
ANALYSIS OF GRAPH COLORING
PROBLEM BASED ON SATISFIABILITY

AND MAXIMAL INDEPENDENT SET

Ph.D. Thesis

By

PRAKASH CHANDRA SHARMA

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JULY 2018

ANALYSIS OF GRAPH COLORING
PROBLEM BASED ON SATISFIABILITY

AND MAXIMAL INDEPENDENT SET

A THESIS

Submitted in partial fulfillment of the
requirements for the award of the degree

of

DOCTOR OF PHILOSOPHY

by

PRAKASH CHANDRA SHARMA

DISCIPLINE OF COMPUTER SCIENCE & ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE
JULY 2018

iii

INDIAN INSTITUTE OF TECHNOLOGY
INDORE

CANDIDATE’S DECLARATION
 I hereby certify that the work which is being presented in the thesis entitledANALYSIS

OF GRAPH COLORING PROBLEM BASED ON SATISFIABILITY AND MAXIMAL

INDEPENDENT SETin the partial fulfillment of the requirements for the award of the degree

of DOCTOR OF PHILOSOPHY and submitted in the DISCIPLINE OF COMPUTER

SCIENCE & ENGINEERING, Indian Institute of Technology Indore, is an authentic record

of my own work carried out during the time period from January 2011 to July 2018 under the

supervision of Dr. Narendra S. Chaudhari, Professor, Discipline of Computer Science &

Engineering, Indian Institute of Technology Indore.

 The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Dated: Signature of the student
 (PRAKASH CHANDRA SHARMA)

 This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Dated: Signature of Thesis Supervisor

 (NARENDRA S. CHAUDHARI)

 PRAKASH CHANDRA SHARMAhas successfully given his Ph.D. Oral Examination

held on………………………….

Signature of Chairperson (OEB) Signature of External Examiner Signature of Thesis Supervisor
Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2 Signature of Convener, DPGC
Date: Date: Date:

Signature of Head of Discipline
Date:

iv

v

Dedicated to My Parents

vi

vii

Acknowledgements
I would like to take this opportunity to express my heartfelt gratitude to a number of

persons who in one or the other way contributed making this time as learnable and

bearable. At first, I would like to thank my supervisor Dr. Narendra S. Chaudhari,

Professor, IIT Indore for his invaluable guidance, suggestions, encouragement and

direction throughout this work. I am thankful to Dr Ram Bilas Pachori and Dr. Anand

Parey, my research committee members for their interesting discussions and

suggestions towards my research. I am grateful to Dr. Surya Prakash, Head of

Department, for his constructive feedback. I would also like to thank Dr. Pradeep

Mathur, Director, Indian Institute of Technology Indore, for his help, support, interest

and valuable suggestions.

I extend my sincere thanks to government body Department of Science & Technology

(DST), Government of India New Delhi and Indian Institute of Technology Indore to

help me with financial support to attend international conferences which helped a lot

to groom my research work.

I wish to thank all my colleagues and staff from the Discipline of Computer Science

and Engineering for their help, motivations, suggestions and friendship. I express my

special appreciation to my friends Rajkumar Jain, Varun Bajaj, Jaya Thomas, Neetesh

Saxena, RudresDwedi, Navneet, Ashish Jain, Rajat Saxena, Mayank, Nikhil and

Rajendrawho helped and supported me in many ways during my thesis work.

I also would like to thank the cooperative staff members Tapes Parihar, Shailendra

Verma, Satish Bisen, Ambar Dixit, Prahlad Panwar, and Lalit Jainfor their extended

help and support during my thesis.I wish to special thank to (Late) Dr

ShreedharBajpei, Manoj Shukla, Dr K K Mehta, Ravindra Singh and Narendra

Sharma for their motivation, support and help at all time during PhD thesis

completion.

Whatever little I have achieved in life, the credit goes to my family members. I would

like to thank my family, especially my mother, father, brother (Deepak Rashmi

Sharma), sisters (Jyoti Sunil Shukla andKiran Vipin Sharma) and my family for

always believing in me, for their continuous source of inspiration andtheir support in

my decisions.

viii

I take great pride in dedicating my thesis tomy parents(Maa-Babuji). They have kept

trust and faith in whatever I did.Last but not the least; I would also like to thank GOD

for showering upon me his blessings since my childhood.

 I am delighted to thank all my friends and well wishers whose name I am

missing to mention here and who directly or indirectly walked along with me

throughout.

Thank you all.

 Prakaash Sharma

ix

Abstract
Nowadays, everywhere resource scheduling is an important task. In general, it is

observed that resources are limited and users are quite more than resources; then

question is how to maximize utilization of resources without conflict or with

minimum conflict. The graph coloring problem is mainly used for resource

scheduling. A k-colorability of graph G is an assignment of colors {1,2,…,k} to the

vertices of G in such a way that neighbor vertices of graph should not receive the

same colors. The minimum number of colors needed to properly color the vertices of

G is called the chromatic number of G.Graph coloring problem has several important

real-world applications including register allocation problem, channel assignment

problem in cellular network, time tabling problem, aircraft scheduling problem, etc.

Since graph coloring problem is an NP-Complete problem; therefore no exact solution

could be found for large graph. There is so many heuristic algorithm used to find out

approximate solution till date.

 This thesis presents two variations of solution approach for graph coloring

problem. First is optimization based solution for graph coloring problem and second

one is decision based solution for graph coloring problem.

In the optimization variation of graph coloring problem, its goals to calculate the

minimum possible coloursk, so that a propercolouring of graphGcould be possible. A

k-colorable graph divides an array of vertices V into k dissimilarcolor classes, where

each member of the class has the same color. In order to have the same color, the

members of each class must be pairwise non-adjacent, which by definition makes them

an independent set. In our thesis, we presented an algorithm of finding maximal

independent sets from the initial graph and it gives solution for graph coloring

problem.

Satisfiability (SAT) is recognized as the first NP-Complete problem and one of the

classic problems in computational complexity. Since, the Satisfiability problem (SAT)

is interesting because it can be used as a stepping stone for solving decision problems.

In our thesis, we presented Satisfiability (SAT) based solution approach for decision

based graph coloring problem. In the form of a decision problem, graph k-colorability

problem can be stated as follows: Is it possible to assign one of the k colors to vertices

of a graph G = (V, E), such that no two adjacent nodes are assigned the same color? If

x

the answer is positive (or YES), we say that the graph is k-colorable and k is the

chromatic number of graph G; otherwise it returns “unsatisfiable”.

Satisfiability (SAT) is used as a starting point for proving that other problems are

also NP-hard. We can reduce any NP-Complete problem to/from SAT. Therefore, in

our thesis we presented a generalized reduction approach for k-colorable graph

to/from 3-CNF-SAT

In our thesis, we presented a polynomial 3-SAT encoding technique of k-colorable

graph. This approach introduces two coloring constraint say vertex coloring constraint

and edge coloring constraint for proper coloring of a graph. Since, there have been

dramatic improvements in SAT solver technology over the past decade. This has lead

to the development of several powerful SAT algorithms that are capable of solving

many hard problems consisting of thousands of variables and millions of

constraints.In thesis, we analyze an efficient SAT solver MiniSAT to investigate SAT

based solution of graph k-colorability problem. Encoded 3-SAT expression will be

input for SAT solver and then it gives decision based solution.

In this thesis, we have analyzed the behavior of two NP-Complete problem say 3-

Satisfiability and Graph 3-Colorability during reduction from each other with the help

of phase transition phenomenon.

Since, the channel assignment problem is very similar to the graph k-colorability

problem. Reduction from graph k-colorability problem to satisfiability is an important

concept to solve channel assignment in cellular network. In our thesis, we mapped a

cellular network with frequency assignment and then introduced a 3-SAT encoding of

channel assignment problem.

xi

List of Publications

International Journals
1. Sharma P.C., Chaudhari N.S., A Tree based Novel Approach for Graph

Coloring Problem using Maximal Independent Set, SpringerJournal of

Wireless Personal Communication. (Under Review: Submitted on August

2017)

2. Sharma P.C., Chaudhari N.S. (2016), Investigation of Satisfiability Based

Solution Approach for Graph Coloring Problem,International Journal of

Engineering and Advance Technology (IJEAT), 6(1),106-112.

3. Sharma P.C., Chaudhari N.S. (2015),Maximal Independent Set Based

Approach for Graph Coloring Problem, International Journal of Computer

Engineering and Application (IJCEA), 9(2), 205-214.

4. Sharma P.C., Chaudhari N.S. (2012), A New Reduction from 3-SAT to Graph

K-Colorability for Frequency Assignment Problem,International Journal on

Computer Application, Special Issue on Optimization and On-chip

Communication ooc(1), 23-27.

5. Sharma P.C., Chaudhari N.S. (2011), Polynomial 3-SAT Encoding for k-

Colorability of Graph,International Journal on Computer Application, Special

Issue on Evolution in Networks and Computer Communications (1), 19-24.

International Conferences
1. Sharma P.C., Chaudhari N.S. (2012), Phase Transition in Reduction between

3-SAT and Graph Colorability for Channel Assignment in Cellular Network,

4thIEEE International Conference on Computational Intelligent and

Communication Networks (CICN) in Mathura, India, pp 164-168.

xii

2. Sharma P.C., Chaudhari N.S. (2012), Channel Assignment Problem in Cellular

Network and Its Reduction to Satisfiability using Graph k-Colorability,7th

IEEE Conference on Industrial Electronics and Application

(ICIEA)inSingapore, pp 1734-1737.

3. Sharma P.C., Chaudhari N.S. (2011), A graph coloring approach for channel

assignment in cellular network via propositional satisfiability,International

Conference on Emerging Trends in Networks and Computer Communications

(ETNCC) in Udaipur, India, pp 23-26.

National Convention
1. Sharma P. C., Chaudhari N.S. (2011), Cellular Networks, k-Coloring and 3-

SAT, 25th National Convention of Computer Engineers and National Seminar

on Networked Home Systems and Services (NHSS) in Udaipur, India, pp 57-

58.

xiii

Contents

List of Figures xvii

List of Tables xix

List of Abbreviations xxi

1. Introduction 1

 1.1 Motivation..……………………………………………………………3

 1.2 Objectives……………………………………………………………..4

 1.3 Contribution………………………………………………………… 5

 1.4 Organization of the Thesis...6

2. Background Details 9

 2.1 NP Complete Problem…………………………………………………9

 2.2 Satisfiability Problem………………………………………………...11

 2.3 Graph Coloring Problem……………………………………………..13

 2.4 Channel Assignment Problem………………………………………..13

 2.5 Independent Set……………………………………………………15

 2.6 Analysis ofSome Heuristic Approaches for Graph Coloring

 Problem………………………………………………………………15

 2.6.1 Greedy Algorithm…………………………………..………..16

 2.6.2 First Fit………………………………………….………….17

 2.6.3 Largest-Degree-First-Ordering………………………………17

 2.6.4 Smallest-Degree-Last–Ordering……………………………..17

 2.6.5 Incidence-Degree-Ordering………………………………….18

 2.6.6 DSATUR (Degree of Saturation) Approach…………………18

 2.6.7 Recursive Largest First (RLF) Approach……………………19

 2.6.8 Parallel Maximal Independent set……………………………19

 2.6.9 Jones-Plassmann Approach…………………………………..20

xiv

 2.7 Related Work…………………………………………………………21

 2.7.1 Reduction of 3-colorable graph to 3-CNF-SAT……………...21

 2.7.2 Reduction of 3-CNF-SAT to 3-Colorable Graph…………….22

 2.7.3 Approaches Based on Independent Set Extraction…………..22

3. A Tree Based Novel Approach for Graph Coloring Problem
 using Maximal Independent Set 25

 3.1 Introduction …………………………………………………………25

 3.2 Review of previous work ……………………………………………27

 3.3 Our Proposed Algorithm: Tree Based Maximal Independent Set …..28

 3.3.1 Complementary Edge Table …………………………………28

 3.3.2 Finding Maximal Independent Sets: Tree Exploration………29

 3.3.3 Coloring the Maximal Independent Sets…………………….30

 3.4 Illustration by an Example….…………………...…………………...30

 3.4.1 Creating Complementary Edge Table ……………………….30

 3.4.2 Finding Maximal Independent Set by Tree Exploration ……31

 3.4.3 Coloring the Maximal Independent Set …………………….33

 3.5 Algorithm ……………... …………………………………………... 34

 3.5.1 Notations used in our algorithm……………………………...34

 3.5.2 Algorithm for finding Maximal Independent Sets (MIS) ….. 34

 3.6 Results and Discussion ………………………………………………35

 3.7 Summary ………………………………………………………….. 37

4. Polynomial 3-SAT Encoding Technique for k-colorable Graph
 and Analysis of Graph Coloring Problem based on
 Satisfiability 39

 4.1 Introduction…………………………………………………………. 39

 4.2 Polynomial 3-SAT Encoding Formulation Approach of k-Colorable
 Graph…………………………………………………………………41

 4.2.1 Vertex Constraint Approach ………………………………41

xv

 4.2.2 Edge Constraint Approach ………………………………….42

 4.2.3 Bounds of Final 3-CNF-SAT Formula ……………………..43

 4.2.4 Algorithm: k-Colorable Graph to 3-CNF ………………… 43

 4.2.5 Bounds on number of clauses in 3-CNF expression ……… 44

 4.2.6 Justification of Propositional Encoding Formulation of k-
 Colorable Graph ……………………………………………..46

 4.3 Illustration of Encoding of 3-Colorable Graph to 3-CNF-SAT …….47

 4.4 Solution Approach for Graph K-Colorability using SAT Solver …48

 4.5 Results and Discussion ………………………………………………49

 4.6 Summary ……………………………………………………………54

5. A New Reduction from 3-SAT to Graph K-Colorability for
Frequency Assignment Problem 55

 5.1 Introduction …………………………………………………………55

 5.2 Polynomial reduction from 3-CNF-SAT to k-colorable graph ……..56

 5.2.1 Reduction of 3-SAT to Graph 3-Colorability (3-SAT ≤p 3-
 Color) ……………………………………………………….57

 5.2.2 Reduction of 3-SAT to Graph 4-Colorability (3-SAT ≤p 4-
 Color) ……………………………………………………….59

 5.2.3 Reduction of 3-SAT to Graph 5-Colorability (3-SAT ≤p 5-
 Color) ……………………………………………………….61

 5.2.4 Reduction of 3-SAT to Graph k-Colorability (3-SAT ≤p k-
 Color) ……………………………………………………….63

 5.3 Graph k-colorability to frequency assignment problem …………….64

 5.4 Summary …………………………………………………………….65

6. Phase Transition in Reduction between 3-SAT and Graph
Colorability 67

 6.1 Introduction ………………………………………………………..67

 6.2 Phase Transition ……………………………………………………68

 6.3.1 Phase Transition in 3-SAT ..69

xvi

 6.3.2 Phase Transition in 3-Colorability ………………………… 70

 6.3 Phase transition of reduced 3-colorable graph corresponding to 3-SAT
 instance ……………………………………………………………. 70

 6.4 Phase transition of reduced 3-CNF-SAT corresponding to 3-Colorable
 Graph ………………………………………………………………..72

 6.5 Results and Discussion ………………………………………………74

 6.6 Summary …………………………………………………………….75

7. Channel Assignment Problem in Cellular Network and its
Reduction to Satisfiability using Graph K-Colorability 77

 7.1 Introduction …………………………………………………………77

 7.2 Channel Assignment Problem ……………………………………….78

 7.3 Problem Formulation: Channel Assignment Problem as Graph k-
 colorability …………………………………………………………..79

 7.4 Reduction Approach to Satisfiability using Graph k-Colorability …..81

 7.4.1 Base Station Constraint Approach …………………………. 81

 7.4.2 Interference Constraint Approach ………………………… 82

 7.4.3 Maximum bound of generated 3-CNF-SAT Formula ………83

 7.5 Illustration by an Example………………………………………….. 84

 7.6 Results and Discussion………………………………………………85

 7.7 Summary ……………………………………………………………85

8. Conclusion and Scope for Future Work 87

 8.1 Conclusion ………………………………………………………….87

 8.2 Scope for Future Work ………………………………………………88

Appendix A 89

Bibliography 93

xvii

List of Figures

1.1 (a) 3-colorable graph ………………………………………………………..1

1.1 (b) 4-colorable graph ………………………………………………………….1

2.1 Relationship between P and NP class problem………………………………..9

3.1 Properly Colored 5 Vertex Star Graph……………………………………..25

3.2 Petersen Graph ………………………………………………………… 30

3.3 (a)First Maximal Independent Set…………………………………………..32

3.3 (b) Second Maximal Independent Set ………………………………………. 32

3.3 (c)Third Maximal Independent Set………………………………………….33

3.4 Properly colored Petersen graph given in figure 3.2 using our proposed

 approach……………………………………………………………………...34

4.1 Petersen Graph……………………………………………………………… 47

4.2 Analysis of 3-CNF-SAT clause generation for k = 3………………………...51

4.3 Analysis of 3-CNF-SAT clause generation for k = 4………………………...51

5.1 Reduced 3-Colorable Graph…………………………………………………59

5.2 Reduced 4-Colorable Graph…………………………………………………61

5.3 Reduced 5-Colorable Graph…………………………………………………63

6.1 Generated 3-colorable graph from an instance of 3-CNF-SAT……………...71

7.1 Mapping of graph k-colorability and channel assignment problem in cellular

 network………………………………………………………………………80

7.2 Small Channel Assignment Problem Instance……………………………….84

xviii

xix

List of Tables

2.1 Comparison of sequential algorithm in terms of number of colors required for

 graphs……………………………………………………………………… 20

2.2 Comparison of parallel algorithm in terms of average number of colors

 required for graphs………………………………………………………… 21

2.3 Comparison of parallel algorithm in terms of time taken in seconds for

 coloring graphs……………………………………………………………….21

3.1 Edge and Complementary Edge Table for Figure 3.2…………………….....31

3.2 Comparison of our result with E2COL approach [2], DSATUR approach [16]

 and Malguti’s approach [17]…………………………………………………36

4.1 3-CNF-SAT clause generation for color k=3 and 4………………………….50

4.2 Results of Some DIMACS Graph Instances which are encoded as 3-CNF-SAT

 by our reduction approach and then solved by Minisat 2.2………………….52

4.3 Results of Some UNSAT graph instance given by Minisat 2.2……………...53

6.1 Comparisons of Phase Transition of reduced 3-SAT and 3-Colorable Graph

 with standard and previously generatedphase transition values……………..74

xx

xxi

List of Abbreviations

SAT: Satisfiability

CNF: Conjuctive Normal Form

DNF: Disjunctive Normal Form

GCP: Graph Coloring Problem

GkCP: Graph k-Colorability Problem

CAP: Channel Assignment Problem

MIS: Maximal Independent Set

NPC: Non Deterministic Polynomial-Complete Problem

ET: Edge Table

CET: Complementary Edge Table

xxii

1

Chapter 1

Introduction

A Graph k-colorability is an assignment of colors {1,2,…,k} to the vertices of

a graph G in such a way that neighbor vertices of graph should receive

different colors. That means, in a proper graph coloring, if two vertices u and v

of a graph share an edge (u, v), then they must be colored with different colors.

A graph G is called k-colorable, if there exists a legal coloring with at most k

colors and the minimum number of colors needed to color the vertices of the

graph G is called the chromatic number of G, denoted as χ (G). Following

figures 1(a) and 1(b) show a 3-colorable and 4-colorable graph respectively.

Graph k-colorability problem (for k ≥ 3) is among the 21 NP-complete

problems [10][25] originally given by Richard Karp in the year 1972.

Figure 1(a): 3-colorable graph

Figure 1(b): 4-colorable graph

2

 The wide range of applications along with its combinatorial complexity

elevates the graph coloring problem to one of the most famous and most

researched problems in graph theory. Generally, the GCP is NP-complete [10]

[25] and we currently know of no efficient algorithm for large graphs.

 There are many approaches proposed to solve the graph coloring problem

(GCP) till date. Reviews of major approaches on graph coloring problem have

been given in [41]. An alternative approach to solve this problem is by

satisfiability (SAT). Satisfiability (SAT) is the first known NP-complete

problem [25]. The SAT problem is usually expressed in conjunctive normal

form (CNF). A CNF formula on binary variables is the conjunction of clauses;

each clause is a disjunction of one or more literals, where a literal is the

occurrence of a variable or its complement. In general, the SAT problem is

defined as follows: Given a Boolean formula in CNF, find an assignment of

variables that satisfies the formula or prove that no such assignment exists.

 According to Cook’s theorem [10][25], we can reduce any NP-complete

problem to/from SAT. Then obtained SAT expression can be solved

separately by efficient SAT solver. Graph k-colorability problem as a decision

problem targets the question if there exists a proper coloring for a given graph

G and number of colors k. In this thesis, we have formulated a generalized

reduction approach for the graph k-colorability to/from 3-CNF-SAT and then

investigated SAT based approach for solving graph coloring problem.

 In the optimization version, the graph coloring problem aims to find the

lowest possible number of colors k under which a feasible coloring of G is

possible. A k-colorable graph partitions a set of vertices V into k different

color classes, where each member of the class has the same color. In order to

have the same color, the members of each class must be pairwise non-

adjacent, which by definition makes them an independent set. Therefore,

finding maximal independent sets from a graph is an efficient approach for

solving the graph coloring problem. Review of approaches for graph coloring

using independent set is given in [2]. In our thesis, we have developed a tree

based novel approach for graph coloring problem using maximal independent

set.

3

1.1 Motivation

Graph coloring is a fundamental and extensively studied problem, which has its

theoretical significance. The colouring problem of a graph is a famous problem

category of NP-hard combinatorial optimization [10]. The graph k-colorability

problem has several important real-world applications [46] including computer

register allocation [11], timetabling and scheduling [12], frequency assignment

problem [13, 42], and satellite range scheduling [14], time tabling problem [48]

and aircraft scheduling problem [42] etc.
The Satisfiability problem is particularly interesting because it can be used

as a stepping stone for solving decision problems. The graph coloring problem

can also be solved as a decision based using the method of Satisfiability (SAT).

Problem instances from domains such as Graph Coloring can be encoded into

SAT and then solved by the help of SAT algorithms.

Since the channel assignment problem is very similar to the graph k-

colorability problem [42]. But, till now there are not any known deterministic

methods that can solve a graph k-colorability problem (GCP) (or any NP-

complete problem) in a polynomial time. There is an alternative approach to

solve it efficiently by propositional Satisfiability which is the first known NP-

complete problem. The satisfiability problem (SAT) is one of the most

prominent problem in theoretical computer science, which has become

increasingly popular and important insights into our understanding of the

fundamentals of computation. It is used as a starting point for proving that

other problems are also NP-hard. We can reduce any NP-Complete problem

to/from SAT. Since, there have been dramatic improvements in SAT solver

technology over the past decade. This has lead to the development of several

powerful SAT algorithms that are capable of solving many hard problems

consisting of thousands of variables and millions of constraints. Reduction

from graph k-colorability problem to satisfiability is an important concept [62]

to solve channel assignment problem in cellular network.

In the optimization form, the graph coloring problem, goals to calculate the

lowest possible colours k, so that a realistic colouring of G could be possible. A

k-colorable graph divides an array of vertices V into k dissimilar color classes,

4

where each member of the class has the same color. In order to have the same

color, the members of each class must be pair wise non-adjacent, which by

definition makes them an independent set. Therefore, finding maximal

independent sets from the initial graph is an effective method for solving graph

coloring problem.

Why coloring a graph? Graph colouring originates from the colouring of

maps of countries and counties which can be represented as “planar graphs”.

All planar graphs (and maps) can be coloured using just four colours. However,

other types of graphs require different numbers of colours. Many different

algorithmic schemes have been developed for graph colouring. However, only

a limited set of benchmark instances are typically considered in comparisons

(e.g. DIMACS). Comparisons between algorithms are also difficult to draw

because: (a) different experimental conditions are used (b) Often only the good

results are reported (c) Researchers choose their own cut-off points and only

report final (best) solutions.

1.2 Objectives

In our thesis, we analyzed the graph coloring problem based on maximal

independent set and Boolean Satisfiability (SAT). Our research work mainly

focuses on polynomial reduction approach of graph k-colorability to/from 3-

CNF-SAT expression and then analyzed SAT based solution approach of graph

coloring problem. However, the phase transition phenomenon is often

associated with the hardness of complexity; therefore we investigated the phase

transition of an encoded 3-colorable graph and generated graph from 3-SAT

expression. Since all NP-complete problems can translate into one another, a

study of phase transition gives a better understanding of NP-complete

problems. Since, it is shown that the channel assignment problem in cellular

network is similar to the graph k-colorability problem [42]; therefore, in our

thesis, channel assignment problem (CAP) in a cellular network has also been

reduced to satisfiability (SAT) using graph k-colorability. In order to realize

these general aims, specific objectives of our research work are as below:

5

 To develop a tree based novel approach for graph coloring problem

using maximal independent set.

 To formulate the generalized polynomial encoding technique for the

reduction of graph k-colorability (for k ≥ 3) to 3-CNF-SAT

expression.

 To investigate the satisfiability (SAT) based approach for solving

graph k-colorability problem.

 To formulate the generalized polynomial reduction of 3-CNF-SAT

expression to k-colorable graph.

 To analyze and calculate the Phase Transition of a generated graph

from 3-CNF-SAT expression and 3-CNF-SAT encoding of 3-

colorable graph using our reduction method of 3-SAT to/from 3-

colorable graph. By phase transition concept, we can discuss the

hardness complexity of our above proposed reduction approach of 3-

SAT to/from graph k-colorability.

 To formulate a reduction approach of channel assignment problem in

cellular network into 3-CNF-SAT using graph k-colorability.

1.3 Contributions
In this research thesis, we addressed a number of issues associated with graph

coloring problem, Satisfiability, and maximal independent set. We improved

the state of knowledge in the following ways:

 A complementary edge table is introduced so that adjacency list of an

input graph should be small; especially for the dense graph. A novel

approach has been proposed for calculating independent set and then

maximal independent set within a given graph and finally each

maximal independent set has to assign a different color.

 Analyzed existing encoding technique of graph k-colorability to 3-

CNF-SAT and developed two new constraints say vertex coloring

constraint and edge coloring constraint to encode a graph as 3-CNF-

6

SAT expression. We encoded standard graph instances DIMACS using

our approach.

 Generated 3-CNF-SAT expression from DIMACS graph has to be

taken as input for SAT solver; so that decision based graph coloring

problem can be solved using SAT algorithms. Here, we have taken an

efficient SAT solver MiniSAT to analyze the encoded 3-CNF-SAT

expression for finding solution of decision based graph coloring.

 Studied reduction of 3-CNF-SAT expression into 3-colorable graph

and analyze it. We proposed reduction formula for 4, 5-colorable graph

and in similar manner we generalized a polynomial reduction approach

of 3-CNF-SAT to graph k-colorability.

 Discuss the concept of phase transition and standard phase transition of

3-SAT and 3-colorability problem. We proposed the calculation of the

phase transition of systematically generated 3-colorability graph from

3-SAT and analysis of phase transition of encoded 3-SAT of 3-

colorable graph.

 On basis of similarity in channel assignment problem with graph k-

colorability problem, we mapped channel assignment problem with

graph k-colorability. Then, we proposed an encoding technique of

channel assignment problem into 3-CNF-SAT expression via graph k-

colorablity concept.

1.4 Organization of the Thesis
In this thesis, we analyzed the well known graph coloring problem based on

maximal independent set and satisfiability. The thesis is organized as follows:

In the present chapter, the state-of-the –art topics covered in various chapters

of the thesis have been enumerated.

Chapter 2 details the necessary background material required to

understand the chapters have been presented. The chapter starts with the

introduction of graph coloring problem where the characterization is governed

by the problem features. Background study is presented for Graph Coloring

Problem, Boolean Satisfiability, Satisfiability Solvers, Independent Set, and

Channel Assignment Problem. The chapter also introduces and presents a brief

7

literature survey on graph coloring problem using maximal independent set

and Satisfiability.

Chapter 3 illustrates the algorithm of finding maximal independent set

from the given graph. In this chapter, a k-colorable graph divides an array of

vertices V into k dissimilar color classes, where each member of the class has

the same color. In order to have the same color, the members of each class

must be pair wise non-adjacent, which by definition makes them an

independent set. In this chapter, we have developed a tree based innovative

approach for the graph coloring problem using maximal independent set.

Chapter 4 gives a generalized polynomial 3-CNF-SAT encoding

technique of k-colorable graph. Vertex constraint and edge constraint approach

for 3-SAT encoding of a graph has been discussed in this chapter. Also,

justification of propositional encoding formulation of k-colorable graph is

explored here. In this chapter, this approach is illustrated by a 3-ccolorable

graph.

Chapter 5 explores polynomial reduction approach from 3-CNF-SAT

to k-colorable graph. In this chapter, reduction approach of 3-CNF-SAT to 3-,

4- and 5-colorable graph has been discussed. At last, a generalized approach

for reduction of 3-SAT expression to graph k-colorability is developed.

Chapter 6 calculates and analyze phase transitions of generated 3-

CNF-SAT and 3-colorable graph using our reduction method of transforming

3-SAT to/from 3-Colorable graph. Then compare calculated phase transition

with known phase transition. Since all NP-complete problems can translate

into one another, study of phase transition gives a better understanding of NP-

complete problems.

Chapter 7 explores about channel assignment problem in cellular

network; also map this problem with graph coloring problem. This chapter

illustrates the reduction approach of channel assignment problem to graph k-

colorability instance using vertex and edge constraints. This chapter tells about

the approach to solve channel assignment problem using SAT solver on basis

of encoded 3-SAT expression.

Chapter 8 gives a summary of the work undertaken and provides a

number of conclusions based on the results in the thesis. It also outlines

recommendations for future research in this area.

8

9

Chapter 2

Background Details

2.1 NP-Complete Problem

P Class Problem: A problem which can be solved in polynomial time is

known as P-class problem. For example: all sorting and searching algorithms.

NP Problem: A problem which cannot be solved in polynomial time but it is

verified in polynomial time, is known as non deterministic polynomial or NP

class problem. For example: Sudoku problem, Prime factor, Scheduling,

Traveling Salesman problem etc. P class problem are tractable problems

whereas NP class problem are intractable.

Figure 2.1 Relationship between P and NP class problem

Cook’s Reducibility Concept: Let A and B are two problem then problem A

reduces to problem B iff there is a way to solve A by deterministic algorithm

that solve B in polynomial time. If A is reducible to B, then we denote it by

A⋉B.

Reduction Properties:

(i) If problem A is reducible to problem B and B is solvable in polynomial

time then A will also solvable in polynomial time.

Tractable Problem Intractable Problem

NP
P

10

(ii) If problem A is not solvable in polynomial time then it implies problem B

will also not solvable in polynomial time.

NP Hard Problem: A problem is NP hard if every problem in NP can be

polynomial reduced to it.

NP Complete Problem (NPC): A problem is NP complete if it is in NP and

it is NP hard. All NPC problems are NP-hard but all NP-hard problems are not

NPC. All the NPC problem is decision problem and the entire NP-hard

problem are optimization problem.

In computational complexity theory, the complexity class NP-complete

[10,52] (abbreviated NP-C or NPC) is a class of decision problems. A decision

problem L is NP-complete if it is in the set of NP problems so that any given

solution to the decision problem can be verified in polynomial time, and also

in the set of NP-hard problems so that any NP problem can be converted into

L by a transformation of the inputs in polynomial time.

 NP-complete problem is a subset of NP, the set of all decision

problems whose solutions can be verified in polynomial time. NP may be

equivalently defined as the set of decision problems that can be solved in

polynomial time on a nondeterministic Turing machine. A problem A in NP is

also in NPC if and only if every other problem in NP can be transformed into

problem B in polynomial time.

Formal definition of NP-completeness

A decision problem C is NP-complete if:

1. C is in NP, and

2. Every problem in NP is reducible to C in polynomial time.

C can be shown to be in NP by demonstrating that a candidate solution to C

can be verified in polynomial time.

A problem K is reducible to C if there is a polynomial-time many-one

reduction, a deterministic algorithm which transforms any instance k ∈	K into

an instance c ∈ C, such that the answer to c is yes if and only if the answer to k

11

is yes. To prove that an NP problem C is in fact an NP-complete problem it is

sufficient to show that an already known NP-complete problem reduces to C.

Note that a problem satisfying condition 2 is said to be NP-hard, whether or

not it satisfies condition 1.

2.2 Satisfiability (SAT) Problem
The Boolean Satisfiability Problem (SAT) is one of the most important and

extensively studied problems in Computer Science and Engineering. In

practice, SAT is a core problem in many applications such as Electronic

Design Automation (EDA) and Artificial Intelligence (AI).

Given a Boolean formula, the problem of determining whether there

exists a variable assignment that makes the formula evaluate to true is called

the satisfiability problem. If the formula is limited to only contain logic

operations and, or and not, then the formula is said to be a propositional

Boolean formula. Determining the satisfiability of a propositional Boolean

formula is called the Boolean Satisfiability Problem (SAT). Given a

propositional Boolean formula, the SAT problem asks for an assignment of

variables such that the formula evaluates to true, or a proof that no such

assignment exists. SAT was the first problem shown to be NP-Complete [30].

The SAT problem is usually expressed in conjunctive normal form

(CNF). A CNF formula on binary variables is the conjunction (AND) of

clauses each of which is a disjunction (OR) of one or more literals, where a

literal is the occurrence of a variable or its complement. A clause is said to be

satisfied if at least one of its literals is true, unsatisfied if all of its literals are

set to false, unit if all but a single literal are set to false, and unresolved

otherwise. A formula is said to be satisfied if all its clauses are satisfied, and

unsatisfied if at least one of its clauses is unsatisfied. In general, the SAT

problem is defined as follows: Given a Boolean formula in CNF, find an

assignment of variables that satisfies the formula or prove that no such

assignment exists. In the following example, the 3-CNF (clause length=3)

formula E consists of 4 variables, 3 clauses; each clause having at most 3

literals (length of clause=3 i.e. 3-CNF) and 7 literals:

12

ܧ = ଵݔ) ∨ ଶݔ¬ (ଷݔ¬∨ ∧ ଵݔ¬) ∨ ଶݔ ∨ (ଷݔ ∧ ଵݔ) ∨ ଶݔ ∨ (ସݔ

One of the truth assignments for satisfiability of above expression is x1 = x3 =

true, & x2 = false or x1 = x2 = true & x3 = false. Note that a problem with n

variables will have 2n possible assignments to test. The above example with 3

variables has 8 possible assignments.

Why almost all SAT solvers use CNF instead of DNF? Basically, a

DNF formula is a disjunction of clauses	(ܿଵ ∨ ܿଶ ∨…∨ ܿ), where each clause

ܿ = (݈ ,ଵ ∧ …∧ ܿ,) is a conjunction of literals. It seems that solving SAT is

easier using DNF. But, let’s call a clause ic conflicting if and only if it

contains both a literal l and its negation l . A formula may have exponentially

many solutions, so the corresponding DNF formula may have exponentially

many clauses. After converting DNF to CNF we find that CNF is compact,

while DNF is not; CNF is implicit, while DNF is explicit. An NP-Complete

problem can be expressed in DNF as: Given a DNF instance is there an

assignment of variables that falsifies all the clauses? In other words, if we

have to get an optimal or accurate solution of NP-Complete problem then

either SAT formula should be in CNF or in DNF with falsification; otherwise

DNF cannot give an efficient solution.

The last few years have seen significant advances in Boolean

satisfiability (SAT) solving. These advances have lead to the successful

deployment of SAT solvers in a wide range of problems in Engineering and

Computer Science. The first SAT solving algorithm is often attributed to

Davis and Putnam, who proposed an algorithm that can solve general SAT

problems in 1960 [8]. Since then, numerous algorithms and techniques have

appeared in the literature to improve the efficiency of SAT solving. Because

of its NP-Complete nature, it is unlikely that there exist algorithms that can

solve SAT in polynomial time in the size of the instance description (unless

P=NP). SAT instances with hundreds or even thousands of variables can often

be solved by current state-of-the-art SAT solvers in seconds or minutes.

13

2.3 Graph Coloring Problem
Graph coloring was among the 21 NP-complete problems [3, 10, 62]

originally given by Richard Karp in the year 1972. Graph coloring problem

states that, given a graph G (V,E) where V is the set of vertices of the graph

and E is the set of edges, how many colors are required to color the graph in

such a way that no two adjacent vertices of the graph are colored with the

same color. A coloring using at most k colors is called a (proper) k-coloring.

The smallest number of colors needed to color a graph G is called its

chromatic number, χ(G). A graph that can be assigned a (proper) k-coloring is

k-colorable, and it is k-chromatic if its chromatic number is exactly k.

Graph coloring is a fundamental and extensively studied problem,

which besides its theoretical significance also enjoys a lot of practical

applications. The graph k-colorability problem has several important real-

world applications, including register allocation, scheduling like frequency

assignment, time tabling problem, aircraft scheduling and many other

problems.

Unfortunately, determining the chromatic number of a graph is an NP-

hard problem, hence we cannot expect to solve it efficiently for large graphs.

So during modeling, it might happen that the graph of our application has

some structure that makes coloring easier or if there is no hope for an efficient

algorithm for coloring we give an approximation algorithm which does not

give optimal solution but has some performance guarantee on quality of

produced solution.

2.4 Channel Assignment Problem in Cellular

 Network
The assignment of channels to cells or mobiles is one of the fundamental

resource management issues in a mobile communication system. A channel

assignment problem [42][47][50] or the frequency assignment problem is

nothing but the task of assigning frequency or channel from a frequency

spectrum to a set of transmitters and receivers satisfying certain hard

conditions. Channels are assigned to the cells or base stations such that

14

communication via these stations does not cause interference. Interference

generally occurs when the same or close frequencies are assigned to stations

that are situated near each other.

 The channel assignment problem can be stated as follows: Given a set

of n cells or base stations, a set of k channels and a set of interference

constraints, assign each station a channel without violating any interference

constraint using limited span of frequency spectrum. The channel assignment

problem is more complicated than the graph coloring problem in the sense that

an interference constraint does not just express that a pair of stations must be

assigned different channels, but it also specifies a minimal required distance.

 Channel assignment problem (CAP) is classified as an NP-complete

problem [42][50], which means that as the size of the problem increases, the

time required to solve the problem does not increase in a polynomial manner,

but rather in an exponential one. These channels must be placed some distance

apart in order to avoid interference. The assignment of channels to cells or

mobile is one of the fundamental resource management issues in a mobile

communication system.

It is shown that the channel assignment problem is similar to the graph

k-colorability problem [50]. Determining the k-colorability of any graph is

also an NP-Complete problem [42][50]. A k-colorability of graph G is an

assignment of colors {1,2,…,k} to the vertices of G in such a way that

neighbor vertices of graph should receive different colors. That means, in a

proper graph coloring, if two vertices u and v of a graph share an edge (u, v),

then they must be colored with different colors. The minimum number of

colors needed to properly color the vertices of G is called the chromatic

number of G, denoted χ(G).

Since, till now there are not any known deterministic methods that can

solve a graph k-colorability problem (GCP) or any NP-complete problem in a

polynomial time. There is an alternative approach to solve it efficiently by

propositional Satisfiability which is first known NP-Complete problem. The

satisfiability problem (SAT) is one of the most prominent problems in

theoretical computer science, which has become increasingly popular and

15

important insights into our understanding of the fundamentals of computation.

It is used as a starting point for proving that other problems are also NP-hard.

We can reduce any NP-Complete problem to/from SAT. Since, there have

been dramatic improvements in SAT solver technology over the past decade.

This has lead to the development of several powerful SAT algorithms that are

capable of solving many hard problems consisting of thousands of variables

and millions of constraints. Reduction from graph k-colorability problem to

satisfiability is an important concept to solve channel assignment in cellular

network.

2.5 Independent Set
An independent set (also known as a stable set) is a sub groups of vertices

VS so that none of the vertices in S are neighbors. The subsets of the graph

containing those vertices that are not attached, i.e. none of the element in the

set are connected to any other element of the same set, are known as an

independent set. The highest cardinality of a stable set of G is represented by

α(G). A stable set is called maximal, if it is not a subset of any bigger

independent set and it is assumed maximum if there is no bigger independent

set within the graph.
A clique is a subset of V where all the vertices are pair wise adjacent. We

can infer the complement graph G’ = (V, E’) from a graph G = (V, E), where

E’ = {(i, j) | i, j ∈V, i ≠ j and (i, j) ∉ E}. The Maximum independent set

problem (MIS) is to determine an independent set in G of highest cardinality

α(G). It is well understood that if I is an independent set of G, then I is a clique

of G’.

2.6 Analysis of Some Heuristic Approaches for

 Graph Coloring Problem

The word heuristic is used for algorithms which find solutions among all

possible solutions, but the solution found will be best is not sure, therefore

they are considered as approximate algorithms. These algorithms, usually

find a solution near to the best one and they find it fast and easily. Heuristic

16

algorithms are used when a feasible solution is required rapidly. Well

known examples of heuristic algorithm are Traveling Salesman Problem and

Knapsack Problem.

There are many approaches available to solve graph coloring problem.

These approaches are used to reduce the time complexity of the algorithm and

the number of colors used in graph. Here, we analysis the solution approaches

of graph coloring problem in two ways; first in sequential way and second in

parallel way. In sequential algorithm a node is selected according to some

predefined criterion and then colored with legal color. The selection and

coloring continues until all the nodes in the graph are colored. Here we study

of few sequential algorithm of graph coloring problem such as: Greedy

Algorithm, First Fit, Largest-Degree-First-Ordering, Incidence-Degree-

Ordering, and Saturation- Degree-Ordering.

In parallel graph coloring, a number of the existing fast heuristics is based

on the observation that an independent set of nodes can be colored in parallel.

Depending on how the independent set is selected and colored, there are

many parallel graph coloring techniques such as: Parallel Maximal

Independent set (PMIS) also known as Luby’s maximal independent set

finding algorithm]. Other variants are the asynchronous parallel heuristic by

Jones and Plassmann (JP). Some well- known sequential graph coloring

algorithms like the Largest- Degree-First algorithm and the Smallest-Degree-

Last algorithm has been parallelized.

2.6.1 Greedy Algorithm
Greedy algorithm is one of the simplest but most fundamental heuristic

algorithms for graph colouring. The algorithm operates by taking vertices one

by one according to some (possibly arbitrary) ordering and assigns each vertex

its first available colour. Because this is a heuristic algorithm, the solutions it

produces may very well be suboptimal; however, it can also be shown that

GREEDY can produce an optimal solution for any graph. Sequential greedy

algorithm [75] plays a significant role in the practical resolution of NP-hard

problems. A greedy algorithm is a basic heuristic that finds a result by

iteratively adding the locally best element into the solution as per pre defined

17

criteria. Greedy approach color the nodes of the graph by consider them in

sequence and allocate each node the first available color. Greedy method is the

simplest which takes an ordering of nodes of a graph and colors these with the

smallest color fulfilling the constraints that no neighboring nodes are assigned

similar colors. However, the Greedy method performs badly in practice for

large graphs.

2.6.2 First Fit (FF)
The First Fit [76] coloring algorithm is supply the set of nodes in some

random order. The algorithm sequentially assigns each node the lowest

authorized color. First Fit has the advantage of being very simple and very

fast. In other words, First Fit is an O (n) time algorithm.

2.6.3 Largest-Degree-First-Ordering (LDFO)
Ordering the nodes by decreasing degree, proposed by Avanthay et al. [77],

was one of the earliest ordering strategies. This ordering works as follows.

Assume the nodes v1, v2,…,vi-1 have been selected and colored. Node vi is

selected to be the node with the maximum degree among the set of uncolored

nodes. Largest Degree First Ordering provides a better coloring because at

each step it selects a node with the highest number of neighbors which

produces the highest color. Note that this heuristic can be implemented to run

in O(n2).

 The Largest- Degree-First algorithm [77] can be parallelized by a

very similar method to the Jones-Plassmann algorithm. The only difference is

that instead of using arbitrary weights to construct the independent sets, the

weight is selected to be the maximum degree of the node in the induced sub

graph. Random numbers are only used to resolve conflicts between

adjoining nodes having the same degree.

2.6.4 Smallest-Degree-Last–Ordering (SDLO)
The smallest-degree-last ordering heuristic [82] colors the nodes in the order

induced by first removing all the lowest-degree nodes from the graph,

then recursively coloring the resulting graph, and finally coloring the

removed nodes.

18

The Smallest-Degree-Last algorithm [82] tries to get better upon the Largest-

Degree-First Ordering algorithm by using a more complicated system of

weights. To achieve this, algorithm works in two steps, a weighting step and

a coloring step. The weighting step starts by searching all nodes with degree

equal to the smallest degree d currently in the graph. These are given the

current weight and detached from the graph, thus changing the degree of their

adjacent. This continues until all nodes have been given a weight. The

coloring step discovers the node which has highest weight; it colors itself

using the lowest available color.

2.6.5 Incidence-Degree-Ordering (IDO)

Incident degree ordering was proposed by E.K. Burke et al.[79] and is defined

as follows. At each step the node with the maximum incident degree is

selected. The incidence degree of a node is defined as the number of its

adjacent colored nodes. Note that it is the number of adjacent colored nodes

and not the number of colors used by the nodes that is counted. For example,

if a node v has degree 4 where one of its adjacent is uncolored, two of them

are colored with color 1, while the last one is colored with color 3, then v has

incident degree 3. Ties are resolved in favor of the node with the largest

degree. Incident Degree Ordering is an O (n)-time algorithm.

2.6.6 DSATUR (Degree of Saturation) Approach
The DSATUR algorithm (abbreviated from “degree of saturation”) was

originally proposed by Br´elaz [3]. In essence it is very similar in behavior to

the GREEDY algorithm in that it takes each vertex in turn according to some

ordering and then assigns it to the first suitable colour class, creating new

colour classes when necessary. The difference between the two algorithms

lies in the way that these vertex orderings are generated. With GREEDY the

ordering is decided before any colouring takes place; on the other hand, for

the DSATUR algorithm the choice of which vertex to colour next is decided

heuristically based on the characteristics of the current partial colouring of the

graph.

Saturated degree ordering (SDO) was given by E.Falkenauer [78] and is

19

defined as follows. At each iteration the node with the maximum

saturation degree is chosen. The saturation degree of a node is defined as the

number of its neighboring differently colored nodes. For example, if a node

v has degree equal to four where one of its adjacent is uncolored, two of

them are colored with color 1, while the last one is colored with color 3, then

v has saturation degree of two. While selecting a node of maximum

saturation degree, ties are resolved in support of the node with the leading

degree. The heuristic can be implemented to run in O (n2).

2.6.7 Recursive Largest First (RLF) Approach
While the DSATUR algorithm for graph colouring is similar in behavior and

complexity to the classical GREEDY approach, the next constructive method

we examine, the Recursive Largest First (RLF) algorithm follows a slightly

different strategy. The RLF algorithm was originally designed by Leighton

[4], in part for use in constructing solutions to large timetabling problems. The

method works by colouring a graph one colour at a time, as opposed to one

vertex at a time. In each step the algorithm uses heuristics to identify an

independent set of vertices in the graph, which are then associated with the

same colour. This independent set is then removed from the graph, and the

process is repeated on the resultant, smaller subgraph. This process continues

until the subgraph is empty, at which point all vertices have been coloured

leaving us with a feasible solution. Leighton (1979) has proven the worst-case

complexity of RLF to be O(n3), giving it a higher computational cost than the

O(n2) GREEDY and DSATUR algorithms; however, this algorithm is still of

course polynomially bounded.

2.6.8 Parallel Maximal Independent set (PMIS)
The Maximal Independent Set (MIS) algorithm proposed by Luby [80]

colors the graph by continually getting the largest probable independent set

of nodes (nodes which are not neibours) in the graph. All nodes in the first

such set are assigned the same color and removed from the graph. The

algorithm then finds a new MIS and assigned it a second color, and continues

finding and coloring maximal independent sets until all nodes have been

20

colored. Luby mainly involves finding an independent set, removing these

nodes and their adjacent nodes from the graph, and continuing this process,

until all the nodes are detached.

2.6.9 Jones-Plassmann Approach (JP)
Jones-Plassmann given a parallel coloring algorithm that improves upon the

parallel MIS algorithm [81]. The Jones-Plassmann algorithm behaves very

much like the MIS algorithm, apart from that it does not find a maximal

independent set at each step. It just finds an independent set in parallel using

Luby’s method of choosing nodes whose weights are local maxima. The

nodes are colored separately using the smallest available color, i.e. the

smallest color that has not previously been assigned to an adjacent node.

This process is repetitive until the whole graph is successfully colored.

Result of some sequential algorithm given by Hussein [76] is shown in table

2.1. Results of some parallel algorithm given by Allwright [75] are shown in

table 2.2 and table 2.3.

Table 2.1: Comparison of sequential algorithm in terms of number of colors

required for graphs

No. of

nodes

Density FF LDFO IDO SDLO

200 25% 20 18 18 17

200 50% 36 34 34 32

200 75% 58 55 56 53

1000 25% 64 62 63 58

1000 50% 127 123 126 116

1000 75% 217 212 214 204

21

Table 2.2: Comparison of parallel algorithm in terms of average number of

colors required for graphs

Problem PMIS JP LDFO SDLO

LUNDA 29.4 28.9 25.0 23.7

LUNDB 30.2 29.7 25.0 24.1

GENT113 20.3 20.5 20.0 20.0

IBM32 9.0 9.3 8.0 8.0

CURTIS54 12.3 12.2 12.0 12.0

Table 2.3: Comparison of parallel algorithm in terms of time taken in seconds

for coloring graphs

Problem PMIS JP LDFO SDLO

LUNDA 2.5 3.0 4.2 5.2

LUNDB 2.5 3.1 4.1 5.1

GENT113 1.2 1.3 1.1 2.7

IBM32 0.19 0.17 0.18 0.27

CURTIS54 0.38 0.30 0.32 0.81

2.7 Related Work
2.7.1 Reduction of 3-Colorable Graph to 3-CNF-SAT
In [27], Alexander Tsiatas gave a reduction approach from 3-Colorable graph

to 3-SAT expression. He encoded the vertices and edges of the graph by 3-

color as boolean encoded expression in DNF then that has to be converted into

k-CNF. He used two recursive and one non-recursive method to convert a k-

CNF expression into 3-CNF expression. Results of all three methods were

observed and found that non- recursive method gave a better result than

remaining. Finally, using this, Alexander generates total ((27*|V|) + (256*|E|))

clauses as 3-CNF-SAT formula for 3-colorable graph. In our earlier

formulation of reduction of k-colorable graph to 3-SAT [10], we generalized

Alaxander’s approach [11] for k-colorable graph and generated ((kk*(k-2)*|V|)

+ (22k+2 *|E|)) clauses in 3-CNF, which is an exponential bound complexity.

22

2.7.2 Reduction of 3-CNF-SAT to 3-Colorable Graph
Moret [44] gave an reduction approach from 3-SAT to 3-colorable graph.

According to Moret, reduced 3-colorable graph having (2n + 3m + 1) vertices

and (3n + 6m) edges, where n is the number of variables and m is number of

clauses contained by 3-SAT formula. The brief description of Moret’s

Approach for reduction of 3-Colorable Graph to 3-CNF-SAT as follows:

Given a 3CNF formula, we produce a graph as follows. The graph consists of

a triangle for each variable and one triangle for each clause in the formula. All

triangles for variables have a common vertex B (we can say base vertex)

which preempts one color, so that the other two vertices of each such triangle

corresponding to the variable and it’s negation (or complement) must be

assigned two different colors i.e. truth assignment either TRUE or FALSE.

Then, we connect each vertex of a clause triangle to the corresponding literal

vertex. Each such edge forces its two endpoints to use different colors.

2.7.3 Approaches Based on Independent Set Extraction
As observed in many studies, it is difficult, if not impossible, to find a proper

k-coloring of a large graph G (e.g., with 1 000 vertices or more) with k close to

χ(G) by applying directly a given coloring algorithm on G. A basic approach

to deal with large graphs is to apply the general principle of “reduce-and-

solve”. This approach is composed of a preprocessing phase followed by a

coloring phase. The preprocessing phase typically identifies and removes some

(large) independent sets from the original graph to obtain a reduced subgraph

(called “residual” graph). The subsequent coloring phase determines a proper

coloring for the residual graph. Given the residual graph is of reduced size, it

is expected to be easier to color than the initial graph. Now it suffices to

consider each extracted independent set as a new color class (i.e., by assigning

a new color to all the vertices of each of these sets). The coloring of the

residual graph and all the extracted independent sets give a proper coloring of

the initial graph. These approaches were explored with success in early studies

like [69, 70, 71, 72]. Algorithms based on this approach can use different

methods to find a large independent set in the graph. In [69], this was achieved

with a simple greedy heuristic while in [69, 71], large independent sets were

23

identified by a dedicated tabu search algorithm. In [39], the authors introduced

the XRLF heuristic which operates in two steps. First, a number of

independent sets are collected using Leighton’s Recursive Largest First (RLF)

heuristic [29]. Then, an independent set is iteratively selected and extracted

from the graph such that its removal minimizes the density of the reduced

graph.

 This process continues until the residual graph reaches a given

threshold. For the subsequent residual graph coloring, various methods have

been used including exhaustive search [72], tabu search [71], simulated

annealing [69, 72] and hybrid genetic tabu search [70].

24

25

Chapter 3

A Tree Based Novel Approach for

Graph Coloring Problem using

Maximal Independent Set

3.1 Introduction

Suppose G= (V, E) is a directionless graph where V is the set of vertices and E

is the array of arcs. The colour problem of graph can be defined as a mapping

of colours C = {1,2,…,k} with the vertices of G so that neighboring vertices of

graph must not accept the same colors. It means, in an accurate graph

colouring, if 2 nodes a and b of the graph share an arc (a, b), both node should

paint by separate colours. The least number of colours, necessary for the

colouring the nodes of G accurately are termed as the chromatic number of G,

represented by χ(G). Graph colouring issue targets the smallest k for a

specified graph G. The instance below illustrates the accurate minimum

coloring of a 5 vertex Star Graph by minimum 3 colors.

 Figure 3.1: Properly Colored 5 Vertex Star Graph

In the optimization form, the graph coloring problem, goals to calculate the

lowest possible colours k, so that a realistic colouring of G could be possible.

V1

V2

V4

V3

V5

26

A k-colorable graph divides an array of vertices V into k dissimilar color

classes, where each member of the class has the same color. In order to have

the same color, the members of each class must be pair wise non-adjacent,

which by definition makes them an independent set. Therefore, finding

maximal independent sets from the initial graph is an effective method for

solving graph coloring problem. In this manuscript, we have developed a tree

based innovative approach for graph coloring problem using maximal

independent set.

An independent set (also known as a stable set) is a sub group of vertices

VS so that none of the vertices in S are neighbors. The subsets of the graph

containing those vertices that are not attached to any other element of the same

set are known as an independent set. The highest cardinality of a stable set of

G is represented by α(G). A stable set is called maximal, if it is not a subset of

any bigger independent set and it is assumed maximum if there is no bigger

independent set within the graph.

A clique is a subset of V where all the vertices are pair wise adjacent. We

can infer the complement graph G’ = (V, E’) from a graph G = (V, E), where

E’ = {(i, j) | i, j ∈V, i ≠ j and (i, j) ∉ E}. The Maximum independent set

problem (MIS) is to determine an independent set in graph G of highest

cardinality α(G). It is well understood that if I is an independent set of G, then

I is a clique of G’.

In this chapter, we developed a new graph coloring method using maximal

independent set by tree exploration. Ultimately, rather than removing

independent sets in sequence, we have tried to recognize maximal sets of

freelance vertices at each step. In this method, due to removing independent

set in each iteration, then many vertices are eliminated from the original graph.

Hence, in this way, coloring of the remaining graph is easier. We evaluated the

performance of our graph coloring procedure on various large DIMACS

standard graphs (with 100, 500 and 1000 vertices).

Further, this chapter is structured as follows. In segment two, we reviewed

the heuristic based graph colouring strategies. In segment three, we provided a

complete demonstration of the projected procedure. Segment four will

describe our approach by an example. Segment five described our approach

27

through pseudo code. In segment six, we showed complexity analysis along

with extensive experimental results and comparisons. The last segment

summarized this chapter’s research.

3.2 Review of previous works

The colouring problem of a graph is a problem category of NP-hard and graph

k-colourability is a problem segment of NP-complete for every integer k ≥ 3

(but 2-coloring is polynomial) [10, 22]. As observed in many pieces of

literature, it is hard to acquire an accurate k-colourability of a massive graph G

(for example: graph having 1000 nodes or more) with number of colors k

nearby the chromatic number χ(G) to use a given colouring procedure directly

onto graph G. There are many heuristic algorithms for graph colouring

comprising the succeeding methods: greedy construction [3], Recursive largest

first (RLF) heuristic [4], tabu search [5, 6, 7, 8], simulated annealing [15, 20],

and evolutionary hybrid or population grounded search [17, 21, 23, 24]. A

complete study of the most important heuristic methods can be found in

Galinier and Hertz [26].

 Another method for handling massive graphs for colouring is to use the

general rule of “reduce-and-solve.” This technique consists a “preprocessing”

succeeded by a “coloring phase”. The first part usually recognizes and

eliminates some independent sets from the initial graph to get a reduced sub

graph (termed “residual” graph). The following part decides correct colouring

for the “residual graph”. Since the reduced graph is compact, it is easier to

paint it than the original graph. Currently, it seems to think about every

removed freelance set as a new color category (i.e., by assignment a new color

to any or all the nodes of those sets). The coloring of the residual graph and

the removed freelance sets offer acceptable coloring of the original graph.

These techniques were explained successfully in earlier articles [7, 9, 15, 20].

Algorithms based on “reduce-and-solve” have the different way to find a

large independent set in the graph. In [15], this was finished an easy greedy

heuristic whereas in [7, 9], big independent sets has been recognized by a

committed tabu search technique. In [20], the researchers presented the XRLF

heuristic that works in 2 stages. Primarily, a variety of independent sets is

generated through Leighton’s Recursive Largest First (RLF) heuristic [4].

28

Secondly, a freelance set is sequentially picked and removed from the graph

so that its elimination reduces the compactness of the reduced graph. This

method progresses till the reduced graph touches a pre assumed threshold. For

the successively reduced graph colouring numerous strategies are used

including exhaustive search [20], tabu search [6][7], simulated annealing [15,

20] and hybrid genetic tabu search [9]. Most recently, this simple independent

set removal method has been reviewed and improved outcomes have been

found for many giant graphs [1, 2,].

3.3 Our Proposed Algorithm: Tree Based

Maximal Independent Set

In this segment, we proposed an algorithm that calculates the minimum

colouring for the graph using maximal independent set. It comprises of 3

steps. The first step is the creation of the complementary edge table. The main

and second step is an iterative step to find maximal independent sets using tree

exploration. Third and the final step is the coloring of the maximal

independent sets. Now we elaborate these steps in detail in the following

subsections:

3.3.1 Complementary Edge Table

The complement of graph G = (V, E) is a graph G’ = (V, E’), where E’ = {(i, j)

| i, j ∈V, i ≠ j and (i, j) ∉ E}. To find maximal independent sets, we need to put

together those vertices that are not connected to each other and if we have a

table that defines which vertices are not connected; it would reduce the time

complexity significantly. So, we scan the edge table ET and make a new edge

table that can be said complementary edge table CET that comprises a list of

vertices that are not connected to each other. At the implementation level, we

take the following step:

(i) Take input file of a graph (from DIMACS instances) as adjacency list

of vertices of graph G; here we call it an edge table (ET).

29

(ii) Create complementary adjacency list of vertices of above input file

and named it as complementary edge table (CET). CET having the list

of vertices that are not connected to each other; it means CET

comprises only those edges which were not in the original edge table

(ET).

(iii) We include only those edges which originate from a vertex of smaller

numbering than its destination as the graph is considered undirected.

3.3.2 Finding Maximal Independent Sets:

 Tree Exploration

This step itself is a multi-step process, which explores vertices of a graph to

make a tree. Each sub tree will give a maximal independent set; this process

will run until the entire vertex has been explored. The technical details of

finding maximal independent sets are as follows:

(i) Select the first vertex which is not included yet in any maximal

independent set MIS i.e. we start from vertex Vi (for i = 1,2,…,n). Now

vertex Vi will be the root of general sub tree Ti (for i = 1,2,…,k).

(ii) Explore root vertex Vi of a sub tree Ti as follows: select all those vertices

from complementary edge table which are listed against vertex Vi and

make those vertices as children of root vertex Vi .

(iii)Repeat the following rule for further exploring every child node Vic of tree

Ti as follows:

a) Select only those vertices which are listed against being explored node

Vic in CET and it should be the sibling of explored node Vic in sub tree

Ti. Since we have to find independent set along a path of created sub

tree; that’s why we consider only sibling node of Vic. This step avoids

connectivity clashes among vertices of the path from the root node to

leaf node. Also, check, it should not be included in any maximal

independent set yet.

30

(iv) After completion of tree formation, select the path with the maximum

length. If more than 1 path has maximum length then selects the first

longest path while traversing left to right among them.

(v) Selected (maximum length) path of sub tree Ti (i=1,2,…,k) will be

maximal independent set MISi (i =1,2,…,k) as every vertices in this path

are not connected to each other in original graph.

(vi) Repeat step 1 to 5 until all the vertices of the graph will be included in any

of maximal independent set MISi . It means, in each iteration, we get one

MIS.

3.3.3 Coloring the Maximal Independent Sets

This is the final step of our minimum coloring algorithm. In this step we

assign a different colour to each maximal independent set, i.e. all the vertices

that belong to the same maximal independent set are allotted the same color

and all the vertices that belong to different independent sets, now have

assigned different colors. This is the core of our algorithm.

3.4 Illustration by an Example

Let us explore our approach by an example. We take following Peterson graph

given in figure 1 and find the minimum coloring for this graph using maximal

independent set.

3.4.1 Creating Complementary Edge Table

The edge table ET and the complementary edge table CET for the graph of

figure 3.2 are listed below in table 3.1.

Figure 3.2: Petersen Graph [35]

31

Table 3.1: Edge and Complementary Edge Table for Figure 3.2

Edge Table (ET) Complementary Edge Table (CET)

1 2 1 3

1 5 1 4

1 6 1 7

2 3 1 8

2 10 1 9

3 4 1 10

3 9 2 4

4 5 2 5

4 8 2 6

5 7 2 7

6 8 2 8

6 9 2 9

7 9 3 5

7 10 3 6

8 10 3 7

 3 8

 3 10

 4 6

 4 7

 4 9

 4 10

 5 6

 5 8

 5 9

 5 10

 6 7

 6 10

 7 8

 8 9

 9 10

3.4.2 Finding Maximal Independent Set by Tree

 Exploration

Now, we start tree exploration according to above rule 3.3.2. Take first vertex

V1 as the root of tree and then go to CET against V1, we find V3, V4, V7, V8,

V9, V10; make these vertices children of V1. Now take V3 to be explored in

next step. Again we go to CET against V3, we find V5,V6, V7, V8, V10; but

we have to select only those vertices which are the siblings of V3 i.e. V7, V8,

V10, so that connectivity clashes among vertices of a path of sub tree could be

32

avoided so that we could go ahead toward finding independent set. Similarly

we explored all the vertices.

Figure 3.3(a): First Maximal Independent Set

 In above sub tree which is drawn in figure 3.3 (a), there are two longest path

{V1, V3, V7, V8} and {V1, V4, V7, V10}. Both are equal and as per our rule,

we choose first longest path while traversing left to right. Since each path in

this sub tree form an independent set and hence we make the longest path of

sub tree as maximal independent set (MIS). We store all the vertices of

selected longest path in MISi (for i=1,2,..,k) as well as in VMIS which keeps

record of vertices those are included in any MISi

MIS1= {V1, V3, V7, V8}

VMIS= {MIS1} = {V1, V3, V7, V8}

Now we start exploration from next vertex which is not included in obtained

MIS i.e. from V2; this is shown in figure 3.3 (b).

Figure 3.3 (b): Second Maximal Independent Set

33

In second case, longest paths of sub tree are {V2,V4,V6} {V2,V4,V9},

{V2,V5,V6} and {V2,V5,V9}. We select first longest path as maximal

independent set according to our approach.

MIS2 = {V2, V4, V6}

VMIS = {MIS1 ˅ MIS2} = {V1, V2, V3, V4, V6, V7, V8}

 Again we start exploration from next node which is not included in any

obtained MIS i.e. from V5. In following sub tree, there is only one path which

is longest {V5, V9, V10}.this step is shown in figure 3.3 (c). Hence we select

the longest path of sub tree as maximal independent set (MIS).

Figure 3.3 (c): Third Maximal Independent Set

MIS3= {V5, V9, V10}

VMIS = {MIS1 ˅ MIS2˅ MIS3} = {V1, V2, V3, V4, V5, V6, V7, V8, V9, V10}

Since V = VMIS; now, stop the process of tree exploration as all the vertices of

graph are included in any of maximal independent set (MIS).

3.4.3 Coloring the Maximal Independent Set

Since, by tree exploration of this graph we get 3 MIS and as we know that

each independent set is a collection of all the disconnected vertices of graph;

hence we can color each MIS by a unique color. Here, in graph given in figure

2, can be colored by 3 colors as it is obtained 3 MIS in this graph by our

approach. First MIS1 has to be assigned color blue; second MIS2 has to be

given color red and third MIS3 has to be assigned color green. When we apply

our algorithm on graph of figure 2, we get the following result:

34

Figure 3.4: Properly colored Petersen graph given in figure 3.2 using our

proposed approach

3.5 Algorithm for Graph Coloring Problem

 using Maximal Independent Set

3.5.1 Notations used in our algorithm:

• VMIS: Set of vertices included in any of independent sets

• V: Set of all vertices

• X: Current node

• SX: Set of siblings of current node X

• Xc : children of X

• NX: Set of neighbors (adjacent nodes) of current node X

• i: temporary number

• Tk: k
th Sub Tree

• MISk: k
th MIS

• n: number of paths with maximum length

• PL: Longest path while traversing left to right

3.5.2 Algorithm for finding Maximal Independent Sets

 (MIS)

1. Input: A directionless graph G = (V, E), an integer k

2. Output: A proper k-coloring of graph G or display statement of failure

35

3. Begin

4. While (VMIS ≠ V)

5. i = 1 and X=Vi

6. If ((NX ∩ SX) = =∅ and X ∉VMIS)

7. Initialize a Sub Tree Tk and add vertex X as root to Tk

8. Repeat step 9 to10 for all neighbors of X

9. For all NX : make child XC of X as XC = NX

10. i = i+ 1

11. Else

12. Repeat step 11 to 13 for all (V-1)

13. X = XC (∀XC ∈V)

14. If (∀X∈V (NX ∩ SX) ≠ ∅ and X ∉VMIS)

15. ∀X∈V (XC = (NX ∩ SX))

16. End if

17. Find number of longest path n

18. If (n>1)

19. Select any one longest path PL; make it MISk and set VMIS = MISk

20. Set V= (V - VMIS)

21. End while

22. End

3.6 Results and Discussion

The property of obtained tree by our approach is equivalent to binomial trees.

A binomial tree is an ordered set of element defined recursively. Let depth of

the tree is d; the total number of node at order d in binomial tree is 2d. We

observed that height (or depth) of tree d = (log n). The complexity of our

algorithm based on the creation of complementary edge table, tree exploration

and selects the longest path of tree as maximal independent set. Creation of

complementary edge table takes O (n2) time where n is the number of vertices

in graph G.

We have tested this algorithm on various DIMACS instances [18][19]. After

testing, we found some interesting results. The algorithm gave colors precisely

equal to the chromatic number of the graphs, no matter the sequencing of the

36

vertices. All results of our procedures were obtained on a Pentium IV 2.4 GHz

with 2 GB RAM under Windows 7. We used Java (JDK 1.7) to implement our

algorithm. Some of the instances that we have been tested and quantity of

colors calculated by the algorithm are as shown in the table II below.

Table 3.2: Comparison of our result with E2COL approach [2], DSATUR

approach [16] and Malguti’s approach [17]

Graph

Instance
|V| |E|

k*

kours

kE2COL

[2]

kDSATU

R

[16]

kmalaguti

[17]

myciel6.col 95 755 7 7 - 7 -

myciel7.col 191 2360 8 8 - 8 -

queen6_6.col 36 580 7 8 - - -

queen7_7.col 49 952 8 8 - - -

queen8_8.col 64 728 9 9 - 9 -

queen9_9.col 81 2112 10 10 - 10 -

mulsol.i.1.col 197 3925 49 49 - 49 -

mulsol.i.2.col 188 3885 31 31 - 31 -

DSJC125.1.col 125 736 5 5 5 5 5

DSJC125.5.col 125 3891 17 17 17 19 17

DSJC125.9.col 125 6961 44 44 44 45 44

DSJC250.1.col 250 3218 8 8 8 9 8

DSJC250.5.col 250 15668 28 28 28 35 28

DSJC250.9.col 250 27897 72 72 72 87 72

DSJC500.1.col 500 12458 12 12 12 15 12

DSJC500.5.col 500 62624 48 48 48 63 49

DSJC500.9.col 500 1124367 126 126 126 160 127

In Table 3.2, |V| denotes set of vertices, |E| is the array of arcs, k* is the

chromatic number or the recognized limit of the chromatic number, kours is the

number of color calculated for every graph using our algorithm, kE2COL is the

chromatic number obtained by extraction and expansion approach of coloring

37

[2], kDSATURis the chromatic number obtained by DSATUR approach [16], and

kmalaguti is the coloring number obtained by Malguti [17].

3.7 Summary

A novel heuristic approach has been proposed for the solution of graph

coloring problem using the maximal independent set which is based on tree

exploration. The first step converts a big graph into a series of gradually

smaller graphs by eliminating maximal independent sets from the graph, while

in the later step, to color the removed maximal independent sets. We have

been observed that even with a basic tabu search coloring procedure, the

planned method gets very reasonable outcomes on a set of DIMACS test

standard graphs. By our approach, we are getting an optimized solution to the

problem of coloring the graph. Computational outcomes are presented to

prove the theoretical analysis.

38

39

Chapter 4

Polynomial 3-SAT Encoding Technique

for k-colorable Graph and Analysis of

Graph Coloring Problem based on

Satisfiability

4.1 Introduction

A Graph k-colorability is an assignment of colors {1,2,…,k} to the vertices of

graph G in such a way that neighbor vertices of graph should receive different

colors. That means, in a proper graph coloring, if two vertices u and v of a

graph share an edge (u, v), then they must be colored with different colors.

The minimum number of colors needed to color the vertices of graph G is

called the chromatic number of G, denoted as χ(G). A graph that can be

assigned a (proper) k-coloring is k-colorable, and it is k-chromatic if its

chromatic number is exactly k. Graph coloring was among the 21 NP-

complete problems [28] originally given by Richard Karp in the year 1972.

Graph coloring is a fundamental and extensively studied problem, which

besides its theoretical significance also enjoys a lot of practical applications.

The graph k-colorability problem has several important real-world applications

[41][42], including register allocation, frequency assignment problem in

cellular network, time tabling problem, aircraft scheduling problem and many

other problems.

 Satisfiability (SAT) was the first problem shown to be NP-Complete [8].

The SAT problem is usually expressed in conjunctive normal form (CNF). A

CNF formula on binary variables is the conjunction (logical AND) of clauses,

each of which is a disjunction (logical OR) of one or more literals, where a

literal is the occurrence of a variable or its complement. A clause is said to be

satisfied if at least one of its literals is true, unsatisfied if all of its literals are

40

set to false and unresolved otherwise. A formula is said to be satisfied if all its

clauses are satisfied, and unsatisfied if at least one of its clauses is unsatisfied.

 In general, the SAT problem is defined as follows: Given a Boolean

formula in conjunctive normal form (CNF), find an assignment of variables

that satisfies the formula or prove that no such assignment exists. In the

following example, the 3-CNF (clause length=3) formula E consists of 4

variables and 3 clauses; each clause having at most 3 literals (length of clause

= 3).

𝐸 = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4)

One of the truth assignments for satisfiability of above expression is x1 = x3 =

true, & x2 = false or x1 = x2 = true & x3 = false. Note that a problem with n

variables will have 2n possible assignments to test. The above example with 3

variables has 8 possible assignments.

 The Satisfiability problem is particularly interesting because it can be used

as a stepping stone for solving decision problems. The graph coloring problem

can also be solved as a decision based using method of Satisfiability (SAT).

Problem instances from domains such as Graph Coloring can be encoded into

SAT and then solved by the help of SAT algorithms.

 Previously, in [27], Alexander Tsiatas gave a reduction approach from 3-

Colorable graph to 3-SAT expression. He encoded the vertices and an edge of

the graph by 3-color as Boolean encoded expression in DNF then that has to

be converted into k-CNF. He used two recursive and one non-recursive

method to convert a k-CNF expression into 3-CNF expression. Results of all

three methods were observed and found that non- recursive method gave a

better result than remaining. Finally, using this, Alexander generates total

((27*|V|) + (256*|E|)) clauses as 3-CNF-SAT formula for 3-colorable graph.

We generalized Alexander’s approach for k-colorable graph and generated ((kk

(k-2)|V|) + (22k+2 *|E|)) clauses in 3-CNF, which is an exponential bound

complexity.

 In section 4.2, we discussed our 3-SAT encoding approach for k-colorable

graph. Section 4.3 illustrated SAT encoding approach of a 3-colorable graph

by an example. In section 4.4, we discussed the SAT based approach for

41

solving graph coloring problem and then in section 4.5 experimental results

are discussed.

4.2 Polynomial 3-SAT Encoding Formulation

Approach of k-Colorable Graph

Let there be a graph G = (V, E), where V is the set of n vertices {v1 v2,…,vn}

and E is the set of m edges{e1 e2,…,em}. The graph has to be colored by k-color

{1,2,…,k} in such a way that no two adjacent vertices should have the same

color. Then to encode this k-colorable graph into 3-CNF-SAT propositional

formula, we use two approaches say vertex constraint approach and edge

constraint approach which will apply on vertices and edges of the graph

respectively. The polynomial 3-SAT encoding formulation of k-colorable

graph is presented as below:

4.2.1 Vertex Constraint Approach

As per vertex constraint approach, color each vertex of a graph G as vic in such

a way that vertex vi (i= 1,2,…,n vertices) should have at least one color c (c =

1,2,…,k) among available k-colors as follows:

𝑣𝑖𝑐 = (𝑣𝑖1 ∨ 𝑣𝑖2 ∨ … ∨ 𝑣𝑖𝑘) (4.1)

Equation (4.1) generates one clause of length-k in conjunctive normal form

(CNF) corresponding to each vertex of graph. But, now we have to reduce it in

3-CNF. There are several different ways of doing this, one of the non-

recursive methods is to convert a k-CNF to 3-CNF is as follows: Consider a

clause F = x1 x2…xk where k (k > 3) is the length of the clause, which can

be converted in 3-CNF by introducing some new variables like y1,y2,…,yk-3 as:

(𝑥1 ∨ 𝑥2 ∨ ¬𝑦1) ∧ (𝑥3 ∨ 𝑦1 ∨ ¬𝑦2) ∧ (𝑥4 ∨ 𝑦2 ∨ ¬𝑦3) ∧ … ∧ (𝑥𝑘−2 ∨ 𝑦𝑘−4 ∨

¬𝑦𝑘−3) ∧ (𝑥𝑘−1 ∨ 𝑥𝑘 ∨ 𝑦𝑘−3 (4.2)

Expression (4.2) transforms a clause of length k into (k−2) clauses of length 3,

and doing this requires introducing (k−3) new variables. For example,

42

applying (4.2) to a clause of length 6 yields (1 clause of length 6) = (4 clauses

of length 3) and this required an additional 3 variables.

Let Fv is the encoded formula (or expression) obtained by vertex constraint

approach which is the conjunction of 3-CNF encoded expression of all the n

vertices of graph G as:

𝐹𝑣 = (𝑣1𝑐 ∧ 𝑣2𝑐 ∧ … ∧ 𝑣𝑖𝑐) (4.3)

Applying (4.2) to (4.1) and finally, we get total (k-2)*|V| clauses in 3-CNF-

SAT expression from graph G as per vertex constraint approach.

|Fv| = (k-2)*|V| clauses in 3-CNF-SAT (4.4)

where |Fv| shows total number of clauses in 3-CNF-SAT expression as per

vertex constraint approach.

4.2.2 Edge Constraint Approach

As per edge constraint approach, color two end points of each edge ej (j =

1,2,…,m) of a given graph G in such a way that two vertices (u, v) connecting

with an arc should not have same colors. It means, any edge of a k-colorable

graph can be encoded by generating a clause in such a way that two end point

of an edge say u,v should not be assigned same color k. The purpose of this

approach is to ensure that two adjacent vertex should not be assigned same

color.

𝑒𝑗 = ¬(𝑢1 ∧ 𝑣1) ∧ ¬(𝑢2 ∧ 𝑣2) ∧ … ∧ ¬(𝑢𝑘 ∧ 𝑣𝑘)

Above equation can also be written as:

𝑒𝑗 = (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ … ∧ (¬𝑢𝑘 ∨ ¬𝑣𝑘) (4.5)

Let Fe is the conjunction of 3-CNF encoded expression of all the m edges of

graph G by applying edge constraint approach as:

𝐹𝑒 = (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚) (4.6)

 Since, expression (4.5) is in 3-CNF-SAT, so there is no need to apply (4.2)

on it. Finally we get, total k*|E| clauses in 3-CNF-SAT from graph G as per

edge constraint approach i.e.

|Fe| = k*|E| clauses in 3-CNF-SAT (4.7)

43

4.2.3 Bounds of Final 3-CNF-SAT Formula

To get final 3-CNF-SAT encoded formula F of graph G, we conjunct encoded

formula obtained by vertex constraint approach (4.3) and formula obtained by

edge constraint approach (4.6) as below:

𝐹 = (𝐹𝑣 ∧ 𝐹𝑒)

𝐹 = ((𝑣1𝑐 ∧ 𝑣2𝑐 ∧ … ∧ 𝑣𝑛𝑐) ∧ (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚)) (4.8)

We combine (4.4) and (4.7) as number of clauses obtained by vertex constraint

approach and by edge constraint approach. Finally, we get total number of

clauses in 3-CNF-SAT formula |F| by polynomial 3-CNF-SAT encoding

technique of k-colorable graph as:

|F| = (k-2)*|V| + k*|E| (4.9)

4.2.4 Algorithm: Encoding of k-Colorable Graph to 3-

 CNF-SAT Expression

1. Read input “.col file” of graph in the form of adjacency list. Here we have

taken DIMACS graph coloring instances as input through a file.

2. Read number of colors k from user.

3. Read the number of vertices n and number of edges m from input file”.

4. Start the encoding process for all the vertices from vertex 1 to last vertex

by applying vertex constraint approach as follows:

4.1 if number of colors k = = 3

for(int i = 1; i <= vertices; i++)

{

 for(int j = 1; j <= k; j++)

 {

 write(i+"0"+j+" ");

 }

 write("0\n");

}

44

4.2 if number of colors k > 3 and no of literals > 3 then write the first two

literal as it is in the output file separated by an space “ ” and then write

the expression “zNv)”“(-zNv+literal” till only two literals remain,

where Nv is the count for number of extra variable z inserted. Append

the last two literals in the file and Write “)” to the file; If it is not the

last clause give space “ ” in the file.

5 Generate clauses by applying edge constraint approach on all the edges

(u,v) of graph as follows:

for(int j=1; j<=color; j++)

{

bw.write(""+edge[1]+"0"+j+" -"+edge[2]+"0"+j+" 0\n");

}

6. Merge the clauses obtained by step 4 and 5.

7. Display the total number of generated clauses, number of extra variable

 needed, total execution time.

4.2.5 Bounds on number of clauses in 3-CNF expression

Property 1: The total number of 3-CNF clauses generated for a k-colorable

graph is ((k-2)* |V| + k*|E|) for V vertices and E edges of graph G

(a) Base case: k=3 (k = no. of colors)

Proof by Induction:

Total number of clauses in 3-CNF expression = (k - 2)*|V| + k*|E|

= (3-2)*|V| + 3*|E|

= |V| + 3*|E|

For one vertex and one edge it will be 1+3 = 4 clauses in 3-CNF

Proof by expression: Let (v e) are conjunction of encoded expression for a

vertex v and an edge (u, v) of 3-colorable graph G by vertex constraint and

edge constraint approach

𝑣 ∧ 𝑒 = (𝑣1 ∨ 𝑣2 ∨ 𝑣3) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ (¬𝑢3 ∨ ¬𝑣3)

45

For one vertex and one edge, above expression is generating 1+3 = 4 clauses

in 3-CNF. Hence base case is true.

(b) For k = m

Proof by induction: (k-2)*|V| + k*|E|

= (m-2)*|V| + m*|E|

Proof by expression: For m colors (vm em) can be expressed as:

𝑣𝑚 ∧ 𝑒𝑚 = (𝑣1 ∨ 𝑣2 ∨ … ∨ 𝑣𝑚) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ … ∧ (¬𝑢𝑚 ∨

¬𝑣𝑚)

But, we know that when we convert a single m-CNF clause with m different

literals (m>3) into 3-CNF, we get (m-2) clauses in our 3-CNF expression.

Hence, Number of clauses in 3-CNF expression by vertex constraint approach

= (m-2)*|V| and number of clauses in 3-CNF by edge constraint approach = m.

Therefore total number of clauses in 3-CNF from mm ev

is (m-2)*|V| + m*|E|.

So it is also true for k=m.

(c) For k = m + 1

Proof by Induction: (k-2)*|V| + k*|E|

= (m +1-2)*|V| + (m+1)*|E

= (m-1)*|V| + (m+1)*|E|

Proof by expression: For (m+1) color, the expression (vm+1em+1) can be

represented as:

Number of 3-CNF clauses from vm+1 = (Number of clauses for vm + clauses for

(m+1)th color) = ((m-2) + 1) = (m-1)

Number of 3-CNF clauses from em+1 = (Number of clauses for em+ clause for

(m+1)th color) = (m+1)

Total no. of clauses in 3-CNF from vm+1em+1 = (m-1)*|V| + (m+1)*|E|

So it is also true for k = m+1.

46

4.2.6 Justification of Propositional Encoding

 Formulation of k-Colorable Graph

Lemma: If a 3-CNF-SAT formula is satisfiable then graph is k-colorable.

Proof: Let us assume that an undirected graph G(V, E) that is k-colorable and

the following is a 3-CNF-SAT formula corresponding to graph G:

𝐹 = (𝑣𝑖 ∧ 𝑒𝑗)

where vi = v1, v2,…,vn are n vertices and ej= e1, e2,…,em are m edges of the graph

G that has to be k-colored by vertex constraint approach and edge constraint

formulation respectively. Above expression can also be expanded as:

𝐹 = ((𝑣1 ∧ 𝑣2 ∧ … ∧ 𝑣𝑛) ∧ (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚))

 For satisfiable of F, each one of these expressions should be true. Let’s

take an encoded vertex expression Fv for k-color by vertex constraint

approach; Fv will be true when all of its clauses are true.

𝐹 = (𝑣11 ∨ 𝑣12 ∨ … ∨ 𝑣1𝑘) ∧ (𝑣21 ∨ 𝑣22 ∨ … ∨ 𝑣2𝑘) ∧ … ∧ (𝑣𝑛1 ∨ 𝑣𝑛2 ∨ … ∨

𝑣𝑛𝑘)

By this, it is clear that every vertex will be assigned at least one color.

Similarly, take encoded expression Fe for k-colorable graph by edge constraint

approach. The expression Fe will be true when all of its edge clauses are true.

𝐹𝑒 = (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚)

Let’s take an encoded edge clause e1 (v1,v2) from Fe; e1 will be true if all its

clauses is true. It means ends points of an edge will not be assigned same

color.

𝑒1 = (¬𝑣11 ∨ ¬𝑣21) ∧ (¬𝑣12 ∨ ¬𝑣22) ∧ … ∧ (¬𝑣1𝑘 ∨ ¬𝑣2𝑘)

 Similarly, if we take other clauses, we will get the same conclusion that

end points of an edge are colored with different color and this is true for each

edge. Hence our graph is k-colorable.

47

4.3 Illustration of Encoding of 3-Colorable

Graph to 3-CNF-SAT

Here, we are taking an example of Petersen [9] graph G as figure 4.1, having

10 vertices and 15 edges to encode it by 3-color say 1, 2, 3 into propositional

3-satisfiability.

Figure 4.1: Petersen Graph [35]

Graph having following set of vertices and edges:

𝑉 = {𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦}

𝐸{(𝑝, 𝑞), (𝑝, 𝑟), (𝑝, 𝑠), (𝑞, 𝑡), (𝑞, 𝑥), (𝑟, 𝑣), (𝑟, 𝑤), (𝑠, 𝑢), (𝑠, 𝑣), (𝑡, 𝑢), (𝑡, 𝑤), (𝑢, 𝑣),

(𝑣, 𝑥), (𝑤, 𝑦), (𝑥, 𝑦))}

Now we start polynomial 3-SAT encoding of above graph by 3-colors. As per

the vertex constraint approach (4.1), we encode vertices of this graph and

stored in Fv as:

𝐹𝑣 = (𝑝1 ∨ 𝑝2 ∨ 𝑝3) ∧ (𝑞1 ∨ 𝑞2 ∨ 𝑞3) ∧ (𝑟1 ∨ 𝑟2 ∨ 𝑟3) ∧ (𝑠1 ∨ 𝑠2 ∨ 𝑠3) ∧

(𝑡1 ∨ 𝑡2 ∨ 𝑡3) ∧ (𝑢1 ∨ 𝑢2 ∨ 𝑢3) ∧ (𝑣1 ∨ 𝑣2 ∨ 𝑣3) ∧ (𝑤1 ∨ 𝑤2 ∨ 𝑤3) ∧ (𝑥1 ∨

𝑥2 ∨ 𝑥3) ∧ (𝑦1 ∨ 𝑦2 ∨ 𝑦3)

y x

q s

w

r

v

u t

p

48

Similarly, we encode all the edges of graph as per the edge constraint

approach (4.5), and stored 3-CNF-SAT expression in Fe. as below:

𝐹𝑒 = (¬𝑝1 ∨ ¬𝑞1) ∧ (¬𝑝2 ∨ ¬𝑞2) ∧ (¬𝑝3 ∨ ¬𝑞3) ∧ (¬𝑝1 ∨ ¬𝑟1) ∧ (¬𝑝2 ∨

¬𝑟2) ∧ (¬𝑝3 ∨ ¬𝑟3) ∧ (¬𝑝1 ∨ ¬𝑠1) ∧ (¬𝑝2 ∨ ¬𝑠2) ∧ (¬𝑝3 ∨ ¬𝑠3) ∧ (¬𝑞1 ∨

¬𝑡1) ∧ (¬𝑞2 ∨ ¬𝑡2) ∧ (¬𝑞3 ∨ ¬𝑡3) ∧ (¬𝑞1 ∨ ¬𝑥1) ∧ (¬𝑞2 ∨ ¬𝑥2) ∧ (¬𝑞3 ∨

¬𝑥3) ∧ (¬𝑟1 ∨ ¬𝑣1) ∧ (¬𝑟2 ∨ ¬𝑣2) ∧ (¬𝑟3 ∨ ¬𝑣3) ∧ (¬𝑟1 ∨ ¬𝑤1) ∧ (¬𝑟2 ∨

¬𝑤2) ∧ (¬𝑟3 ∨ ¬𝑤3) ∧ (¬𝑠1 ∨ ¬𝑢1) ∧ (¬𝑠2 ∨ ¬𝑢2) ∧ (¬𝑠3 ∨ ¬𝑢3) ∧ (¬𝑠1 ∨

¬𝑦1) ∧ (¬𝑠2 ∨ ¬𝑦2) ∧ (¬𝑠3 ∨ ¬𝑦3) ∧ (¬𝑡1 ∨ ¬𝑤1) ∧ (¬𝑡2 ∨ ¬𝑤2) ∧ (¬𝑡3 ∨

¬𝑤3) ∧ (¬𝑡1 ∨ ¬𝑢1) ∧ (¬𝑡2 ∨ ¬𝑢2) ∧ (¬𝑡3 ∨ ¬𝑢3) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨

¬𝑣2) ∧ (¬𝑢3 ∨ ¬𝑣3) ∧ (¬𝑣1 ∨ ¬𝑥1) ∧ (¬𝑣2 ∨ ¬𝑥2) ∧ (¬𝑣3 ∨ ¬𝑥3) ∧

(¬𝑤1 ∨ ¬𝑦1) ∧ (¬𝑤2 ∨ ¬𝑦2) ∧ (¬𝑤3 ∨ ¬𝑦3) ∧ (¬𝑥1 ∨ ¬𝑦1) ∧ (¬𝑥2 ∨

¬𝑦2) ∧ (¬𝑥3 ∨ ¬𝑦3)

Finally, we conjunct Fv and Fe and obtained 3-CNF-SAT encoding expressions

of 3-colorable Petersen graph.

F =Fv Fe

Hence, total number of 3-CNF-SAT clauses corresponding to above 3-

colorable graph Peterson graph = ((number of clauses as per vertex constraint

approach) + (number of clauses as per edge constraint approach)) = (10 + 15)

= 25, which is a polynomial reduction from 3-colorable graph to 3-CNF-SAT.

4.4 Solution Approach for Graph k-Colorability

using SAT Solver

SAT-based approach is a decision based method to solve difficult

combinatorial problems by encoding them into SAT (Satisfiability) problems

and solving by using an efficient SAT solver. SAT solver is a program to find

a solution of a SAT problem. Recent advances of SAT solver technology are

remarkable. SAT solvers are used to solve hard problems by encoding them to

SAT problems (SAT-based approach), such as scheduling, planning, and

software & hardware verification. Since, there have been dramatic

improvements in SAT solver technology over the past decade. This has led to

49

the development of several powerful SAT algorithms that are capable of

solving many hard problems consisting of thousands of variables and millions

of constraints.

Reduction from graph k-colorability problem to SAT (satisfiability) is an

important concept to solve it using efficient SAT solver. With the help of the

polynomial encoding technique of graph k-colorability to SAT, we have

reduced many graph coloring instances into 3-CNF-SAT expression. We have

taken DIMACS benchmark instance [34][40] as input for the graph to encode

into SAT. The DIMACS benchmark collects a large set of instances, which

represent the standard set for experimenting algorithms for the Vertex

Coloring Problem ([34][40], all instances are available at ftp://dimacs.rutgers

.edu/pub/challenge/graph/). The benchmark set includes: random graphs

(DSJC), where for each pair of vertices (i, j) ∈ V, edge (i, j) ∈E is created with

uniform probability; geometric random graphs (DSJR and r), where vertices

are randomly distributed in a unit square, and an edge (i, j) ∈ E is created if the

distance between i and j is less than a given threshold.

After generating 3-CNF expression, now solved it by a powerful SAT

solver. Here, we used a powerful SAT solver Minisat 2.2 [36, 37, 38, 39] to

solve 3-CNF-SAT expression. MiniSat [38][39] is a minimalistic, open-source

Boolean satisfiability (SAT) solver, developed for both researchers and

developers. MiniSat is a simple, well documented, implementation suitable for

educational purposes and can solve a problem with 107 literals. MiniSat gives

output as truth assignment if formula is “SATISFIABLE”; otherwise it proves

that expression is “UNSATISFIABLE”. Satisfiable expression also tells that

graph is colored by exactly k colors.

4.5 Results and Discussion

We have implemented a formulation of polynomial 3-CNF-SAT encoding of

k-colorable graph. Our formulation generates total (((k-2)*|V|) + (k*|E|))

clauses in 3-CNF for k-colorable graph which is a polynomial reduction,

whereas previously, Alaxander [27] generated ((kk *|V|) + (22k+2 *|E|)) clauses

in 3-CNF, which is a exponential reduction. Here, we analyzed the encoding

formulation for 3-color and 4-color on various benchmark problems (graph

50

coloring instances) of the DIMACS challenge [34][40]. We implemented it in

java (JDK 1.7). Results are compiled at table 4.1.

Further, we solved the obtained 3-CNF-SAT encoded expression using

SAT solver. Here we used Minisat 2.2 which gives output as truth assignment

if formula is “SATISFIABLE”; otherwise it proves that expression is

“UNSATISFIABLE”. Satisfiable expression also tells that graph is colored by

exactly k colors. Here, we reported the computational results obtained by the

Minisat 2.2 which takes input from 3-SAT expression obtained by the SAT

encoding of k-colorable graph. All results of our algorithms were obtained on

a Pentium IV 2.4 GHz with 2 GB RAM under Windows 7 as well as Linux

(Ubuntu 12.4).

Table 4.1: 3-CNF-SAT clause generation for color k=3 and 4

Computational results of graph coloring problem using Minisat 2.2 are

stored in Table 4.2 and Table 4.3. Some of the DIMACS graph instance which

is satisfiable on any color k is stored in Table 4.2. Some of the large graphs

Graph

Coloring

Instances

No. of

Vertices

No. of

Edges

Alexander’s

Approach[27]

(Total no of

3-CNF clause

when k=3)

Our

Approach

Total 3-

CNF-

SAT

clauses

(when

k=3)

Alexander’s

Approach[27]

Total no of 3-

CNF clause

when k=4)

Our

Approach:

Total 3-

CNF-SAT

clauses

(when

k=4)

myciel3 11 20 5417 71 8448 102

myciel4 23 71 18797 236 25024 330

queen5_5 25 160 41635 505 27200 690

mugg100_1 100 166 45196 598 108800 864

myciel5 47 236 61685 755 51136 1038

queen6_6 36 290 75212 906 39168 1232

miles250 128 387 102528 1289 139264 1804

queen7_7 49 476 123179 1477 53312 2002

myciel6 95 755 195845 2360 103360 1700

51

having 500 or more vertices are not satisfied and such list is contained by table

4.3.

We compared our approach of 3-CNF-SAT encoding with Alaxander’s

approach [27] by drawing a pie graph. Figure 4.2 shows the comparison

between both the approaches with respect to 3-CNF clause generation for k =

3. Similarly, figure 4.3 shows analysis of 3-CNF-SAT clause generation for k

= 4 corresponding to our and Alexander’s encoding method.

Figure 4.2: Analysis of 3-CNF-SAT clause generation for k = 3

Figure 4.3: Analysis of 3-CNF-SAT clause generation for k = 4

0

50000

100000

150000

200000

250000

Alaxander's
Approach[27]

Our Encoding Approach

0

20000

40000

60000

80000

100000

120000

140000

160000

Alaxander's Approach
[27]

Our Encoding Approach

52

Table 4.2: Results of Some DIMACS Graph Instances which are encoded as

3-CNF-SAT by our reduction approach and then solved by Minisat 2.2

Name of Graph

Instance

No of

vertices n

No of

edges m

Satisfiable

(SAT) on colors

(chromatic

number)

DSJC125.1.col 125 736 5

DSJC125.5.col 125 3891 5

DSJC125.9.col 125 6961 6

DSJC250.1.col 250 3218 5

DSJC250.5.col 250 15668 5

DSJR500.1.col 500 3555 5

le450_15a.col 450 8168 5

le450_15b.col 450 8169 5

le450_5a.col 450 5714 5

le450_5b.col 450 5734 5

le450_5d.col 450 9757 5

queen5_5.col 25 320 5

queen6_6.col 36 580 5

queen7_7.col 49 952 5

queen8_8.col 64 728 5

queen9_9.col 81 2112 5

myciel3.col 11 20 4

myciel4.col 23 71 4

myciel5.col 47 236 5

myciel6.col 95 755 5

myciel7.col 191 2360 5

1-Insertions_4.col 67 232 5

1-Insertions_5.col 202 1227 4

1-Insertions_6.col 607 6337 5

2-Insertions_4.col 149 541 4

2-Insertions_5.col 597 3936 5

53

3-Insertions_4.col 281 1046 4

4-Insertions_3.col 79 156 4

4-Insertions_4.col 475 1795 5

1-FullIns_3.col 30 100 4

1-FullIns_4.col 93 593 5

1-FullIns_5.col 282 3247 6

2-FullIns_3.col 52 201 5

2-FullIns_4.col 212 1621 6

2-FullIns_5.col 852 12201 5

3-FullIns_3.col 80 346 6

3-FullIns_4.col 405 3524 7

miles250.col 128 774 5

miles500.col 128 2340 5

miles700.col 128 4226 5

mulsol.i.1.col 197 3925 5

mulsol.i.2.col 188 3885 5

mulsol.i.3.col 184 3916 5

Table 4.3: Results of Some UNSAT graph instance given by MiniSAT 2.2

Name of Graph

Instance

No of

vertices

n

No of

edges m

Our

Investigation:

Satisfiable

(SAT) on Colors

DSJC250.9.col 250 27897 UNSAT

DSJC500.1.col 500 12458 UNSAT

DSJC500.5.col 500 62624 UNSAT

DSJC500.9.col 500 1124367 UNSAT

DSJC1000.1.col 1000 49629 UNSAT

DSJC1000.5.col 1000 249826 UNSAT

DSJC1000.9.col 1000 449449 UNSAT

DSJR500.1.c.col 500 121275 UNSAT

54

4.6 Summary

In this chapter, we have presented a generalized polynomial 3-CNF-SAT

encoding technique of graph k-colorability. Our encoding formulation of k-

colorable graph to 3-CNF-SAT is polynomial and better than Alaxander’s

approach [27] which was exponential. Later on, we have investigated SAT

based approach for solving graph coloring problem using a powerful SAT

solver MiniSAT 2.2, the role played by SAT solver as an intermediate domain

for solving problems in the form of decision based. SAT technique only

extracted that k number of color can be sufficient to color the graph or not. We

tested many DIMACS graph instances and found some of the graph is k-

colorable i.e. satisfiable. Whereas, few of the graph having number of vertices

is equal to 500 or more are not satisfiable. It means the solution of problem

will be depend on the strength of SAT solver along with encoding technique

of k-colorable graph to 3-CNF-SAT expression.

55

Chapter 5

A New Reduction from 3-SAT to Graph

k-Colorability for Channel Assignment

Problem

5.1 Introduction

The satisfiability problem (SAT) is one of the most prominent problems in

theoretical computer science, which has become increasingly popular and

important insights into our understanding of the fundamentals of computation.

SAT is the first known NP-Complete problem. It is used as a starting point for

proving that other problems are also NP-hard. This is done by polynomial-

time reduction from 3-SAT to the other problem. We can reduce any NP-

Complete problem to/from 3SAT. Reduction from satisfiability problem to

graph k-colorability problem or vice versa is an important concept to solve one

of the hard scheduling problem, as frequency assignment in cellular network.

The frequency assignment problem is very similar to the graph k-colorability

problem [50].

The frequency band has become an important resource for

communication service. There has been large increase in demand for using the

frequency bands caused by the fast growth in mobile communication, satellite

communication and mass communication service areas. To maximize

utilization of frequency band, the limited band of available frequency is

divided into a number of channels. A channel can be reused many times for

different transmitters if the transmitters are far enough from one another so

that the co-channel interference between them is low enough. If there are two

close transmitters using the same channel simultaneously, they will suffer

from severe co-channel interference and the quality of communication service

will be unsatisfactory.

56

Since the available frequency band is limited, we are interested in

using as small band of frequency as possible while satisfying all the frequency

demand and the co-channel constraints. This can be efficiently done by the

proper frequency assignment. It is shown that the frequency assignment

problem is equivalent to an extended version of graph coloring problem [50].

A variation of the graph coloring problem is the graph k-colorability problem

[49].

In this chapter, we introduce a new framework to represent SAT

problems, for this, we proceed for the reduction of the instance of 3-CNF-SAT

formula to k-colorable graph in polynomial time. Our reduction formula

generate a k-colorable graph with |V| = (2n + 3m + (k-2)) vertices and |E| = (3n

+ 6m) edges for k = 3 and |E| = (|E| of (k-1)-colorable graph + (|V|-1)) edges

for k >3 corresponding to any instance of 3-CNF-SAT. Previously, in standard

reduction approach from 3-SAT to 3-Colorable graph [27], the generated

graph having (2n+5m+3) vertices and (3n+10m+3) edges. Further, Moret [44]

gave an improved reduction approach from 3-SAT to 3-colorable graph.

According to Moret, reduced 3-colorable graph will have (2n + 3m + 1)

vertices and (3n + 6m) edges. Here, we generalized the reduction approach to

reduce any instance of 3-CNF-SAT formula to a k-colorable graph in

polynomial time with mathematical proof.

In next section of this chapter, we have explored basic detail of 3-SAT,

k-colorable graph and frequency assignment problem. Section 5.3 describes

our polynomial reduction approach from 3-SAT to k-colorable graph. Section

5.4 explored the formulation of graph k-colorability to frequency assignment

problem.

5.2 Polynomial reduction from 3-CNF-SAT to

k-colorable graph

The method of showing that a problem is NP-Complete by polynomial

reduction is one of the most elegant and productive in computational

57

complexity [51]. To prove that problem A is NP-hard, reduce a known NP-

hard problem to A. Cook [52] defines the following:

Definition 1: Suppose that Li is a language over ∑i, i =1,2.

Then L1 ≤ p L2 (L1 is polynomially reducible to L2) iff there is a polynomial-

time computable function f: ∑1 → ∑2 such that xL1 ↔ f (x) L2, for all x

∑1.

Definition 2: A language L is NP-Complete iff L is in NP, and L’ ≤ p L for

every language L’ in NP

Proposition 1: Given any two languages, L1 and L2:

1) If L1 ≤ p L2 and L2P then L1P.

2) If L1 is NP-Complete, L2NP and L1 ≤ p L2 then L2 is NP-Complete.

5.2.1 Reduction of 3-CNF-SAT to Graph 3-Colorability

(3-SAT ≤p 3-Color)

Theorem 1: Graph 3-Colorability is NP-Complete [44].

Proof: First of all we have to proof that it is in NP then try to proof it is in

NP-Hard. If it is both then it will be NP-Complete.

1. First we show that 3-ColorNP. Given a graph G, and a coloring

assignment of the vertices, simply walk the graph and make sure that all

adjacent vertices have a different color, and make certain that only 3 colors

are used. This is clearly by O (|V| + |E|), where |V| is the number of

vertices and |E| is the number of edges of graph G.

2. Now show that 3-ColorNP-Hard. To do this, we reduce 3-CNF-SAT

expression to 3-colorable graph, or show that 3-SAT≤p 3-Color.

Graph Construction for 3-color: Start with an instance of 3-SAT formula F

with n variables x1, x2,…, xn and m clauses c1,c2,…,cm. Create a graph G such

that G is 3-colorable iff F is satisfiable. Reduced graph G has vertices

corresponds to variables and coloring to vertices is similar to truth assignment

to variables from instance of 3-SAT formula. Given a 3-CNF formula, we

produce a graph as follows. The graph consists of a triangle for each variable

58

and one triangle for each clause in the formula. All triangles for variables have

a common vertex B (we can say base vertex) which preempts one color, so

that the other two vertices of each such triangle corresponding to the variable

and its negation (or complement) must be assigned two different colors i.e.

truth assignment either TRUE or FALSE. Then, we connect each vertex of a

clause triangle to the corresponding literal vertex. Each such edge forces its

two endpoints to use different colors.

Correctness: A clause triangle can be proper colored if and only if all three of

its corresponding literal vertices have not been given the same color, that is, a

clause triangle will be proper 3-colored if and only if all three literals in the

clause have not been assigned the same truth value. Thus, the transformed

instance admits a solution if and only if the original 3-CNF-SAT instance

does. Reduced graph from 3-SAT holds following two conditions for its

correct solution as below:

 If the 3-SAT formula has a satisfying assignment then the graph has 3-

coloring.

 If the graph has a 3-coloring, then the SAT formula has a satisfying

assignment.

Bound: The transformation takes an instance of 3-SAT with n variables and m

clauses and reduced a 3-colorable graph that will have the number of vertices

and edges as follows:

|V| = (2n + 3m + 1) vertices and

|E| = (3n + 6m) edges

 It is easily done in polynomial time.

Example 1: Transform following 3-CNF-SAT formula into 3-colorable graph:

(x ˅ y ˅ z’) ˄ (x ˅ y’ ˅ z’) (5.1)

Here, number of variable n = 3 and number of clauses m = 2; corresponding to

this instance of 3-CNF, following figure 5.1 shows reduced 3-colorable graph

as per 3-colorable graph construction process. Total number of vertices |V| and

number of edges |E| in reduced graph is calculated as:

59

|V| = (2n + 3m + 1) = ((2*3) + (3*2) + 1) = 13

|E| = (3n + 6m) = ((3*3) + (6*2)) = 21

Figure 5.1: 3-Colorable Graph

5.2.2 Reduction of 3-SAT to Graph 4-Colorability (3-

 SAT ≤p 4- Color)

Theorem 2: Graph 4-Colorability is NP-Complete

Proof: First of all we have to proof that it is in NP then proof that it is in NP-

Hard. If it is both then it will be NP-Complete.

1. First we show that 4-ColorNP. Given a graph G, and a coloring

assignment of the vertices, simply walk the graph and make certain that all

adjacent vertices have a different color, and make certain that only 4 colors

are used. This is clearly by O (|V| + |E|).

2. Now show that 4-ColorNP-Hard. To do this, we reduce from 3-Color to

4-Color, or show that 3-Color ≤p 4-Color.

Graph Construction for 4-color: Let G3 be an instance of 3-Colorable graph.

Construct a new graph G4 as follows: Add a single extra vertex B1 and connect

60

it to every other vertex in the graph. This is clearly polynomial in the size of

the graph.

Correctness: Now we must show that G4 is a yes-instance of 4-Color if and

only if G3 is a yes-instance of 3-Color. Consider the following proof.

 Assume G3 is 3-colorable. Therefore, G4 is 4-colorable because the added

vertex B1, which is connected to all the other vertices in the graph, can be

colored with a 4th color, and it will always be connected to vertices that

are 1 of 3 other colors.

 Assume G4 is 4-colorable. Because B1 is connected to every vertex in the

graph, B1 must be the only vertex in G4 that has a certain color. Therefore,

all other vertices in the graph are colored 1 of 3 colors. Therefore, G3 is 3-

colorable.

Since we have shown that 4-ColorNP and 3-Color ≤p 4-Color, hence, it is

proofed that 4-ColorNP-Hard. Therefore, 4-Color NP-Complete.

Bound: The transformation takes an instance of 3-SAT with n variables and m

clauses and generated a 4-colorable graph that will have the number of

vertices and edges as follows:

|V| = |V| of 3-colorable graph + 1 = (2n+3m+1) +1 = (2n + 3m + 2)

|E| = ((|E| of 3-colorable graph) + (|V| of 3-colorable graph))

 = (3n + 6m) + (2n + 3m + 1) = (5n + 9m + 1) edges

It is easily done in polynomial time.

Example 2: Transform (5.1) into 4-colorable graph:

(x ˅ y ˅ z’) ˄ (x ˅ y’ ˅ z’)

Here, number of variable n = 3 and number of clauses m = 2; corresponding to

this instance of 3-CNF, following figure 5.2 shows reduced 4-colorable graph

as per 4-colorable graph construction process. Total number of vertices |V| and

number of edges |E| in reduced graph is calculated as:

|V| = (|V| of 3-colorable graph + 1) = (2n + 3m + 1) +1 = (13 +1) = 14

|E| = |E| of 3-colorable graph + |V| of 3-colorable graph

61

 = ((3n + 6m) + (2n + 3m + 1)) = 21 + 13 = 34.

Figure 5.2: 4-Colorable Graph

5.2.3 Reduction of 3-SAT to Graph 5-Colorability (3-

 SAT ≤p 5-Color)

Theorem 3: Graph 5-Colorability is NP-Complete

Proof: First of all we have to proof it as NP then NP-Hard. If it is both then it

will be NP-Complete.

1. First we show that 5-ColorNP. Given a graph G, and a coloring

assignment of the vertices, simply walk the graph and make certain that all

adjacent vertices have a different color, and make certain that only 4 colors

are used. This is clearly by O (|V| + |E|).

2. Now show that 5-ColorNP-Hard. To do this, we reduce from 4-Color to

5-Color, or show that 4-Color ≤p 5-Color.

Graph Construction for 5-color: Let G4 be an instance of 4-Color. Construct

a new graph G5 as follows: Add a single extra vertex B2 and connect it to

every other vertex in the graph. This is clearly polynomial in the size of the

graph.

62

Correctness: Now we must show that G5 is a yes-instance of 5-Color if and

only if G4 is a yes-instance of 4-Color. Consider the following proof.

 Assume G4 is 4-colorable. Therefore, G5 is 5-colorable because the added

vertex B2, which is connected to all the other vertices in the graph, can be

colored with a 5th color, and it will always be connected to vertices that

are 1 of 4 other colors.

 Assume G5 is 5-colorable. Because B2 is connected to every vertex in the

graph, B2 must be the only vertex in G5 that has a certain color. Therefore,

all other vertices in the graph are colored 1 of 4 colors. Therefore, G4 is 4-

colorable.

Since, we have shown that 5-ColorNP and 4-Color ≤p 5-Color, hence, 5-

ColorNP-Hard. Therefore, 5-Color NP-Complete.

Bound: The transformation takes an instance of 3-SAT with n variables and m

clauses and generated a 5-colorable graph that will have the number of

vertices and edges as follows:

|V| = |V| of 4-colorable graph + 1 = (2n + 3m + 2) +1 = (2n + 3m + 3)

|E| = |E| of 4-colorable graph + |V| of 4-colorable graph

 = ((3n + 6m) + (2n + 3m + 1)) + (2n + 3m + 2) = (7n + 12m + 3)

It is easily done in polynomial time.

Example 3: Transform (5.1) into 5-colorable graph:

(x ˅ y ˅ z’) ˄ (x ˅ y’ ˅ z’)

Here, number of variable n = 3 and number of clauses m = 2; corresponding to

this instance of 3-CNF, following figure 5.3 shows reduced 5-colorable graph

as per 5-colorable graph construction process. Total number of vertices |V| and

number of edges |E| in reduced graph is calculated as:

|V| = |V| of 4-colorable graph + 1 = (2n + 3m + 2) +1 = (14 +1) = 15

|E| = |E| of 4-colorable graph + |V| of 4-colorable graph

 = ((3n + 6m) + (2n + 3m + 1)) + (2n + 3m + 2) = 34 + 14 = 48.

63

Figure 5.3: 5-Colorable Graph

5.2.4 Reduction of 3-SAT to Graph k-Colorability (3-

 SAT ≤p k-Color)

Theorem 4: Graph k-Colorability is NP-Complete

Proof: First of all we have to proof it as NP then NP-Hard. If it is both then it

will be NP-Complete.

1. First we show that k-ColorNP. Given a graph G, and a coloring

assignment of the vertices, simply walk the graph and make certain that all

adjacent vertices have a different color, and make certain that only k colors

are used. This is clearly by O (|V| + |E|).

2. Now show that k-ColorNP-Hard. To do this, we reduce from (k-1)-Color

to k-Color, or show that (k-1)-Color ≤p k-Color.

Graph construction for k-colorable graph: Let Gk-1 be an instance of (k-1)-

Color. Construct a new graph Gk as follows: Add a single extra vertex Bk-3 and

64

connect it to every other vertex in the graph. This is clearly polynomial in the

size of the graph.

Correctness: Now we must show that Gk is a yes-instance of k-Color if and

only if Gk-1 is a yes-instance of (k-1)-Color. Consider the following proof.

 Assume Gk-1 is (k-1)-colorable. Therefore, Gk is k-colorable because the

added vertex Bk-3, which is connected to all the other vertices in the graph,

can be colored with a kth color, and it will always be connected to vertices

that are 1 of (k-1) other colors.

 Assume Gk is k-colorable. Because Bk-3 is connected to every vertex in the

graph, Bk-3 must be the only vertex in Gk that has a certain color.

Therefore, all other vertices in the graph are colored 1 of (k-1) colors.

Therefore, Gk-1 is (k-1)-colorable.

Since we have shown that k-ColorNP and (k-1)-Color ≤p k-Color, we have

shown that k-ColorNP-Hard. Therefore, k-Color NP-Complete.

Bound: The transformation takes an instance of 3-SAT with n variables and m

clauses and generated a k-colorable graph that will have the number of vertices

and edges as follows:

|V| = (2n + 3m + (k-2)) vertices and

|E| = (3n + 6m) edges for k=3

 = ((|E| of (k-1)-colorable graph) + (|V| of (k-1)-colorable graph)) edges

 for k >3

So, it is easily done in polynomial time.

5.3 Graph k-colorability to channel assignment

 problem

Formulate the channel assignment problem as a graph k-colorability problem.

Let the vertices correspond to transmitters and edges correspond to

interference between transmitters. Every vertex is labeled with a frequency

range Fi. The question is whether one can allocate to each vertex a frequency

65

from its frequency range so that no vertices are connected with an edge having

the same frequency.

For doing this, first of all we have to show that the frequency

assignment problem is in NP. Guess (non-deterministic) a frequency

assignment; go through each vertex and verify that its frequency is in the

frequency set. Also go through each edge and verify that the endpoints of the

frequencies are different. This takes linear time in the size of the graph.

In the second step we have to show that the channel assignment

problem is NP-hard. For this, reduce graph k-colorability problem to

frequency assignment:

Graph k-coloring(G, k) =

 for each vertex vi in the graph G

 Fi {1,…,k}

 return Frequency Assignment (G,{Fi})

Finally, check correctness of above as there is a k-coloring of graph G

iff there is a correct assignment of frequencies to G, where every vertex has

frequency set {1,…,k}. Suppose we have a k-coloring of G. Number the colors

from 1 to k. If a vertex has color i, we assign to the corresponding vertex

(transmitter) in the frequency allocation problem the frequency i. This is a

correct frequency assignment because we have been based on a correct k-

coloring. In the other direction: assume that we have a correct frequency

assignment. We get a k- coloring by allowing a vertex to have color i if the

corresponding transmitter has been assigned frequency i.

5.4 Summary

The primary focus of this chapter is to introduce a generalized reduction

approach from 3-SAT to k-colorable graph. Our polynomial reduction

approach generate a k-colorable graph with |V| = (2n + 3m + (k-2)) vertices

and |E| = (3n + 6m) edges for k = 3 and |E| = ((|E| of (k-1)-colorable graph +

(|V| of (k-1)-colorable graph)) edges for k >3 corresponding to any instance of

66

3-CNF-SAT. Then, we give the formulation of graph k-colorability to

frequency assignment problem in cellular network.

67

Chapter 6

Phase Transition in Reduction between

3-SAT and Graph Colorability

6.1 Introduction

In order to increase better understanding of NP-completeness, theoretical

computer scientists have studied many different aspects of different problems.

Even though solving an NP-complete problem is supposed to always take

exponential time in the worst case, there are many special cases of NP-

complete problems that can be solved relatively efficiently. Researchers were

wondering why some problems were so much easier to solve than others, and

they discovered that there is often a parameter characterizing a problem that

affects the difficulty of solving it while exploring properties of NP-complete

problems. The NP-complete Satisfiability problem by Cook and graph coloring

problem by Karp [60] show this phenomenon known as a phase transition.

Each of these problems has a parameter describing it, and when the parameter

is increased to a critical value, the problems’ solutions change dramatically. In

the case of Boolean satisfiability, the problems are easy to solve if the formulas

do not have too many clauses, compared with the number of variables. Graph

coloring problems are easy to solve if the graphs do not have too many edges,

compared with the number of vertices.

In this chapter, we calculated and analyzed phase transitions of generated 3-

CNF-SAT and 3-colorable graph by our reduction method of transforming 3-

SAT to/from 3-Colorable graph. Then we compare calculated phase transition

with known phase transition. Since all NP-complete problems can translate into

one another, study of phase transition gives a better understanding of NP-

complete problems.

68

The chapter is organized as follows, section 6.2 discuss the basic concept

about Boolean satisfiability, graph k-colorability. Section 6.3 discuss the

concept of phase transition and standard phase transition of 3-SAT and 3-

colorability problem. In section 6.4, we calculated the phase transition of

systematically generated 3-colorability graph from 3-SAT, further section 6.5

gave the analysis of phase transition of reduction of 3-SAT which is reduced

from 3-colorable graph. Finally results are compiled at section 6.6.

6.2 Phase Transition

A phase transition in a combinatorial structure occurs when a small change in

the parameters of the structure results in a drastic change in the structure itself.

This change occurs when the parameter reaches a certain critical value known

as a threshold. This is analogous to physical phenomena such as ice melting

when the temperature reaches 320 F. One another daily-life example of phase

transitions is water changing from ice (solid phase) to water (liquid phase) to

steam (gas phase) when temperature increases.

Existence of phase transition and location of threshold are known

thoroughly only for relatively “easy” problems like 2-coloring and 2-SAT. In

all these problems, the colorability or satisfiability depends on the presence of a

cycle in the constraints which is relatively easy to distinguish. For “hard”

problems like 3-SAT and 3-Coloring, existence of phase transition is not

known strictly. Approximate locations of the thresholds are computed

experimentally by Martin, Monasson and Zecchina [60] using non-rigorous

methods of physics, showed 3-SAT has a phase transition [65] at * 4.25. It

has also been shown that graph colouring problems for 3 color exhibit a phase

transition, where problems change from being easy to colour, to being hard to

colour, and on to problems that obviously cannot be coloured. The phase

transition occurs for 3-colorable graph [61] [64] at a critical value of

connectivity Gc = 4.67. The value of the parameter *and Gc* at which the

transition occurs is known as the threshold value for 3-SAT formula and 3-

colorable graph respectively.

69

For random instances of NP-complete problems, phase transitions provide

some insight into both the structure of satisfiable instances and “hardness” of

these instances. By hardness, we mean the time-complexity of a complete

algorithm to determine whether an instance is satisfiable or not. Problem

instances to be found below the threshold, i.e < *, are under-constrained

and are satisfiable with high probability, the instances to be found above the

threshold, i.e. > *, are over-constrained and are unsatisfiable with high

probability and instances located near the threshold, i.e. *, are critically-

constrained, and so the algorithm does a lot of back-tracking before finding

either a solution or a contradiction.

One of the first discovered phase transitions in a mathematical structure is in

the Erdos-Renyi random graph model: G (n, p) [55]. G (n, p) is a family of

graphs that contain exactly n vertices, and between each pair of vertices, there

is an edge with probability p. Erdos and Renyi discovered a phase transition in

their G (n, p) model: if p < ((ln n) / n), then almost surely, the graph is not fully

connected, and if p > ((ln n) / n), then almost surely, the graph is fully

connected. Thus, the point ((ln n) / n) is known as a sharp threshold.

6.2.1 Phase Transition in 3-SAT

It is well-known that the Boolean satisfiability problems show a phase

transition at threshold . The parameter can be defined as:

VariablesofNumber
ClausesofNumber

__
__

 (6.1)

Now, one of the big question about the criteria for satisfiability of a 3-SAT

formula which is randomly generated? Let a randomly generated 3-SAT

instances having n variables and a standard critical value or a standard sharp

threshold * for 3-SAT where it shows phase transition. Suppose, by any

reduction method we generate 3-SAT instances systematically which shows its

phase transition at threshold then how we decide this generated 3-SAT

formula will be satisfiable. In [63], there is a condition to check satisfiability of

3-SAT instances as: if < *, the formula is almost surely satisfiable, and if

> *, the formula is almost surely not. This phase transition has been widely

70

studied, and for 3-SAT, the value of * has been empirically determined [65]

[66] to be around * 4.25.

6.2.2 Phase Transition in 3-Colorability

The graph coloring problem on a graph G = (V, E) with |V | vertices and |E|

edges, also shows a phase transition [64]. In this case, the parameter involved is

the graph connectivity, defined as

Gc = |V |p (6.2)

where |V| is the number of vertices in the graph, and p is the edge probability.

Of course, since G is already defined, p is derived as

2
)1|(|||

||
__

__

VV
E

gesPossibleEdOfNumber
EdgesOfNumberp (6.3)

Thus, combining (6.2) and (6.3), we get an easy-to-use formula for Gc is

1||
||2

V
EGc (6.4)

For 3-colorability, there is a known phase transition at a connectivity value

Gc* 4.67. If Gc < Gc *, then almost surely, the graph is colorable using three

colors. If Gc > Gc*, then almost surely, it is impossible to color the graph with

only three colors.

6.3 Phase transition of reduced 3-colorable

graph from 3-SAT instance

According to [54], polynomial reduction process from 3-SAT to 3-Colorability

Graph is illustrated as follows: Create a separate triangle for each variable and

each clause corresponding to the given 3-CNF-SAT formula. All triangles for

variables have a common vertex B (we can say base vertex) which preempts

one color, so that the other two vertices of each such triangle corresponding to

the variable and its negation (complement) must be assigned two different

colors i.e. truth assignment either TRUE or FALSE. Then, we connect each

71

vertex of a clause triangle to the corresponding literal vertex. Each such edge

forces its two endpoints to use different colors.

Bound: Suppose the transformation takes an instance of 3-SAT formula with n

variables and m clauses and generated a 3-colorable graph. Calculating the

vertices in reduced 3-colorable graph as follows:

 2 vertices per variable (variable and its negation): 2n vertices

 3 vertices per clause: 3m vertices

 1 vertex is common for all variable triangles: 1 vertex

Similarly, calculating the edges in reduced 3-colorable graph as follows:

 3 edges per variable: 3n edges

 3 edges per clause: 3m edges

 3 edges per clause for connection with variables: 3m edges

Thus, the generated 3-colorable graph will have (2n + 3m + 1) vertices and (3n

+ 6m) edges.

Example 1: Transform following 3-CNF-SAT formula into 3-colorable graph:

(x y z’) (x y’ z’)

Figure 6.1: Generated 3-colorable graph from an instance of 3-CNF-SAT

The graph connectivity Gc can be computed from (6.4) with |V| = (2n + 3m + 1)

and |E| = (3n + 6m):

72

mn
mn

V
EGc 32

)63(2
1||
||2

From (6.1), m = n, substitute it on above, so

nn
nnGc

32

)126(

Then in the limit as n,

32
)126(

cG (6.5)

Substituting the known phase transition for 3-SAT, * 4.25, into (6.5),

which yields a phase transition in the generated 3-colorability problem at a

connectivity value Gc 3.86. The 3-colorability problem has a known phase

transition at connectivity value Gc* 4.67. Since Gc Gc*, therefore we can

say that our systematically generation approach of 3-colorable graph from 3-

CNF-SAT is easy to generate for large formula also.

6.4 Phase transition of reduced 3-CNF-SAT

expression from 3-Colorable Graph

Let there be a graph G = (V, E), where V is the set of n vertices {v1 v2,…,vn} and

E is the set of m edges{e1 e2,…,em}. The graph has to be colored by 3-color {1,

2, 3} in such a way that no two adjacent vertices should have same color. In

[53], we have presented 3-CNF-SAT encoding procedure of k-colorable graph.

This technique has two basic approaches; one is vertex constraint and second is

edge constraint approach which will apply on vertices and edges of the graph

respectively.

 As per vertex constraint, color each vertex of a graph G in such a way

that vertex vic should have at least one color among available 3-colors as

follows:

)(321 iiiic vvv (6.6)

where vic is a vertex vi (i = 1,2,…,n vertices) is colored by available colors c (c

= 1,2,3 colors). Equation (6.1) generates one clause of length-3 in CNF

corresponding to each vertex of graph. Finally, we get total |V| clauses in 3-

73

CNF-SAT formula as per vertex constraint approach, where |V| is the number

of vertices in the graph.

 As per edge constraint approach, color two end points of each edge Ej

(j=1,2,…,.m) of a given graph in such a way that two vertices (u, v) connecting

with an arc should not have same colors. That is, any edge of a 3-colorable

graph can be encoded by generating a clause in such a way that two end point

of an edge say u,v should not be assigned same color. The purpose of this

approach is to ensure that two adjacent vertex should be assigned different

color.

)()()(332211 vuvuvue j

Above equation can also be written in conjunctive normal form as:

)()()(332211 vuvuvue j (6.7)

Equation (6.7) generates 3 clause of length-3 in CNF corresponding to each

edge of graph. Finally, we get total 3*|E| clauses in 3-CNF-SAT formula as per

edge constraint approach, where |E| is the number of edges in the graph.

Bound: Thus, total number of clauses in 3-CNF-SAT formula corresponding to

3-colorable graph =|V| + 3*|E|, which is polynomial reduction of 3-colorable

graph to 3-SAT, where |V| and |E| are number of vertices and edges of graph G.

Phase Transition: Phase transition in Boolean satisfiability is measured by a

ratio , it is presented as:

||3||3
||3||

__
__

EV
EV

VariablesofNumber
ClausesofNumber

 (6.8)

Equation (6.4) can be rearranged so that can be expressed in terms of edge

connectivity Gc as:

2
)1|(|

|| cGV
E

Applying this on (6.8) and substituting the known threshold for 3-colorable

graph Gc, 4.67,

7||10
7||8

V
V

74

Assuming |V| gives the ratio = 0.8, which is relatively very less to the

known phase transition of 3-SAT, * 4.25 for random 3-SAT instances.

Since *, therefore we can say that the 3-CNF-SAT generation technique

from 3-colorable graph is quite easy.

6.5 Results and Discussion

Final result of the calculated phase transition for generated 3-SAT and 3-

Colorable Graph by our reduction approach is compared with known phase

transition and previously generated phase transition [27] in table 6.1 as follows:

Table 6.1: Comparisons of Phase Transition of reduced 3-SAT and 3-

Colorable Graph with standard and previously generated phase transition

values.

Reduced NP-

Complete Problem

Known Phase

Transition

Alaxander’s

Phase

Transition

[27]

Our

Calculated

Phase

Transition

Generated 3-SAT

expression

corresponding to

3-colorable graph

* = 4.25 = 1.38 = 0.8

Generated 3-

Colorable Graph

corresponding to

3-SAT expression

Gc*= 4.67 Gc = 3.91 Gc = 3.86

75

6.6 Summary
In this chapter, we have just analyzed the behavior of two NP-Complete

problem say 3-Satisfiability and Graph 3-Colorability during reduction from

each other. Our reduction approach of 3-CNF-SAT to/from 3-colorable graph

generates lower phase transition than known phase transition. The generated 3-

colorable graph from an instance of 3-CNF-SAT gave phase transition at graph

connectivity Gc = 3.86 whereas known phase transition of 3-colorable graph at

Gc = 4.67. It means the reduction approach to generate 3-colorable graph is

better than earlier one. Similarly, the generated 3-CNF-SAT from 3-colorable

graph gave phase transition = 0.8 which is very lower than known phase

transition of 3-SAT, = 4.25. It means the reduction method is more efficient

and easy to generate 3-CNF-SAT from 3-colorable graph. The differences in

phase transitions suggest that different reductions have different efficiencies

that means the different methods of reducing 3-colorability to/from 3-SAT

yielded different phase transitions.

76

77

Chapter 7

Channel Assignment Problem in

Cellular Network and its Reduction to

Satisfiability using Graph k-

Colorability

7.1 Introduction

In cellular networks, a geographical area is divided into smaller service areas

called cells and each of this cell’s has a base station. All the terminals or the

users in those cells communicate with their corresponding cell area’s base

stations. For these, communication links to be established, the available

frequency spectrum should be used and reused very efficiently. The efficient

reuse in the spectrum helps to reduce the cost of service by reducing the

number of base stations and also accommodating more number of users per

base stations. To maximize utilization of frequency band, the limited band of

available frequency is divided into a number of channels. A channel can be

reused many times for different transmitters if the transmitters are far enough

from one another so that the co-channel interference between them should be

low enough. If there are two close transmitters using the same channel

simultaneously, they will suffer from severe co-channel interference and the

quality of communication service will be unsatisfactory. This can be efficiently

done by the proper channel assignment.

Since, the channel assignment problem is very similar to the graph k-

colorability problem [50]. But, till now there are not any known deterministic

methods that can solve a graph k-colorability problem (GCP) or any NP-

complete problem in a polynomial time. There is an alternative approach to

solve it efficiently by propositional Satisfiability which is first known NP-

78

Complete problem. The satisfiability problem (SAT) is one of the most

prominent problems in theoretical computer science, which has become

increasingly popular and important insights into our understanding of the

fundamentals of computation. It is used as a starting point for proving that

other problems are also NP-hard. We can reduce any NP-Complete problem

to/from SAT. Since, there have been dramatic improvements in SAT solver

technology over the past decade. This has lead to the development of several

powerful SAT algorithms that are capable of solving many hard problems

consisting of thousands of variables and millions of constraints. Reduction

from graph k-colorability problem to satisfiability is an important concept to

solve channel assignment in cellular network. In this chapter, we study the

channel assignment problem in cellular network and then reduce it to 3-CNF-

SAT expression using polynomial reduction of the graph k-colorability to

satisfiability [53].

The chapter is organized as follows, section 7.2 discuss the basic concept of

graph k-colorability and channel assignment problem. In section 7.3, we

formulate channel assignment problem using graph k-colorability, further

section 7.4 gave reduction approach of channel assignment problem to

satisfiability expression using graph k-colorability and then finally section 7.5

illustrate it by an example.

7.2 Channel Assignment Problem

The assignment of channels to cells or mobiles is one of the fundamental

resource management issues in a mobile communication system. A channel

assignment problem [67][68] or the frequency assignment problem is nothing

but the task of assigning frequency or channel from a frequency spectrum to a

set of transmitters and receivers satisfying certain hard conditions. There are

basically two prime constraints that affect the channel assignment and its

reusability. First constraint is co-channel interference and this interference is

due to the allocation of the same channel to a certain pair of cells close enough

to cause interference, i.e. a channel assigned to one cell cannot be reused in its

nearby cells that are within its co-channel interference range. Second constraint

is adjacent channel interference and this interference is due to the allocation of

79

adjacent channels (e.g., c1 and c2) to a certain pair of cells (normally adjacent

pair) simultaneously, i.e. channel assigned to adjacent cells must maintain a

minimum separation of a channel.

The above two constraint are also called hard constraint [47] for channel

assignment problem and these are tackled by taking following approach. The

co-channel interference is overcome by separating the channels by a distance

“d” called “co-channel reuse distance” i.e., the minimum distance required

between the centers of two cells using the same channel to maintain the desired

signal quality is known as the co-channel reuse distance d. The cells with

center-to center distance less than d belong to the same region. No channels are

reused within that region. Second constraint the adjacent channel interference

is approached by imposing channel separation. Let us consider two vertices u

and v of graph G, let cu and cv be the channels assigned to them then the

minimum channel separation should satisfy the following condition |cu - cv| ≤

duv. This duv also represent interference strength (or interference weight on

edge) between two endpoints u,v of an edge. Channel assignment should be in

such a way that satisfies both co-channel re-use and adjacent channel

interference conditions.

7.3 Problem Formulation: Channel Assignment

Problem as Graph k-colorability

A graph k-colorability approach can be reduced to an instance of the channel

assignment problem by considering an undirected graph G = (V, E) where V

represent the set of vertices in graph which are the base station or cells in

cellular network and E represent the set of edges in graph which correspond to

pairs of base stations in cellular network whose transmission regions intersect.

Figure 7.1 represent a mapping between graph k-colorability with channel

assignment problem in cellular network. The corresponding graph of cellular

network is called an interference graph. In this graph, channels are assigned to

stations (or vertices of graph) by colors. We assume that channels (colors) are

non negative ordered number 1,2,,…,k. Suppose there is an cellular network

80

having n hexagonal cells say x1,x2,…,xn each having one base station at the

center transmitting with any of the k available channels cm (m=1,2,…,k). The

minimal number of channels required to construct an interference-free channel

assignment is equal to the minimal number of colours required to assign the

color to the vertices of G. The channel assignment problem is more

complicated than the graph coloring problem in the sense that an interference

constraint does not just express that a pair of stations must be assigned different

channels, but it also specifies a minimal required distance.

Figure 7.1: Mapping of graph k-colorability and channel assignment

problem in cellular network.

The channel assignment problem can also be stated as follows: Given a set of n

cells or base stations, a set of k channels and a set of interference constraints,

assign each station a channel without violating any interference constraint

using limited span of frequency spectrum. Channels need to be assigned to the

cells or base stations such that communication via these stations does not

interfere. Interference generally occurs when the same or close frequencies are

assigned to stations that are situated near each other.

81

7.4 Reduction Approach of Channel Assignment

Problem into Satisfiability using Graph k-

Colorability

Let there is an interference graph G = (V, E) corresponding to a cellular

network, where V is the set of n base station {v1,v2,,…,vn} and E is the set of m

edges {e1, e2,…,em} corresponding to interference between stations in network.

The cells have to be assigned k-channel (color) cm = {c1,c2,…,ck} in such a way

that it satisfies interference constraint |cu – cv| ≤ duv, where any two channel cu

and cv are assigned to two adjacent node u and v respectively. To encode this

channel assignment in cellular network into propositional formula, we use two

approach say base constraint approach and interference constraint approach

which will apply on vertices (base stations) and edges (interference between

two adjacent vertex) of the graph respectively. The 3-CNF-SAT encoding

formulation of channel assignment problem using k-colorable graph is

presented below:

7.4.1 Base Station Constraint Approach

Assign channels (colors) cm (for m = 1,2,…,k channels) to each base station (or

vertex) vi (where i = 1,2,…,n stations) of a cellular network (or graph G) as

micv in such a way that each station should be assigned at least one channel cm

(where m =1,2,…,k) among available k-channels as follows:

ݒ = భݒ) ∨ మݒ ∨…∨ ೖ) (7.1)ݒ

Expression (7.1) generates one clause of length-k in CNF corresponding to

each station in network. But, now we have to reduce it in 3-CNF. There are

several different ways of doing this, one of the non-recursive methods to

convert a k-CNF to 3-CNF is as follows: Consider a clause F = x1 x2 … xk

where k (k > 3) is the length of the clause, which can be converted in 3-CNF by

introducing some new variables like y1,y2,…,yk-3 as:

ଵݔ) ∨ ଶݔ ∨ (ଵݕ¬ ∧ ଷݔ) ∨ ଵݕ ∨ (ଶݕ¬ ∧ ସݔ) ∨ ଶݕ ∨ (ଷݕ¬ ∧ …∧ ିଶݔ) ∨ ିସݕ ∨

(ିଷݕ¬ ∧ ିଵݔ) ∨ ݔ ∨ ିଷ) (7.2)ݕ

82

Expression (7.2) transforms a clause of length k into (k−2) clauses of length

3, and doing this requires introducing (k - 3) new variables. For example,

applying (2) to a clause of length 6 yields (1 clause of length 6) = (4 clauses of

length 3) and this required an additional 3 variables, since the clause was of

length k = 6. Applying (7.2) to (7.1) and we get total (k-2)*|V| clauses in 3-

CNF-SAT corresponding to base station constraint approach.

Now, conjunct the 3-CNF-SAT encoding expressions of all n stations of

graph G and store it in Fbs. Total number of clauses in formula Fbs which is

obtained as per base constraint approach, is represented by |Fbs| as:

௦ܨ = ଵݒ) ∨ ଶݒ ∨ …∨) (7.3)ݒ

|Fbs| = (k-2)*|V| clauses in 3-CNF-SAT (7.4)

7.4.2 Interference Constraint Approach

We assume that to avoid interference, two channels cu and cv used by two

different cells u and v must differ at least by distance duv between these cells

(the weight of the connecting edge that is also called interference strength) and

follow the following hard constraint:

|cu – cv| ≤ duv for all channels cm, where m =1,2,…,k (7.5)

An interference constraint is a triplet (u,v,duv), where duv ≥ 0 is the frequency

reused distance duv required between the channels assigned to cells u and v. As

per interference constraint approach, assign channels to two end points of each

edge ej (j=1,2,…,.m) of a given graph in such a way that two station (u, v)

connecting with an arc should satisfy the above interference constraint (7.5).

The interference constraints on an edge e = (u,v) can be modeled into

propositional expression as:

݁ = ¬൫ݑభ ∧ భ൯ݒ ∧ ¬൫ݑభ ∧ మ൯ݒ ∧ …∧ ¬൫ݑభ ∧ ೖ൯ݒ ∧ ¬൫ݑమ ∧ భ൯ݒ ∧

¬൫ݑమ ∧ మ൯ݒ ∧…∧ ¬൫ݑమ ∧ ೖ൯ݒ ∧ …∧ ¬൫ݑೖ ∧ భ൯ݒ ∧ ¬൫ݑೖ ∧ మ൯ݒ ∧ …∧

¬൫ݑೖ ∧ ೖ൯ (7.6)ݒ

Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij

83

That means above expression gives all the possible clauses between two end

point of an edge (u, v) which satisfy above hard constraint (7.5) to avoid

interference between channels. Since expression (7.6) is not in the 3-CNF; so it

can be written in 3-CNF as:

݁ = ൫¬ݑభ భ൯ݒ¬∨ ∧ ൫¬ݑభ ∨ మ൯ݒ¬ ∧ …∧ ൫¬ݑభ ∨ ೖ൯ݒ¬ ∧ ൫¬ݑమ ∨

(భݒ¬ ∧ ൫¬ݑమ ∨ మ൯ݒ¬ ∧ …∧ ൫¬ݑమ ∨ ೖ൯ݒ¬ ∧ ൫¬ݑೖ ∨ భ൯ݒ¬ ∧

൫¬ݑೖ మ൯ݒ¬∨ ∧ …∧ ೖݑ¬) ∨ ೖ) (7.7)ݒ¬

Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij

It means (7.7) generates all clauses of channel assignment if and only if it

satisfy hard constraint of (7.5). Since (7.7) is in 3-CNF-SAT, so there is no

need to apply (7.2) on it. Finally we get, max k2*|E| clauses in 3-CNF-SAT as

per interference constraint approach.

Now, conjunct the 3-CNF-SAT encoding expressions of all the m edges of

graph G and store it in FI. Total number of clauses in this formula is

represented by |FI| as:

ଵܨ = (݁ଵ ∧ ݁ଶ ∧ …∧ ݁) (7.8)

|FI| = max(k2*|E|) clauses in 3-CNF-SAT (7.9)

if and only if formula holds |cu – cv| ≤ duv for all channels cm, where m =1,2,…,k

To get final 3-CNF-SAT encoded formula F, we conjunct formula obtained

by base station constraint approach (3) and formula obtained by interference

constraint approach (7.8) as:

ܨ = (൫ݒଵ ∧ ଶݒ ∧ …∧ ൯ݒ ∧ (݁ଵ ∧ ݁ଶ ∧… ∧ ݁)) (7.10)

where (7.10) satisfy hard constraint of channel assignment problem given in

(7.5).

7.4.3 Maximum bound of generated 3-CNF-SAT

 Formula

Total no. of clauses in 3-CNF-SAT formula contains the clauses generated by

(7.4) and (7.7). Finally we get 3-CNF-SAT formula F as:

|F| = (((k-2)*|V|) + max (k2*|E|)) clauses

84

if and only if it satisfy hard interference constraint of channel assignment (7.5)

as: Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij

7.5 Illustration by an Example

Let there is an small instance of cellular network in figure 7.2, which has 4

base stations u,v,w,x; three available channels 2,4,7 and interference weight or

channel reuse distance d are associated with each edge. Now we have to reduce

this instance of channel assignment to 3-CNF-SAT formula.

First of all, we assign at least one channel to each station and encode it by base

station constraint approach (6.4) as:

௦ܨ = ଶݑ) ∨ ସݑ ∨ (ݑ ∧ ଶݒ) ∨ ସݒ ∨ (ݒ ∧ ଶݓ) ∨ ସݓ ∨ (ݓ ∧ ଶݔ) ∨ ସݔ ∨ (ݔ

Now we encode edges in such a way that interference constraint (7.5) could be

satisfied. There are 4 edges in network as e1(u,w), e2(u,v), e3(u,x) and e4 (v,w).

Figure 7.2: Small Channel Assignment Problem Instance

An edge connecting nodes u and v indicates that the channels assigned to

stations u and v must be four or more than four apart (duv=4). Similarly duw=1,

dux=6 and dvw=4. This will generate following 3-CNF clauses:

݁ଵ = ଶݑ¬) ∨ (ଶݓ¬ ∧ ସݑ¬) ∨ (ସݓ¬

6

4

1

4

v

2, 4, 7

u

2, 4

w

2, 4, 7

x

2, 4

85

݁ଶ = ଶݑ¬) ∨ (ଶݒ¬ ∧ ଶݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) (ଶݒ¬∨ ∧ ସݑ¬) ∨ (ସݒ¬ ∧

ସݑ¬) ∨ (ݒ¬

݁ଷ = ଶݑ¬) ∨ (ଶݔ¬ ∧ ଶݑ¬) ∨ (ସݔ¬ ∧ ସݑ¬) (ଶݔ¬∨ ∧ ସݑ¬) ∨ (ସݔ¬

݁ସ = ଶݒ¬) ∨ (ଶݓ¬ ∧ ଶݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨ (ଶݓ¬ ∧ ସݒ¬) ∨ (ସݓ¬ ∧

ସݒ¬) ∨ (ݓ¬ ∧ ݒ¬) ∨ (ସݓ¬ ∧ ݒ¬) ∨ (ݓ¬

To get final 3-CNF-SAT formula F, conjunct Fbs with e1, e2, e3, and e4. To

model all the interference constraints in 3-CNF-SAT, 22 clauses are generated,

that involving 10 variables.

ܨ = ௦ܨ) ∧ ݁ଵ ∧ ݁ଶ ∧ ݁ଷ ∧ ݁ସ)

ܨ = ଶݑ) ∨ ସݑ ∨ (ݑ ∧ ଶݒ) ∨ ସݒ ∨ (ݒ ∧ ଶݓ) ∨ ସݓ ∨ (ݓ ∧ ଶݔ) ∨ ସݔ ∨ (ݔ ∧

ଶݑ¬) ∨ (ଶݓ¬ ∧ ସݑ¬) ∨ (ସݓ¬ ∧ ଶݑ¬) ∨ (ଶݒ¬ ∧ ଶݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) ∨

(ଶݒ¬ ∧ ସݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) ∨ (ݒ¬ ∧ ଶݑ¬) ∨ (ଶݔ¬ ∧ ଶݑ¬) ∨ (ସݔ¬ ∧

ସݑ¬) ∨ (ଶݔ¬ ∧ ସݑ¬) ∨ (ସݔ¬ ∧ ଶݒ¬) (ଶݓ¬∨ ∧ ଶݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨

(ଶݓ¬ ∧ ସݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨ (ݓ¬ ∧ ݒ¬) ∨ (ସݓ¬ ∧ ݒ¬) ∨ (ݓ¬

7.6 Results and Discussion

In this chapter, we have presented a simple approach to reduce the channel

assignment problem in cellular network to 3-CNF-SAT using graph k-

colorability. Our reduction formulation of channel assignment to 3-CNF-SAT

generates total ((k-1)*|V| + max(k2 *|E|)) clauses for all k channels cm

(m=1,2,…,k) such that |ci - cj| ≤ dij;

7.7 Summary

Since, it is already proved that channel assignment problem in cellular network

is equivalent to graph k-colorability; also both problems are NP-complete. To

keep this in mind, in this chapter, we have presented a reduction approach for

channel assignment problem into 3-CNF-SAT expression using graph k-

colorability. Further, encoded 3-CNF expression can be solved using efficient

SAT solver.

86

87

Chapter 8

Conclusion and Scope for Future Work

8.1 Conclusion

This thesis covered some research investigations of graph coloring problem

and its applications based on Satisfiability and maximal independent set. We

have designed a novel tree based approach for finding maximal independent

set. Also we have attempted to formulate the encoding/reductions 3-CNF-SAT

to/from graph k-colorability and drawn the important conclusions. We

summarize the same as follows: In this thesis, we have developed

polynomial 3-CNF-SAT encodings for the famous graph coloring problem.

For any input graphs from DIMACS, the reduction has been performed on

graphs to encode into 3-CNF-SAT formula. It has been observed that our

formulations using adjacency list for the graphs generate generalized SAT

formula. A polynomial reduction of a k-colorable graph to 3-CNF-SAT

generates ((k-2)*|V| + k*|E|) clauses in 3-CNF-SAT expression. To fetch the

satisfiable values of the SAT formulas, the generated SAT clauses are passed

to SAT solver. The number of satisfiable values so obtained reflects the

unique color values for the input graphs. Thus, it is concluded that the using

Satisfiability the number of unique colored vertices in the input graphs can be

recognized.

In this thesis, graph k-colorability can be reduced to channel

assignment problem for the assignment of k- channel if and only if graph is k-

colorable. Polynomial 3-CNF-SAT encoding of Graph k-colorability is the

basis for reduction of channel assignment problem to 3-CNF-SAT. Reduction

of the channel assignment problem in cellular network to 3-CNF-SAT using

graph k-colorability generates total ((k-1)*|V| + max(k2 *|E|)) clauses for all k

channels cm (m=1,2,…,k) such that |ci - cj| ≤ dij.

In this thesis, we have formulated a generalized reduction approach

from 3-CNF-SAT expression to k-colorable graph. Important formulations

88

have been developed to obtain k-colorable graph from 3-CNF-SAT clauses. A

New reduction approach from 3-CNF-SAT formula to graph k-colorability

generate a k-colorable graph with

 |V| = (2n + 3m + (k-2)) vertices and

 |E| = (3n + 6m) edges for k = 3 or

 |E| = (|E| of (k-1)-colorable graph + (|V|-1)) edges for k >3

8.2 Scope for Future Work

We believe that Satisfiability and maximal independent set based approach

proposed in this thesis would provide promising outcomes for analysis of

graph coloring problem. To facilitate further development of these approaches,

we have highlighted few issues which are addressed below.

Since, channel assignment problem in cellular network is

generalization of graph coloring problem i.e. multicolring graph problem or

bandwidth graph coloring problem. In our thesis, we encoded a channel

assignment problem into 3-CNF-SAT using graph k-colorability. So, there is a

scope to solve this problem using efficient SAT solver. Also, one can try to

solve the channel assignment problem using 3-SAT as a bandwidth graph

coloring (multicoloring) problem.

In our thesis, we formulate a generalized encoding technique for k-

colorable graph. To solve encoded SAT expression more efficiently, there is

always a scope to develop a novel efficient SAT solver.

89

Appendix A

Dataset: DIMACS Graph Instances

Introduction
DIMACS (Center for Discrete Mathematics and Theoretical Computer

Science) [34] defined a format for undirected graph, which has been used as a

standard format for problems in undirected graphs. This format was also

chosen for several DIMACS Computational Challenges. One purpose of the

DIMACS Challenge is to ease the effort required to test and compare

algorithms and heuristics by providing a common test bed of instances and

analysis tools. To facilitate this effort, a standard format must be chosen for

the problems addressed. This document outlines a format for graphs that is

suitable for those looking at graph coloring. This format extends to a flexible

format suitable for many types of graph and network problems.

Input Files
An input file contains all the information about an undirected graph. In this

format, nodes are numbered from 1 up to n vertices in the graph. Files are

assumed to be well-formed and internally consistent: node identifier values are

valid, nodes are defined uniquely, exactly m edges are defined, and so forth.

Input files having mainly following information:

 Comments: Comment lines give human-readable information about

the file and are ignored by programs. Comment lines can appear

anywhere in the file. Each comment line begins with a lower-case

character c.

 c This is an example of a comment line.

90

 Problem line: There is one problem line per input file. The problem

line must appear before any node or arc descriptor lines. The problem

line has the following format.

 p FORMAT NODES EDGES

The lower-case character p signifies that this is the problem line. The

FORMAT field is for consistency with the previous Challenge, and

should contain the word ``edge''. The NODES field contains an integer

value specifying n, the number of nodes in the graph. The EDGES

field contains an integer value specifying m, the number of edges in the

graph.

 Edge Descriptors: There is one edge descriptor line for each edge the

graph, each with the following format. Each edge (u, v) appears exactly

once in the input file and is not repeated as (u,v).

 e u v

The lower-case character e signifies that this is an edge descriptor line.

For an edge (u,v) the fields u and v specify its endpoints.

Graph Descriptions

All listed graphs are from the DIMACS benchmark [73], and, more exactly,

they belong to the following families:

 dsjcX.Y: Random graphs generated by Johnson et. al [72] and used

extensively afterwards by most graph coloring algorithms (like

dsjc1000.5). The number of vertices is denoted by the first number

while the second digit references the probability that any two vertices

establish an edge (the density).

 flatX_K: Flat graphs due to J. Culberson. They are generated by

partitioning the vertex set into K almost equal sized classes and then by

selecting edges only between vertices of different classes. Finding the

91

best legal K-coloring is equivalent to restoring this initial partitioning.

The second number K is hence the chromatic number (X is the vertex

set size).

 le450_K: Leighton graphs, with the 450 vertices and with known

chromatic number K (denoted by the second number) [4]; all graphs

have a clique of size K.

 dsjrX.Y and rX.Y: Random geometric graphs:

o dsjrX.Y: graphs presented by Johnson et. al in [72] along with

the above dsjc random graphs. They are generated by picking

points uniformly at random in a square and by setting an edge

between all pairs of vertices situated within a certain distance.

DSJRx graph instances are geometric random graphs with X

nodes randomly distributed in the unit square.

o rX.Y: graphs generated using the same idea by M. Trick using

a program of C. Morgenstern; suffix "c" denotes the

complement of a graph. Descriptions can be found in [74]. For

R1000.5, only the clique number is available, but it is equal to

the chromatic number and to the upper bound 234.

 C2000.5 and C4000.5: Huge random graphs with up to 4 million

edges.

 latin_square_10 and school*: A latin square graph (and class

scheduling graphs respectivelly) generated by Gary Lewandowski in

the second Dimacs challenge.

 myC: Myciel graphs are based on the Mycielski transformation and

These graphs are difficult to solve because they are triangle free but the

coloring number increases in problem size.

 k-Insertion and Full Insertion graph: k-insertion graphs and full

insertion graphs are a generalisation of myciel graphs with inserted

nodes to increase graph size but not density. These instances are

created by M. Caramia and P. Dell’Olmo.

92

 queenX_Y: A queen graph is a graph on n^2 nodes, each

corresponding to a square of the board. Two nodes are connected by an

edge if the corresponding squares are in the same row, column, or

diagonal.

 milesC: In miles graphs nodes are placed in space with two nodes

connected if they are close enough. The nodes represent a set of United

States cities.

 Leighton Graphs: Leighton graphs are generated by Leighton’s

graph covering theorem (Two finite graphs which have a common

covering have a common finite covering).

93

Bibliography

[1] Wu Q. and Hao J.K. (2012), Coloring large graphs based on independent

set extraction, Computers & Operations Research, 39(2), pp 283–290.

[2] Hao J. K. and Wu Q. (2012), Improving the extraction and expansion

method for large graph coloring, Discrete Applied Mathematics, 160

(16-17), pp 2397–2407.

[3] Brelez (1979), New methods to color the vertices of a graph,

Communications of the ACM, 22(4), pp 251–256.

[4] Leighton (1979), A graph coloring algorithm for large scheduling

problems, Journal of Research of the National Bureau of Standards,

84(6), pp 489–506.

[5] Blochligerand I., Zufferey N. (2008), A graph coloring heuristic using

partial solutions and a reactive tabu scheme, Computers and Operations

Research, 35(3), pp 960–975.

[6] Dorne R. and Hao J. K. (1998), Tabu search for graph coloring, T-

colorings and set T-colorings, In Meta-Heuristics: Advances and Trends

in Local Search Paradigms for Optimization, pp. 77–92.

[7] Hertz A. and de Werra D (1987), Using tabu search techniques for graph

coloring, Computing, 39, pp. 345–351.

[8] Porumbel D. C., Hao J. K. and Kuntz P. (2010), An evolutionary

approach with diversity guarantee and well-informed grouping

recombination for graph coloring, Computers and Operations Research,

37(10), pp 1822–1832.

[9] Fleurent C, and Ferland J A (1996), Genetic and hybrid algorithms for

graph coloring, Annals of Operations Research, 63, pp 437–461.

94

[10] Garey M R, and Johnson D S (1979), Computers and intractability: a

guide to the theory of NP-completeness, San Francisco: W.H. Freeman

and Company.

[11] de Werra D, Eisenbeis C, Lelait S, and Marmol B (1999), On a graph-

theoretical model for cyclic register allocation”, Discrete Applied

Mathematics, 93(2–3), pp 191–203.

[12] Burke E K, McCollum B, Meisels A, Petrovic S, and Qu R (2007), A

graph-based hyper heuristic for timetabling problems, European Journal

of Operational Research, pp 176-177.

[13] Smith D H, Hurley S, and Thiel S U (1998), Improving heuristics for the

frequency assignment problem, European Journal of Operational

Research, 107 (1), pp 76–86.

[14] Zufferey N, Amstutz P, and Giaccari P (2008), Graph colouring

approaches for a satellite range scheduling problem, Journal of

Scheduling, 11(4) pp 263–77.

[15] Chams M, Hertz A and de Werra D, Some experiments with simulated

annealing for coloring graphs, European Journal of Operational

Research, 32, pp 260–266.

[16] Mendez-Diaz I and Zabala P (2006), A branch and cut algorithm for

graph coloring, Discrete Applied Mathematics, 154 (5), pp 826-847.

[17] Malaguti E, Monaci M, and Toth A (2008), A metaheuristic approach for

the vertex coloring problem, INFORMS Journal Computation 20(2), pp

302–316.

[18] Malaguti E, Monaci M, Toth P (2011), An Exact Approach for the

Vertex Coloring Problem, Discrete Optimization, vol. 8, no. 2, pp. 174-

190.

[19] Graph coloring instances. http://mat.gsia.cmu.edu/COLOR/instances

.html.

95

[20] Johnson D S, Aragon C R, McGeoch L A and Schevon C (1991),

Optimization by simulated annealing: An experimental evaluation; Part

II, graph coloring and number partitioning, Operations Research, 39(3),

pp 378–406.

[21] Dorne R and Hao J K (1998), A new genetic local search algorithm for

graph coloring, Lecture Notes in Computer Science, 1498, pp 745–754.

[22] Karp (1972), Reducibility among combinatorial problems, In R. E.

Miller, J. W. Thatcher (eds.), Complexity of Computer Computations,

Plenum Press, New York, USA, pp. 85–103.

[23] Galinier P, Hertz A and Zufferey N (2008), An adaptive memory

algorithm for the K-colouring problem, Discrete Applied Mathematics,

156(2), pp 267–279.

[24] Lu Z and Hao J K (2010), A memetic algorithm for graph coloring,

European Journal of Operational Research, 200(1), pp 235–244.

[25] Cook S A (2004), The Complexity of Theorem Proving Procedures, In:

Proceeding of the ACM Symposium on the Theory of Computing, pp

151-158.

[26] Galinier P and Hertz A (2006), A survey of local search methods for

graph coloring, Computers and Operations Research, 33(9), pp 2547–

2562.

[27] Alexander T (2008), Phase Transitions in Boolean Satisfiability and

Graph Coloring, Department of Computer Science, Cornell University,

(www.cseweb.ucsd.edu/users/atsiatas/phase.pdf).

[28] Adleman L and Manders K (1977), Reducibility, randomness and

intractability, in STOC 77: Proceedings of the ninth annual ACM

symposium on Theory of computing. New York, USA,ACM Press, pp.

151-163.

96

[29] Chiarandini M, Stützle T (2010), An Analysis of Heuristics for Vertex

Colouring, In: Proceeding Festa (ed.), Experimental Algorithms,

Proceedings of the 9th International Symposium, (SEA 2010), vol. 6049

of Lecture Notes in Computer Science, pp. 326-337.

[30] Claessen K, Een N, Sheeran M and Sorensson N (2008), SAT-solving in

practice, In: Proceedings of the 9th International Workshop on Discrete

Event Systems Goteborg, Sweden, pp 61-67.

[31] Fleurent C, Ferland J. (1996), Object-oriented implementation of

heuristics search methods for Graph Coloring, Maximum Clique, and

Satisfiability, vol. 26 of DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, pp. 619-652.

[32] Gelder A. V. (2008), Another look at graph coloring via propositional

satisfiability, Discrete Applied Mathematics, vol. 156, no. 2, pp. 230-

243.

[33] Stockmeyer L (1973), Planar 3-Colorability is NP-Complete, SIGACT

News, vol. 5, no. 3, pp. 19-25.

[34] DIMACS Implementation Challenges, http://dimacs.rutgers.edu/

Challenges/

[35] Petersen graph, http://en.wikipedia.org/wiki/ Petersen _graph.

[36] Een N and Sorensson N (2003), An extensible sat solver, In: Springer

Proceeding of the 6th International Conference on Theory and

Applications of Satisfiability Testing, pp 502-518.

[37] Een N. and Sorensson N. (2005), MiniSat v1.13 - A SAT Solver with

Conflict-Clause Minimization, System description for the SAT

competition, 503-515.

[38] The MiniSAT page by Niklas Een and N Sorensson. http://minisat.se/

[39] MiniSAT User Guide: How to use the MiniSAT SAT Solver by David

A. Wheeler. http://www.dwheeler.com/ essays/minisat-user-guide.html.

97

[40] Computational Series: Graph Coloring and Its Generalizations,

http://mat.gsia.cmu.edu/ COLOR04.

[41] Malaguti E., and Toth P. (2010), A survey on vertex coloring problems,

International Transactions in Operational Research 17, pp 1–34.

[42] Hale W K (1980), Frequency Assignment: Theory and Applications, in

IEEE Proceeding, Vol.68, no.12, pp. 1497-1514.

[43] Paschos V. T. (2003), Polynomial approximation and graph-

coloring, Computing, vol. 70, no. 1, pp. 41-86.

[44] Moret B M (1998), The Theory of Computation, Pearson Education,

1998, chapter 7, Proving Problem Hard, pp 226-252.

[45] Wood D C (1969), A Technique for Coloring a Graph Applicable to

Large-Scale Timetabling Problems, Computer Journal, vol. 12, pp. 317-

322.

[46] Marx D (2004), Graph Colouring Problems and their applications in

Scheduling, Periodica Polytechnica Ser El. Eng Vol. 48, No.1, pp. 11-16.

[47] Hassan M A and Chickadel A (2011), A Review of Interference

Reduction in Wireless Networks Using Graph Coloring Methods,

International journal on applications of graph theory in wireless ad hoc

networks and sensor networks (GRAPH-HOC) Vol.3, No.1, pp 58-67.

[48] Malkawi M, Al-Haj Hassan M and Al-Haj Hassan O (2008), New Exam

Scheduling Algorithm using Graph Coloring, The International Arab

Journal of Information Technology, Vol. 5, No. 1, pp 80-87.

[49] Taehoon P. and Lee, C.Y., (1994), On the k-coloring problem, Journal of

Korean OR/MS Society, 19, pp. 219-233.

[50] De Werra D. and Gay Y. (1994), Chromatic scheduling and frequency

assignment, Discrete Applied Mathematics 49, pp. 165-174.

98

[51] Adleman L and Manders K (1977), Reducibility, randomness and

intractability, in STOC 77: Proceedings of the ninth annual ACM

symposium on Theory of computing. New York, USA: ACM Press, pp

151-163.

[52] Cook S A (2000), The P versus NP problem, Computer Science

Department, University of Toronto. http://www.claymath.org/

millennium/P_vs_NP/ Official_Problem_Description.pdf.

[53] Sharma P C and Chaudhari N S (2011), Polynomial 3-SAT Encoding for

K-Colorability of Graph, Special Issue of International Journal of

Computer Application on Evolution in Networks and Computer

Communications (1), pp 19-24.

[54] Sharma P C and Chaudhari N S (2012), A New Reduction from 3-SAT

to Graph K-Colorability for Frequency Assignment Problem, Special

Issue of International Journal of Computer Application Issue on

Optimization and On-chip Communication (5), pp 23-27.

[55] Erdos P, Renyi A (1960), On the evolution of random graphs, The

mathematical institute of the Hungarian Academy of Science, pp 17-61.

[56] Johnson D S, Aragon C R, McGeoch L A, Schevon C.

(1991), Optimization by Simulated Annealing: An Experimental

Evaluation; Part II, Graph Coloring and Number Partitioning, Operations

Research, vol. 39, no. 3, pp. 378-406

[57] Pardalos P, Mavridou T, Xue J (1998), The graph coloring problem: A

bibliographic survey, Kluwer Academic Publishers, Boston, vol. 2, pp.

331-395.

[58] Johnson D S, Mehrotra A, Trick M A (2008), Special issue on

computational methods for graph coloring and its

generalizations, Discrete Applied Mathematics, vol. 156, no. 2, pp. 145-

146.

99

[59] Held S, Cook W, Sewell E (2011), Safe lower bounds for graph coloring,

 Integer Programming and Combinatoral Optimization, pp. 261-273

[60] Martin O, Monasson R and Zecchina R (2001), Statistical mechanics

methods and phase transitions in optimization problems, TCS 265, 3-67.

[61] Prosser P (1996), An Empirical Study of Phase Transition in Binary

Constraint Satisfaction Problems. Artificial Intelligence, 82, pp 81-109.

[62] Karp R M (1972), Reducibility among Combinatorial Problems,

Complexity of Computer Computations. New York: Plenum, pp. 85–

103. http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

[63] Selman B, Mitchell D G, and Levesque H J (1996), Generating hard

satisfiability problems, Artificial Intelligence, 81(1–2), pp 17–29.

[64] Mulet R, Pagnani A, Weigt M, and Zecchina R (2002), Coloring

Random Graphs, Research Article ,Phys. Rev. Lett. 89, pp 268-301.

[65] Dubois O, Boufkhad Y, and Mandler J (2003), Typical random 3-SAT

formulae and the satisfiability threshold. Technical Report TR03-007,

Electronic Colloquium on Computational Complexity.

[66] Connamacher H and Molloy M (2004), The exact satisfiability threshold

for a potentially intractable random constraint satisfaction problem. In

Proceedings of the 45th Annual IEEE Symposium on Foundations of

Computer, Science, pp 590–599.

[67] Sung C W and Wong W S (1995), A Graph Theoretic Approach to the

Channel Assignment Problem in Cellular System, IEEE 45th Vehicular

Technology Conference, pp. 604–608.

[68] Park T, and Lee C Y (1996), Application of the Graph Coloring

Algorithm to the Frequency Assignment Problem, Journal of the

Operations Research Society of Japan, Vol. 39, No. 2, pp.258–265.

100

[69] Chams, M., Hertz, A., de Werra, D (1987), Some experiments with

simulated annealing for coloring graphs. Eur. Journal. of Operation.

Research. 32(2), pp 260–266.

[70] Fleurent, C., Ferland, J. (1996), Genetic and hybrid algorithms for graph

coloring. Ann. of Operation Research, 63(3), pp 437–461.

[71] Hertz, A., de Werra, D. (1987), Using tabu search techniques for graph

coloring, Computing. 39(4), pp 345–351.

[72] Johnson, D., Aragon, C., McGeoch, L., Schevon, C. (1991),

Optimization by simulated annealing: An experimental evaluation; Part

II, Graph coloring and number partitioning. Operation. Research, 39(3),

pp 378–406.

[73] Johnson, D., Trick M. (1996), Cliques, Coloring, and Satisfiability:

Second DIMACS Implementation Challenge. American Mathematical

Society, 26, pp 1-10.

[74] Sewell E.C. (1996), An improved algorithm for exact graph coloring,

Second DIMACS Implementation Challenge, volume 26 of DIMACS

series in Discrete Mathematics and Theoretical Computer Science, pp

359--376. American Mathematical Society.

[75] Allwright J.R., Bordawekar R., Coddington P.D., Dincer K., Martin

C.L. (1995), A comparison of parallel graph coloring algorithms,

Technical Report SCCS-666, Northeast Parallel Architecture Center,

Syracuse University, pp 1-19.

[76] Hussein A.H., Khair E.S. (2006), New Graph Coloring Algorithms,

American Journal of Mathematics and Statistics 2(4), pp 739-741.

[77] Avanthay C., Hertz A, Zufferey P. (2003), A variable neighborhood

search for graph coloring, European Journal of Operational

Research 151 (2), pp 379–388.

101

[78] Falkenauer E. (1996), A hybrid grouping genetic algorithm for bin

packing, Journal of Heuristics 2(1), pp 5–30.

[79] Burke E.K., McCollum B., Meisels A., Petrovic S., Qu R. (2007), A

graph-based hyper heuristic for timetabling problems, European Journal

of Operational Research 176, pp 177–192.

[80] Luby M. (1986), A simple parallel algorithm for the maximal

independent set problem, Society for Industrial and Applied

Mathematics Journal on Computing, 15, pp 1036-1053.

[81] Jones M.T., Plassmann P.E. (1993), A Parallel Graph Coloring Heuristic,

Society for Industrial and Applied Mathematics Journal of Scientic

Computing 14(3), pp 654-669.

[82] Matula D.W., Beck L.L.(1983), Smallest-last ordering and clustering

and graph coloring algorithms, .Journal of the ACM, 30(3), pp 417-427.

102

