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Abstract 
Nowadays, everywhere resource scheduling is an important task. In general, it is 

observed that resources are limited and users are quite more than resources; then 

question is how to maximize utilization of resources without conflict or with 

minimum conflict.  The graph coloring problem is mainly used for resource 

scheduling. A k-colorability of graph G is an assignment of colors {1,2,…,k} to the 

vertices of G in such a way that neighbor vertices of graph should not receive the 

same colors. The minimum number of colors needed to properly color the vertices of 

G is called the chromatic number of G.Graph coloring problem has several important 

real-world applications including register allocation problem, channel assignment 

problem in cellular network, time tabling problem, aircraft scheduling problem, etc. 

Since graph coloring problem is an NP-Complete problem; therefore no exact solution 

could be found for large graph. There is so many heuristic algorithm used to find out 

approximate solution till date. 

 This thesis presents two variations of solution approach for graph coloring 

problem. First is optimization based solution for graph coloring problem and second 

one is decision based solution for graph coloring problem. 

In the optimization variation of graph coloring problem, its goals to calculate the 

minimum possible coloursk, so that a propercolouring of graphGcould be possible. A 

k-colorable graph divides an array of vertices V into k dissimilarcolor classes, where 

each member of the class has the same color. In order to have the same color, the 

members of each class must be pairwise non-adjacent, which by definition makes them 

an independent set. In our thesis, we presented an algorithm of finding maximal 

independent sets from the initial graph and it gives solution for graph coloring 

problem. 

Satisfiability (SAT) is recognized as the first NP-Complete problem and one of the 

classic problems in computational complexity. Since, the Satisfiability problem (SAT) 

is interesting because it can be used as a stepping stone for solving decision problems. 

In our thesis, we presented Satisfiability (SAT) based solution approach for decision 

based graph coloring problem. In the form of a decision problem, graph k-colorability 

problem can be stated as follows: Is it possible to assign one of the k colors to vertices 

of a graph G = (V, E), such that no two adjacent nodes are assigned the same color? If 
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the answer is positive (or YES), we say that the graph is k-colorable and k is the 

chromatic number of graph G; otherwise it returns “unsatisfiable”. 

Satisfiability (SAT) is used as a starting point for proving that other problems are 

also NP-hard.  We can reduce any NP-Complete problem to/from SAT. Therefore, in 

our thesis we presented a generalized reduction approach for k-colorable graph 

to/from 3-CNF-SAT  

In our thesis, we presented a polynomial 3-SAT encoding technique of k-colorable 

graph. This approach introduces two coloring constraint say vertex coloring constraint 

and edge coloring constraint for proper coloring of a graph. Since, there have been 

dramatic improvements in SAT solver technology over the past decade. This has lead 

to the development of several powerful SAT algorithms that are capable of solving 

many hard problems consisting of thousands of variables and millions of 

constraints.In thesis, we analyze an efficient SAT solver MiniSAT to investigate SAT 

based solution of graph k-colorability problem. Encoded 3-SAT expression will be 

input for SAT solver and then it gives decision based solution.  

In this thesis, we have analyzed the behavior of two NP-Complete problem say 3-

Satisfiability and Graph 3-Colorability during reduction from each other with the help 

of phase transition phenomenon. 

Since, the channel assignment problem is very similar to the graph k-colorability 

problem. Reduction from graph k-colorability problem to satisfiability is an important 

concept to solve channel assignment in cellular network. In our thesis, we mapped a 

cellular network with frequency assignment and then introduced a 3-SAT encoding of 

channel assignment problem. 
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Chapter 1 

Introduction 

A Graph k-colorability is an assignment of colors {1,2,…,k} to the vertices of 

a graph G in such a way that neighbor vertices of graph should receive 

different colors. That means, in a proper graph coloring, if two vertices u and v 

of a graph share an edge (u, v), then they must be colored with different colors. 

A graph G is called k-colorable, if there exists a legal coloring with at most k 

colors and the minimum number of colors needed to color the vertices of the 

graph G is called the chromatic number of G, denoted as χ (G). Following 

figures 1(a) and 1(b) show a 3-colorable and 4-colorable graph respectively. 

Graph k-colorability problem (for k ≥ 3) is among the 21 NP-complete 

problems [10][25] originally given by Richard Karp in the year 1972. 

 

 
Figure 1(a):  3-colorable graph 

 

 

 
Figure 1(b):  4-colorable graph 
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 The wide range of applications along with its combinatorial complexity 

elevates the graph coloring problem to one of the most famous and most 

researched problems in graph theory. Generally, the GCP is NP-complete [10] 

[25] and we currently know of no efficient algorithm for large graphs.  

 There are many approaches proposed to solve the graph coloring problem 

(GCP) till date. Reviews of major approaches on graph coloring problem have 

been given in [41]. An alternative approach to solve this problem is by 

satisfiability (SAT). Satisfiability (SAT) is the first known NP-complete 

problem [25]. The SAT problem is usually expressed in conjunctive normal 

form (CNF). A CNF formula on binary variables is the conjunction of clauses; 

each clause is a disjunction of one or more literals, where a literal is the 

occurrence of a variable or its complement. In general, the SAT problem is 

defined as follows: Given a Boolean formula in CNF, find an assignment of 

variables that satisfies the formula or prove that no such assignment exists. 

 According to Cook’s theorem [10][25], we can reduce any NP-complete 

problem to/from SAT. Then obtained SAT expression can be solved 

separately by efficient SAT solver. Graph k-colorability problem as a decision 

problem targets the question if there exists a proper coloring for a given graph 

G and number of colors k. In this thesis, we have formulated a generalized 

reduction approach for the graph k-colorability to/from 3-CNF-SAT and then 

investigated SAT based approach for solving graph coloring problem. 

 In the optimization version, the graph coloring problem aims to find the 

lowest possible number of colors k under which a feasible coloring of G is 

possible. A k-colorable graph partitions a set of vertices V into k different 

color classes, where each member of the class has the same color. In order to 

have the same color, the members of each class must be pairwise non-

adjacent, which by definition makes them an independent set. Therefore, 

finding maximal independent sets from a graph is an efficient approach for 

solving the graph coloring problem. Review of approaches for graph coloring 

using independent set is given in [2]. In our thesis, we have developed a tree 

based novel approach for graph coloring problem using maximal independent 

set. 
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1.1 Motivation 

Graph coloring is a fundamental and extensively studied problem, which has its 

theoretical significance. The colouring problem of a graph is a famous problem 

category of NP-hard combinatorial optimization [10]. The graph k-colorability 

problem has several important real-world applications [46] including computer 

register allocation [11], timetabling and scheduling [12], frequency assignment 

problem [13, 42], and satellite range scheduling [14], time tabling problem [48] 

and aircraft scheduling problem [42] etc. 
The Satisfiability problem is particularly interesting because it can be used 

as a stepping stone for solving decision problems. The graph coloring problem 

can also be solved as a decision based using the method of Satisfiability (SAT). 

Problem instances from domains such as Graph Coloring can be encoded into 

SAT and then solved by the help of SAT algorithms.  

Since the channel assignment problem is very similar to the graph k-

colorability problem [42]. But, till now there are not any known deterministic 

methods that can solve a graph k-colorability problem (GCP) (or any NP-

complete problem) in a polynomial time. There is an alternative approach to 

solve it efficiently by propositional Satisfiability which is the first known NP-

complete problem. The satisfiability problem (SAT) is one of the most 

prominent problem in theoretical computer science, which has become 

increasingly popular and important insights into our understanding of the 

fundamentals of computation. It is used as a starting point for proving that 

other problems are also NP-hard.  We can reduce any NP-Complete problem 

to/from SAT. Since, there have been dramatic improvements in SAT solver 

technology over the past decade. This has lead to the development of several 

powerful SAT algorithms that are capable of solving many hard problems 

consisting of thousands of variables and millions of constraints. Reduction 

from graph k-colorability problem to satisfiability is an important concept [62] 

to solve channel assignment problem in cellular network.  

In the optimization form, the graph coloring problem, goals to calculate the 

lowest possible colours k, so that a realistic colouring of G could be possible. A 

k-colorable graph divides an array of vertices V into k dissimilar color classes, 
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where each member of the class has the same color. In order to have the same 

color, the members of each class must be pair wise non-adjacent, which by 

definition makes them an independent set. Therefore, finding maximal 

independent sets from the initial graph is an effective method for solving graph 

coloring problem. 

Why coloring a graph? Graph colouring originates from the colouring of 

maps of countries and counties which can be represented as “planar graphs”. 

All planar graphs (and maps) can be coloured using just four colours. However, 

other types of graphs require different numbers of colours. Many different 

algorithmic schemes have been developed for graph colouring. However, only 

a limited set of benchmark instances are typically considered in comparisons 

(e.g. DIMACS). Comparisons between algorithms are also difficult to draw 

because: (a) different experimental conditions are used (b) Often only the good 

results are reported (c) Researchers choose their own cut-off points and only 

report final (best) solutions. 

 

1.2 Objectives 

In our thesis, we analyzed the graph coloring problem based on maximal 

independent set and Boolean Satisfiability (SAT). Our research work mainly 

focuses on polynomial reduction approach of graph k-colorability to/from 3-

CNF-SAT expression and then analyzed SAT based solution approach of graph 

coloring problem. However, the phase transition phenomenon is often 

associated with the hardness of complexity; therefore we investigated the phase 

transition of an encoded 3-colorable graph and generated graph from 3-SAT 

expression. Since all NP-complete problems can translate into one another, a 

study of phase transition gives a better understanding of NP-complete 

problems. Since, it is shown that the channel assignment problem in cellular 

network is similar to the graph k-colorability problem [42]; therefore, in our 

thesis, channel assignment problem (CAP) in a cellular network has also been 

reduced to satisfiability (SAT) using graph k-colorability. In order to realize 

these general aims, specific objectives of our research work are as below: 
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 To develop a tree based novel approach for graph coloring problem 

using maximal independent set. 

 To formulate the generalized polynomial encoding technique for the 

reduction of graph k-colorability (for k ≥ 3) to 3-CNF-SAT 

expression. 

 To investigate the satisfiability (SAT) based approach for solving 

graph k-colorability problem. 

 To formulate the generalized polynomial reduction of 3-CNF-SAT 

expression to k-colorable graph. 

 To analyze and calculate the Phase Transition of a generated graph 

from 3-CNF-SAT expression and 3-CNF-SAT encoding of 3-

colorable graph using our reduction method of 3-SAT to/from 3-

colorable graph. By phase transition concept, we can discuss the 

hardness complexity of our above proposed reduction approach of 3-

SAT to/from graph k-colorability. 

 To formulate a reduction approach of channel assignment problem in 

cellular network into 3-CNF-SAT using graph k-colorability. 

1.3 Contributions 
In this research thesis, we addressed a number of issues associated with graph 

coloring problem, Satisfiability, and maximal independent set. We improved 

the state of knowledge in the following ways: 

 A complementary edge table is introduced so that adjacency list of an 

input graph should be small; especially for the dense graph. A novel 

approach has been proposed for calculating independent set and then 

maximal independent set within a given graph and finally each 

maximal independent set has to assign a different color. 

 Analyzed existing encoding technique of graph k-colorability to 3-

CNF-SAT and developed two new constraints say vertex coloring 

constraint and edge coloring constraint to encode a graph as 3-CNF-
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SAT expression. We encoded standard graph instances DIMACS using 

our approach.     

 Generated 3-CNF-SAT expression from DIMACS graph has to be 

taken as input for SAT solver; so that decision based graph coloring 

problem can be solved using SAT algorithms. Here, we have taken an 

efficient SAT solver MiniSAT to analyze the encoded 3-CNF-SAT 

expression for finding solution of decision based graph coloring. 

 Studied reduction of 3-CNF-SAT expression into 3-colorable graph 

and analyze it. We proposed reduction formula for 4, 5-colorable graph 

and in similar manner we generalized a polynomial reduction approach 

of 3-CNF-SAT to graph k-colorability. 

 Discuss the concept of phase transition and standard phase transition of 

3-SAT and 3-colorability problem. We proposed the calculation of the 

phase transition of systematically generated 3-colorability graph from 

3-SAT and analysis of phase transition of encoded 3-SAT of 3-

colorable graph. 

 On basis of similarity in channel assignment problem with graph k-

colorability problem, we mapped channel assignment problem with 

graph k-colorability. Then, we proposed an encoding technique of 

channel assignment problem into 3-CNF-SAT expression via graph k-

colorablity concept.  

 

1.4 Organization of the Thesis 
In this thesis, we analyzed the well known graph coloring problem based on 

maximal independent set and satisfiability. The thesis is organized as follows: 

In the present chapter, the state-of-the –art topics covered in various chapters 

of the thesis have been enumerated. 

Chapter 2 details the necessary background material required to 

understand the chapters have been presented. The chapter starts with the 

introduction of graph coloring problem where the characterization is governed 

by the problem features. Background study is presented for Graph Coloring 

Problem, Boolean Satisfiability, Satisfiability Solvers, Independent Set, and 

Channel Assignment Problem. The chapter also introduces and presents a brief 
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literature survey on graph coloring problem using maximal independent set 

and Satisfiability. 

Chapter 3 illustrates the algorithm of finding maximal independent set 

from the given graph. In this chapter, a k-colorable graph divides an array of 

vertices V into k dissimilar color classes, where each member of the class has 

the same color. In order to have the same color, the members of each class 

must be pair wise non-adjacent, which by definition makes them an 

independent set. In this chapter, we have developed a tree based innovative 

approach for the graph coloring problem using maximal independent set. 

Chapter 4 gives a generalized polynomial 3-CNF-SAT encoding 

technique of k-colorable graph. Vertex constraint and edge constraint approach 

for 3-SAT encoding of a graph has been discussed in this chapter. Also, 

justification of propositional encoding formulation of k-colorable graph is 

explored here.  In this chapter, this approach is illustrated by a 3-ccolorable 

graph. 

Chapter 5 explores polynomial reduction approach from 3-CNF-SAT 

to k-colorable graph. In this chapter, reduction approach of 3-CNF-SAT to 3-, 

4- and 5-colorable graph has been discussed. At last, a generalized approach 

for reduction of 3-SAT expression to graph k-colorability is developed. 

Chapter 6 calculates and analyze phase transitions of generated 3-

CNF-SAT and 3-colorable graph using our reduction method of transforming 

3-SAT to/from 3-Colorable graph. Then compare calculated phase transition 

with known phase transition. Since all NP-complete problems can translate 

into one another, study of phase transition gives a better understanding of NP-

complete problems. 

Chapter 7 explores about channel assignment problem in cellular 

network; also map this problem with graph coloring problem. This chapter 

illustrates the reduction approach of channel assignment problem to graph k-

colorability instance using vertex and edge constraints. This chapter tells about 

the approach to solve channel assignment problem using SAT solver on basis 

of encoded 3-SAT expression. 

Chapter 8 gives a summary of the work undertaken and provides a 

number of conclusions based on the results in the thesis. It also outlines 

recommendations for future research in this area. 
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Chapter 2 

Background Details 

 

2.1 NP-Complete Problem 

P Class Problem: A problem which can be solved in polynomial time is 

known as P-class problem. For example: all sorting and searching algorithms. 

NP Problem: A problem which cannot be solved in polynomial time but it is 

verified in polynomial time, is known as non deterministic polynomial or NP 

class problem. For example: Sudoku problem, Prime factor, Scheduling, 

Traveling Salesman problem etc. P class problem are tractable problems 

whereas NP class problem are intractable. 

 

 

      

 

 

Figure 2.1 Relationship between P and NP class problem 

Cook’s Reducibility Concept: Let A and B are two problem then problem A 

reduces to problem B iff there is a way to solve A by deterministic algorithm 

that solve B in polynomial time. If A is reducible to B, then we denote it by 

A⋉B. 

Reduction Properties: 

(i) If problem A is reducible to problem B and B is solvable in polynomial 

time then A will also solvable in polynomial time. 

 

 

 

Tractable Problem     Intractable Problem 

NP 
P 
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(ii) If problem A is not solvable in polynomial time then it implies problem B 

will also not solvable in polynomial time. 

NP Hard Problem: A problem is NP hard if every problem in NP can be 

polynomial reduced to it. 

NP Complete Problem (NPC):  A problem is NP complete if it is in NP and 

it is NP hard. All NPC problems are NP-hard but all NP-hard problems are not 

NPC. All the NPC problem is decision problem and the entire NP-hard 

problem are optimization problem. 

In computational complexity theory, the complexity class NP-complete 

[10,52] (abbreviated NP-C or NPC) is a class of decision problems. A decision 

problem L is NP-complete if it is in the set of NP problems so that any given 

solution to the decision problem can be verified in polynomial time, and also 

in the set of NP-hard problems so that any NP problem can be converted into 

L by a transformation of the inputs in polynomial time. 

 NP-complete problem is a subset of NP, the set of all decision 

problems whose solutions can be verified in polynomial time. NP may be 

equivalently defined as the set of decision problems that can be solved in 

polynomial time on a nondeterministic Turing machine. A problem A in NP is 

also in NPC if and only if every other problem in NP can be transformed into 

problem B in polynomial time.  

Formal definition of NP-completeness 

A decision problem C is NP-complete if: 

1. C is in NP, and 

2. Every problem in NP is reducible to C in polynomial time. 

C can be shown to be in NP by demonstrating that a candidate solution to C 

can be verified in polynomial time. 

A problem K is reducible to C if there is a polynomial-time many-one 

reduction, a deterministic algorithm which transforms any instance k ∈	K into 

an instance c ∈ C, such that the answer to c is yes if and only if the answer to k 
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is yes. To prove that an NP problem C is in fact an NP-complete problem it is 

sufficient to show that an already known NP-complete problem reduces to C. 

Note that a problem satisfying condition 2 is said to be NP-hard, whether or 

not it satisfies condition 1. 

2.2 Satisfiability (SAT) Problem 
The Boolean Satisfiability Problem (SAT) is one of the most important and 

extensively studied problems in Computer Science and Engineering. In 

practice, SAT is a core problem in many applications such as Electronic 

Design Automation (EDA) and Artificial Intelligence (AI).  

Given a Boolean formula, the problem of determining whether there 

exists a variable assignment that makes the formula evaluate to true is called 

the satisfiability problem. If the formula is limited to only contain logic 

operations and, or and not, then the formula is said to be a propositional 

Boolean formula. Determining the satisfiability of a propositional Boolean 

formula is called the Boolean Satisfiability Problem (SAT). Given a 

propositional Boolean formula, the SAT problem asks for an assignment of 

variables such that the formula evaluates to true, or a proof that no such 

assignment exists. SAT was the first problem shown to be NP-Complete [30]. 

The SAT problem is usually expressed in conjunctive normal form 

(CNF). A CNF formula on binary variables is the conjunction (AND) of 

clauses each of which is a disjunction (OR) of one or more literals, where a 

literal is the occurrence of a variable or its complement. A clause is said to be 

satisfied if at least one of its literals is true, unsatisfied if all of its literals are 

set to false, unit if all but a single literal are set to false, and unresolved 

otherwise. A formula is said to be satisfied if all its clauses are satisfied, and 

unsatisfied if at least one of its clauses is unsatisfied. In general, the SAT 

problem is defined as follows: Given a Boolean formula in CNF, find an 

assignment of variables that satisfies the formula or prove that no such 

assignment exists. In the following example, the 3-CNF (clause length=3) 

formula E consists of 4 variables, 3 clauses; each clause having at most 3 

literals (length of clause=3 i.e. 3-CNF) and 7 literals: 
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ܧ = ଵݔ) ∨ ଶݔ¬ (ଷݔ¬∨ ∧ ଵݔ¬) ∨ ଶݔ ∨ (ଷݔ ∧ ଵݔ) ∨ ଶݔ ∨   (ସݔ

One of the truth assignments for satisfiability of above expression is x1 = x3 = 

true, & x2 = false   or x1 = x2 = true & x3 = false. Note that a problem with n 

variables will have 2n possible assignments to test. The above example with 3 

variables has 8 possible assignments. 

Why almost all SAT solvers use CNF instead of DNF? Basically, a 

DNF formula is a disjunction of clauses	(ܿଵ ∨ ܿଶ ∨…∨ ܿ), where each clause 

ܿ = (݈ ,ଵ ∧ …∧ ܿ,) is a conjunction of literals. It seems that solving SAT is 

easier using DNF. But, let’s call a clause ic   conflicting if and only if it 

contains both a literal l and its negation l . A formula may have exponentially 

many solutions, so the corresponding DNF formula may have exponentially 

many clauses. After converting DNF to CNF we find that CNF is compact, 

while DNF is not; CNF is implicit, while DNF is explicit. An NP-Complete 

problem can be expressed in DNF as: Given a DNF instance is there an 

assignment of variables that falsifies all the clauses? In other words, if we 

have to get an optimal or accurate solution of NP-Complete problem then 

either SAT formula should be in CNF or in DNF with falsification; otherwise 

DNF cannot give an efficient solution. 

The last few years have seen significant advances in Boolean 

satisfiability (SAT) solving. These advances have lead to the successful 

deployment of SAT solvers in a wide range of problems in Engineering and 

Computer Science. The first SAT solving algorithm is often attributed to 

Davis and Putnam, who proposed an algorithm that can solve general SAT 

problems in 1960 [8]. Since then, numerous algorithms and techniques have 

appeared in the literature to improve the efficiency of SAT solving. Because 

of its NP-Complete nature, it is unlikely that there exist algorithms that can 

solve SAT in polynomial time in the size of the instance description (unless 

P=NP). SAT instances with hundreds or even thousands of variables can often 

be solved by current state-of-the-art SAT solvers in seconds or minutes. 
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2.3 Graph Coloring Problem 
Graph coloring was among the 21 NP-complete problems [3, 10, 62] 

originally given by Richard Karp in the year 1972. Graph coloring problem 

states that, given a graph G (V,E) where V is the set of vertices of the graph 

and E is the set of edges, how many colors are required to color the graph in 

such a way that no two adjacent vertices of the graph are colored with the 

same color. A coloring using at most k colors is called a (proper) k-coloring. 

The smallest number of colors needed to color a graph G is called its 

chromatic number, χ(G). A graph that can be assigned a (proper) k-coloring is 

k-colorable, and it is k-chromatic if its chromatic number is exactly k. 

Graph coloring is a fundamental and extensively studied problem, 

which besides its theoretical significance also enjoys a lot of practical 

applications. The graph k-colorability problem has several important real-

world applications, including register allocation, scheduling like frequency 

assignment, time tabling problem, aircraft scheduling and many other 

problems. 

Unfortunately, determining the chromatic number of a graph is an NP-

hard problem, hence we cannot expect to solve it efficiently for large graphs. 

So during modeling, it might happen that the graph of our application has 

some structure that makes coloring easier or if there is no hope for an efficient 

algorithm for coloring we give an approximation algorithm which does not 

give optimal solution but has some performance guarantee on quality of 

produced solution. 

2.4 Channel Assignment Problem in Cellular 

 Network 
The assignment of channels to cells or mobiles is one of the fundamental 

resource management issues in a mobile communication system. A channel 

assignment problem [42][47][50] or the frequency assignment problem is 

nothing but the task of assigning frequency or channel from a frequency 

spectrum to a set of transmitters and receivers satisfying certain hard 

conditions. Channels are assigned to the cells or base stations such that 
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communication via these stations does not cause interference. Interference 

generally occurs when the same or close frequencies are assigned to stations 

that are situated near each other.  

 The channel assignment problem can be stated as follows: Given a set 

of n cells or base stations, a set of k channels and a set of interference 

constraints, assign each station a channel without violating any interference 

constraint using limited span of frequency spectrum. The channel assignment 

problem is more complicated than the graph coloring problem in the sense that 

an interference constraint does not just express that a pair of stations must be 

assigned different channels, but it also specifies a minimal required distance.  

 Channel assignment problem (CAP) is classified as an NP-complete 

problem [42][50], which means that as the size of the problem increases, the 

time required to solve the problem does not increase in a polynomial manner, 

but rather in an exponential one. These channels must be placed some distance 

apart in order to avoid interference. The assignment of channels to cells or 

mobile is one of the fundamental resource management issues in a mobile 

communication system. 

It is shown that the channel assignment problem is similar to the graph 

k-colorability problem [50]. Determining the k-colorability of any graph is 

also an NP-Complete problem [42][50]. A k-colorability of graph G is an 

assignment of colors {1,2,…,k} to the vertices of G in such a way that 

neighbor vertices of graph should receive different colors. That means, in a 

proper graph coloring, if two vertices u and v of a graph share an edge (u, v), 

then they must be colored with different colors. The minimum number of 

colors needed to properly color the vertices of G is called the chromatic 

number of G, denoted χ(G). 

Since, till now there are not any known deterministic methods that can 

solve a graph k-colorability problem (GCP) or any NP-complete problem in a 

polynomial time. There is an alternative approach to solve it efficiently by 

propositional Satisfiability which is first known NP-Complete problem. The 

satisfiability problem (SAT) is one of the most prominent problems in 

theoretical computer science, which has become increasingly popular and 
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important insights into our understanding of the fundamentals of computation. 

It is used as a starting point for proving that other problems are also NP-hard.  

We can reduce any NP-Complete problem to/from SAT. Since, there have 

been dramatic improvements in SAT solver technology over the past decade. 

This has lead to the development of several powerful SAT algorithms that are 

capable of solving many hard problems consisting of thousands of variables 

and millions of constraints. Reduction from graph k-colorability problem to 

satisfiability is an important concept to solve channel assignment in cellular 

network.  

2.5 Independent Set 
An independent set (also known as a stable set) is a sub groups of vertices

VS  so that none of the vertices in S are neighbors. The subsets of the graph 

containing those vertices that are not attached, i.e. none of the element in the 

set are connected to any other element of the same set, are known as an 

independent set. The highest cardinality of a stable set of G is represented by 

α(G). A stable set is called maximal, if it is not a subset of any bigger 

independent set and it is assumed maximum if there is no bigger independent 

set within the graph.  
A clique is a subset of V where all the vertices are pair wise adjacent. We 

can infer the complement graph G’ = (V, E’) from a graph G = (V, E), where 

E’ = {(i, j) | i, j ∈V, i ≠ j and (i, j) ∉ E}. The Maximum independent set 

problem (MIS) is to determine an independent set in G of highest cardinality 

α(G). It is well understood that if I is an independent set of G, then I is a clique 

of G’.  

 

2.6 Analysis of Some Heuristic Approaches for 

 Graph Coloring Problem 

The word heuristic is used for algorithms which find solutions among all 

possible solutions, but the solution found will be best is not sure, therefore 

they are considered as approximate algorithms. These algorithms, usually 

find a solution near to the best one and they find it fast and easily. Heuristic 
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algorithms are used when a feasible solution is required rapidly. Well 

known examples of heuristic algorithm are Traveling Salesman Problem and 

Knapsack Problem.  

There are many approaches available to solve graph coloring problem. 

These approaches are used to reduce the time complexity of the algorithm and 

the number of colors used in graph. Here, we analysis the solution approaches 

of graph coloring problem in two ways; first in sequential way and second in 

parallel way. In sequential algorithm a node is selected according to some 

predefined criterion and then colored with legal color. The selection and 

coloring continues until all the nodes in the graph are colored. Here we study 

of few sequential algorithm of graph coloring problem such as: Greedy 

Algorithm, First Fit, Largest-Degree-First-Ordering, Incidence-Degree-

Ordering, and Saturation- Degree-Ordering. 

In parallel graph coloring, a number of the existing fast heuristics is based 

on the observation that an independent set of nodes can be colored in parallel. 

Depending on how the independent set  is  selected and  colored, there  are  

many parallel graph coloring techniques such as: Parallel Maximal 

Independent set (PMIS) also known as Luby’s maximal independent set 

finding algorithm]. Other variants are the asynchronous parallel heuristic by 

Jones and Plassmann (JP). Some well- known sequential graph coloring 

algorithms like the Largest- Degree-First algorithm and the Smallest-Degree-

Last algorithm has been parallelized.  

2.6.1 Greedy Algorithm 
Greedy algorithm is one of the simplest but most fundamental heuristic 

algorithms for graph colouring. The algorithm operates by taking vertices one 

by one according to some (possibly arbitrary) ordering and assigns each vertex 

its first available colour. Because this is a heuristic algorithm, the solutions it 

produces may very well be suboptimal; however, it can also be shown that 

GREEDY can produce an optimal solution for any graph. Sequential greedy 

algorithm [75] plays a significant role in the practical resolution of NP-hard 

problems. A greedy algorithm is a basic heuristic that finds a result by 

iteratively adding the locally best element into the solution as per pre defined 
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criteria. Greedy approach color the nodes of the graph by consider them in 

sequence and allocate each node the first available color. Greedy method is the 

simplest which takes an ordering of nodes of a graph and colors these with the 

smallest color fulfilling the constraints that no neighboring nodes are assigned 

similar colors. However, the Greedy method performs badly in practice for 

large graphs. 

2.6.2 First Fit (FF)  
The First Fit [76] coloring algorithm is supply the set of nodes in some 

random order.  The algorithm sequentially assigns each node the lowest 

authorized color. First Fit has the advantage of being very simple and very 

fast. In other words, First Fit is an O (n) time algorithm. 

2.6.3 Largest-Degree-First-Ordering (LDFO) 
Ordering the nodes by decreasing degree, proposed by Avanthay et al. [77], 

was one of the earliest ordering strategies. This ordering works as follows. 

Assume the nodes v1, v2,…,vi-1 have been selected and colored. Node vi is 

selected to be the node with the maximum degree among the set of uncolored 

nodes. Largest Degree First Ordering provides a better coloring because at 

each step it selects a node with the highest number of neighbors which 

produces the highest color. Note that this heuristic can be implemented to run 

in O(n2). 

 The Largest- Degree-First algorithm [77] can be parallelized by a 

very similar method to the Jones-Plassmann algorithm. The only difference is 

that instead of using arbitrary weights to construct the independent sets, the 

weight is selected to be the maximum degree of the node in the induced sub 

graph. Random numbers are only used to resolve conflicts between 

adjoining nodes having the same degree. 

2.6.4 Smallest-Degree-Last–Ordering (SDLO) 
The smallest-degree-last ordering heuristic [82] colors the nodes in  the  order  

induced by  first  removing all  the lowest-degree nodes  from  the  graph,  

then  recursively coloring the resulting graph, and finally coloring the 

removed nodes. 
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The Smallest-Degree-Last algorithm [82] tries to get better upon the Largest-

Degree-First Ordering algorithm by using a more complicated system of 

weights. To achieve this, algorithm works in two steps, a weighting step and 

a coloring step. The weighting step starts by searching all nodes with degree 

equal to the smallest degree d currently in the graph. These are given the 

current weight and detached from the graph, thus changing the degree of their 

adjacent. This continues until all nodes have been given a weight. The 

coloring step discovers the node which has highest weight; it colors itself 

using the lowest available color. 

2.6.5 Incidence-Degree-Ordering (IDO) 

Incident degree ordering was proposed by E.K. Burke et al.[79] and is defined 

as follows. At each step the node with the maximum incident degree is 

selected. The incidence degree of a node is defined as the number of its 

adjacent colored nodes. Note that it is the number of adjacent colored nodes 

and not the number of colors used by the nodes that is counted. For example, 

if a node v has degree 4 where one of its adjacent is uncolored, two of them 

are colored with color 1, while the last one is colored with color 3, then v has 

incident degree 3. Ties are resolved in favor of the node with the largest 

degree. Incident Degree Ordering is an O (n)-time algorithm. 

2.6.6 DSATUR (Degree of Saturation) Approach 
The DSATUR algorithm (abbreviated from “degree of saturation”) was 

originally proposed by Br´elaz [3]. In essence it is very similar in behavior to 

the GREEDY algorithm in that it takes each vertex in turn according to some 

ordering and then assigns it to the first suitable colour class, creating new 

colour classes when necessary. The difference between the two algorithms 

lies in the way that these vertex orderings are generated. With GREEDY the 

ordering is decided before any colouring takes place; on the other hand, for 

the DSATUR algorithm the choice of which vertex to colour next is decided 

heuristically based on the characteristics of the current partial colouring of the 

graph.  

Saturated degree ordering (SDO) was given by E.Falkenauer [78] and is 
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defined as follows. At each iteration the node with the maximum 

saturation degree is chosen. The saturation degree of a node is defined as the 

number of its neighboring differently colored nodes. For example, if a node 

v has degree equal to four where one of its adjacent is uncolored, two of 

them are colored with color 1, while the last one is colored with color 3, then 

v has saturation degree of two. While selecting a node of maximum 

saturation degree, ties are resolved in support of the node with the leading 

degree. The heuristic can be implemented to run in O (n2). 

 

2.6.7 Recursive Largest First (RLF) Approach 
While the DSATUR algorithm for graph colouring is similar in behavior and 

complexity to the classical GREEDY approach, the next constructive method 

we examine, the Recursive Largest First (RLF) algorithm follows a slightly 

different strategy. The RLF algorithm was originally designed by Leighton 

[4], in part for use in constructing solutions to large timetabling problems. The 

method works by colouring a graph one colour at a time, as opposed to one 

vertex at a time. In each step the algorithm uses heuristics to identify an 

independent set of vertices in the graph, which are then associated with the 

same colour. This independent set is then removed from the graph, and the 

process is repeated on the resultant, smaller subgraph. This process continues 

until the subgraph is empty, at which point all vertices have been coloured 

leaving us with a feasible solution. Leighton (1979) has proven the worst-case 

complexity of RLF to be O(n3), giving it a higher computational cost than the 

O(n2) GREEDY and DSATUR algorithms; however, this algorithm is still of 

course polynomially bounded. 

2.6.8 Parallel Maximal Independent set (PMIS) 
The Maximal Independent Set (MIS) algorithm proposed by Luby [80] 

colors the graph by continually getting the largest probable independent set 

of nodes ( nodes which are not neibours) in the graph. All nodes in the first 

such set are assigned the same color and removed from the graph. The 

algorithm then finds a new MIS and assigned it a second color, and continues 

finding and coloring maximal independent sets until all nodes have been 
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colored. Luby mainly involves finding an independent set, removing these 

nodes and their adjacent nodes from the graph, and continuing this process, 

until all the nodes are detached. 

2.6.9 Jones-Plassmann Approach (JP) 
Jones-Plassmann given a parallel coloring algorithm that improves upon the 

parallel MIS algorithm [81]. The Jones-Plassmann algorithm behaves very 

much like the MIS algorithm, apart from that it does not find a maximal 

independent set at each step. It just finds an independent set in parallel using 

Luby’s method of choosing nodes whose weights are local maxima. The 

nodes are colored separately using the smallest available color, i.e. the 

smallest color that has not previously been assigned to an adjacent node.  

This process is repetitive until the whole graph is successfully colored. 

 

Result of some sequential algorithm given by Hussein [76] is shown in table 

2.1. Results of some parallel algorithm given by Allwright [75] are shown in 

table 2.2 and table 2.3. 

 

Table 2.1: Comparison of sequential algorithm in terms of number of colors 

required for graphs 

No. of 

nodes 

Density FF LDFO IDO SDLO 

200 25% 20 18 18 17 

200 50% 36 34 34 32 

200 75% 58 55 56 53 

1000 25% 64 62 63 58 

1000 50% 127 123 126 116 

1000 75% 217 212 214 204 
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Table 2.2: Comparison of parallel algorithm in terms of average number of 

colors required for graphs 

Problem PMIS JP LDFO SDLO 

LUNDA 29.4 28.9 25.0 23.7 

LUNDB 30.2 29.7 25.0 24.1 

GENT113 20.3 20.5 20.0 20.0 

IBM32 9.0 9.3 8.0 8.0 

CURTIS54 12.3 12.2 12.0 12.0 

 

 

Table 2.3: Comparison of parallel algorithm in terms of time taken in seconds 

for coloring graphs 

Problem PMIS JP LDFO SDLO 

LUNDA 2.5 3.0 4.2 5.2 

LUNDB 2.5 3.1 4.1 5.1 

GENT113 1.2 1.3 1.1 2.7 

IBM32 0.19 0.17 0.18 0.27 

CURTIS54 0.38 0.30 0.32 0.81 

 

2.7 Related Work 
2.7.1 Reduction of 3-Colorable Graph to 3-CNF-SAT 
In [27], Alexander Tsiatas gave a reduction approach from 3-Colorable graph 

to 3-SAT expression. He encoded the vertices and edges of the graph by 3-

color as boolean encoded expression in DNF then that has to be converted into 

k-CNF. He used two recursive and one non-recursive method to convert a k-

CNF expression into 3-CNF expression. Results of all three methods were 

observed and found that non- recursive method gave a better result than 

remaining. Finally, using this, Alexander generates total ((27*|V|) + (256*|E|)) 

clauses as 3-CNF-SAT formula for 3-colorable graph. In our earlier 

formulation of reduction of k-colorable graph to 3-SAT [10], we generalized 

Alaxander’s approach [11] for k-colorable graph and generated ((kk*(k-2)*|V|) 

+ (22k+2 *|E|)) clauses in 3-CNF, which is an exponential bound complexity. 
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2.7.2 Reduction of 3-CNF-SAT to 3-Colorable Graph 
Moret [44] gave an reduction approach from 3-SAT to 3-colorable graph. 

According to Moret, reduced 3-colorable graph having (2n + 3m + 1) vertices 

and (3n + 6m) edges, where n is the number of variables and m is number of 

clauses contained by 3-SAT formula. The brief description of Moret’s 

Approach for reduction of 3-Colorable Graph to 3-CNF-SAT as follows: 

Given a 3CNF formula, we produce a graph as follows. The graph consists of 

a triangle for each variable and one triangle for each clause in the formula. All 

triangles for variables have a common vertex B (we can say base vertex) 

which preempts one color, so that the other two vertices of each such triangle 

corresponding to the variable and it’s negation (or complement) must be 

assigned two different colors i.e. truth assignment either TRUE or FALSE. 

Then, we connect each vertex of a clause triangle to the corresponding literal 

vertex. Each such edge forces its two endpoints to use different colors.  

 

2.7.3 Approaches Based on Independent Set Extraction 
As observed in many studies, it is difficult, if not impossible, to find a proper 

k-coloring of a large graph G (e.g., with 1 000 vertices or more) with k close to 

χ(G) by applying directly a given coloring algorithm on G. A basic approach 

to deal with large graphs is to apply the general principle of “reduce-and-

solve”. This approach is composed of a preprocessing phase followed by a 

coloring phase. The preprocessing phase typically identifies and removes some 

(large) independent sets from the original graph to obtain a reduced subgraph 

(called “residual” graph). The subsequent coloring phase determines a proper 

coloring for the residual graph. Given the residual graph is of reduced size, it 

is expected to be easier to color than the initial graph. Now it suffices to 

consider each extracted independent set as a new color class (i.e., by assigning 

a new color to all the vertices of each of these sets). The coloring of the 

residual graph and all the extracted independent sets give a proper coloring of 

the initial graph. These approaches were explored with success in early studies 

like [69, 70, 71, 72]. Algorithms based on this approach can use different 

methods to find a large independent set in the graph. In [69], this was achieved 

with a simple greedy heuristic while in [69, 71], large independent sets were 
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identified by a dedicated tabu search algorithm. In [39], the authors introduced 

the XRLF heuristic which operates in two steps. First, a number of 

independent sets are collected using Leighton’s Recursive Largest First (RLF) 

heuristic [29]. Then, an independent set is iteratively selected and extracted 

from the graph such that its removal minimizes the density of the reduced 

graph.  

 This process continues until the residual graph reaches a given 

threshold. For the subsequent residual graph coloring, various methods have 

been used including exhaustive search [72], tabu search [71], simulated 

annealing [69, 72] and hybrid genetic tabu search [70]. 
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Chapter 3 

A Tree Based Novel Approach for 

Graph Coloring Problem using 

Maximal Independent Set 

 

3.1  Introduction  

Suppose G= (V, E) is a directionless graph where V is the set of vertices and E 

is the array of arcs. The colour problem of graph can be defined as a mapping 

of colours C = {1,2,…,k} with the vertices of G so that neighboring vertices of 

graph must not accept the same colors. It means, in an accurate graph 

colouring, if 2 nodes a and b of the graph share an arc (a, b), both node should 

paint by separate colours. The least number of colours, necessary for the 

colouring the nodes of G accurately are termed as the chromatic number of G, 

represented by χ(G). Graph colouring issue targets the smallest k for a 

specified graph G. The instance below illustrates the accurate minimum 

coloring of a 5 vertex Star Graph by minimum 3 colors. 

 

 

 

 

 

 

 

 

 

        Figure 3.1: Properly Colored 5 Vertex Star Graph 

 

In the optimization form, the graph coloring problem, goals to calculate the 

lowest possible colours k, so that a realistic colouring of G could be possible. 

V1 

V2 

V4 

V3 

V5 
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A k-colorable graph divides an array of vertices V into k dissimilar color 

classes, where each member of the class has the same color. In order to have 

the same color, the members of each class must be pair wise non-adjacent, 

which by definition makes them an independent set. Therefore, finding 

maximal independent sets from the initial graph is an effective method for 

solving graph coloring problem. In this manuscript, we have developed a tree 

based innovative approach for graph coloring problem using maximal 

independent set. 

An independent set (also known as a stable set) is a sub group of vertices

VS  so that none of the vertices in S are neighbors. The subsets of the graph 

containing those vertices that are not attached to any other element of the same 

set are known as an independent set. The highest cardinality of a stable set of 

G is represented by α(G). A stable set is called maximal, if it is not a subset of 

any bigger independent set and it is assumed maximum if there is no bigger 

independent set within the graph.  

A clique is a subset of V where all the vertices are pair wise adjacent. We 

can infer the complement graph G’ = (V, E’) from a graph G = (V, E), where 

E’ = {(i, j) | i, j ∈V, i ≠ j and (i, j) ∉ E}. The Maximum independent set 

problem (MIS) is to determine an independent set in graph G of highest 

cardinality α(G). It is well understood that if I is an independent set of G, then 

I is a clique of G’.  

In this chapter, we developed a new graph coloring method using maximal 

independent set by tree exploration. Ultimately, rather than removing 

independent sets in sequence, we have tried to recognize maximal sets of 

freelance vertices at each step. In this method, due to removing independent 

set in each iteration, then many vertices are eliminated from the original graph.  

Hence, in this way, coloring of the remaining graph is easier. We evaluated the 

performance of our graph coloring procedure on various large DIMACS 

standard graphs (with 100, 500 and 1000 vertices). 

Further, this chapter is structured as follows. In segment two, we reviewed 

the heuristic based graph colouring strategies. In segment three, we provided a 

complete demonstration of the projected procedure. Segment four will 

describe our approach by an example. Segment five described our approach 
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through pseudo code. In segment six, we showed complexity analysis along 

with extensive experimental results and comparisons. The last segment 

summarized this chapter’s research. 

3.2  Review of previous works 

The colouring problem of a graph is a problem category of NP-hard and graph 

k-colourability is a problem segment of NP-complete for every integer k ≥ 3 

(but 2-coloring is polynomial) [10, 22]. As observed in many pieces of 

literature, it is hard to acquire an accurate k-colourability of a massive graph G 

(for example: graph having 1000 nodes or more) with number of colors k 

nearby the chromatic number χ(G) to use  a given colouring procedure directly 

onto graph G. There are many heuristic algorithms for graph colouring 

comprising the succeeding methods: greedy construction [3], Recursive largest 

first (RLF) heuristic [4], tabu search [5, 6, 7, 8], simulated annealing [15, 20], 

and evolutionary hybrid or population grounded search [17, 21, 23, 24]. A 

complete study of the most important heuristic methods can be found in 

Galinier and Hertz [26]. 

 Another method for handling massive graphs for colouring is to use the 

general rule of “reduce-and-solve.” This technique consists a “preprocessing” 

succeeded by a “coloring phase”. The first part usually recognizes and 

eliminates some independent sets from the initial graph to get a reduced sub 

graph (termed “residual” graph). The following part decides correct colouring 

for the “residual graph”. Since the reduced graph is compact, it is easier to 

paint it than the original graph. Currently, it seems to think about every 

removed freelance set as a new color category (i.e., by assignment a new color 

to any or all the nodes of those sets). The coloring of the residual graph and 

the removed freelance sets offer acceptable coloring of the original graph. 

These techniques were explained successfully in earlier articles [7, 9, 15, 20]. 

Algorithms based on “reduce-and-solve” have the different way to find a 

large independent set in the graph. In [15], this was finished an easy greedy 

heuristic whereas in [7, 9], big independent sets has been recognized by a 

committed tabu search technique. In [20], the researchers presented the XRLF 

heuristic that works in 2 stages. Primarily, a variety of independent sets is 

generated through Leighton’s Recursive Largest First (RLF) heuristic [4]. 
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Secondly, a freelance set is sequentially picked and removed from the graph 

so that its elimination reduces the compactness of the reduced graph. This 

method progresses till the reduced graph touches a pre assumed threshold. For 

the successively reduced graph colouring numerous strategies are used 

including exhaustive search [20], tabu search [6][7], simulated annealing [15, 

20] and hybrid genetic tabu search [9]. Most recently, this simple independent 

set removal method has been reviewed and improved outcomes have been 

found for many giant graphs [1, 2,]. 

 

3.3  Our Proposed Algorithm: Tree Based 

Maximal Independent Set 

In this segment, we proposed an algorithm that calculates the minimum 

colouring for the graph using maximal independent set. It comprises of 3 

steps. The first step is the creation of the complementary edge table. The main 

and second step is an iterative step to find maximal independent sets using tree 

exploration. Third and the final step is the coloring of the maximal 

independent sets. Now we elaborate these steps in detail in the following 

subsections: 

3.3.1  Complementary Edge Table 

The complement of graph G = (V, E) is a graph G’ = (V, E’), where E’ = {(i, j) 

| i, j ∈V, i ≠ j and (i, j) ∉ E}. To find maximal independent sets, we need to put 

together those vertices that are not connected to each other and if we have a 

table that defines which vertices are not connected; it would reduce the time 

complexity significantly. So, we scan the edge table ET and make a new edge 

table that can be said complementary edge table CET that comprises a list of 

vertices that are not connected to each other. At the implementation level, we 

take the following step:  

 

(i) Take input file of a graph (from DIMACS instances) as adjacency list 

of vertices of graph G; here we call it an edge table (ET). 
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(ii) Create complementary adjacency list of vertices of above input file 

and named it as complementary edge table (CET). CET having the list 

of vertices that are not connected to each other; it means CET 

comprises only those edges which were not in the original edge table 

(ET). 

 

(iii) We include only those edges which originate from a vertex of smaller 

numbering than its destination as the graph is considered undirected. 

3.3.2  Finding Maximal Independent Sets:  

     Tree Exploration 

This step itself is a multi-step process, which explores vertices of a graph to 

make a tree. Each sub tree will give a maximal independent set; this process 

will run until the entire vertex has been explored. The technical details of 

finding maximal independent sets are as follows: 

 

(i) Select the first vertex which is not included yet in any maximal 

independent set MIS i.e. we start from vertex Vi (for i = 1,2,…,n). Now 

vertex Vi   will be the root of general sub tree Ti (for i = 1,2,…,k). 

 

(ii) Explore root vertex Vi of a sub tree Ti as follows: select all those vertices 

from complementary edge table which are listed against vertex Vi and 

make those vertices as children of root vertex Vi . 

 

(iii)Repeat the following rule for further exploring every child node Vic of tree 

Ti as follows: 

a) Select only those vertices which are listed against being explored node 

Vic in CET and it should be the sibling of explored node Vic in sub tree 

Ti. Since we have to find independent set along a path of created sub 

tree; that’s why we consider only sibling node of Vic. This step avoids 

connectivity clashes among vertices of the path from the root node to 

leaf node. Also, check, it should not be included in any maximal 

independent set yet. 
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(iv) After completion of tree formation, select the path with the maximum 

length. If more than 1 path has maximum length then selects the first 

longest path while traversing left to right among them. 

 

(v) Selected (maximum length) path of sub tree Ti (i=1,2,…,k) will be 

maximal independent set MISi (i =1,2,…,k) as every vertices in this path 

are not connected to each other in original graph. 

 

(vi) Repeat step 1 to 5 until all the vertices of the graph will be included in any 

of maximal independent set MISi . It means, in each iteration, we get one 

MIS. 

3.3.3  Coloring the Maximal Independent Sets 

This is the final step of our minimum coloring algorithm. In this step we 

assign a different colour to each maximal independent set, i.e. all the vertices 

that belong to the same maximal independent set are allotted the same color 

and all the vertices that belong to different independent sets, now have 

assigned different colors. This is the core of our algorithm.   

 

3.4  Illustration by an Example 

Let us explore our approach by an example. We take following Peterson graph 

given in figure 1 and find the minimum coloring for this graph using maximal 

independent set. 

3.4.1  Creating Complementary Edge Table 

The edge table ET and the complementary edge table CET for the graph of 

figure 3.2 are listed below in table 3.1. 

 

Figure 3.2: Petersen Graph [35] 
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Table 3.1: Edge and Complementary Edge Table for Figure 3.2 

 

Edge Table (ET) Complementary Edge Table (CET) 

1 2 1 3 

1 5 1 4 

1 6 1 7 

2 3 1 8 

2 10 1 9 

3 4 1 10 

3 9 2 4 

4 5 2 5 

4 8 2 6 

5 7 2 7 

6 8 2 8 

6 9 2 9 

7 9 3 5 

7 10 3 6 

8 10 3 7 

  3 8 

  3 10 

  4 6 

  4 7 

  4 9 

  4 10 

  5 6 

  5 8 

  5 9 

  5 10 

  6 7 

  6 10 

  7 8 

  8 9 

  9 10 

    

 

3.4.2  Finding Maximal Independent Set by Tree      

     Exploration 

Now, we start tree exploration according to above rule 3.3.2. Take first vertex 

V1 as the root of tree and then go to CET against V1, we find V3, V4, V7, V8, 

V9, V10; make these vertices children of V1. Now take V3 to be explored in 

next step. Again we go to CET against V3, we find V5,V6, V7, V8, V10; but 

we have to select only those vertices which are the siblings of V3 i.e. V7, V8, 

V10, so that connectivity clashes among vertices of a path of sub tree could be 
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avoided so that we could go ahead toward finding independent set. Similarly 

we explored all the vertices. 

 

 

 

Figure 3.3(a): First Maximal Independent Set 

 

 In above sub tree which is drawn in figure 3.3 (a), there are two longest path 

{V1, V3, V7, V8} and {V1, V4, V7, V10}. Both are equal and as per our rule, 

we choose first longest path while traversing left to right. Since each path in 

this sub tree form an independent set and hence we make the longest path of 

sub tree as maximal independent set (MIS). We store all the vertices of 

selected longest path in MISi (for i=1,2,..,k) as well as in VMIS which keeps 

record of vertices those are included in any MISi 

MIS1= {V1, V3, V7, V8}  

VMIS= {MIS1} = {V1, V3, V7, V8} 

 

Now we start exploration from next vertex which is not included in obtained 

MIS i.e. from V2; this is shown in figure 3.3 (b). 

 

 

Figure 3.3 (b): Second Maximal Independent Set 
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In second case, longest paths of sub tree  are {V2,V4,V6} {V2,V4,V9}, 

{V2,V5,V6} and {V2,V5,V9}. We select first longest path as maximal 

independent set according to our approach. 

MIS2 = {V2, V4, V6} 

VMIS = {MIS1 ˅ MIS2} = {V1, V2, V3, V4, V6, V7, V8} 

 

 Again we start exploration from next node which is not included in any 

obtained MIS i.e. from V5. In following sub tree, there is only one path which 

is longest {V5, V9, V10}.this step is shown in figure 3.3 (c). Hence we select 

the longest path of sub tree as maximal independent set (MIS). 

 

 

 

Figure 3.3 (c): Third Maximal Independent Set 

 

MIS3= {V5, V9, V10} 

VMIS = {MIS1 ˅ MIS2˅ MIS3} = {V1, V2, V3, V4, V5, V6, V7, V8, V9, V10} 

 

Since V = VMIS; now, stop the process of tree exploration as all the vertices of 

graph are included in any of maximal independent set (MIS). 

 

3.4.3  Coloring the Maximal Independent Set 

Since, by tree exploration of this graph we get 3 MIS and as we know that 

each independent set is a collection of all the disconnected vertices of graph; 

hence we can color each MIS by a unique color. Here, in graph given in figure 

2, can be colored by 3 colors as it is obtained 3 MIS in this graph by our 

approach. First MIS1 has to be assigned color blue; second MIS2 has to be 

given color red and third MIS3 has to be assigned color green. When we apply 

our algorithm on graph of figure 2, we get the following result: 
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Figure 3.4: Properly colored Petersen graph given in figure 3.2 using our 

proposed approach 

 

3.5 Algorithm for Graph Coloring Problem      

   using Maximal Independent Set 

3.5.1  Notations used in our algorithm: 

• VMIS: Set of vertices included in any of  independent sets 

• V: Set of all vertices 

• X: Current node 

• SX: Set of siblings of current node X 

• Xc : children of X 

• NX: Set of neighbors (adjacent nodes) of current node X 

• i: temporary number 

• Tk: k
th Sub Tree 

• MISk: k
th MIS 

• n: number of paths with maximum length 

• PL: Longest path while traversing left to right  

 

3.5.2 Algorithm for finding Maximal Independent Sets 

 (MIS) 

1. Input: A directionless graph G = (V, E), an integer k 

2.  Output: A proper k-coloring of  graph G or display statement of failure 
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3. Begin 

4. While (VMIS ≠ V)  

5. i = 1 and X=Vi 

6. If ((NX ∩ SX) = =∅ and X ∉VMIS)   

7. Initialize a Sub Tree Tk and add vertex X as root to Tk 

8. Repeat step 9 to10 for all neighbors of X 

9. For all NX :  make child XC of X as XC = NX 

10. i = i+ 1 

11. Else  

12. Repeat step 11 to 13 for all (V-1) 

13. X = XC  (∀XC ∈V) 

14.  If (∀X∈V (NX ∩ SX) ≠ ∅ and X ∉VMIS)   

15. ∀X∈V (XC  =  (NX ∩ SX))   

16. End if 

17. Find number of longest path n 

18. If (n>1)       

19. Select any one longest path PL;  make it MISk  and set  VMIS = MISk 

20. Set V= (V - VMIS) 

21. End while 

22. End 

3.6  Results and Discussion 

The property of obtained tree by our approach is equivalent to binomial trees. 

A binomial tree is an ordered set of element defined recursively. Let depth of 

the tree is d; the total number of node at order d in binomial tree is 2d. We 

observed that height (or depth) of tree d = (log n). The complexity of our 

algorithm based on the creation of complementary edge table, tree exploration 

and selects the longest path of tree as maximal independent set. Creation of 

complementary edge table takes O (n2) time where n is the number of vertices 

in graph G.  

We have tested this algorithm on various DIMACS instances [18][19]. After 

testing, we found some interesting results. The algorithm gave colors precisely 

equal to the chromatic number of the graphs, no matter the sequencing of the 
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vertices. All results of our procedures were obtained on a Pentium IV 2.4 GHz 

with 2 GB RAM under Windows 7. We used Java (JDK 1.7) to implement our 

algorithm. Some of the instances that we have been tested and quantity of 

colors calculated by the algorithm are as shown in the table II below.  

 

Table 3.2: Comparison of our result with E2COL approach [2], DSATUR 

approach [16] and Malguti’s approach [17] 

Graph 

Instance 
|V| |E| 

 

k* 

kours 

 

kE2COL 

[2] 

 

kDSATU

R 

[16] 

 

kmalaguti 

[17] 

myciel6.col 95 755 7 7 - 7 - 

myciel7.col 191 2360 8 8 - 8 - 

queen6_6.col 36 580 7 8 - - - 

queen7_7.col 49 952 8 8 - - - 

queen8_8.col 64 728 9 9 - 9 - 

queen9_9.col 81 2112 10 10 - 10 - 

mulsol.i.1.col 197 3925 49 49 - 49 - 

mulsol.i.2.col 188 3885 31 31 - 31 - 

DSJC125.1.col 125 736 5 5 5 5 5 

DSJC125.5.col 125 3891 17 17 17 19 17 

DSJC125.9.col 125 6961 44 44 44 45 44 

DSJC250.1.col 250 3218 8 8 8 9 8 

DSJC250.5.col 250 15668 28 28 28 35 28 

DSJC250.9.col 250 27897 72 72 72 87 72 

DSJC500.1.col 500 12458 12 12 12 15 12 

DSJC500.5.col 500 62624 48 48 48 63 49 

DSJC500.9.col 500 1124367 126 126 126 160 127 

 

In Table 3.2, |V| denotes set of vertices, |E| is the array of arcs, k* is the 

chromatic number or the recognized limit of the chromatic number, kours is the 

number of color calculated for every graph using our algorithm, kE2COL is the 

chromatic number obtained by extraction and expansion approach of coloring 
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[2], kDSATURis the chromatic number obtained by DSATUR approach [16], and 

kmalaguti is the coloring number obtained by Malguti [17]. 

 

3.7  Summary  
 

A novel heuristic approach has been proposed for the solution of graph 

coloring problem using the maximal independent set which is based on tree 

exploration. The first step converts a big graph into a series of gradually 

smaller graphs by eliminating maximal independent sets from the graph, while 

in the later step, to color the removed maximal independent sets. We have 

been observed that even with a basic tabu search coloring procedure, the 

planned method gets very reasonable outcomes on a set of DIMACS test 

standard graphs. By our approach, we are getting an optimized solution to the 

problem of coloring the graph. Computational outcomes are presented to 

prove the theoretical analysis.  
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Chapter 4 

Polynomial 3-SAT Encoding Technique 

for k-colorable Graph and Analysis of 

Graph Coloring Problem based on 

Satisfiability  

 

4.1 Introduction 

A Graph k-colorability is an assignment of colors {1,2,…,k} to the vertices of 

graph G in such a way that neighbor vertices of graph should receive different 

colors. That means, in a proper graph coloring, if two vertices u and v of a 

graph share an edge (u, v), then they must be colored with different colors. 

The minimum number of colors needed to color the vertices of graph G is 

called the chromatic number of G, denoted as χ(G). A graph that can be 

assigned a (proper) k-coloring is k-colorable, and it is k-chromatic if its 

chromatic number is exactly k. Graph coloring was among the 21 NP-

complete problems [28] originally given by Richard Karp in the year 1972. 

Graph coloring is a fundamental and extensively studied problem, which 

besides its theoretical significance also enjoys a lot of practical applications. 

The graph k-colorability problem has several important real-world applications 

[41][42], including register allocation, frequency assignment problem in 

cellular network, time tabling problem, aircraft scheduling problem and many 

other problems. 

 Satisfiability (SAT) was the first problem shown to be NP-Complete [8]. 

The SAT problem is usually expressed in conjunctive normal form (CNF). A 

CNF formula on binary variables is the conjunction (logical AND) of clauses, 

each of which is a disjunction (logical OR) of one or more literals, where a 

literal is the occurrence of a variable or its complement. A clause is said to be 

satisfied if at least one of its literals is true, unsatisfied if all of its literals are 
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set to false and unresolved otherwise. A formula is said to be satisfied if all its 

clauses are satisfied, and unsatisfied if at least one of its clauses is unsatisfied. 

 In general, the SAT problem is defined as follows: Given a Boolean 

formula in conjunctive normal form (CNF), find an assignment of variables 

that satisfies the formula or prove that no such assignment exists. In the 

following example, the 3-CNF (clause length=3) formula E consists of 4 

variables and 3 clauses; each clause having at most 3 literals (length of clause 

= 3). 

𝐸 = (𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ 𝑥3) ∧ (𝑥1 ∨ 𝑥2 ∨ 𝑥4)  

One of the truth assignments for satisfiability of above expression is x1 = x3 = 

true, & x2 = false or x1 = x2 = true & x3 = false. Note that a problem with n 

variables will have 2n possible assignments to test. The above example with 3 

variables has 8 possible assignments. 

 The Satisfiability problem is particularly interesting because it can be used 

as a stepping stone for solving decision problems. The graph coloring problem 

can also be solved as a decision based using method of Satisfiability (SAT). 

Problem instances from domains such as Graph Coloring can be encoded into 

SAT and then solved by the help of SAT algorithms. 

 Previously, in [27], Alexander Tsiatas gave a reduction approach from 3-

Colorable graph to 3-SAT expression. He encoded the vertices and an edge of 

the graph by 3-color as Boolean encoded expression in DNF then that has to 

be converted into k-CNF. He used two recursive and one non-recursive 

method to convert a k-CNF expression into 3-CNF expression. Results of all 

three methods were observed and found that non- recursive method gave a 

better result than remaining. Finally, using this, Alexander generates total 

((27*|V|) + (256*|E|)) clauses as 3-CNF-SAT formula for 3-colorable graph. 

We generalized Alexander’s approach for k-colorable graph and generated ((kk 

*(k-2)*|V|) + (22k+2 *|E|)) clauses in 3-CNF, which is an exponential bound 

complexity. 

 In section 4.2, we discussed our 3-SAT encoding approach for k-colorable 

graph. Section 4.3 illustrated SAT encoding approach of a 3-colorable graph 

by an example. In section 4.4, we discussed the SAT based approach for 
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solving graph coloring problem and then in section 4.5 experimental results 

are discussed. 

 

4.2 Polynomial 3-SAT Encoding Formulation 

Approach of k-Colorable Graph 

Let there be a graph G = (V, E), where V is the set of n vertices {v1 v2,…,vn} 

and E  is the set of m edges{e1 e2,…,em}. The graph has to be colored by k-color 

{1,2,…,k} in such a way that no two adjacent vertices should have the same 

color. Then to encode this k-colorable graph into 3-CNF-SAT propositional 

formula, we use two approaches say vertex constraint approach and edge 

constraint approach which will apply on vertices and edges of the graph 

respectively. The polynomial 3-SAT encoding formulation of k-colorable 

graph is presented as below: 

 

4.2.1 Vertex Constraint Approach 

As per vertex constraint approach, color each vertex of a graph G as vic in such 

a way that vertex vi (i= 1,2,…,n vertices) should have at least one color c (c = 

1,2,…,k) among available k-colors as follows: 

𝑣𝑖𝑐 = (𝑣𝑖1 ∨ 𝑣𝑖2 ∨ … ∨ 𝑣𝑖𝑘)                          (4.1) 

Equation (4.1) generates one clause of length-k in conjunctive normal form 

(CNF) corresponding to each vertex of graph. But, now we have to reduce it in 

3-CNF. There are several different ways of doing this, one of the non-

recursive methods is to convert a k-CNF to 3-CNF is as follows: Consider a 

clause F = x1  x2…xk where k (k > 3) is the length of the clause, which can 

be converted in 3-CNF by introducing some new variables like y1,y2,…,yk-3  as: 

(𝑥1 ∨ 𝑥2 ∨ ¬𝑦1) ∧ (𝑥3 ∨ 𝑦1 ∨ ¬𝑦2) ∧ (𝑥4 ∨ 𝑦2 ∨ ¬𝑦3) ∧ … ∧ (𝑥𝑘−2 ∨ 𝑦𝑘−4 ∨

¬𝑦𝑘−3) ∧ (𝑥𝑘−1 ∨ 𝑥𝑘 ∨ 𝑦𝑘−3                          (4.2) 

Expression (4.2) transforms a clause of length k into (k−2) clauses of length 3, 

and doing this requires introducing (k−3) new variables. For example, 
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applying (4.2) to a clause of length 6 yields (1 clause of length 6) = (4 clauses 

of length 3) and this required an additional 3 variables. 

Let Fv is the encoded formula (or expression) obtained by vertex constraint 

approach which is the conjunction of 3-CNF encoded expression of all the n 

vertices of graph G as: 

𝐹𝑣 = (𝑣1𝑐 ∧ 𝑣2𝑐 ∧ … ∧ 𝑣𝑖𝑐)                          (4.3) 

Applying (4.2) to (4.1) and finally, we get total (k-2)*|V| clauses in 3-CNF-

SAT expression from graph G as per vertex constraint approach.  

|Fv| = (k-2)*|V| clauses in 3-CNF-SAT                      (4.4) 

where |Fv| shows total number of clauses in 3-CNF-SAT expression as per 

vertex constraint approach.   

 

4.2.2 Edge Constraint Approach 

As per edge constraint approach, color two end points of each edge ej (j = 

1,2,…,m) of a given graph G in such a way that two vertices (u, v) connecting 

with an arc should not have same colors. It means, any edge of a k-colorable 

graph can be encoded by generating a clause in such a way that two end point 

of an edge say u,v should not be assigned same color k. The purpose of this 

approach is to ensure that two adjacent vertex should not be assigned same 

color. 

𝑒𝑗 = ¬(𝑢1 ∧ 𝑣1) ∧ ¬(𝑢2 ∧ 𝑣2) ∧ … ∧ ¬(𝑢𝑘 ∧ 𝑣𝑘) 

Above equation can also be written as: 

𝑒𝑗 = (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ … ∧ (¬𝑢𝑘 ∨ ¬𝑣𝑘)                 (4.5) 

Let Fe is the conjunction of 3-CNF encoded expression of all the m edges of 

graph G by applying edge constraint approach as:       

𝐹𝑒 = (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚)                           (4.6) 

 Since, expression (4.5) is in 3-CNF-SAT, so there is no need to apply (4.2) 

on it. Finally we get, total k*|E| clauses in 3-CNF-SAT from graph G as per 

edge constraint approach i.e. 

|Fe| = k*|E| clauses in 3-CNF-SAT                       (4.7) 
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4.2.3 Bounds of Final 3-CNF-SAT Formula  

To get final 3-CNF-SAT encoded formula F of graph G, we conjunct encoded 

formula obtained by vertex constraint approach (4.3) and formula obtained by 

edge constraint approach (4.6) as below:  

𝐹 = (𝐹𝑣 ∧ 𝐹𝑒) 

𝐹 = ((𝑣1𝑐 ∧ 𝑣2𝑐 ∧ … ∧ 𝑣𝑛𝑐) ∧ (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚))           (4.8) 

 

We combine (4.4) and (4.7) as number of clauses obtained by vertex constraint 

approach and by edge constraint approach. Finally, we get total number of 

clauses in 3-CNF-SAT formula |F| by polynomial 3-CNF-SAT encoding 

technique of k-colorable graph as:  

|F| = (k-2)*|V| + k*|E|                           (4.9) 

 

4.2.4 Algorithm: Encoding of k-Colorable Graph to 3- 

  CNF-SAT Expression 

1. Read input “.col file” of graph in the form of adjacency list. Here we have 

taken DIMACS graph coloring instances as input through a file.  

2. Read number of colors k from user. 

3. Read the number of vertices n and number of edges m from input file”.  

4. Start the encoding process for all the vertices from vertex 1 to last vertex 

by applying vertex constraint approach as follows: 

4.1 if number of colors k = = 3  

for(int i = 1; i <= vertices; i++) 

{ 

 for(int  j = 1; j <= k;  j++) 

  { 

  write(i+"0"+j+" "); 

  } 

  write("0\n"); 

} 
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4.2 if number of colors k > 3 and no of literals > 3 then write  the first two 

literal as it is in the output file separated by an space “ ” and then write 

the expression “zNv)”“(-zNv+literal” till only two literals remain, 

where Nv is the count for  number of extra variable z inserted. Append 

the last two literals in the file and Write “)” to the file; If it is not the 

last clause give space “ ” in the file. 

5 Generate clauses by applying edge constraint approach on all the edges 

(u,v)  of graph as follows: 

for(int j=1; j<=color; j++) 

{  

bw.write(""+edge[1]+"0"+j+" -"+edge[2]+"0"+j+" 0\n");  

} 

6. Merge the clauses obtained by step 4 and 5. 

7. Display the total number of generated clauses, number of extra variable 

 needed, total execution time. 

   

4.2.5 Bounds on number of clauses in 3-CNF expression 

Property 1: The total number of 3-CNF clauses generated for a k-colorable 

graph is ((k-2)* |V| + k*|E|) for V vertices and E edges of graph G 

 

(a) Base case: k=3 (k = no. of colors) 

Proof by Induction:   

Total number of clauses in 3-CNF expression = (k - 2)*|V| + k*|E|  

= (3-2)*|V| + 3*|E|  

= |V| + 3*|E| 

For one vertex and one edge it will be 1+3 = 4 clauses in 3-CNF 

 

Proof by expression:  Let (v  e) are conjunction of encoded expression for a 

vertex v and an edge (u, v) of 3-colorable graph G by vertex constraint and 

edge constraint approach 

𝑣 ∧ 𝑒 = (𝑣1 ∨ 𝑣2 ∨ 𝑣3) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ (¬𝑢3 ∨ ¬𝑣3) 



45 

 

For one vertex and one edge, above expression is generating 1+3 = 4 clauses 

in 3-CNF. Hence base case is true. 

 

(b) For k = m 

Proof by induction: (k-2)*|V| + k*|E|  

= (m-2)*|V| + m*|E| 

 

Proof by expression: For m colors (vm em)  can be expressed as: 

𝑣𝑚 ∧ 𝑒𝑚 = (𝑣1 ∨ 𝑣2 ∨ … ∨ 𝑣𝑚) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨ ¬𝑣2) ∧ … ∧ (¬𝑢𝑚 ∨

¬𝑣𝑚)  

But, we know that when we convert a single m-CNF clause with m different 

literals (m>3) into 3-CNF, we get (m-2) clauses in our 3-CNF expression. 

Hence, Number of clauses in 3-CNF expression by vertex constraint approach 

= (m-2)*|V| and number of clauses in 3-CNF by edge constraint approach = m. 

Therefore total number of clauses in 3-CNF from mm ev 
 
is (m-2)*|V| + m*|E|.  

So it is also true for k=m. 

 

(c) For k = m + 1 

Proof by Induction: (k-2)*|V| + k*|E|  

= (m +1-2)*|V| + (m+1)*|E  

= (m-1)*|V| + (m+1)*|E| 

 

Proof by expression: For (m+1) color, the expression (vm+1em+1) can be 

represented as: 

Number of 3-CNF clauses from vm+1 = (Number of clauses for vm + clauses for 

(m+1)th color) = ((m-2) + 1) = (m-1) 

Number of 3-CNF clauses from em+1 = (Number of clauses for em+ clause for 

(m+1)th color) = (m+1) 

Total no. of clauses in 3-CNF from vm+1em+1 =  (m-1)*|V| + (m+1)*|E| 

So it is also true for k = m+1. 
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4.2.6 Justification of Propositional Encoding             

 Formulation of k-Colorable Graph 

Lemma: If a 3-CNF-SAT formula is satisfiable then graph is k-colorable. 

Proof: Let us assume that an undirected graph G(V, E) that is k-colorable and 

the following is a 3-CNF-SAT formula corresponding to graph G:  

𝐹 = (𝑣𝑖 ∧ 𝑒𝑗)  

where vi = v1, v2,…,vn are n vertices and ej= e1, e2,…,em are m edges of the graph 

G that has to be k-colored by vertex constraint approach and edge constraint 

formulation respectively. Above expression can also be expanded as: 

𝐹 = ((𝑣1 ∧ 𝑣2 ∧ … ∧ 𝑣𝑛) ∧ (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚))  

 For satisfiable of F, each one of these expressions should be true. Let’s 

take an encoded vertex expression Fv for k-color by vertex constraint 

approach; Fv will be true when all of its clauses are true.  

𝐹 = (𝑣11 ∨ 𝑣12 ∨ … ∨ 𝑣1𝑘) ∧ (𝑣21 ∨ 𝑣22 ∨ … ∨ 𝑣2𝑘) ∧ … ∧ (𝑣𝑛1 ∨ 𝑣𝑛2 ∨ … ∨

𝑣𝑛𝑘)  

By this, it is clear that every vertex will be assigned at least one color. 

Similarly, take encoded expression Fe for k-colorable graph by edge constraint 

approach. The expression Fe will be true when all of its edge clauses are true. 

𝐹𝑒 = (𝑒1 ∧ 𝑒2 ∧ … ∧ 𝑒𝑚)  

Let’s take an encoded edge clause e1 (v1,v2) from Fe; e1 will be true if all its 

clauses is true. It means ends points of an edge will not be assigned same 

color. 

𝑒1 = (¬𝑣11 ∨ ¬𝑣21) ∧ (¬𝑣12 ∨ ¬𝑣22) ∧ … ∧ (¬𝑣1𝑘 ∨ ¬𝑣2𝑘)  

 Similarly, if we take other clauses, we will get the same conclusion that 

end points of an edge are colored with different color and this is true for each 

edge. Hence our graph is k-colorable.  
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4.3 Illustration of Encoding of 3-Colorable 

Graph to 3-CNF-SAT 

Here, we are taking an example of Petersen [9] graph G as figure 4.1, having 

10 vertices and 15 edges to encode it by 3-color say 1, 2, 3 into propositional 

3-satisfiability.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Petersen Graph [35] 

 

Graph having following set of vertices and edges:  

𝑉 = {𝑝, 𝑞, 𝑟, 𝑠, 𝑡, 𝑢, 𝑣, 𝑤, 𝑥, 𝑦}  

𝐸{(𝑝, 𝑞), (𝑝, 𝑟), (𝑝, 𝑠), (𝑞, 𝑡), (𝑞, 𝑥), (𝑟, 𝑣), (𝑟, 𝑤), (𝑠, 𝑢), (𝑠, 𝑣), (𝑡, 𝑢), (𝑡, 𝑤), (𝑢, 𝑣),

(𝑣, 𝑥), (𝑤, 𝑦), (𝑥, 𝑦))}  

Now we start polynomial 3-SAT encoding of above graph by 3-colors. As per 

the vertex constraint approach (4.1), we encode vertices of this graph and 

stored in Fv as: 

𝐹𝑣 = (𝑝1 ∨ 𝑝2 ∨ 𝑝3) ∧ (𝑞1 ∨ 𝑞2 ∨ 𝑞3) ∧ (𝑟1 ∨ 𝑟2 ∨ 𝑟3) ∧ (𝑠1 ∨ 𝑠2 ∨ 𝑠3) ∧

(𝑡1 ∨ 𝑡2 ∨ 𝑡3) ∧ (𝑢1 ∨ 𝑢2 ∨ 𝑢3) ∧ (𝑣1 ∨ 𝑣2 ∨ 𝑣3) ∧ (𝑤1 ∨ 𝑤2 ∨ 𝑤3) ∧ (𝑥1 ∨

𝑥2 ∨ 𝑥3) ∧ (𝑦1 ∨ 𝑦2 ∨ 𝑦3)  

y x 

q s 

w 

r 

v 
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Similarly, we encode all the edges of graph as per the edge constraint 

approach (4.5), and stored 3-CNF-SAT expression in Fe. as below: 

 

𝐹𝑒 = (¬𝑝1 ∨ ¬𝑞1) ∧ (¬𝑝2 ∨ ¬𝑞2) ∧ (¬𝑝3 ∨ ¬𝑞3) ∧ (¬𝑝1 ∨ ¬𝑟1) ∧ (¬𝑝2 ∨

¬𝑟2) ∧ (¬𝑝3 ∨ ¬𝑟3) ∧ (¬𝑝1 ∨ ¬𝑠1) ∧ (¬𝑝2 ∨ ¬𝑠2) ∧ (¬𝑝3 ∨ ¬𝑠3) ∧ (¬𝑞1 ∨

¬𝑡1) ∧ (¬𝑞2 ∨ ¬𝑡2) ∧ (¬𝑞3 ∨ ¬𝑡3) ∧ (¬𝑞1 ∨ ¬𝑥1) ∧  (¬𝑞2 ∨ ¬𝑥2) ∧ (¬𝑞3 ∨

¬𝑥3) ∧ (¬𝑟1 ∨ ¬𝑣1) ∧ (¬𝑟2 ∨ ¬𝑣2) ∧ (¬𝑟3 ∨ ¬𝑣3) ∧ (¬𝑟1 ∨ ¬𝑤1) ∧ (¬𝑟2 ∨

¬𝑤2) ∧ (¬𝑟3 ∨ ¬𝑤3) ∧ (¬𝑠1 ∨ ¬𝑢1) ∧ (¬𝑠2 ∨ ¬𝑢2) ∧ (¬𝑠3 ∨ ¬𝑢3) ∧ (¬𝑠1 ∨

¬𝑦1) ∧ (¬𝑠2 ∨ ¬𝑦2) ∧ (¬𝑠3 ∨ ¬𝑦3) ∧ (¬𝑡1 ∨ ¬𝑤1) ∧ (¬𝑡2 ∨ ¬𝑤2) ∧ (¬𝑡3 ∨

¬𝑤3) ∧ (¬𝑡1 ∨ ¬𝑢1) ∧ (¬𝑡2 ∨ ¬𝑢2) ∧ (¬𝑡3 ∨ ¬𝑢3) ∧ (¬𝑢1 ∨ ¬𝑣1) ∧ (¬𝑢2 ∨

¬𝑣2) ∧ (¬𝑢3 ∨ ¬𝑣3) ∧ (¬𝑣1 ∨ ¬𝑥1) ∧ (¬𝑣2 ∨ ¬𝑥2) ∧ (¬𝑣3 ∨ ¬𝑥3) ∧

(¬𝑤1 ∨ ¬𝑦1) ∧ (¬𝑤2 ∨ ¬𝑦2) ∧ (¬𝑤3 ∨ ¬𝑦3) ∧ (¬𝑥1 ∨ ¬𝑦1) ∧ (¬𝑥2 ∨

¬𝑦2) ∧ (¬𝑥3 ∨ ¬𝑦3)  

 

Finally, we conjunct Fv and Fe and obtained 3-CNF-SAT encoding expressions 

of 3-colorable Petersen graph. 

F =Fv  Fe 

Hence, total number of 3-CNF-SAT clauses corresponding to above 3-

colorable graph Peterson graph = ((number of clauses as per vertex constraint 

approach) + (number of clauses as per edge constraint approach)) = (10 + 15) 

= 25, which is a polynomial reduction from 3-colorable graph to 3-CNF-SAT.  

 

4.4 Solution Approach for Graph k-Colorability 

using SAT Solver 

SAT-based approach is a decision based method to solve difficult 

combinatorial problems by encoding them into SAT (Satisfiability) problems 

and solving by using an efficient SAT solver. SAT solver is a program to find 

a solution of a SAT problem. Recent advances of SAT solver technology are 

remarkable. SAT solvers are used to solve hard problems by encoding them to 

SAT problems (SAT-based approach), such as scheduling, planning, and 

software & hardware verification. Since, there have been dramatic 

improvements in SAT solver technology over the past decade. This has led to 
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the development of several powerful SAT algorithms that are capable of 

solving many hard problems consisting of thousands of variables and millions 

of constraints.  

Reduction from graph k-colorability problem to SAT (satisfiability) is an 

important concept to solve it using efficient SAT solver. With the help of the 

polynomial encoding technique of graph k-colorability to SAT, we have 

reduced many graph coloring instances into 3-CNF-SAT expression. We have 

taken DIMACS benchmark instance [34][40] as input for the graph to encode 

into SAT. The DIMACS benchmark collects a large set of instances, which 

represent the standard set for experimenting algorithms for the Vertex 

Coloring Problem ([34][40], all instances are available at ftp://dimacs.rutgers 

.edu/pub/challenge/graph/). The benchmark set includes: random graphs 

(DSJC), where for each pair of vertices (i, j) ∈ V, edge (i, j) ∈E is created with 

uniform probability; geometric random graphs (DSJR and r), where vertices 

are randomly distributed in a unit square, and an edge (i, j) ∈ E is created if the 

distance between i and j is less than a given threshold. 

After generating 3-CNF expression, now solved it by a powerful SAT 

solver.  Here, we used a powerful SAT solver Minisat 2.2 [36, 37, 38, 39] to 

solve 3-CNF-SAT expression. MiniSat [38][39] is a minimalistic, open-source 

Boolean satisfiability (SAT) solver, developed for both researchers and 

developers. MiniSat is a simple, well documented, implementation suitable for 

educational purposes and can solve a problem with 107 literals. MiniSat gives 

output as truth assignment if formula is “SATISFIABLE”; otherwise it proves 

that expression is “UNSATISFIABLE”. Satisfiable expression also tells that 

graph is colored by exactly k colors. 

 

4.5 Results and Discussion  

We have implemented a formulation of polynomial 3-CNF-SAT encoding of 

k-colorable graph. Our formulation generates total (((k-2)*|V| ) + (k*|E|) ) 

clauses in 3-CNF for k-colorable graph which is a polynomial reduction, 

whereas previously, Alaxander [27] generated ((kk *|V|) + (22k+2 *|E|)) clauses 

in 3-CNF, which is a exponential reduction. Here, we analyzed the encoding 

formulation for 3-color and 4-color on various benchmark problems (graph 
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coloring instances) of the DIMACS challenge [34][40]. We implemented it in 

java (JDK 1.7).  Results are compiled at table 4.1. 

Further, we solved the obtained 3-CNF-SAT encoded expression using 

SAT solver. Here we used Minisat 2.2 which gives output as truth assignment 

if formula is “SATISFIABLE”; otherwise it proves that expression is 

“UNSATISFIABLE”. Satisfiable expression also tells that graph is colored by 

exactly k colors. Here, we reported the computational results obtained by the 

Minisat 2.2 which takes input from 3-SAT expression obtained by the SAT 

encoding of k-colorable graph. All results of our algorithms were obtained on 

a Pentium IV 2.4 GHz with 2 GB RAM under Windows 7 as well as Linux 

(Ubuntu 12.4).  

Table 4.1: 3-CNF-SAT clause generation for color k=3 and 4 

 

Computational results of graph coloring problem using Minisat 2.2 are 

stored in Table 4.2 and Table 4.3. Some of the DIMACS graph instance which 

is satisfiable on any color k is stored in Table 4.2. Some of the large graphs 

Graph 

Coloring 

Instances 

No. of 

Vertices 

No. of 

Edges 

Alexander’s 

Approach[27] 

(Total no of 

3-CNF clause 

when k=3) 

Our 

Approach 

Total 3-

CNF-

SAT 

clauses 

(when 

k=3) 

Alexander’s 

Approach[27] 

Total no of 3-

CNF clause 

when k=4) 

Our 

Approach: 

Total 3-

CNF-SAT 

clauses 

(when 

k=4) 

myciel3 11 20 5417 71 8448 102 

myciel4 23 71 18797 236 25024 330 

queen5_5 25 160 41635 505 27200 690 

mugg100_1 100 166 45196 598 108800 864 

myciel5 47 236 61685 755 51136 1038 

queen6_6 36 290 75212 906 39168 1232 

miles250 128 387 102528 1289 139264 1804 

queen7_7 49 476 123179 1477 53312 2002 

myciel6 95 755 195845 2360 103360 1700 
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having 500 or more vertices are not satisfied and such list is contained by table 

4.3.  

We compared our approach of 3-CNF-SAT encoding with Alaxander’s 

approach [27] by drawing a pie graph. Figure 4.2 shows the comparison 

between both the approaches with respect to 3-CNF clause generation for k = 

3. Similarly, figure 4.3 shows analysis of 3-CNF-SAT clause generation for k 

= 4 corresponding to our and Alexander’s encoding method. 

 

Figure 4.2: Analysis of 3-CNF-SAT clause generation for k = 3 

 

 

Figure 4.3: Analysis of 3-CNF-SAT clause generation for k = 4 
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Table 4.2: Results of Some DIMACS Graph Instances which are encoded as 

3-CNF-SAT by our reduction approach and then solved by Minisat 2.2 

Name of Graph 

Instance 

No of 

vertices n 

No of 

edges m 

Satisfiable 

(SAT) on colors 

(chromatic 

number) 

DSJC125.1.col  125 736 5 

DSJC125.5.col  125 3891 5 

DSJC125.9.col 125 6961 6 

DSJC250.1.col 250 3218 5 

DSJC250.5.col 250 15668 5 

DSJR500.1.col 500 3555 5 

le450_15a.col 450 8168 5 

le450_15b.col 450 8169 5 

le450_5a.col 450 5714 5 

le450_5b.col 450 5734 5 

le450_5d.col 450 9757 5 

queen5_5.col 25 320 5 

queen6_6.col 36 580 5 

queen7_7.col 49 952 5 

queen8_8.col 64 728 5 

queen9_9.col 81 2112 5 

myciel3.col 11 20 4 

myciel4.col 23 71 4 

myciel5.col 47 236 5 

myciel6.col 95 755 5 

myciel7.col 191 2360 5 

1-Insertions_4.col 67 232 5 

1-Insertions_5.col 202 1227 4 

1-Insertions_6.col 607 6337 5 

2-Insertions_4.col 149 541 4 

2-Insertions_5.col 597 3936 5 
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3-Insertions_4.col 281 1046 4 

4-Insertions_3.col 79 156 4 

4-Insertions_4.col 475 1795 5 

1-FullIns_3.col 30 100 4 

1-FullIns_4.col 93 593 5 

1-FullIns_5.col 282 3247 6 

2-FullIns_3.col 52 201 5 

2-FullIns_4.col 212 1621 6 

2-FullIns_5.col 852 12201 5 

3-FullIns_3.col 80 346 6 

3-FullIns_4.col 405 3524 7 

miles250.col 128 774 5 

miles500.col 128 2340 5 

miles700.col 128 4226 5 

mulsol.i.1.col 197 3925 5 

mulsol.i.2.col 188 3885 5 

mulsol.i.3.col 184 3916 5 

 

 

Table 4.3: Results of Some UNSAT graph instance given by MiniSAT 2.2 

Name of Graph 

Instance 

No of 

vertices 

n 

No of 

edges m 

Our 

Investigation: 

Satisfiable 

(SAT) on Colors 

DSJC250.9.col 250 27897 UNSAT 

DSJC500.1.col  500 12458 UNSAT 

DSJC500.5.col      500 62624 UNSAT 

DSJC500.9.col 500 1124367 UNSAT 

DSJC1000.1.col 1000 49629 UNSAT 

DSJC1000.5.col 1000 249826 UNSAT 

DSJC1000.9.col 1000 449449 UNSAT 

DSJR500.1.c.col 500 121275 UNSAT 
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4.6 Summary 

In this chapter, we have presented a generalized polynomial 3-CNF-SAT 

encoding technique of graph k-colorability. Our encoding formulation of k-

colorable graph to 3-CNF-SAT is polynomial and better than Alaxander’s 

approach [27] which was exponential. Later on, we have investigated SAT 

based approach for solving graph coloring problem using a powerful SAT 

solver MiniSAT 2.2, the role played by SAT solver as an intermediate domain 

for solving problems in the form of decision based. SAT technique only 

extracted that k number of color can be sufficient to color the graph or not. We 

tested many DIMACS graph instances and found some of the graph is k-

colorable i.e. satisfiable. Whereas, few of the graph having number of vertices 

is equal to 500 or more are not satisfiable. It means the solution of problem 

will be depend on the strength of SAT solver along with encoding technique 

of k-colorable graph to 3-CNF-SAT expression. 
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Chapter 5 

A New Reduction from 3-SAT to Graph 

k-Colorability for Channel Assignment 

Problem 

 

5.1 Introduction 

The satisfiability problem (SAT) is one of the most prominent problems in 

theoretical computer science, which has become increasingly popular and 

important insights into our understanding of the fundamentals of computation. 

SAT is the first known NP-Complete problem. It is used as a starting point for 

proving that other problems are also NP-hard. This is done by polynomial-

time reduction from 3-SAT to the other problem. We can reduce any NP-

Complete problem to/from 3SAT. Reduction from satisfiability problem to 

graph k-colorability problem or vice versa is an important concept to solve one 

of the hard scheduling problem, as frequency assignment in cellular network. 

The frequency assignment problem is very similar to the graph k-colorability 

problem [50].  

The frequency band has become an important resource for 

communication service. There has been large increase in demand for using the 

frequency bands caused by the fast growth in mobile communication, satellite 

communication and mass communication service areas. To maximize 

utilization of frequency band, the limited band of available frequency is 

divided into a number of channels. A channel can be reused many times for 

different transmitters if the transmitters are far enough from one another so 

that the co-channel interference between them is low enough. If there are two 

close transmitters using the same channel simultaneously, they will suffer 

from severe co-channel interference and the quality of communication service 

will be unsatisfactory.  
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Since the available frequency band is limited, we are interested in 

using as small band of frequency as possible while satisfying all the frequency 

demand and the co-channel constraints. This can be efficiently done by the 

proper frequency assignment. It is shown that the frequency assignment 

problem is equivalent to an extended version of graph coloring problem [50]. 

A variation of the graph coloring problem is the graph k-colorability problem 

[49]. 

In this chapter, we introduce a new framework to represent SAT 

problems, for this, we proceed for the reduction of the instance of 3-CNF-SAT 

formula to k-colorable graph in polynomial time. Our reduction formula 

generate a k-colorable graph with |V| = (2n + 3m + (k-2)) vertices and |E| = (3n 

+ 6m) edges for k = 3 and |E| = (|E| of (k-1)-colorable graph + (|V|-1)) edges 

for k >3 corresponding to any instance of 3-CNF-SAT. Previously, in standard 

reduction approach from 3-SAT to 3-Colorable graph [27], the generated 

graph having (2n+5m+3) vertices and (3n+10m+3) edges. Further, Moret [44] 

gave an improved reduction approach from 3-SAT to 3-colorable graph. 

According to Moret, reduced 3-colorable graph will have (2n + 3m + 1) 

vertices and (3n + 6m) edges. Here, we generalized the reduction approach to 

reduce any instance of 3-CNF-SAT formula to a k-colorable graph in 

polynomial time with mathematical proof.  

In next section of this chapter, we have explored basic detail of 3-SAT, 

k-colorable graph and frequency assignment problem. Section 5.3 describes 

our polynomial reduction approach from 3-SAT to k-colorable graph. Section 

5.4 explored the formulation of graph k-colorability to frequency assignment 

problem. 

 

5.2 Polynomial reduction from 3-CNF-SAT to 

k-colorable graph  

The method of showing that a problem is NP-Complete by polynomial 

reduction is one of the most elegant and productive in computational 
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complexity [51]. To prove that problem A is NP-hard, reduce a known NP-

hard problem to A. Cook [52] defines the following: 

Definition 1: Suppose that Li is a language over ∑i, i =1,2. 

Then L1 ≤ p L2 (L1 is polynomially reducible to L2) iff there is a polynomial-

time computable function f: ∑1 → ∑2 such that xL1 ↔ f (x) L2, for all x

∑1. 

Definition 2: A language L is NP-Complete iff L is in NP, and L’ ≤ p  L for 

every language L’ in NP 

Proposition 1: Given any two languages, L1 and L2: 

1) If  L1 ≤ p  L2  and  L2P then  L1P. 

2) If  L1 is NP-Complete, L2NP and L1 ≤ p L2  then  L2  is  NP-Complete. 

5.2.1 Reduction of 3-CNF-SAT to Graph 3-Colorability 

(3-SAT ≤p 3-Color)  

Theorem 1: Graph 3-Colorability is NP-Complete [44]. 

Proof:  First of all we have to proof that it is in NP then try to proof it is in 

NP-Hard. If it is both then it will be NP-Complete.  

1. First we show that 3-ColorNP. Given a graph G, and a coloring 

assignment of the vertices, simply walk the graph and make sure that all 

adjacent vertices have a different color, and make certain that only 3 colors 

are used. This is clearly by O (|V| + |E|), where |V| is the number of 

vertices and |E| is the number of edges of graph G. 

2. Now show that 3-ColorNP-Hard. To do this, we reduce 3-CNF-SAT 

expression to 3-colorable graph, or show that 3-SAT≤p 3-Color.  

Graph Construction for 3-color: Start with an instance of 3-SAT formula F 

with n variables x1, x2,…, xn and m clauses c1,c2,…,cm. Create a graph G such 

that G is 3-colorable iff F is satisfiable. Reduced graph G has vertices 

corresponds to variables and coloring to vertices is similar to truth assignment 

to variables from instance of 3-SAT formula.  Given a 3-CNF formula, we 

produce a graph as follows. The graph consists of a triangle for each variable 
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and one triangle for each clause in the formula. All triangles for variables have 

a common vertex B (we can say base vertex) which preempts one color, so 

that the other two vertices of each such triangle corresponding to the variable 

and its negation (or complement) must be assigned two different colors i.e. 

truth assignment either TRUE or FALSE. Then, we connect each vertex of a 

clause triangle to the corresponding literal vertex. Each such edge forces its 

two endpoints to use different colors. 

Correctness: A clause triangle can be proper colored if and only if all three of 

its corresponding literal vertices have not been given the same color, that is, a 

clause triangle will be proper 3-colored if and only if all three literals in the 

clause have not been assigned the same truth value. Thus, the transformed 

instance admits a solution if and only if the original 3-CNF-SAT instance 

does. Reduced graph from 3-SAT holds following two conditions for its 

correct solution as below: 

 If the 3-SAT formula has a satisfying assignment then the graph has 3-

coloring. 

 If the graph has a 3-coloring, then the SAT formula has a satisfying 

assignment. 

Bound: The transformation takes an instance of 3-SAT with n variables and m 

clauses and reduced a 3-colorable graph that will have the number of vertices 

and edges as follows: 

|V| = (2n + 3m + 1) vertices and  

|E| = (3n + 6m) edges 

 It is easily done in polynomial time. 

Example 1: Transform following 3-CNF-SAT formula into 3-colorable graph: 

( x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’ )                (5.1) 

Here, number of variable n = 3 and number of clauses m = 2; corresponding to 

this instance of 3-CNF, following figure 5.1 shows reduced 3-colorable graph 

as per 3-colorable graph construction process. Total number of vertices |V| and 

number of edges |E| in reduced graph is calculated as: 
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|V| = (2n + 3m + 1) = ((2*3) + (3*2) + 1) = 13  

|E| = (3n + 6m) = ((3*3) + (6*2)) = 21 

 

 

 

 

 

 

 

 

Figure 5.1: 3-Colorable Graph 

 

5.2.2 Reduction of 3-SAT to Graph 4-Colorability (3-

 SAT ≤p 4- Color) 

Theorem 2: Graph 4-Colorability is NP-Complete 

Proof:  First of all we have to proof that it is in NP then proof that it is in NP-

Hard. If it is both then it will be NP-Complete.  

1. First we show that 4-ColorNP. Given a graph G, and a coloring 

assignment of the vertices, simply walk the graph and make certain that all 

adjacent vertices have a different color, and make certain that only 4 colors 

are used. This is clearly by O (|V| + |E|). 

2. Now show that 4-ColorNP-Hard. To do this, we reduce from 3-Color to 

4-Color, or show that 3-Color ≤p 4-Color.  

Graph Construction for 4-color: Let G3 be an instance of 3-Colorable graph. 

Construct a new graph G4 as follows: Add a single extra vertex B1 and connect 
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it to every other vertex in the graph. This is clearly polynomial in the size of 

the graph. 

Correctness: Now we must show that G4 is a yes-instance of 4-Color if and 

only if G3 is a yes-instance of 3-Color. Consider the following proof. 

 Assume G3 is 3-colorable. Therefore, G4 is 4-colorable because the added 

vertex B1, which is connected to all the other vertices in the graph, can be 

colored with a 4th color, and it will always be connected to vertices that 

are 1 of 3 other colors. 

 Assume G4 is 4-colorable. Because B1 is connected to every vertex in the 

graph, B1 must be the only vertex in G4 that has a certain color. Therefore, 

all other vertices in the graph are colored 1 of 3 colors. Therefore, G3 is 3-

colorable. 

Since we have shown that 4-ColorNP and 3-Color ≤p 4-Color, hence, it is 

proofed that 4-ColorNP-Hard. Therefore, 4-Color NP-Complete. 

Bound: The transformation takes an instance of 3-SAT with n variables and m 

clauses and generated a 4-colorable graph that will have the number of 

vertices and edges as follows: 

|V| = |V| of 3-colorable graph + 1 = (2n+3m+1) +1 = (2n + 3m + 2)  

|E| = ((|E| of 3-colorable graph) + (|V| of 3-colorable graph)) 

     = (3n + 6m) + (2n + 3m + 1) = (5n + 9m + 1) edges 

It is easily done in polynomial time. 

Example 2: Transform (5.1) into 4-colorable graph: 

(x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’) 

Here, number of variable n = 3 and number of clauses m = 2; corresponding to 

this instance of 3-CNF, following figure 5.2 shows reduced 4-colorable graph 

as per 4-colorable graph construction process. Total number of vertices |V| and 

number of edges |E| in reduced graph is calculated as: 

|V| = (|V| of 3-colorable graph + 1) = (2n + 3m + 1) +1 = (13 +1) = 14  

|E| = |E| of 3-colorable graph + |V| of 3-colorable graph  
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     = ((3n + 6m) + (2n + 3m + 1)) = 21 + 13 = 34. 

 

 

 

 

 

 

 

 

 

Figure 5.2: 4-Colorable Graph 

5.2.3 Reduction of 3-SAT to Graph 5-Colorability (3-

 SAT ≤p 5-Color) 

Theorem 3: Graph 5-Colorability is NP-Complete 

Proof:  First of all we have to proof it as NP then NP-Hard. If it is both then it 

will be NP-Complete.  

1. First we show that 5-ColorNP. Given a graph G, and a coloring 

assignment of the vertices, simply walk the graph and make certain that all 

adjacent vertices have a different color, and make certain that only 4 colors 

are used. This is clearly by O (|V| + |E|). 

2. Now show that 5-ColorNP-Hard. To do this, we reduce from 4-Color to 

5-Color, or show that 4-Color ≤p 5-Color.  

Graph Construction for 5-color: Let G4 be an instance of 4-Color. Construct 

a new graph G5 as follows: Add a single extra vertex B2 and connect it to 

every other vertex in the graph. This is clearly polynomial in the size of the 

graph. 
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Correctness: Now we must show that G5 is a yes-instance of 5-Color if and 

only if G4 is a yes-instance of 4-Color. Consider the following proof. 

 Assume G4 is 4-colorable. Therefore, G5 is 5-colorable because the added 

vertex B2, which is connected to all the other vertices in the graph, can be 

colored with a 5th color, and it will always be connected to vertices that 

are 1 of 4 other colors. 

 Assume G5 is 5-colorable. Because B2 is connected to every vertex in the 

graph, B2 must be the only vertex in G5 that has a certain color. Therefore, 

all other vertices in the graph are colored 1 of 4 colors. Therefore, G4 is 4-

colorable. 

Since, we have shown that 5-ColorNP and 4-Color ≤p 5-Color, hence, 5-

ColorNP-Hard. Therefore, 5-Color NP-Complete. 

Bound: The transformation takes an instance of 3-SAT with n variables and m 

clauses and generated a 5-colorable graph that will have the number of 

vertices and edges as follows: 

|V| = |V| of 4-colorable graph + 1 = (2n + 3m + 2) +1 = (2n + 3m + 3)  

|E| = |E| of 4-colorable graph + |V| of 4-colorable graph  

     = ((3n + 6m) + (2n + 3m + 1)) + (2n + 3m + 2) = (7n + 12m + 3) 

It is easily done in polynomial time. 

Example 3: Transform (5.1) into 5-colorable graph: 

( x ˅ y ˅ z’ ) ˄ ( x ˅ y’ ˅ z’) 

Here, number of variable n = 3 and number of clauses m = 2; corresponding to 

this instance of 3-CNF, following figure 5.3 shows reduced 5-colorable graph 

as per 5-colorable graph construction process. Total number of vertices |V| and 

number of edges |E| in reduced graph is calculated as: 

|V| = |V| of 4-colorable graph + 1 = (2n + 3m + 2) +1 = (14 +1) = 15  

|E| = |E| of 4-colorable graph + |V| of 4-colorable graph  

     = ((3n + 6m) + (2n + 3m + 1)) + (2n + 3m + 2) = 34 + 14 = 48. 
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Figure 5.3:  5-Colorable Graph 

 

5.2.4 Reduction of 3-SAT to Graph k-Colorability (3-

 SAT ≤p k-Color) 

Theorem 4: Graph k-Colorability is NP-Complete 

Proof:  First of all we have to proof it as NP then NP-Hard. If it is both then it 

will be NP-Complete.  

1. First we show that k-ColorNP. Given a graph G, and a coloring 

assignment of the vertices, simply walk the graph and make certain that all 

adjacent vertices have a different color, and make certain that only k colors 

are used. This is clearly by O (|V| + |E|). 

2. Now show that k-ColorNP-Hard. To do this, we reduce from (k-1)-Color 

to k-Color, or show that (k-1)-Color ≤p k-Color.  

Graph construction for k-colorable graph: Let Gk-1 be an instance of (k-1)-

Color. Construct a new graph Gk as follows: Add a single extra vertex Bk-3 and 
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connect it to every other vertex in the graph. This is clearly polynomial in the 

size of the graph. 

Correctness: Now we must show that Gk is a yes-instance of k-Color if and 

only if Gk-1 is a yes-instance of (k-1)-Color. Consider the following proof. 

 Assume Gk-1 is (k-1)-colorable. Therefore, Gk is k-colorable because the 

added vertex Bk-3, which is connected to all the other vertices in the graph, 

can be colored with a kth color, and it will always be connected to vertices 

that are 1 of (k-1) other colors. 

 Assume Gk is k-colorable. Because Bk-3 is connected to every vertex in the 

graph, Bk-3 must be the only vertex in Gk that has a certain color. 

Therefore, all other vertices in the graph are colored 1 of (k-1) colors. 

Therefore, Gk-1 is (k-1)-colorable. 

Since we have shown that k-ColorNP and (k-1)-Color ≤p k-Color, we have 

shown that k-ColorNP-Hard. Therefore, k-Color NP-Complete. 

Bound: The transformation takes an instance of 3-SAT with n variables and m 

clauses and generated a k-colorable graph that will have the number of vertices 

and edges as follows: 

|V| = (2n + 3m + (k-2)) vertices and  

|E| = (3n + 6m) edges                         for k=3 

     = ((|E| of (k-1)-colorable graph) + (|V| of (k-1)-colorable graph)) edges                 

              for k >3 

So, it is easily done in polynomial time. 

5.3 Graph k-colorability to channel assignment 

 problem 

Formulate the channel assignment problem as a graph k-colorability problem. 

Let the vertices correspond to transmitters and edges correspond to 

interference between transmitters. Every vertex is labeled with a frequency 

range Fi. The question is whether one can allocate to each vertex a frequency 
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from its frequency range so that no vertices are connected with an edge having 

the same frequency. 

For doing this, first of all we have to show that the frequency 

assignment problem is in NP. Guess (non-deterministic) a frequency 

assignment; go through each vertex and verify that its frequency is in the 

frequency set. Also go through each edge and verify that the endpoints of the 

frequencies are different. This takes linear time in the size of the graph. 

In the second step we have to show that the channel assignment 

problem is NP-hard. For this, reduce graph k-colorability problem to 

frequency assignment: 

Graph k-coloring(G, k) = 

  for each vertex vi in the graph G 

   Fi  {1,…,k} 

  return Frequency Assignment (G,{Fi}) 

Finally, check correctness of above as there is a k-coloring of graph G 

iff there is a correct assignment of frequencies to G, where every vertex has 

frequency set {1,…,k}. Suppose we have a k-coloring of G. Number the colors 

from 1 to k. If a vertex has color i, we assign to the corresponding vertex 

(transmitter) in the frequency allocation problem the frequency i. This is a 

correct frequency assignment because we have been based on a correct k-

coloring. In the other direction: assume that we have a correct frequency 

assignment. We get a k- coloring by allowing a vertex to have color i if the 

corresponding transmitter has been assigned frequency i. 

 

5.4 Summary 

The primary focus of this chapter is to introduce a generalized reduction 

approach from 3-SAT to k-colorable graph. Our polynomial reduction 

approach generate a k-colorable graph with |V| = (2n + 3m + (k-2)) vertices 

and |E| = (3n + 6m) edges for k = 3 and |E| = ((|E| of (k-1)-colorable graph + 

(|V| of (k-1)-colorable graph)) edges for k >3 corresponding to any instance of 
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3-CNF-SAT. Then, we give the formulation of graph k-colorability to 

frequency assignment problem in cellular network.   
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Chapter 6 

Phase Transition in Reduction between 

3-SAT and Graph Colorability  

 

6.1 Introduction  

In order to increase better understanding of NP-completeness, theoretical 

computer scientists have studied many different aspects of different problems. 

Even though solving an NP-complete problem is supposed to always take 

exponential time in the worst case, there are many special cases of NP-

complete problems that can be solved relatively efficiently. Researchers were 

wondering why some problems were so much easier to solve than others, and 

they discovered that there is often a parameter characterizing a problem that 

affects the difficulty of solving it while exploring properties of NP-complete 

problems. The NP-complete Satisfiability problem by Cook and graph coloring 

problem by Karp [60] show this phenomenon known as a phase transition. 

Each of these problems has a parameter describing it, and when the parameter 

is increased to a critical value, the problems’ solutions change dramatically. In 

the case of Boolean satisfiability, the problems are easy to solve if the formulas 

do not have too many clauses, compared with the number of variables. Graph 

coloring problems are easy to solve if the graphs do not have too many edges, 

compared with the number of vertices.  

In this chapter, we calculated and analyzed phase transitions of generated 3-

CNF-SAT and 3-colorable graph by our reduction method of transforming 3-

SAT to/from 3-Colorable graph. Then we compare calculated phase transition 

with known phase transition. Since all NP-complete problems can translate into 

one another, study of phase transition gives a better understanding of NP-

complete problems.  
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The chapter is organized as follows, section 6.2 discuss the basic concept 

about Boolean satisfiability, graph k-colorability. Section 6.3 discuss the 

concept of phase transition and standard phase transition of 3-SAT and 3-

colorability problem. In section 6.4, we calculated the phase transition of 

systematically generated 3-colorability graph from 3-SAT, further section 6.5 

gave the analysis of phase transition of reduction of 3-SAT which is reduced 

from 3-colorable graph. Finally results are compiled at section 6.6. 

 

6.2 Phase Transition 

A phase transition in a combinatorial structure occurs when a small change in 

the parameters of the structure results in a drastic change in the structure itself. 

This change occurs when the parameter reaches a certain critical value known 

as a threshold. This is analogous to physical phenomena such as ice melting 

when the temperature reaches 320 F. One another daily-life example of phase 

transitions is water changing from ice (solid phase) to water (liquid phase) to 

steam (gas phase) when temperature increases. 

Existence of phase transition and location of threshold are known 

thoroughly only for relatively “easy” problems like 2-coloring and 2-SAT. In 

all these problems, the colorability or satisfiability depends on the presence of a 

cycle in the constraints which is relatively easy to distinguish. For “hard” 

problems like 3-SAT and 3-Coloring, existence of phase transition is not 

known strictly. Approximate locations of the thresholds are computed 

experimentally by Martin, Monasson and Zecchina [60] using non-rigorous 

methods of physics, showed 3-SAT has a phase transition [65] at *  4.25. It 

has also been shown that graph colouring problems for 3 color exhibit a phase 

transition, where problems change from being easy to colour, to being hard to 

colour, and on to problems that obviously cannot be coloured. The phase 

transition occurs for 3-colorable graph [61] [64] at a critical value of 

connectivity Gc = 4.67. The value of the parameter *and Gc* at which the 

transition occurs is known as the threshold value for 3-SAT formula and 3-

colorable graph respectively. 
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For random instances of NP-complete problems, phase transitions provide 

some insight into both the structure of satisfiable instances and “hardness” of 

these instances. By hardness, we mean the time-complexity of a complete 

algorithm to determine whether an instance is satisfiable or not. Problem 

instances to be found below the threshold, i.e  < *, are under-constrained 

and are satisfiable with high probability, the instances to be found above the 

threshold, i.e.  > *, are over-constrained and are unsatisfiable with high 

probability and instances located near the threshold, i.e.   *, are critically-

constrained, and so the algorithm does a lot of back-tracking before finding 

either a solution or a contradiction.  

One of the first discovered phase transitions in a mathematical structure is in 

the Erdos-Renyi random graph model: G (n, p) [55]. G (n, p) is a family of 

graphs that contain exactly n vertices, and between each pair of vertices, there 

is an edge with probability p. Erdos and Renyi discovered a phase transition in 

their G (n, p) model: if p < ((ln n) / n), then almost surely, the graph is not fully 

connected, and if p > ((ln n) / n), then almost surely, the graph is fully 

connected. Thus, the point ((ln n) / n) is known as a sharp threshold. 

6.2.1 Phase Transition in 3-SAT 

It is well-known that the Boolean satisfiability problems show a phase 

transition at threshold . The parameter  can be defined as: 

VariablesofNumber
ClausesofNumber

__
__

                 (6.1) 

Now, one of the big question about the criteria for satisfiability of a 3-SAT 

formula which is randomly generated? Let a randomly generated 3-SAT 

instances having n variables and a standard critical value or a standard sharp 

threshold * for 3-SAT where it shows phase transition. Suppose, by any 

reduction method we generate 3-SAT instances systematically which shows its 

phase transition at threshold  then how we decide this generated 3-SAT 

formula will be satisfiable. In [63], there is a condition to check satisfiability of 

3-SAT instances as: if  < *, the formula is almost surely satisfiable, and if  

> *, the formula is almost surely not. This phase transition has been widely 
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studied, and for 3-SAT, the value of * has been empirically determined [65] 

[66] to be around *  4.25. 

6.2.2 Phase Transition in 3-Colorability 

The graph coloring problem on a graph G = (V, E) with |V | vertices and |E| 

edges, also shows a phase transition [64]. In this case, the parameter involved is 

the graph connectivity, defined as  

Gc = |V |p                   (6.2) 

where |V| is the number of vertices in the graph, and p is the edge probability. 

Of course, since G is already defined, p is derived as 

2
)1|(|||

||
__

__
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EdgesOfNumberp                (6.3) 

Thus, combining (6.2) and (6.3), we get an easy-to-use formula for Gc is 

1||
||2




V
EGc                     (6.4) 

For 3-colorability, there is a known phase transition at a connectivity value 

Gc*  4.67. If Gc < Gc *, then almost surely, the graph is colorable using three 

colors. If Gc > Gc*, then almost surely, it is impossible to color the graph with 

only three colors. 

6.3 Phase transition of reduced 3-colorable 

graph from 3-SAT instance 

According to [54], polynomial reduction process from 3-SAT to 3-Colorability 

Graph is illustrated as follows: Create a separate triangle for each variable and 

each clause corresponding to the given 3-CNF-SAT formula. All triangles for 

variables have a common vertex B (we can say base vertex) which preempts 

one color, so that the other two vertices of each such triangle corresponding to 

the variable and its negation (complement) must be assigned two different 

colors i.e. truth assignment either TRUE or FALSE. Then, we connect each 
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vertex of a clause triangle to the corresponding literal vertex. Each such edge 

forces its two endpoints to use different colors. 

Bound: Suppose the transformation takes an instance of 3-SAT formula with n 

variables and m clauses and generated a 3-colorable graph. Calculating the 

vertices in reduced 3-colorable graph as follows: 

 2 vertices per variable (variable and its negation): 2n vertices 

 3 vertices per clause: 3m vertices 

 1 vertex is common for all variable triangles: 1 vertex  

Similarly, calculating the edges in reduced 3-colorable graph as follows:  

 3 edges per variable: 3n edges  

 3 edges per clause: 3m edges 

 3 edges per clause for connection with variables: 3m edges  

Thus, the generated 3-colorable graph will have (2n + 3m + 1) vertices and (3n 

+ 6m) edges.  

Example 1: Transform following 3-CNF-SAT formula into 3-colorable graph: 

( x  y  z’ )  ( x  y’  z’)  

 

 

Figure 6.1:  Generated 3-colorable graph from an instance of 3-CNF-SAT 

The graph connectivity Gc can be computed from (6.4) with |V| = (2n + 3m + 1) 

and |E| = (3n + 6m): 
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From (6.1), m = n, substitute it on above, so 
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Then in the limit as n, 
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cG                   (6.5) 

Substituting the known phase transition for 3-SAT, *  4.25, into (6.5), 

which yields a phase transition in the generated 3-colorability problem at a 

connectivity value Gc  3.86. The 3-colorability problem has a known phase 

transition at connectivity value Gc*  4.67. Since Gc  Gc*, therefore we can 

say that our systematically generation approach of 3-colorable graph from 3-

CNF-SAT is easy to generate for large formula also. 

6.4 Phase transition of reduced 3-CNF-SAT 

expression from 3-Colorable Graph 

Let there be a graph G = (V, E), where V is the set of n vertices {v1 v2,…,vn} and 

E  is the set of m edges{e1 e2,…,em}. The graph has to be colored by 3-color {1, 

2, 3} in such a way that no two adjacent vertices should have same color. In 

[53], we have presented 3-CNF-SAT encoding procedure of k-colorable graph. 

This technique has two basic approaches; one is vertex constraint and second is 

edge constraint approach which will apply on vertices and edges of the graph 

respectively.  

 As per vertex constraint, color each vertex of a graph G in such a way 

that vertex vic should have at least one color among available 3-colors as 

follows: 

)( 321 iiiic vvv                    (6.6) 

where vic is a vertex vi (i = 1,2,…,n vertices) is colored by available colors c (c 

= 1,2,3 colors). Equation (6.1) generates one clause of length-3 in CNF 

corresponding to each vertex of graph. Finally, we get total |V| clauses in 3-
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CNF-SAT formula as per vertex constraint approach, where |V| is the number 

of vertices in the graph. 

 As per edge constraint approach, color two end points of each edge Ej 

(j=1,2,…,.m) of a given graph in such a way that two vertices (u, v) connecting 

with an arc should not have same colors. That is, any edge of a 3-colorable 

graph can be encoded by generating a clause in such a way that two end point 

of an edge say u,v should not be assigned same color. The purpose of this 

approach is to ensure that two adjacent vertex should be assigned different 

color. 

)()()( 332211 vuvuvue j   

Above equation can also be written in conjunctive normal form as: 

)()()( 332211 vuvuvue j                  (6.7)  

Equation (6.7) generates 3 clause of length-3 in CNF corresponding to each 

edge of graph. Finally, we get total 3*|E| clauses in 3-CNF-SAT formula as per 

edge constraint approach, where |E| is the number of edges in the graph. 

Bound: Thus, total number of clauses in 3-CNF-SAT formula corresponding to 

3-colorable graph =|V| + 3*|E|, which is polynomial reduction of 3-colorable 

graph to 3-SAT, where |V| and |E| are number of vertices and edges of graph G. 

Phase Transition: Phase transition in Boolean satisfiability is measured by a 

ratio , it is presented as: 

||3||3
||3||
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                (6.8) 

Equation (6.4) can be rearranged so that  can be expressed in terms of edge 

connectivity Gc as: 

2
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E


  

Applying this on (6.8) and substituting the known threshold for 3-colorable 

graph Gc,  4.67,  

7||10
7||8
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Assuming |V|   gives the ratio  = 0.8, which is relatively very less to the 

known phase transition of 3-SAT, *  4.25 for random 3-SAT instances. 

Since   *, therefore we can say that the 3-CNF-SAT generation technique 

from 3-colorable graph is quite easy. 

 

6.5 Results and Discussion 

Final result of the calculated phase transition for generated 3-SAT and 3-

Colorable Graph by our reduction approach is compared with known phase 

transition and previously generated phase transition [27] in table 6.1 as follows: 

 

Table 6.1: Comparisons of Phase Transition of reduced 3-SAT and 3-

Colorable Graph with standard and previously generated phase transition 

values. 

Reduced NP-

Complete Problem 

Known Phase 

Transition 

Alaxander’s 

Phase 

Transition 

[27] 

Our 

Calculated

Phase 

Transition 

Generated 3-SAT 

expression 

corresponding to 

3-colorable graph 

* = 4.25  =  1.38  = 0.8 

Generated 3-

Colorable Graph 

corresponding to 

3-SAT expression 

Gc*= 4.67 Gc = 3.91 Gc  = 3.86 
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6.6 Summary 
In this chapter, we have just analyzed the behavior of two NP-Complete 

problem say 3-Satisfiability and Graph 3-Colorability during reduction from 

each other. Our reduction approach of 3-CNF-SAT to/from 3-colorable graph 

generates lower phase transition than known phase transition. The generated 3-

colorable graph from an instance of 3-CNF-SAT gave phase transition at graph 

connectivity Gc = 3.86 whereas known phase transition of 3-colorable graph at 

Gc = 4.67. It means the reduction approach to generate 3-colorable graph is 

better than earlier one. Similarly, the generated 3-CNF-SAT from 3-colorable 

graph gave phase transition  = 0.8 which is very lower than known phase 

transition of 3-SAT,  = 4.25. It means the reduction method is more efficient 

and easy to generate 3-CNF-SAT from 3-colorable graph.  The differences in 

phase transitions suggest that different reductions have different efficiencies 

that means the different methods of reducing 3-colorability to/from 3-SAT 

yielded different phase transitions.  
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Chapter 7 

Channel Assignment Problem in 

Cellular Network and its Reduction to 

Satisfiability using Graph k-

Colorability 
 

7.1 Introduction 

In cellular networks, a geographical area is divided into smaller service areas 

called cells and each of this cell’s has a base station. All the terminals or the 

users in those cells communicate with their corresponding cell area’s base 

stations. For these, communication links to be established, the available 

frequency spectrum should be used and reused very efficiently. The efficient 

reuse in the spectrum helps to reduce the cost of service by reducing the 

number of base stations and also accommodating more number of users per 

base stations. To maximize utilization of frequency band, the limited band of 

available frequency is divided into a number of channels. A channel can be 

reused many times for different transmitters if the transmitters are far enough 

from one another so that the co-channel interference between them should be 

low enough. If there are two close transmitters using the same channel 

simultaneously, they will suffer from severe co-channel interference and the 

quality of communication service will be unsatisfactory. This can be efficiently 

done by the proper channel assignment.  

Since, the channel assignment problem is very similar to the graph k-

colorability problem [50]. But, till now there are not any known deterministic 

methods that can solve a graph k-colorability problem (GCP) or any NP-

complete problem in a polynomial time. There is an alternative approach to 

solve it efficiently by propositional Satisfiability which is first known NP-
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Complete problem. The satisfiability problem (SAT) is one of the most 

prominent problems in theoretical computer science, which has become 

increasingly popular and important insights into our understanding of the 

fundamentals of computation. It is used as a starting point for proving that 

other problems are also NP-hard.  We can reduce any NP-Complete problem 

to/from SAT. Since, there have been dramatic improvements in SAT solver 

technology over the past decade. This has lead to the development of several 

powerful SAT algorithms that are capable of solving many hard problems 

consisting of thousands of variables and millions of constraints. Reduction 

from graph k-colorability problem to satisfiability is an important concept to 

solve channel assignment in cellular network. In this chapter, we study the 

channel assignment problem in cellular network and then reduce it to 3-CNF-

SAT expression using polynomial reduction of the graph k-colorability to 

satisfiability [53].  

The chapter is organized as follows, section 7.2 discuss the basic concept of 

graph k-colorability and channel assignment problem. In section 7.3, we 

formulate channel assignment problem using graph k-colorability, further 

section 7.4 gave reduction approach of channel assignment problem to 

satisfiability expression using graph k-colorability and then finally section 7.5 

illustrate it by an example. 

7.2 Channel Assignment Problem  

The assignment of channels to cells or mobiles is one of the fundamental 

resource management issues in a mobile communication system. A channel 

assignment problem [67][68] or the frequency assignment problem is nothing 

but the task of assigning frequency or channel from a frequency spectrum to a 

set of transmitters and receivers satisfying certain hard conditions. There are 

basically two prime constraints that affect the channel assignment and its 

reusability. First constraint is co-channel interference and this interference is 

due to the allocation of the same channel to a certain pair of cells close enough 

to cause interference, i.e. a channel assigned to one cell cannot be reused in its 

nearby cells that are within its co-channel interference range. Second constraint 

is adjacent channel interference and this interference is due to the allocation of 
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adjacent channels (e.g., c1 and c2) to a certain pair of cells (normally adjacent 

pair) simultaneously, i.e. channel assigned to adjacent cells must maintain a 

minimum separation of a channel. 

The above two constraint are also called hard constraint [47] for channel 

assignment problem and these are tackled by taking following approach. The 

co-channel interference is overcome by separating the channels by a distance 

“d” called “co-channel reuse distance” i.e., the minimum distance required 

between the centers of two cells using the same channel to maintain the desired 

signal quality is known as the co-channel reuse distance d. The cells with 

center-to center distance less than d belong to the same region. No channels are 

reused within that region. Second constraint the adjacent channel interference 

is approached by imposing channel separation.  Let us consider two vertices u 

and v of graph G, let cu and cv be the channels assigned to them then the 

minimum channel separation should satisfy the following condition |cu - cv| ≤ 

duv. This duv also represent interference strength (or interference weight on 

edge) between two endpoints u,v of an edge. Channel assignment should be in 

such a way that satisfies both co-channel re-use and adjacent channel 

interference conditions.  

 

7.3 Problem Formulation: Channel Assignment 

Problem as Graph k-colorability 

A graph k-colorability approach can be reduced to an instance of the channel 

assignment problem by considering an undirected graph G = (V, E) where V 

represent the set of vertices in graph which are the base station or cells in 

cellular network and E represent the set of edges in graph which correspond to 

pairs of base stations in cellular network whose transmission regions intersect. 

Figure 7.1 represent a mapping between graph k-colorability with channel 

assignment problem in cellular network. The corresponding graph of cellular 

network is called an interference graph. In this graph, channels are assigned to 

stations (or vertices of graph) by colors. We assume that channels (colors) are 

non negative ordered number 1,2,,…,k. Suppose there is an cellular network 
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having n hexagonal cells say x1,x2,…,xn each having one base station at the 

center transmitting with any of the k available channels cm (m=1,2,…,k). The 

minimal number of channels required to construct an interference-free channel 

assignment is equal to the minimal number of colours required to assign the 

color to the vertices of G. The channel assignment problem is more 

complicated than the graph coloring problem in the sense that an interference 

constraint does not just express that a pair of stations must be assigned different 

channels, but it also specifies a minimal required distance. 

   

 

 

Figure 7.1: Mapping of graph k-colorability and channel assignment 

problem in cellular network. 

 

The channel assignment problem can also be stated as follows: Given a set of n 

cells or base stations, a set of k channels and a set of interference constraints, 

assign each station a channel without violating any interference constraint 

using limited span of frequency spectrum. Channels need to be assigned to the 

cells or base stations such that communication via these stations does not 

interfere. Interference generally occurs when the same or close frequencies are 

assigned to stations that are situated near each other. 
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7.4 Reduction Approach of Channel Assignment 

Problem into Satisfiability using Graph k-

Colorability 

Let there is an interference graph G = (V, E) corresponding to a cellular 

network, where V is the set of n base station {v1,v2,,…,vn} and E is the set of m 

edges {e1, e2,…,em} corresponding to interference between stations in network. 

The cells have to be assigned k-channel (color) cm = {c1,c2,…,ck} in such a way 

that it satisfies interference constraint |cu – cv| ≤ duv, where any two channel cu 

and cv are assigned to two adjacent node u and v respectively. To encode this 

channel assignment in cellular network into propositional formula, we use two 

approach say base constraint approach and interference constraint approach 

which will apply on vertices (base stations) and edges (interference between 

two adjacent vertex) of the graph respectively. The 3-CNF-SAT encoding 

formulation of channel assignment problem using k-colorable graph is 

presented below: 

7.4.1 Base Station Constraint Approach 

Assign channels (colors) cm (for m = 1,2,…,k channels) to each base station (or 

vertex) vi (where i = 1,2,…,n stations) of  a cellular network (or graph G) as 

micv in such a way that each station should be assigned at least one channel cm 

(where m =1,2,…,k) among available k-channels  as follows: 

ݒ = భݒ) ∨ మݒ ∨…∨  ೖ)                 (7.1)ݒ

Expression (7.1) generates one clause of length-k in CNF corresponding to 

each station in network. But, now we have to reduce it in 3-CNF. There are 

several different ways of doing this, one of the non-recursive methods to 

convert a k-CNF to 3-CNF is as follows: Consider a clause F = x1  x2 … xk 

where k (k > 3) is the length of the clause, which can be converted in 3-CNF by 

introducing some new variables like y1,y2,…,yk-3  as: 

ଵݔ) ∨ ଶݔ ∨ (ଵݕ¬ ∧ ଷݔ) ∨ ଵݕ ∨ (ଶݕ¬ ∧ ସݔ) ∨ ଶݕ ∨ (ଷݕ¬ ∧ …∧ ିଶݔ) ∨ ିସݕ ∨

(ିଷݕ¬ ∧ ିଵݔ) ∨ ݔ ∨   ିଷ)                           (7.2)ݕ
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Expression (7.2) transforms a clause of length k into (k−2) clauses of length 

3, and doing this requires introducing (k - 3) new variables. For example, 

applying (2) to a clause of length 6 yields (1 clause of length 6) = (4 clauses of 

length 3) and this required an additional 3 variables, since the clause was of 

length k = 6. Applying (7.2) to (7.1) and we get total (k-2)*|V| clauses in 3-

CNF-SAT corresponding to base station constraint approach. 

Now, conjunct the 3-CNF-SAT encoding expressions of all n stations of 

graph G and store it in Fbs. Total number of clauses in formula Fbs which is 

obtained as per base constraint approach, is represented by |Fbs| as: 

௦ܨ = ଵݒ) ∨ ଶݒ ∨ …∨  )                 (7.3)ݒ

|Fbs| = (k-2)*|V| clauses in 3-CNF-SAT               (7.4)   

7.4.2 Interference Constraint Approach 

We assume that to avoid interference, two channels cu and cv used by two 

different cells u and v must differ at least by distance duv between these cells 

(the weight of the connecting edge that is also called interference strength) and 

follow the following hard constraint: 

|cu – cv| ≤ duv  for all channels cm, where m =1,2,…,k              (7.5) 

An interference constraint is a triplet (u,v,duv), where duv ≥ 0 is the frequency 

reused distance duv required between the channels assigned to cells u and v. As 

per interference constraint approach, assign channels to two end points of each 

edge ej (j=1,2,…,.m) of a given graph in such a way that two station (u, v) 

connecting with an arc should satisfy the above interference constraint (7.5). 

The interference constraints on an edge e = (u,v) can be modeled into 

propositional expression as:  

݁ = ¬൫ݑభ ∧ భ൯ݒ ∧ ¬൫ݑభ ∧ మ൯ݒ ∧ …∧ ¬൫ݑభ ∧ ೖ൯ݒ ∧ ¬൫ݑమ ∧ భ൯ݒ ∧

¬൫ݑమ ∧ మ൯ݒ ∧…∧ ¬൫ݑమ ∧ ೖ൯ݒ ∧ …∧ ¬൫ݑೖ ∧ భ൯ݒ ∧ ¬൫ݑೖ ∧ మ൯ݒ ∧ …∧

¬൫ݑೖ ∧  ೖ൯                     (7.6)ݒ

Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij 
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That means above expression gives all the possible clauses between two end 

point of an edge (u, v) which satisfy above hard constraint (7.5) to avoid 

interference between channels. Since expression (7.6) is not in the 3-CNF; so it 

can be written in 3-CNF as: 

݁ = ൫¬ݑభ భ൯ݒ¬∨ ∧ ൫¬ݑభ ∨ మ൯ݒ¬ ∧ …∧ ൫¬ݑభ ∨ ೖ൯ݒ¬ ∧ ൫¬ݑమ ∨

(భݒ¬ ∧ ൫¬ݑమ ∨ మ൯ݒ¬ ∧ …∧ ൫¬ݑమ ∨ ೖ൯ݒ¬ ∧ ൫¬ݑೖ ∨ భ൯ݒ¬ ∧

൫¬ݑೖ మ൯ݒ¬∨ ∧ …∧ ೖݑ¬) ∨  ೖ)                (7.7)ݒ¬

Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij 

It means (7.7) generates all clauses of channel assignment if and only if it 

satisfy hard constraint of (7.5). Since (7.7) is in 3-CNF-SAT, so there is no 

need to apply (7.2) on it. Finally we get, max k2*|E| clauses in 3-CNF-SAT as 

per interference constraint approach. 

Now, conjunct the 3-CNF-SAT encoding expressions of all the m edges of 

graph G and store it in FI. Total number of clauses in this formula is 

represented by |FI| as: 

ଵܨ = (݁ଵ ∧ ݁ଶ ∧ …∧ ݁)                  (7.8) 

|FI| = max(k2*|E| ) clauses in 3-CNF-SAT               (7.9) 

if and only if formula holds |cu – cv| ≤ duv for all channels cm, where m =1,2,…,k  

To get final 3-CNF-SAT encoded formula F, we conjunct formula obtained 

by base station constraint approach (3) and formula obtained by interference 

constraint approach (7.8) as:  

ܨ = (൫ݒଵ ∧ ଶݒ ∧ …∧ ൯ݒ ∧ (݁ଵ ∧ ݁ଶ ∧… ∧ ݁))            (7.10) 

where (7.10) satisfy hard constraint of channel assignment problem given in 

(7.5). 

7.4.3 Maximum bound of generated 3-CNF-SAT 

 Formula 

Total no. of clauses in 3-CNF-SAT formula contains the clauses generated by 

(7.4) and (7.7). Finally we get 3-CNF-SAT formula F as:  

|F| = (((k-2)*|V|) + max (k2*|E|)) clauses  
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if and only if it satisfy hard interference constraint of channel assignment (7.5) 

as: Channel cm (m=1,2,…,k) such that |ci – cj| ≤ dij   

 

7.5 Illustration by an Example 

Let there is an small instance of cellular network  in figure 7.2, which has 4 

base stations u,v,w,x; three available channels 2,4,7 and interference weight or 

channel reuse distance d are associated with each edge. Now we have to reduce 

this instance of channel assignment to 3-CNF-SAT formula.  

First of all, we assign at least one channel to each station and encode it by base 

station constraint approach (6.4) as: 

௦ܨ = ଶݑ) ∨ ସݑ ∨ (ݑ ∧ ଶݒ) ∨ ସݒ ∨ (ݒ ∧ ଶݓ) ∨ ସݓ ∨ (ݓ ∧ ଶݔ) ∨ ସݔ ∨   (ݔ

Now we encode edges in such a way that interference constraint (7.5) could be 

satisfied. There are 4 edges in network as e1(u,w), e2(u,v), e3(u,x) and e4 (v,w). 

 

Figure 7.2: Small Channel Assignment Problem Instance 

An edge connecting nodes u and v indicates that the channels assigned to 

stations u and v must be four or more than four apart (duv=4). Similarly duw=1, 

dux=6 and dvw=4. This will generate following 3-CNF clauses:    

݁ଵ = ଶݑ¬) ∨ (ଶݓ¬ ∧ ସݑ¬) ∨   (ସݓ¬

6 

4 

1 

4 

v 
 

2, 4, 7 

u 
 

2, 4 

w 
 

2, 4, 7 

x 
 

2, 4 
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݁ଶ = ଶݑ¬) ∨ (ଶݒ¬ ∧ ଶݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) (ଶݒ¬∨ ∧ ସݑ¬) ∨ (ସݒ¬ ∧

ସݑ¬) ∨   (ݒ¬

݁ଷ = ଶݑ¬) ∨ (ଶݔ¬ ∧ ଶݑ¬) ∨ (ସݔ¬ ∧ ସݑ¬) (ଶݔ¬∨ ∧ ସݑ¬) ∨   (ସݔ¬

݁ସ = ଶݒ¬) ∨ (ଶݓ¬ ∧ ଶݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨ (ଶݓ¬ ∧ ସݒ¬) ∨ (ସݓ¬ ∧

ସݒ¬) ∨ (ݓ¬ ∧ ݒ¬) ∨ (ସݓ¬ ∧ ݒ¬) ∨   (ݓ¬

To get final 3-CNF-SAT formula F, conjunct Fbs with e1, e2, e3, and e4. To 

model all the interference constraints in 3-CNF-SAT, 22 clauses are generated, 

that involving 10 variables. 

ܨ = ௦ܨ) ∧ ݁ଵ ∧ ݁ଶ ∧ ݁ଷ ∧ ݁ସ)  

ܨ = ଶݑ) ∨ ସݑ ∨ (ݑ ∧ ଶݒ) ∨ ସݒ ∨ (ݒ ∧ ଶݓ) ∨ ସݓ ∨ (ݓ ∧ ଶݔ) ∨ ସݔ ∨ (ݔ ∧

ଶݑ¬) ∨ (ଶݓ¬ ∧ ସݑ¬) ∨ (ସݓ¬ ∧ ଶݑ¬) ∨ (ଶݒ¬ ∧ ଶݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) ∨

(ଶݒ¬ ∧ ସݑ¬) ∨ (ସݒ¬ ∧ ସݑ¬) ∨ (ݒ¬ ∧ ଶݑ¬) ∨ (ଶݔ¬ ∧ ଶݑ¬) ∨ (ସݔ¬ ∧

ସݑ¬) ∨ (ଶݔ¬ ∧ ସݑ¬) ∨ (ସݔ¬ ∧ ଶݒ¬) (ଶݓ¬∨ ∧ ଶݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨

(ଶݓ¬ ∧ ସݒ¬) ∨ (ସݓ¬ ∧ ସݒ¬) ∨ (ݓ¬ ∧ ݒ¬) ∨ (ସݓ¬ ∧ ݒ¬) ∨   (ݓ¬

7.6 Results and Discussion 

In this chapter, we have presented a simple approach to reduce the channel 

assignment problem in cellular network to 3-CNF-SAT using graph k-

colorability. Our reduction formulation of channel assignment to 3-CNF-SAT 

generates total ((k-1)*|V| + max(k2 *|E|)) clauses for all k channels cm 

(m=1,2,…,k) such that |ci - cj| ≤ dij; 

 

7.7 Summary 

Since, it is already proved that channel assignment problem in cellular network 

is equivalent to graph k-colorability; also both problems are NP-complete. To 

keep this in mind, in this chapter, we have presented a reduction approach for 

channel assignment problem into 3-CNF-SAT expression using graph k-

colorability. Further, encoded 3-CNF expression can be solved using efficient 

SAT solver. 
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Chapter 8  

Conclusion and Scope for Future Work 
 

8.1 Conclusion 

This thesis covered some research investigations of graph coloring problem 

and its applications based on Satisfiability and maximal independent set. We 

have designed a novel tree based approach for finding maximal independent 

set. Also we have attempted to formulate the encoding/reductions 3-CNF-SAT 

to/from graph k-colorability and drawn the important conclusions. We 

summarize the same as follows: In this thesis, we have developed 

polynomial 3-CNF-SAT encodings for the famous graph coloring problem. 

For any input graphs from DIMACS, the reduction has been performed on 

graphs to encode into 3-CNF-SAT formula. It has been observed that our 

formulations using adjacency list for the graphs generate generalized SAT 

formula. A polynomial reduction of a k-colorable graph to 3-CNF-SAT 

generates ((k-2)*|V| + k*|E|) clauses in 3-CNF-SAT expression. To fetch the 

satisfiable values of the SAT formulas, the generated SAT clauses are passed 

to SAT solver. The number of satisfiable values so obtained reflects the 

unique color values for the input graphs. Thus, it is concluded that the using 

Satisfiability the number of unique colored vertices in the input graphs can be 

recognized. 

In this thesis, graph k-colorability can be reduced to channel 

assignment problem for the assignment of k- channel if and only if graph is k-

colorable. Polynomial 3-CNF-SAT encoding of Graph k-colorability is the 

basis for reduction of channel assignment problem to 3-CNF-SAT. Reduction 

of the channel assignment problem in cellular network to 3-CNF-SAT using 

graph k-colorability generates total ((k-1)*|V| + max(k2 *|E|)) clauses for all k 

channels cm (m=1,2,…,k) such that |ci - cj| ≤ dij. 

In this thesis, we have formulated a generalized reduction approach 

from 3-CNF-SAT expression to k-colorable graph. Important formulations 
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have been developed to obtain k-colorable graph from 3-CNF-SAT clauses. A 

New reduction approach from 3-CNF-SAT formula to graph k-colorability 

generate a k-colorable graph with 

  |V| = (2n + 3m + (k-2)) vertices and  

  |E| = (3n + 6m) edges for k = 3 or 

  |E| = (|E| of (k-1)-colorable graph + (|V|-1)) edges for k >3  

  

8.2 Scope for Future Work  

We believe that Satisfiability and maximal independent set based approach 

proposed in this thesis would provide promising outcomes for analysis of 

graph coloring problem. To facilitate further development of these approaches, 

we have highlighted few issues which are addressed below. 

Since, channel assignment problem in cellular network is 

generalization of graph coloring problem i.e. multicolring graph problem or 

bandwidth graph coloring problem. In our thesis, we encoded a channel 

assignment problem into 3-CNF-SAT using graph k-colorability. So, there is a 

scope to solve this problem using efficient SAT solver. Also, one can try to 

solve the channel assignment problem using 3-SAT as a bandwidth graph 

coloring (multicoloring) problem. 

In our thesis, we formulate a generalized encoding technique for k-

colorable graph. To solve encoded SAT expression more efficiently, there is 

always a scope to develop a novel efficient SAT solver. 
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Appendix A 

Dataset: DIMACS Graph Instances 

 

Introduction 
DIMACS (Center for Discrete Mathematics and Theoretical Computer 

Science) [34] defined a format for undirected graph, which has been used as a 

standard format for problems in undirected graphs. This format was also 

chosen for several DIMACS Computational Challenges. One purpose of the 

DIMACS Challenge is to ease the effort required to test and compare 

algorithms and heuristics by providing a common test bed of instances and 

analysis tools. To facilitate this effort, a standard format must be chosen for 

the problems addressed. This document outlines a format for graphs that is 

suitable for those looking at graph coloring. This format extends to a flexible 

format suitable for many types of graph and network problems.  

 

Input Files 
An input file contains all the information about an undirected graph. In this 

format, nodes are numbered from 1 up to n vertices in the graph. Files are 

assumed to be well-formed and internally consistent: node identifier values are 

valid, nodes are defined uniquely, exactly m edges are defined, and so forth. 

Input files having mainly following information: 

 

 Comments: Comment lines give human-readable information about 

the file and are ignored by programs. Comment lines can appear 

anywhere in the file. Each comment line begins with a lower-case 

character c.   

  

 c This is an example of a comment line. 
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 Problem line: There is one problem line per input file. The problem 

line must appear before any node or arc descriptor lines. The problem 

line has the following format.  

 p FORMAT NODES EDGES 

The lower-case character p signifies that this is the problem line. The 

FORMAT field is for consistency with the previous Challenge, and 

should contain the word ``edge''. The NODES field contains an integer 

value specifying n, the number of nodes in the graph. The EDGES 

field contains an integer value specifying m, the number of edges in the 

graph.  

 

 Edge Descriptors: There is one edge descriptor line for each edge the 

graph, each with the following format. Each edge (u, v) appears exactly 

once in the input file and is not repeated as (u,v).  

 e u v 

The lower-case character e signifies that this is an edge descriptor line. 

For an edge (u,v) the fields u and v specify its endpoints.  

 

Graph Descriptions 

All listed graphs are from the DIMACS benchmark [73], and, more exactly, 

they belong to the following families: 

 dsjcX.Y: Random graphs generated by Johnson et. al [72] and used 

extensively afterwards by most graph coloring algorithms (like 

dsjc1000.5). The number of vertices is denoted by the first number 

while the second digit references the probability that any two vertices 

establish an edge (the density). 

 flatX_K: Flat graphs due to J. Culberson. They are generated by 

partitioning the vertex set into K almost equal sized classes and then by 

selecting edges only between vertices of different classes. Finding the 
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best legal K-coloring is equivalent to restoring this initial partitioning. 

The second number K is hence the chromatic number (X is the vertex 

set size). 

 le450_K: Leighton graphs, with the 450 vertices and with known 

chromatic number K (denoted by the second number) [4]; all graphs 

have a clique of size K. 

 dsjrX.Y and rX.Y: Random geometric graphs: 

o dsjrX.Y: graphs presented by Johnson et. al in [72] along with 

the above dsjc random graphs. They are generated by picking 

points uniformly at random in a square and by setting an edge 

between all pairs of vertices situated within a certain distance. 

DSJRx graph instances are geometric random graphs with X 

nodes randomly distributed in the unit square.  

o rX.Y: graphs generated using the same idea by M. Trick using 

a program of C. Morgenstern; suffix "c" denotes the 

complement of a graph. Descriptions can be found in [74]. For 

R1000.5, only the clique number is available, but it is equal to 

the chromatic number and to the upper bound 234. 

 C2000.5 and C4000.5: Huge random graphs with up to 4 million 

edges. 

 latin_square_10 and school*: A latin square graph (and class 

scheduling graphs respectivelly) generated by Gary Lewandowski in 

the second Dimacs challenge. 

 myC: Myciel graphs are based on the Mycielski transformation and 

These graphs are difficult to solve because they are triangle free but the 

coloring number increases in problem size. 

 k-Insertion and Full Insertion graph: k-insertion graphs and full 

insertion graphs are a generalisation of myciel graphs with inserted 

nodes to increase graph size but not density. These instances are 

created by M. Caramia and P. Dell’Olmo.  
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 queenX_Y: A queen graph is a graph on n^2 nodes, each 

corresponding to a square of the board. Two nodes are connected by an 

edge if the corresponding squares are in the same row, column, or 

diagonal. 

 milesC: In miles graphs nodes are placed in space with two nodes 

connected if they are close enough. The nodes represent a set of United 

States cities.  

 Leighton Graphs: Leighton graphs  are generated by  Leighton’s    

graph covering theorem (Two finite graphs which have a common 

covering have a common finite covering). 
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