time. Thus, at any 

point of time 𝑡𝑖, the RUL can be calculated as follows:  

𝑅𝑈𝐿(𝑡𝑖) = 𝐹𝑛 − 𝑡𝑖. (5.20) 

where 𝐹𝑛 is the time for signal to reach 𝐹𝑇. 
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Nevertheless, the proposed mathematical framework is correspondingly 

adaptive in distinguishing the traditional degradation model, appropriate for mass 

production environments. Subsequently, this generic TCM system will lead to a 

more precise estimate of RUL of the fielded cutting tool operating under dynamic 

operating profile.  

5.3 Results and Discussions  

This section presents extensive qualitative and quantitative performance 

investigations of the proposed generic TCM system.   

5.3.1 Experimental Case Study 

An experimental case study is exhibited to demonstrate the functionality and 

practicality of the proposed system. The widely used vibration-based degradation 

signals (generated via experimental platform) are correlated with the degradation 

of cutting tools and were used to assess the RUL prediction performance under 

diverse industrial scenarios. 

5.3.1.1 Experimental Platform 

Fig. 5.6 illustrates the developed experimental platform. A high-speed CNC 

milling machine is exploited as the test bench. The cutting tool employed is a 

high-speed steel 6 mm diameter flat end mill cutter. The workpiece material 

selected is a flat bar (165 mm × 100 mm × 20 mm) of mild steel. Machining 

operation engaged is face milling to form a flat plane surface of the workpiece. 

After one horizontal cutting line along the feed direction, the cutter then retracted 

to another start along the left direction with the same cutting depth. In each 

experiment, the cutter was used to cut the workpiece surface in succession to 

machine an entire surface of 165 mm × 34 mm. The total length of cut for one 

surface (i.e., eight passes) is 165 mm × 8 = 1320 mm. All tests were performed 

under dry cutting conditions to accelerate the tool degradation. Kistler 

accelerometer is mounted on the workpiece to measure the vibrations of cutting 

process in the feed direction for the entire operational life of the milling cutters. 
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The vibration signals were acquired with a frequency range from 1 to 10 kHz and 

amplified via Kistler coupler. Then, the signal is acquired by National instruments 

DAQ card with 2,500 Hz sampling frequency. Moreover, RMS value is recorded 

for each cut (a complete 1320 mm of cutting distance) to record the tool 

degradation process. All cutters were run-to-failure, till breakage or till the RMS 

value reaches a pre-defined level (𝐹𝑇 = 0.30, as per engineering criterions based 

on equipment vibration, for example ISO2372). In contrast to the existing 

literature, the defects were not seeded instead various defects (viz. breakage, etc.) 

were observed under run-to-failure tests. This allowed a more realistic 

representation of TCM. 

5.3.1.2 Design of Experiments 

The L4 orthogonal array of the Taguchi method with six replications is chosen to 

adequately capture the rate of degradation characteristics from multiple combinations of 

distinct operating parameters. Specifically, three significant parameters used are feed, 

cutting speed and depth of cut, with two levels, see, table 5.1. Four experimental runs 

derived from the L4 design are shown in table 5.2 (Exp. ID 1-4). The rate of degradation 

characteristics of real-time vibration data throughout its life is taken as a measured 

response. Next, the distinct profiles are ordered according to their level of severity via. 

proposed sorting algorithm. The resulting ordering of distinct operating profiles from 

least severe to most severe is 𝜔(F:250, S:1050, D:0.20) < 𝜔(F:350, S:1300, D:0.20) < 

𝜔(F:350, S:1050, D:0.35) < 𝜔(F:250, S:1300, D:0.35) (see, severity column of table 5.2, 

Exp. ID 1-4). This precise design helps prepare the historical data to maximize the value 

of rate of degradation parameter estimation for various profiles.  

TABLE 5.1 

PARAMETERS AND LEVELS FOR L4 ORTHOGONAL ARRAY 

Parameters Unit Parameter Levels 

Feed (F) mm/min 250 350 

Cutting speed (S) RPM 1050 1300 

Depth of cut (D) mm 0.20 0.35 
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Fig. 5.6.  Experimental platform. 
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5.3.1.3 Constructing Degradation Signals with Dynamic Operating Profiles  

Degradation signals rendering different real-world industrial scenarios are 

constructed as follows:  

a) Industrial Scenario I 

For constructing the deterministic, dynamic operating profile, a manufacturing 

system operating under two distinct profiles (low and high), that evolves in a 

deterministic manner is considered. So, the operating profiles are changed among 

these levels at known time intervals. The cutters were initially operated at the low 

profile, then just after sixteen cuts, the cutter transits to high profile till twenty-six 

cuts, and then transmit back to lower profile till failure.  

b) Industrial Scenario II 

For the randomly-varying, dynamic operating profile, a manufacturing system 

functioning in two profiles (medium and severe), that progresses stochastically is 

considered. Given that, the profiles are randomly changed among these levels at 

uncertain time intervals. Explicitly, the cutters were primarily functioned at the 

severe profile, which randomly transits to medium profile, and then again 

randomly transits to severe profile till failure. 

c) Industrial Scenario III 

For the expected but fluctuating dynamic operating profiles, a manufacturing 

system operating under two profiles (low and severe) is considered, where it is 

expected that the system will operate approximately 45% of the time in low 

profile and remaining 55% in severe profile. So, the profile expectancy is retained 

and the profiles are randomly changed among these levels at uncertain time 

intervals. In detail, the operating bins are set as 𝜑1= 45% 𝜉(𝑡) and 𝜑2= 55% 𝜉(𝑡) 

and then, first the cutters were operated at the low profile, which randomly 

transits to severe profile, while roughly accounting the profile expectancy, the 

profile again randomly interchanged to low profile till failure. Note the expected 

standard of profile was maintained.   
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Following all these scenarios, two groups of accelerated life tests are further 

conducted (see, table 5.2, Exp. ID 5-10). In the first set Exp. ID 5-7 each cutter is 

operated with profiles rendering different real-world scenarios. By this set and 

along with the Exp. ID 1-4, the model parameters are estimated. The second set 

Exp. ID 8-10 is used for online validation under diverse scenarios. This design 

maximizes the likelihood that sufficient real-time data is collected to verify the 

performance under dynamic operating profiles.   

TABLE 5.2 

EXPERIMENTAL DESIGN MATRIX 

Constant Operating Profile 

Severity (State) Exp. 

ID 
Operating Parameters 

No. of 

Cutters 

E1 (F:250, S:1050, D:0.20) 6 Low (1) 

E2 (F:350, S:1300, D:0.20) 6 Medium (2) 

E3 (F:350, S:1050, D:0.35) 6 High (3) 

E4 (F:250, S:1300, D:0.35) 6 Severe (4) 

Dynamic Operating Profile Industrial Scenario 

E5 
(F:250, S:1050, D:0.20)(F:350, S:1050, 

D:0.35)(F:250, S:1050, D:0.20) 
2 

Deterministic, dynamic 

operating profile 

E6 
(F:250, S:1300, D:0.35)(F:350, S:1300, 

D:0.20) (F:250, S:1300, D:0.35) 
2 

Randomly-varying 

dynamic operating 

profile 

E7 
(F:250, S:1050, D:0.20) (F:250, S:1300, 

D:0.35) (F:250, S:1050, D:0.20) 
2 

Expected but fluctuating 

dynamic operating 

profile 

E8 
(F:250, S:1050, D:0.20)(F:350, S:1050, 

D:0.35)(F:250, S:1050, D:0.20) 
1 

Deterministic, dynamic 

operating profile 

E9 
(F:250, S:1300, D:0.35)(F:350, S:1300, 

D:0.20) (F:250, S:1300, D:0.35) 
1 

Randomly-varying 

dynamic operating 

profile 

E10 
(F:250, S:1050, D:0.20) (F:250, S:1300, 

D:0.35) (F:250, S:1050, D:0.20) 
1 

Expected but fluctuating 

dynamic operating 

profile 
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5.3.1.4 Experimental Validation under Diverse Scenarios   

For validating and assessing the performance of the system under the scenario I, 

data from Exp. ID 1, 3 and 5 is used for training and data from Exp. ID 8 is used 

for online validation. While, for scenario II, data from Exp. ID 2, 4 and 6 is used 

for training and data from Exp. ID 9 is used for online validation. Similarly, for 

scenario III, data from Exp. ID 1, 4 and 7 is used for training and data from Exp. 

ID 10 is used for online validation. Table 5.3 offers the entire model parameters 

estimated from training data. Next, to meticulously validate the performance and 

to investigate the influence of dynamic operating profiles on the RUL prediction 

results, a comprehensive qualitative and quantitative performance investigation is 

carried out, as follows: 

a) Qualitative Performance Investigation 

First, the dynamic operating profile evolution path (under uncertainty) 

approximated by the system for validation cutting tools (see, Fig. 5.7 and 5.8) is 

examined. It can be manifested that the system is competent in approximating the 

uncertainty imposed by time-variant industrial scenarios. More prominently, in 

scenario III, the system approximated evolution path is virtually matching the 

actual evolution path (see, Fig. 5.8); as the updated distribution better 

characterizes the expected future profile and eventually reduces the uncertainty. 

Next, the validation tools were engaged to predict the RULs under diverse 

scenarios at different intervals of the lifetime percentiles. The predicted RULs 

were estimated from 𝑞𝑖
𝑡ℎ − 𝑞𝑗

𝑡ℎ  percentiles(𝑞𝑖 − 𝑞𝑗 ∈ {0 − 30%, 31 −

60%, 61 − 90%}). Herein, the quantity measure of performance is the lifetime 

prediction error (LPE).  

𝐿𝑃𝐸 = |1 −
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐸𝑝𝑜𝑐ℎ + 𝑅𝑈𝐿𝑝𝑖  

𝐿𝑇𝑎
| 

 

(5.21) 

where 𝑅𝑈𝐿𝑝𝑖 is the predicted RUL, (𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 𝐸𝑝𝑜𝑐ℎ + 𝑅𝑈𝐿𝑝𝑖) is 

the predicted lifetime, and 𝐿𝑇𝑎 is the actual lifetime.  
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Fig. 5.9 - 5.11 shows the prediction performance allied to a different interval of 

lifetime percentile under diverse scenarios. These figures revealed a significant 

finding that the prediction error under diverse scenarios exhibits progressive 

reduction as it move towards end of lifetime of the tool (i.e., as 𝑞𝑖
𝑡ℎ − 𝑞𝑗

𝑡ℎ 

increases). These promising results in time-variant scenarios guarantee the 

expansion of an effective preventive maintenance plan.   

 

Fig. 5.7. Approximated and actual evolution path for scenario II. 

 

Fig. 5.8. Approximated and actual evolution path for scenario III. 

 

 

Fig. 5.9. Performance at different intervals of percentile for scenario I. 
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Fig. 5.10. Performance at different intervals of percentile for scenario II. 

 

 

Fig. 5.11. Performance at different intervals of percentile for scenario III. 

 

b) Comparative Analysis of Quantitative Performance 

A comprehensive quantitative performance investigation in contrast to the 

extensively adopted traditional approach, see, table 5.4 for detailed results is 

carried out. In general, the traditional approach is designed on the impression that 

along the entire lifespan of the cutting tool, the prevailing operating profiles are 

unvarying. So, the proposed system is adapted to perceive the traditional approach 

on the same set of experimental data. This assessment is extensively distinguished 

as follows:   

 Accuracy: The Prediction Accuracy (PA) is the degree of the RULs 

correctly predicted amongst the total number of observations assessed. The results 

(see, table 5.4) manifest that under all the scenarios proposed approach has shown 

improved performance, with PA resulting 89.60% in contrast to 79.96% from the 

traditional approach for scenario I. Whereas, for scenario II and III, the PA 
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attained was more than 90% which is a significant improvement over 47.79 and 

30.54 from the traditional approaches. 

𝑃𝐴 =
1

𝑛
∑[1 − (

|𝑅𝑈𝐿𝑎𝑖 − 𝑅𝑈𝐿𝑝𝑖|

𝑅𝑈𝐿𝑎𝑖
)] × 100

𝑛

𝑖=1

 (5.22) 

where 𝑛 is the total number of observations, and  𝑅𝑈𝐿𝑎𝑖 is the actual RUL. 

 Suitability: For this, mean absolute error is calculated. MAE measures 

how the system makes close RUL predictions to the actual RUL; lower MAE is 

better, a perfect model would score zero MAE. The MAE values acquired from 

traditional approach is found to be about three times higher than the values 

attained from the proposed approach. Lower MAE values from the offered 

approach prove the suitability of the system under time-variant industrial 

scenarios by predicting the RULs closer to the actual RULs. 

 Stability: For this, relative absolute error and root relative squared error 

are evaluated; these are the measures of the variance in the predictions. The lower 

RAE and RRSE values from offered approach signify the stability of the system 

under diverse industrial scenarios. For instance, in scenario II these errors are 

76.15 and 69.96% lower than that attained from the traditional approach.      

 Quality: This is assessed through the goodness of fit. For which R-

squared (𝑅2) correlation coefficient is calculated. The high 𝑅2 correlation 

coefficient from proposed approach displays that anticipated RULs are greatly 

associated to actual RULs in contrast to traditional approach, showcasing better 

quality predictions from offered approach. 

 Reliability: Root mean squared error is selected to indicate the reliability 

of the predictions; it illustrates the standard deviation of the differences between 

predicted and actual RULs; RMSE closer to zero indicates greater reliability. The 

higher reliability of RUL predictions under time-variant scenarios from the 

proposed approach is apparent, as RMSE values are two times lesser than the 
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traditional approach. 

 Robustness: The robustness is visualized by plotting the confidence or 

error bounds. Herein, the bounds for the RUL estimates are 25% deviations from 

the actual RULs in either direction. Lesser the deviations from the actual RULs, 

better is the performance. As a result, error bounds make it easier to interpret the 

robustness of the approach. It can be observed from Fig. 5.12 – 5.14 that under 

different scenarios, from beginning to end of operational life of tools almost all 

values of the estimated RULs from the proposed approach lie within the specified 

error bounds. Whereas, estimated RULs from the traditional approach in the 

beginning mostly lies outside the error bounds and only lies within the bounds at 

the end of operational life. It can be summarized that the proposed approach 

offers accurate prediction even in the early operation life. This is highly desirable 

for planning maintenance at the early stage of the life. This performance suggests 

that the proposed approach makes reasonably robust estimates of the RUL under 

dynamic operating profiles at all times. 

 

Fig. 5.12. Comparison with confidence bounds on the actual and predicted output 

under the scenario I. 
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Fig. 5.13. Comparison with confidence bounds on the actual and predicted output 

under the scenario II. 

 

Fig. 5.14. Comparison with confidence bounds on the actual and predicted output 

under the scenario III. 
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throughout circumvents the unexpected variation of squared deviation happening 

in all scenarios as the offered approach effusively exploits the future 

characteristics of dynamic operating profiles. Additionally, the total squared 

deviation (sum of all the squared deviation over the lifespan) of the offered and 

traditional approach are 226.20, 1119.83 under the scenario I, 263.29, 2917.10 for 

scenario II and 22.30, 1440.96 for scenario III. Apparently, the offered approach 

has the least total mean-squared deviation and thus has a better RUL estimation 

under dynamic operating profiles than the traditional approach. 

 

Fig. 5.15. Comparative results of squared deviation in the scenario I. 

 

Fig. 5.16. Comparative results of squared deviation in the scenario II. 
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Fig. 5.17. Comparative results of squared deviation in the scenario III. 

 Applicability: In real-world applications, it is always desired to foresee 

failures early than late. Hence, to deliver a more valued and overall valuation of 

prediction performance an asymmetric score metric (see, Eq. (5.23)) is computed. 

This score stresses substantial penalties on late prediction than early prediction, 

and the penalty propagates exponentially with increasing error. It is evident from 

Fig. 5.18 that the offered approach outperforms the traditional approach in all 

scenarios by prompting lower score. Implying, higher over/under predictions 

attained from the traditional approach, because while prognosticating RULs the 

prevailing operating profiles are considered to be unvarying along the entire 
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operating in severe operating profile and from those points when a prediction is 

made the approach provide a higher under prediction, this can be visualized from 

Fig. 5.13. Whereas in scenario III, initially, the tool is operating in low operating 
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higher over prediction, this can be visualized from Fig. 5.14. This is because in 

these scenarios the operating profiles are dynamically chaining along the lifespan 
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traditional approach got reduced by 82% and 92% respectively for scenario II and 
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𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑆𝑐𝑜𝑟𝑒

=

{
 
 

 
 ∑𝑒(

𝑅𝑈𝐿𝑝𝑖−𝑅𝑈𝐿𝑎𝑖
10

) − 1  

𝑛

𝑖=1

  𝑓𝑜𝑟 (𝑅𝑈𝐿𝑝𝑖 − 𝑅𝑈𝐿𝑎𝑖) < 0

∑𝑒(
𝑅𝑈𝐿𝑝𝑖−𝑅𝑈𝐿𝑎𝑖

13
) − 1  

𝑛

𝑖=1

  𝑓𝑜𝑟 (𝑅𝑈𝐿𝑝𝑖 − 𝑅𝑈𝐿𝑎𝑖) ≥ 0 

 
(5.23) 

  

Fig. 5.18. Asymmetric score comparison under diverse scenarios. 
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TABLE 5.3 

ESTIMATED MODEL PARAMETERS FROM TRAINING DATA  

Industrial Scenario I Industrial Scenario II Industrial Scenario III 

Parameter Value Parameter Value Parameter Value 

𝑸 {Low (1), High (2)} 𝑄 {Medium (1), Severe (2)} 𝑄 {Low (1), Severe (2)} 

𝝃((𝒕𝒊)) {
𝐿𝑜𝑤,        0 ≤ 𝑡 < 16
𝐻𝑖𝑔ℎ,      16 ≤ 𝑡 < 26
𝐿𝑜𝑤,                 26 ≥ 𝑡

} {ξ(𝑡): 𝑡 ≥ 0}; 𝜃 
Severe (1)

Medium (2)
 [
0.95 0.05
0.06 0.94

] 

{ξ(𝑡): 𝑡 ≥ 0,𝜑1

= 45%,𝜑2

= 55%}; 𝜃 

Low (1)

Severe (2)
 [
0.90 0.11
0.08 0.92

] 

𝝎(𝛏 (𝐋𝐨𝐰 (𝟏))) 7.28 ×10-3 𝜔 (ξ (Medium (1))) 8.97×10-3 𝜔 (ξ (Low (1))) 7.28 ×10-3 

𝝎(𝛏 (𝐇𝐢𝐠𝐡 (𝟐))) 1.23×10-2 𝜔 (ξ (Severe (2))) 1.39×10-2 𝜔 (ξ (Severe (2))) 1.39×10-2 

𝝈 3.15×10-2 𝜎 0.019 1.90×10-2 𝜎 3.59×10-2 

𝖆 1.54×10-2 𝔞 3.00×10-2 𝔞 3.00×10-2 
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TABLE 5.4 

RESULTS OF COMPARATIVE ANALYSIS 

Industrial Scenarios I II III 

Performance Metric 
Proposed 

Approach 

Traditional 

Approach 

Proposed 

Approach 

Traditional 

Approach 

Proposed 

Approach 

Traditional 

Approach 

Accuracy PA (%) 89.60 79.96 90.23 47.79 93.31 30.54 

Suitability MAE 1.691 4.033 1.864 7.821 0.604 4.843 

Stability 
RAE (%) 16.91 40.33 20.18 84.61 10.07 80.71 

RRSE (%) 20.60 45.84 24.98 83.16 13.92 111.94 

Quality R2 0.976 0.947 0.965 0.333 0.983 0.878 

Reliability RMSE 1.300 2.008 1.365 2.797 0.777 2.201 

Applicability Computation time (s) 0.440 0.425 0.312 0.225 0.455 0.446 
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5. 4 Contributions   

The research presented in this chapter progresses the existing body of knowledge 

by formulating a novel and generic TCM system for dynamic operating profiles. 

The purpose was to equip manufacturing industries with intelligence that allows 

responding to the time-variant operating profiles and adaptable under various real-

world industrial scenarios. The main contributions made are highlighted as 

follows: 

 A realistic mathematical framework via a new, adaptive, and hybrid stochastic 

degradation model is offered, that inventively models sensor-based 

degradation signal of cutting tools functioning under dynamic operating 

profile, to prognosticate the RULs under diverse industrial scenarios.  

 To precisely approximate the degradation under dynamic profiles the 

framework uniquely leverages strategic information viz. viz. 1) the real-time 

degradation signal characteristics from the sensor; 2) the rate of degradation 

characteristics from historical data; 3) the evolution of the future operating 

profile; 4) jerks owing to dynamic transitions.   

 To take along realistic characteristics, new mappings, i.e., degradation rate 

function and jerk function are formulated. As well, as an essential aspect of 

the framework, a first-hand sorting algorithm to order the operating profiles 

with regard to their impact on the corresponding degradation rate is offered. 

 For the first time, the physics of evolution of dynamic profiles to incite 

generalization in diverse real-world scenarios viz. batch production, job 

production, micro to medium-scale production environments is innovatively 

modeled. 

 A real-life experimental case study is exhibited to validate the system's 

qualitative and quantitative performance meticulously and to comprehensively 

investigate the influence of dynamic operating profiles on the RUL prediction 

results, showcasing an excellent agreement. 

 To further evaluate the performance, a series of validation experiments are 

conducted in contrast to the traditional approach. Wherein, the experimental 
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results confirmed that the offered approach delivers a robust problem-solving 

structure for dynamic operating profiles. 

  

5.5 Closure  
 

In real manufacturing environment, machining systems are often subject to time-

variant operating profiles, the effect of which, if not properly considered, may 

greatly reduce the accuracy of RUL predictions. In view of that, the proposed 

framework inventively compute the cutting tool RULs while exploiting prior 

information, along with the future characteristics of operating profiles that the 

cutting tool is likely to experience, in real-time. This will enrich the existing tool 

condition monitoring systems by considering the effects of the operating profiles 

on cutting tool degradation, as well, render a first universal perspective to TCM. 

The promising results attained under time-variant industrial scenarios guarantee 

the expansion of an effective preventive maintenance plan in diverse real-world 

industrial scenarios viz. batch production, job production, micro to medium-scale 

production environments.   

The proposed framework consents modelling of solitary sensor, in future, for 

further strengthening of the prediction performance will requires extracting the 

information from multi-sensors. 
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Chapter 6
*
 

Dynamic Optimization of Process Quality Control 

and Maintenance Planning  

“Others dream of things that were, and ask 'Why?'  I dream of things that never 

were, and ask 'Why not?”. 

 Cardinal Saint-Saens, French Composer 

Chapter 2 facilitated recognizing that the integration of quality and maintenance 

considering real-time health state of the system entirely eludes literature. Thus, 

this chapter intends to invent a dynamic integrated policy, so that the existent 

machining systems can be augmented with collective knowledge, and yield better 

performance. Accordingly, a novel methodology for dynamic optimization of 

process quality control and maintenance planning whilst considering the real-

time health state of the system is proposed. Moreover, for one of the research 

deliverables, case studies in various industrial scenarios are implemented to 

demonstrate the practical feasibility of the offered policy.  

Key Highlights 

Purpose: The purpose was to equip industries with a holistic view of the 

intelligent manufacturing, thereby forming the basis for building an autonomous 

decision-making system that serves as a guide for joint consideration of 

operational policies pertaining to diagnostics, prognostics and process quality 

control.   

Methodology: The existing process quality control policy is enhanced to become 

dynamic and extended to deal with machine deterioration with time. This is done 

via the proposed residual-life based evaluation and multi-state magnitude of 

                                                           
*
 The work presented in this chapter is published in two parts. Firstly, under the title “Quality 

control based tool condition monitoring” in “Annual Conference of the Prognostics and Health 

Management Society, 2015”, California, USA, Vol. 6, pp. 1-10. Secondly, under the title 

“Dynamic optimization of process quality control and maintenance planning” in “IEEE 

Transactions on Reliability”, IEEE, doi: 10.1109/TR.2017.2684709. 

http://quotes.yourdictionary.com/author/quote/570078#prognostic
http://quotes.yourdictionary.com/author/quote/570078#prognostic
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process shift schemes. Furthermore, the maintenance planning model is modified 

to capture real-time remaining life information. These models are integrated and 

built in conjunction with newly developed TCM system pertaining to 

instantaneous diagnostics and prognostics. As a result, the designed dynamic 

integrated model can evolve itself to re-evaluate the optimal values for the design 

parameters used in the entire lifecycle of the manufacturing process.  

 Findings: The proposed methodology was proficient in capturing the 

interdependencies between process quality control and maintenance planning 

whilst considering the real-time health state of the system. This will enrich the 

existing integrated policy by instantaneously considering machine deterioration, 

health state, and remaining useful life. Wherein, the experimental results 

confirmed that the dynamic integrated policy is capable for early detection of out-

of-control process than conventional usage of control charts. As a consequence, 

the information obtained in the current research results in significant cost savings 

in overall manufacturing cost. 

 Practical Implications: The implication of the proposed dynamic integrated 

policy under various real-world industrial scenarios revealed that this policy 

optimizes the inspection frequency, moderates the loss in production, consumes 

the optimum life of the system and delivers higher economic improvements. This 

will benefit the manufacturers to adopt the most beneficial practice for optimizing 

the process quality control and maintenance planning of their industry specific 

applications.  

Originality and Contribution: The novelty of this work is in the formulation of a 

dynamic integrated policy. Whenever a change in health state of the system is 

detected, the optimal design parameters of process quality control and 

maintenance planning are updated based on current health state of the system as 

a function of its life. This dynamic integrated policy has the dual advantage, i.e. it 

eliminates the lost quality cost due to machine degradation and also improves the 

manufacturing system’s reliability by protecting it against failures. An added 
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contribution lies in the outcomes; systematic performance and sensitivity 

investigation are presented. Moreover, the implication of the proposed policy in 

various industrial scenarios is critically analysed. This expands the model's 

robustness and relevance in manufacturing industries.  

Research Limitations and Future Scope: In the present work, the machine is 

considered to be made up of a single component i.e. cutting tool, the failure of the 

components of the machine tools also have similar effects on process quality. 

Thus, extending this analysis for other components of machine will further lead to 

more significant cost benefits to the industries. 
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6.1 Introduction 

Recalling the discussion from chapter 1 and 2, in today’s progressive 

manufacturing environment, achieving operational excellence is a challenge. 

Thus, shop floor efficiency and effectiveness have become a high priority for 

manufacturing industries. Process quality control and maintenance planning are 

the key shop floor operational policies. These policies are interrelated, for 

example, the efficacy and quality of the machine output are influenced by 

maintenance (Ollila and Malmipuro, 1999). Whereas unnecessary maintenance 

leads to excessive costs, delaying the maintenance might increase the process 

variability viz., increase in rejections. Lad and Kulkarni (2008) showed that if the 

failure of a machine arises, it may not stop the machine immediately, but may also 

adversely affect the quality of the goods being produced on the machine. 

According to Kurada and Bradley (1997), cutting tool failures usually takes 

around 20% of the downtime of a manufacturing system. Whereas Malekian et al. 

(2009) found that tool degradation has a direct impact on the quality of the 

product produced, and the expense of tools and their replacement accounts up to 

12% of the overall manufacturing cost. Thus, real-time detection of tool failure 

becomes essential to enhance the process quality control and the ability to prepare 

and perform tool replacement. To manage higher shop floor effectiveness, a good 

understanding of interdependency among process quality control, maintenance 

planning, and real-time health state of the system is therefore lucrative. Though, 

chapter 2 unveils that despite the fact that the connection among these fields is not 

absent, further examination is required in this course. However, the integration of 

quality and maintenance decisions considering real-time health state of the system 

entirely eludes literature
6.1

, hence offers an excellent opportunity for 

investigation. In this regard, the aim of this chapter is to present a novel 

methodology for dynamic and simultaneous optimization of process quality 

control and maintenance planning whilst considering the real-time health state of 

the system deteriorating with time.  

                                                           
6.1

 The gaps are briefed in section 2.3 of chapter 2. 
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To begin with, a joint methodology pertaining to diagnostics and statistical 

process quality control is proposed as part of a preliminary investigation. The 

main contribution of which is in an attempt to explore a methodology for joint 

consideration of statistical process quality control and tool condition monitoring. 

The promising outcomes from this investigation encouraged and empowered 

instituting an autonomous decision making system pertaining to data-centric real-

time integration of diagnostics, prognostics, and economic process quality control 

for real-world manufacturing environments. Herein, first, a new tool condition 

monitoring system is built to perform instantaneous diagnostic and prognostic 

tasks. Further, the existing process quality control policy is customized and 

extended to deal with machine deterioration with time. This is done via a 

proposed residual-life based evaluation and multi-state magnitude of process shift 

schemes. Moreover, the conventional maintenance planning model is enhanced to 

capture real-time remaining life information of the tool, thereby leading to 

optimum usage of a tool’s useful life. These models are integrated and built in 

conjunction with the developed TCM system. As a result, the proposed dynamic 

integrated model evolves itself dynamically to re-evaluate the optimal values for 

the design parameters, i.e. sample size, the time between samples, control limit 

coefficient and preventive replacement interval used in the entire lifecycle of the 

manufacturing process. An experimental case study is presented to demonstrate 

the practicability of the developed method. An extensive performance 

investigation revealed substantial economic benefits are achieved through 

proposed policy over conventional independent policies.  

The novelty of this work is in the formulation of a dynamic integrated policy. 

Whenever a change in health state of the system is detected, the optimal design 

parameters of process quality control and maintenance planning are updated based 

on current health state of the system as a function of its life. This dynamic 

integrated policy has the dual advantage, i.e. it eliminates the lost quality cost due 

to machine degradation and also improves the manufacturing system’s reliability 

by protecting it against failures. An added contribution lies in the outcomes; 

systematic performance and sensitivity investigation are presented. Moreover, the 
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implication of the proposed policy in various industrial scenarios is critically 

analysed. This expands the model's robustness and relevance in manufacturing 

industries. 

The rest of the chapter is systematized as follows. In the next section, a 

preliminary investigation on development of a joint methodology is thoroughly 

illustrated. Section 6.3 briefs the development of the proposed dynamic integrated 

policy. Section 6.4 illustrates results from the experimental case study and other 

investigations. In section 6.5 contributions are highlighted. The last section 

concludes the chapter.  

6.2 Preliminary Investigation: Quality Control based Tool Condition 

Monitoring 

Quality control and tool condition monitoring are important part of machining 

process. Thus, developing a joint methodology, that not only maintains the quality 

but also performs tool condition monitoring, will be a highly profitable option. 

Herein, the key finding
6.2

 from chapter 4 pertaining to the relationship between 

product quality and tool degradation is an integral part of this study. As it helps in 

getting rid of measurable signal monitoring system (sensors) and its associated 

expenses, the only expense associated will be the cost of quality control. The 

results from such relationship are used to provide guidelines for efficient process 

monitoring and dynamic process quality control. Thus, in a single expense, both 

the purpose of quality control and tool condition monitoring will be 

accomplished. Such type of methodology is not reported in the existing literature 

of current research. Consequently, the development of a methodology for joint 

consideration of statistical process quality control and tool condition monitoring 

will be a stepping stone in the direction of realizing a holistic view of intelligent 

manufacturing to machinists and will lead to greater cost savings in overall 

manufacturing cost.  

 

                                                           
6.2

 The key finding pertaining to the relationship between product quality and tool degradation is 

appraised in section 4.3 under the heading experimental investigation of chapter 4. 
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6.2.1 Joint Methodology 

Details of the proposed joint methodology coupled with experimental 

implementation results are given in following sub-sections. 

6.2.1.1 Fault Estimation Model 

As already established in chapter 3, tool degradation (wear) is the major cause of 

tool failure, identification and estimation of cutting tool health state is very 

important in the machining process, so that it can be replaced on timely manner. 

Also, the relationship between product quality (surface roughness) and tool 

degradation is of great interest. Accordingly, a new Fault Estimation Model 

(FEM) is developed to link one or more of the product quality parameters like Ra, 

Rz and Rp with the health state of the tool. Input to this fault estimation model will 

be quality parameters and output will be the current health state (stage I, stage II 

or stage III) of the tool. The prediction of current health stage will help in tool 

replacement decisions. 

To develop an efficient fault estimation model, an ensemble classifier is needed. 

As a result, Random Forest (RF) is used to develop the fault estimation model. RF 

is utilized because of its high performance in modeling complex processes, 

unbiased estimate of the generalization error, high accuracy and fast build time 

(Liaw and Wiener, 2002). Originally proposed by Breiman (2001), the method 

adds an extra layer of randomness to the original bagging algorithm. It is more 

user friendly, intuitive, and is based on two parameters (the number of variables 

in the random subset at each node and the number of trees in the forest) only. 

Further, in contrast to most algorithms in literature viz. discriminant analysis, it is 

dependent on the data values and is less sensitive to the values of the two 

parameters (Liaw and Wiener, 2002). Consequently, it is perfectly aligned to 

current needs, thus, this method is used to formulate the fault estimation model 

for cutting tools. In RF classifier each tree is constructed using the following 

methodology: Firstly, N number of training cases and M number of variables are 

taken in the classifier. m number of input variables are used to take decision at the 
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node of the tree, here, m is kept lesser than M. A training set is selected for this 

tree by choosing n times with replacement from all N available training cases. 

Rests of the cases are used to estimate the error of the tree, by predicting their 

classes. For each node of the tree, randomly m variables are selected, on which to 

base the decision at that node. Then, the best split based on these m variables in 

the training set is calculated. Each tree is fully grown and not pruned. For 

prediction, a new sample is pushed down the tree. It is assigned the label of the 

training sample in the terminal node it ends up in. This procedure is iterated over 

all trees in the ensemble, and the average vote of all trees is reported as random 

forest prediction.  

For the current study, random forest of 100 trees, each constructed while 

considering 1 random feature is used. The life data used here is drawn from 

experiments
6.3

 conducted on five milling cutters. Health states of the milling 

cutters are classified in three stages (see, Fig. 4.5 in chapter 4). The 10-fold cross-

validation method was chosen (Stone, 1974) in this study. For performance 

assessment, accuracy of the testing results is calculated. Accuracy of a 

classification model is calculated as, the proportion of the total number of 

predictions that were correct (Wang et al., 2014). To check the applicability of 

developed model; computational time, that is the required time to learn and test 

the dataset is also computed. Moreover, to improve relevance and accuracy of 

prediction, an Advance Fault Estimation Model (AFEM) is also developed. In the 

advance model, with average surface roughness value (as in FEM) two more 

parameters (Rz and Rp) are given as input. This advance fault estimation model 

can be used in the presence of extra information in terms of Rz and Rp in place of 

the fault estimation model to update the accuracy of the prediction. Table 6.1 

shows the performance of both the developed models.  

The results from developed fault estimation models are promising and show 

potential to be practically applied under industrial constraints in reasonable 

computational time. 

                                                           
6.3 The details of experiments are given in section 4.2 under the heading new experimental strategy 

of chapter 4. 
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TABLE 6.1 

PERFORMANCE OF FAULT ESTIMATION MODELS 

Model Accuracy (%) Time (s) 

Fault Estimation Model 70 0.13 

Advance Fault Estimation Model 82 0.17 

 

6.2.1.2 Process Monitoring and Statistical Quality Control Policy 

A CNC milling process is used for Mild Steel (MS) plate manufacturing with 

fixed dimensions (165x100x20mm). Average surface roughness (Ra) of the plate 

in horizontal direction is an important quality characteristic. The average surface 

roughness value is in micron. A statistical control of the average surface 

roughness of the plate in this process using �̅� and R control charts is need to be 

established. This will require setting of control charts limits. This is explained as 

follows: 

a) Setting of 𝒙 and R Charts 

In order to get statistical control limits for �̅� and R charts, common approach is to 

take some initial samples from the process considering the process was in control. 

In the current experiments, all the process related variables are kept constant, for 

example the operating conditions are kept constant throughout the process to 

achieve the desired dimensions. Similarly machine tool, workpiece material and 

the work environment etc. are same throughout the process. The only variable 

which changes periodically is the cutting tool, as it degrades with the time and 

eventually fails, thus it is to be replaced periodically.  In order to get safe 

statistical control limit for �̅� and R charts for future use, data from in control 

process are required. In the current manufacturing scenario cutting tool is the only 

variable in the whole process which changes periodically (because of failures). 

The current study revealed that different failure modes of the cutting tools have 

significant effect on the product produced from them (see, Fig. 4.2 and Fig. 4.3 in 

chapter 4). This behaviour of different failure modes on the product quality is 

very important to be considered while setting the control charts. As in production 
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process, the tool will vary timely, and will fail from different failure modes. Thus, 

initial samples taken for control chart setting are to be selected from different 

tools failed with multiple failure modes. With the help of developed experimental 

setup six milling cutters are run till failure, the life data generated from the 

experimental setup is important in the sense that they correspond to “normally” 

degraded milling cutters. This means that the defects were not initially initiated on 

the cutters and that each degraded cutter contains almost all the types of defects 

(worn-out and breakage). Three cutters from both the failure modes (worn-out and 

breakage) are observed.  

Twenty five initial samples, each of size five; have been taken from six milling 

cutters samples with different failure modes, when the cutter was operating in its 

healthy stage (considering the process was in control). The interval of time 

between samples is one hour. These samples are used for setting the �̅� and R 

charts. When setting up the control charts, it is recommended to start with the R 

chart. Because the control limits on the �̅� chart depend on the process variability, 

unless process variability is in control, these limits will not have much meaning 

(Montgomery, 2008). Using the initial samples from different cutting tools, the 

center line for the R chart is found as shown in Eq. (6.1). 

𝑅 ̅ =
∑ 𝑅𝑖
𝑛
𝑖=1

𝑛
 (6.1) 

𝑅 ̅ =
∑ 𝑅𝑖
25
𝑖=1

25
=
20.034

25
= 0.801 

where 𝑛 = total number of samples, 𝑅𝑖 = Range of the i
th 

sample. 

The control limits of the R chart are calculated as follows: 

𝑈𝐶𝐿 =  𝐷4�̅� (6.2) 

𝑈𝐶𝐿 = 𝐷4�̅� = (0.3251)0.801 = 1.694 

𝐿𝐶𝐿 =  𝐷3�̅� (6.3) 
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𝐿𝐶𝐿 =  𝐷3�̅� = (0)0.801 = 0 

where the constants D3 and D4 are tabulated based on sample size (for sample size 

of 5, 𝐷3 = 0 and 𝐷4 = 0.3251) (Montgomery, 2008). 

Since, the R chart indicates that the process variability is in control (see, Fig. 

6.1); now construct the �̅� chart. The center line is calculated as shown in Eq. (6.4). 

�̿� =
∑ �̅�𝑖
𝑛
𝑖=1

𝑛
 (6.4) 

�̿� =
∑ �̅�𝑖
25
𝑖=1

25
=
105.441

25
= 4.218  

where �̅�𝑖 = Mean of the i
th 

sample. 

 

Fig. 6.1.  �̅� and R charts. 

The control limits of the �̅� chart can be found out as follows:  

𝑈𝐶𝐿 = �̿� + 𝐴2�̅� (6.5) 

𝑈𝐶𝐿 = 4.218 + (0.577)(0.801) =  4.680 
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𝐿𝐶𝐿 =  �̿� − 𝐴2�̅� 
(6.6) 

𝐿𝐶𝐿 =  4.218 − (0.577)(0.801) =  3.755 
 

where, the constant A2 is tabulated based on sample size (for sample size of 5,  

𝐴2 = 0.577) (Montgomery, 2008). 

When the preliminary sample means are plotted on this chart as shown in Fig. 

6.1, all the points are inside the control limits. Since, both the �̅� and R charts 

depict control, it means that the process is in control under stated levels. This set 

of safe control limits are adopted for monitoring future production. This 

completes the setting of �̅� and R charts limits for future use. The control charts 

shown here are made using Minitab (Version: 17.2.1). Next, the conventional 

usage of the �̅� and R control charts is explained. 

b) Conventional Process Monitoring and Quality Control Policy 

Once a set of safe control limit is established, the conventional way is to use the 

control charts for monitoring future production.  Fig. 6.2 (a) illustrates the 

working of conventional process monitoring and quality control policy. 

Additional samples from the process, each of sample size five from the process 

(with a new cutting tool) were collected after the control charts were established 

and the sample values of �̅� and R are plotted on the control charts with sampling 

frequency of one hour. The control chart detected out of control process at 6
th

 

sample. As the control chart shows an out of control process, it means that an 

assignable cause has occurred at that time. Conventionally, the operator is 

directed to check process variables viz. cutting tool, process settings, calibration 

etc. and then make the adjustments in an effort to bring the process back into state 

of control. This conventional usage of control chart will only detect occurrence of 

assignable causes, also fixed sampling frequency or sample size were used 

throughout the monitoring. It will be of great interest to detect the reason for 

assignable cause and simultaneously able to vary the sampling frequency or 

sample size while monitoring the process for early detection of out of control 

process. Accordingly, for early detection of out of control process, fault 
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estimation model based process monitoring and dynamic quality control policy is 

proposed next. 

c) Fault Estimation Model based Process Monitoring and Dynamic Quality 

Control Policy 

In this process, the mean surface roughness is monitored with a  �̅� control chart, 

and the process variability is monitored by R chart. Notice that if the R chart 

displays an out of control point, operating personnel are coordinated to contact 

process engineering instantly. The current manufacturing process is having only 

one controllable variable, cutting tool. In this scenario, the high chance of 

assignable cause may be tool health. Thus, the developed fault estimation model 

is linked with the control chart in such a way; the sample quality data is fed as 

input to the fault estimation model to know the current health state of the tool 

without stopping the production. The fault estimation model can give three types 

of indication about the health of cutting tool: 

 Tool is in stage I (Safe Zone)  

 Tool is in stage II (Partial Safe Zone)  

 Tool is in stage III (Worn-out Zone).  

Based on the output from fault estimation model some guidelines are proposed 

for each health stage of the cutting tool for process monitoring and dynamic 

quality control. When the health state of the cutting tool is identified as stage I 

(the stage I of the cutting tool indicates only slight wear have been occurred in the 

tool, and the tool is in safe zone), the process monitoring is continued with initial 

sampling frequency or sample size. As the fault estimation model indicate the 

shift in the health state of cutting tool from stage I to stage II, it means that 

moderate wear is now present in the tool and this can be the reason of assignable 

cause in near future. Being in partial safe zone, it’s not wise to discard the tool, 

here the decision on varying the sampling frequency or sample size is needed to 

be taken for early detection of out of control process in future.  As the tool health 

state is identified as stage III (tool is now in worn-out zone), this indicate that tool 

wear will soon can cause out of control process, thus here further decision on 
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varying the sampling frequency or sample size can be made for very early 

detection of out of control process. Also, as the tool is reached to its failure zone, 

tool replacement decision can be taken in a timely manner, and this will also 

eliminate the faulty product development and reduce losses because of tool failure 

viz. power consumption etc. Based on these guidelines smart decisions on quality 

improvement (cost of inspection can be managed efficiently), and timely tool 

replacement can be taken efficiently before tool failure. 

Fig. 6.2 (b) illustrates the working of fault estimation model based process 

monitoring and quality control policy, applied on the same process data as used 

for conventional process monitoring and quality control policy. Additional 

samples from the process, each of sample size five from the process are fed as 

input to the fault estimation model to know the current health state of the cutting 

tool. From the results of fault estimation model it is identified that the current 

health state of the cutting tool is reached to stage II at third sample. According to 

the proposed guidelines, the decision on varying the sampling frequency is taken 

for future monitoring. Sampling frequency from the fourth sample is changed to 

half an hour from one hour for early detection of out of control process. With this 

change the control chart is now able to detect the out of control process early. The 

control chart detected out of control process at fourth sample. Table 6.2 shows the 

performance of fault estimation model based usage of control chart. 

TABLE 6.2 

FAULT ESTIMATION MODEL BASED USAGE OF CONTROL CHART 

Sampling frequency 1 hour 

Fault estimation model 

Input Output 

1
st
  sample Stage I 

2
nd

 sample Stage I 

3
rd

 sample Stage II 

Decision on change in sample frequency from 4
th

 sample onwards 

New Sampling frequency 1/2 hour 

Out of control process detection 4
th

 sample 

 



129 
 

 

Fig. 6.2. Illustration of conventional and fault estimation based process 

monitoring and quality control polices. 
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d) Comparison of Conventional and Fault Estimation Model based 

Process Monitoring and Quality Control Policy 

Table 6.3 and Fig. 6.2 (c) shows the comparison of performance of conventional 

and fault estimation model based control chart policy in terms of product 

produced till detection of the out of control process. Till actual occurrence of out 

of control process twenty nine products were produced. Whereas, in conventional 

usage of control chart, total sixty products were produced from the process till the 

detection of out of control process. However, only thirty five products were 

produced from the process till the detection of out of control process through fault 

estimation model based usage of control chart. It is clear that the fault estimation 

model based process monitoring and dynamic quality control policy is capable of 

detecting out of control process very early than conventional policy. With the help 

of fault estimation model based control chart usage, the number of faulty product 

development gets reduced. As the difference between the products produced 

before the detection of out of control process is thirty one from conventional 

policy with actual occurrence, this is considerably high. Consequently, only six 

products were produced till the detection of out of control process from the fault 

estimation model based usage of control chart. 

TABLE 6.3 

COMPARISON OF PERFORMANCE OF CONVENTIONAL AND FAULT 

ESTIMATION MODEL BASED USAGE OF CONTROL CHART 

 Actual occurrence 

of out of control 

process 

Conventional way of 

usage of control 

chart 

Fault estimation 

model based usage of 

control chart 

Products produced 

till out of control 

process detection 

29 60 35 

In essence, this joint methodology forms the basis of a quality control based 

intelligent predictive monitoring system to estimate the useful life of the tools and 

detect the surface degradation prior to costly failure and damage to high valued 



131 
 

workpieces. As a consequence, lead to online monitoring of the production 

process as well as serve the purpose of tool condition monitoring.  

6.2.2 Preliminary Investigation’s Rundown 

This preliminary investigation explores the interdependency between diagnostics 

and statistical process quality control and utilizes the same for dynamic quality 

control and efficient tool replacement decisions; this is of high importance for 

manufacturing industries in improving the performance of their machining 

process as well as reducing the overall manufacturing cost. The major 

contributions of this investigation are as follows: 

 An ensemble (random forest) based fault estimation models are developed to 

map the relationship between surface roughness and tool wear. 

 Guidelines for process monitoring and quality control based on the results of 

fault estimation model are proposed. These guidelines lead to efficient quality 

improvement as well as timely tool replacement decisions. 

 The fault estimation model based process monitoring and dynamic quality 

control policy is capable for early detection of out of control process than 

conventional usage of control charts. 

The encouraging results from this study promote the establishment of an 

autonomous decision-making system capable of dynamic optimization of 

preventive replacement, process quality control, spare parts inventory 

management, and lower manufacturing costs in real-world manufacturing 

environment. The next section outspreads this preliminary investigation in the 

direction of an autonomous decision-making system development. 

6.3 An Autonomous Decision-Support System: Dynamic Integrated Policy 

Pertaining to Diagnostics, Prognostics, and Economic Process Quality 

Control 

The developed autonomous decision-support system is briefly discussed in 

subsequent sub-sections.  
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6.3.1 New Tool Condition Monitoring System: Instantaneous Diagnostics and 

Prognostics 

A new tool condition monitoring system for instantaneous diagnostic and 

prognostic is proposed. Wherein, diagnostic information helps gauge the current 

health state of the tool, while the prognostic information provides the RUL of the 

tool. This ascertains health monitoring and life prediction instantaneously with a 

solitary experimentation. Theoretical and mathematical foundation of the 

developed TCM system is elaborated from next paragraph onwards.  

As previously recognized in chapter 4, that a significant part of the past work on 

tool monitoring has regarded the problem of figuring out whether the tool has 

been worn-out or not. In reality, tool wear is a dynamic process, with tools, 

moving from being new to continuously higher levels of wear. On that ground, 

and as it provides more valuable information to machinists; in chapter 3 as well in 

the preliminary investigation of this chapter multi-level categorization of wear is 

well explored. Now, the use of a multi-level categorization of tool life is 

introduced. Yet again, considering the case of cutting tools, its life is divided into 

three health states as a function of tool life (see Fig. 6.3, splitting the health states 

as Stage 1: slight wear zone, Stage 2: moderate wear zone and Stage 3: critical or 

worn-out zone; with their life scopes). As such no specific method or technique is 

available to decide life scopes. Based on the literature (Wang et al., 2014) and 

observation of the noticeable physical change in the surface roughness of the 

produced surface with tool degradation during experiments are the primary basis 

for selection of these life scopes. Multi-class classification algorithms viz. support 

vector classification, etc. are used for such diagnostic problems; this requires an 

independent classification model (as seen in chapter 4). However, to make the 

current TCM system capable of performing instantaneous diagnostics and 

prognostics tasks, the TCM system is built to provide information about 

remaining useful life of cutting tools; by assessing the extent of degradation from 

its expected state of health in its expected usage conditions. Herein, the TCM 

system will predict the RUL of the tool, based on the RUL and multi-level 
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categorization of tool life; one can easily diagnose the current health state. 

Furthermore, guide towards the establishment of an efficient preventive 

maintenance program.   

To build the desired TCM system, the tool degradation indicator proposed in 

chapter 4 is used. The TDI is a set of measures, sensitive to cutting tool 

degradation. TDI comprises of tool current age and product quality 

measurements. Tool current age (𝑇𝑖) is the current age of the tool. Product quality 

measurement in terms of surface roughness is “the result of irregularities arising 

from the plastic flow of chips during the machining (Lou et al, 1998).” 

Extensively used average surface roughness (𝑅𝑎) parameter is used to define the 

surface roughness of the machined product. The product quality during current 

and previous inspection can be defined as follows: 

 

Fig. 6.3.  Health states as a function of tool life. 

Current inspection; 
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where, the parameter L is sampling length, and function Y(x) is the coordinate of 

the roughness profile curve. 
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𝑅𝑎𝑖−1 = 
1

𝐿
 ∫ |𝑌(𝑥)𝑖−1|

𝐿

0

𝑑𝑥 (6.8) 

The proposed tool degradation indicator has a characteristic function in the 

modeling of the new TCM system. Herein, the tool current age is important in 

estimating the RUL of the cutting tool. Product quality measurements in the 

present and previous inspections are useful in representing the tool’s current 

health condition. In most of the available work, current wear is the preferred 

output of the TCM system. However, just wear estimation will not assist the end 

goal of tool condition monitoring. Accordingly, in this work for output, the 

remaining useful life of the tool is preferred and is denoted as 𝑅𝑈𝐿𝑖, as shown in 

Eq. (6.3).  

𝑅𝑈𝐿𝑖 = 𝑇𝐹 − 𝑇𝑐𝑖 (6.9) 

where, 𝑇𝐹 is the time to failure of cutting tool, 𝑇𝑐𝑖 is the current inspection time. 

Modeling of the TCM system should be proficient in achieving the desired 

input-output mapping. Consequently, 𝑣-Support Vector Regression is employed 

to model the TCM system. 𝑣-SVR works with the structural risk minimization 

principle (Cortes and Vapnik, 1995). Considering given input-output sample pairs 

as {(𝑇𝐷𝐼1, 𝑅𝑈𝐿1), … , (𝑇𝐷𝐼𝑚, 𝑅𝑈𝐿𝑚)}. Herein, the objective is to model the 

nonlinear relationship between tool degradation indicator and remaining useful 

life of the tool (𝑓(𝑇𝐷𝐼), see Eq. (6.10)), such that  𝑓(𝑇𝐷𝐼) is close to the output 

RUL and must be flat to eliminate over-fitting.   

𝑓(𝑇𝐷𝐼) = 𝑤𝑇𝜙(𝑇𝐷𝐼) + 𝑥 (6.10) 

where, 𝑤 is the weight vector, 𝜙(𝑇𝐷𝐼) is the non-linear mapping function and 𝑥 

is the bias.  

To make sure that 𝑓(𝑇𝐷𝐼) meets the goal of closeness and flatness, a dual 

expression is presented by building a Lagrange function (Bhatt et al., 2012). 

Maximizing the Lagrange function gives 𝑤 and provides the dual optimization 

problem, given as follows:  
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𝑀𝑎𝑥                (− 1 2)⁄ ∑(𝛼𝑖 − 𝛼𝑖
∗). (

𝑚

𝑖,𝑗−1

𝛼𝑗 − 𝛼𝑗
∗). 𝐾(𝑇𝐷𝐼𝑖 , 𝑇𝐷𝐼𝑗)

+∑𝑅𝑈𝐿𝑖. (𝛼𝑖 − 𝛼𝑖
∗)

𝑚

𝑖−1

 

(6.11) 

Subject to   

∑(𝛼𝑖 − 𝛼𝑖
∗) = 0,

𝑚

𝑖−1

 

∑(𝛼𝑖 + 𝛼𝑖
∗) ≤ 𝐶𝑣,

𝑚

𝑖−1

 

𝛼𝑖 , 𝛼𝑖
∗ ∈ [𝑜, 𝐶 𝑚⁄ ]. 

 

where, 𝛼, 𝛼∗are Lagrange multipliers, 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼𝑗) is the kernel function given 

by 𝐾(𝑇𝐷𝐼𝑖 , 𝑇𝐷𝐼𝑗) = 𝜙(𝑇𝐷𝐼𝑖)
𝑇. 𝜙(𝑇𝐷𝐼𝑗), 𝐶 is the regularization parameter, and 𝑣 

is the higher bound on the function of margin errors in the data.  

Substituting 𝑤 in Eq. (6.10), the final approximated function is given as follows: 

𝑓(𝑇𝐷𝐼) =∑(𝛼𝑖 − 𝛼𝑖
∗). 𝐾(𝑇𝐷𝐼𝑖, 𝑇𝐷𝐼) + 𝑥

𝑚

𝑖−1

 (6.12) 

Radial basis function kernel with parameter gamma (γ) is utilized as a part of 

this work as it provides high precision and low execution time. A Karush-Kuhn-

Tucker condition (Kuhn and Tucker, 1951) to identify bias is utilized. For given 

input-output training data, the developed TCM system ascertains the Lagrange 

multipliers α, α* and x. Once the model parameters (𝑣, etc.) are selected, the TCM 

system can foresee the RUL of the tool at any point of time using corresponding 

tool degradation indicator through Eq. (6.12). One can refer the work of (Chang 

and Lin, 2011) for advance particulars and mathematics related to 𝑣-SVR.   

The complete life data of five milling cutters consisting of 321 samples drawn 

from experiments were used for training. To train the build TCM system, model 

and kernel parameters are need to be specified, that play a crucial role in the 



136 
 

performance of the method.  In most work, the authors end up choosing parameter 

by trial and error, which is not efficient (Fasshauer and Zhang, 2007). In this 

work 𝑣 and γ are the most significant tuning parameters that need to be optimized. 

Accordingly, a feasible range of 𝑣 and γ with the grid space is supplied. 

Subsequently, the entire grid points are attempted to get the one imparting the 

maximum cross validation accuracy. Usually, the search becomes slower as the 

values of these parameters become higher, thus it is better to restrict it to an 

equitable range. Accordingly, the interval for the parameter 𝑣 is taken as {0.01 1 

10}, this will test the parameter from 0.01 to 1 with 10 steps. Likewise, the 

interval for the parameter 𝛾 is taken as {0.01 0.1 10}, this will test the gamma 

parameter from 0.01 to 0.1 with 10 steps. Using this grid search approach, the 

optimal parameters are found as 𝑣 = 0.67 and 𝛾 =  0.09. Ten-fold cross-

validation is chosen to make certain the reliability and stability of the performance 

of the system. The performance of the TCM system is measured with widely used 

imperative measures. For evaluating the goodness of fit of the TCM system, R-

Squared correlation coefficient (𝑅2) is calculated. Here, R2 equals the square of 

the Pearson correlation coefficient between the actual and predicted RULs, R2 

represents how much predicted values are related to actual values. The R2 value 

of 0.849 from TCM system shows the perfect linear relationship and high strength 

of correlation between actual and predicted RUL. To check the suitability of the 

model, mean absolute error is used. MAE measures how close predictions are 

made by a model to the actual values. The MAE value of 7.447 from TCM system 

shows predicted RUL is close to the actual RUL, showing the suitability. In 

addition to this, root mean squared error is also evaluated; it is the standard 

deviation of the differences between predicted and actual RULs. RMSE value of 

9.135 represents good accuracy in predicting RUL. For stability, relative absolute 

error and root relative squared error are evaluated; these are the measures for the 

variance in the predictions. Error rates of 50.67 % and 52.62 % represent the 

lesser variance in prediction and showing the stability of the model. Moreover, 

computational efficiency of TCM system is measured as 0.07 seconds in terms of 

the CPU time, making it computationally efficient to be applicable in a real 
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industrial environment. This performance shows that the proposed TCM system is 

reliable, robust and applicable for fault diagnostic and prognostics to prevent tool 

performance degradation and catastrophic failures. The tests and verification of 

TCM system are performed using an Intel (R) Core (TM) i7-3770 CPU 3.40GHz 

PC. The core of the 𝑣-SVR is implemented using WEKA (version 3.7.12). 

6.3.2 Dynamic and Simultaneous Optimization of Economic Process Quality 

Control and Maintenance Planning Model 

A dynamic policy for integrated optimization of process quality control and 

maintenance planning, considering the real-time health state of the system, is 

proposed. The model is dynamic because of its ability to re-evaluate the optimal 

values for the design parameters of process quality control and maintenance 

planning used in the entire lifecycle of the manufacturing process. Whenever a 

change in the current health state of the system is detected the initial optimal 

design parameters are updated as a function of life. As a result, the model can 

evolve itself based on the real-time knowledge of the actual health state of the 

system. This is more viable in practical environments, where a system is subjected 

to degradation. The additional functionality is discussed from next paragraph 

onwards.  

Consider a manufacturing system; comprising of cutting tool as a single 

component machine with time-to-failure following Weibull distribution. Herein, 

failure is considered in terms of tool degradation (FTD) due to wear. Tool 

degradation is identified with a time lag by control chart. It is assumed that at any 

time if failure is discovered, Corrective Replacement (CR) is performed, resulting 

in an expected CR cost. Degradation also influences the functionality of the tool, 

which reduces the process quality control; leading to increased rejection rate, till 

it is identified. This incurs the extra cost of lost quality. Accordingly, Preventive 

Replacement (PR) of the tool is performed to reduce the probability of tool failure 

and cost of lost quality. However, PR requires extra time and capitals. Thus, PR 

optimization is carried out to trade-off the failure and PR cost.  
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Considering that quality can be judged by assessing critical to a quality 

characteristic of the produced goods (say, ‘Qc’).  Assuming Qc is a normal random 

variable with process mean (µ) and standard deviation (σ); µ is at its target value 

during in-control state. It can shift instantly, owing to tool degradation. Herein, 

the control chart mechanism is followed to examine Qc, as degradation cannot be 

detected directly. Thus, detection time relies upon the power of control chart. The 

design parameters of control chart are sample size (n), time (in hours) between 

samples (h), and the number of standard deviations of the sample distribution 

between the center line of the control chart and the control limits (k). Thus, the 

resulting Upper Control Limit (UCL) and Lower Control Limit (LCL) for the �̅� 

chart are 𝑈𝐶𝐿 =  µ + 𝑘
𝜎

√𝑛
, 𝐿𝐶𝐿 =  µ − 𝑘

𝜎

√𝑛
  (Pandey et al. 2011). All the process 

values (sample mean) are plotted on the chart. If the process values fall within the 

upper and lower control limits, the process is referred to as in-control. If the 

process values plotted fall outside the control limits, the process is referred to as 

out-of-control (Duncan, 1956). Control chart design involves several costs, viz. 

costs of sampling, false alarm, process shift, etc. Therefore, an economic design 

of the control chart is carried out to attain the economically optimal design 

parameters.   

It was obvious from the previous discussion that, machine degradation and 

maintenance affects the process quality. Thus, the control chart design and PR 

optimization must be done simultaneously. The optimal values of design 

parameters of process control and preventive replacement are updated based on 

the real-time knowledge of the health state of the system throughout the 

manufacturing process. To exhibit the benefits of integrating process control with 

maintenance planning, considering the real-time health state of the system, a cost 

model is formulated by capturing the several costs related to the manufacturing 

process; those are influenced by process quality control policy and PR planning. 

In this work Duncan’s model (Duncan, 1956) for economic design of �̅� control 

chart is customized for capturing the cost of lost quality because of degradation, 

and built in conjunction with developed TCM system. The decision variables in 
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current problem are n, k, h, and TR. The parameter TR is the optimal time for 

preventive replacement. 

6.3.2.1 Dynamic Integrated Cost Model 

The expected total cost per unit time of dynamic and integrated process quality 

control and maintenance planning, considering the real-time health state of the 

system ([𝑂𝑇𝐶](𝑄×𝑀)𝑅𝑇 ) is the ratio of the summation of the expected total costs 

of quality loss owing to process failure ( 𝑇 [𝐶𝑄𝐿]𝑃𝐹) and preventive 

replacement 𝑇 [𝐶𝑃𝑅] to the evaluation time (𝑇𝐸). It is written as follows: 

[𝑂𝑇𝐶](𝑄×𝑀)𝑅𝑇 = (𝑇 [𝐶𝑄𝐿]𝑃𝐹 +  𝑇 [𝐶𝑃𝑅]) 𝑇𝐸⁄  (6.13) 

Theoretical and mathematical models of constituent costs in [𝑂𝑇𝐶](𝑄×𝑀)𝑅𝑇 are 

detailed in following sub-sections. 

a) Dynamic Economic Process Quality Control Model 

Current work customizes the existing Duncan’s model (Duncan, 1956) for 

capturing the cost of lost quality due to degradation and makes it dynamic with 

the real-time health state of the system. Major modifications over existing model 

are highlighted as follows:  

 Duncan’s and most of the available models consider a fixed design 

approach for the design of the control chart. Where, the initially obtained optimal 

design parameters are kept constant for the entire life of the manufacturing 

process. Such fixed design approach is not considered economical for machines 

deteriorating with time viz. cutting tools. As any change in quality characteristic 

from its target value due to the machine degradation is an indirect loss to the 

customers. However, considering the real-time health state of the system with the 

economic design of control chart will be more economical. Accordingly, the 

proposed economic control chart design is formulated considering the real-time 

health state of the system derived from the developed TCM system. As a 

consequence, whenever the change in health state of the system will occur, the 

designed control chart will be able to evolve itself to re-evaluate the optimal 

values for the design parameters of process quality control used in the entire 
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lifecycle of the manufacturing process as a function of life. This will lead to 

dynamic quality control policy.  

 Most of the available work evaluates optimal design parameters for the 

entire life of the manufacturing process. Whereas, the time-to-failure is a random 

variable; it is observed from the experiments that even the identical cutting tools 

fail at different times because of the inherent design variations. At any point of 

time, the tool failure probability depends on the current health condition of the 

machine. Thus, despite considering constant optimal design parameters for the 

entire life of the manufacturing process it will be more economical to update and 

re-evaluate the optimal design parameters as a function of tool life. Accordingly, 

residual-life based evaluation scheme is proposed. Herein, at the initial stage of 

control chart design the optimal parameters are evaluated based on the mean life 

of the tool; estimated based on past failure history. As soon as the first sample as 

per initial optimal time between samples (h) from the process is taken. This is fed 

as input to the developed TCM system to predict the real-time RUL of the tool 

based on the current health condition. Consequently, the evaluation time (𝑇𝐸) is 

updated as the residual-life of the tool and the optimal design parameters are re-

evaluated as a function of tool life. 

 The optimal sample size (n) is principally influenced by the magnitude of 

the shift (𝛿). In practice, the 𝛿 value is taken as constant (generally mean shift) for 

the entire process. Whereas, it is always better to design a control chart to 

function practically well over a range of shifts than a specific level of shift. 

Accordingly, a multi-state magnitude of process shift (𝛿𝑆𝑛) scheme is proposed; to 

handle the vibrant nature of tool degradation more efficiently, and making the 

control chart design more convenient and powerful enough to detect a wide range 

of shifts as a function of tool life. Along these lines, regardless of the sole 

magnitude of process shift for the entire lifecycle of the manufacturing process, 

the magnitude of process shift is foreseen from multiple health states of the tool as 

a function of tool life. Herein, assuming that at the initial stage of control chart 

design the tool belongs to stage I of its life. Herein, the multi-state magnitude of 

shift (𝛿𝑆𝑛) will be taken as average shift while the tool was in stage I (𝛿𝑆𝐼) 
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estimated based on the past data. The developed TCM system will provide the 

information about a change in the current health state of the tool. As soon as stage 

II is detected the shift will be updated as the average value of the shift while tool 

belongs to stage II (𝛿𝑆𝐼𝐼). Likewise, the shift will be further updated to average 

shift for stage III (𝛿𝑆𝐼𝐼𝐼) of the tool. As a result, the multi-state magnitude of 

process shift scheme will accommodate the dynamic nature of tool degradation; 

by means of dynamically updating the magnitude of process shift as soon as 

significant progressions in tool wear is detected. Accordingly, the probability of 

Type II error (𝛽𝛿𝑆𝑛 ) and the fraction of non-conforming unit owing to the 

magnitude of the shift (𝑅𝛿𝑆𝑛 ) is considered in the following manner: 

𝛽𝛿𝑆𝑛 = 𝐹(𝑘 − 𝛿𝑆𝑛√𝑛) − 𝐹(−𝑘 − 𝛿𝑆𝑛√𝑛) (6.14) 

 

R𝛿𝑆𝑛 = 1 − 𝐹(3 − 𝛿𝑆𝑛) − 𝐹(−3 − 𝛿𝑆𝑛) (6.15) 

 

where, F denotes normal cumulative distribution function. 

 In this work, it is considered that tool failure affects the performance of 

the tool (i.e. the tool operates with degraded functionality), which prompts to a 

fall in quality by changing the process mean. As a consequence, 𝐹𝑇𝐷 causes 

process failure, and it is sensed after a time lag. Duncan’s model (Duncan, 1956) 

is built on an assumption that the process failure follows a probability distribution 

with constant failure rate. Such assumption is not valid with machines subjected 

to increasing failure rate, viz. cutting tools, where degradation is a dynamic 

process, with tool moving from being new to progressively greater levels of wear. 

As per recent literature (Muller et al., 2008) is concerned, it is presented that tool 

wear follows a Weibull distribution. To verify this, multiple goodness of fit test is 

performed using the maximum likelihood estimation method to determine the best 

distribution among exponential, normal, lognormal, logistics, loglogistics and 

Weibull. This investigation on experimental data verified that tool wear obeys 

Weibull distribution; same has been chosen to model process failure rate. Herein, 

inspired by the work of Pandey et al. (2011), process failure rate owing to tool 
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degradation (𝑃𝐹𝑇𝐷, see (6.16)) is modeled as the ratio of the expected number of 

failures due to tool degradation in a given evaluation time as a function of 

Weibull distribution parameters to the given evaluation time (𝑇𝐸). 

𝑃𝐹𝑇𝐷 = 𝑓(𝜃, 𝜂)𝑇𝐸 𝑇𝐸⁄  (6.16) 

where, 𝑓(𝜃, 𝜂)𝑇𝐸 is the expected number of failures due to tool degradation for a 

given evaluation time as a function of given shape parameter (𝜃) and scale 

parameter (η). 

 The existing models are built on the assumption that period of the in-

control state has a negative exponential distribution (Pandey et al., 2011). 

However, the period of in-control state is modelled following Weibull 

distribution, having an increasing failure rate. Thus, the in-control time (𝑇[𝑡𝐼]) 

comprises of the time before failure plus the inspection time for false alarm.  

𝑇[𝑡𝐼] = [(1 − 𝑓(𝜃, 𝜂)𝑇𝐸) × 𝑇𝐸] + 𝑡0 × (𝑆 𝐴𝑅𝐿1)⁄  (6.17) 

where, 𝑡0 is the inspection time for a false alarm, S is the number of samples 

during in-control state with 𝑃𝐹𝑇𝐷  (𝑆 = 𝑒−𝑃𝐹𝑇𝐷.h (1 − 𝑒−𝑃𝐹𝑇𝐷.h)⁄ ) (Lorenzen and 

Vance, 1986), and 𝐴𝑅𝐿1 is the average run length in the in-control state (𝐴𝑅𝐿1 =

1/𝛼), 𝛼 represents the probability of Type I error (𝛼 = 2𝐹(−𝑘)).   

In this work, expected numbers of failures are estimated through a simulation-

based method utilizing BlockSim (version 10). One can refer the pioneering work 

of Kajima (1989) for a brief overview of the simulation-based method. 

 Assuming process is ceased throughout the examination and replacement. 

Considering (𝐶𝐶𝑅)𝐹𝑇𝐷as the cost of detecting the assignable cause owing to tool 

degradation including the downtime cost. Accordingly, the expected cost of 

carrying corrective replacement for a valid alarm owing to tool degradation 

(𝑇[(𝐶𝐶𝑅)𝐹𝑇𝐷]) is considered as follows: 
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𝑇[(𝐶𝐶𝑅)𝐹𝑇𝐷] = {𝑀𝐶𝑅 × [𝑃𝑟 × 𝐶𝑝 + 𝐿] + 𝐶𝐹𝐶𝑅}  × 𝑓(𝜃, 𝜂)𝑇𝐸 (6.18) 

 

where, 𝑀𝐶𝑅 is mean time to perform the corrective replacement (hours), 𝑃𝑟 is 

production rate (products/hours), 𝐶𝑝 is cost of lost production, 𝐿 is the cost of the 

labor (INR/hours),  𝐶𝐹𝐶𝑅 is fixed cost of corrective replacement (including the 

cost of tool replacement). 

The dynamic process quality control model is explained in following subsections. 

I. Expected Process Cycle Length (𝐓[𝐓𝐜𝐲𝐜𝐥𝐞]) 

 It is the summation of in-control time (see, Eq. (6.17)), out-of-control time and 

process restoration time. The out-of-control time comprises of the expected time 

of these actions: time between the event of an assignable cause and the 

subsequent sample (𝜏 =  
ℎ

2
−
(𝑃𝐹𝑇𝐷×ℎ

2)

12
) (Montgomery, 2008), activate an out-of-

control indication, chart a sample (𝑡𝑠), authenticate the assignable cause (𝑡1). 

 

𝑇[𝑇𝑐𝑦𝑐𝑙𝑒] = [(1 − 𝑓(𝜃, 𝜂)𝑇𝐸) × 𝑇𝐸] + 𝑡0 × (𝑆 𝐴𝑅𝐿1)⁄ + ((ℎ × 𝐴𝑅𝐿2)

− 𝜏 + 𝑛 × 𝑡𝑠 + 𝑡1) + 𝑀𝐶𝑅 
(6.19) 

 

where, 𝐴𝑅𝐿2 is the average run length in out-of-control state (𝐴𝑅𝐿2 =

1 (1 − 𝛽𝛿𝑆𝑛)⁄ ) (Pandey et al., 2011). 

II. Process Quality Control Cost 

It is comprised of the expected cost of rejection occurred during functioning of 

process in in-control (𝑇(CIC)) (see, Eq. (6.20)) and out-of-control ( 𝑇(𝐶𝑂𝐶)) states 

(see, Eq. (6.21)), the expected cost of sampling per cycle (𝑇[𝐶𝑆]) (It is the 

summation of the fixed (CFS)  and variable (CVC)  cost per sample, see, Eq. 

(6.22)), the expected cost of assessing the false alarms (𝑇[CFA]) (Taking the CFA 

as the cost of false alarm, which consist of cost of examining and testing for the 

false and assignable cause, see, Eq. (6.23)) and the expected cost of restoration of 

the process due to machine degradation (𝑇[(𝐶𝐶𝑅)𝐹𝑇𝐷]) (see, Eq. (6.18)). 
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 𝑇(CIC) = (𝑅
′ × 𝑃𝑟 × 𝐶𝑅) × [(1 − 𝑓(𝜃, 𝜂)𝑇𝐸) × 𝑇𝐸] + 𝑡0 × (𝑆 𝐴𝑅𝐿1)⁄  (6.20) 

where, 𝑅′ is the fraction of non-conforming items during in-control state (𝑅′  =

1 − 𝐹(𝑘) − 𝐹(−𝑘) (Pandey et al., 2011, Montgomery, 2008), 𝐶𝑅 is the cost of 

rejection per piece. 

𝑇(𝐶𝑂𝐶) = ((𝑃𝑟 × R𝛿𝑆𝑛 × 𝐶𝑅) (1 − 𝛽𝛿𝑆𝑛)⁄ ) × ((ℎ × 𝐴𝑅𝐿2) − 𝜏 + 𝑡1 + 𝑛

× 𝑡𝑠)) 
(6.21) 

𝑇[𝐶𝑆] = [(CFS + CVC × n) × ([(1 − 𝑓(𝜃, 𝜂)𝑇𝐸) × 𝑇𝐸] + 𝑡0 × (𝑆 𝐴𝑅𝐿1)⁄

+ (ℎ × 𝐴𝑅𝐿2) − 𝜏 + 𝑛 × 𝑡𝑠)]/ℎ 
(6.22) 

 

𝑇[CFA] = CFA × (S ARL1⁄ ) × 𝑡0 (6.23) 

 

Adding Eq. (6.18), Eq. (6.20), Eq. (6.21), Eq. (6.22), and Eq. (6.23) provides the 

cost of process failure per cycle (𝑇[𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠]); therefore, T [CQL]PF is given as:  

𝑇[𝐶𝑃𝑟𝑜𝑐𝑒𝑠𝑠] = T [CQL]PF

= 𝑇[(𝐶𝐶𝑅)𝐹𝑇𝐷] +  𝑇(CIC) + 𝑇(𝐶𝑂𝐶) + 𝑇[𝐶𝑆] + 𝑇[CFA] 
(6.24) 

 

b) Cost per Preventive Replacement 

In most of the wok, cost per preventive replacement of the tool is modeled to 

include the downtime cost owing to replacement, labor and tool cost. In reality, 

the replaced tools always have some useful remaining life, which is mostly not 

considered in PR cost. An exhaustive model, including the effect of lost 

remaining life in overall PR cost, will be more significant. Thus, in this work, the 

effect of tools lost a remaining life is also modeled in PR cost. This will lead to 

optimum usage of the tool life. Remaining life is the residual life of the equipment 

after a certain time period (t′). As per literature, remaining life is estimated as the 

Mean Residual Life (MRL) (Ebeling, 2004) and given as: 

𝑀𝑅𝐿(𝑡′) =  (1 (𝑒−(𝑡
′ η⁄ )

θ

)) × ∫ 𝑒−(𝑡 η⁄ )θ𝑑𝑡
∞

𝑡′
⁄  (6.25) 
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Herein, this model is modified to capture the real-time remaining life with the 

help of the developed TCM system. Thus, despite taking mean residual life from 

Eq. (6.25), the real-time RUL of the tool is considered. Herein, the cost of lost 

remaining life (𝐶𝑅𝑈𝐿𝑖) in relation to mean life cost is considered. It is assumed 

that the tool cost is uniformly distributed over the lifetime of the tool; the cost of 

lost remaining life is given as: 

𝑅𝑈𝐿𝑖 = (𝐶𝑇 𝑀𝐿⁄ ) × 𝑅𝑈𝐿𝑖 (6.26) 

where, 𝐶𝑇 is cost of tool (INR), 𝑀𝐿 is the mean life of the tool (see, Eq. (6.27)), 

𝑅𝑈𝐿𝑖 is the remaining useful life of the tool in hours at a given time, and it is 

obtained in real-time using TCM system. 

𝑀𝐿 = ∫ 𝑒−(𝑡 η⁄ )θ𝑑𝑡
∞

0

 (6.27) 

Thus, the total cost per preventive replacement is expressed as follows:  

𝑇 [𝐶𝑃𝑅] = {𝑀𝑃𝑅 × [𝑃𝑟 × 𝐶𝑝 + 𝐿] + 𝐶𝐹𝑃𝑅 + 𝐶𝑅𝑈𝐿𝑖} (6.28) 

where, 𝑀𝑃𝑅  is mean time to perform preventive replacement (hours), 𝐶𝐹𝑃𝑅 is fixed 

cost of preventive replacement (INR). 

Consequently, the preventive replacement decision will be evaluated. Herein, 

for assessing the optimal preventive replacement decision, a balance is made 

between the cost of lost remaining life of the tool with maintenance and lost 

quality costs. The sum of both the costs, i.e. total expected cost ([OTC](Q×M)RT ) is 

calculated for each cut to be made by the tool, and corresponding to minimum 

cost; optimal preventive replacement decision along with optimal design 

parameters of quality control are obtained.  

At beginning of the production process, the dynamic integrated model is 

provided with three inputs (𝛿𝑆𝐼 , 𝑇𝐸 and cost parameters, provided in next section), 

and [OTC](Q×M)RT is minimized to obtain the initial optimal process quality 

control design parameters (n, k, h) and initial optimal time for preventive 



146 
 

replacement (TR). Fig. 6.4 illustrates the flow chart of the proposed methodology. 

Current work uses “@ RISK” optimizing tool (version 6.1.1) to solve the 

optimization problem. 
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Fig. 6.4. Flow chart of the proposed methodology.

Re-run the DI model with 

𝛿𝑆𝐼𝐼𝐼 {Delta of stage 3} 

and 𝑇𝐸  = real-time RUL. 

 

Dynamic Integrated (DI) Model: Initial input 

parameters; 

 𝛿𝑆𝐼: Delta of stage I of the tool, 

 𝑇𝐸  : Mean life of the tool, 

 Cost and process parameters. 

At every sampling interval; obtain the current health status and real-time 

RUL of the tool through TCM system running in conjunction. 

If 

Health 

Status 

Re-run the DI model 

with 𝑇𝐸  = real-time 

RUL. 

Re-run the DI model with 𝛿𝑆𝐼𝐼  

{Delta of stage 2} and 𝑇𝐸  = 

real-time RUL. 

Obtain updated optimal decision parameters and continue 

process monitoring.   

 

Start process monitoring with initial optimal decision parameters {n, k, h and 

TR}. 

If 

TR  decision 

taken  
Yes 

Stage II Stage III Stage I 

No 
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6.4 Experimental Case Study Implementation Results 

To demonstrate the functionality and practicality of the developed methodology, 

an experimental case study is exhibited. A manufacturing system comprising of 

milling cutter as a single component machine producing MS plates (165 mm  

100 mm  20 mm) is considered. Average surface roughness in micrometer of the 

product in the horizontal direction is critical to the quality characteristic, and 

should be monitored. The cost of milling cutter (𝐶𝑇) utilized in the process is 

2000 INR. Time-to-failure of milling cutter is modeled using two parameter 

Weibull distribution with shape parameter (θ) = 5.51 and characteristic life (η) = 

4.44 (hours). The process is characterized by process mean and standard deviation 

of µ = 4.22 and σ = 0.27. Past tool health state examination data portrays that the 

multi-state magnitude of shift (𝛿𝑆𝑛) is approximately 1.05 standard deviations for 

stage I (𝛿𝑆𝐼), 1.42 for stage II (𝛿𝑆𝐼𝐼) and 1.91 for stage III (𝛿𝑆𝐼𝐼𝐼) respectively. 

Likewise, the mean life of the tool is captured through past failure data, and given 

as 55 cuts (4.03 hours).  

Considering an examination of quality control expert salaries and the expenses 

of the testing gear, the underlying values of the initial parameters are specified in 

table 6.4. The cost of the product is 600 INR per piece and the profit is 50 INR 

per piece. In any case, identification of fault at client end will cost more to the 

manufacturer in perspective of returning of the whole batch. Which is higher than 

the expense of good quality item, along these lines the cost of rejection (𝐶𝑅) is 

considered as 1500 INR per piece. According to maintenance records, the mean 

time to carry out corrective (𝑀𝐶𝑅) and preventive (𝑀𝑃𝑅) replacement actions are 

0.5 hours individually. The fixed cost of corrective (𝐶𝐹𝐶𝑅) and preventive (𝐶𝐹𝑃𝑅) 

replacement is 2000 INR separately. 

TABLE 6.4 

PARAMETERS UTILIZED IN THE EXPERIMENTAL CASE STUDY 

Parameter 
𝑷𝒓 

(Product/h) 

𝑪𝒑 

(INR/product) 

𝑳 

(INR/h) 

𝒕𝟎 

(h) 

𝒕𝒔 
(h) 

𝒕𝟏 

(h) 

CFA 

(INR) 

CFS 

(INR) 

CVC 

(INR) 

Value 10 50 600 0.5 0.2 0.5 1300 50 20 
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At commencing of the production process, the dynamic integrated model is 

designed; with 𝛿𝑆𝐼  and 𝑇𝐸 = 4.03. Initially obtained optimal design parameters are 

as follows: n = 7, k =1.6, h = 2.5 h, and TR = 49 cuts. Designed dynamic integrated 

model in conjunction with TCM system is initiated to monitor the production 

process and manufacturing system simultaneously. As per initial sampling plan (h 

= 2.5), samples from the process are taken and monitored through the designed 

control chart. Likewise, the TDI from the manufacturing system is fed to the 

TCM system, to ascertain the current health state and life prediction of the milling 

cutter. TDI is evaluated as per optimal sampling plan, ensuring optimized health 

monitoring interval. After two and half hours of operation, the TCM system 

diagnosed a change in the health state of the tool from stage I to stage II; and 

RUL is predicted as 46 cuts (3.37h). Herein, as soon as stage II is diagnosed; the 

optimal design parameters are updated for further monitoring of the production 

process. With 𝛿𝑆𝐼𝐼  and 𝑇𝐸 = 3.37h, the updated design parameters are as follows: n 

= 5, k = 1.9, h = 1.4 and TR = 24 cuts. The updated parameters are followed for 

further monitoring, and preventive tool replacement is made after the 24 cuts of 

the tool. In this course of action the total cost [OTC](Q×M)RT  is 1433.18 INR. 

Herein, the tool is replaced preventively before the process would have been gone 

out-of-control. Consequently, total 49 healthy products were produced in the 

complete process. This leads to defect free production. To better comprehend the 

performance of the proposed policy over conventional policy, an exhaustive 

comparative analysis is presented next.  

6.4.1 Comparative Analysis 

To gauge the efficacy and performance of the dynamic integrated policy, an 

exhaustive comparative analysis with widely used conventional independent 

policies is performed. The conventional process quality control policy (Duncan, 

1956) and conventional maintenance planning policy (Pandey et al., 2011) ignores 

quality deterioration owing to equipment degradation and simply planned 

maintenance is assumed. For the two conventional independent policies, fixed 

magnitude of shift as 1.5 standard deviations and the equivalent values of the 
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related parameters as utilized in the previous section are allocated. Table 5.4 

presents the detailed results of the comparative analysis. The total expected cost 

from conventional independent quality control and maintenance planning policies 

is obtained as 1586.20 INR. The dynamic integrated policy shows 9.65 % of 

improvement compared to conventional independent policies; showing substantial 

economic benefits. Furthermore, a comprehensive assessment is performed to see 

the robustness of the dynamic integrated policy. To do so, both the approach was 

applied to the experimental data. By observing the experimental data, the actual 

out-of-control was originated after the production of 50 products. Through this 

course of action, it was found that with the proposed approach 49 healthy 

products were manufactured. This result is in contrast to the conventional 

approach where only 40 healthy products were obtained. From these figures, it 

can be seen that updating design parameter with real-time health monitoring 

enables efficient process monitoring. In the complete process monitoring, and 

through the proposed approach, only eleven products were measured for their 

quality characteristics. On the other hand, the conventional approach needed a 

total of twelve products to be measured for their quality characteristics; leading to 

a higher sampling cost and time. Moreover, with proposed approach loss of only 1 

healthy product incurred, whereas the conventional approach, incurred the loss of 

10 healthy products. These insights specify that dynamic integrated policy is 

superior to the conventional independent policies, and can lead to a resultant rise 

in the improved production process and manufacturing system monitoring. 

6.4.2 Sensitivity Analysis 

In practice, the estimation of relevant process and cost parameters subject to 

inaccuracies. Thus, it is essential to recognize the impact of errors on the nature of 

the result acquired from the model. Herein, systematic sensitivity analysis 

utilizing important model parameters is conducted, see table 6.6. The base level is 

taken as used in the experimental case study, and four other levels of these 

parameters at ± 10 and ± 20% of the base value. The range of the optimal 

parameters and obtained cost are presented in table 6.6 and 6.7. Fig. 6.5 shows 
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that  [𝑂𝑇𝐶](𝑄×𝑀)𝑅𝑇 is more sensitive to the cost of rejection and fixed cost of 

preventive replacement; and less susceptible to the variable cost of sampling, etc. 

Thus, estimation of the cost of rejection and fixed cost of preventive replacement 

should be done accurately.  

TABLE 6.5  

DETAILED RESULTS OF COMPARATIVE ANALYSIS 

Policy 

Optimal 

Parameters 
Independent 

Cost (INR) 

Total 

Cost 

(INR) 

Healthy 

Products 

Produced 

Products 

Measured 

Loss of 

Healthy 

Products n k h TR 

Proposed 

policy 

Initial 7 1.6 2.5 49 - 1433.18 49 11 1 

Updated 5 1.9 1.4 24 

Conventional 

policies in 

isolation 

Quality 4 1.8 1.1 - 770.75 1586.20 40 12 10 

Maintenance - - - 40 815.45 
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TABLE 6.6 

SYSTEMATIC SENSITIVITY ANALYSIS 

Parameter Base 

Lev

el 

-20% -10% +10

% 

+20

% 

[𝑶𝑻𝑪](𝑸×𝑴)𝑹𝑻 Range 

Base 

Level 

-20% -10% +10% +20% 

𝐭𝟎 0.5 0.4 0.45 0.55 0.6 1429.83 1408.73 1420.29 1438.00 1445.74 1408.73 

- 

1445.74 

CVC 20 16 18 22 24 1429.83 1412.04 1421.13 1438.00 1444.97 1412.04 

- 

1444.97 

𝐂𝐑 1500 1200 1350 1650 180

0 

1429.83 1351.12 1391.14 1467.49 1503.57 1351.12 

- 

1503.57 

𝐂𝐅𝐏𝐑 2000 1600 1800 2200 240

0 

1429.83 1330.66 1380.24 1479.42 1529.00 1330.66 

- 

1529.00 

CFS 50 40 45 55 60 1429.83 1423.64 1426.77 1432.76 1435.70 1423.64 

- 

1435.70 

𝐂𝐅𝐀 1300 1040 1170 1430 156

0 

1429.83 1410.03 1420.88 1437.53 1444.85 1410.03 

- 

1444.85 

𝐂𝐩 50 40 45 55 60 1429.83 1414.09 1421.96 1437.70 1445.57 1414.09 

- 

1445.57 

𝐂𝐅𝐂𝐑 2000 1600 1800 2200 240

0 

1429.83 1399.62 1415.92 1442.35 1453.46 1399.62 

- 

1453.46 

𝐭𝟏 0.5 0.4 0.45 0.55 0.6 1429.83 1418.85 1424.38 1435.23 1440.63 1418.85 

- 

1440.63 

𝐂𝐓 2000 1600 1800 2200 240

0 

1429.83 1418.13 1424.40 1434.65 1438.75 1418.13 

- 

1438.75 

𝐋 600 480 540 660 720 1429.83 1410.94 1420.39 1439.27 1448.68 1410.94 

- 

1448.68 
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TABLE 6.7  

RANGE OF OPTIMAL DESIGN PARAMETERS ACQUIRED THROUGH 

SENSITIVITY ANALYSIS 

Design Parameters n k h TR 

Range 6-7 1.5-1.7 2.2-2.6 47-52 

 

 

Fig. 6.5. Expected total cost vs. percentage change of the model parameters. 

 

6.4.3 Implication in Various Industrial Scenarios 

This section presents the implication of the proposed dynamic integrated policy 

for various industrial scenarios. Moreover, to critically analyze the efficacy of the 

proposed policy in different scenarios, the results obtained based on the 

experimental data from the proposed policy with the conventional independent 

policies are compared. 

 Scenario I: Consider a production system producing very costly products 

where the cost of rejection, as well as the cost of the tool, is very high. Such 

type of production systems is common for manufacturing of the parts for 

aviation, automobile industries, etc. In such industrial scenarios, the focus is 

on minimizing the product rejections at the same time utilizing the optimum 

life of the costly tools.  Accordingly, the cost of rejection and the cost of the 

tool are taken as high as 10,000 INR each and fixed costs of corrective and 
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preventive replacement are considered as per the cost of the tool. All other 

process parameters are kept same as used in the experimental case study.  

 Scenario II: Consider the production system where the cost of rejection is 

significant compared to the cost of the tool. Such type of production system is 

common in the manufacturing of general industrial products viz. gears, bearings, 

etc. In such scenarios, the focus is only on reducing the product rejections. 

Accordingly, the cost of rejection is considered as 10,000 INR and the nominal 

cost of the tool as 2000 INR.  

 Scenario III: Consider a production system where the cost of rejection is 

less significant compared to the cost of the tool. Such type of production system is 

common in batch and continuous manufacturing systems. In such scenarios, the 

main focus is to utilize the optimum life of the tool. So the cost of the tool is taken 

as high as 10,000 INR and the nominal cost of rejection as 2000 INR.  

The proposed policy and conventional independent policies are applied for these 

scenarios to realize the performance. It can be seen from Fig. 6.6 that the 

proposed dynamic integrated policy always gives better performance in terms of 

total cost (4 to 28 % economic improvement) compared to the conventional 

independent policies. In addition, from table 6.8 it can be seen that conventional 

policy for process quality control and maintenance planning is biased towards 

quality rejections. It always focuses on minimizing the cost of rejection, as it 

produces zero rejected products. However, the conventional policy incurs an 

excessive cost in terms of lost production. This directly implies that the optimum 

life of the costly tool is not utilized, which reduces the overall effectiveness of the 

approach. This effect is more in scenarios where the tool is expensive, as evident 

from the results of scenario III in Fig. 6.6. Moreover, in case of scenario II where 

the cost of rejection is high, the conventional policy tries to implement over 

inspection. Therefore, it results in high inspection cost, as apparent from Fig. 6.7, 

where the inspection cost is almost 50 % higher compared to the proposed policy. 

Therefore, conventional policy leads to zero rejections. Though, the overall cost 

in conventional policy is higher than the proposed policy because of higher loss in 

production. However, the proposed policy offers superior performance even with 
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lesser inspections. These improvements are owing to the fact that the proposed 

policy is considered the criterion of dynamically updating the optimal design 

parameters based on the current health state of the cutting tool. Thereby, the 

proposed dynamic integrated policy optimizes the inspection frequency, 

moderates the loss in production, consumes the optimum life of the system and 

delivers higher economic improvements. 

One of the other significant observations from this study can be seen by 

observing the optimal design parameters in table 6.9. In scenario I, it is seen that 

the process quality control and preventive replacement parameters obtained at the 

initial state of the tool was updated significantly throughout the life of the tool. 

For instance, at the initial state TR obtained was 51 cuts with evaluation time (𝑇𝐸) 

as 55 cuts, which was later updated to 41 cuts with 𝑇𝐸 at 58 cuts, and it was 

further re-updated to 26 cuts. This was done during the intermediate stage of the 

tool. This implies that in such scenarios the process quality control and preventive 

maintenance parameters should be continuously evaluated from the initial state of 

the tool and updated at intermediate stages. As a result, in such industrial 

scenarios, the proposed policy should be used in the same manner as illustrated in 

Fig. 6.4. Whereas, for scenario II, the optimal design parameters obtained in this 

implementation are also summarized in table 6.9. The optimal design parameters 

of process quality control are updated from the initial state of the tool. For 

instance, the time between samples (h) was 1.1 hours at the initial state, which 

was updated to 0.9 hours, and then re-updated to 0.6 hours at the intermediate 

stage. However, at the initial state, the preventive replacement decision obtained 

was 55 cuts with evaluation time as 55 cuts. This was updated to 60 cuts with 

evaluation time as 60 cuts. Then the decision was re-updated at the intermediate 

stage of the tool as 42 cuts with evaluation time as 42 cuts. Herein, it is evident 

that the preventive replacement decision is always coming at the end of the tool 

life. This distinctly implies that the preventive replacement decision is 

insignificant in the initial or the intermediate stage. However, it is important at the 

end stage of the tool to avoid sudden failures. For that reason, in such industrial 

scenarios, the proposed policy can be modified as follows; at the initial and 



156 
 

intermediate stages, only the process quality control parameters should be 

evaluated. As soon as the third or end stage is detected the preventive replacement 

decision should also be assessed with process quality control parameters. While, 

for scenario III, the preventive replacement decision obtained at the initial state 

was 45 cuts with evaluation time as 55 cuts (see, table 6.9). It was realized that 

this decision is not updated in between till the intermediate stage. At the 

intermediate stage, the decision was updated significantly as 23 cuts with 

evaluation time as 40 cuts. This implies that in such scenarios the tool preventive 

replacement decision is not significant at the initial state of the tool. Though, the 

preventive replacement decision at the intermediate stage is significantly 

important. This ensures the utilization of optimum life of the costly tools. 

Consequently, for such industrial scenarios, the proposed policy can be modified 

in the following manner; at the initial state, only the process quality control 

parameters should be evaluated. As soon as the tool reaches the intermediate 

stage, the preventive replacement decision should also be evaluated with process 

quality control parameters and so on.  

 

 

Fig. 6.6. Total cost of operation. 
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TABLE 6.8 

OUTPUT PERFORMANCE OBTAINED FOR VARIOUS INDUSTRIAL 

SCENARIOS 

Scenarios 
Product rejection Lost production 

Conventional Policy Proposed Policy Conventional Policy Proposed Policy 

I 0 2 9 0 

II 0 3 10 0 

III 0 0 9 5 
 

 

Fig. 6.7. Inspection cost. 

 

TABLE 6.9 

OPTIMAL DESIGN PARAMETERS OBTAINED FOR VARIOUS 

INDUSTRIAL SCENARIOS 

Scenarios 
Optimal Design Parameters 

n k h TR 

I 

Initial 4 1 1.3 51 

Updated 4 1.1 1.3 58 

Re-updated 3 1.3 0.7 26 

 

II 

Initial 4 1 1.1 55 

Updated 4 1 0.9 60 

Re-updated 2 1 0.6 42 

 

III 
Initial 7 1.7 2.2 45 

Updated 5 2 1.2 23 

These implication results and guidelines expand the model’s realism to the 

actual production systems. This will benefit the manufacturers to adopt the most 
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beneficial practice for optimizing the process quality control and maintenance 

planning of their industry specific applications.  

6.5 Contributions 

 

The research in this chapter advances the existing body of knowledge by 

developing a novel methodology for dynamic optimization of process quality 

control and maintenance planning whilst considering the real-time health state of 

the system; whose main contributions are highlighted as follows: 

1. A cost-cutting experimental strategy was implemented that successfully 

attempted to improvise existing setups by removing their drawbacks like 

system rigidity, geometric limitations, etc. The experimental setup was made 

free from exclusive sensors, fixtures, jigs, etc., which made it cost effective, 

convenient and adaptable for the real-time industrial environment.  

2. The missing experimental proof of the relationship between product quality 

and tool degradation was recognized through a rigorous correlation 

investigation, revealing a strong positive relationship. Based on the 

investigated relationship, a new monitoring system was formulated for 

instantaneous diagnostic and prognostic. The TCM system reliability was 

enhanced by investigating the use of a multi-level categorization of tool life. 

The system is validated based on experimental data. The proposed system was 

found efficient in distinguishing the change from regular wear to the critical 

zone of wear, which is of high significance to the industries.  

3. The existing process quality control model was customized and extended to 

deal with machine deterioration with time. This was done via the proposed 

residual-life based evaluation and multi-state magnitude of process shift 

schemes. Furthermore, the maintenance planning model was modified to 

capture real-time remaining life information. These models were integrated 

and build in conjunction with the developed TCM system. As a result, the 

proposed dynamic integrated model evolves itself dynamically to re-evaluate 
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the optimal values for the design parameters (n, k, h and TR) used in the entire 

lifecycle of the manufacturing process. 

4. An experimental case study was exhibited to check the viability of the 

developed policy; substantial economic benefits were obtained over 

conventional independent policies. This was further complimented with a 

systematic sensitivity analysis.  

5. Furthermore, implications of the proposed policy for various industrial 

scenarios are critically analyzed. All these expanded the model's robustness 

and relevance in the real manufacturing environments. 

6.6 Closure 

In essence, the proposed methodology was proficient in capturing the 

interdependencies between process quality control and maintenance planning 

whilst considering the real-time health state of the system. This will enrich the 

existing integrated policy by instantaneously considering machine deterioration, 

health state, and remaining useful life. The information obtained in the current 

course of action results in significant cost savings in overall manufacturing cost. 

Though in the present work, the machine is considered to be made up of a single 

component i.e. cutting tool, the failure of the components of the machine tools 

also have similar effects on process quality. Thus, extending this analysis for 

other components of machine will further lead to more significant cost benefits to 

the industries. 
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Chapter 7 

Conclusion 

“Technological change is like an axe in the hands of a pathological criminal”. 

Albert Einstein, German-born Theoretical Physicist 

Objective of this chapter is to provide a summary of the work reported in this 

thesis in terms of industrial and technological context, research contributions, 

and utility of the research. In the end, limitation and future scope of the study are 

given. 
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7.1 Summary 

The outcomes of the research in this work advances the existing body of 

knowledge by developing an autonomous decision-support system and methods 

for systematic expansion of intelligent manufacturing in dynamic and diverse 

real-world production environments. In general this research work can be 

assessed as following:  

7.1.1 Industrial and Technological Context 

Present research adds following innovative technical outcomes to the body of 

knowledge which would be very important from the industrial context. 

A. Augmenting Data-Driven Modeling from Degradation to Remaining 

Useful Life Approximation. 

The accuracy of degradation prediction models so obtained in this research is 

better than those reported in the literature with same set of experimental data. 

Wherein, the most reliable semi-offline model together with offline model is 

useful for optimizing planned shutdown intervals for the machine in real-world 

manufacturing environment. Herein, the novelty is in augmenting data-driven 

modeling from degradation approximation to RUL approximation. Wherein, RUL 

predictions is carried out for two distinct industrial scenarios viz., when only 

monitoring data are available and when incidental (or planned) offline inspection 

data are also available, using inventively designed and developed online, offline 

and semi-offline models. In addition, comparative studies on prediction 

performances of distinctive models show that the developed model is superior to 

different conventional models. 

B. Real-Time Integration of Diagnostics and Prognostics Centred on the 

Relationship between Product Quality and Tool Degradation. 

The research in this work is a pioneering effort towards designing a simple, 

easily comprehensible monitoring system utilizing minimum resources (as the 

proposed system does not require any additional sensors) to enable easy 
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adaptation of the technology even in medium and small scale manufacturing 

industries. In this, the novelty is in the invention of an integrated TCM system by 

quantifying and mapping the relationship between product quality and tool 

degradation. This system ascertains reliable health monitoring and life prediction 

of the machining system at the same time with solitary experimentation. An added 

contribution lies in the outcomes; an exhaustive performance and comparative 

investigations of the proposed integrated TCM system is presented, to distinguish 

the suitability, stability, quality, reliability, robustness, applicability and 

comprehensibility in a real industrial environment. 

C. A Generic Tool Condition Monitoring System under Dynamic Operating 

Profiles. 

The research in this work and the promising results attained underneath dynamic 

operating profiles guarantee the expansion of an effective preventive maintenance 

plan in diverse real-world production scenarios viz. batch production, job 

production, micro to medium-scale production environments. On the other hand, 

the case study implementation lends significant credibility to the appropriateness 

of offered approach over the traditional approach under time-variant industrial 

scenarios. The novelty of this research is three-fold. The first is the innovative 

design of a generic TCM system that accounts for the future characteristics of the 

dynamic operating profiles while prognosticating RULs. It is grounded in the 

physics of degradation progression and is a function of operating profiles. As a 

result, the fundamental advantage of utilizing the proposed system to deal with 

time-variant operating profiles is its proficiency to communicate the future 

evolution of dynamic operating profiles instantaneously. Second is the 

consideration of all-encompassing cases of industrial scenarios. For the frist time, 

a complex real-world scenario of expected but fluctuating future operating 

profiles is well-thought-off. Third, it is not restricted to a specific machine tool, 

sensor, and so on; rather the system is adaptive and can be rendered as a first 

universal perspective to TCM and for that matter any prognostics research. An 

additional contribution lies in the outcomes; extensive quantitative and qualitative 
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performance investigations are carried out. Further, in contrast to the traditional 

approach, the implications of the offered system under different scenarios are 

experimentally examined. That magnifies the robustness and applicability of the 

offered system in diverse real-world production environments.   

More importantly,  this can help in effciently planning shop floor operations 

based on cutting tool degradation and remaining life. Moreover, this will equip 

manufacturing industries with intelligence that allows responding to the time-

variant operating profiles; reliazing intelligent manufacturing under various real-

world production environments. In addition, the proposed approach may be seen 

as an genric perspective to prognostics and can be applied to any other filed also.  

D. Dynamic Optimization of Process Quality Control and Maintenance 

Planning while Considering the Real-Time Health State of the System. 

The implication of the proposed dynamic integrated policy under various real-

world industrial scenarios revealed that this policy optimizes the inspection 

frequency, moderates the loss in production, consumes the optimum life of the 

system and delivers higher economic improvements. This will benefit the 

manufacturers to adopt the most beneficial practice for optimizing the process 

quality control and maintenance planning of their industry specific applications. 

The novelty of this work is in the formulation of a dynamic integrated policy. 

Whenever a change in health state of the system is detected, the optimal design 

parameters of process quality control and maintenance planning are updated based 

on the current health state of the system as a function of its life. This dynamic 

integrated policy has the dual advantage, i.e., it eliminates the lost quality cost due 

to machine degradation and also improves the manufacturing system’s reliability 

by protecting it against failures. An added contribution lies in the outcomes; 

systematic performance and sensitivity investigation are presented. Moreover, the 

implication of the proposed policy in various industrial scenarios is critically 

analysed. This expands the model's robustness and relevance in manufacturing 

industries. Fundamentally, this work helps reliaze a holistic view of the intelligent 
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manufacturing by dyanmically capturing the interdependencies between process 

quality control and maintenance planning whilst considering the real-time health 

state of the system.  

7.1.2 Research Contributions  

The present study resulted in a number of contributions which can be summarized 

as follows: 

1. A methodology for dynamic optimisation of process quality control and 

maintenance planning while considering the health state of the system is 

formulated.  

2. Solved one of the standing and non-trivial problem of literature viz. 

prognostics (predicting remaining useful life) under dynamic operating 

profiles. The proposed generic prognostics approach encompasses all real-

world industrial scenarios.   

3. Invention of a cost-efficient and cognitive integrated monitoring system 

centred on the untapped relationship between product quality and tool 

degradation.  

4. Robust, reliable and applicable condition-based data-centric offline, online 

and semi-offline models are inventively designed for degradation 

approximation and remaining useful life prediction. 

5. Introduction to a new tool degradation indicator with diverse functionality, to 

represent the degradation features of the cutting tool. 

6. Experimental case studies are implemented to demonstrate the practical 

feasibility of the developed methodologies. 

7. The decision-support systems and integrated approaches results in substantial 

economic benefits in overall manufacturing cost.  

8. The results of dynamic integrated policy and prognostics under dynamic 

operating profiles are breakthrough in the field of industrial engineering, 

prognostics and health management, and intelligent manufacturing.   

In essence, this work forms the basis for building an centralized autonomous 

decision-support system for joint consideration of several other critical strategic 
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operational policies viz. production planning, supply chain planning, etc. under 

dynamic and diverse operating environments; realizing a holistic view of 

intelligent manufacturing to machinists. 

 

7.1.3 Utility of the Research Work 

The systematic and easy to use decision-support system and integrated methods 

developed will help manufacturing industries in the following manner: 

1. Provide manufacturing industries with augmentation of data-driven modeling 

from degradation approximation to RUL approximation for distinct industrial 

cases.  

2. Provide manufacturing industries with a cost efficient and cognitive integrated 

monitoring system to instantaneously prevent machining system performance 

degradation and sudden failures. 

3. Equip manufacturing industries with intelligence that allows responding to the 

time-variant operating profiles and adaptable under various real-world 

production environments. 

4. Lastly, equip manufacturing industries with a holistic view of the intelligent 

manufacturing, thereby forming the basis for building an autonomous 

decision-making system that serves as a guide for joint consideration of 

strategic operational policies pertaining to diagnostics, prognostics and 

process quality control.  

Moreover, the implications of the proposed methods in various industrial 

scenarios are critically analysed (see table 7.1). This expands the model's 

robustness and relevance in manufacturing industries. 
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TABLE 7.1 

INDUSTRIAL RELEVANCE 

Chapter 

Number 
Scenarios Possible Industrial Case Model/Methods 

3 

When only online 

monitoring data are 

available.  

Common in manufacturing industries where the 

cost of cutting tool and workpiece is huge, and 

generally the process is not stopped for any 

offline inspection, due to even higher downtime 

cost viz. aerospace manufacturing industries. 

Online model coupled with offline model is 

developed to predict RUL under this scenario.  

When incidental (or 

planned) offline 

inspection data are 

also available.  

In continuous production kinds of manufacturing 

setup sometimes process may be stopped due to 

unavailability of raw material or due to failures 

of machine components. Such an industrial case 

is very common in many industries; for instance, 

in case of gas turbines. 

Semi-offline model coupled with offline model is 

developed to predict RUL under this scenario. 

4 

An industrial scenario 

in which the operating 

profiles are fixed. 

Also, where quality 

inspections are 

frequent.   

 

For instance, mass production environment, 

where the operating profiles are time-invariant. 

Generally, while manufacturing a similar 

product in a huge quantity the operating 

condition are not changed and are fixed for the 

entire manufacturing process. Also, in small and 

medium manufacturing industries is quality 

measurement is common. 

An integrated TCM system pertaining to diagnostics 

and prognostics is built using support vector machine 

with optimal training technique.  
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5 

A deterministic, 

dynamic operating 

profile.  

Such a scenario exceedingly arises in a batch 

production type of environments (where the 

machining system runs at a particular profile to 

meet the requirement of a specific batch and 

transit to other profile based on the prior batch 

scheduling decisions). 

To circumvent this, the impact of in-progress 

operating profiles on the degradation rate under this 

scenario is modeled, while undertaking the evolution 

of the future operating profile, as a finite-valued 

deterministic and piecewise constant function. 

A randomly-varying 

dynamic operating 

profile. 

Such a scenario is exceptionally often in job 

production environments, which take on the 

manufacturing of customized products, such as a 

one-time product for a specific customer or a 

small batch of products by clients’ 

uncompromising demand. 

To circumvent this, under periodically monitored 

situations, it is undertaken that the randomly-varying 

dynamic profile progresses rendering discrete-time 

Markov chain. 

An expected but 

fluctuating future 

operating profile.  

Such a scenario is prominently realistic for 

almost every micro to medium-scale production 

environments (here the demand forecasting may 

reveal the total expected duration under different 

profiles of the machining system). 

To circumvent this, for the first time, discrete 

operating bins for respective operating profiles are 

characterized and the percentage of the time the tool 

will function in a particular operating bin is utilized as 

the additional statistics fed into the proposed 

stochastic degradation model.  

6 

Production system 

where the cost of 

rejection, as well as 

the cost of the tool, is 

very high.  

Such type of production systems is common for 

manufacturing of the parts for aviation, 

automobile industries, etc. In such industrial 

scenarios, the focus is on minimizing the product 

rejections at the same time utilizing the optimum 

life of the costly tools. 

The existing process quality control policy is 

enhanced to become dynamic and extended to deal 

with machine deterioration with time. This is done via 

the proposed residual-life based evaluation and multi-

state magnitude of process shift schemes. 

Furthermore, the maintenance planning model is 
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Production system 

where the cost of 

rejection is significant 

compared to the cost 

of the tool.  

Such type of production system is common in 

the manufacturing of general industrial products 

viz. gears, bearings, etc. In such scenarios, the 

focus is only on reducing the product rejections. 

modified to capture real-time remaining life 

information. These models are integrated and built in 

conjunction with newly developed TCM system 

pertaining to instantaneous diagnostics and 

prognostics. As a result, the designed dynamic 

integrated model can evolve itself to re-evaluate the 

optimal values for the design parameters used in the 

entire lifecycle of the manufacturing process. 

Production system 

where the cost of 

rejection is less 

significant compared 

to the cost of the tool.  

Such type of production system is common in 

batch and continuous manufacturing systems. In 

such scenarios, the main focus is to utilize the 

optimum life of the tool. 
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7.2 Limitation and Future Scope of the Study 

 

 In the present work, the main focus is on TCM, from the machine tool point of 

view, it is equivalent of considering that the machine tool is made up of a 

single component i.e. cutting tool, the failure of the components of the 

machine tools also have similar effects on process quality. Thus, extending 

this analysis for other components of machine tool will further lead to more 

significant cost benefits to the industries.  

 On the other hand, the proposed generic TCM system under dynamic 

operating profile, consents modelling of solitary sensor, further strengthening 

of the prediction performance will requires extracting the information from 

multi-sensors.  

 Exploring the use of proposed generic prognostics under dynamic operating 

profiles for other systems like gas turbine, wind turbines etc. may be give 

more significance to such approaches.  

 In future, such work can be utilized to developed intelligent digital twins of 

machine tools for Industry 4.0 or Smart Manufacturing.  
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