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ABSTRACT

A uniform approach is adopted throughout this thesis by appropriately approximating
the solutions of nonlinear differential equations by sequences of linear ones that mono-
tonically converge to the unique solution of the problem. The existence and uniqueness
of the solutions of different nonlinear partial differential equations with initial and/or
boundary conditions arising from mathematical models are obtained for both continuous
and/or discretized domains. All the proposed methods supply lower and upper bounds
for the solutions of the given nonlinear differential equations. The efficacy of the proposed
iterative schemes in terms of their faster convergence and/or higher flexibility in choosing

the initial guess are demonstrated through numerical simulations.

In Chapter 1 provides an outline of the historic development of the method of
monotone iterations as a powerful tool for nonlinear differential equations of various types.
Few basic results and definitions that are relevant to the rest of the chapters are also given

in this chapter.

Chapter 2 deals with an accelerated monotone iterative procedure for a coupled
system of partial differential equations arising from a catalytic converter model. The
monotone property as well as the convergence analysis and the error estimate of the pro-
posed iterative schemes for continuous domain as well as discretized domain based on finite
difference approximations are proved theoretically. The efficiency of the proposed scheme

is illustrated by providing a comparative numerical study with the existing method.

In Chapter 3, an alternative approach to the one provided in Chapter 2 is proposed
in which one has to evaluate the derivative only once throughout the procedure. The
proposed scheme also accelerates the procedure studied in the literature. An interesting

theoretical study on the monotone convergence as well as error estimate of the proposed



iterative procedure are provided for continuous as well as finite difference based discretized

problems.

Chapter 4 proposes an accelerated iterative procedure for a nonlinear fourth order
elliptic equation with nonlocal boundary conditions. Theoretically, the monotone property
as well as the convergence analysis are proved for both the continuous and finite difference
discretized cases. The proposed scheme not only accelerates the scheme in the literature
but also provides a greater flexibility in choosing the initial guess. The efficacy of the
proposed scheme is demonstrated through a comparative numerical study with the recent

literature.

In Chapter 5, a finite difference method based monotone iterative technique is em-
ployed to solve an important class of Volterra type parabolic partial integro-differential
equations. The monotone property, convergence analysis and an error estimate in terms
of the stopping criteria are proved theoretically. The effectiveness of the proposed scheme
is demonstrated by applying it to nonlinear integro-partial differential equations arising

in population models and nuclear reactor models.

KEYWORDS: bending beams, catalytic converter, coupled system, finite difference,
fourth order elliptic equations, monotone iterations, nonlocal boundary
conditions, population models, quasilinearization, successive approxima-

tions, Volterra type integrals
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CHAPTER 1

INTRODUCTION

This chapter intends to provide a short literature survey on the method of monotone
iterations and its evolution as a powerful tool to deal with nonlinear differential equa-
tions of various types. The historical developments are traced by the aid of some major
references from [24] and [72]. Certain preliminary results and definitions along with a
brief description of the works explained in the following chapters are also provided in this

chapter.
1.1. A SHORT REVIEW ON MONOTONE ITERATIONS

Many of the real life problems can be mathematically modeled into differential equa-
tions. When these models are nonlinear, dealing with them is of great complexity. In
particular, nonlinear partial differential equations with initial and boundary conditions
occur frequently in varied fields such as Biology, Economics, Engineering and Physics.
The qualitative and quantitative properties of such models and numerical techniques to

approximate their solutions are of great importance to mathematicians.

There are various classical methods available in the literature that provide existence
and uniqueness of solutions of nonlinear differential equations. Out of them, one of the
systematic approaches that also provides iterative schemes to approximate solutions is
the method of lower and upper solutions. During this process of iterations, it not only
gives an existence-uniqueness theorem but also provides lower and upper bounds for the

solution.

The method of lower and upper solutions marked its commencement during 1890s
when E. Picard [24] investigated on the existence and uniqueness of the solution for the

following nonlinear boundary value problem:

(1.1) '+ f(t,x) =0, z(a) =0, z(b) = 0.



Based on the assumptions that it has a trivial solution and the function f is increasing,

sequence of successive approximation was developed from the iterative scheme

—a, = f(t,an_1), an(a) =0, ay(b) =0
that converge to the solution of (1.1). The case when f is decreasing was also handled
by him. Later, he recursively generated two sequences o, and (3, by solving the following

sequences of linear problems:

B+ ft,an_1) = 0, Bu(a) =0, B,(b) =0

ap+ f(t, Buo1) = 0, an(a) =0, an(b) =0,

where «,, is increasing, 3, is decreasing and both converge to functions v and v > u
respectively that are bounds for the solution. By providing suitable examples, it was
concluded that these bounds need not be equal in general. However, sufficient conditions
were provided to ensure that these bounds are equal and thus a solution of (1.1). In the
beginning of 1900s, independently using the comparison between solutions of differential

inequalities, existence of solutions for the first order Cauchy problem
(1.2) z + f(t,z) =0, z(0) = xo,

was studied by O. Perron [24] and its extension to systems by M. Muller [24]. A cru-
cial advancement in this direction occurred due to G.S. Dragoni during 1930s while he

considered a more general form of (1.1)

(1.3) ' = f(t,x,x), z(a) = A, x(b) = B.
The role of modern day lower and upper solutions were explicitly recognised for the first
time through this work. More specifically, on the assumption of the existence of functions

a, B € C?[a,b] satisfying

o' (t) + f(t, a(t),y) = 0if t € [a,b], y < a'(t) (y = a'(1)),
ala) < A, ab) < B

AU + [t B(t),y) <0ift € a,b], y <B(1) (y > B'(1)),
Bla) > A, B(b) > B

2



with a < 8 on [a, b], the existence of a solution u of (1.3) was deduced between « and
(. However, there were no explicit ways available to practically find these functions for a
given problem. Later, this led to the study of constructions of lower and upper solutions in
1960s by K. Ako [4] followed by R.E. Gaines [30] in 1972. For details, see [24]. Later, by
relaxing the smoothness as well as modifying the conditions of lower and upper solutions
(1.4), M. Nagumo obtained at least one solution for (1.1) for certain Nagumo class of

functions [24].

The class of lower and upper solutions was enlarged and quasi-subsolution and quasi-
supersolution were defined by M. Nagumo [61] in 1954 while studying a nonlinear partial
differential equation of elliptic type

Au+ f(z,u,Vu) =01in Q, w =0 on 01,

where the lower solution a and upper solution 3 were supposed to be belonging to C?(Q),

f is a Holder continuous function satisfying
(@, u,0)] < Bllo||* + C
with the restriction
(1.5) 16M B < 1, where M = max{||c| s, || Blloc }-

Many authors tried various extensions of this work and it was F. Tomi [24] in 1969 who

extended this work by removing the restriction (1.5).

B.N. Babkin [24] in 1954 studied (1.1) by replacing the condition on f by the weaker
one: f-+ Ku is increasing in u for some K > 0. With suitable lower solution oy and upper

solution By > ag, the iterative scheme proposed was as follows:
—a;; + Ka, = f(t,an-1) + Kay1, ay(a) =0, a,(b) =0
_6;: + K/Bn = f(ta ﬁn—l) + Kﬁn—h Bn(a) = Oa Bn(b) =0.

The unique solution of (1.1) was obtained as the limits of these sequences.

It was observed that the sequences generated by Picard’s procedure and its modifica-

tions could achieve only a linear order of convergence. For handling (1.1), (1.2), (1.3) and

3



nonlinear elliptic and parabolic problems, R.E. Kalaba [41] in 1959 replaced frequently
used Picard’s idea of linearizing the nonlinear problems by the idea of quasilinearization
which was first used by R.E. Bellman [8] in 1955 in the context of dynamic program-
ming. R.E. Kalaba also proved that the order of convergence of his iterative procedure
is quadratic; one major enhancement in this direction. Originally, the quasilinearization
technique gained its motivation from the well known Newton’s method. One of the results

due to Kalaba is given below:

Theorem 1.1.1. The sequence of functions {u,(x)} given by

o = f(v0) + (uo — vo) f (v0), uo(0) = ¢

u/n—&-l = f(un) + (un—i-l - un)f/ (un)a Up+1 (0) =C,

wheren = 0,1, ... is monotone increasing in the interval [0, b] and converges to the unique

solution u(x) of

’

u = f(x,u), u(0)=c, 0 <z <b,

where [ is assumed to be continuous in u and x and strictly convex in u with a bounded
derivative with respect to u for allu and x. Moreover, the sequence {u,(z)} is quadratically

convergent on the interval [a, b].

For details on the contributions of R.E. Bellman and R.E. Kalaba, one can refer to

[9].

Using the idea of quasi-subsolution and quasi-supersolution of M. Nagumo [61] and K.
Ako [3] established the existence of solutions for a more general class of quasilinear elliptic
differential equation of second order. In this direction, another approach in linearizing
the nonlinear equations was suggested by G.V. Gendzhoyan [24] in 1964 to obtain the

existence and uniqueness of the solution of

'+ f(t,z,x) =0, z(a) =0, z(b) = 0.
4



Using lower and upper solutions g and 5y > «p, the sequences studied were

—a, +(t)ey, + k(t)an = f(t,an-1,0, ) + 1(t)a,_, + k(t)an
an(a) =0, a,(b) =0,

=B +1(t)B, + k() Ba = f(t, Ba-1, Buy) + 1) By + k(1) Bac
Bnla) =0, Bu(b) =0,

where k(t) and [(t) are functions related to the assumptions on f. A set of sufficient
conditions were provided to ensure the convergence of the above iterative scheme to the
unique solution of the problem along with its error estimate. It is worth mentioning
that S.R. Bernfeld and J. Chandra adopted another approach to handle a second order

boundary value problem z" 4 f(t, z,2") = 0 with mixed boundary conditions in [11].

An interesting existence-uniqueness theorem for a class of mildly nonlinear elliptic
boundary value problem where the nonlinearities might occur both in the boundary condi-
tions and governing equation was obtained by H.B. Keller [43] using monotone iterations.
The monotone iterative method gained wide attention due to Keller and few others in the
late sixties and early seventies. In early 1970s, the works of H. Amann [5] for nonlinear
elliptic boundary value problem and D.H. Sattinger [92] for parabolic boundary value
problem provided the construction of monotone sequences using lower and upper solu-
tions systematically. These ideas were extended by C.V. Pao during 1970s to a semilinear

parabolic equation given by
(1.6) u+ Lu = f(t,z,u), t €[0,T], z €,

with
L= Z Qg 5 (ta x>ul’il’j + Z b2<t7 x)uxz - C(ta x)u
ij=1 i=1

under the initial condition u(x,0) = ug(z) in € © and the nonlinear boundary conditions
ou
/86_ - g(t,:z:,u) = h<t7$)7 te (OaT]7 r € 05
v

and |1|im u(t,z) = 0, t € (0,7] where f and g are nonlinear functions of u, v is the
T|—0o0

outward unit normal vector on 02, 8 > 0 is a constant and €2 is a bounded or unbounded

domain in the n-dimensional Euclidean space R™ with boundary 0€). The existence and

5



uniqueness of a positive solution for this problem was obtained through the construction

of monotone iterations in [65]. The main theorem in this paper is given below.
Theorem 1.1.2. Suppose

(i) f(t,2,0) >0 and up(z) >0, (t,x) € D,
(i) g(t,x,0) =0 and h(t,x) >0, (t,z) € S and

(iii) there exist constants c1, co such that
f(t7x7n1) - f(t737;772) Z _Cl<7]2 - 771)7 0 S T S T2 S 15

Also let there exist an upper solution u. Then the minimal sequence {g(k)} converges
from below to a minimal solution u of (1.6) and the mazimal sequence {u®} converges
from above to a mazximal solution w. Furthermore, the convergence of these sequences are

uniform on every bounded subdomain of D and

0<uV <u? <--<u<u<a? <a¥ <a

S

This idea was further extended for a variety of problems by X. Lu, C.V. Pao, Y.M.
Wang and their collaborators in their subsequent works. By suitably coupling various
linear approximations and monotone iterations, they handled a wide variety of partial
differential equations with initial and boundary conditions such as semilinear parabolic
and elliptic boundary value problems, coupled partial differential equations, fourth or-
der elliptic equations with nonlocal boundary conditions, integro-differential equations of

Fredhlom and Volterra type etc. For example, see [66, 67, 72, 75, 81].

In 1979, S. Bernfeld and V. Lakshmikantham [12] successively solved nonlinear bound-
ary value problem in Banach space using monotone methods. An extension of the method

of lower and upper solutions to a Volterra integral equation

z(t) = f(¢) —i—/o K(t,s,x(s))ds

where z, f € C[I,R"], K € C[I* x R",R"] and I = [0,7] was done by G.S. Ladde et. al
in [45].



The study of the method of upper and lower solutions for hyperbolic differential

equation given by

Uy = [ (2,4, U, Us, uy), (7,y) €[0,a] x [0, 0]
u(z,0) = o(z), x €]0,q]
u(0,y) = 7(y), y € [0,0]
a(0) = 7(0) = uy,

(1.7)

where f € C([0,a] x [0,0] x R3), 0 € C'([0,a] x R) and 7 € C'([0,b] x R) was initiated in
1985 by V. Lakshmikantham and S.G. Pandit in [48]. V. Lakshmikantham and his collab-
orators employed this technique widely to study different kinds of nonlinear differential

equations with/without quasilinearization [1, 46, 49, 50, 51].

Many more interesting works can be found in the literature towards this direction
among which the contributions of C.D. Coster [24], R. Courant and D. Hilbert [25], L.
Kantorovich [42], E. Zeidler [103] and their references are worth noticing. The method
of lower and upper solutions has proved its applicability in various other classifications of
differential equations such as fractional [57, 63|, fuzzy [54], hybrid [94], matrix [60] and
stochastic [26, 27] differential equations. The investigations on utilization of this method

for various equations are actively going on.

1.1.1. Monotone Finite Difference Methods

Monotone iterative methods are not only used for obtaining existence and uniqueness
of the solution of nonlinear differential equations but also acts as an effective tool to obtain
the numerical solutions using finite difference approximations. In 1965, S.V. Parter [84]
initiated the study of numerical solutions of elliptic differential equations by aiding the
partnership of monotone iterations and finite difference approximations. The iterative

scheme proposed was given by

ApZmH — kZn = f(P, Z"(P)) — kZ", P € G(h)

(1.8)
ZmY(P) = g(P), P e Qh),

where A\, was a finite dimensional linear operator approximating the Laplace operator,

G(h) denoted the set of interior points and F'(h) denoted the set of boundary points. A

set of conditions was provided that ensured the convergence of the iterative procedure

7



defined by (1.8). More specifically, when initial approximations were chosen as the lower
and upper solutions respectively, increasing and decreasing sequences were generated that

converge to the solution of the problem considered.

By adapting a suitable finite difference method, A.C. Lazer [52] in 1982 proposed
a numerical method to solve a system of semilinear elliptic differential equations arising

from prey-predator models numerically. The boundary value problem considered was
(
(1.9) v (2)

where a, b, c, e, f, g are positive parameters. His approach provided two sequences, one
increasing and the other decreasing, that converge to the unique solution of the nonlinear

difference scheme.

This technique of lower and upper solutions was most extensively employed by C.V.
Pao for numerically handling various problems. In 1985, C.V. Pao [68] obtained an
existence-uniqueness theorem for a nonlinear finite difference scheme of a class of reaction
diffusion equations via monotone iterations. In particular, for a bounded domain €2 in

RP, p=1,2,..., the following parabolic boundary value problem was considered:

ug — DV2u = f(z,t,u), t€Q, 0<t<T
(1.10) (o) + B(zo)u = g(wo,t), 10 €9, 0 <t <T
u(0,) = ¥(x), = €,

where V2 is the Laplacian operator, 952 is the boundary of Q and % is the outward normal
derivative on JQ. It was assumed that the function D = D(x, ) is positive on Q x [0, 77,
a(xg) >0, B(xg) > 0 with a(zg) + S(xo) > 0 on 9N and the nonlinear function f and the

data g, v are known functions in their respective domains.

One of the interesting works where the quasilinearization technique was coupled with
monotone iterations for numerically solving a reaction-diffusion-convection equation was

given by C.V. Pao [73] in 1998. In this study, solution of the resultant nonlinear finite
8



difference scheme was obtained from two monotone sequences generated by quasilineariza-

tion that converge quadratically. One of the main theorems in this article is given below.

Theorem 1.1.3. Let U,, U, be a pair of ordered upper and lower solutions for the finite

difference approximation
(1.11) (I + kAU, =Upq + kn F(U,), Uy =,

where U, = (U1 p, - .., Unyn) with N denoting the total number of unknowns, A, an N x N

band matriz associated with the elliptic and boundary operators in the problem and F(U,)

a vector in the form F(Uy,) = (f*(uin), f*(urn), -, [*(unn))) with f*(uin) = f(uin) +

g (uiy). Let A, = (agz)) be an irreducible matriz with ag}) <0 fori # 7, ag?) >0 for all i
N

andZag}) >0 foralli=1,...,N andn=1,2,---. Assume that k,(c, — p,) <1, n =

j=1
1,2,..., where p, is the smallest eigenvalue of A,. Then (1.11) has a unique solution

U* €< U,,U, >. Moreover, the sequences {U;m)}, {U™Y given by
PIUSY = U+ k, [OVV UM + RO, USTY =0,

where m = 0,1,2,..., U is either U, or U,, P\ = I + kA, + k,C™, c™ =
(m)

I
diag(e™ &Y and €™ max{—f*(us0): ) ]
G(C1p s o s+ - ,cNm) and c;,, = max{—f(u;,); u < Ui, Uy, } converge mono

=i,n

tonically from above and below, respectively, to the unique solution U .

In 2002 [78], this idea was further explored for a coupled system of reaction diffusion
equations with nonlinear boundary conditions and time delays. The time dependent

reaction diffusion system considered was of the form

ol — L0y = fO(z,t,u,u,), 2 €Q, t>0
(1.12) BOuWD = g0zt u,uy), 2 €09, t>0

ul(z,t) =W (x,t), 2 €Q, =7, <t <0,

where for each [ = 1,2,..., N, L® and B® are the respective diffusion-convection oper-

ator and boundary operator given by
L0y = DO g240 4 O Ay

BOO = o2 4 g0y,

9

(1.13)



Here 2“ denotes the outward normal derivative of u” on 8, DU = DO (z,t), U =
z,t) and vV = (vy7,...,v with vp,” = vw'(x,t), v = 1,2,...,p are continuous
30 d v §l) é)l) ith oW O] 1.9 :

functions of (z,t).

In this direction, extensive contributions were made by C.V. Pao and his collabora-
tors to this area. Using finite difference approximations, the method of lower and upper
solutions was immensely utilized by X. Lu, C.V. Pao and Y.M. Wang and their collabo-
rators to deal with diverse partial differential equations like reaction diffusion equations
[68], semilinear parabolic equations [69], coupled systems of nonlinear boundary value
problems [70], nonlinear parabolic boundary value problems [71], nonlinear parabolic
equations with time delays [74], nonlinear integro-parabolic equations of Fredholm type
[76], fourth-order nonlinear elliptic boundary value problems [77, 80, 83], reaction dif-
fusion systems with coupled boundary conditions [78], nonlinear elliptic boundary value

problems [79], coupled system of differential equations [82] etc.

In most of these recent studies, the convergence of the discretized solutions to their
continuous counterparts as the mesh size tends to zero is based on the convergence of
their continuous cases. In contrast to this, convergence analysis for discretized solutions
that were completely independent of their continuous cases was studied by 1. Bogalev,
one of the active contributors in this area. He utilized the method of lower and upper
solutions to a large extend especially for discretized problems obtained from differential
equations. This approach was exclusively dependent on comparison results for discretized
domain proposed by A. Samarskii in [90]. Using this technique, different aspects of finite
difference based numerical solutions for nonlinear integro-partial differential equations
were studied in his recent publications. [13] dealt with solving of nonlinear integro-
parabolic problems using finite difference approximations based on the method of upper
and lower solutions numerically. The same problem was further improved in [14] by
adopting weighted average scheme for approximations. This study was then extended for
coupled systems of nonlinear parabolic equations based on a nonlinear ADI scheme in

[15] and a coupled system of two nonlinear integro-parabolic equations of Volterra type

10



in [16]. The integro-parabolic equation that was considered in [16] is given by

Qi — Liui + fi(z,t,u) + fot g (z,t,s,u(z,s))ds =0, (x,t) € wx (0,7
ui(x,t) = ¢i(x,t), (z,t) € dw x (0,T); wi(z,0) =i(x), x €W, i =1,2,
where u; = (u;,uy), w is a connected bounded domain in R* (k = 1,2, ---) with boundary
Ow. The differential operators L; are given by
Liu; = ; /{ai% (Di(:v,t)%ui) + vi,a(a:,t)%,

where the coefficients of the differential operators are smooth and D;, i = 1,2 are positive
in wx [0,7]. It was also assumed that the functions f;, ¢, ¢; and v;, i = 1,2 are smooth
in their respective domains. Based on the monotone iterative method for solving the
nonlinear difference scheme, the existence and uniqueness of a discrete solution and error
estimates of the iterative method were acquired in this article. In this approach, at each

step of the iterative scheme one has to solve linear difference equations of the form

(1.14) (L; +¢)Wilp, te) = Ui(p, ty), p € "
Gi(p, te) >0, Wilp, tx) = ¢5(p, tr), p € Owh, i =1,2.

The existence and uniqueness as well as the monotone property of proposed iterative
scheme was obtained using the following maximum principle and error estimate by A.

Samarskii [90].

Lemma 1.1.1. Let the coefficients of the difference operator L, i = 1,2 satisfy the

assumptions on their coefficients and the mesh @W" be connected.

(i) If a mesh function Wi(p,ty), i = 1,2 satisfy the conditions
(Li +C)Wilp, ty) > 0(<0), pew’
Wi(p,tr) > 0(<0), peow,
then Wi(p, ty) > 0(< 0) in @".

(ii) The following estimate to the solution to (1.14) hold true.

Wil te)|lor < max < ||lgi(-, tr)|lgwn, max —————— 3% i =1,2,
I o < e { . )l e

where ||Wi(.,t4) | = max [Wip, )] and [lgi(., tx) o = max |g.(p, 1),
pEWh pEdWh

11



1.1.2. Monotone Iterations in Abstract Space

It is interesting to note that solutions of differential and integro-differential equations
can be seen as solutions of fixed point of nonlinear operators in the abstract space. In
this regard, fixed point theorems in the setting of partially ordered abstract space can
be utilized for proving existence and uniqueness theorems for these equations that also
guarantee the existence of monotone sequences that will converge to the solutions. The
literature for fixed point theorems is very vast and out of all those works, a few latest
results are recalled in this subsection. For a detailed study, one can refer to [29, 34, 36,
44, 103] and the references therein. For example, the following fixed point theorem in
the abstract space [29] can be used to obtain the monotone successive iterative schemes
for the two-point boundary value problem —i(t) = f(¢,z(t)), t € (0,1), z(0) = z(1) =0,
where f :[0,1] x R — R is a function continuous in the first variable and continuously

differentiable in the second one.

Theorem 1.1.4. [29, pp. 396] Let X be a real Banach space with a normal order cone
and T : X — X. Assume that ug and vy is a subsolution and a supersolution of the
operator equation u = T(u) respectively and ug < vo. If T is a compact monotone in-
creasing operator on the order interval [ug, vo|, then both the iterative sequences {u,}5°,
and {v,}22, given by upy1 = T(uy), vy = T(v,), n=0,1,2,... are defined, converge
and u = lim w, is the smallest fized point and v = lim v, s the largest fixed point re-

n—o0 n—o0

spectively of T in [ug, vo]. Furthermore, we have the error estimates u, < u < v < v, for

alln=0,1,---.

Attempting to accelerate the monotone iterative procedure in partially ordered ab-
stract spaces, fixed point theorems via quasilinearization scheme and its applications to
differential equations were also investigated. In this direction, A. Buica and R. Precup
[17], M.A. El-Gebeily et.al. [31], V. Lakshmikantham et.al. [51] and V.A. Vijesh and
K.H. Kumar [98] are a few. [31] studied monotone quasilinearization method for nonlinear

periodic boundary value problem
u(t) = f(t,u(t), t€ 1 =[0,T]
uP(0) —u(T)=¢;, i=0,1,...,n—1

12



by proving monotone quasilinearization method for an operator equation in reflexive Ba-

nach space. One of the main theorems in this study is given below:

Theorem 1.1.5. [31] Assume that the nonlinear problem Au = f, where A is a nonlinear
operator has a lower solution ag and an upper solution By such that oy < [y. Assume
also that A satisfies strict positivity, differentiability and sup-positivity conditions. Then
the two sequences of lower and upper solutions, {a,} and {B,} quadratically converge to

a solution of the nonlinear problem.

An interesting generalized quasilinearization method for operator equation was stud-
ied in [17] and its applications to nonlinear elliptic problems were considered in [18].
Similar results were obtained by V. Lakshmikantham et. al [51] and existence-uniqueness
theorems for initial value problem and semilinear parabolic initial boundary value prob-
lem via monotone quasilinearization were successfully deduced. One of the abstract fixed

point results in [51] is as follows:

Theorem 1.1.6. [51] Let E' be an ordered Banach space with regular order cone E..

Assume that T : E — E satisfies the following hypotheses:

(i) There exist vy, wy € E such that vg < Twvg, Twy < wy and vy < wp.
(ii) The Frechet derivative T'(u) exists for everyu € [vg, wo] and u + T uv is increasing
on vy, wo| for allv € E,.
(iii) [I — T'(u)]™" exists and is a bounded and positive operator for all u € [vy,wp).

Then, for n € N, relations
Un41 = Tvn + T/<Un)<vn+1 - Un)a Un+1 = Tvn + T/ (Un)(vn—l—l - Un)

define an increasing sequence (v,)>2, and a decreasing sequence (wy,)>2, which
converge to fived points of T. These fized points are equal if

(iv) Tuy — Tuy < uy — ug whenever vy < uy < uy < wy. Moreover, if (i) — (iv) hold
along with

(V) ||IT (u) =T (v)|| £ L|ju —v|| for some L > 0 whenever vy < v < u < w.

(vi) sup{[I = T'(u)]™" : u € [vo,wq]} < o0, then the sequences (v,)>, and (w,),

converge quadratically to the same fixed point of T.
13



The literature on the method of lower and upper solutions is enormous. This review
is an outcome of a short literature survey done on this area and our references are mere

representatives only.

1.2. PRELIMINARIES

This section provides certain preliminary definitions and results that are of use in the

following chapters.
Definition 1.2.1. A matriz A is said to be inverse positive if A~! exists and is positive.
Definition 1.2.2. A matriz A is said to be monotone if Ar > 0=z > 0.

Definition 1.2.3. An n x n real matric A = (a; ;) is said to be a Z-matriz if a;; <0 for

alli #j; 1<i,j<n [86].

Definition 1.2.4. An n xn matrix A that can be expressed in the form A = sl — B where
B = (b;;) with b;; > 0 for all1 <i,5 <n and s > p(B), the mazimum of the moduli of

the eigenvalues of B is called an M-matriz [86].

If Ais an n x n real Z-matrix, then the following statements are equivalent to A being

a nonsingular M-matrix.

e All the principal minors of A are positive.
e A is inverse positive.

e A is monotone.

Theorem 1.2.1. [102] A matriz A of order N is irreducible if and only if N = 1 or
gwen any two distinct integers 1 and j with 1 < 4,5 < N, then a;; # 0 or there exist

i1,1%9,...,1, such that

amlaihh e ainj 7& 0.

Let Q be either a bounded or an unbounded open domain in R™. Then C™(f2) denotes
the collection of all continuous functions whose partial derivatives up to the m** order are

continuous in {).

14



Definition 1.2.5. A function u € C(Q) is said to be Holder continuous of order o € (0, 1)

of

|u(z) — u(§)]
|z =&l

C™*(Q) denotes the collection of all functions in C™(QY) that are Holder continuous in

Hazsup{ ;x,fEQandm#§}<oo.

Q with exzponent o € (0,1).

1.2.1. Approximating Derivatives using Finite Difference

In finite difference approximations, the following formula are used to approximate the
derivatives of a function u(x,t) of two variables. Note that h and k denote the step sizes

in x and t directions respectively.

1. Forward difference approximation of u,(z,t)

u(x + h,t) — u(z,t)
h

ug(x,t) =~

2. Forward difference approximation of u(x,t)

u(z, t+ k) —u(z,t)

up(z,t) ~

3. Backward difference approximation of w,(z,t)

u(z,t) —u(z — h,t)
h

Uz (x,t) &

4. Backward difference approximation of u;(x,t)

u(z,t) —u(z,t — k)
k

u(z, t) ~

5. Central difference approximation of u,(z,t)

u(x + h,t) —u(z — h,t)
2h

ug(x,t) &

6. Central difference approximation of u,,(z,t)

u(x + h,t) — 2u(z,t) + u(x — h,t)
12

Uge (T, 1) &
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1.3. DESCRIPTION OF THE RESEARCH WORK

Chapter 2 deals with a mathematical model arising in interphase heat transfer for
a catalytic converter where the vehicle and converter temperatures are governed by a

coupled system of first order partial differential equations given by

g—?+ag—z+cu:cv, t>0,0<z<,
(1.15) % +bv=bu+Aexp(v), t>0, 0<z<l,
u(0,t) =1, u(x,0) = uo(x), v(z,0) =vo(x), t >0, 0 <z <I.

An accelerated iterative procedure is proposed by a modification to the iterative scheme
in [21] by combining successive iteration and quasilinearization together with monotone
method. The first part of the chapter proves an existence and uniquenss result for (1.15)
via the proposed accelerated iterative procedure. In the second part, based on this it-
erative procedure, a finite difference scheme is proposed to solve the coupled system
numerically. Interestingly, the proposed iterative scheme not only accelerates but also
preserves the monotone property. Moreover, a detailed error estimate is also derived.

The following are the two major theorems given in this chapter.

Theorem 1.3.1. Let (a, ) and (@, ) be a pair of ordered lower and upper solutions
of (1.15). Then the minimal sequence {(a™, ™)} and the mazimal sequence {(@", ")}

converge monotonically to the unique solution (u*,v*) of (1.15) in S and the relation

(Oz,ﬁ) < (Oé”,ﬁn) < (Oén—i-l’ﬁn—i-l) < (Oé*,ﬁ*) < (a*73*> < (an+17ﬂ
holds for n = 1,2,..., where S = {(u,v) € C(Q) x C(Q) : (,B) < (u,v) < (@, B)}.
Moreover, |[u* = o™ < Ju* —a”|| and [[v* = 5" < C (Jjur = o™ + [|o* = 5"[%) also

hold for all n € N with some positive constant C'.

Let h = Az, k = Ak be the space and time increments and let x; = ih, t; = jk be a
mesh point in [0,!] x [0,7]. The sets of mesh points (z;,%;) in [0,1] x [0,T] is denoted by
A. Define u; j = u(w;, t;) and v; ; = v(z;,t;). Using the backward implicit approximation
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for first order differential equations, (1.15) is approximated by the finite difference system

Alugj = ckvij 4+ uijq + % i1,
(116) A2Uz"j = Vi j—1 + bkui,j + kX exp(vi,j),
u(),j :nj, UZ"o :wia vi’ozgzﬁi; Z: 172,...,M, j: ].,2,...,N

WithA1:1+‘;l—k+ck and A2 =1+ bk.

Theorem 1.3.2. Let (o, 3:;) and (6”-,3”) be a pair of ordered lower and upper so-

lutions of (1.16). Then the minimal sequence {(af;, B7;)} and the mazimal sequence

’L]’

{(EZ], )} are well defined and converge monotonically to the unique solution (uj ;, vy ;)

of (1.16) in A and the relation
(O‘l}jvﬁi,j) < (Oz?’j,ﬁz’j) < ( 7'?_17 n+1) ( zjaﬁz‘*,j) < ( z]v_;k,j)
—n —n+1 —=n _
< (O%',;_lv i ) > ( 5 ) < (ai,jaﬁi,j)
(u;

holds for every (i,j) € A andn =1,2,... and if (u};, v} ;) for all (i,j) € A is the solution

of (1.16), then there exists a positive constant C' such that

n

it +1 k ntl
¢, <C Cij—1 T R e n cke;;
+1 - +1 2
et LT sesten @) /|
where e"Jrl 042}“, QZ;_I = B”“ and & = maX{Bi,j : (i, 5) € A}.

Chapter 3 focuses on developing an alternative iterative procedure for solving (1.15).
In the proposed procedure at each step of the iterative scheme, instead of solving two linear
PDEs separately one has to solve a coupled linear PDE, a modification to the second
chapter and [82]. The chapter renders the existence and uniqueness of (1.15). Based on
the new procedure, a finite difference method is developed to solve the coupled system
numerically and its convergence analysis is also provided. One of the main theorems in

this chapter is

Theorem 1.3.3. Let (o, ;) and (ai,j,@j) be a pair of ordered lower and upper so-

lutions of (1.16). Then the minimal sequence { (af;, BY;) } and the maximal sequence

n
1,77

{(agfj,BZj)} converge monotonically to the unique solution (u;;,v};) of (1.16) in

S ={(uij,vig) € R : (i, Big) < (i, vig) < (qij, Bi;)}-
17



Also, the relation

n+1

(ai7jaﬁi,j) < (a?,j?ﬁz]‘) < ( Ti;-l’ﬁn-i-l) ( i,5° z,j) < (_Tt;J?Bi,j ) <(a (_7,]7/82]) < (aZJ’BZJ)

holds for every (i,j) € A andn =1,2,3,---. Moreover, the following estimate holds
n+1 ?;rll 4 ak ak ZLJrllj
et SO (e + (e1,)?) )
e i 1+kuemx£>(———————) -
where e”“ uy; — Osz“, g?jl =} — ’:‘j“, e ;=05 — Bij and & = maX{Bm :(i,7) €
.

In Chapter 4, a class of fourth order nonlocal elliptic boundary value problem of the

form

A?u — boAu + cou = f(z,u), © €€,
(117 ux::kvxfuﬁﬁé+¢W@,x€&%
(Lu)(x) = [ (2, ) (Du)(€)dE — ¢V (), © € 99,

where 2 is a bounded domain in R" (n = 1,2,...) with boundary 02, by > 0 and ¢
are constants and f(z,u), vy(z',2) and ¢ (z") (I = 0,1) are continuous functions in their
respective domains is handled. The major aim of this chapter is to accelerate the iterative
scheme in [83] ensuring the monotone property without any additional assumptions. The
proposed alternative iterative scheme is found to be much more efficient than the scheme
in [83] as it exhibits an immense reduction in the number of iterations required and
provides greater flexibility in choosing the initial guess during numerical experiments.
The proposed iterative scheme also ensures the existence and uniqueness of the solution

of (1.17). (1.17) can be rewritten as

—Au+ pu=v, —Av+ ptv=F(z,u), v € Q,
(1.18) u(@) = o (o, (@) + ¢z, & € 00,
2) = [o(@,&)v(E)dE + ¢P)(x), = € IQ,

— 2_ C* 2 C*
where 9(2) = 9O g, =BG = WERIE T2 0, B 2 Ac, T2
max {—2%L(z,u) 4@ <u <@ z€Q}and F(z,u) =cu+ f(z,u) [81]. Discretizing (1.17)
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using central difference approximation and rewriting it as a coupled equation as in the
continuous case, one can have
—Apu; 4 pu; = v, 1€ Qo uj = J[x;,u] + g(-l), j € oy,

J

(1.19)

_Ahvi + ,U+UZ' = F(xi,ui), 1€ Qh; v; = J[.ﬁE;,'U] +g](2), ] € th,

where F(z;,u;) = cu; + f(25,u;) and ¢@ = ¢ 4 g, Let uy represents the approxi-
mation of u(zy) for any mesh point x;. The following is one of the main theorems in this

chapter.

Theorem 1.3.4. Let ((a, 3), (&,E)), ((&k,gk), (&k,Bk)) be ordered lower and upper so-
lutions of (1.18) and (1.19) respectively. Then the minimal solution (aj, B,) and the mazi-

mal solution (at, B;,) of (1.19) converge respectively to the minimal solution (o (z), B (x1))

and the mazimal solution (@*(zx), B (zx)) of (1.18) at every point as mesh size tends to

ZET0.

Chapter 5 deals with nonlinear parabolic integro-differential equations of the form

(1.20) G — 3o+ fu,0) = qla, 1), (x,t) € w x (0,7],
)

u(z,t) = h(z,t), (x,t) € Ow x (0,T]; u(z,0)=v(z), r€w,

where § € RT U {0}, w is a connected bounded domain in R" (n =1,2,---), h, ¢, v are
smooth functions in their domains where v(z,t) stands for f(f exp(As)k(t — s)u(zx, s)ds,
A being a positive constant arising in nuclear reactors and population models [72]. The
monotone property, convergence analysis and an error estimate in terms of stopping cri-
teria are derived for nonlinear integro-differential equation of Volterra type. This work
also generalizes the recent work of I. Bogleav in [13]. In contrast to the previous chap-
ters, in this chapter, monotone property and convergence analysis are obtained using the

comparison theorem for discretized problems by S. Samarskii [90].

Let @" and @™ be the corresponding meshes for the space and time domains respec-
tively, and h and 7, denote the respective step sizes in x and t directions with ¢, = 0.

Applying backward and central difference approximations for time and space respectively
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in (1.20), one can get the following:

LUp,tr) + f(p, tr, U V) = 7. U (o teer) = QU0 i), (p,tr) € " X (w™ . {0})

(1.21)
U(p, tk) = h(p, tk)? (p7 tk) € duw x (WT N {O}); U(pa O) = ¢(p>7 pE wh7

where dw”" denotes the boundary of @w”. The following theorem that guarantees the
convergence of the solution of the nonlinear difference scheme (1.21) to the solution of

(1.20) as the mesh sizes tend to zero is the main theorem in this chapter.

Theorem 1.3.5. Let ﬁ(p, ti) and ﬁ(p, tr) be a pair of coupled lower and upper solutions of
(1.21). Then the minimal sequence {U™ ™ (p, )} and the mazimal sequence {U*(p, 1)}
converge monotonically to the unique solution of (1.21) in the sector

< ﬁ(p, tr), ﬁ(p, ty) > and for p € W" and n € N, satisfy

~ ~

Ulp,tr) < U™ (p,te) < UM (p tr) < UM (p,tr) < U, te) < U(p, tr).
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CHAPTER 2

A COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS
FOR A CATALYTIC CONVERTER

This chapter! deals with an accelerated iterative procedure for a coupled system of

partial differential equations arising from a catalytic converter model.

2.1. Introduction

Catalytic converter is a reliable emissions control device that converts toxic pollu-
tants in exhaust gas to less toxic pollutants and is located in the exhaust system of
automobiles. The increasing concern about the atmospheric pollution caused due to
the harmful emissions from the vehicles leads to the development of various mathe-
matical models for the study of interphase heat-transfer problem in catalytic converter
(22, 37, 38, 40, 62, 85, 87, 91]|. One of such models is studied in [53] where the vehi-
cle and converter temperatures are governed by a coupled system of a first order partial
differential equation and an ordinary differential equation. After suitable simplifications

[20, 21, 82], the problem reduces to the following system.

%—Z#—ag—g%—cu:cv, t>0 0<zx<lI
(2.1) P+ bv=bu+ Aexp(v), t>0, 0<z<I

u(0,t) = n, u(x,0) = up(z), v(z,0) =vo(x), t>0, 0<a <l
The existence and uniqueness of the classical solution of the above coupled system has
been proved using the contraction principle in [20]. Later by coupling successive iteration
and monotone method, the existence and uniqueness as well as the blowup property
of the solution have been discussed in [21]. Based on the main theorem in [21], a finite
difference based iterative procedure has been developed in [82] to solve the coupled system
numerically. The study in [82] has also proved that the finite difference scheme preserves

!This chapter forms the paper by L.A. Sunny, R. Roy and V. A. Vijesh in Jornal of Mathematical
Analysis and Applications, 445(2017), 318-336.



the monotone property. It is important to note that for the numerical method in [82]
based on the successive approximation discussed in [21], the performance of the numerical

scheme is slow.

In this chapter, to accelerate the iterative procedure, a modification to the iterative
scheme in [21] is proposed. More specifically, by combining successive iteration and
quasilinearization together with monotone method, an accelerated iterative procedure is
proposed. The first part of the chapter discusses about the convergence analysis, error
estimate as well as the monotone property of the proposed accelerated iterative procedure
for the continuous case. In the second part, based on this iterative procedure, a new
iterative scheme based on finite difference method is proposed to solve the coupled system
numerically. This part also proves the convergence and the monotone property of the
discretized version of the iterative procedure. Moreover, a detailed error estimate is also

derived.

In the proposed iterative scheme, at each step one has to solve a system with variable
coefficients distinct from [21] and [82] where constant coefficients are only dealt with.
Consequently in the discretized case, a new comparison theorem is developed to obtain

the monotone property of the sequences.

This chapter is organised as follows. Section 2.2 provides certain basic results that
are used in the following sections. In Section 2.3, the existence and uniqueness of the
coupled system (2.1) is proved via the new accelerated iterative scheme. This section also
provides the error estimate for the iterative procedure. Section 2.4 gives the convergence
analysis as well as the error estimate for the proposed numerical scheme. The convergence
of the finite difference solution to the continuous solution as the mesh sizes tend to zero is
obtained in Section 2.5. Some numerical results are given in Section 2.6 to illustrate the

efficiency of the proposed scheme. A comparative study is also provided in this section.
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2.2. Preliminaries

In this section, some basic results are stated that will be used to obtain the results in
the following sections. The existence and uniqueness theorem for (2.1) using contraction

principle discussed in [20] can be stated as follows.

Theorem 2.2.1. [Theorem 6; [20]] Suppose ug(z) = u(x,0) € CY0,1] and vo(z) =
v(z,0) € C0,1] with ug(0) = n. There is a constant tye, > 0 such that [0, tme.) is the
maximal time interval for the unique solution (u,v) of the differential equation (2.1) on

the interval [0,1] X [0, t1az)-

In the first part of the chapter, the following lemmas are used to obtain the monotone

property of the sequences.
Lemma 2.2.1. [Lemma 1; [21]] If w € CY(Q) satisfies the inequalities

1 qd2 4 bw >0; (2,t) €Q
w(0,t) >0 tel0,T]; w(z,0)>0 =ze€]l0,l],

where a > 0 and b > 0 are constants, then w > 0 on @

Lemma 2.2.2. Let v € C(Q) be continuously differentiable with respect to t such that

0
8—: — f(z,t)v >0,
where f(xz,t) is a continuous function defined on Q with v(x,0) > 0 for 0 < x <. Then

v(z,t) >0 on Q.

2.3. Convergence Analysis for the Continuous Case

This section provides a modification to the iterative procedure discussed in [21] which
deals with variable coefficients unlike that in [21]. It also proves the convergence, error
and the monotone property of the new iterative scheme. Let () denote (0,!] x (0,7 and

@ denote [0,1] x [0, T] where [ and T are arbitrary positive constants.
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Definition 2.3.1. A function (@, 3) € CY(Q) x C*(Q) is called an upper solution of (2.1)
if it satisfies

98 a2 tca>cf, t>0,0<z<]
(2.2) 9% 13 >ba+ Nexp(B), t>0,0<z<l
a(0,t) >n, a(x,0) > u(x), Blx,0) > wv(x), t >0,0<z <L

Similarly (o, 8) € CHQ) x CHQ) is called a lower solution if it satisfies (2.2) with the

mequalities reversed.

For a given pair of ordered lower and upper solutions of (2.1), set

S ={(u,v) € C(Q) x C(Q) : (a, B) < (u,v) < (@, B)}.

Using (o, 3) and (@, 3) respectively as the initial iterations (u’,v°), two sequences can be

computed. Applying the successive approximation method to the first equation and the
quasilinearization technique to the second in (2.1), an iterative scheme can be obtained

as follows.

1

ountl ount
ot ta ox

(2.3) 3”5:1 + (b — Nexp(v™))v" ™ = bu™ T + Nexp(v™)(1 — "), t>0,0<z <1

u™H0,t) = n, v (2,0) = up(x), V" (x,0) = vo(z), t > 0,0 <z <1,

+eutt =, t>0,0<2<I

n=20,1,2,---. Denote the sequence generated from the lower solution by {(a™*!, g"+1)}
and the upper solution by {(a"H,B”“)} and refer to them as minimal and maximal
sequences respectively. The iterative schemes are given by
80‘5:1 + aacg;“l +ea™ =cpn, t>0,0<a<]
O+ (b= Aexp(5"))B™+! = ba™ ! + Aexp(8")

—Xexp(f")p", t>0,0<z<I
a™(0,t) = n, " (z,0) = up(z), B (z,0) =vo(x), t > 0,0 <z <.

(2.4)

and
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8&(;:1 + aaaaT:rl + catl = CB’”) ‘> 0’0 <z< I
agn+1 B NN ! _ ntl —n
(2.5) g T (b= Xexp(5"))5 ba"t + Nexp(B)
“Aexp(fM)B', t>0,0<z<I
_nH(l'aO) =uwv(x), t>0,0 <z <L

ati(0,t) = n, @"*(x,0) = uo(x), B

respectively.

Remark 2.3.1. When the lower and upper solutions (o, B), (@, B) € C*(Q) x C*(Q), the
iterative procedures (2.4) and (2.5) are well defined. For more details, one can refer to

20].

Define Liu = 2% + a%“ + cu and Lyv = 2% 4 bv. Then (2.3) can be rewritten as

Lt =, t>0,0<2<1
Lov™™ — Nexp(v™) o™ = bu™ + Nexp(v™)(1 —0v"), t>0,0<z <1
u"tH0,t) =0, v (2,0) = up(x), V" (x,0) = vo(z), t > 0,0 <z <1,

where n = 0,1,2,---. The monotone property of both the sequences (2.4) and (2.5) and

their convergence to the unique solution of (2.1) is given in the following theorem.

Theorem 2.3.1. Let (o, ) and (@, 3) be a pair of ordered lower and upper solutions of
(2.1). Then

(i) the minimal sequence {(a”, ™)} and the mazimal sequence {(@", ")} converge
monotonically to the unique solution (u*,v*) of (2.1) in S.

(ii) the relation

(a,8) < (@, 8") < (o™, 5" < (a",57) <
(2.6) (@,5) < @+, 3" < (@, 8") < (@B

holds form =1,2,--- .
Proof. The monotone property of both the minimal and maximal sequences is obtained
first. Let @’ =@ — @' =a—a'and2° =5 —F =5 — 5.

Llwo = Lla — Llal Z CB — CB =0
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w°(0,t) = @(0,t) —n > 0 and W'(z,0) = a(z,0) — up(z) > 0. By Lemma 2.2.1, w° > 0
on (). Hence @ > @'. Also

L2 — Nexp(8)2° = (LoB — Aexp(8)B) — (LB — Aexp(8)F)

0B B
— <a_f + b3 — Aexp(5)6> — (3—ﬂt + b8 — Aexpwwl)

LyZ° — Nexp(B)z° > (ba+ Aexp(f) — )\exp(ﬂ)ﬁ) — (bal + Aexp(B) — )\eXp(ﬁ)B)
Lyz° — Xexp(B)z° > ba —ba' >0
2(z,0) = B(z,0) —vy(z) > 0.
Hence 2° > 0 and thus (@, ) > (@1,31) on Q. Similarly (o, ) < (a','). Now let
w' =@ —a'and 2! = — B,
Lwt=La'—Liat =c¢f—cf>0

and w'(0,t) = 0, w!(z,0) = 0. By Lemma 2.2.1, w! > 0 on Q. Hence a* > a'. Also

Lozt — /\exp(ﬁ)z1 = (L231 - )\GXP(B)BI) - (L251 - )‘eXP(ﬁ)ﬁl)

1
— (%mﬁ — Aex (6>Bl> (a;t +b8" - Aexp(ﬂ)ﬁl)

— (4 + Aexp(F) — Aexp(8)B) — (bal + Aexp(8) — Aexp(5)F)
> Aexp(B)(B = B) = Aexp(B)(B - B); B<B<P
Lyz' — Xexp(B)z! > 0

together with z!(z,0) = 0 conclude that 2! > 0 and thus (a!, 3') < (al,Bl) on Q. The

above conclusions show that

Assume that
(@) < (", < @ F) < (@)

for some n > 1. Clearly (o™, 37*1) and (E”H,BHH) exist. Define w" = a" — a"™! and
—n+1

= =F"-B

—n—1
Llwn = Llﬁn — Llanﬂ = Cﬁn — Cﬁ Z 0
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with @w"(0,t) = 0; W"(x,0) = 0. By Lemma 2.2.1, @" > 0 on Q. Hence @" > a"*!. Also

Loz — Aexp(8")7" = (LB — Aexp(8")8") — (LoaB"" — Xexp(8™)3" )
= (b + Aexp(B" ) + Aexp(8" (B~ B') — Aexp(8")F")
— (ba”“ + Xexp(B") — Aexp(6™)B

/\eXp(ﬂ )+/\exp(ﬁ" 1)(/3 - B ) Aexp(B )
B

>
> Aexp(B)(B T =) = dexp(B" BT =B B <p<BFT
Lyz" — Nexp(B™)z" > 0

together with Z(z,0) = 0 conclude that Z* > 0 and thus (@, 5") > (&"“,Bnﬂ) on Q.
A similar reasoning using the property of lower solution gives (a”, ") < (a1, gnF1).

—n+1 . ﬁn-i-l'

=gt and 2" = 3

n+1

Now let w" —«

Llwn—H _ Llan-i-l _ Llan-i-l _ CB’” —cB" >0

with w"*1(0,t) = 0, w"*'(2,0) = 0. By Lemma 2.2.1, w""' > 0 on . Hence a"*' >

o™t Also

L = Xexp(8)e = (LB — Aexp(8F™) - (L™ — Aexp(3)"8" )
= b@ ! — ™) + Aexp(B") — Aexp(B")
+Aexp(8")B" — Aexp(B™)B"
Lyz™ — Nexp(B™)z"t > 0

together with 2"*1(z,0) = 0 conclude that 2"*' > 0 and thus (o™, g"*1) < (_”“,BnH

on Q. Thus

)

(o, 8) < (o, 8") < (@™, ™) < @, 5") < (@, F") < @, )
for all n and this guarantees the existence of the limits

(2.7) lim (", 8") = (a*,8), lim @, F") = @, 5).

n—oo n—oo

Moreover, both the limits are solutions of (2.1). The uniqueness of the solution (a*, f*) =

(@, 3") = (u*,v*) follows from Theorem 6 of [20]. O
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Theorem 2.3.2. For all n € N, the following error estimates hold.

IN

(2.8) [l = ™| [ ="

(2.9) lv* = g™ < O (Il — o™l + v = 871)

for some positive constant C.

Proof. From the monotone property, (2.8) trivially holds. Now define e"™! = u*(x,¢) —

o™z, t) and e"t = v*(x,t) — " (2, 0).

"= vz, t) — " (a,t)

— /0 exp(b(r — £))e"dr + A /0 exp(b(r — 1)) (exp(v*(z, 7) — exp(o"(z, 7)) dr
5\ /O exp(b(r — 1)) exp(o™ (2, 7)) (6" (&, 7) — 0" (2, 7))dr

_ /0 Cexp(b(r — )" dr + A /0 Cexp(b(r — 1)) exp(d(z, 7)) dr
A /O Cexp(b(r — 1)) exp(o”(z, 7)) dr

t
—)\/ exp(b(t —t)) exp(v”(x, 7))e"dr; V" <0 <
0

< b /0 Cexp(b(r — )" dr + A /0 Cexp(b(r — 1)) exp(e” (z, 7)) dr
A /O exp(b(r — ) (exp(v* (2, 7)) — exp(v" (z, 7)))e"dr

< b /0 exp(b(r — £))eHdr + A /0 exp(b(r — 1)) exp(u” (2, 7)) dr
A /O exp(b(r — 1)) exp(v” (2, 7)) (") 2dr

< b /O " exp(b(r — )™ dr + A /0 exp(b(r — 1)) exp(v” (2, 7)) Ldr
A /O " exp(b(r — £)) exp(o” (2, 7)) (e")2dr

< DG ||| 4+ AKo|le |1 + A/Ot | exp(b(r — 1)) exp(v*(x, 7))[¢" " dr

S Ky (et )+ [ lexplor — ) explor . r)le

28



where K3 = max{bK;, \K,} and K; and K, are positive constants. Applying Gronwall’s

inequality,

o
A\

et < Ka (e 1) A Tl - ) explo(e, )

exp ( / Cexp(b(s — 1)) exp(v’ (. s))ds) dT}

le™ < K (e + Nle™l®) 1+ Ka) = C (e + [le])
where C' = K3(1 + K,) and K} is a positive constant. O

Remark 2.3.2. Similar error estimate can be obtained in the case of maximal sequence

giwen by (2.5) also.

2.4. Convergence Analysis for the Discretized Case

In this section, a finite difference system is developed using Theorem 2.3.1 for solving
the coupled equation (2.1) numerically. More specifically, the derivative terms in the
iterative procedure are discretized using backward finite difference formula. This section
discusses the monotone property as well as the convergence analysis of the proposed finite
difference scheme. Unlike [82], variable coefficients are dealt with at each step and as
a result, a new comparison lemma is obtained to prove the monotone property of the

proposed scheme. The error estimate for the iterative procedure is also derived.

Let h = Az = ﬁ, k= Ak = % be the space and time increment and let z; =

ih, t; = jk be a mesh point in [0,[] x [0,7] where M and N are the total numbers of
intervals in [0, /] and [0, T'] respectively. The sets of mesh points (z;,t;) in (0, ] x (0, 7] and
[0,1] x [0, T] are denoted respectively by A and A. Define u; ; = u(z;, t;) and v; ; = v(x;, t;).
Using the backward implicit approximation for first order differential equations, (2.1) is

approximated by the finite difference system

Wi j—Uij—1
k

Vi,j —Vij—1 — .. ..
Sd_ I 4 ;5 = bug ;4 Aexp(vy ;)

U, = 15, U’i,(]:qu)ia vi,O:¢i; Z.:]-727"'7M7 .]:1727aN

Uij —Uiz1,5 L= .
+a 5 + cu; 5 = vy
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This can be rewritten as

A]-/LLZ'] CkJU” + uZ] 1 + UZ 17‘7
(2.10) A%v; j = v; j_1 + bku; ; + kX exp(v; ;)
Upj = M5, Wio = Vi, Vio=¢; 1=1,2,.... M, j=12,....N

WithA1:1+%+ck and A2 =1+ bk.

Definition 2.4.1. A function (o, ;, 3i;) defined on A is called a lower solution of (2.10)
if it satisfies

Alay j < ckfij;+ ay i 1+ 95 ak oy, 1
(2.11) A?B; i < Bijo1 + bkay j + kXexp(Bi)
Qo j S N, Q40 Swm Bi,o S qu 1= 172a"'7Ma ]: ]-727"'aN'

Similarly (Ei,j,ﬁi,j) is called an upper solution if it satisfies (2.11) with inequalities re-

versed.

For a given pair of ordered lower and upper solutions (o ;,[;;) and (ai,j,@j) of

(2.10), set
S = {(uij,viz) € R?: (i, Bij) < (wij,vig) < (@ij, Bij)}

As explained in Section 2.3, using (o ;, 5;;) and (@ j, E ;) respectively as the initial iter-

0

ijs U ) two sequences can be constructed by applying successive approximation

ations (u;
and quasilinearization technique to the first and second equations of (2.10) respectively

which yields

n+1 n+1 n+1 n+1
STt —u T w; U
i, - Y I - izlj cu?ﬂ — Cvinj
1 1
ML |t =y T Nexp(vf;) + Aexp(vf;) (vit — o)
z ij plv P\i;) Vi i

'I’L

+1_n]7 %_1:77/%7 U:E)Flngza Z:172)"'7M7 .]:]-)27"'7N

with n = 0,1,... where n; = n(t;), ¥ = ¥(x;) and ¢; = ¢(z;). The above system can be

written in the form

Attt — cko; = w4+ SRt
(2.12) —bku "H + Blv Z"JH = fjll + kX exp(vl ) kX exp(v%)v{fj

TL

+1_n]a ?31:¢i7 UZ(—)FIZQSZ) 7’:1)27"'7M7 j:1727"‘7N
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with n=0,1,... and B}, = (A2 — kA exp(v{fj)). Equivalently,

An wit ) o+ U + ekl
(2.13) vg;.rl fJ‘Hl + kX eXp( L) — kA exp(vi7j)v§fj

TL

+1_ n+1_ n+l __ . _ —
n]a 1,0 _¢i7 Uiy() _¢i7z_ )27"'7M7]_1727"‘7N

A0

with n = 0,1,... and A" = . Throughout this section, assume that the
—bk B},

time step k satisfies the condition (3.7) in [82], i.e

o= b+ hexp(§)},

where £* = max{f, ; : (i, j) € A}. Denote the sequence generated from the lower solution

n+1 n+1 —n+1 [t +1
by {(af]", 85/ ")} and the upper solution by {(@;';", 3;; )} and refer to them as mini-

1
(2.14) e max{b—c—

mal and maximal sequences respectively. With B;'; = (A2 — kX exp( i,j)>7 the iterative

schemes respectively are constructed by

Alan—}-l ck n +an+11+ ak n+1

Q; 1,7
(2.15) By, ”+1 = ”+1 Bl”;rll + kXexp(8}Y;) — kAexp(B7;) B
"+1 =, « y;l =, Bif =05 i=1,2,....M, j=1,2,...,N
and
Al—n+1 _ CkBZj —?j—ll + ak_:H_ll]
(2.16) B "H bka’f“rl 4 51.,]._1 + kA exp(BZj) — kXexp( {‘J)B:L]

agjl_nj7 _?gl wh BZ;lZQﬁw i:1727"'7M7 j:1727aN

The following lemma is vital to prove the monotone property of the sequences.

Lemma 2.4.1. Let ay,a;; > 0 for all (i,j) € A with by, by, 1 and ca >0 . If w;; and z;

satisfy

(2.17) aw;; —bwiyj —aw ;-1 > 0, (i,j) €A
(2.18) @ij2ij — bawij — 2251 > 0, (i,5) €A
with

(2.19) wo,; > 0,w; 0> 0,209 >0,

then w;; > 0 and z;; > 0 for all (i,5) € A.
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Proof. The proof is by an induction process. (2.17) gives
aw;; > biw;—1; + crw; j1.
Let ¢ = 1 and using (2.19),
awy; > bywe; + crwij

(220) a1W1 5 > C1W1,5—-1-

Now for ¢ = 1 and using (2.20) in (2.18),

bacy
(221) 1,215 Z a—w17j_1+02217j_1.
1

Hence for j = 1 and using (2.19), one can conclude that,

b
11211 =2 2—Clwl,o +c2102>0.= 211 >0
3]
Similarly for j = 1 in (2.20), wy; > 0. Assume that w;; > 0 and 2z ; > 0 for j =n — 1.
For j = n, from (2.21)

bacy
M p2p = ——Wip-1+ C221p-1 = 0= 21, > 0.
a1

Similarly for j = n in (2.20), wy, > 0. Thus wy; > 0 and z;; > 0 for all j. Now assume
that w; ; > 0 and z;; > 0 for all j and i =n — 1. For i =n in (2.17)

MWy > byw,_1,; + crwn i1

(222) a1Wn,j > C1Wn,j—1-

For i = n in (2.18) and using (2.22),
bac
(223) Qp jZn,j Z %wn,j_l—i—@zn,j_l.
1
For j = 1 in (2.23) and by using (2.19), one can conclude that z,; > 0. Similarly,

Wy > 0. Assume that w, ; > 0 and z,; > 0 for j = k — 1. For j = k from (2.23),

b201
A kZn e = ——Wn k-1 + C22nk—1 = 0= 251 > 0.
a

Similarly from (2.22),
AWy 2> C1Wy k-1 = Wy = 0.

Thus w; ; > 0 and z; ; > 0 for all (¢,7) € A. O
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Theorem 2.4.1. Let (a;;, 5; ;) and (ai,j,ﬁi,j) be a pair of ordered lower and upper solu-
tions of (2.10). Then the following statements hold:

(i) The iterative schemes (2.15) and (2.16) are well defined.
)} and the mazimal sequence {(a sz)}cmwerge

) of (2.10) in S.

(ii) The minimal sequence {(ay;, P

monotonically to the unique solution (u; ;, v},

(iii) The relation

(ig, Big) < (afy, B75) < (ot B0) < (], 875) <

— % S n+1 —n _ —
(224) (O‘/ZJ7 ) S ( ljlﬁﬁi,j ) S ( zg? z,]) S (ai7j7ﬁi,j)

holds for every (i,j) € A andn =1,2,--- .
Proof. The proof is given by induction on n. Forn =0, (o ;, 8; ;) € S and using (2.14) one

can conclude that A is invertible. Hence (ay;, ;) and (@ , Bll ;) exist for all i and j. Note

that since (v j, 8;;) € S, (2.14) ensures that B); = A*—kXexp(f; ;) > A*~kXexp(£*) >0

for all 4 and j. Let w); = o ; — ai j and 2); = B}, — B ;. Consider
k k k
Alw?J — %w? 1, = Alozz{j — Alam — %O‘/’}—Lj + %ai—l,j
k
ak ak
Taifl.] + Taz_l i
ak ak
(2.25) Alwy; — Tw?_” = ckBij+a; — Ala; + 5 i1
and
(226) BlO] ij kaéilJ + ﬁil,jfl + kX exp(ﬁi,j) (1 — ﬁi,j) — Bzo,jﬁi,j-
From (2.25) for j =1,
ak ak
Alwgl — Tw?_l’l = ckBix + aio — Ala;q + 5 i1
ak
> ckBig+ azo— Al + 7, Qi1
k
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From (2.26) for j =1,

Bolzz 1 = bko‘},l + 511,0 + kA eXP(ﬁz‘,l) (1 - ﬁzl) - Bz('),lﬁi,l
Bolzz = bk%{l + bkayg — bkaiy + Bio + kXexp(Bi1) (1 — Bin) — B°Bia

(2.28) By z)y > bkwy,.

From the boundary and initial conditions, w, = aj; — a1 = m — ag1 > 0, 20§ =

Bio — Bip = ¢i — Bio > 0 and wy = oy — 2o = ¥ — ;9 > 0. For i = 1, (2.27) and
(2.28) give

ak
B(l),lz?,l > bkw??l = 2(1)71 > 0.

For i = 2, (2.27) and (2.28) give

k
%w11>02>w21>0

33,123,1 > b/{;wg’l = 2371 > 0.

1
Aw21

v

Proceeding like this, one can prove that w); > 0 and z); > 0 for all i. i.e., a;; < af; and

Bix < B, for all i. From (2.25) for j = 2,

ak ak

Alwgz — g Wi T ckBia + % — Al + — oy Qi1
ak
> ckBia+ain — Alags + 7 Qim12
k
(2.29) Alu?, — %w? b >0

From (2.26) for j = 2,

Bozzz 2 = bkag@ + Bil,l + kXexp(Bi2) (1 — Bi2) — B?,gﬂm
> bk’aig + bk g — bkoy o + fin + kXexp(Bi2) (1 — Bi2) — Bgzﬁi,z

(2.30) BYyzy > bkwy,.
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From the boundary and initial conditions, wg, > 0, z); > 0 and w), > 0. For i = 1,

(2.29) and (2.30) give

k
Alu?y, > C%w&2 > 0= ng > 0.
B(l)’2,232 > bk:w%2 = 2(1)72 > 0.
For i = 2, (2.29) and (2.30) give
k
Alw%2 > %ww > O:>w22 > 0.

0.0 0 0
Byozso > bkwyy = 29, > 0.

Proceeding like this, one can prove that w 5 > 0 and 202 > 0 for all ¢. ie., a2 < aZ , and
Bi2 < i, for all i. Repeating the similar argument for j = 3,..., N leads to a;; < oy,
and f;; < B}, for all (i,7) € A. Similarly, am > a; and f3;; > lej for every 7 and j.

1 _ =1 1 _
k; ak
1,1 1
A w; . = Ckﬁzg +a O‘z] 1+ 5 h Q; 1] — ckpij — 7] 1 Faiq,j-
Thus A'w}; —w},_; — %w!_ ;> 0. Now

BOJ 3’] = bk:w it Zw 1+ kA exp(ﬂ i) — kA exp(fi;) — kAexp(fi;) (B” — 6”)
BOJ ll’J = bkw + Zzg 1 + kA exp(v”) (/B — BZ}]') — kX exp(ﬁm) (BiJ‘ — Bi,j) .
[Bi,j < f’i,j < Bu]

Thus BY; }]—bk’w-l-—z}] ; > 0. Note that wg ; = 0, 2z}, =0, w;, = 0. Hence by Lemma

241, oj; <@ and ff; < 6” for all (i,7) € A. The above conclusions show that
_1 Al _ =
(2.31) (g, Big) < (aij, Biy) < (@0 Biy) < (@i, Biy).

Assume by induction that (a7, B7;) and (@ j,BZj) exist and

’L]7

—n—

(232) (aZ]’ﬁlJ) S ( ,] ) T,l] ) S ( ,]75;’3) S (_l]’ﬁlj) S <_?] 17 ©,J ) S (a%]’ﬁ,j)

for some n > 1. From induction hypothesis and using (2.14), one can conclude that A™ is

n+1 n+1 —n+1
i B ) and (a7,
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hypothesis and (2.14) also confirm that B}, > 0 for all ¢ and j. Let w}; = =o' —a; and

i.j irj
6”“ +';. Consider

ak ak

1, n n _ 1 _n+1 1.n n+1 n
Atwi'y — 7, Wity = Al — Ay — 7, YL T 7, YL
= ckB! +afj11 —ckpBl'; 1 — i
k
Alej—C%wZ 1 2 Wiy
Thus A'w}; — %w! | —w!;_; >0 for all (i,j) € A. Moreover,
AR = bkaltt 4 B kA exp(BY) (1+ B - B1)
—bkag; — By — kAexp(8) (1+ 87 — 8151
= bkw}; + 2,1 + kAexp(B];)2; + kAexp(8];) — kA exp( Zj_l)
—kAexp(85) (81 = 857
AQZZ = bkw}; +Z” 1+ EXexp(f; 7])Zw+k)\eXp(Uw)( Zj_ 2;1)
—kXxexp(Br 1) (B — B 1) s B < by < B

B!z > bkw —I—Z

i,j %, 1,j—1"

Thus B}, 2", — bkw]'; — 27",y > 0 for all (¢, j) € A. Moreover, w§; =0, 2, =0, w?o = 0.

Hence by Lemma 2.4.1, w}'; > 0 and 2}; > 0 or equivalently of; < o/”rl and 3} < ntl
for all (i,7) € A. A similar argument gives (oszl,dz;»H) < (@, B;;) and (o)1, f;rl) <
(aﬁjl,dgjl). Thus
. —n+1 —n _ —
(al,ﬁﬂld) S ( 2,77 ,]) S ( n,jl? Z;rl) S ( n,jl? 1,7 ) S ( 1]7 i,j) S (ai,ﬁﬂi,j)

guarantees the existence of the limits

. — Jn — o*
lim (04?,]'751',]') = (O‘i,j’ﬁzyj)'

m— 00

(2.33) lim (af;, 57;) = (a5, B55);

m— 00

Hence (2.24) holds and in the limiting case, both the limits are solutions of (2.1). The

proof for the uniqueness of the solution follows from Theorem 3.1 in [82]. O]

The following remark is similar to Remark 3.1(b) in [82].
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Remark 2.4.1. Theorem 2.4.1 holds true for the more general system

Qu gy cu= fz,tu,v), t>0,0<a<I
%ﬂLbU:g(a:,t,u,U) t>0, O<a <l
u(0,t) = n(t), u(x,0) =up(z), v(z,0) =uve(x), t >0, 0 <x <,

where f(x,t,u,v) and g(z,t,u,v) are continuous and C'-functions of (u,v) such that
fulz, t,u,v), folz, t,u,v), gu(z,t,u,v) are positive and g,(x,t,u,v) is nondecreasing and
Lipschitz with respect to w and v for a < u <@ and B < v < 8. The monotone iteration

process is given by

8ugt+1 + aw + eyt = f(x7t’un’,un)’ t>0,0<z<I
avn+1 F bt = gz, L o) + go(x, t ut T o) (0 — o), >0, 0< <1

u”*l(O,t) =n, u"(x,0) = up(z), v"*(z,0) =vo(x), t >0, 0 <z <L

Theorem 2.4.2. If (u};,v};) for all (i,j) € A is the solution of (2.10), then there exists

a positive constant C' such that

€y €1+ e 4 ckes;
n n n 2
—zjl —zjll 0o kA eXp(£ ) ( ’Lj) 0o
where el T = uy, oszl, et =wvr; = B and & = max{f, : (i,j) € A}.
Proof. From (2.15),
9 34 Al n+l k' n n+1 k n+1
(2.34) it = c +a”1~|—7a1 1
(235) A25n+1 — n—i—l + 6n+11 + kX exp( ) + k)\exp( ) (571—&-1 n )
If (uj;, v} ;) is the solution of (2.10) in S, then
, k
(236) Alu%] - k + u” 1 + h Z 17]
(2.37) AQ"UZj = bkuj; +vi;_; + kXexp(v];).
Hence,
k
Al — el = el = ohel,



Similarly,

APt = bke T 4 el L 4 kX (exp(v);) — exp(B];)) — kXexp(B) (B — B1Y)

—7,_]

A%t = bke "+1+e"+1 + kXexp(Bi;) (vf; — BY)

—Z_] =i,7—1 %]

—kXexp(B! )(B"Jr1 Z#—U;j— ")7 7J_B”<v

4,7 -

Brerft = bkel !+ el + khexp(B)el; — kAexp(B7,)er;
< bke ”+1 + efjll + k:)\gzj (exp(vzj) — exp( Z”j))
Brett < bkertt 4 et + khexp(€) ().
Thus,
n+1 n+1 ak n+1 n
(2.38) A e [ e +9re ckei;
e et —\ Rhexp(e) (e2)’

Note that for each n € N, A" is a nonsingular M-matrix. Hence (2.38) can be written as

n+1 n+1 ak; n+1
| < | G TR ) ckegs
n+1 - n+1 * n \2
ij Cij—1 kA exp(£T) (Qz‘,j)
Consequently,
n+1 n+1 ak: n+1
1,3 Cij—1 + 5 eic 1,j + Ck@u
n+1 n+1
Cij Cij—1 kA eXp U
WhereC:maX{l,m+g}. D

Remark 2.4.2. Similar error estimate can be obtained in the case of mazximal sequence

given by (2.16) also.

2.5. Convergence of Finite Difference Solutions

In this section, the convergence of (u; ;, v};)

as the mesh size tends to zero is obtained. The following theorem is similar to Theorem
5.1 in [82].
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Theorem 2.5.1. Let (u*(z,t),v*(z,t)) and (uj;, v,
and (2.10) respectively and let A be a given partition of Q = [0,1] x [0, T]. Then

v ) be the respective solutions of (2.1)

(uf ,vr) = (U™ (x4, t5), v (x4, t)) ash+k —0

1’7] ’ Z?]

at every mesh point (z;,t;) in A.

Proof. To prove this theorem, for given any € > 0 it has to be shown that there exists
0 > 0 such that

(2.39) [u (i, t5) — i ;| + v (25, t5) — vi;| < € when h +k < 0.

Let (a°, %) = (o7, 87;) = (0,0) for both the minimal sequences given by (2.3) and (2.12)

respectively. By Theorem 2.3.1 and Theorem 2.4.1, there exists an integer n = n*(¢e) such

that
‘u* _an+1‘ + ‘U*_ﬁn+1’ < %
€
iy —ai L+ iy =B < 3

where (i,j) € A for all n > n*. Note that

" (i, t5) = wj ]

0" (@i t) = vigl < (@ ty) = B (@i )| + 1B (i, ) —

< (@i ty) — o (@ )] + o (2, t5) —