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ABSTRACT

A uniform approach is adopted throughout this thesis by appropriately approximating

the solutions of nonlinear differential equations by sequences of linear ones that mono-

tonically converge to the unique solution of the problem. The existence and uniqueness

of the solutions of different nonlinear partial differential equations with initial and/or

boundary conditions arising from mathematical models are obtained for both continuous

and/or discretized domains. All the proposed methods supply lower and upper bounds

for the solutions of the given nonlinear differential equations. The efficacy of the proposed

iterative schemes in terms of their faster convergence and/or higher flexibility in choosing

the initial guess are demonstrated through numerical simulations.

In Chapter 1 provides an outline of the historic development of the method of

monotone iterations as a powerful tool for nonlinear differential equations of various types.

Few basic results and definitions that are relevant to the rest of the chapters are also given

in this chapter.

Chapter 2 deals with an accelerated monotone iterative procedure for a coupled

system of partial differential equations arising from a catalytic converter model. The

monotone property as well as the convergence analysis and the error estimate of the pro-

posed iterative schemes for continuous domain as well as discretized domain based on finite

difference approximations are proved theoretically. The efficiency of the proposed scheme

is illustrated by providing a comparative numerical study with the existing method.

In Chapter 3, an alternative approach to the one provided in Chapter 2 is proposed

in which one has to evaluate the derivative only once throughout the procedure. The

proposed scheme also accelerates the procedure studied in the literature. An interesting

theoretical study on the monotone convergence as well as error estimate of the proposed



iterative procedure are provided for continuous as well as finite difference based discretized

problems.

Chapter 4 proposes an accelerated iterative procedure for a nonlinear fourth order

elliptic equation with nonlocal boundary conditions. Theoretically, the monotone property

as well as the convergence analysis are proved for both the continuous and finite difference

discretized cases. The proposed scheme not only accelerates the scheme in the literature

but also provides a greater flexibility in choosing the initial guess. The efficacy of the

proposed scheme is demonstrated through a comparative numerical study with the recent

literature.

In Chapter 5, a finite difference method based monotone iterative technique is em-

ployed to solve an important class of Volterra type parabolic partial integro-differential

equations. The monotone property, convergence analysis and an error estimate in terms

of the stopping criteria are proved theoretically. The effectiveness of the proposed scheme

is demonstrated by applying it to nonlinear integro-partial differential equations arising

in population models and nuclear reactor models.

KEYWORDS: bending beams, catalytic converter, coupled system, finite difference,

fourth order elliptic equations, monotone iterations, nonlocal boundary

conditions, population models, quasilinearization, successive approxima-

tions, Volterra type integrals
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CHAPTER 1

INTRODUCTION

This chapter intends to provide a short literature survey on the method of monotone

iterations and its evolution as a powerful tool to deal with nonlinear differential equa-

tions of various types. The historical developments are traced by the aid of some major

references from [24] and [72]. Certain preliminary results and definitions along with a

brief description of the works explained in the following chapters are also provided in this

chapter.

1.1. A SHORT REVIEW ON MONOTONE ITERATIONS

Many of the real life problems can be mathematically modeled into differential equa-

tions. When these models are nonlinear, dealing with them is of great complexity. In

particular, nonlinear partial differential equations with initial and boundary conditions

occur frequently in varied fields such as Biology, Economics, Engineering and Physics.

The qualitative and quantitative properties of such models and numerical techniques to

approximate their solutions are of great importance to mathematicians.

There are various classical methods available in the literature that provide existence

and uniqueness of solutions of nonlinear differential equations. Out of them, one of the

systematic approaches that also provides iterative schemes to approximate solutions is

the method of lower and upper solutions. During this process of iterations, it not only

gives an existence-uniqueness theorem but also provides lower and upper bounds for the

solution.

The method of lower and upper solutions marked its commencement during 1890s

when E. Picard [24] investigated on the existence and uniqueness of the solution for the

following nonlinear boundary value problem:

(1.1) x
′′

+ f(t, x) = 0, x(a) = 0, x(b) = 0.



Based on the assumptions that it has a trivial solution and the function f is increasing,

sequence of successive approximation was developed from the iterative scheme

−α′′n = f(t, αn−1), αn(a) = 0, αn(b) = 0

that converge to the solution of (1.1). The case when f is decreasing was also handled

by him. Later, he recursively generated two sequences αn and βn by solving the following

sequences of linear problems:

β
′′

n + f(t, αn−1) = 0, βn(a) = 0, βn(b) = 0

α
′′

n + f(t, βn−1) = 0, αn(a) = 0, αn(b) = 0,

where αn is increasing, βn is decreasing and both converge to functions u and v ≥ u

respectively that are bounds for the solution. By providing suitable examples, it was

concluded that these bounds need not be equal in general. However, sufficient conditions

were provided to ensure that these bounds are equal and thus a solution of (1.1). In the

beginning of 1900s, independently using the comparison between solutions of differential

inequalities, existence of solutions for the first order Cauchy problem

(1.2) x
′
+ f(t, x) = 0, x(0) = x0,

was studied by O. Perron [24] and its extension to systems by M. Muller [24]. A cru-

cial advancement in this direction occurred due to G.S. Dragoni during 1930s while he

considered a more general form of (1.1)

(1.3) x
′′

= f(t, x, x
′
), x(a) = A, x(b) = B.

The role of modern day lower and upper solutions were explicitly recognised for the first

time through this work. More specifically, on the assumption of the existence of functions

α, β ∈ C2[a, b] satisfying

(1.4)

α
′′
(t) + f(t, α(t), y) ≥ 0 if t ∈ [a, b], y ≤ α

′
(t) (y ≥ α

′
(t)),

α(a) ≤ A, α(b) ≤ B

β
′′
(t) + f(t, β(t), y) ≤ 0 if t ∈ [a, b], y ≤ β

′
(t) (y ≥ β

′
(t)),

β(a) ≥ A, β(b) ≥ B

2



with α ≤ β on [a, b], the existence of a solution u of (1.3) was deduced between α and

β. However, there were no explicit ways available to practically find these functions for a

given problem. Later, this led to the study of constructions of lower and upper solutions in

1960s by K. Ako [4] followed by R.E. Gaines [30] in 1972. For details, see [24]. Later, by

relaxing the smoothness as well as modifying the conditions of lower and upper solutions

(1.4), M. Nagumo obtained at least one solution for (1.1) for certain Nagumo class of

functions [24].

The class of lower and upper solutions was enlarged and quasi-subsolution and quasi-

supersolution were defined by M. Nagumo [61] in 1954 while studying a nonlinear partial

differential equation of elliptic type

4u+ f(x, u,Ou) = 0 in Ω, u = 0 on ∂Ω,

where the lower solution α and upper solution β were supposed to be belonging to C2(Ω),

f is a Hölder continuous function satisfying

|f(x, u, v)| ≤ B‖v‖2 + C

with the restriction

(1.5) 16MB < 1, where M = max{‖α‖∞, ‖β‖∞}.

Many authors tried various extensions of this work and it was F. Tomi [24] in 1969 who

extended this work by removing the restriction (1.5).

B.N. Babkin [24] in 1954 studied (1.1) by replacing the condition on f by the weaker

one: f+Ku is increasing in u for some K > 0. With suitable lower solution α0 and upper

solution β0 ≥ α0, the iterative scheme proposed was as follows:

−α′′n +Kαn = f(t, αn−1) +Kαn−1, αn(a) = 0, αn(b) = 0

−β ′′n +Kβn = f(t, βn−1) +Kβn−1, βn(a) = 0, βn(b) = 0.

The unique solution of (1.1) was obtained as the limits of these sequences.

It was observed that the sequences generated by Picard’s procedure and its modifica-

tions could achieve only a linear order of convergence. For handling (1.1), (1.2), (1.3) and

3



nonlinear elliptic and parabolic problems, R.E. Kalaba [41] in 1959 replaced frequently

used Picard’s idea of linearizing the nonlinear problems by the idea of quasilinearization

which was first used by R.E. Bellman [8] in 1955 in the context of dynamic program-

ming. R.E. Kalaba also proved that the order of convergence of his iterative procedure

is quadratic; one major enhancement in this direction. Originally, the quasilinearization

technique gained its motivation from the well known Newton’s method. One of the results

due to Kalaba is given below:

Theorem 1.1.1. The sequence of functions {un(x)} given by

u
′
0 = f(v0) + (u0 − v0)f

′
(v0), u0(0) = c

u
′
n+1 = f(un) + (un+1 − un)f

′
(un), un+1(0) = c,

where n = 0, 1, . . . is monotone increasing in the interval [0, b] and converges to the unique

solution u(x) of

u
′
= f(x, u), u(0) = c, 0 ≤ x ≤ b,

where f is assumed to be continuous in u and x and strictly convex in u with a bounded

derivative with respect to u for all u and x. Moreover, the sequence {un(x)} is quadratically

convergent on the interval [a, b].

For details on the contributions of R.E. Bellman and R.E. Kalaba, one can refer to

[9].

Using the idea of quasi-subsolution and quasi-supersolution of M. Nagumo [61] and K.

Ako [3] established the existence of solutions for a more general class of quasilinear elliptic

differential equation of second order. In this direction, another approach in linearizing

the nonlinear equations was suggested by G.V. Gendzhoyan [24] in 1964 to obtain the

existence and uniqueness of the solution of

x
′′

+ f(t, x, x
′
) = 0, x(a) = 0, x(b) = 0.

4



Using lower and upper solutions α0 and β0 ≥ α0, the sequences studied were

−α′′n + l(t)α
′
n + k(t)αn = f(t, αn−1, α

′
n−1) + l(t)α

′
n−1 + k(t)αn−1

αn(a) = 0, αn(b) = 0,

−β ′′n + l(t)β
′
n + k(t)βn = f(t, βn−1, β

′
n−1) + l(t)β

′
n−1 + k(t)βn−1

βn(a) = 0, βn(b) = 0,

where k(t) and l(t) are functions related to the assumptions on f . A set of sufficient

conditions were provided to ensure the convergence of the above iterative scheme to the

unique solution of the problem along with its error estimate. It is worth mentioning

that S.R. Bernfeld and J. Chandra adopted another approach to handle a second order

boundary value problem x
′′

+ f(t, x, x
′
) = 0 with mixed boundary conditions in [11].

An interesting existence-uniqueness theorem for a class of mildly nonlinear elliptic

boundary value problem where the nonlinearities might occur both in the boundary condi-

tions and governing equation was obtained by H.B. Keller [43] using monotone iterations.

The monotone iterative method gained wide attention due to Keller and few others in the

late sixties and early seventies. In early 1970s, the works of H. Amann [5] for nonlinear

elliptic boundary value problem and D.H. Sattinger [92] for parabolic boundary value

problem provided the construction of monotone sequences using lower and upper solu-

tions systematically. These ideas were extended by C.V. Pao during 1970s to a semilinear

parabolic equation given by

(1.6) ut + Lu = f(t, x, u), t ∈ [0, T ], x ∈ Ω,

with

L =
n∑

i,j=1

ai,j(t, x)uxixj +
n∑
i=1

bi(t, x)uxi − c(t, x)u

under the initial condition u(x, 0) = u0(x) in x ∈ Ω and the nonlinear boundary conditions

β
∂u

∂ν
− g(t, x, u) = h(t, x), t ∈ (0, T ], x ∈ ∂Ω

and lim
|x|→∞

u(t, x) = 0, t ∈ (0, T ] where f and g are nonlinear functions of u, ν is the

outward unit normal vector on ∂Ω, β ≥ 0 is a constant and Ω is a bounded or unbounded

domain in the n-dimensional Euclidean space Rn with boundary ∂Ω. The existence and

5



uniqueness of a positive solution for this problem was obtained through the construction

of monotone iterations in [65]. The main theorem in this paper is given below.

Theorem 1.1.2. Suppose

(i) f(t, x, 0) ≥ 0 and u0(x) ≥ 0, (t, x) ∈ D,

(ii) g(t, x, 0) = 0 and h(t, x) ≥ 0, (t, x) ∈ S and

(iii) there exist constants c1, c2 such that

f(t, x, η1)− f(t, x, η2) ≥ −c1(η2 − η1), 0 ≤ η1 ≤ η2 ≤ ρ.

Also let there exist an upper solution ũ. Then the minimal sequence {u(k)} converges

from below to a minimal solution u of (1.6) and the maximal sequence {u(k)} converges

from above to a maximal solution u. Furthermore, the convergence of these sequences are

uniform on every bounded subdomain of D and

0 ≤ u(1) ≤ u(2) ≤ · · · ≤ u ≤ u ≤ u(2) ≤ u(1) ≤ ũ.

This idea was further extended for a variety of problems by X. Lu, C.V. Pao, Y.M.

Wang and their collaborators in their subsequent works. By suitably coupling various

linear approximations and monotone iterations, they handled a wide variety of partial

differential equations with initial and boundary conditions such as semilinear parabolic

and elliptic boundary value problems, coupled partial differential equations, fourth or-

der elliptic equations with nonlocal boundary conditions, integro-differential equations of

Fredhlom and Volterra type etc. For example, see [66, 67, 72, 75, 81].

In 1979, S. Bernfeld and V. Lakshmikantham [12] successively solved nonlinear bound-

ary value problem in Banach space using monotone methods. An extension of the method

of lower and upper solutions to a Volterra integral equation

x(t) = f(t) +

∫ t

0

K(t, s, x(s))ds

where x, f ∈ C[I,Rn], K ∈ C[I2 × Rn,Rn] and I = [0, T ] was done by G.S. Ladde et. al

in [45].

6



The study of the method of upper and lower solutions for hyperbolic differential

equation given by

(1.7)

uxy = f(x, y, u, ux, uy), (x, y) ∈ [0, a]× [0, b]

u(x, 0) = σ(x), x ∈ [0, a]

u(0, y) = τ(y), y ∈ [0, b]

σ(0) = τ(0) = u0,

where f ∈ C([0, a]× [0, b]×R3), σ ∈ C1([0, a]×R) and τ ∈ C1([0, b]×R) was initiated in

1985 by V. Lakshmikantham and S.G. Pandit in [48]. V. Lakshmikantham and his collab-

orators employed this technique widely to study different kinds of nonlinear differential

equations with/without quasilinearization [1, 46, 49, 50, 51].

Many more interesting works can be found in the literature towards this direction

among which the contributions of C.D. Coster [24], R. Courant and D. Hilbert [25], L.

Kantorovich [42], E. Zeidler [103] and their references are worth noticing. The method

of lower and upper solutions has proved its applicability in various other classifications of

differential equations such as fractional [57, 63], fuzzy [54], hybrid [94], matrix [60] and

stochastic [26, 27] differential equations. The investigations on utilization of this method

for various equations are actively going on.

1.1.1. Monotone Finite Difference Methods

Monotone iterative methods are not only used for obtaining existence and uniqueness

of the solution of nonlinear differential equations but also acts as an effective tool to obtain

the numerical solutions using finite difference approximations. In 1965, S.V. Parter [84]

initiated the study of numerical solutions of elliptic differential equations by aiding the

partnership of monotone iterations and finite difference approximations. The iterative

scheme proposed was given by

(1.8)
4hZ

n+1 − kZn+1 = f(P,Zn(P ))− kZn, P ∈ G(h)

Zn+1(P ) = ĝ(P ), P ∈ Ω(h),

where 4h was a finite dimensional linear operator approximating the Laplace operator,

G(h) denoted the set of interior points and F (h) denoted the set of boundary points. A

set of conditions was provided that ensured the convergence of the iterative procedure

7



defined by (1.8). More specifically, when initial approximations were chosen as the lower

and upper solutions respectively, increasing and decreasing sequences were generated that

converge to the solution of the problem considered.

By adapting a suitable finite difference method, A.C. Lazer [52] in 1982 proposed

a numerical method to solve a system of semilinear elliptic differential equations arising

from prey-predator models numerically. The boundary value problem considered was

(1.9)

u
′′
(x) + u(x)[a− bu(x)− cv(x)] = 0, α < x < β

v
′′
(x) + v(x)[e− fu(x)− gv(x)] = 0, α < x < β

u(α) = u(β) = v(α) = v(β) = 0,

where a, b, c, e, f, g are positive parameters. His approach provided two sequences, one

increasing and the other decreasing, that converge to the unique solution of the nonlinear

difference scheme.

This technique of lower and upper solutions was most extensively employed by C.V.

Pao for numerically handling various problems. In 1985, C.V. Pao [68] obtained an

existence-uniqueness theorem for a nonlinear finite difference scheme of a class of reaction

diffusion equations via monotone iterations. In particular, for a bounded domain Ω in

Rp, p = 1, 2, . . ., the following parabolic boundary value problem was considered:

(1.10)

ut −DO2u = f(x, t, u), x ∈ Ω, 0 < t ≤ T

α(x0)∂u
∂ν

+ β(x0)u = g(x0, t), x0 ∈ ∂Ω, 0 < t ≤ T

u(0, x) = ψ(x), x ∈ Ω,

where O2 is the Laplacian operator, ∂Ω is the boundary of Ω and ∂
∂ν

is the outward normal

derivative on ∂Ω. It was assumed that the function D ≡ D(x, t) is positive on Ω× [0, T ],

α(x0) ≥ 0, β(x0) ≥ 0 with α(x0) + β(x0) > 0 on ∂Ω and the nonlinear function f and the

data g, ψ are known functions in their respective domains.

One of the interesting works where the quasilinearization technique was coupled with

monotone iterations for numerically solving a reaction-diffusion-convection equation was

given by C.V. Pao [73] in 1998. In this study, solution of the resultant nonlinear finite

8



difference scheme was obtained from two monotone sequences generated by quasilineariza-

tion that converge quadratically. One of the main theorems in this article is given below.

Theorem 1.1.3. Let Ũn, Ûn be a pair of ordered upper and lower solutions for the finite

difference approximation

(1.11) (I + knAn)Un = Un−1 + knF (Un), U0 = Ψ,

where Un = (u1,n, . . . , uN,n) with N denoting the total number of unknowns, An an N ×N

band matrix associated with the elliptic and boundary operators in the problem and F (Un)

a vector in the form F (Un) = (f ∗(u1,n), f ∗(u1,n), . . . , f ∗(uN,n))) with f ∗(ui,n) = f(ui,n) +

g∗(ui,n). Let An = (a
(n)
i,j ) be an irreducible matrix with a

(n)
i,j ≤ 0 for i 6= j, a

(n)
ii ≥ 0 for all i

and
N∑
j=1

a
(n)
i,j ≥ 0 for all i = 1, . . . , N and n = 1, 2, · · · . Assume that kn(σn−µn) < 1, n =

1, 2, . . ., where µn is the smallest eigenvalue of An. Then (1.11) has a unique solution

U∗n ∈< Ũn, Ûn >. Moreover, the sequences {U (m)

n }, {U (m)
n } given by

P
(m)
n U

(m+1)
n = U∗n−1 + kn[C

(m)
n U

(m)
n + F (U

(m)
n )], U

(m+1)
0 = Ψ,

where m = 0, 1, 2, . . ., U
(0)
n is either Ũn or Ûn, P

(m)
n ≡ I + knAn + knC

(m)
n , C

(m)
n ≡

diag(c
(m)
1,n , c

(m)
2,n , . . . , c

(m)
N,n) and c

(m)
i,n = max{−f ∗u(ui,n); u

(m)
i,n ≤ ui,n, u

(m)
i,n } converge mono-

tonically from above and below, respectively, to the unique solution U∗n.

In 2002 [78], this idea was further explored for a coupled system of reaction diffusion

equations with nonlinear boundary conditions and time delays. The time dependent

reaction diffusion system considered was of the form

(1.12)

∂u(l)

∂t
− L(l)u(l) = f (l)(x, t,u,uτ ), x ∈ Ω, t > 0

B(l)u(l) = g(l)(x, t,u,uτ ′ ), x ∈ ∂Ω, t > 0

u(l)(x, t) = ψ(l)(x, t), x ∈ Ω, −τ t ≤ t ≤ 0,

where for each l = 1, 2, . . . , N, L(l) and B(l) are the respective diffusion-convection oper-

ator and boundary operator given by

(1.13)
L(l)u(l) = D(l)O2u(l) + v(l)4u(l)

B(l)u(l) = α(l) ∂u
∂ν

+ β(l)u(l).

9



Here ∂u
∂ν

denotes the outward normal derivative of u(l) on ∂Ω, D(l) ≡ D(l)(x, t), β(l) ≡

β(l)(x, t) and v(l) ≡ (v
(l)
1 , . . . , v

(l)
p ) with v

(l)
ν ≡ v

(l)
ν (x, t), ν = 1, 2, . . . , p are continuous

functions of (x, t).

In this direction, extensive contributions were made by C.V. Pao and his collabora-

tors to this area. Using finite difference approximations, the method of lower and upper

solutions was immensely utilized by X. Lu, C.V. Pao and Y.M. Wang and their collabo-

rators to deal with diverse partial differential equations like reaction diffusion equations

[68], semilinear parabolic equations [69], coupled systems of nonlinear boundary value

problems [70], nonlinear parabolic boundary value problems [71], nonlinear parabolic

equations with time delays [74], nonlinear integro-parabolic equations of Fredholm type

[76], fourth-order nonlinear elliptic boundary value problems [77, 80, 83], reaction dif-

fusion systems with coupled boundary conditions [78], nonlinear elliptic boundary value

problems [79], coupled system of differential equations [82] etc.

In most of these recent studies, the convergence of the discretized solutions to their

continuous counterparts as the mesh size tends to zero is based on the convergence of

their continuous cases. In contrast to this, convergence analysis for discretized solutions

that were completely independent of their continuous cases was studied by I. Bogalev,

one of the active contributors in this area. He utilized the method of lower and upper

solutions to a large extend especially for discretized problems obtained from differential

equations. This approach was exclusively dependent on comparison results for discretized

domain proposed by A. Samarskii in [90]. Using this technique, different aspects of finite

difference based numerical solutions for nonlinear integro-partial differential equations

were studied in his recent publications. [13] dealt with solving of nonlinear integro-

parabolic problems using finite difference approximations based on the method of upper

and lower solutions numerically. The same problem was further improved in [14] by

adopting weighted average scheme for approximations. This study was then extended for

coupled systems of nonlinear parabolic equations based on a nonlinear ADI scheme in

[15] and a coupled system of two nonlinear integro-parabolic equations of Volterra type

10



in [16]. The integro-parabolic equation that was considered in [16] is given by

∂ui
∂t
− Liui + fi(x, t, u) +

∫ t
0
g∗i (x, t, s, u(x, s))ds = 0, (x, t) ∈ ω × (0, T ]

ui(x, t) = φi(x, t), (x, t) ∈ ∂ω × (0, T ]; ui(x, 0) = ψi(x), x ∈ ω, i = 1, 2,

where ui = (u1, u2), ω is a connected bounded domain in Rk (k = 1, 2, · · · ) with boundary

∂ω. The differential operators Li are given by

Liui =
∑
α=1

κ
∂

∂xα

(
Di(x, t)

∂ui
∂xα

)
+ vi,α(x, t)

∂ui
∂xα

,

where the coefficients of the differential operators are smooth and Di, i = 1, 2 are positive

in ω× [0, T ]. It was also assumed that the functions fi, g
∗
i , φi and ψi, i = 1, 2 are smooth

in their respective domains. Based on the monotone iterative method for solving the

nonlinear difference scheme, the existence and uniqueness of a discrete solution and error

estimates of the iterative method were acquired in this article. In this approach, at each

step of the iterative scheme one has to solve linear difference equations of the form

(1.14)
(Li + ci)Wi(p, tk) = Ψi(p, tk), p ∈ ωh

ci(p, tk) ≥ 0, Wi(p, tk) = φi(p, tk), p ∈ ∂ωh, i = 1, 2.

The existence and uniqueness as well as the monotone property of proposed iterative

scheme was obtained using the following maximum principle and error estimate by A.

Samarskii [90].

Lemma 1.1.1. Let the coefficients of the difference operator Lhi , i = 1, 2 satisfy the

assumptions on their coefficients and the mesh ωh be connected.

(i) If a mesh function Wi(p, tk), i = 1, 2 satisfy the conditions

(Li + ci)Wi(p, tk) ≥ 0(≤ 0), p ∈ ωh

Wi(p, tk) ≥ 0(≤ 0), p ∈ ∂ωh,

then Wi(p, tk) ≥ 0(≤ 0) in ωh.

(ii) The following estimate to the solution to (1.14) hold true.

‖Wi(., tk)‖ωh ≤ max

{
‖gi(., tk)‖∂ωh ,max

p∈ωh

|Φi(p, tk)|
ci(p, tk) + τ−1

k

}
, i = 1, 2,

where ‖Wi(., tk)‖ωh = max
p∈∂ωh

|Wi(p, tk)| and ‖gi(., tk)‖∂ωh = max
p∈∂ωh

|gi(p, tk)|.
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1.1.2. Monotone Iterations in Abstract Space

It is interesting to note that solutions of differential and integro-differential equations

can be seen as solutions of fixed point of nonlinear operators in the abstract space. In

this regard, fixed point theorems in the setting of partially ordered abstract space can

be utilized for proving existence and uniqueness theorems for these equations that also

guarantee the existence of monotone sequences that will converge to the solutions. The

literature for fixed point theorems is very vast and out of all those works, a few latest

results are recalled in this subsection. For a detailed study, one can refer to [29, 34, 36,

44, 103] and the references therein. For example, the following fixed point theorem in

the abstract space [29] can be used to obtain the monotone successive iterative schemes

for the two-point boundary value problem −ẍ(t) = f(t, x(t)), t ∈ (0, 1), x(0) = x(1) = 0,

where f : [0, 1] × R → R is a function continuous in the first variable and continuously

differentiable in the second one.

Theorem 1.1.4. [29, pp. 396] Let X be a real Banach space with a normal order cone

and T : X → X. Assume that u0 and v0 is a subsolution and a supersolution of the

operator equation u = T (u) respectively and u0 ≤ v0. If T is a compact monotone in-

creasing operator on the order interval [u0, v0], then both the iterative sequences {un}∞n=1

and {vn}∞n=1 given by un+1 = T (un), vn+1 = T (vn), n = 0, 1, 2, . . . are defined, converge

and u = lim
n→∞

un is the smallest fixed point and v = lim
n→∞

vn is the largest fixed point re-

spectively of T in [u0, v0]. Furthermore, we have the error estimates un ≤ u ≤ v ≤ vn for

all n = 0, 1, · · · .

Attempting to accelerate the monotone iterative procedure in partially ordered ab-

stract spaces, fixed point theorems via quasilinearization scheme and its applications to

differential equations were also investigated. In this direction, A. Buica and R. Precup

[17], M.A. El-Gebeily et.al. [31], V. Lakshmikantham et.al. [51] and V.A. Vijesh and

K.H. Kumar [98] are a few. [31] studied monotone quasilinearization method for nonlinear

periodic boundary value problem

u(n)(t) = f(t, u(t)), t ∈ I = [0, T ]

u(i)(0)− u(i)(T ) = ci, i = 0, 1, . . . , n− 1

12



by proving monotone quasilinearization method for an operator equation in reflexive Ba-

nach space. One of the main theorems in this study is given below:

Theorem 1.1.5. [31] Assume that the nonlinear problem Au = f , where A is a nonlinear

operator has a lower solution α0 and an upper solution β0 such that α0 ≤ β0. Assume

also that A satisfies strict positivity, differentiability and sup-positivity conditions. Then

the two sequences of lower and upper solutions, {αn} and {βn} quadratically converge to

a solution of the nonlinear problem.

An interesting generalized quasilinearization method for operator equation was stud-

ied in [17] and its applications to nonlinear elliptic problems were considered in [18].

Similar results were obtained by V. Lakshmikantham et. al [51] and existence-uniqueness

theorems for initial value problem and semilinear parabolic initial boundary value prob-

lem via monotone quasilinearization were successfully deduced. One of the abstract fixed

point results in [51] is as follows:

Theorem 1.1.6. [51] Let E be an ordered Banach space with regular order cone E+.

Assume that T : E → E satisfies the following hypotheses:

(i) There exist v0, w0 ∈ E such that v0 ≤ Tv0, Tw0 ≤ w0 and v0 ≤ w0.

(ii) The Frechet derivative T
′
(u) exists for every u ∈ [v0, w0] and u 7→ T

′
uv is increasing

on [v0, w0] for all v ∈ E+.

(iii) [I − T
′
(u)]−1 exists and is a bounded and positive operator for all u ∈ [v0, w0].

Then, for n ∈ N, relations

vn+1 = Tvn + T
′
(vn)(vn+1 − vn); vn+1 = Tvn + T

′
(vn)(vn+1 − vn)

define an increasing sequence (vn)∞n=0 and a decreasing sequence (wn)∞n=0 which

converge to fixed points of T . These fixed points are equal if

(iv) Tu1 − Tu0 < u1 − u0 whenever v0 ≤ u0 < u1 ≤ w0. Moreover, if (i) − (iv) hold

along with

(v) ‖T ′(u)− T ′(v)‖ ≤ L‖u− v‖ for some L > 0 whenever v0 ≤ v ≤ u ≤ w0.

(vi) sup{[I − T
′
(u)]−1 : u ∈ [v0, w0]} < ∞, then the sequences (vn)∞n=0 and (wn)∞n=0

converge quadratically to the same fixed point of T .
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The literature on the method of lower and upper solutions is enormous. This review

is an outcome of a short literature survey done on this area and our references are mere

representatives only.

1.2. PRELIMINARIES

This section provides certain preliminary definitions and results that are of use in the

following chapters.

Definition 1.2.1. A matrix A is said to be inverse positive if A−1 exists and is positive.

Definition 1.2.2. A matrix A is said to be monotone if Ax ≥ 0⇒ x ≥ 0.

Definition 1.2.3. An n× n real matrix A = (ai,j) is said to be a Z-matrix if ai,j ≤ 0 for

all i 6= j; 1 ≤ i, j ≤ n [86].

Definition 1.2.4. An n×n matrix A that can be expressed in the form A = sI−B where

B = (bi,j) with bi,j ≥ 0 for all 1 ≤ i, j ≤ n and s ≥ ρ(B), the maximum of the moduli of

the eigenvalues of B is called an M-matrix [86].

If A is an n×n real Z-matrix, then the following statements are equivalent to A being

a nonsingular M-matrix.

• All the principal minors of A are positive.

• A is inverse positive.

• A is monotone.

Theorem 1.2.1. [102] A matrix A of order N is irreducible if and only if N = 1 or

given any two distinct integers i and j with 1 ≤ i, j ≤ N , then ai,j 6= 0 or there exist

i1, i2, . . . , in such that

ai,i1ai1,i2 . . . ainj 6= 0.

Let Ω be either a bounded or an unbounded open domain in Rn. Then Cm(Ω) denotes

the collection of all continuous functions whose partial derivatives up to the mth order are

continuous in Ω.
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Definition 1.2.5. A function u ∈ C(Ω) is said to be Hölder continuous of order α ∈ (0, 1)

if

Hα ≡ sup

{
|u(x)− u(ξ)|
|x− ξ|α

; x, ξ ∈ Ω and x 6= ξ

}
<∞.

Cm+α(Ω) denotes the collection of all functions in Cm(Ω) that are Hölder continuous in

Ω with exponent α ∈ (0, 1).

1.2.1. Approximating Derivatives using Finite Difference

In finite difference approximations, the following formula are used to approximate the

derivatives of a function u(x, t) of two variables. Note that h and k denote the step sizes

in x and t directions respectively.

1. Forward difference approximation of ux(x, t)

ux(x, t) ≈
u(x+ h, t)− u(x, t)

h

2. Forward difference approximation of ut(x, t)

ut(x, t) ≈
u(x, t+ k)− u(x, t)

k

3. Backward difference approximation of ux(x, t)

ux(x, t) ≈
u(x, t)− u(x− h, t)

h

4. Backward difference approximation of ut(x, t)

ut(x, t) ≈
u(x, t)− u(x, t− k)

k

5. Central difference approximation of ux(x, t)

ux(x, t) ≈
u(x+ h, t)− u(x− h, t)

2h

6. Central difference approximation of uxx(x, t)

uxx(x, t) ≈
u(x+ h, t)− 2u(x, t) + u(x− h, t)

h2
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1.3. DESCRIPTION OF THE RESEARCH WORK

Chapter 2 deals with a mathematical model arising in interphase heat transfer for

a catalytic converter where the vehicle and converter temperatures are governed by a

coupled system of first order partial differential equations given by

(1.15)

∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l,

∂v
∂t

+ bv = bu+ λ exp(v), t > 0, 0 < x ≤ l,

u(0, t) = η, u(x, 0) = u0(x), v(x, 0) = v0(x), t > 0, 0 < x ≤ l.

An accelerated iterative procedure is proposed by a modification to the iterative scheme

in [21] by combining successive iteration and quasilinearization together with monotone

method. The first part of the chapter proves an existence and uniquenss result for (1.15)

via the proposed accelerated iterative procedure. In the second part, based on this it-

erative procedure, a finite difference scheme is proposed to solve the coupled system

numerically. Interestingly, the proposed iterative scheme not only accelerates but also

preserves the monotone property. Moreover, a detailed error estimate is also derived.

The following are the two major theorems given in this chapter.

Theorem 1.3.1. Let (α, β) and (α, β) be a pair of ordered lower and upper solutions

of (1.15). Then the minimal sequence {(αn, βn)} and the maximal sequence {(αn, βn)}

converge monotonically to the unique solution (u∗, v∗) of (1.15) in S and the relation

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (α∗, β∗) ≤ (α∗, β
∗
) ≤ (αn+1, β

n+1
) ≤ (αn, β

n
) ≤ (α, β)

holds for n = 1, 2, . . ., where S = {(u, v) ∈ C(Q) × C(Q) : (α, β) ≤ (u, v) ≤ (α, β)}.

Moreover, ‖u∗−αn+1‖ ≤ ‖u∗−αn‖ and ‖v∗−βn+1‖ ≤ C (‖u∗ − αn+1‖+ ‖v∗ − βn‖2) also

hold for all n ∈ N with some positive constant C.

Let h = 4x, k = 4k be the space and time increments and let xi = ih, tj = jk be a

mesh point in [0, l]× [0, T ]. The sets of mesh points (xi, tj) in [0, l]× [0, T ] is denoted by

Λ̄. Define ui,j = u(xi, tj) and vi,j = v(xi, tj). Using the backward implicit approximation
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for first order differential equations, (1.15) is approximated by the finite difference system

(1.16)

A1ui,j = ckvi,j + ui,j−1 + ak
h
ui−1,j,

A2vi,j = vi,j−1 + bkui,j + kλ exp(vi,j),

u0,j = ηj, ui,0 = ψi, vi,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N

with A1 = 1 + ak
h

+ ck and A2 = 1 + bk.

Theorem 1.3.2. Let (αi,j, βi,j) and (αi,j, βi,j) be a pair of ordered lower and upper so-

lutions of (1.16). Then the minimal sequence {(αni,j, βni,j)} and the maximal sequence

{(αni,j, β
n

i,j)} are well defined and converge monotonically to the unique solution (u∗i,j, v
∗
i,j)

of (1.16) in Λ̄ and the relation

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (α∗i,j, β

∗
i,j) ≤ (α∗i,j, β

∗
i,j)

≤ (αn+1
i,j , β

n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)

holds for every (i, j) ∈ Λ̄ and n = 1, 2, . . . and if (u∗i,j, v
∗
i,j) for all (i, j) ∈ Λ̄ is the solution

of (1.16), then there exists a positive constant C such that∥∥∥∥∥∥
 en+1

i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
 ckeni,j

kλ exp(ξ∗)
(
eni,j
)2

∥∥∥∥∥∥
∞


where en+1

i,j = u∗i,j − αn+1
i,j , en+1

i,j = v∗i,j − βn+1
i,j and ξ∗ = max{βi,j : (i, j) ∈ Λ̄}.

Chapter 3 focuses on developing an alternative iterative procedure for solving (1.15).

In the proposed procedure at each step of the iterative scheme, instead of solving two linear

PDEs separately one has to solve a coupled linear PDE, a modification to the second

chapter and [82]. The chapter renders the existence and uniqueness of (1.15). Based on

the new procedure, a finite difference method is developed to solve the coupled system

numerically and its convergence analysis is also provided. One of the main theorems in

this chapter is

Theorem 1.3.3. Let (αi,j, βi,j) and (αi,j, βi,j) be a pair of ordered lower and upper so-

lutions of (1.16). Then the minimal sequence
{

(αni,j, β
n
i,j)
}

and the maximal sequence{
(αni,j, β

n

i,j)
}

converge monotonically to the unique solution (u∗i,j, v
∗
i,j) of (1.16) in

Sd = {(ui,j, vi,j) ∈ R2 : (αi,j, βi,j) ≤ (ui,j, vi,j) ≤ (αi,j, βi,j)}.
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Also, the relation

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (u∗i,j, v

∗
i,j) ≤ (αn+1

i,j , β
n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)

holds for every (i, j) ∈ Λ̄ and n = 1, 2, 3, · · · . Moreover, the following estimate holds∥∥∥∥∥∥
 en+1

i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1 + kλ exp(ξ∗)

(
(eni,j)

2+(ei,j)
2)

2

) ∥∥∥∥∥∥
∞

,

where en+1
i,j = u∗i,j − αn+1

i,j , en+1
i,j = v∗i,j − βn+1

i,j , ei,j = v∗i,j − βi,j and ξ∗ = max{βi,j : (i, j) ∈

Λ̄}.

In Chapter 4, a class of fourth order nonlocal elliptic boundary value problem of the

form

(1.17)

42u− b04u+ c0u = f(x, u), x ∈ Ω,

u(x) =
∫

Ω
γ(x, ξ)u(ξ)dξ + g(1)(x), x ∈ ∂Ω,

(4u)(x) =
∫

Ω
γ(x, ξ)(4u)(ξ)dξ − g(0)(x), x ∈ ∂Ω,

where Ω is a bounded domain in Rn (n = 1, 2, . . .) with boundary ∂Ω, b0 ≥ 0 and c0

are constants and f(x, u), γ(x
′
, x) and g(l)(x

′
) (l = 0, 1) are continuous functions in their

respective domains is handled. The major aim of this chapter is to accelerate the iterative

scheme in [83] ensuring the monotone property without any additional assumptions. The

proposed alternative iterative scheme is found to be much more efficient than the scheme

in [83] as it exhibits an immense reduction in the number of iterations required and

provides greater flexibility in choosing the initial guess during numerical experiments.

The proposed iterative scheme also ensures the existence and uniqueness of the solution

of (1.17). (1.17) can be rewritten as

(1.18)

−4u+ µu = v, −4v + µ+v = F (x, u), x ∈ Ω,

u(x) =
∫

Ω
γ(x, ξ)u(ξ)dξ + g(1)(x), x ∈ ∂Ω,

v(x) =
∫

Ω
γ(x, ξ)v(ξ)dξ + g(2)(x), x ∈ ∂Ω,

where g(2) = g(0) +µg(1), µ =
b0−
√
b20−4c∗

2
, µ+ =

b0+
√
b20−4c∗

2
, c∗ = c0 +c ≥ 0, b2

0 ≥ 4c∗, c ≥

max
{
−∂f
∂u

(x, u) : α̂ ≤ u ≤ α̃, x ∈ Ω
}

and F (x, u) = cu+f(x, u) [81]. Discretizing (1.17)

18



using central difference approximation and rewriting it as a coupled equation as in the

continuous case, one can have

(1.19)
−4hui + µui = vi, i ∈ Ωh; uj = J [x

′
j, u] + g

(1)
j , j ∈ ∂Ωh

−4hvi + µ+vi = F (xi, ui), i ∈ Ωh; vj = J [x
′
j, v] + g

(2)
j , j ∈ ∂Ωh,

where F (xi, ui) = cui + f(xi, ui) and g(2) = g(0) + µg(1). Let uk represents the approxi-

mation of u(xk) for any mesh point xk. The following is one of the main theorems in this

chapter.

Theorem 1.3.4. Let ((α̂, β̂), (α̃, β̃)), ((α̂k, β̂k), (α̃k, β̃k)) be ordered lower and upper so-

lutions of (1.18) and (1.19) respectively. Then the minimal solution (α∗k, β
∗
k
) and the maxi-

mal solution (α∗k, β
∗
k) of (1.19) converge respectively to the minimal solution (α∗(xk), β

∗(xk))

and the maximal solution (α∗(xk), β
∗
(xk)) of (1.18) at every point as mesh size tends to

zero.

Chapter 5 deals with nonlinear parabolic integro-differential equations of the form

(1.20)
∂u
∂t
− 1

θ
∂2u
∂x2

+ f(u, v) = q(x, t), (x, t) ∈ ω × (0, T ],

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ]; u(x, 0) = ψ(x), x ∈ ω,

where θ ∈ R+ ∪ {0}, ω is a connected bounded domain in Rn (n = 1, 2, · · · ), h, q, ψ are

smooth functions in their domains where v(x, t) stands for
∫ t

0
exp(λs)κ(t − s)u(x, s)ds,

λ being a positive constant arising in nuclear reactors and population models [72]. The

monotone property, convergence analysis and an error estimate in terms of stopping cri-

teria are derived for nonlinear integro-differential equation of Volterra type. This work

also generalizes the recent work of I. Bogleav in [13]. In contrast to the previous chap-

ters, in this chapter, monotone property and convergence analysis are obtained using the

comparison theorem for discretized problems by S. Samarskii [90].

Let ωh and ωτ be the corresponding meshes for the space and time domains respec-

tively, and h and τk denote the respective step sizes in x and t directions with t0 = 0.

Applying backward and central difference approximations for time and space respectively
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in (1.20), one can get the following:

(1.21)
LU(p, tk) + f(p, tk, U, V )− τ−1

k U(p, tk−1) = Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

U(p, tk) = h(p, tk), (p, tk) ∈ ∂ωh × (ωτ r {0}); U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh denotes the boundary of ωh. The following theorem that guarantees the

convergence of the solution of the nonlinear difference scheme (1.21) to the solution of

(1.20) as the mesh sizes tend to zero is the main theorem in this chapter.

Theorem 1.3.5. Let Û(p, tk) and Ũ(p, tk) be a pair of coupled lower and upper solutions of

(1.21). Then the minimal sequence {Un+1
−1 (p, tk)} and the maximal sequence {Un+1

1 (p, tk)}

converge monotonically to the unique solution of (1.21) in the sector

< Û(p, tk), Ũ(p, tk) > and for p ∈ ωh and n ∈ N, satisfy

Û(p, tk) ≤ Un
−1(p, tk) ≤ Un+1

−1 (p, tk) ≤ Un+1
1 (p, tk) ≤ Un

1 (p, tk) ≤ Ũ(p, tk).
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CHAPTER 2

A COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS

FOR A CATALYTIC CONVERTER

This chapter1 deals with an accelerated iterative procedure for a coupled system of

partial differential equations arising from a catalytic converter model.

2.1. Introduction

Catalytic converter is a reliable emissions control device that converts toxic pollu-

tants in exhaust gas to less toxic pollutants and is located in the exhaust system of

automobiles. The increasing concern about the atmospheric pollution caused due to

the harmful emissions from the vehicles leads to the development of various mathe-

matical models for the study of interphase heat-transfer problem in catalytic converter

[22, 37, 38, 40, 62, 85, 87, 91]. One of such models is studied in [53] where the vehi-

cle and converter temperatures are governed by a coupled system of a first order partial

differential equation and an ordinary differential equation. After suitable simplifications

[20, 21, 82], the problem reduces to the following system.

(2.1)

∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l

∂v
∂t

+ bv = bu+ λ exp(v), t > 0, 0 < x ≤ l

u(0, t) = η, u(x, 0) = u0(x), v(x, 0) = v0(x), t > 0, 0 < x ≤ l.

The existence and uniqueness of the classical solution of the above coupled system has

been proved using the contraction principle in [20]. Later by coupling successive iteration

and monotone method, the existence and uniqueness as well as the blowup property

of the solution have been discussed in [21]. Based on the main theorem in [21], a finite

difference based iterative procedure has been developed in [82] to solve the coupled system

numerically. The study in [82] has also proved that the finite difference scheme preserves

1This chapter forms the paper by L.A. Sunny, R. Roy and V. A. Vijesh in Jornal of Mathematical

Analysis and Applications, 445(2017), 318–336.



the monotone property. It is important to note that for the numerical method in [82]

based on the successive approximation discussed in [21], the performance of the numerical

scheme is slow.

In this chapter, to accelerate the iterative procedure, a modification to the iterative

scheme in [21] is proposed. More specifically, by combining successive iteration and

quasilinearization together with monotone method, an accelerated iterative procedure is

proposed. The first part of the chapter discusses about the convergence analysis, error

estimate as well as the monotone property of the proposed accelerated iterative procedure

for the continuous case. In the second part, based on this iterative procedure, a new

iterative scheme based on finite difference method is proposed to solve the coupled system

numerically. This part also proves the convergence and the monotone property of the

discretized version of the iterative procedure. Moreover, a detailed error estimate is also

derived.

In the proposed iterative scheme, at each step one has to solve a system with variable

coefficients distinct from [21] and [82] where constant coefficients are only dealt with.

Consequently in the discretized case, a new comparison theorem is developed to obtain

the monotone property of the sequences.

This chapter is organised as follows. Section 2.2 provides certain basic results that

are used in the following sections. In Section 2.3, the existence and uniqueness of the

coupled system (2.1) is proved via the new accelerated iterative scheme. This section also

provides the error estimate for the iterative procedure. Section 2.4 gives the convergence

analysis as well as the error estimate for the proposed numerical scheme. The convergence

of the finite difference solution to the continuous solution as the mesh sizes tend to zero is

obtained in Section 2.5. Some numerical results are given in Section 2.6 to illustrate the

efficiency of the proposed scheme. A comparative study is also provided in this section.
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2.2. Preliminaries

In this section, some basic results are stated that will be used to obtain the results in

the following sections. The existence and uniqueness theorem for (2.1) using contraction

principle discussed in [20] can be stated as follows.

Theorem 2.2.1. [Theorem 6; [20]] Suppose u0(x) = u(x, 0) ∈ C1[0, l] and v0(x) =

v(x, 0) ∈ C1[0, l] with u0(0) = η. There is a constant tmax > 0 such that [0, tmax) is the

maximal time interval for the unique solution (u, v) of the differential equation (2.1) on

the interval [0, l]× [0, tmax).

In the first part of the chapter, the following lemmas are used to obtain the monotone

property of the sequences.

Lemma 2.2.1. [Lemma 1; [21]] If w ∈ C1(Q) satisfies the inequalities

∂w
∂t

+ a∂w
∂x

+ bw ≥ 0; (x, t) ∈ Q

w(0, t) ≥ 0 t ∈ [0, T ]; w(x, 0) ≥ 0 x ∈ [0, l],

where a ≥ 0 and b > 0 are constants, then w ≥ 0 on Q.

Lemma 2.2.2. Let v ∈ C(Q) be continuously differentiable with respect to t such that

∂v

∂t
− f(x, t)v ≥ 0,

where f(x, t) is a continuous function defined on Q with v(x, 0) ≥ 0 for 0 < x ≤ l. Then

v(x, t) ≥ 0 on Q.

2.3. Convergence Analysis for the Continuous Case

This section provides a modification to the iterative procedure discussed in [21] which

deals with variable coefficients unlike that in [21]. It also proves the convergence, error

and the monotone property of the new iterative scheme. Let Q denote (0, l]× (0, T ] and

Q denote [0, l]× [0, T ] where l and T are arbitrary positive constants.
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Definition 2.3.1. A function (α, β) ∈ C1(Q)×C1(Q) is called an upper solution of (2.1)

if it satisfies

(2.2)

∂α
∂t

+ a∂α
∂x

+ cα ≥ cβ, t > 0, 0 < x ≤ l

∂β
∂t

+ bβ ≥ bα + λ exp(β), t > 0, 0 < x ≤ l

α(0, t) ≥ η, α(x, 0) ≥ u0(x), β(x, 0) ≥ v0(x), t > 0, 0 < x ≤ l.

Similarly (α, β) ∈ C1(Q) × C1(Q) is called a lower solution if it satisfies (2.2) with the

inequalities reversed.

For a given pair of ordered lower and upper solutions of (2.1), set

S = {(u, v) ∈ C(Q)× C(Q) : (α, β) ≤ (u, v) ≤ (α, β)}.

Using (α, β) and (α, β) respectively as the initial iterations (u0, v0), two sequences can be

computed. Applying the successive approximation method to the first equation and the

quasilinearization technique to the second in (2.1), an iterative scheme can be obtained

as follows.

(2.3)

∂un+1

∂t
+ a∂u

n+1

∂x
+ cun+1 = cvn, t > 0, 0 < x ≤ l

∂vn+1

∂t
+ (b− λ exp(vn))vn+1 = bun+1 + λ exp(vn)(1− vn), t > 0, 0 < x ≤ l

un+1(0, t) = η, un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), t > 0, 0 < x ≤ l,

n = 0, 1, 2, · · · . Denote the sequence generated from the lower solution by {(αn+1, βn+1)}

and the upper solution by {(αn+1, β
n+1

)} and refer to them as minimal and maximal

sequences respectively. The iterative schemes are given by

(2.4)

∂αn+1

∂t
+ a∂α

n+1

∂x
+ cαn+1 = cβn, t > 0, 0 < x ≤ l

∂βn+1

∂t
+ (b− λ exp(βn))βn+1 = bαn+1 + λ exp(βn)

−λ exp(βn)βn, t > 0, 0 < x ≤ l

αn+1(0, t) = η, αn+1(x, 0) = u0(x), βn+1(x, 0) = v0(x), t > 0, 0 < x ≤ l.

and
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(2.5)

∂αn+1

∂t
+ a∂α

n+1

∂x
+ cαn+1 = cβ

n
, t > 0, 0 < x ≤ l

∂β
n+1

∂t
+ (b− λ exp(βn))β

n+1
= bαn+1 + λ exp(β

n
)

−λ exp(βn)β
n
, t > 0, 0 < x ≤ l

αn+1(0, t) = η, αn+1(x, 0) = u0(x), β
n+1

(x, 0) = v0(x), t > 0, 0 < x ≤ l.

respectively.

Remark 2.3.1. When the lower and upper solutions (α, β), (α, β) ∈ C1(Q)×C1(Q), the

iterative procedures (2.4) and (2.5) are well defined. For more details, one can refer to

[20].

Define L1u = ∂u
∂t

+ a∂u
∂x

+ cu and L2v = ∂v
∂t

+ bv. Then (2.3) can be rewritten as

L1u
n+1 = cvn, t > 0, 0 < x ≤ l

L2v
n+1 − λ exp(vn)vn+1 = bun+1 + λ exp(vn)(1− vn), t > 0, 0 < x ≤ l

un+1(0, t) = η, un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), t > 0, 0 < x ≤ l,

where n = 0, 1, 2, · · · . The monotone property of both the sequences (2.4) and (2.5) and

their convergence to the unique solution of (2.1) is given in the following theorem.

Theorem 2.3.1. Let (α, β) and (α, β) be a pair of ordered lower and upper solutions of

(2.1). Then

(i) the minimal sequence {(αn, βn)} and the maximal sequence {(αn, βn)} converge

monotonically to the unique solution (u∗, v∗) of (2.1) in S.

(ii) the relation

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (α∗, β∗) ≤

(α∗, β
∗
) ≤ (αn+1, β

n+1
) ≤ (αn, β

n
) ≤ (α, β)(2.6)

holds for n = 1, 2, · · · .

Proof. The monotone property of both the minimal and maximal sequences is obtained

first. Let w0 = α0 − α1 = α− α1 and z0 = β
0 − β1

= β − β1
.

L1w
0 = L1α− L1α

1 ≥ cβ − cβ = 0
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w0(0, t) = α(0, t) − η ≥ 0 and w0(x, 0) = α(x, 0) − u0(x) ≥ 0. By Lemma 2.2.1, w0 ≥ 0

on Q. Hence α ≥ α1. Also

L2z
0 − λ exp(β)z0 = (L2β − λ exp(β)β)− (L2β

1 − λ exp(β)β
1
)

=

(
∂β

∂t
+ bβ − λ exp(β)β

)
−

(
∂β

1

∂t
+ bβ

1 − λ exp(β)β
1

)
L2z

0 − λ exp(β)z0 ≥
(
bα + λ exp(β)− λ exp(β)β

)
−
(
bα1 + λ exp(β)− λ exp(β)β

)
L2z

0 − λ exp(β)z0 ≥ bα− bα1 ≥ 0

z0(x, 0) = β(x, 0)− v0(x) ≥ 0.

Hence z0 ≥ 0 and thus (α, β) ≥ (α1, β
1
) on Q. Similarly (α, β) ≤ (α1, β1). Now let

w1 = α1 − α1 and z1 = β
1 − β1.

L1w
1 = L1α

1 − L1α
1 = cβ − cβ ≥ 0

and w1(0, t) = 0, w1(x, 0) = 0. By Lemma 2.2.1, w1 ≥ 0 on Q. Hence α1 ≥ α1. Also

L2z
1 − λ exp(β)z1 = (L2β

1 − λ exp(β)β
1
)− (L2β

1 − λ exp(β)β1)

=

(
∂β

1

∂t
+ bβ

1 − λ exp(β)β
1

)
−
(
∂β1

∂t
+ bβ1 − λ exp(β)β1

)
=

(
bα1 + λ exp(β)− λ exp(β)β

)
−
(
bα1 + λ exp(β)− λ exp(β)β

)
≥ λ exp(β̃)(β − β)− λ exp(β)(β − β); β ≤ β̃ ≤ β

L2z
1 − λ exp(β)z1 ≥ 0

together with z1(x, 0) = 0 conclude that z1 ≥ 0 and thus (α1, β1) ≤ (α1, β
1
) on Q. The

above conclusions show that

(α, β) ≤ (α1, β1) ≤ (α1, β
1
) ≤ (α, β).

Assume that

(αn−1, βn−1) ≤ (αn, βn) ≤ (αn, β
n
) ≤ (αn−1, β

n−1
)

for some n > 1. Clearly (αn+1, βn+1) and (αn+1, β
n+1

) exist. Define wn = αn − αn+1 and

zn = β
n − βn+1

.

L1w
n = L1α

n − L1α
n+1 = cβ

n−1 − cβn ≥ 0
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with wn(0, t) = 0; wn(x, 0) = 0. By Lemma 2.2.1, wn ≥ 0 on Q. Hence αn ≥ αn+1. Also

L2z
n − λ exp(βn)zn = (L2β

n − λ exp(βn)β
n
)− (L2β

n+1 − λ exp(βn)β
n+1

)

=
(
bαn + λ exp(β

n−1
) + λ exp(βn−1)(β

n − βn−1
)− λ exp(βn)β

n
)

−
(
bαn+1 + λ exp(β

n
)− λ exp(βn)β

n
)

≥ λ exp(β
n−1

) + λ exp(βn−1)(β
n − βn−1

)− λ exp(β
n
)

≥ λ exp(β̂)(β
n−1 − βn)− λ exp(βn−1)(β

n−1 − βn); β
n ≤ β̂ ≤ β

n−1

L2z
n − λ exp(βn)zn ≥ 0

together with zn(x, 0) = 0 conclude that zn ≥ 0 and thus (αn, β
n
) ≥ (αn+1, β

n+1
) on Q.

A similar reasoning using the property of lower solution gives (αn, βn) ≤ (αn+1, βn+1).

Now let wn+1 = αn+1 − αn+1 and zn+1 = β
n+1 − βn+1.

L1w
n+1 = L1α

n+1 − L1α
n+1 = cβ

n − cβn ≥ 0

with wn+1(0, t) = 0, wn+1(x, 0) = 0. By Lemma 2.2.1, wn+1 ≥ 0 on Q. Hence αn+1 ≥

αn+1. Also

L2z
n+1 − λ exp(βn)zn+1 = (L2β

n+1 − λ exp(βn)β
n+1

)− (L2β
n+1 − λ exp(β)nβn+1)

= b(αn+1 − αn+1) + λ exp(β
n
)− λ exp(βn)

+λ exp(βn)βn − λ exp(βn)β
n

L2z
n+1 − λ exp(βn)zn+1 ≥ 0

together with zn+1(x, 0) = 0 conclude that zn+1 ≥ 0 and thus (αn+1, βn+1) ≤ (αn+1, β
n+1

)

on Q. Thus

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (αn+1, β
n+1

) ≤ (αn, β
n
) ≤ (α, β)

for all n and this guarantees the existence of the limits

(2.7) lim
n→∞

(αn, βn) = (α∗, β∗), lim
n→∞

(αn, β
n
) = (α∗, β

∗
).

Moreover, both the limits are solutions of (2.1). The uniqueness of the solution (α∗, β∗) =

(α∗, β
∗
) = (u∗, v∗) follows from Theorem 6 of [20].
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Theorem 2.3.2. For all n ∈ N, the following error estimates hold.

‖u∗ − αn+1‖ ≤ ‖u∗ − αn‖(2.8)

‖v∗ − βn+1‖ ≤ C
(
‖u∗ − αn+1‖+ ‖v∗ − βn‖2

)
(2.9)

for some positive constant C.

Proof. From the monotone property, (2.8) trivially holds. Now define en+1 = u∗(x, t) −

αn+1(x, t) and en+1 = v∗(x, t)− βn+1(x, t).

en+1 = v∗(x, t)− vn+1(x, t)

= b

∫ t

0

exp(b(τ − t))en+1dτ + λ

∫ t

0

exp(b(τ − t)) (exp(v∗(x, τ)− exp(vn(x, τ))) dτ

−λ
∫ t

0

exp(b(τ − t)) exp(vn(x, τ))(vn+1(x, τ)− vn(x, τ))dτ

= b

∫ t

0

exp(b(τ − t))en+1dτ + λ

∫ t

0

exp(b(τ − t)) exp(v̂(x, τ))endτ

+λ

∫ t

0

exp(b(τ − t)) exp(vn(x, τ))en+1dτ

−λ
∫ t

0

exp(b(τ − t)) exp(vn(x, τ))endτ ; vn ≤ v̂ ≤ v∗

≤ b

∫ t

0

exp(b(τ − t))en+1dτ + λ

∫ t

0

exp(b(τ − t)) exp(vn(x, τ))en+1dτ

+λ

∫ t

0

exp(b(τ − t))(exp(v∗(x, τ))− exp(vn(x, τ)))endτ

≤ b

∫ t

0

exp(b(τ − t))en+1dτ + λ

∫ t

0

exp(b(τ − t)) exp(v∗(x, τ))en+1dτ

+λ

∫ t

0

exp(b(τ − t)) exp(v∗(x, τ))(en)2dτ

≤ b

∫ T

0

exp(b(τ − t))en+1dτ + λ

∫ t

0

exp(b(τ − t)) exp(v∗(x, τ))en+1dτ

+λ

∫ T

0

exp(b(τ − t)) exp(v∗(x, τ))(en)2dτ

≤ bK1‖en+1‖+ λK2‖en‖2 + λ

∫ t

0

| exp(b(τ − t)) exp(v∗(x, τ))|en+1dτ

en+1 ≤ K3

(
‖en+1‖+ ‖en‖2

)
+ λ

∫ t

0

| exp(b(τ − t)) exp(v∗(x, τ))|en+1dτ,
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where K3 = max{bK1, λK2} and K1 and K2 are positive constants. Applying Gronwall’s

inequality,

en+1 ≤ K3

(
‖en+1‖+ ‖en‖2

){
1 + λ

∫ t

0

| exp(b(τ − t)) exp(v∗(x, τ))|

exp

(∫ t

τ

exp(b(s− t)) exp(v∗(x, s))ds

)
dτ

}
‖en+1‖ ≤ K3

(
‖en+1‖+ ‖en‖2

)
(1 +K4) = C

(
‖en+1‖+ ‖en‖2

)
where C = K3(1 +K4) and K4 is a positive constant.

Remark 2.3.2. Similar error estimate can be obtained in the case of maximal sequence

given by (2.5) also.

2.4. Convergence Analysis for the Discretized Case

In this section, a finite difference system is developed using Theorem 2.3.1 for solving

the coupled equation (2.1) numerically. More specifically, the derivative terms in the

iterative procedure are discretized using backward finite difference formula. This section

discusses the monotone property as well as the convergence analysis of the proposed finite

difference scheme. Unlike [82], variable coefficients are dealt with at each step and as

a result, a new comparison lemma is obtained to prove the monotone property of the

proposed scheme. The error estimate for the iterative procedure is also derived.

Let h = 4x = l
M
, k = 4k = T

N
be the space and time increment and let xi =

ih, tj = jk be a mesh point in [0, l] × [0, T ] where M and N are the total numbers of

intervals in [0, l] and [0, T ] respectively. The sets of mesh points (xi, tj) in (0, l]×(0, T ] and

[0, l]×[0, T ] are denoted respectively by Λ and Λ̄. Define ui,j = u(xi, tj) and vi,j = v(xi, tj).

Using the backward implicit approximation for first order differential equations, (2.1) is

approximated by the finite difference system

ui,j−ui,j−1

k
+ a

ui,j−ui−1,j

h
+ cui,j = cvi,j

vi,j−vi,j−1

k
+ bvi,j = bui,j + λ exp(vi,j)

u0,j = ηj, ui,0 = ψi, vi,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.
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This can be rewritten as

(2.10)

A1ui,j = ckvi,j + ui,j−1 + ak
h
ui−1,j

A2vi,j = vi,j−1 + bkui,j + kλ exp(vi,j)

u0,j = ηj, ui,0 = ψi, vi,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N

with A1 = 1 + ak
h

+ ck and A2 = 1 + bk.

Definition 2.4.1. A function (αi,j, βi,j) defined on Λ is called a lower solution of (2.10)

if it satisfies

(2.11)

A1αi,j ≤ ckβi,j + αi,j−1 + ak
h
αi−1,j

A2βi,j ≤ βi,j−1 + bkαi,j + kλ exp(βi,j)

α0,j ≤ ηj, αi,0 ≤ ψi, βi,0 ≤ φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

Similarly (αi,j, βi,j) is called an upper solution if it satisfies (2.11) with inequalities re-

versed.

For a given pair of ordered lower and upper solutions (αi,j, βi,j) and (αi,j, βi,j) of

(2.10), set

S = {(ui,j, vi,j) ∈ R2 : (αi,j, βi,j) ≤ (ui,j, vi,j) ≤ (αi,j, βi,j)}.

As explained in Section 2.3, using (αi,j, βi,j) and (αi,j, βi,j) respectively as the initial iter-

ations (u0
i,j, v

0
i,j), two sequences can be constructed by applying successive approximation

and quasilinearization technique to the first and second equations of (2.10) respectively

which yields

un+1
i,j −u

n+1
i,j−1

k
+ a

un+1
i,j −u

n+1
i−1,j

h
+ cun+1

i,j = cvni,j
vn+1
i,j −v

n+1
i,j−1

k
+ bvn+1

i,j = bun+1
i,j + λ exp(vni,j) + λ exp(vni,j)

(
vn+1
i,j − vni,j

)
un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N

with n = 0, 1, . . . where ηj = η(tj), ψi = ψ(xi) and φi = φ(xi). The above system can be

written in the form

(2.12)

A1un+1
i,j − ckvni,j = un+1

i,j−1 + ak
h
un+1
i−1,j

−bkun+1
i,j +Bn

i,jv
n+1
i,j = vn+1

i,j−1 + kλ exp(vni,j)− kλ exp(vni,j)v
n
i,j

un+1
0,j = ηj, u

n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N
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with n = 0, 1, . . . and Bn
i,j =

(
A2 − kλ exp(vni,j)

)
. Equivalently,

(2.13)
An

 un+1
i,j

vn+1
i,j

 =

 un+1
i,j−1 + ak

h
un+1
i−1,j + ckvni,j

vn+1
i,j−1 + kλ exp(vni,j)− kλ exp(vni,j)v

n
i,j


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N

with n = 0, 1, . . . and An =

 A1 0

−bk Bn
i,j

 . Throughout this section, assume that the

time step k satisfies the condition (3.7) in [82], i.e.;

(2.14)
1

k
> max{b− c− a

h
, c− b+ λ exp(ξ∗)},

where ξ∗ = max{βi,j : (i, j) ∈ Λ̄}. Denote the sequence generated from the lower solution

by {(αn+1
i,j , βn+1

i,j )} and the upper solution by {(αn+1
i,j , β

n+1

i,j )} and refer to them as mini-

mal and maximal sequences respectively. With Bn
i,j =

(
A2 − kλ exp(βni,j)

)
, the iterative

schemes respectively are constructed by

(2.15)

A1αn+1
i,j = ckβni,j + αn+1

i,j−1 + ak
h
αn+1
i−1,j

Bn
i,jβ

n+1
i,j = bkαn+1

i,j + βn+1
i,j−1 + kλ exp(βni,j)− kλ exp(βni,j)β

n
i,j

αn+1
0,j = ηj, α

n+1
i,0 = ψi, β

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N

and

(2.16)

A1αn+1
i,j = ckβ

n

i,j + αn+1
i,j−1 + ak

h
αn+1
i−1,j

Bn
i,jβ

n+1

i,j = bkαn+1
i,j + β

n+1

i,j−1 + kλ exp(β
n

i,j)− kλ exp(βni,j)β
n

i,j

αn+1
0,j = ηj, α

n+1
i,0 = ψi, β

n+1

i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

The following lemma is vital to prove the monotone property of the sequences.

Lemma 2.4.1. Let a1, ai,j > 0 for all (i, j) ∈ Λ̄ with b1, b2, c1 and c2 ≥ 0 . If wi,j and zi,j

satisfy

a1wi,j − b1wi−1,j − c1wi,j−1 ≥ 0, (i, j) ∈ Λ(2.17)

ai,jzi,j − b2wi,j − c2zi,j−1 ≥ 0, (i, j) ∈ Λ(2.18)

with

(2.19) w0,j ≥ 0, wi,0 ≥ 0, zi,0 ≥ 0,

then wi,j ≥ 0 and zi,j ≥ 0 for all (i, j) ∈ Λ̄.
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Proof. The proof is by an induction process. (2.17) gives

a1wi,j ≥ b1wi−1,j + c1wi,j−1.

Let i = 1 and using (2.19),

a1w1,j ≥ b1w0,j + c1w1,j−1

a1w1,j ≥ c1w1,j−1.(2.20)

Now for i = 1 and using (2.20) in (2.18),

a1,jz1,j ≥
b2c1

a1

w1,j−1 + c2z1,j−1.(2.21)

Hence for j = 1 and using (2.19), one can conclude that,

a1,1z1,1 ≥
b2c1

a1

w1,0 + c2z1,0 ≥ 0.⇒ z1,1 ≥ 0

Similarly for j = 1 in (2.20), w1,1 ≥ 0. Assume that w1,j ≥ 0 and z1,j ≥ 0 for j = n− 1.

For j = n, from (2.21)

a1,nz1,n ≥
b2c1

a1

w1,n−1 + c2z1,n−1 ≥ 0⇒ z1,n ≥ 0.

Similarly for j = n in (2.20), w1,n ≥ 0. Thus w1,j ≥ 0 and z1,j ≥ 0 for all j. Now assume

that wi,j ≥ 0 and zi,j ≥ 0 for all j and i = n− 1. For i = n in (2.17)

a1wn,j ≥ b1wn−1,j + c1wn,j−1

a1wn,j ≥ c1wn,j−1.(2.22)

For i = n in (2.18) and using (2.22),

an,jzn,j ≥
b2c1

a1

wn,j−1 + c2zn,j−1.(2.23)

For j = 1 in (2.23) and by using (2.19), one can conclude that zn,1 ≥ 0. Similarly,

wn,1 ≥ 0. Assume that wn,j ≥ 0 and zn,j ≥ 0 for j = k − 1. For j = k from (2.23),

an,kzn,k ≥
b2c1

a1

wn,k−1 + c2zn,k−1 ≥ 0⇒ zn,k ≥ 0.

Similarly from (2.22),

a1wn,k ≥ c1wn,k−1 ⇒ wn,k ≥ 0.

Thus wi,j ≥ 0 and zi,j ≥ 0 for all (i, j) ∈ Λ̄.

32



Theorem 2.4.1. Let (αi,j, βi,j) and (αi,j, βi,j) be a pair of ordered lower and upper solu-

tions of (2.10). Then the following statements hold:

(i) The iterative schemes (2.15) and (2.16) are well defined.

(ii) The minimal sequence {(αni,j, βni,j)} and the maximal sequence {(αni,j, β
n

i,j)}converge

monotonically to the unique solution (u∗i,j, v
∗
i,j) of (2.10) in S.

(iii) The relation

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (α∗i,j, β

∗
i,j) ≤

(α∗i,j, β
∗
i,j) ≤ (αn+1

i,j , β
n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)(2.24)

holds for every (i, j) ∈ Λ̄ and n = 1, 2, · · · .

Proof. The proof is given by induction on n. For n = 0, (αi,j, βi,j) ∈ S and using (2.14) one

can conclude that A0 is invertible. Hence (α1
i,j, β

1
i,j) and (α1

i,j, β
1

i,j) exist for all i and j. Note

that since (αi,j, βi,j) ∈ S, (2.14) ensures that B0
i,j = A2−kλ exp(βi,j) > A2−kλ exp(ξ∗) > 0

for all i and j. Let w0
i,j = α1

i,j − αi,j and z0
i,j = β1

i,j − βi,j. Consider

A1w0
i,j −

ak

h
w0
i−1,j = A1α1

i,j − A1αi,j −
ak

h
α1
i−1,j +

ak

h
αi−1,j

= ckβi,j + α1
i,j−1 +

ak

h
α1
i−1,j − A1αi,j

−ak
h
α1
i−1,j +

ak

h
αi−1,j

A1w0
i,j −

ak

h
w0
i−1,j = ckβi,j + α1

i,j−1 − A1αi,j +
ak

h
αi−1,j(2.25)

and

(2.26) B0
i,jz

0
i,j = bkα1

i,j + β1
i,j−1 + kλ exp(βi,j) (1− βi,j)−B0

i,jβi,j.

From (2.25) for j = 1,

A1w0
i,1 −

ak

h
w0
i−1,1 = ckβi,1 + α1

i,0 − A1αi,1 +
ak

h
αi−1,1

≥ ckβi,1 + αi,0 − A1αi,1 +
ak

h
αi−1,1

A1w0
i,1 −

ak

h
w0
i−1,1 ≥ 0.(2.27)
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From (2.26) for j = 1,

B0
i,1z

0
i,1 = bkα1

i,1 + β1
i,0 + kλ exp(βi,1) (1− βi,1)−B0

i,1βi,1

B0
i,1z

0
i,1 ≥ bkα1

i,1 + bkαi,1 − bkαi,1 + βi,0 + kλ exp(βi,1) (1− βi,1)−B0βi,1

B0
i,1z

0
i,1 ≥ bkw0

i,1.(2.28)

From the boundary and initial conditions, w0
0,1 = α1

0,1 − α0,1 = η1 − α0,1 ≥ 0, z0
i,0 =

β1
i,0 − βi,0 = φi − βi,0 ≥ 0 and w0

i,0 = α1
i,0 − αi,0 = ψi − αi,0 ≥ 0. For i = 1, (2.27) and

(2.28) give

A1w0
1,1 ≥

ak

h
w0

0,1 ≥ 0⇒ w0
1,1 ≥ 0.

B0
1,1z

0
1,1 ≥ bkw0

1,1 ⇒ z0
1,1 ≥ 0.

For i = 2, (2.27) and (2.28) give

A1w0
2,1 ≥

ak

h
w0

1,1 ≥ 0⇒ w0
2,1 ≥ 0.

B0
2,1z

0
2,1 ≥ bkw0

2,1 ⇒ z0
2,1 ≥ 0.

Proceeding like this, one can prove that w0
i,1 ≥ 0 and z0

i,1 ≥ 0 for all i. i.e., αi,1 ≤ α1
i,1 and

βi,1 ≤ β1
i,1 for all i. From (2.25) for j = 2,

A1w0
i,2 −

ak

h
w0
i−1,2 = ckβi,2 + α1

i,1 − A1αi,2 +
ak

h
αi−1,2

≥ ckβi,2 + αi,1 − A1αi,2 +
ak

h
αi−1,2

A1w0
i,2 −

ak

h
w0
i−1,2 ≥ 0.(2.29)

From (2.26) for j = 2,

B0
i,2z

0
i,2 = bkα1

i,2 + β1
i,1 + kλ exp(βi,2) (1− βi,2)−B0

i,2βi,2

≥ bkα1
i,2 + bkαi,2 − bkαi,2 + βi,1 + kλ exp(βi,2) (1− βi,2)−B0

i,2βi,2

B0
i,2z

0
i,2 ≥ bkw0

i,2.(2.30)
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From the boundary and initial conditions, w0
0,2 ≥ 0, z0

i,0 ≥ 0 and w0
i,0 ≥ 0. For i = 1,

(2.29) and (2.30) give

A1w0
1,2 ≥

ak

h
w0

0,2 ≥ 0⇒ w0
1,2 ≥ 0.

B0
1,2z

0
1,2 ≥ bkw0

1,2 ⇒ z0
1,2 ≥ 0.

For i = 2, (2.29) and (2.30) give

A1w0
2,2 ≥

ak

h
w0

1,2 ≥ 0⇒ w0
2,2 ≥ 0.

B0
2,2z

0
2,2 ≥ bkw0

2,2 ⇒ z0
2,2 ≥ 0.

Proceeding like this, one can prove that w0
i,2 ≥ 0 and z0

i,2 ≥ 0 for all i. i.e., αi,2 ≤ α1
i,2 and

βi,2 ≤ β1
i,2 for all i. Repeating the similar argument for j = 3, . . . , N leads to αi,j ≤ α1

i,j

and βi,j ≤ β1
i,j for all (i, j) ∈ Λ̄. Similarly, αi,j ≥ α1

i,j and βi,j ≥ β
1

i,j for every i and j.

Now let w1
i,j = α1

i,j − α1
i,j and z1

i,j = β
1

i,j − β1
i,j.

A1w1
i,j = ckβi,j + α1

i,j−1 +
ak

h
α1
i−1,j − ckβi,j − α1

i,j−1 −
ak

h
α1
i−1,j.

Thus A1w1
i,j − w1

i,j−1 − ak
h
w1
i−1,j ≥ 0. Now

B0
i,jz

1
i,j = bkw1

i,j + z1
i,j−1 + kλ exp(βi,j)− kλ exp(βi,j)− kλ exp(βi,j)

(
βi,j − βi,j

)
B0
i,jz

1
i,j = bkw1

i,j + z1
i,j−1 + kλ exp(ṽi,j)

(
βi,j − βi,j

)
− kλ exp(βi,j)

(
βi,j − βi,j

)
.

[βi,j ≤ ṽi,j ≤ βi,j]

Thus B0
i,jz

1
i,j−bkw1

i,j−z1
i,j−1 ≥ 0. Note that w1

0,j = 0, z1
i,0 = 0, w1

i,0 = 0. Hence by Lemma

2.4.1, α1
i,j ≤ α1

i,j and β1
i,j ≤ β

1

i,j for all (i, j) ∈ Λ̄. The above conclusions show that

(2.31) (αi,j, βi,j) ≤ (α1
i,j, β

1
i,j) ≤ (α1

i,j, β
1

i,j) ≤ (αi,j, βi,j).

Assume by induction that (αni,j, β
n
i,j) and (αni,j, β

n

i,j) exist and

(2.32) (αi,j, βi,j) ≤ (αn−1
i,j , βn−1

i,j ) ≤ (αni,j, β
n
i,j) ≤ (αni,j, β

n

i,j) ≤ (αn−1
i,j , β

n−1

i,j ) ≤ (αi,j, βi,j)

for some n > 1. From induction hypothesis and using (2.14), one can conclude that An is

invertible. Consequently, (αn+1
i,j , βn+1

i,j ) and (αn+1
i,j , β

n+1

i,j ) exist for all i and j. The induction
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hypothesis and (2.14) also confirm that Bn
i,j > 0 for all i and j. Let wni,j = αn+1

i,j −αni,j and

zni,j = βn+1
i,j − βni,j. Consider

A1wni,j −
ak

h
wni−1,j = A1αn+1

i,j − A1αni,j −
ak

h
αn+1
i−1,j +

ak

h
αni−1,j

= ckβni,j + αn+1
i,j−1 − ckβn−1

i,j − αni,j−1

A1wni,j −
ak

h
wni−1,j ≥ wni,j−1.

Thus A1wni,j − ak
h
wni−1,j − wni,j−1 ≥ 0 for all (i, j) ∈ Λ̄. Moreover,

A2zni,j = bkαn+1
i,j + βn+1

i,j−1 + kλ exp(βni,j)
(
1 + βn+1

i,j − βni,j
)

−bkαni,j − βni,j−1 − kλ exp(βn−1
i,j )

(
1 + βni,j − βn−1

i,j

)
= bkwni,j + zni,j−1 + kλ exp(βni,j)z

n
i,j + kλ exp(βni,j)− kλ exp(βn−1

i,j )

−kλ exp(βn−1
i,j )

(
βni,j − βn−1

i,j

)
A2zni,j = bkwni,j + zni,j−1 + kλ exp(βni,j)z

n
i,j + kλ exp(ṽi,j)

(
βni,j − βn−1

i,j

)
−kλ exp(βn−1

i,j )
(
βni,j − βn−1

i,j

)
; βn−1

i,j ≤ ṽi,j ≤ βni,j

Bn
i,jz

n
i,j ≥ bkwni,j + zni,j−1.

Thus Bn
i,jz

n
i,j − bkwni,j − zni,j−1 ≥ 0 for all (i, j) ∈ Λ̄. Moreover, wn0,j = 0, zni,0 = 0, wni,0 = 0.

Hence by Lemma 2.4.1, wni,j ≥ 0 and zni,j ≥ 0 or equivalently αni,j ≤ αn+1
i,j and βni,j ≤ βn+1

i,j

for all (i, j) ∈ Λ̄. A similar argument gives (αn+1
i,j , β

n+1

i,j ) ≤ (αni,j, β
n

i,j) and (αn+1
i,j , βn+1

i,j ) ≤

(αn+1
i,j , β

n+1

i,j ). Thus

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (αn+1

i,j , β
n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)

guarantees the existence of the limits

(2.33) lim
m→∞

(αni,j, β
n
i,j) = (α∗i,j, β

∗
i,j); lim

m→∞
(αni,j, β

n

i,j) = (α∗i,j, β
∗
i,j).

Hence (2.24) holds and in the limiting case, both the limits are solutions of (2.1). The

proof for the uniqueness of the solution follows from Theorem 3.1 in [82].

The following remark is similar to Remark 3.1(b) in [82].
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Remark 2.4.1. Theorem 2.4.1 holds true for the more general system

∂u
∂t

+ a∂u
∂x

+ cu = f(x, t, u, v), t > 0, 0 < x ≤ l

∂v
∂t

+ bv = g(x, t, u, v) t > 0, 0 < x ≤ l

u(0, t) = η(t), u(x, 0) = u0(x), v(x, 0) = v0(x), t > 0, 0 < x ≤ l,

where f(x, t, u, v) and g(x, t, u, v) are continuous and C1-functions of (u, v) such that

fu(x, t, u, v), fv(x, t, u, v), gu(x, t, u, v) are positive and gv(x, t, u, v) is nondecreasing and

Lipschitz with respect to u and v for α ≤ u ≤ α and β ≤ v ≤ β. The monotone iteration

process is given by

∂un+1

∂t
+ a∂u

n+1

∂x
+ cun+1 = f(x, t, un, vn), t > 0, 0 < x ≤ l

∂vn+1

∂t
+ bvn+1 = g(x, t, un+1, vn) + gv(x, t, u

n+1, vn)(vn+1 − vn), t > 0, 0 < x ≤ l

un+1(0, t) = η, un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), t > 0, 0 < x ≤ l.

Theorem 2.4.2. If (u∗i,j, v
∗
i,j) for all (i, j) ∈ Λ̄ is the solution of (2.10), then there exists

a positive constant C such that∥∥∥∥∥∥
 en+1

i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
 ckeni,j

kλ exp(ξ∗)
(
eni,j
)2

∥∥∥∥∥∥
∞

 ,
where en+1

i,j = u∗i,j − αn+1
i,j , en+1

i,j = v∗i,j − βn+1
i,j and ξ∗ = max{βi,j : (i, j) ∈ Λ̄}.

Proof. From (2.15),

A1αn+1
i,j = ckβni,j + αn+1

i,j−1 +
ak

h
αn+1
i−1,j(2.34)

A2βn+1
i,j = bkαn+1

i,j + βn+1
i,j−1 + kλ exp(βni,j) + kλ exp(βni,j)

(
βn+1
i,j − βni,j

)
.(2.35)

If (u∗i,j, v
∗
i,j) is the solution of (2.10) in S, then

A1u∗i,j = ckv∗i,j + u∗i,j−1 +
ak

h
u∗i−1,j(2.36)

A2v∗i,j = bku∗i,j + v∗i,j−1 + kλ exp(v∗i,j).(2.37)

Hence,

A1en+1
i,j − en+1

i,j−1 −
ak

h
en+1
i−1,j = ckeni,j.
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Similarly,

A2en+1
i,j = bken+1

i,j + en+1
i,j−1 + kλ

(
exp(v∗i,j)− exp(βni,j)

)
− kλ exp(βni,j)

(
βn+1
i,j − βni,j

)
A2en+1

i,j = bken+1
i,j + en+1

i,j−1 + kλ exp(β̂i,j)
(
v∗i,j − βni,j

)
−kλ exp(βni,j)

(
βn+1
i,j − v∗i,j + v∗i,j − βni,j

)
; βni,j ≤ β̂i,j ≤ v∗i,j

Bnen+1
i,j = bken+1

i,j + en+1
i,j−1 + kλ exp(β̂i,j)e

n
i,j − kλ exp(βni,j)e

n
i,j

≤ bken+1
i,j + en+1

i,j−1 + kλeni,j
(
exp(v∗i,j)− exp(βni,j)

)
Bnen+1

i,j ≤ bken+1
i,j + en+1

i,j−1 + kλ exp(ξ∗)
(
eni,j
)2
.

Thus,

(2.38) An

 en+1
i,j

en+1
i,j

−
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1

 ≤
 ckeni,j

kλ exp(ξ∗)
(
eni,j
)2

 .

Note that for each n ∈ N, An is a nonsingular M-matrix. Hence (2.38) can be written as en+1
i,j

en+1
i,j

 ≤ (An)−1

 en+1
i,j−1 + ak

h
en+1
i−1,j

en+1
i,j−1

+

 ckeni,j

kλ exp(ξ∗)
(
eni,j
)2

 .
Consequently,∥∥∥∥∥∥

 en+1
i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1

∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥
 ckeni,j

kλ exp(ξ∗)
(
eni,j
)2

∥∥∥∥∥∥
∞

 ,
where C = max

{
1, 1

1+bk−kλeξ∗ + b
c

}
.

Remark 2.4.2. Similar error estimate can be obtained in the case of maximal sequence

given by (2.16) also.

2.5. Convergence of Finite Difference Solutions

In this section, the convergence of (u∗i,j, v
∗
i,j) to the continuous solution (u∗(xi, tj), v

∗(xi, tj))

as the mesh size tends to zero is obtained. The following theorem is similar to Theorem

5.1 in [82].
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Theorem 2.5.1. Let (u∗(x, t), v∗(x, t)) and (u∗i,j, v
∗
i,j) be the respective solutions of (2.1)

and (2.10) respectively and let Λ̄ be a given partition of Q̄ = [0, l]× [0, T ]. Then

(u∗i,j, v
∗
i,j)→ (u∗(xi, tj), v

∗(xi, tj)) as h+ k → 0

at every mesh point (xi, tj) in Λ̄.

Proof. To prove this theorem, for given any ε > 0 it has to be shown that there exists

δ > 0 such that

(2.39) |u∗(xi, tj)− u∗i,j|+ |v∗(xi, tj)− v∗i,j| < ε when h+ k < δ.

Let (α0, β0) = (α0
i.j, β

0
i,j) = (0, 0) for both the minimal sequences given by (2.3) and (2.12)

respectively. By Theorem 2.3.1 and Theorem 2.4.1, there exists an integer n = n∗(ε) such

that

|u∗ − αn+1| + |v∗ − βn+1| < ε

3

|u∗i,j − αn+1
i,j | + |v∗i,j − βn+1

i,j | <
ε

3
,

where (i, j) ∈ Λ̄ for all n ≥ n∗. Note that

|u∗(xi, tj)− u∗i,j| ≤ |u∗(xi, tj)− αn
∗
(xi, tj)|+ |αn

∗
(xi, tj)− αn

∗

i,j |+ |αn
∗

i,j − u∗i,j|

|v∗(xi, tj)− v∗i,j| ≤ |v∗(xi, tj)− βn
∗
(xi, tj)|+ |βn

∗
(xi, tj)− βn

∗

i,j |+ |βn
∗

i,j − v∗i,j|.

Hence the proof is complete if one can prove that

(2.40) |αn∗(xi, tj)− αn
∗

i,j |+ |βn
∗
(xi, tj)− βn

∗

i,j | <
ε

3
; (i, j) ∈ Λ̄.

From (2.3) and (2.12), it can be seen that (αn+1(xi, tj), β
n+1(xi, tj)) satisfies the equations

(2.41)

A1αn+1(xi, tj)− ckβn(xi, tj) = αn+1(xi, tj−1) + ak
h
αn+1(xi−1, tj) + o(h, k)

Bnβn+1(xi, tj)− bkαn+1(xi, tj) = βn+1(xi, tj−1)+

kλ exp(βn(xi, tj)) (1− βn(xi, tj)) + o(h, k)

αn+1(0, tj) = ηj, α
n+1(xi, 0) = ψ(xi), β

n+1(xi, 0) = φ(xi),

where o(h, k)→ 0 as h+ k → 0. Let

(2.42) en+1
i,j = αn+1(xi, tj)− αn+1

i,j ; en+1
i,j = βn+1(xi, tj)− βn+1

i,j .
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Subtracting (2.12) from (2.41) and using mean value theorem,

(2.43)

A1en+1
i,j − ckeni,j = en+1

i,j−1 + ak
h
en+1
i−1,j + o(h, k)

Bnen+1
i,j − bken+1

i,j = en+1
i,j−1 − kλβ̂ni,j exp(β̂ni,j)e

n
i,j + o(h, k)

en+1
0,j = 0, en+1

i,0 = 0, en+1
i,0 = 0,

where β̂ni,j is an intermediate value between βn(xi, tj) and βni,j. Define column vectors

En+1
j and En+1

j respectively by

(2.44)
En+1
j =

(
en+1

1,j , e
n+1
2,j , . . . , e

n+1
M,j

)T
En+1
j =

(
en+1

1,j , e
n+1
2,j , . . . , e

n+1
M,j

)T
,

where (·)T denotes the transpose of a row vector. Let A be an M ×M bidiagonal matrix

and Dn
j a diagonal matrix given by

A = (ajk) =



A1

−ak
h

A1

−ak
h

A1

. . . . . .

−ak
h

A1


Dn
j = diag

(
−β̂n1,j exp(β̂n1,j),−β̂n2,j exp(β̂n2,j), . . . ,−β̂nM,j exp(β̂nM,j)

)
Using the same argument in [82], one can conclude that A−1 exists and is a nonnegative

matrix. Also, A has the positive smallest eigenvalue µ0 = A1. (2.43) can be written as

AEn+1
j = En+1

j−1 + ckEn
j +O(h, k)

BnEn+1
j = En+1

j−1 + bkEn+1
j + kλDn

jE
n
j +O(h, k)

En+1
0 = 0, En+1

0 = 0,

where ‖O(h, k)‖ → 0 for any suitable norm ‖ · ‖ in RM as h + k → 0. Define σ1 =

ξ∗ exp(ξ∗), σ0 = kλσ1 and B̃ = 1 + bk − kλ exp(ξ∗), where ξ∗ = max{βi,j : (i, j) ∈ Λ̄}.

Proceeding as in Theorem 5.1 in [82], one will end up with

(2.45)

‖En+1
j ‖ ≤ 2

µ0

[
‖En+1

j−1 ‖+ ck‖En
j ‖+ ‖O(h, k)‖

]
‖En+1

j ‖ ≤ 1
B̃

[
‖En+1

j−1‖+ bk‖En+1
j ‖+ σ0‖En

j ‖+ ‖O(h, k)‖
]

‖En+1
0 ‖ = ‖En+1

0 ‖ = 0.
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Define Sn+1
j = ‖En+1

j ‖+‖En+1
j ‖, γ1 = max{ 2

µ0
, 1
B̃
}, γ2 = bk

B̃
and γ3 = max{2ck

µ0
, σ0
B̃
}. Since

h + k → 0, one can choose k such that kλ exp(ξ∗) < 1. Consequently, γ2 < 1. Note that

Sn+1
0 = S0

j = 0 for all n and j. Proceeding similar to Theorem 5.1 in [82], for given any

ε1 > 0, there exists δ1 > 0 such that

(2.46)
(1− γ2)Sn+1

j ≤ γ1S
n+1
j−1 + γ3S

n
j + ε1 when h+ k < δ1

Sn+1
0 = S0

j = 0; j = 1, 2, . . . , N, n = 0, 1, . . . , n∗.

Define β∗ = 1 + γ3
1−γ2 + ( γ3

1−γ2 )2 + . . .+ ( γ3
1−γ2 )n

∗−1. An induction argument in j leads to

Sn+1
j ≤ β∗

(1− γ2)

[(
γ1β

∗

1− γ2

)j−1

+

(
γ1β

∗

1− γ2

)j−2

+ · · ·+ γ1β
∗

1− γ2

+ 1

]
ε1

for all n ≤ n∗ and j ≤ N . Thus Sn
∗

j ≤ Kε1 for all j = 1, 2, . . . , N , where K = β∗

(1−γ2)[(
γ1β∗

1−γ2

)N−1

+
(
γ1β∗

1−γ2

)N−2

+ · · ·+ γ1β∗

1−γ2 + 1

]
. For the choice of ε1 <

ε
3K

, there exists δ > 0

such that Sn
∗

j = ‖En∗
j ‖ + ‖En∗

j ‖ < ε
3

when h + k < δ. This leads to (2.40). Thus (2.39)

holds and hence the theorem.

2.6. Numerical Examples

In this section, the accelerated iterative technique is illustrated by applying to differ-

ent examples. The existence and uniqueness of the solution and the convergence of the

proposed examples are followed by Theorem 2.4.1 and Theorem 2.5.1 respectively. The

iterative schemes taken for the numerical solution of the examples are same as the iter-

ative scheme discussed in Remark 2.4.1. Throughout this section, n denotes the number

of iterations required for the stopping criteria

max
(i,j)

[
|un+1
i,j − uni,j|+ |vn+1

i,j − vni,j|
]
≤ ε.

Example 2.6.1.

Consider the following differential system discussed in [82].

(2.47)

∂u
∂t

+ ∂u
∂x

+ u = v + q1(x, t), 0 < x ≤ 1, 0 < t ≤ T

∂v
∂t

+ v = u+ λ exp(v) + q2(x, t), 0 < x ≤ 1, 0 < t ≤ T

u(0, t) = 2− exp(−t), 0 < t ≤ T

u(x, 0) = 1− x2, v(x, 0) = 1− x2, 0 < x ≤ 1,
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where λ > 0 is considered as a parameter with q1(x, t) = (1− x)2 exp(−t) and q2(x, t) =

(1 +x2) exp(−t)−λ exp(2− (1 +x2) exp(−t)). The solution of (2.47) is given by u(x, t) =

v(x, t) = 2− (1 + x2) exp(−t). Numerical results for the minimal solution and the exact

solution are given in Table 2.1 and Table 2.2. From Table 2.1 and Table 2.2, one can

conclude that the proposed scheme performs faster than the scheme in [82]. Here T =

1, λ = 0.05, h = k = 10−3 and ε = 2× 10−5.

Example 2.6.2.

Consider the following differential system discussed in [82].

(2.48)

∂u
∂t

+ ∂u
∂x

+ u = λ1v
p1 + q1(x, t), 0 < x ≤ 1, 0 < t ≤ T

∂v
∂t

+ v = u+ λ2v
p2 + q2(x, t), 0 < x ≤ 1, 0 < t ≤ T

u(0, t) = 2− exp(−t), 0 < t ≤ T

u(x, 0) = 1− x, v(x, 0) = 1− x, 0 < x ≤ 1,

where λi, pi > 0 for i = 1, 2 with q1(x, t) = (2 − exp(−t)) − λ1[2 − (1 + x) exp(−t)]p1

and q2(x, t) = (1 + x) exp(−t) − λ2[2 − (1 + x) exp(−t)]p2 . The solution of (2.48) is

given by u(x, t) = v(x, t) = 2 − (1 + x) exp(−t). Numerical results for the minimal

solution and the exact solution are given in Table 2.3 and Table 2.4 for the choice of

T = 1, h = k = 10−3, p1 = 2, p2 = 3, λ1 = 1
4
, λ2 = 1

8e
and ε = 2 × 10−5. From Table

2.3 and Table 2.4, one can conclude that the proposed scheme outperforms the scheme in

[82].

2.7. Conclusion

The existence and uniqueness of the solution for a coupled system of partial differen-

tial equations is established through an accelerated iterative scheme. The monotonicity,

convergence and the error estimate of the sequences obtained from both continuous and

discrete cases are also obtained. The efficiency of the proposed scheme is proved by

comparing with the existing scheme available in the literature.
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Table 2.1. Numerical solution of u(x, t) for Example 2.6.1.

Grid Point Exact Solution Successive [82] Proposed Scheme

(xi, tj) n = 10 n = 6

(0.4,0.2) 1.050272326 1.050008303 1.050008298

(0.8,0.2) 0.657281565 0.656981110 0.656981108

(0.4,0.4) 1.222428747 1.221989786 1.221989780

(0.8,0.4) 0.900675125 0.900170790 0.900170784

(0.4,0.6) 1.363378502 1.362970024 1.362970010

(0.8,0.6) 1.099948917 1.099303519 1.099303500

(0.4,0.8) 1.478778402 1.478408732 1.478408701

(0.8,0.8) 1.263100499 1.262364658 1.262364626

(0.4,1) 1.573259848 1.572925710 1.572925661

(0.8,1) 1.396677716 1.395978881 1.395978804

Table 2.2. Numerical solution of v(x, t) for Example 2.6.1.

Grid Point Exact Solution Successive [82] Proposed Scheme

(xi, tj) n = 10 n = 6

(0.4,0.2) 1.050272326 1.050149607 1.050149601

(0.8,0.2) 0.657281565 0.657115969 0.657115962

(0.4,0.4) 1.222428747 1.222179075 1.222179049

(0.8,0.4) 0.900675125 0.900349866 0.900349838

(0.4,0.6) 1.363378502 1.363022778 1.363022712

(0.8,0.6) 1.099948917 1.099477231 1.099477158

(0.4,0.8) 1.478778402 1.478349819 1.478349717

(0.8,0.8) 1.263100499 1.262497886 1.262497772

(0.4,1) 1.573259848 1.572783575 1.572783541

(0.8,1) 1.396677716 1.395970568 1.395970586
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Table 2.3. Numerical solution of u(x, t) for Example 2.6.2.

Grid Point Exact Solution Successive [82] Proposed Scheme

(xi, tj) n = 10 n = 5

(0.4,0.2) 0.853776946 0.853665705 0.853665703

(0.8,0.2) 0.526284644 0.526141887 0.526141886

(0.4,0.4) 1.061551936 1.061374624 1.061374625

(0.8,0.4) 0.793423917 0.793190963 0.793190960

(0.4,0.6) 1.231663710 1.231492264 1.231492262

(0.8,0.6) 1.012139055 1.011846944 1.011846935

(0.4,0.8) 1.370939450 1.370774925 1.370774903

(0.8,0.8) 1.191207865 1.190878991 1.190878980

(0.4,1) 1.484968782 1.484809943 1.484809874

(0.8,1) 1.337817006 1.337493421 1.337493371

Table 2.4. Numerical solution of v(x, t) for Example 2.6.2.

Grid Point Exact Solution Successive [82] Proposed Scheme

(xi, tj) n = 10 n = 5

(0.4,0.2) 0.853776946 0.853650111 0.853650112

(0.8,0.2) 0.526284644 0.526122512 0.526122511

(0.4,0.4) 1.061551936 1.061322831 1.061322829

(0.8,0.4) 0.793423917 0.793132909 0.793132909

(0.4,0.6) 1.231663710 1.231358465 1.231358458

(0.8,0.6) 1.012139055 1.011746640 1.011746639

(0.4,0.8) 1.370939450 1.370581962 1.370581955

(0.8,0.8) 1.191207865 1.190735411 1.190735413

(0.4,1) 1.484968782 1.484575963 1.484575964

(0.8,1) 1.337817006 1.337284272 1.337284280
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CHAPTER 3

A COUPLED SYSTEM OF DIFFERENTIAL EQUATIONS

FOR A CATALYTIC CONVERTER - AN ALTERNATIVE

TECHNIQUE

This chapter1 deals with an alternative iterative procedure for the coupled system of

partial differential equations discussed in Chapter 2.

3.1. Introduction

The interphase heat transfer problems in catalytic converters draw much attention

now a days due to its increasing relevance in the automobile emission control [22, 37,

38, 40, 53, 62, 85, 87, 91]. In this direction, [20, 21, 82], and [95] dealt with one of

such problems where the vehicle temperature and converter temperature are given by a

coupled partial differential equation

(3.1)


∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l

∂v
∂t

+ bv = bu+ λ exp(v), t > 0, 0 < x ≤ l

u(0, t) = η, t ≥ 0; u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ l.

where a, b, c and λ are positive constants, u0, v0 ∈ C1[0, l] and u0(0) = η. Note that

the iterative procedures available in the literature for the continuous problem [20, 21,

95] as well as the discretized problem [82, 95] are based on the successive approach.

Consequently, at each step of the iterative procedure, one has to solve two linear partial

differential equations seperately.

This chapter focuses on developing an alternative iterative procedure for solving (3.1).

In the proposed procedure at each step of the iterative scheme, instead of solving two

linear PDEs separately one has to solve a coupled linear PDE, a modification to [82, 95].

1This chapter forms the paper by L.A. Sunny, R. Roy and V. A. Vijesh in Applicable Analysis (2018),

https://doi.org/10.1080/00036811.2018.1478077.



The chapter renders the convergence analysis and the monotone property of the proposed

scheme for the continuous case. Based on the new procedure, a finite difference method

is developed to solve the coupled system numerically. The convergence and montone

property of the discretized version of the iterative procedure along with an error estimate

is also provided. A new comparison lemma different from [21, 95] is proved to handle the

coupled equation. In the discretized version, the monotone property is obtained by using

the properties of the coefficient matrix.

This chapter is organised as follows. In Section 3.2, certain basic results are given that

are used in the following sections. Section 3.3 provides the existence and uniqueness of

the coupled system (3.1) using the proposed iterative scheme. The convergence analysis

as well as the error estimate for the proposed numerical scheme is given in Section 3.4.

Some numerical results are given in Section 3.5 to illustrate the efficiency of the proposed

scheme. A comparative study is also provided in this section.

3.2. Preliminaries

To make this chapter self contained, this section provides basic results that will be

used to prove the main results in the following sections.

Definition 3.2.1. [86] An n×n real matrix A = (ai,j) is said to be a Z-matrix if ai,j ≤ 0

for all i 6= j; 1 ≤ i, j ≤ n. An n×n matrix A that can be expressed in the form A = sI−B

where B = (bi,j) with bi,j ≥ 0 for all 1 ≤ i, j ≤ n and s ≥ ρ(B), the maximum of the

moduli of the eigenvalues of B is called an M-matrix.

For M-matrix, [86] is a good reference.

Definition 3.2.2. A matrix A is said to be inverse positive if A is invertible and Ax ≥

0⇒ x ≥ 0.

Throughout this chapter, Q and Q denote the sets (0, l] × (0, T ] and [0, l] × [0, T ]

respectively.
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Lemma 3.2.1. [Lemma 1; [21]] If w ∈ C1(Q) satisfies the inequalities
∂w
∂t

+ a∂w
∂x

+ bw ≥ 0; (x, t) ∈ Q,

w(0, t) ≥ 0 t ∈ [0, T ],

w(x, 0) ≥ 0 x ∈ [0, l],

where a ≥ 0 and b > 0 are constants, then w ≥ 0 on Q.

The following coupled linear partial differential equation plays a key role in the proof

of the main theorem in Section 3.

(3.2)
∂u
∂t

+ a∂u
∂x

+ cu = cv, t > 0, 0 < x ≤ l

∂v
∂t

+ b(v − u)− λ exp(f1(x, t))v = λ exp(f2(x, t))(1− f2(x, t)), t > 0, 0 < x ≤ l

u(0, t) = η, t ≥ 0; u(x, 0) = u0(x), v(x, 0) = v0(x), 0 ≤ x ≤ l.

where f1, f2 ∈ C1(Q). In this section, λ exp(f2(x, t))(1− f2(x, t)) is denoted by h(x, t).

Definition 3.2.3. A function (u, v) ∈ C1(Q)×C1(Q) is called an upper solution of (3.2)

if it satisfies
∂u
∂t

+ a∂u
∂x

+ cu ≥ cv, t > 0, 0 < x ≤ l

∂v
∂t

+ b(v − u)− λ exp(f1(x, t))v ≥ h(x, t), t > 0, 0 < x ≤ l

u(0, t) ≥ η, t ≥ 0; u(x, 0) ≥ u0(x), v(x, 0) ≥ v0(x), 0 ≤ x ≤ l.

Similarly (u, v) ∈ C1(Q) × C1(Q) is called a lower solution if it satisfies (3.2) with the

inequalities reversed.

The following theorem ensures the well defined property of the proposed iterative

scheme.

Theorem 3.2.1. Let (u, v) and (u, v) in C1(Q) × C1(Q) be a pair of ordered lower and

upper solutions of (3.2). Then (3.2) has a unique solution (u∗, v∗) ∈ C1(Q)×C1(Q) such

that (u, v) ≤ (u∗, v∗) ≤ (u, v).
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Proof. The solution of the linear coupled partial differential equations (3.2) is obtained

as the limit of the following successive iterative procedure.

(3.3)


L1u

n+1 = cvn, t > 0, 0 < x ≤ l

L2v
n+1 − λ exp(f1(x, t))vn+1 = bun+1 + h(x, t), t > 0, 0 < x ≤ l

un+1(0, t) = η, t ≥ 0, un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), 0 ≤ x ≤ l.

where L1u = ∂u
∂t

+ a∂u
∂x

+ cu, L2v = ∂v
∂t

+ bv and n = 0, 1, 2, · · · with (u0, v0) = (u, v).

The iterative scheme (3.3) is equivalent to the following iterative procedure [20, 21]. For

(x, t) ∈ Q,

un+1(x, t) =



exp(−ct)un+1(x− at, 0) + c
∫ t

0
exp(c(τ − t))vn(x+ aτ − at, τ)dτ

0 ≤ t < xa−1

exp(−cxa−1)η + c
∫ xa−1

0
exp(c(τ − xa−1))vn(aτ, t− xa−1 + τ)dτ

xa−1 ≤ t < T.

vn+1(x, t) = e−g(x,t)vn+1(x, 0) + e−g(x,t)
[
b

∫ t

0

un+1(x, τ)eg(x,τ)dτ + λ

∫ t

0

h(x, t)eg(x,τ)dτ

]
where g(x, t) =

∫ t
0
(b−λ exp(f1(x, s))ds. Clearly, the iterative scheme (3.3) is well defined.

i.e.; at each step, un+1 and vn+1 exist. Let w0 = u1 − u and z0 = v1 − v.

L1w
0 = L1u

1 − L1u ≥ cv − cv = 0

with w0(0, t) = η − u(0, t) ≥ 0 and w0(x, 0) = u0(x) − u(x, 0) ≥ 0. By Lemma 3.2.1,

w0 ≥ 0 on Q. Hence u ≤ u1. Also

L2z
0 − λ exp(f1(x, t))z0 = (L2v

1 − λ exp(f1(x, t))v1)− (L2v − λ exp(f1(x, t))v)

≥ bu1 + h(x, t)− bu− h(x, t)

L2z
0 − λ exp(f1(x, t))z0 ≥ bu1 − bu ≥ 0

with z0(x, 0) = v0(x) − v(x, 0) ≥ 0. Hence z0 ≥ 0 and thus (u, v) ≤ (u1, v1) on Q. Now

let w = u− u1 and z = v − v1.

L1w = L1u− L1u
1 ≥ cv − cv ≥ 0

with w(0, t) ≥ 0; w(x, 0) ≥ 0. By Lemma 3.2.1, w ≥ 0 on Q. Hence u1 ≤ u. Also

L2z − λ exp(f1(x, t))z = bu− bu1 ≥ 0
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together with z(x, 0) ≥ 0, conclude that z ≥ 0 and thus (u, v) ≤ (u1, v1) ≤ (u, v) on Q.

Assume that (u, v) ≤ (un−1, vn−1) ≤ (un, vn) ≤ (u, v) for some n > 1. Clearly (un+1, vn+1)

exists. Define wn = un+1 − un and zn = vn+1 − vn.

L1w
n = L1u

n+1 − L1u
n = cvn − cvn−1 ≥ 0

with wn(0, t) = 0; wn(x, 0) = 0. By Lemma 3.2.1, wn ≥ 0 on Q. Hence un ≤ un+1. Also

L2z
n − λ exp(f1(x, t))zn = bun+1 − bun ≥ 0

together with zn(x, 0) = 0 conclude that zn ≥ 0 and thus (un, vn) ≤ (un+1, vn+1) on Q.

Now let w = u− un+1 and z = v − vn+1.

L1w = L1u− L1u
n+1 ≥ cv − cvn ≥ 0

with w(0, t) ≥ 0; w(x, 0) ≥ 0. By Lemma 3.2.1, w ≥ 0 on Q. Hence un+1 ≤ u. Also

L2z − λ exp(f1(x, t))z = bu− bun+1 ≥ 0

together with z(x, 0) ≥ 0, conclude that z ≥ 0 and thus

(u, v) ≤ (u1, v1) ≤ . . . ≤ (un, vn) ≤ (u, v)

for all n. This guarantees the existence of the limit limn→∞(un, vn) = (u∗, v∗). Moreover

the limit is a solution of (3.2) satisfying (u, v) ≤ (u∗, v∗) ≤ (u, v). Let (u1, v1) and (u2, v2)

be two solutions of (3.2) in C1(Q)× C1(Q). Put U = u1 − u2 and V = v1 − v2. Then U

and V satisfy

(3.4)


∂U
∂t

+ a∂U
∂x

+ c(U − V ) = 0,

∂V
∂t

+ b(V − U)− λ exp(f1(x, t))V = 0,

U(0, t) = 0, U(x, 0) = 0, V (x, 0) = 0, t > 0, 0 < x ≤ l.

For (x, t) ∈ Q, the corresponding integral representation of (3.4) is given by

U(x, t) =

 c
∫ t

0
exp(c(τ − t))V (x+ aτ − at, τ)dτ ; 0 ≤ t < xa−1

c
∫ xa−1

0
exp(c(τ − xa−1))V (aτ, t− xa−1 + τ)dτ ; xa−1 ≤ t ≤ T.

(3.5)

V (x, t) = be−g(x,t)
∫ t

0

U(x, δ)eg(x,δ)dδ
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From (3.5), one can conclude that V satisfies the following integral equation.

(3.6) V (x, t) =



cbe−g(x,t)
∫ t

0

∫ δ
0

exp(c(τ − δ))V (x+ aτ − aδ, τ)eg(x,δ)dτdδ

0 ≤ t < xa−1

cbe−g(x,t)
∫ t

0

∫ xa−1

0
exp(c(τ − xa−1))V (aτ, δ − xa−1 + τ)eg(x,δ)dτdδ

xa−1 ≤ t ≤ T.

Note that V = 0 is a solution for the integral equation (3.6). Now one can show that the

above integral equation has a unique solution in C(Q) using contraction principle. Define

T : C(Q)→ C(Q) by

TV (x, t) =



cbe−g(x,t)
∫ t

0

∫ δ
0

exp(c(τ − δ))V (x+ aτ − aδ, τ)eg(x,δ)dτdδ

0 ≤ t < xa−1

cbe−g(x,t)
∫ t

0

∫ xa−1

0
exp(c(τ − xa−1))V (aτ, δ − xa−1 + τ)eg(x,δ)dτdδ

xa−1 ≤ t ≤ T.

One can show that ‖T n(V1− V2)‖ ≤ 2(KT 2)n

(2n)!
‖V1− V2‖. Hence for sufficiently large n ∈ N,

T n is a contraction. Hence Tx = x has a unique solution. Consequently, V ≡ 0 is the

only solution of (3.6). This also leads to U ≡ 0. Hence the uniqueness.

3.3. Convergence Analysis for the Continuous Case

In this section, the iterative scheme based on successive and quasilinearization dis-

cussed in [95] is altered. Note that the procedure discussed in [95] is based on quasilin-

earition. Consequently, one has to update the derivative at each step. In the proposed

scheme, the evaluation of the derivative at each step is avoided carefully by evaluating

the derivative only once at a suitable initial guess. The monotone property as well as the

convergence of the sequences produced by the proposed iterative new procedure is proved

in this section.
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Definition 3.3.1. A function (α, β) ∈ C1(Q)×C1(Q) is called an upper solution of (3.1)

if it satisfies

(3.7)


∂α
∂t

+ a∂α
∂x

+ cα ≥ cβ, t > 0, 0 < x ≤ l

∂β
∂t

+ bβ ≥ bα + λ exp(β), t > 0, 0 < x ≤ l

α(0, t) ≥ η, α(x, 0) ≥ u0(x), β(x, 0) ≥ v0(x), t > 0, 0 < x ≤ l.

Similarly (α, β) ∈ C1(Q) × C1(Q) is called a lower solution if it satisfies (3.7) with the

inequalities reversed.

Denote the set {(u, v) ∈ C(Q)×C(Q) : (α, β) ≤ (u, v) ≤ (α, β)} by S for a given pair

of lower and upper solutions. In the quasilinearization iterative procedure for the coupled

equation (3.1), at each step if the derivative is evaluated only at the initial guess (u0, v0),

then the iterative procedure becomes

(3.8)
∂un+1

∂t
+ a∂u

n+1

∂x
+ c (un+1 − cvn+1) = 0, t > 0, 0 < x ≤ l

∂vn+1

∂t
+ (b− λ exp(v0))vn+1 − bun+1 = λ exp(vn)− λ exp(v0)vn, t > 0, 0 < x ≤ l

un+1(0, t) = η, t ≥ 0; un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), 0 ≤ x ≤ l.

where n = 0, 1, 2, · · · . Using (α, β) and (α, β) respectively as the initial iterations (u0, v0),

two sequences can be constructed. The minimal sequence {(αn+1, βn+1)} is defined by

(3.9)
∂αn+1

∂t
+ a∂α

n+1

∂x
+ c (αn+1 − βn+1) = 0, t > 0, 0 < x ≤ l

∂βn+1

∂t
+ (b− λ exp(β))βn+1 − bαn+1 = λ exp(βn)− λ exp(β)βn, t > 0, 0 < x ≤ l

αn+1(0, t) = η, t ≥ 0; αn+1(x, 0) = u0(x), βn+1(x, 0) = v0(x), 0 ≤ x ≤ l.

with (u0, v0) = (α, β). Similarly denote the maximal sequence {(αn+1, β
n+1

)} is defined

by
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(3.10)
∂αn+1

∂t
+ a∂α

n+1

∂x
+ c(αn+1 − βn+1

) = 0, t > 0, 0 < x ≤ l

∂β
n+1

∂t
+ (b− λ exp(β))β

n+1 − bαn+1 = λ exp(β
n
)− λ exp(β)β

n
, t > 0, 0 < x ≤ l

αn+1(0, t) = η, t ≥ 0; αn+1(x, 0) = u0(x), β
n+1

(x, 0) = v0(x), 0 ≤ x ≤ l.

with (u0, v0) = (α, β). The comparison lemma, Lemma 3.2.1 proved in [21] is applicable

only for a single equation. Hence a new comparison lemma is proved to handle the coupled

equation.

Lemma 3.3.1. If (u, v) ∈ C1(Q)× C1(Q) is such that

(3.11)

 ∂u
∂t

+ a∂u
∂x

+ c(u− v) > 0,

∂v
∂t

+ b(v − u) + f(x, t)v ≥ 0,

where f(x, t) ∈ C(Q) with u(0, t) ≥ 0, 0 ≤ t ≤ T and u(x, 0) ≥ 0, v(x, 0) ≥ 0, 0 ≤ x ≤ l,

then (u, v) ≥ 0 on Q.

Proof. Assume on contrary that u has a negative minimum in Q. Then there exists some

(x0, t0) ∈ Q such that u(x0, t0) < 0. Then (3.11) gives c(u(x0, t0) − v(x0, t0)) > 0. i.e.,

u(x0, t0) > v(x0, t0). Thus one can find a neighborhood of (x0, t0), say Qδ(x0, t0) ⊂ Q

such that u(x, t) > v(x, t) for all (x, t) ∈ Qδ(x0, t0). Let (x, t) ∈ Qδ(x0, t0). Then from

(3.11),

0 <
∂v

∂t
+ f(x, t)v

0 < exp

(∫ t

t0

f(x, s)ds

)
∂v

∂t
+ exp

(∫ t

t0

f(x, s)ds

)
f(x, t)v

0 <
d

dt

(
exp

(∫ t

t0

f(x, s)ds

)
v

)
0 < exp

(∫ t

t0

f(x, s)ds

)
v(x, t)− v(x, t0)

0 < 0 for the choice of t = t0
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which is a contradiction. Hence u cannot be negative. Consequently for (x, t) ∈ Qδ(x0, t0),

(3.11) becomes

0 ≤ ∂v

∂t
+ (b+ f(x, t))v − bu ≤ ∂v

∂t
+ (b+ f(x, t))v

0 ≤ exp

(∫ t

0

(b+ f(x, s))ds

)
∂v

∂t
+ exp

(∫ t

0

(b+ f(x, s))ds

)
(b+ f(x, t))v

0 ≤ d

dt

(
exp

(∫ t

0

(b+ f(x, s))ds

)
v

)
0 ≤ exp

(∫ t

0

(b+ f(x, s))ds

)
v(x, t)− v(x, 0)

0 ≤ exp

(∫ t

0

(b+ f(x, s))ds

)
v(x, t)

0 ≤ v(x, t)

Thus v is also nonnegative. Hence (u, v) ≥ (0, 0) on Q.

The following theorem renders the monotone property of both the sequences from (3.9)

and (3.10) and their convergence to the unique solution of (3.1).

Theorem 3.3.1. Let (α, β) and (α, β) be a pair of ordered lower and upper solutions

of (3.1). Then the minimal sequence {(αn, βn)} and the maximal sequence {(αn, βn)}

converge monotonically to the unique solution (u∗, v∗) of (3.1) in S. Also, the relation

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (u∗, v∗)

≤ (αn+1, β
n+1

) ≤ (αn, β
n
) ≤ (α, β)(3.12)

holds for n = 1, 2, 3, · · · .

Proof. Since (α, β) is a lower solution of (3.1), from Definition 3.3.1,

∂β

∂t
+ bβ ≤ bα + λ exp(β)

∂β

∂t
+ (b− λ exp(β))β ≤ bα + λ exp(β)− λ exp(β)β.
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Hence (α, β) is a lower solution for (3.9) with n = 0. Similarly since (α, β) is an upper

solution for (3.1), using Definition 3.3.1,

∂β

∂t
+ bβ ≥ bα + λ exp(β)

= bα + λ exp(β)− λ exp(β) + λ exp(β)

≥ bα + λ exp(β)(β − β) + λ exp(β)

∂β

∂t
+ (b− λ exp(β))β − bα ≥ λ exp(β)− λ exp(β)β.

Thus (α, β) is an upper solution for (3.9) with n = 0 and by Theorem 3.2.1, (α1, β1) exists

and satisfies (α, β) ≤ (α1, β1) ≤ (α, β) on Q. Now to show that (α1, β1) and (α, β) are

ordered lower and upper solutions of (3.10) with n = 0 given by

(3.13)

∂α1

∂t
+ a∂α

1

∂x
+ c(α1 − β1

) = 0, t > 0, 0 < x ≤ l

∂β
1

∂t
+ (b− λ exp(β))β

1 − bα1 = λ exp(β)− λ exp(β)β, t > 0, 0 < x ≤ l

α1(0, t) = η, t ≥ 0; α1(x, 0) = u0(x), β
1
(x, 0) = v0(x), 0 ≤ x ≤ l.

Consider (3.9) with n = 0.

∂α1

∂t
+ a

∂α1

∂x
+ c
(
α1 − β1

)
= 0

∂β1

∂t
+ (b− λ exp(β))β1 − bα1 = λ exp(β)− λ exp(β)β

= λ exp(β)− λ exp(β)β − λ exp(β) + λ exp(β)

≤ λ exp(β)(β − β)− λ exp(β)β + λ exp(β)

∂α1

∂t
+ a

∂α1

∂x
+ c
(
α1 − β1

)
≤ λ exp(β)− λ exp(β)β.

Also from Definition 3.3.1, one can have

∂α

∂t
+ a

∂α

∂x
+ cα ≥ cβ

∂β

∂t
+ bβ ≥ bα + λ exp(β)

∂β

∂t
+ (b− λ exp(β))β ≥ bα + λ exp(β)− λ exp(β)β.
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Hence by Theorem 3.2.1, (α1, β
1
) exists and satisfies (α1, β1) ≤ (α1, β

1
) ≤ (α, β) on Q

and thus

(α, β) ≤ (α1, β1) ≤ (α1, β
1
) ≤ (α, β).

Assume that

(α, β) ≤ (αn−1, βn−1) ≤ (αn, βn) ≤ (αn, β
n
) ≤ (αn−1, β

n−1
) ≤ (α, β)

for some n > 1. Now one has to prove that (αn, βn) and (αn, β
n
) are ordered lower and

upper solutions of (3.9). From (3.9),

∂αn

∂t
+ a

∂αn

∂x
+ c (αn − βn) = 0

∂βn

∂t
+ (b− λ exp(β))βn − bαn = λ exp(βn−1)− λ exp(β)βn−1

= λ exp(βn−1)− λ exp(β)βn−1 − λ exp(βn) + λ exp(βn)

≤ λ exp(β)(βn−1 − βn)− λ exp(β)(βn−1) + λ exp(βn)

∂βn

∂t
+ (b− λ exp(β))βn − bαn ≤ λ exp(βn)− λ exp(β)βn.

Also from (3.10),

∂αn

∂t
+ a

∂αn

∂x
+ c
(
αn − βn

)
= 0

∂β
n

∂t
+ (b− λ exp(β))β

n − bαn = λ exp(β
n−1

)− λ exp(β)β
n−1

= λ exp(β
n−1

)− λ exp(β)β
n−1 − λ exp(βn) + λ exp(βn)

≥ λ exp(β)(β
n−1 − βn)− λ exp(β)(β

n−1
) + λ exp(βn)

∂β
n

∂t
+ (b− λ exp(β))β

n − bαn ≥ λ exp(βn)− λ exp(β)βn.

Hence by Theorem 3.2.1, (αn+1, βn+1) exists and satisfies (αn, βn) ≤ (αn+1, βn+1) ≤

(αn, β
n
) on Q. To obtain (3.12), it has to be proved that (αn+1, βn+1) and (αn, β

n
)
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are ordered lower and upper solutions of (3.10). From (3.9),

∂αn+1

∂t
+ a

∂αn+1

∂x
+ c
(
αn+1 − βn+1

)
= 0

∂βn+1

∂t
+ (b− λ exp(β))βn+1 − bαn+1 = λ exp(βn)− λ exp(β)βn

= λ exp(βn)− λ exp(β)βn − λ exp(β
n
) + λ exp(β

n
)

≤ λ exp(β)(βn − βn)− λ exp(β)(βn) + λ exp(β
n
)

∂βn+1

∂t
+ (b− λ exp(β))βn+1 − bαn+1 ≤ λ exp(β

n
)− λ exp(β)β

n
.

Also from (3.10),

∂αn

∂t
+ a

∂αn

∂x
+ c
(
αn − βn

)
= 0

∂β
n

∂t
+ (b− λ exp(β))β

n − bαn = λ exp(β
n−1

)− λ exp(β)β
n−1

= λ exp(β
n−1

)− λ exp(β)β
n−1 − λ exp(β

n
) + λ exp(β

n
)

≥ λ exp(β)(β
n−1 − βn)− λ exp(β)(β

n−1
) + λ exp(β

n
)

∂β
n

∂t
+ (b− λ exp(β))β

n − bαn ≥ λ exp(β
n
)− λ exp(β)β

n
.

Hence by Theorem 3.2.1, (αn+1, β
n+1

) exists and satisfies (αn+1, βn+1) ≤ (αn+1, β
n+1

) ≤

(αn, β
n
) on Q. Thus

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (αn+1, β
n+1

) ≤ (αn, β
n
) ≤ (α, β)

for all n and this guarantees the existence of the limits

lim
n→∞

(αn, βn) = (α∗, β∗); lim
n→∞

(αn, β
n
) = (α∗, β

∗
)

Moreover both the limits are solutions of (3.1). The uniqueness of the solution of (3.2)

can be obtained using similar argument in Theorem 3.2.1. Let (u1, v1) and (u2, v2) be two

solutions of (3.1) in C1(Q)× C1(Q). Put U = u1 − u2 and V = v1 − v2. Then U and V

satisfy

(3.14)


∂U
∂t

+ a∂U
∂x

+ c(U − V ) = 0,

∂V
∂t

+ b(V − U) = λ(exp(v1)− exp(v2)),

U(0, t) = 0, t ≥ 0; U(x, 0) = 0, V (x, 0) = 0, 0 ≤ x ≤ l.
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For (x, t) ∈ Q, the corresponding integral representation of (3.4) is given by

U(x, t) =

 c
∫ t

0
exp(c(τ − t))V (x+ aτ − at, τ)dτ ; 0 ≤ t < xa−1

c
∫ xa−1

0
exp(c(τ − xa−1))V (aτ, t− xa−1 + τ)dτ ; xa−1 ≤ t ≤ T.

(3.15)

V (x, t) = b

∫ t

0

eδ−tU(x, δ)dδ + λ

∫ t

0

eδ−t(exp(v1((x, δ))− exp(v2((x, δ)))dδ

From (3.15), one can conclude that V satisfies the following integral equation.

V (x, t) =



bc
∫ t

0
eδ−t

∫ δ
0

exp(c(τ − δ))V (x+ aτ − aδ, τ)dτdδ

+λ
∫ t

0
eδ−t(exp(v1((x, δ))− exp(v2((x, δ)))dδ, 0 ≤ t < xa−1

bc
∫ t

0
eδ−t

∫ xa−1

0
exp(c(τ − xa−1))V (aτ, δ − xa−1 + τ)dτdδ

+λ
∫ t

0
eδ−t(exp(v1((x, δ))− exp(v2((x, δ)))dδ, xa−1 ≤ t ≤ T.

Note that V ≡ 0 is a solution for the integral equation. Similar to that of the linear case

in Theorem 3.2.1, one can show that the above integral equation has a unique solution in

C(Q) using contraction principle.

Remark 3.3.1. Applying the classical quasilinearization technique to the coupled equation

(3.1), the following iterative procedure can be obtained.

(3.16)
∂un+1

∂t
+ a∂u

n+1

∂x
+ c (un+1 − vn+1) = 0, t > 0, 0 < x ≤ l

∂vn+1

∂t
+ (b− λ exp(vn))vn+1 − bun+1 = λ exp(vn)− λ exp(vn)vn, t > 0, 0 < x ≤ l

un+1(0, t) = η, t ≥ 0; un+1(x, 0) = u0(x), vn+1(x, 0) = v0(x), 0 ≤ x ≤ l.

where n = 0, 1, 2, · · · . Using (α, β) and (α, β) respectively as the initial iterations (u0, v0),

two sequences can be constructed. The minimal sequence is defined by

(3.17)
∂αn+1

∂t
+ a∂α

n+1

∂x
+ c (αn+1 − βn+1) = 0, t > 0, 0 < x ≤ l

∂βn+1

∂t
+ (b− λ exp(βn))βn+1 − bαn+1 = λ exp(βn)− λ exp(βn)βn, t > 0, 0 < x ≤ l

αn+1(0, t) = η, t ≥ 0; αn+1(x, 0) = u0(x), βn+1(x, 0) = v0(x), 0 ≤ x ≤ l.
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where (u0, v0) = (α, β) and the maximal sequence is defined by

(3.18)
∂αn+1

∂t
+ a∂α

n+1

∂x
+ c(αn+1 − βn+1

) = 0, t > 0, 0 < x ≤ l

∂β
n+1

∂t
+ (b− λ exp(βn))β

n+1 − bαn+1 = λ exp(β
n
)− λ exp(βn)β

n
, t > 0, 0 < x ≤ l

αn+1(0, t) = η, t ≥ 0; αn+1(x, 0) = u0(x), β
n+1

(x, 0) = v0(x), 0 ≤ x ≤ l.

where (u0, v0) = (α, β).

The following theorem ensures the monotone convergence of the iterative schemes

(3.17) and (3.18).

Theorem 3.3.2. Let (α, β) and (α, β) be a pair of ordered lower and upper solutions of

(3.1). Then the minimal sequence {(αn, βn)} and the maximal sequence {(αn, βn)} given

by (3.17) and (3.18) respectively converge monotonically to the unique solution (u∗, v∗) of

(3.1) in S. Also, the relation

(α, β) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (u∗, v∗)

≤ (αn+1, β
n+1

) ≤ (αn, β
n
) ≤ (α, β)

holds for n = 1, 2, 3, · · · .

Proof. The proof of this theorem is similar to that of Theorem 3.3.1.

3.4. Convergence Analysis for the Discretized Case

Employing the main theorem from Section 3, a finite difference scheme is acquired

to solve (3.1) numerically. The convergence, error estimate and the monotonicity of

the sequences are obtained just by utilizing the properties of the coefficient matrix in

the iterative scheme. The iterative scheme discussed in [95] improves the algorithm in

[82] by quasilinearizing the second equation in the coupled system (3.1). Similar to the

algorithm in [95], the proposed algorithm also accelerates the algorithm in [82]. The

major difference between the proposed scheme and [95] is that in [95], the evaluation of

derivative at each iteration is required whereas for the proposed scheme, the derivative
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needs to be evaluated only once. Let h = 4x = l
M
, k = 4t = T

N
be the step sizes in x

and t directions respectively. Λ and Λ̄ respectively denote the sets of mesh points (xi, tj)

in (0, l] × (0, T ] and [0, l] × [0, T ]. Define ui,j = u(xi, tj) and vi,j = v(xi, tj). Throghout

this section, assume that the time step k satisfies the same condition in [82] and [95], i.e.;

(3.19)
1

k
> max{b− c− a

h
, c− b+ λ exp(ξ∗)}

where ξ∗ = max{βi,j : (i, j) ∈ Λ̄}. The convergence analysis of the proposed finite dif-

ference iterative scheme is based on this assumption. Once again, the backward finite

difference approximation is used for discretizing (3.1). Consequently, the discretized ver-

sion of (3.1) can be represented by

(3.20)


 µ1 −ck

−bk µ2

 ui,j

vi,j

 =

 ui,j−1 + ak
h
ui−1,j

vi,j−1 + kλ exp(vi,j)


u0,j = ηj, ui,0 = ψi, vi,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

where µ1 = 1 + ak
h

+ ck, µ2 = 1 + bk.

Definition 3.4.1. A function (αi,j, βi,j) defined on Λ is called a lower solution of (3.20)

if it satisfies

(3.21)


 µ1 −ck

−bk µ2

 αi,j

βi,j

 ≤
 αi,j−1 + ak

h
αi−1,j

βi,j−1 + kλ exp(βi,j)


α0,j ≤ ηj, αi,0 ≤ ψi, βi,0 ≤ φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

Similarly (αi,j, βi,j) is called an upper solution if it satisfies (3.21) with inequalities re-

versed.

For a given pair of ordered lower and upper solutions (αi,j, βi,j) and (αi,j, βi,j) of

(3.20), set

Sd = {(ui,j, vi,j) ∈ R2 : (αi,j, βi,j) ≤ (ui,j, vi,j) ≤ (αi,j, βi,j)}.
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Applying modified quasilinearization technique to both the equations of (3.20) simulta-

neously yields

(3.22)


A

 un+1
i,j

vn+1
i,j

 =

 un+1
i,j−1 + ak

h
un+1
i−1,j

vn+1
i,j−1 + kλ exp(vni,j)− kλ exp(v0

i,j)v
n
i,j


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

for n = 0, 1, · · · where ηj = η(tj), ψi = ψ(xi), φi = φ(xi), η1 = (µ2 − kλ exp(v0
i,j)) and

A =

 µ1 −ck

−bk η1

 . Due to (3.19), the matrix A is an M-matrix and is inverse positive.

This assures the existence of (uni,j, v
n
i,j) for all i, j and n. Consequently (3.22) becomes un+1

i,j

vn+1
i,j

 = A−1

 un+1
i,j−1 + ak

h
un+1
i−1,j

vn+1
i,j−1 + kλ exp(vni,j)− kλ exp(v0

i,j)v
n
i,j


Using (αi,j, βi,j) and (αi,j, βi,j) respectively as the initial iterations (u0

i,j, v
0
i,j), two se-

quences can be constructed by using (3.22). Denote the minimal sequence by
{

(αni,j, β
n
i,j)
}

defined by

(3.23)


A

 αn+1
i,j

βn+1
i,j

 =

 αn+1
i,j−1 + ak

h
αn+1
i−1,j

βn+1
i,j−1 + kλ exp(βni,j)− kλ exp(βi,j)β

n
i,j


αn+1

0,j = ηj, α
n+1
i,0 = ψi, β

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

with (u0
i,j, v

0
i,j) = (αi,j, βi,j). Similarly denote the maximal sequence by

{
(αni,j, β

n

i,j)
}

defined by

(3.24)


A

 αn+1
i,j

β
n+1

i,j

 =

 αn+1
i,j−1 + ak

h
αn+1
i−1,j

β
n+1

i,j−1 + kλ exp(β
n

i,j)− kλ exp(βi,j)β
n

i,j,


αn+1

0,j = ηj, α
n+1
i,0 = ψi, β

n+1

i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

with (u0
i,j, v

0
i,j) = (αi,j, βi,j).

Theorem 3.4.1. Let (αi,j, βi,j) and (αi,j, βi,j) be a pair of ordered lower and upper so-

lutions of (3.20). Then the minimal sequence
{

(αni,j, β
n
i,j)
}

and the maximal sequence{
(αni,j, β

n

i,j)
}

converge monotonically to the unique solution (u∗i,j, v
∗
i,j) of (3.20) in Sd.
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Also, the relation

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (u∗i,j, v

∗
i,j)

≤ (αn+1
i,j , β

n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)(3.25)

holds for every (i, j) ∈ Λ̄ and n = 1, 2, 3, · · · .

Proof. The monotone property of the discretized sequences is obtained by using the inverse

positivity of A. The proof is by an induction on n. From (3.23) for n = 0

(3.26)

 µ1 −ck

−bk µ2

 α1
i,j

β1
i,j

 =


α1
i,j−1 + ak

h
α1
i−1,j{

β1
i,j−1 + kλ exp(βi,j)

+kλ exp(βi,j)
(
β1
i,j − βi,j

)}


Subtracting (3.21) from (3.26) one can get µ1 −ck

−bk µ2

 α1
i,j − αi,j
β1
i,j − βi,j

 ≥
 α1

i,j−1 − αi,j−1 + ak
h

(
α1
i−1,j − αi−1,j

)
β1
i,j−1 − βi,j−1 + kλ exp(βi,j)

(
β1
i,j − βi,j

)
 .

Consequently

(3.27) A

 α1
i,j − αi,j
β1
i,j − βi,j

 ≥
 α1

i,j−1 − αi,j−1 + ak
h

(
α1
i−1,j − αi−1,j

)
β1
i,j−1 − βi,j−1


Putting j = 1, (3.27) becomes

(3.28) A

 α1
i,1 − αi,1
β1
i,1 − βi,1

 ≥
 α1

i,0 − αi,0 + ak
h

(
α1
i−1,1 − αi−1,1

)
β1
i,0 − βi,0


Clearly α1

i,0 − αi,0 ≥ 0 and β1
i,0 − βi,0 ≥ 0 for all i. Hence,

(3.29) A

 α1
i,1 − αi,1
β1
i,1 − βi,1

 ≥
 ak

h

(
α1
i−1,1 − αi−1,1

)
0


For i = 1, from the boundary conditions one can obtain that α1

0,1 − α0,1 ≥ 0. The

inverse positivity of A together with (3.29) implies

 α1
1,1 − α1,1

β1
1,1 − β1,1

 ≥
 0

0

. Using

the relation between (α1
1,1, β

1
1,1) and (α1,1, β1,1) in (3.29) for i = 2, one can conclude that
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 α1
2,1 − α2,1

β1
2,1 − β2,1

 ≥
 0

0

. Repeating the above argument for i = 3, . . . ,M , one can

obtain

(3.30)

 α1
i,1 − αi,1
β1
i,1 − βi,1

 ≥
 0

0

 ∀i = 1, 2, . . . ,M.

Now for j = 2, (3.27) becomes

(3.31) A

 α1
i,2 − αi,2
β1
i,2 − βi,2

 ≥
 α1

i,1 − αi,1 + ak
h

(
α1
i−1,2 − αi−1,2

)
β1
i,1 − βi,1


Using (3.30) in (3.31) leads to

A

 α1
i,2 − αi,2
β1
i,2 − βi,2

 ≥
 ak

h

(
α1
i−1,2 − αi−1,2

)
0



Now using similar argument for i = 1, 2, . . . ,M , one can conclude that

 α1
i,2 − αi,2
β1
i,2 − βi,2

 ≥ 0

0

 for all i. Repeating the above process for j = 3, . . . , N , one can obtain

 α1
i,j − αi,j
β1
i,j − βi,j

 ≥ 0

0

 for every i and j. Similarly

 αi,j − α1
i,j

βi,j − β
1

i,j

 ≥
 0

0

 for every i and j. From

(3.24) for n = 0 gives

(3.32) A

 α1
i,j

β
1

i,j

 =

 α1
i,j−1 + ak

h
α1
i−1,j

β
1

i,j−1 + kλ exp(βi,j)− kλ exp(βi,j)βi,j


Subtracting (3.26) from (3.32) and by using mean value theorem

A

 α1
i,j − α1

i,j

β
1

i,j − β1
i,j

 =


α1
i,j−1 − α1

i,j−1 + ak
h

(
α1
i−1,j − α1

i−1,j

){
β

1

i,j−1 − β1
i,j−1 + kλ

(
exp(βi,j)− exp(βi,j)

)
−kλ exp(βi,j)

(
βi,j − βi,j

)}


A

 α1
i,j − α1

i,j

β
1

i,j − β1
i,j

 ≥

 α1
i,j−1 − α1

i,j−1 + ak
h

(
α1
i−1,j − α1

i−1,j

)
β

1

i,j−1 − β1
i,j−1

 .(3.33)
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For j = 1 in (3.33),

(3.34) A

 α1
i,1 − α1

i,1

β
1

i,1 − β1
i,1

 ≥
 α1

i,0 − α1
i,0 + ak

h

(
α1
i−1,1 − α1

i−1,1

)
β

1

i,0 − β1
i,0


Clearly α1

i,0 − α1
i,0 ≥ 0 and β

1

i,0 − β1
i,0 ≥ 0 for all i. Consequently,

(3.35) A

 α1
i,1 − α1

i,1

β
1

i,1 − β1
i,1

 ≥
 ak

h

(
α1
i−1,1 − α1

i−1,1

)
0


For i = 1, from the boundary conditions one can obtain α1

0,1 − α1
0,1 ≥ 0. The inverse

positivity of A together with (3.35) leads to

 α1
1,1 − α1

1,1

β
1

1,1 − β1
1,1

 ≥
 0

0

. Using the

relation between (α1
1,1, β

1

1,1)and (α1
1,1, β

1
1,1) in (3.35) for i = 2, one can conclude that α1

2,1 − α1
2,1

β
1

2,1 − β1
2,1

 ≥
 0

0

. By repeating the above argument for i = 3, . . . ,M , one can

obtain that

(3.36)

 α1
i,1 − α1

i,1

β
1

i,1 − β1
i,1

 ≥
 0

0

 ∀i = 1, 2, . . . ,M.

Now for j = 2, (3.33) becomes

(3.37) A

 α1
i,2 − α1

i,2

β
1

i,2 − β1
i,2

 ≥
 α1

i,1 − α1
i,1 + ak

h

(
α1
i−1,2 − α1

i−1,2

)
β

1

i,1 − β1
i,1


Using (3.36) in (3.37) leads to

A

 α1
i,2 − α1

i,2

β
1

i,2 − β1
i,2

 ≥
 ak

h

(
α1
i−1,2 − α1

i−1,2

)
0

 .

Using the inverse positivity of A and above recurrence relation for i = 1, 2, . . . ,M , one

can conclude that

 α1
i,2 − α1

i,2

β
1

i,2 − β1
i,2

 ≥
 0

0

 for all i. Repeating the above process for

j = 3, . . . , N , one can obtain

 α1
i,j − α1

i,j

β
1

i,j − β1
i,j

 ≥
 0

0

 for every i and j. Hence

(3.38) (αi,j, βi,j) ≤ (α1
i,j, β

1
i,j) ≤ (α1

i,j, β
1

i,j) ≤ (αi,j, βi,j).
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Assume that the result is true for some n > 1.

(3.39) (αn−1
i,j , βn−1

i,j ) ≤ (αni,j, β
n
i,j) ≤ (αni,j, β

n

i,j) ≤ (αn−1
i,j , β

n−1

i,j )

From (3.23), one can have

A

 αn+1
i,j − αni,j
βn+1
i,j − βni,j

 =


αn+1
i,j−1 − αni,j−1 + ak

h

(
αn+1
i−1,j − αni−1,j

){
βn+1
i,j−1 − βni,j−1 + kλ

(
exp(βni,j)− exp(βn−1

i,j )
)

−kλ exp(βi,j)
(
βni,j − βn−1

i,j

)}


A

 αn+1
i,j − αni,j
βn+1
i,j − βni,j

 ≥

 αn+1
i,j−1 − αni,j−1 + ak

h

(
αn+1
i−1,j − αni−1,j

)
βn+1
i,j−1 − βni,j−1

(3.40)

For j = 1, (3.40) becomes

A

 αn+1
i,1 − αni,1
βn+1
i,1 − βni,1

 ≥
 αn+1

i,0 − αni,0 + ak
h

(
αn+1
i−1,1 − αni−1,1

)
βn+1
i,0 − βni,0


Using the boundary conditions, the above inequality reduces to

(3.41) A

 αn+1
i,1 − αni,1
βn+1
i,1 − βni,1

 ≥
 ak

h

(
αn+1
i−1,1 − αni−1,1

)
0


From the boundary conditions and the inverse positivity of A, one can obtain that αn+1

1,1 − αn1,1
βn+1

1,1 − βn1,1

 ≥
 0

0

. Further using this in (3.41) for i = 2, one can conclude

that

 αn+1
2,1 − αn2,1
βn+1

2,1 − βn2,1

 ≥
 0

0

. Hence from (3.41),

(3.42)

 αn+1
i,1 − αni,1
βn+1
i,1 − βni,1

 ≥
 0

0

 ∀i = 1, 2, . . . ,M.

Now for j = 2, (3.40) becomes

(3.43) A

 αn+1
i,2 − αni,2
βn+1
i,2 − βni,2

 ≥
 α1

i,1 − αi,1 + ak
h

(
αn+1
i−1,2 − αni−1,2

)
βn+1
i,1 − βni,1


Using (3.42) in (3.43) leads to

A

 αn+1
i,2 − αni,2
βn+1
i,2 − βni,2

 ≥
 ak

h

(
αn+1
i−1,2 − αni−1,2

)
0
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Now using similar argument for i = 1, 2, . . . ,M , one can conclude that

 αn+1
i,2 − αni,2
βn+1
i,2 − βni,2

 ≥ 0

0

 for all i. Repeating the above process for j = 3, . . . , N , one can obtain

 αn+1
i,j − αni,j
βn+1
i,j − βni,j

 ≥ 0

0

 for every i, j and n. A similar argument gives

 αni,j − αn+1
i,j

β
n

i,j − β
n+1

i,j

 ≥
 0

0

 and αn+1
i,j − αn+1

i,j

β
n+1

i,j − βn+1
i,j

 ≥
 0

0

 for every i and j. Hence for all n ∈ N,

(αi,j, βi,j) ≤ (αni,j, β
n
i,j) ≤ (αn+1

i,j , βn+1
i,j ) ≤ (αn+1

i,j , β
n+1

i,j ) ≤ (αni,j, β
n

i,j) ≤ (αi,j, βi,j)

This guarantees the existence of the limits

(3.44) lim
m→∞

(αni,j, β
n
i,j) = (α∗i,j, β

∗
i,j); lim

m→∞
(αni,j, β

n

i,j) = (α∗i,j, β
∗
i,j)

and the limits are solutions of the discretized equation (3.20). To complete the proof one

has to show that (α∗i,j, β
∗
i,j) = (α∗i,j, β

∗
i,j). From (3.20) µ1 −ck

−bk µ2

 α∗i,j − α∗i,j
β
∗
i,j − β∗i,j

 =

 α∗i,j−1 − α∗i,j−1 + ak
h

(α∗i−1,j − α∗i−1,j)

β
∗
i,j−1 − β∗i,j−1 + kλ

(
exp(β

∗
i,j)− exp(β∗i,j)

) 
 µ1 −ck

−bk µ2

 α∗i,j − α∗i,j
β
∗
i,j − β∗i,j

 =

 α∗i,j−1 − α∗i,j−1 + ak
h

(α∗i−1,j − α∗i−1,j)

β
∗
i,j−1 − β∗i,j−1 + kλ exp(β̃i,j)(β

∗
i,j − β∗i,j)

(3.45)

where β∗i,j ≤ β̃i,j ≤ β
∗
i,j. Define Mi,j =

 µ1 −ck

−bk (µ2 − kλ exp(β̃i,j))

. Then (3.45) can

be written as

(3.46) Mi,j

 α∗i,j − α∗i,j
β
∗
i,j − β∗i,j

 =

 α∗i,j−1 − α∗i,j−1 + ak
h

(α∗i−1,j − α∗i−1,j)

β
∗
i,j−1 − β∗i,j−1


Clearly Mi,j is an invertible matrix for all i and j. For j = 1, (3.46) becomes

(3.47) Mi,1

 α∗i,1 − α∗i,1
β
∗
i,1 − β∗i,1

 =

 α∗i,0 − α∗i,0 + ak
h

(α∗i−1,1 − α∗i−1,1)

β
∗
i,0 − β∗i,0
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It is clear that α∗i,0 − α∗i,0 = 0 and β
∗
i,0 − β∗i,0 = 0 for all i. Consequently (3.47) becomes

(3.48) Mi,1

 α∗i,1 − α∗i,1
β
∗
i,1 − β∗i,1

 =

 ak
h

(α∗i−1,1 − α∗i−1,1)

0



For the choice of i = 1, (3.48) becomes

 α∗1,1 − α∗1,1
β
∗
1,1 − β∗1,1

 =

 0

0

. Hence using this rela-

tion in (3.48) for i = 2, one can conclude that

 α∗2,1 − α∗2,1
β
∗
2,1 − β∗2,1

 =

 0

0

. By repeating

the above argument fro i = 3, . . . ,M , one can obtain that

(3.49)

 α∗i,1 − α∗i,1
β
∗
i,1 − β∗i,1

 =

 0

0

 ∀i = 1, 2, . . . ,M.

Now for j = 2 in (3.46),

(3.50) Mi,2

 α∗i,2 − α∗i,2
β
∗
i,2 − β∗i,2

 =

 α∗i,1 − α∗i,1 + ak
h

(
α∗i−1,2 − α∗i−1,2

)
β
∗
i,1 − β∗i,1


Using (3.49) in (3.50) leads to

Mi,2

 α∗i,2 − α∗i,2
β
∗
i,2 − β∗i,2

 =

 ak
h

(
α∗i−1,2 − α∗i−1,2

)
0

 .

Using similar argument for i = 1, 2, . . . ,M , one can conclude that

 α∗i,2 − α∗i,2
β
∗
i,2 − β∗i,2

 = 0

0

 for all i. Repeating the above process for j = 3, . . . , N , one can obtain

 α∗i,j − α∗i,j
β
∗
i,j − β∗i,j

 = 0

0

 for every i and j. Hence (α∗i,j, β
∗
i,j) = (α∗i,j, β

∗
i,j) for all (i, j) ∈ Λ̄.

Define C = max
{

1+ak
h

+ck+bk

(1+ak
h

+ck)(1+bk−kλ exp(ξ∗))−bck2 ,
1+bk−kλ+ck

(1+ak
h

+ck)(1+bk−kλ exp(ξ∗))−bck2

}
. The follow-

ing theorem gives the error estimate for the iterative scheme given by (3.22). The proof

is similar to the proof of Theorem 4.2 in [95].
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Theorem 3.4.2. If (u∗i,j, v
∗
i,j) for all (i, j) ∈ Λ̄ is the solution of (3.20), then∥∥∥∥∥∥

 en+1
i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1 + kλ exp(ξ∗)

(
(eni,j)

2+(ei,j)
2)

2

) ∥∥∥∥∥∥
∞

where en+1
i,j = u∗i,j−αn+1

i,j ; en+1
i,j = v∗i,j−βn+1

i,j ; ei,j = v∗i,j−βi,j and ξ∗ = max{βi,j : (i, j) ∈ Λ̄}

Remark 3.4.1. Similar error estimate can be obtained in the case of minimal sequence

derived from (3.22) also.

Remark 3.4.2. Applying quasilinearization technique to both the equations of (3.20)

simultaneously leads to

(3.51)


An

 un+1
i,j

vn+1
i,j

 =

 un+1
i,j−1 + ak

h
un+1
i−1,j

vn+1
i,j−1 + kλ exp(vni,j)(1− vni,j)


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

for n = 0, 1, · · · where ηj = η(tj), ψi = ψ(xi), φi = φ(xi), µ1 = 1 + ak
h

+ ck, µ2 = 1 + bk,

ηn = (µ2 − kλ exp(vni,j)) and An =

 µ1 −ck

−bk ηn

. The condition (3.19) assures that

(3.51) is well defined. Using (αi,j, βi,j) and (αi,j, βi,j) as the initial iteration (u0
i,j, v

0
i,j),

minimal and maximal sequences respectively can be constructed by using (3.51). Under

the same hypotheses of Theorem 3.4.1 without any additional assumptions, the conclusions

of Theorem 3.4.1 hold true for the minimal and maximal sequences obtained from (3.51).

Also if (u∗i,j, v
∗
i,j) for all (i, j) ∈ Λ̄ is the solution of (3.20), then∥∥∥∥∥∥

 en+1
i,j

en+1
i,j

∥∥∥∥∥∥
∞

≤ C

∥∥∥∥∥∥
 en+1

i,j−1 + ak
h
en+1
i−1,j

en+1
i,j−1 + kλ exp(ξ∗)

(
eni,j
)2

∥∥∥∥∥∥
∞

where en+1
i,j = u∗i,j − αn+1

i,j ; en+1
i,j = v∗i,j − βn+1

i,j and ξ∗ = max{βi,j : (i, j) ∈ Λ̄}.

The following theorem guarantees the convergence of (u∗i,j, v
∗
i,j) to the continuous

solution (u∗(xi, tj), v
∗(xi, tj)) as the mesh size tends to zero. The proof is similar to the

proof of Theorem 5.1 in [82, 95].
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Theorem 3.4.3. Let (u∗(x, t), v∗(x, t)) and (u∗i,j, v
∗
i,j) be the respective solutions of (3.1)

and (3.20) respectively and let Λ̄ be a given partition of Q̄ = [0, l]× [0, T ]. Then

(u∗i,j, v
∗
i,j)→ (u∗(xi, tj), v

∗(xi, tj)) as h+ k → 0

at every mesh point (xi, tj) in Λ̄.

Let Scheme 1 denote the iterative procedure (3.22) and Scheme 2 denote the quasi-

linearization method discussed in (3.51).

Remark 3.4.3. The schemes discussed in [82, 95] and the proposed scheme can be ex-

pressed as follows.

Scheme in [82]:
 un+1

i,j

vn+1
i,j

 =

 µ1 0

0 µ2

−1 un+1
i,j−1 + ak

h
un+1
i−1,j + ckvni,j

vn+1
i,j−1 + bkuni,j + kλ exp(vni,j)


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

Scheme in [95]:
 un+1

i,j

vn+1
i,j

 =

 µ1 0

−bk Bn
i,j

−1 un+1
i,j−1 + ak

h
un+1
i−1,j + ckvni,j

vn+1
i,j−1 + kλ exp(vni,j)− kλ exp(vni,j)v

n
i,j


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

where Bn
i,j = (µ2 − kλ exp(vni,j)).

Proposed Scheme 1:
 un+1

i,j

vn+1
i,j

 =

 µ1 −ck

−bk η1

−1 un+1
i,j−1 + ak

h
un+1
i−1,j

vn+1
i,j−1 + kλ exp(vni,j)− kλ exp(v0

i,j)v
n
i,j


un+1

0,j = ηj, u
n+1
i,0 = ψi, v

n+1
i,0 = φi; i = 1, 2, . . . ,M, j = 1, 2, . . . , N.

where η1 = (µ2 − kλ exp(v0
i,j)). Note that to accelerate the iterative procedure in [82], the

scheme in [95] uses a new matrix at each step whereas the proposed scheme requires only

one constant matrix throughout to accelerate [82].
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3.5. Numerical Examples

In this section, the proposed schemes are applied to the same example illustrated in

[82] and [95] to do the comparitiive study. Theorem 3.4.1, Remark 3.4.2 and Theorem

3.4.3 guaranty the existence and uniqueness of the solution as well as the convergence of

the proposed iterative method for the following example. To stop the iterative procedure,

the following stopping criteria is used as in [82] and [95].

max
(i,j)

[
|un+1
i,j − uni,j|+ |vn+1

i,j − vni,j|
]
≤ ε = 2× 10−5.

Example 3.5.1.

Consider the following differential system discussed in [95, Example 6.1].

(3.52)



∂u
∂t

+ ∂u
∂x

+ u = v + q1(x, t), 0 < x ≤ 1, 0 < t ≤ T

∂v
∂t

+ v = u+ λ exp(v) + q2(x, t), 0 < x ≤ 1, 0 < t ≤ T

u(0, t) = 2− exp(−t), 0 < t ≤ T

u(x, 0) = 1− x2, v(x, 0) = 1− x2, 0 < x ≤ 1,

where λ > 0 is considered as a parameter with q1(x, t) = (1− x)2 exp(−t) and q2(x, t) =

(1 +x2) exp(−t)−λ exp(2− (1 +x2) exp(−t)). The solution of (3.52) is given by u(x, t) =

v(x, t) = 2 − (1 + x2) exp(−t). It can be verified that (0, 0) is a lower solution of (3.52)

which is taken as the initial guess. Here T = 1, λ = 0.05 and h = k = 10−3.

Remark 3.5.1. From Table 1 and 2 one can conclude that similar to the scheme in [95],

the proposed schemes Scheme 1 and Scheme 2 also accelerate the scheme discussed in

[82]. Hence the proposed schemes are efficient alternatives to [95].

3.6. Conclusion

In this study, an alternative iterative procedure for solving a coupled system of PDE

in interphase heat transfer is proposed. Though the proposed iterative procedure (3.22)

uses only a fixed constant matrix at every iterative steps, it produces similar results as

that in [95] where the matrix is updated to a new one at each iterative step.
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Table 3.1. Numerical solution of u(x, t) for Example 3.5.1.

Grid Point Exact Scheme in

[82]

Scheme in [95] Scheme 1 Scheme 2

(xi, tj) m = 10 m = 6 m = 5 m = 4

(0.4,0.2) 1.050272326 1.050008303 1.050008298 1.050008298 1.050008298

(0.8,0.2) 0.657281565 0.656981110 0.656981108 0.656981108 0.656981108

(0.4,0.4) 1.222428747 1.221989786 1.221989780 1.221989780 1.221989780

(0.8,0.4) 0.900675125 0.900170790 0.900170784 0.900170784 0.900170784

(0.4,0.6) 1.363378502 1.362970024 1.362970010 1.362970010 1.362970010

(0.8,0.6) 1.099948917 1.099303519 1.099303500 1.099303500 1.099303500

(0.4,0.8) 1.478778402 1.478408732 1.478408701 1.478408699 1.478408702

(0.8,0.8) 1.263100499 1.262364658 1.262364626 1.262364627 1.262364627

(0.4,1) 1.573259848 1.572925710 1.572925661 1.572925654 1.572925667

(0.8,1) 1.396677716 1.395978881 1.395978804 1.395978817 1.395978820

Table 3.2. Numerical solution of v(x, t) for Example 3.5.1.

Grid Point Exact Scheme in

[82]

Scheme in [95] Scheme 1 Scheme 2

(xi, tj) m = 10 m = 6 m = 5 m = 4

(0.4,0.2) 1.050272326 1.050149607 1.050149601 1.050149601 1.050149601

(0.8,0.2) 0.657281565 0.657115969 0.657115962 0.657115962 0.657115962

(0.4,0.4) 1.222428747 1.222179075 1.222179049 1.222179049 1.222179049

(0.8,0.4) 0.900675125 0.900349866 0.900349838 0.900349838 0.900349838

(0.4,0.6) 1.363378502 1.363022778 1.363022712 1.363022709 1.363022712

(0.8,0.6) 1.099948917 1.099477231 1.099477158 1.099477158 1.099477158

(0.4,0.8) 1.478778402 1.478349819 1.478349717 1.478349700 1.478349717

(0.8,0.8) 1.263100499 1.262497886 1.262497772 1.262497771 1.262497772

(0.4,1) 1.573259848 1.572783575 1.572783541 1.572783462 1.572783542

(0.8,1) 1.396677716 1.395970568 1.395970586 1.395970578 1.395970587
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CHAPTER 4

FOURTH ORDER ELLIPTIC EQUATION WITH

NONLOCAL BOUNDARY CONDITIONS

This chapter1 provides an accelerated iterative procedure for a nonlinear fourth order

elliptic equation with nonlocal boundary conditions.

4.1. Introduction

Nonlinear elliptic equations of fourth order have been receiving significant attention

in recent literature. The bending of an elastic beam with simply-supported ends can

be mathematically formulated using such equations especially in the area of two point

boundary value problems [7, 104]. The existence and uniqueness theorem for fourth order

elliptic equations with Dirichlet boundary conditions [2, 23, 32, 55, 56, 75, 101], mixed

boundary conditions [7, 33, 59, 100] and multi point boundary conditions [104] are

obtained using various classical fixed point theorems and monotone iterative techniques.

Though there are few discussions done for fourth order elliptic equations with nonlocal

two point boundary conditions [58], hardly any work can be found in the literature with

nonlocal boundary conditions in higher dimensional spatial domains except for [81]. In

[81], using monotone iterations, the existence and uniqueness of the solution for a class

of fourth order nonlocal elliptic boundary value problem of the form

(4.1)

42u− b04u+ c0u = f(x, u), x ∈ Ω

u(x) =
∫

Ω
γ(x, ξ)u(ξ)dξ + g(1)(x), x ∈ ∂Ω

(4u)(x) =
∫

Ω
γ(x, ξ)(4u)(ξ)dξ − g(0)(x), x ∈ ∂Ω

is proved where Ω is a bounded domain in Rn (n = 1, 2, . . .) with boundary ∂Ω, b0 ≥ 0

and c0 are constants and f(x, u), γ(x
′
, x) and g(l)(x

′
) (l = 0, 1) are continuous functions in

their respective domains. Based on [81], an interesting finite difference iterative scheme

1This chapter forms the paper by L.A. Sunny and V. A. Vijesh in Journal of Scientific Computing,

76(2018), 275-298.



is developed in [83] recently, to obtain the numerical solution of (4.1). Similar to the

iterative scheme in [81], [83] also ensures the monotone property of the finite difference

iterative scheme. The numerical solutions for fourth order elliptic equations with Dirich-

let and mixed boundary conditions are obtained using finite difference based monotone

iterative methods in [80, 79, 77, 100].

The major aim of this chapter is to accelerate the iterative scheme in [83] ensuring

the monotone property without any additional assumptions. In [83], the solution of the

fourth order elliptic equation with nonlocal boundary conditions is approximated using a

coupled second order elliptic equation with Dirichlet boundary conditions. Interestingly,

in this proposed work, a better approximation is done using two second order elliptic

equations with nonlocal boundary conditions. The proposed iterative scheme is found to

be much more efficient than the scheme in [83] as it exhibits an immense reduction in the

number of iterations required.

This chapter is organised as follows. Some basic notations, assumptions and formu-

lations are provided in Section 4.2. Section 4.3 supplies the monotone property as well

as the convergence analysis of the proposed scheme for the continuous case. Based on

this, the convergence analysis and the monotonicity of the proposed numerical scheme is

rendered in Section 4.4. In Section 4.5, three computational algorithms namely Picard,

Gauss-Seidel and Jacobi are presented along with their monotone properties and com-

parison relations. The convergence of the finite difference solution to the corresponding

continuous solution as mesh size tends to zero is guaranteed in Section 4.6. Section 4.7

provides the algorithms used in the numerical implementations of the schemes in com-

parison for Picard’s iterations. The numerical implementation is done in Section 4.8 to

illustrate the efficacy of the proposed numerical scheme. A comparative numerical study

with the recent literature is also done in this section.

4.2. Preliminaries

This section presents basic definitions, notations and preliminary results that are

required in the following sections. The lower and upper solutions for the fourth order

partial differential equation (4.1) are defined as follows.
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Definition 4.2.1. A function α̃ ∈ C4(Ω) ∩ C2(Ω) is called an upper solution of (4.1) if

(4.2)

42α̃− b04α̃ + c0α̃ ≥ f(x, α̃), x ∈ Ω

α̃(x) ≥
∫

Ω
γ(x, ξ)α̃(ξ)dξ + g(1)(x), x ∈ ∂Ω

(4α̃)(x) ≤
∫

Ω
γ(x, ξ)(4α̃)(ξ)dξ − g(0)(x), x ∈ ∂Ω.

Similarly α̂ is called a lower solution if it satisfies (4.2) with the inequalities reversed.

If the lower and upper solutions α̂ and α̃ satisfy α̂ ≤ α̃ and 4α̂ ≥ 4α̃, then they are

said to be ordered. For a given pair of ordered lower and upper solutions α̂, α̃, let

< α̂, α̃ >= {u ∈ C(Ω); α̂ ≤ u ≤ α̃}

Throughout this chapter, the following hypotheses in [81] hold true:

(H1) γ(x, ξ) is non-negative in ∂Ω× Ω, piecewise continuous in ξ for x ∈ ∂Ω and are in

C2+α in x for ξ ∈ Ω.

(H2) f(x, u) is Hölder continuous in x and is continuously differentiable in u for α̂ ≤

u ≤ α̃.

(H3)
∫

Ω
γ(x, ξ)dξ < 1, x ∈ ∂Ω and ∂f

∂u
(x, u) ≤ c0 for α̂ ≤ u ≤ α̃, x ∈ Ω.

(H4) Let c be any non-negative constant satisfying

c ≥ max

{
−∂f
∂u

(x, u) : α̂ ≤ u ≤ α̃, x ∈ Ω

}
,

c∗ = c0 + c ≥ 0 and b2
0 ≥ 4c∗.

Define F (x, u) = cu+ f(x, u). It is clear that F (x, u) is monotone non-decreasing in u for

all u ∈< α̂, α̃ >. Define

µ =
b0 −

√
b2

0 − 4c∗

2
, µ+ =

b0 +
√
b2

0 − 4c∗

2
.

Thus (4.1) can be rewritten as

(4.3)

−4u+ µu = v, −4v + µ+v = F (x, u), x ∈ Ω

u(x) =
∫

Ω
γ(x, ξ)u(ξ)dξ + g(1)(x), x ∈ ∂Ω

v(x) =
∫

Ω
γ(x, ξ)v(ξ)dξ + g(2)(x), x ∈ ∂Ω,
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where g(2) = g(0) +µg(1) [81]. Hence the fourth order partial differential equation becomes

a coupled second order problem. The existence and uniqueness of the solution of (4.3)

is obtained using monotone iterations for which lower and upper solutions of (4.3) are

defined as follows.

Definition 4.2.2. A function (α̂, β̂) is called a lower solution of (4.3) if it satisfies

(4.4)
−4α̂ + µα̂ ≤ β̂, x ∈ Ω; α̂(x) ≤

∫
Ω
γ(x, ξ)α̂(ξ)dξ + g(1)(x), x ∈ ∂Ω

−4β̂ + µ+β̂ ≤ F (x, α̂), x ∈ Ω; β̂(x) ≤
∫

Ω
γ(x, ξ)β̂(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Similarly (α̃, β̃) is called an upper solution of (4.3) if it satisfies (4.4) with inequalities

reversed.

The lower and upper solutions (α̂, β̂) and (α̃, β̃) are said to be ordered if α̂ ≤ α̃ and

β̂ ≤ β̃.

Remark 4.2.1. It can be easily verified that if α̂ and α̃ are ordered lower and upper

solutions of (4.1), then the pair (α̂,−4α̂ + µα̂) and (α̃,−4α̃ + µα̃) are ordered lower

and upper solutions of (4.3).

For ordered lower and upper solutions (α̂, β̂) and (α̃, β̃), define the set S = {(u, v) ∈

C(Ω); (α̂, β̂) ≤ (u, v) ≤ (α̃, β̃)}.

4.3. Convergence Analysis for the Continuous Case

In the setting of function space, convergence and monotone property of the proposed

iterative scheme is proved in this section. In the proposed iterative scheme, at each

step (4.3) is approximated using two second order linear elliptic equations with nonlo-

cal boundary conditions. In this regard, the existence and uniqueness of the following

equation play a vital role in the proof of the main theorem in this section.

(4.5)
−4w + aw = h(x), x ∈ Ω

w(x) =
∫

Ω
γ(x, ξ)w(ξ)dξ + g(x), x ∈ ∂Ω,
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where h(x) is Hölder continuous in x and a is any non-negative constant. To obtain

the existence and uniqueness of (4.5), successive approximation coupled with monotone

iterations is employed. The lower and upper solutions for (4.5) are defined as follows.

Definition 4.3.1. A function w0 is called a lower solution of (4.5) if w0 ∈ C2(Ω)∩C(Ω)

it satisfies

(4.6)
−4w0 + aw0 ≤ h(x), x ∈ Ω

w0(x) ≤
∫

Ω
γ(x, ξ)w0(ξ)dξ + g(x), x ∈ ∂Ω.

Similarly w0 is called an upper solution of (4.5) if satisfies (4.6) with inequalities reversed.

Lemma 4.3.1. Let w0 and w0 be an ordered lower and upper solutions of (4.5). Then

(4.5) has a unique solution w∗ such that w0 ≤ w∗ ≤ w0.

Proof. The solution of (4.5) is obtained as the limit of the following successive iterative

scheme.

(4.7)
−4wn+1 + awn+1 = h(x), x ∈ Ω

wn+1(x) =
∫

Ω
γ(x, ξ)wn(ξ)dξ + g(x), x ∈ ∂Ω.

Choosing the initial iteration w0 as w0 and w0 respectively, two sequences {wn+1} and

{wn+1} can be constructed. Clearly, the iterative scheme (4.7) is well defined [72]. The

proof is done through an induction argument. Let z = w1 − w0.

−4z + az = (−4w1 + aw1)− (−4w0 + aw0) ≥ h(x)− h(x) = 0

z(x) = w1(x)− w0(x) =

∫
Ω

γ(x, ξ)w0(ξ)dξ + g(x)− w0 ≥ 0, x ∈ ∂Ω.

The maximum principle for second order elliptic equations implies that z ≥ 0 and thus

w0 ≤ w1 in Ω. Similarly w1 ≤ w0 in Ω. Now let z = w1 − w1. Clearly for all x ∈ Ω,

−4w + aw = 0. Moreover,

z(x) = w1(x)− w1(x)

=

∫
Ω

γ(x, ξ)w0(ξ)dξ −
∫

Ω

γ(x, ξ)w0(ξ)dξ ≥ 0, x ∈ ∂Ω.

Hence w0 ≤ w1 ≤ w1 ≤ w0 in Ω. Assume that w0 ≤ wn−1 ≤ wn ≤ wn ≤ wn−1 ≤ w0 for

some n > 1. Let z = wn+1−wn. Note that for all x ∈ Ω, one have −4z+ az = 0 and for
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all x ∈ ∂Ω,

z(x) = wn+1(x)− wn(x)

=

∫
Ω

γ(x, ξ)wn(ξ)dξ −
∫

Ω

γ(x, ξ)wn−1(ξ)dξ ≥ 0.

Thus wn ≤ wn+1 in Ω. Similarly wn+1 ≤ wn in Ω. Let z = wn+1 − wn+1. Consequently,

−4z + az = 0 for all x ∈ Ω. Also,

z(x) = wn+1(x)− wn+1(x)

=

∫
Ω

γ(x, ξ)wn(ξ)dξ −
∫

Ω

γ(x, ξ)wn(ξ)dξ ≥ 0, x ∈ ∂Ω.

Hence wn ≤ wn+1 ≤ wn+1 ≤ wn for all n in Ω. This guarantees the existence of the limit

lim
n→∞

wn = w and lim
n→∞

wn = w. Moreover, the limits are the solutions of (4.5) satisfying

w ≤ w∗ ≤ w. Put W = w − w. Then W ≤ 0 satisfies

(4.8)
−4W + aW = 0, x ∈ Ω

W (x) =
∫

Ω
γ(x, ξ)W (ξ)dξ, x ∈ ∂Ω

To show that W ≥ 0, assume by contradiction that it is not true. Then there exists some

x0 ∈ Ω such that W (x0) is negative and it is the minimum of W (x) on Ω. Then

W (x0) =

∫
Ω

γ(x0, ξ)W (ξ)dξ ≥ W (x0)

∫
Ω

γ(x0, ξ)dξ

which is possible only if
∫

Ω
γ(x0, ξ)dξ ≥ 1, a contradiction to (H3). Hence W = 0 and

the uniqueness.

To accelerate the iterative procedure in [81], the following iterative scheme is proposed

to solve the coupled equation (4.3). With initial (u0, v0) and n ∈ N,

(4.9)

−4un+1 + µun+1 = vn, x ∈ Ω

un+1(x) =
∫

Ω
γ(x, ξ)un+1(ξ)dξ + g(1)(x), x ∈ ∂Ω

−4vn+1 + µ+vn+1 = F (x, un+1), x ∈ Ω

vn+1(x) =
∫

Ω
γ(x, ξ)vn+1(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Using (α̂, β̂) and (α̃, β̃) respectively as the initial iterations, two sequences namely minimal

and maximal sequences can be generated from the proposed iterative procedure. The
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minimal sequence {(αn, βn)}, n ∈ N is given by

(4.10a)
−4αn+1 + µαn+1 = βn, x ∈ Ω

αn+1(x) =
∫

Ω
γ(x, ξ)αn+1(ξ)dξ + g(1)(x), x ∈ ∂Ω.

(4.10b)
−4βn+1 + µ+βn+1 = F (x, αn+1), x ∈ Ω

βn+1(x) =
∫

Ω
γ(x, ξ)βn+1(ξ)dξ + g(2)(x), x ∈ ∂Ω.

and the maximal sequence {(αn, βn)}, n ∈ N is given by

(4.11a)
−4αn+1 + µαn+1 = β

n
, x ∈ Ω

αn+1(x) =
∫

Ω
γ(x, ξ)αn+1(ξ)dξ + g(1)(x), x ∈ ∂Ω

(4.11b)
−4βn+1

+ µ+β
n+1

= F (x, αn+1), x ∈ Ω

β
n+1

(x) =
∫

Ω
γ(x, ξ)β

n+1
(ξ)dξ + g(2)(x), x ∈ ∂Ω.

The following theorem provides the monotone and well defined properties of the minimal

and maximal sequences of (4.10) and (4.11) and their convergence to the unique solution

of (4.3).

Theorem 4.3.1. Let (α̂, β̂) and (α̃, β̃) be a pair of ordered lower and upper solutions

of (4.3). Then the minimal sequence {(αn, βn)} and the maximal sequence {(αn, βn)}

are well defined and converge monotonically to the unique solution (u∗, v∗) of (4.3) in S.

Moreover, the following relation holds for n ∈ N.

(4.12) (α̂, β̂) ≤ (αn, βn) ≤ (αn+1, βn+1) ≤ (u∗, v∗) ≤ (αn+1, β
n+1

) ≤ (αn, β
n
) ≤ (α̃, β̃).

Proof. The proof is done by an induction on n. First the following inequality is proved by

using Lemma 4.3.1. To prove (α̂, β̂) ≤ (α1, β1) ≤ (α̃, β̃), it is enough to show that (α̂, β̂)

and (α̃, β̃) are lower and upper solutions respectively of (4.10) for n = 0. From Definition

4.2.2, one can have

−4α̂ + µα̂ ≤ β̂, x ∈ Ω

α̂(x) ≤
∫

Ω
γ(x, ξ)α̂(ξ)dξ + g(1)(x), x ∈ ∂Ω
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and

−4α̃ + µα̃ ≥ β̃ ≥ β̂, x ∈ Ω

α̃(x) ≥
∫

Ω
γ(x, ξ)α̃(ξ)dξ + g(1)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.10a) with n = 0 has a unique solution α1 between α̂ and α̃.

Thus α̂ ≤ α1 ≤ α1. Similarly from Definition 4.2.2,

−4β̂ + µ+β̂ ≤ F (x, α̂) ≤ F (x, α1), x ∈ Ω

β̂(x) ≤
∫

Ω
γ(x, ξ)β̂(ξ)dξ + g(2)(x), x ∈ ∂Ω

and

−4β̃ + µ+β̃ ≥ F (x, α̃) ≥ F (x, α1), x ∈ Ω

β̃(x) ≥
∫

Ω
γ(x, ξ)β̃(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.10b) with n = 0 has a unique solution β1 between β̂ and β̃.

Hence (α̂, β̂) ≤ (α1, β1) ≤ (α1, β
1
). To prove (α1, β1) ≤ (α1, β

1
) ≤ (α̃, β̃), it is enough

to show that (α1, β1) and (α̃, β̃) are lower and upper solutions respectively of (4.11) with

n = 0. From (4.10a) for n = 0,

−4α1 + µα1 = β̂ ≤ β̃, x ∈ Ω

α1(x) =
∫

Ω
γ(x, ξ)α1(ξ)dξ + g(1)(x), x ∈ ∂Ω.

From Definition 4.2.2

−4α̃ + µα̃ ≥ β̃, x ∈ Ω

α̃(x) ≥
∫

Ω
γ(x, ξ)α̃(ξ)dξ + g(1)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.11a) with n = 0 has a unique solution α1 between α1 and α̃.

Thus α1 ≤ α1 ≤ α̃. Similarly from (4.10b) for n = 0,

−4β1 + µ+β1 = F (x, α1) ≤ F (x, α1), x ∈ Ω

β1(x) =
∫

Ω
γ(x, ξ)β1(ξ)dξ + g(2)(x), x ∈ ∂Ω.

From Definition 4.2.2,

−4β̃ + µ+β̃ ≥ F (x, α̃) ≥ F (x, α1), x ∈ Ω

β̃(x) ≥
∫

Ω
γ(x, ξ)β̃(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.11b) with n = 0 has a unique solution β
1

between β1 and β̃.

Thus (α1, β1) ≤ (α1, β
1
) ≤ (α̃, β̃). Hence (α̂, β̂) ≤ (α1, β1) ≤ (α1, β

1
) ≤ (α̃, β̃). Assume
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that

(α̂, β̂) ≤ (αn−1, βn−1) ≤ (αn, βn) ≤ (αn, β
n
) ≤ (αn−1, β

n−1
) ≤ (α̃, β̃)

for some n > 1. To complete the proof for the monotone property, one has to show that

(αn, βn) ≤ (αn+1, βn+1) ≤ (αn+1, β
n+1

) ≤ (αn, β
n
). To do this, the following inequality is

proved first; (αn, βn) ≤ (αn+1, βn+1) ≤ (αn, β
n
). It is enough to show that (αn, βn) and

(αn, β
n
) are lower and upper solutions respectively of (4.10). From (4.10a),

−4αn + µαn = βn−1 ≤ βn, x ∈ Ω

αn(x) =
∫

Ω
γ(x, ξ)αn(ξ)dξ + g(1)(x), x ∈ ∂Ω

and from (4.11a),

−4αn + µαn = β
n−1 ≥ βn, x ∈ Ω

αn(x) =
∫

Ω
γ(x, ξ)αn(ξ)dξ + g(1)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.10a) has a unique solution αn+1 between αn and αn. Thus

αn ≤ αn+1 ≤ αn. Similarly from (4.10b),

−4βn + µ+βn = F (x, αn) ≤ F (x, αn+1), x ∈ Ω

βn(x) =
∫

Ω
γ(x, ξ)βn(ξ)dξ + g(2)(x), x ∈ ∂Ω

and from (4.11b),

−4βn + µ+β
n

= F (x, αn) ≥ F (x, αn+1), x ∈ Ω

β
n
(x) =

∫
Ω
γ(x, ξ)β

n
(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.10b) has a unique solution βn+1 between βn and β
n
. Hence

(αn, βn) ≤ (αn+1, βn+1) ≤ (αn, β
n
). To prove (αn+1, βn+1) ≤ (αn+1, β

n+1
) ≤ (αn, β

n
) it is

enough to show that (αn+1, βn+1) and (αn, β
n
) are lower and upper solutions respectively

of (4.11). From (4.10a),

−4αn+1 + µαn+1 = βn ≤ β
n
, x ∈ Ω

αn+1(x) =
∫

Ω
γ(x, ξ)αn+1(ξ)dξ + g(1)(x), x ∈ ∂Ω

and from (4.11a),

−4αn + µαn = β
n−1 ≥ β

n
, x ∈ Ω

αn(x) =
∫

Ω
γ(x, ξ)αn(ξ)dξ + g(1)(x), x ∈ ∂Ω.
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Thus by Lemma 4.3.1, (4.11a) has a unique solution αn+1 between αn+1 and αn. Thus

αn+1 ≤ αn+1 ≤ αn. Similarly from (4.10b),

−4βn+1 + µ+βn+1 = F (x, αn+1) ≤ F (x, αn+1), x ∈ Ω

βn+1(x) =
∫

Ω
γ(x, ξ)βn+1(ξ)dξ + g(2)(x), x ∈ ∂Ω

and from (4.11b),

−4βn + µ+β
n

= F (x, αn) ≥ F (x, αn+1), x ∈ Ω

β
n
(x) =

∫
Ω
γ(x, ξ)β

n
(ξ)dξ + g(2)(x), x ∈ ∂Ω.

Thus by Lemma 4.3.1, (4.11b) has a unique solution β
n+1

between βn+1 and β
n
. Hence

(αn+1, βn+1) ≤ (αn+1, β
n+1

) ≤ (αn, β
n
). Thus (αn, βn) ≤ (αn+1, βn+1) ≤ (αn+1, β

n+1
) ≤

(αn, β
n
). Hence (4.12) holds true for n ∈ N. This guarantees the existence of the limits

lim
n→∞

(αn, βn) = (α, β) and lim
n→∞

(αn, β
n
) = (α, β) where (α, β) ≤ (α, β) and they are the

solutions of (4.3). The proof for the uniqueness is similar to the proof of Theorem 3.1 in

[81] and hence omitted.

Remark 4.3.1. Under the given conditions, Theorem 4.3.1 also holds good for (4.1) with

the boundary conditions replaced with

u(x) =
∫

Ω
γ(x, ξ)u(ξ)dξ + g(1)(x), x ∈ ∂Ω

4u(x) = −g(0)(x), x ∈ ∂Ω.

4.4. Convergence Analysis for the Discretized Case

Keeping the same finite difference approximation as in [83], an accelerated iterative

procedure is proposed in this section to solve the problem numerically. The convergence

to the unique solution and the monotone property of the proposed iterative scheme are

also shown in this section. Let hν be the spatial increment in the xν direction. Let

i = (i1, i2, . . . , in) be a multiple index with iν = 1, 2, . . . ,Mν for ν = 1, 2, . . . , n and let

xi = (xi1 , xi2 , . . . , xin) be an interior point in Ω, x
′
j = (x

′
j1
, x
′
j2
, . . . , x

′
jn) a boundary point

on ∂Ω and xk = (xk1 , xk2 , . . . , xkn) denotes any point in Ω. The set of mesh points in

Ω, Ω and ∂Ω are denoted by Ωh, Ωh and ∂Ωh respectively. Write i ∈ Ωh, j ∈ ∂Ωh and

k ∈ Ωh respectively for xi ∈ Ωh, x
′
j ∈ ∂Ωh and xk ∈ Ωh, when there is no confusion. The
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boundary conditions are approximated by

J [xj, u] =

M1∑
i1=1

M2∑
i2=1

· · ·
Mn∑
in=1

wi1wi2 · · ·winγ(xj, ξi1 , ξi2 , · · · , ξin)u(ξi1 , ξi2 , · · · , ξin),

where ξi = (ξi1 , ξi2 , · · · , ξin) denotes an arbitrary mesh point in Ωh and {wi1 , wi2 , · · · , win}

is any set of quadrature weights such that 0 < wiν ≤ 1. Let uk represents the approxima-

tion of u(xk) for any mesh point xk. Then by the central difference approximation

4hui =
n∑
ν=1

4(ν)
h ui =

n∑
ν=1

h−2
ν [ui+eν − 2ui + ui−eν ],

where eν is the unit vector in Rn with νth component one and zero elsewhere. Discretizing

(4.1) using central difference approximation leads to

(4.13)

4h(4hui)− b04hui + c0ui = f(xi, ui), i ∈ Ωh

uj = J [x
′
j, u] + g

(1)
j , j ∈ ∂Ωh

4huj = J [x
′
j,4hu]− g(0)

j , j ∈ ∂Ωh.

The lower and upper solutions for the discretized fourth order elliptic partial differential

equation (4.13) are defined as follows.

Definition 4.4.1. A function α̃k is called an upper solution of (4.13) if

(4.14)

4h(4hα̃i)− b04hα̃i + c0α̃i ≥ f(xi, α̃i), i ∈ Ωh

α̃j ≥ J [x
′
j, α̃i] + g

(1)
j , j ∈ ∂Ωh

4hα̃j ≤ J [x
′
j,4hα̃i]− g(0)

j , j ∈ ∂Ωh.

Similarly α̂k is called a lower solution if it satisfies (4.14) with the inequalities reversed.

The lower and upper solutions α̂k and α̃k are said to be ordered if α̂k ≤ α̃k and

4α̂k ≥ 4α̃k. For a given pair of ordered lower and upper solutions α̂k, α̃k, let

< α̂k, α̃k >= {uk ∈ C(Ωh); α̂k ≤ uk ≤ α̃k}.

For the rest of the discussion, the following hypotheses in [83] hold true:

(H5) J [x
′
j, 1] < 1 for j ∈ ∂Ωh and ∂f

∂u
(xk, uk) ≤ c0 for α̂k ≤ uk ≤ α̃k.

(H6) Let c be any constant satisfying c ≥ max
{
−∂f
∂u

(xk, uk) : α̂k ≤ uk ≤ α̃k, xk ∈ Ωh

}
,

c∗ = c0 + c ≥ 0 and b2
0 ≥ 4c∗.
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As in Section 4.3, (4.13) can be rewritten as a coupled equation as follows.

(4.15)
−4hui + µui = vi, i ∈ Ωh; uj = J [x

′
j, u] + g

(1)
j , j ∈ ∂Ωh

−4hvi + µ+vi = F (xi, ui), i ∈ Ωh; vj = J [x
′
j, v] + g

(2)
j , j ∈ ∂Ωh

where F (xi, ui) = cui + f(xi, ui) and g(2) = g(0) + µg(1). For the above coupled equation

(4.15), the lower and upper solutions are defined as follows.

Definition 4.4.2. A function (α̂k, β̂k) is called a lower solution of (4.15) if it satisfies

(4.16)
−4hα̂i + µα̂i ≤ β̂i, i ∈ Ωh; α̂j ≤ J [x

′
j, α̂] + g

(1)
j ; j ∈ ∂Ωh

−4hβ̂i + µ+β̂i ≤ F (xi, α̂i), i ∈ Ωh; β̂j ≤ J [x
′
j, β̂]g

(2)
j , j ∈ ∂Ωh.

Similarly (α̃k, β̃k) is called an upper solution of (4.15) if it satisfies (4.16) with inequalities

reversed.

The lower and upper solutions (α̂i, β̂i) and (α̃i, β̃i) are said to be ordered if α̂i ≤ α̃i

and β̂i ≤ β̃i.

Remark 4.4.1. It can be easily verified that if α̂i and α̃i are ordered lower and upper

solutions of (4.13), then the pair (α̂i,−4hα̂i + µα̂i) and (α̃i,−4hα̃i + µα̃i) are ordered

lower and upper solutions of (4.15).

For ordered lower and upper solutions (α̂i, β̂i) and (α̃i, β̃i), define the set Sd =

{(uk, vk) : (α̂k, β̂k) ≤ (uk, vk) ≤ (α̃k, β̃k)}. As in Section 4.3, at first the numerical

solution for a second order linear elliptic equation with nonlocal boundary condition is ob-

tained using central difference approximation and monotone iterations. More specifically,

a numerical technique is developed to solve (4.5) numerically. The proposed algorithm

for solving (4.5) also ensures the existence of the unique solution of the corresponding

discretized problem given by

(4.17) −4hwi + awi = h(xi), i ∈ Ωh; wj = J [x
′
j, w] + gj, j ∈ ∂Ωh.

Since the proposed iterative scheme for (4.17) is based on monotone iterations, one requires

the following lower and upper solutions.
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Definition 4.4.3. A function ŵk is called a lower solution of (4.17) if it satisfies

(4.18) −4hw
0
i + aw0

i ≤ h(xi), i ∈ Ωh; w0
j ≤ J [x

′
j, w

0] + gj, j ∈ ∂Ωh.

Similarly w0
k is called an upper solution of (4.17) if it satisfies (4.18) with inequalities

reversed.

The following lemma guarantees the existence of the unique solution of (4.17).

Lemma 4.4.1. Let w0
k and w0

k be ordered lower and upper solutions of (4.17). Then

(4.17) has a unique solution w∗k such that w0
k ≤ w∗k ≤ w0

k.

Proof. The solution of (4.17) is obtained as the limit of the following successive iterative

scheme.

(4.19)
−4hw

n+1
i + awn+1

i = h(xi), i ∈ Ωh

wn+1
j = J [x

′
j, w

n] + gj, j ∈ ∂Ωh.

Choosing the initial iteration w0
k as w0

k and w0
k respectively, two sequences {wn+1

k } and

{wn+1
k } can be constructed. Clearly the iterative scheme (4.19) is well defined. The proof

is done through an induction argument. Let zk = w1
k − w0

k.

−4hzi + azi = (−4hw
1
i + aw1

i )− (−4hw
0
i + aw0

i )

−4hzi + azi ≥ h(xi)− h(xi) = 0, i ∈ Ωh

zj = w1
j − w0

j = J [x
′

j, w
0] + gj − w0

j ≥ 0, j ∈ ∂Ωh.

The positivity lemma for second order finite difference elliptic boundary value problems

[70] implies that zk ≥ 0 and thus w0
k ≤ w1

k in Ωh. Similarly w1
k ≤ w0

k in Ωh. Now let

zk = w1
k − w1

k. Clearly for i ∈ Ωh, −4hwi + awi = 0. Moreover,

zj = w1
j − w1

j = J [x
′

j, w
0]− J [x

′

j, w
0] ≥ 0, j ∈ ∂Ωh.

Hence w0
k ≤ w1

k ≤ w1
k ≤ w0

k in Ωh. Assume that w0
k ≤ wn−1

k ≤ wnk ≤ wnk ≤ wn−1
k ≤ w0

k for

some n > 1. Let zk = wn+1
k −wnk . Note that for all i ∈ Ωh, one has −4hzi + azi = 0. For

all j ∈ ∂Ωh,

zj = wn+1
j − wnj = J [x

′

j, w
n]− J [x

′

j, w
n−1] ≥ 0.
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Thus wnk ≤ wn+1
k in Ωh. Similarly wn+1

k ≤ wnk in Ωh. Let zk = wn+1
k −wn+1

k . Consequently,

−4hzi + azi = 0 for all i ∈ Ωh. Also

zj = wn+1
j − wn+1

j = J [x
′

j, w
n]− J [x

′

j, w
n] ≥ 0, j ∈ ∂Ωh.

Hence wnk ≤ wn+1
k ≤ wn+1

k ≤ wnk for all n in Ωh. This guarantees the existence of the limit

lim
n→∞

wnk = wk and lim
n→∞

wnk = wk. Moreover the limits are the solutions of (4.17) satisfying

wk ≤ w∗k ≤ wk. Let Wk = wk − wk. Then Wk ≤ 0 satisfies

−4hWi + aWi = 0, i ∈ Ωh

Wj = J [x
′
j,W ], j ∈ ∂Ωh.

To show that Wk ≥ 0, assume by contradiction that it is not true. Then there exists

some j0 ∈ ∂Ωh such that Wj0 is negative and it is the minimum on Ωh. Then Wj0 =

J [x
′
j0
,W ] ≥ J [x

′
j0
, 1]Wj0 , which is possible only if J [x

′
j0
, 1] ≥ 1, a contradiction to (H5).

Hence Wk = 0 and the uniqueness.

Based on iterative scheme (4.9) discussed in Section 4.3, the following discretized iterative

scheme is proposed to solve (4.15). With initial guess (u0, v0) and n ∈ N,

(4.20)

−4hu
n+1
i + µun+1

i = vni , i ∈ Ωh

un+1
j = J [x

′
j, u

n+1] + g
(1)
j , j ∈ ∂Ωh

−4hv
n+1
i + µ+vn+1

i = F (xi, u
n+1
i ), i ∈ Ωh

vn+1
j = J [x

′
j, v

n+1] + g
(2)
j , j ∈ ∂Ωh.

Using (α̂k, β̂k) and (α̃k, β̃k) respectively as the initial iterations, two sequences namely

minimal and maximal sequences can be generated from the proposed iterative procedure.

The minimal sequence {(αnk , βnk )}, n ∈ N is given by

(4.21a)
−4hα

n+1
i + µαn+1

i = βni , i ∈ Ωh

αn+1
j = J [x

′
j, α

n+1] + g
(1)
j , j ∈ ∂Ω

and

(4.21b)
−4hβ

n+1
i + µ+βn+1

i = F (xi, α
n+1
i ), i ∈ Ωh

βn+1
j = J [x

′
j, β

n+1] + g
(2)
j , j ∈ ∂Ωh
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and the maximal sequence {(αnk , β
n

k)}, n ∈ N is given by

(4.22a)
−4hα

n+1
i + µαn+1

i = β
n

i , i ∈ Ωh

αn+1
j = J [x

′
j, α] + g

(1)
j , j ∈ ∂Ωh.

(4.22b)
−4hβ

n+1

i + µ+β
n+1

i = F (xi, α
n+1
i ), i ∈ Ωh

β
n+1

j = J [x
′
j, β

n+1
] + g

(2)
j , j ∈ ∂Ωh.

The following theorem provides the monotone and well defined properties of the minimal

and maximal sequences of (4.21) and (4.22) and their convergence to the unique solution

of (4.15).

Theorem 4.4.1. Let (α̂k, β̂k) and (α̃k, β̃k) be a pair of ordered lower and upper solutions

of (4.15). Then the minimal sequence {(αnk , βnk )} and the maximal sequence {(αnk , β
n

k)}

are well defined and converge monotonically to the unique solution (u∗k, v
∗
k) of (4.15) in

Sd. Moreover, the following relation holds for n ∈ N.

(4.23)

(α̂k, β̂k) ≤ (αnk , β
n
k ) ≤ (αn+1

k , βn+1
k ) ≤ (u∗k, v

∗
k) ≤ (αn+1

k , β
n+1

k ) ≤ (αnk , β
n

k) ≤ (α̃k, β̃k).

Proof. The proof is done by an induction on n. Using Theorem 4.4.1 the following in-

equality is proved first. To prove (α̂k, β̂k) ≤ (α1
k, β

1
k) ≤ (α̃k, β̃k), it is enough to show that

(α̂k, β̂k) and (α̃k, β̃k) are lower and upper solutions respectively of (4.21) for n = 0. From

Definition 4.4.2, one can have

−4hα̂i + µα̂i ≤ β̂i, i ∈ Ωh

α̂j ≤ J [x
′
jα̂] + g

(1)
j , j ∈ ∂Ωh

and

−4hα̃i + µα̃i ≥ β̃i ≥ β̂i, i ∈ Ωh

α̃j ≥ J [x
′
j, α̃] + g

(1)
j , j ∈ ∂Ωh.

Thus by Theorem 4.4.1, (4.21a) with n = 0 has a unique solution α1
k between α̂k and α̃k.

Thus α̂k ≤ α1
k ≤ α1

k. Similarly from Definition 4.4.2,

−4hβ̂i + µ+β̂i ≤ F (xi, α̂i) ≤ F (xi, α
1
i ), i ∈ Ωh

β̂j ≤ J [x
′
jβ̂] + g

(2)
j , j ∈ ∂Ωh
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and

−4hβ̃i + µ+β̃i ≥ F (xi, α̃i) ≥ F (xi, α
1
i ), i ∈ Ωh

β̃j ≥ J [x
′
j, β̃] + g

(2)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.21b) with n = 0 has a unique solution β1
k between β̂k and β̃k.

Hence (α̂k, β̂k) ≤ (α1
k, β

1
k) ≤ (α1

k, β
1

k). To prove (α1
k, β

1
k) ≤ (α1

k, β
1

k) ≤ (α̃k, β̃k) it is enough

to show that (α1
k, β

1
k) and (α̃k, β̃k) are lower and upper solutions respectively of (4.22)

with n = 0. From (4.21a) for n = 0,

−4hα
1
i + µα1

i = β̂i ≤ β̃i, i ∈ Ωh

α1
j = J [x

′
j, α

1] + g
(1)
j , j ∈ ∂Ωh

and from Definition 4.4.2,

−4hα̃i + µα̃i ≥ β̃i, i ∈ Ωh

α̃j ≥ J [x
′
j, α̃] + g

(1)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.22a) with n = 0 has a unique solution α1
k between α1

k and

α̃k.Thus α1
k ≤ α1

k ≤ α̃k. Similarly from (4.21b) for n = 0,

−4hβ
1
i + µ+β1

i = F (xi, α
1
i ) ≤ F (xi, α

1
i ), i ∈ Ωh

β1
j = J [x

′
j, β

1] + g
(2)
j , j ∈ ∂Ωh

and from Definition 4.4.2,

−4hβ̃i + µ+β̃i ≥ F (xi, α̃i) ≥ F (xi, α
1
i ), i ∈ Ωh

β̃j ≥ J [x
′
j, β̃] + g

(2)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.22b) with n = 0 has a unique solution β
1

k between β1
k and β̃k.

Thus (α1
k, β

1
k) ≤ (α1

k, β
1

k) ≤ (α̃k, β̃k). Hence (α̂k, β̂k) ≤ (α1
k, β

1
k) ≤ (α1

k, β
1

k) ≤ (α̃k, β̃k).

Assume that

(α̂k, β̂k) ≤ (αn−1
k , βn−1

k ) ≤ (αnk , β
n
k ) ≤ (αnk , β

n

k) ≤ (αn−1
k , β

n−1

k ) ≤ (α̃k, β̃k)

for some n > 1. To complete the proof for the monotone property, one has to show that

(αnk , β
n
k ) ≤ (αn+1

k , βn+1
k ) ≤ (αn+1

k , β
n+1

k ) ≤ (αnk , β
n

k). To do this, the following inequality is
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proved first; (αnk , β
n
k ) ≤ (αn+1

k , βn+1
k ) ≤ (αnk , β

n

k). It is enough to show that (αnk , β
n
k ) and

(αnk , β
n

k) are lower and upper solutions respectively of (4.21). From (4.21a),

−4hα
n
i + µαni = βn−1

i ≤ βni , i ∈ Ωh

αnj = J [x
′
j, α

n] + g
(1)
j , j ∈ ∂Ωh

and from (4.22a),

−4hα
n
i + µαni = β

n−1

i ≥ βni , i ∈ Ωh

αnj = J [x
′
j, α

n] + g
(1)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.21a) has a unique solution αn+1
k between αnk and αnk . Thus

αnk ≤ αn+1
k ≤ αnk . Similarly from (4.21b),

−4hβ
n
i + µ+βni = F (xi, α

n
i ) ≤ F (xi, α

n+1
i ), i ∈ Ωh

βnj = J [x
′
j, β

n] + g
(2)
j , j ∈ ∂Ωh

and from (4.22b),

−4hβ
n

i + µ+β
n

i = F (xi, α
n
i ) ≥ F (xi, α

n+1
i ), i ∈ Ωh

β
n

j = J [x
′
j, β

n
] + g

(2)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.21b) has a unique solution βn+1
k between βnk and β

n

k . Hence

(αnk , β
n
k ) ≤ (αn+1

k , βn+1
k ) ≤ (αnk , β

n

k). To prove (αn+1
k , βn+1

k ) ≤ (αn+1
k , β

n+1

k ) ≤ (αnk , β
n

k), it is

enough to show that (αn+1
k , βn+1

k ) and (αnk , β
n

k) are lower and upper solutions respectively

of (4.22). From (4.21a),

−4hα
n+1
i + µαn+1

i = βni ≤ β
n

i , i ∈ Ωh

αn+1
j = J [x

′
j, α

n+1] + g
(1)
j , j ∈ ∂Ωh

and from (4.22a),

−4hα
n
i + µαni = β

n−1

i ≥ β
n

i , i ∈ Ωh

αnj = J [x
′
j, α

n] + g
(1)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.22a) has a unique solution αn+1
k between αn+1

k and αnk . Thus

αn+1
k ≤ αn+1

k ≤ αnk . Similarly from (4.21b),

−4hβ
n+1
i + µ+βn+1

i = F (xi, α
n+1
i ) ≤ F (xi, α

n+1
i ), i ∈ Ωh

βn+1
j = J [x

′
j, β

n+1] + g
(2)
j , j ∈ ∂Ωh
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and from (4.22b),

−4hβ
n

i + µ+β
n

i = F (xi, α
n
i ) ≥ F (xi, α

n+1
i ), i ∈ Ωh

β
n

j = J [x
′
j, β

n
] + g

(2)
j , j ∈ ∂Ωh.

Thus by Lemma 4.4.1, (4.22b) has a unique solution β
n+1

k between βn+1
k and β

n

k . Hence

(αn+1
k , βn+1

k ) ≤ (αn+1
k , β

n+1

k ) ≤ (αnk , β
n

k). Thus (αnk , β
n
k ) ≤ (αn+1

k , βn+1
k ) ≤ (αn+1

k , β
n+1

k ) ≤

(αnk , β
n

k). Hence (4.23) holds true for n ∈ N. This guarantees the existence of the limits

lim
n→∞

(αnk , β
n
k ) = (αk, βk) and lim

n→∞
(αnk , β

n

k) = (αk, βk) where (αk, βk) ≤ (αk, βk) and they

are the solutions of (4.15). The proof for the uniqueness is similar to the proof of Theorem

2.2 in [83] and hence omitted.

Remark 4.4.2. Under the given conditions, Theorem 4.4.1 also holds good for (4.13)

with the boundary conditions replaced with

uj = J [x
′
j, u] + g

(1)
j , j ∈ ∂Ωh

4huj = −g(0)
j , j ∈ ∂Ωh.

4.5. Gauss-Seidel and Jacobi Iterations

To overcome the computational complexity while dealing with higher dimensions,

Gauss-Seidel and Jacobi methods are used to develop iterative schemes similar to Section

3 in [83]. Let M = M1M2 · · ·Mn be the total number of mesh points in Ωh and let

U = (u1, . . . , uM)T and V = (v1, . . . , vM)T be the vector representations of the solutions

uk and vk for all k ∈ Ωh arranged suitably. Then (4.15) can be written using vector

representation as follows.

(4.24)
(A+B + µJ)U = V1 +G(1)

(A+B + µ+J)V = F (U) +G(2).

Here A is an M ×M diagonally dominant matrix associated with the difference operator

−4h and boundary conditions and J is the M ×M diagonal matrix with diagonal entries

corresponding to the boundary mesh points zero and one elsewhere. B is also an M ×

M matrix associated with the boundary conditions whose entries are zero except for

the negative entries in the rows corresponding to the boundary mesh points. F (U) =

(F (xi, ui)) is defined to be a column vector of size M in which the entries corresponding
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to the boundary mesh points will be zero. Similarly the vector V1 in the first equation of

(4.24) is obtained from V by assigning zeros to the entries corresponding to the boundary

mesh points. The vectors G(1) and G(2) corresponding to the boundary conditions will

have non-zero entries only at the positions corresponding to the boundary mesh points.

Denote the matrix A+B byM. Note that dissimilar to the vector representations given

in [83], both interior and boundary mesh points are included in the vector representation

(4.24).

Definition 4.5.1. A pair of vectors (Û , V̂ ) ∈ RM × RM is said to be a lower solution of

(4.24)if it satisfies

(4.25)
(M+ µJ)Û ≤ V̂1 +G(1)

(M+ µ+J)V̂ ≤ F (Û) +G(2).

Similarly (Ũ , Ṽ ) ∈ RM ×RM is said to be an upper solution of (4.24) if it satisfies (4.25)

with the inequalities reversed.

For ordered lower and upper solutions (Û , V̂ ) and (Ũ , Ṽ ), define the set S∗ = {(U, V ) ∈

RM × RM : (Û , V̂ ) ≤ (U, V ) ≤ (Ũ , Ṽ )}. Note that the matrix M is irreducible with

Mk,k > 0, Mk,l ≤ 0 for k 6= l. Moreover, M is a strictly diagonally dominant matrix.

Consequently,M is an M -matrix and is inverse positive [10, 97, 102]. M can be written

as M = D − L − U where D, −L and −U are diagonal, lower triangular and upper

triangular sub-matrices of M respectively. Define P(1) = M + µJ , P(2) = M + µ+J ,

G(1) = D + µJ − L, G(2) = D + µ+J − L, J (1) = D + µJ and J (2) = D + µ+J .

Clearly, G(1), G(2),J (1) and J (2) are inverse positive matrices. Using (Û , V̂ ) and (Ũ , Ṽ )

respectively as the initial iterations, minimal and maximal sequences {(Un, V n)} and

{(Un
, V

n
)} can be constructed from the following iterative procedures for n ∈ N.

(a) Picard iteration:

(4.26)
P(1)Un+1 = V n

1 +G(1)

P(2)V n+1 = F (Un+1) +G(2).
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(b) Gauss-Seidel iteration:

(4.27)
G(1)Un+1 = UUn + V n

1 +G(1)

G(2)V n+1 = UV n + F (Un+1) +G(2).

(c) Jacobi iteration:

(4.28)
J (1)Un+1 = (U + L)Un + V n

1 +G(1)

J (2)V n+1 = (U + L)V n + F (Un+1) +G(2).

Clearly all the iterative schemes above are well defined. The following theorem provides

the monotone convergence of the three iterative schemes.

Theorem 4.5.1. Let (Û , V̂ ) and (Ũ , Ṽ ) be a pair of ordered lower and upper solutions of

(4.24). Then the following holds good.

(i) The minimal sequence {(Un, V n)} and the maximal sequence {(Un
, V

n
)} converge

monotonically to the minimal solution (U, V ) and the maximal solution (U, V )

respectively of (4.24) in S∗ and the following relation holds for n ∈ N.

(4.29)
(Û , V̂ ) ≤ (Un, V n) ≤ (Un+1, V n+1) ≤ (U, V )

≤ (U, V ) ≤ (U
n+1

, V
n+1

) ≤ (U
n
, V

n
) ≤ (Ũ , Ṽ ).

(ii) If (U, V ) = (U, V )(≡ (U∗, V ∗)), then (U∗, V ∗) is the unique solution of (4.24) in

S∗.

Proof. (a) Picard iteration: This is a direct implication of Theorem 4.4.1 as (4.26) is the

vector representation of (4.20).

(b) Gauss-Seidel Iteration:

G(1)(U1 − Û) = UÛ + V̂1 +G(1) − (D + µJ − L)Û

= V̂1 +G(1) − (M+ µJ)Û ≥ 0

Due to the non-negative property of (G(1))−1, Û ≤ U1. Also

G(2)(V 1 − V̂ ) = U V̂ + F (U1) +G(2) − (D + µJ − L)V̂

= F (U1) +G(2) − (M+ µJ)V̂

≥ F (Û) +G(2) − (M+ µJ)V̂ ≥ 0.
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Thus V̂ ≤ V 1 since (G(2))−1 is non-negative. Similarly one can obtain (U
1
, V

1
) ≤ (Ũ , Ṽ ).

Now consider

G(1)(U
1 − U1) = (UŨ + Ṽ1 +G(1))− (UÛ + V̂1 +G(1)) ≥ 0.

Thus U1 ≤ U
1
. Also

G(2)(V
1 − V 1) = (U Ṽ + F (U

1
) +G(2))− (U V̂ + F (U1) +G(2)) ≥ 0.

Hence V 1 ≤ V
1

and therefore (Û , V̂ ) ≤ (U1, V 1) ≤ (U
1
, V

1
) ≤ (Ũ , Ṽ ). Through an

induction argument on n, one can show that (Û , V̂ ) ≤ (Un, V n) ≤ (Un+1, V n+1) ≤

(U
n+1

, V
n+1

) ≤ (U
n
, V

n
) ≤ (Ũ , Ṽ ) for all n ∈ N. This assures that the limits lim

n→∞
(Un, V n) = (U, V )

and lim
n→∞

(U
n+1

, V
n+1

) = (U, V ) exists and they are the solutions of (4.24). This shows

that (i) holds. Also, (U, V ) ≤ (U∗, V ∗) ≤ (U, V ) and hence (ii) also holds true.

(c) Jacobi Iteration: The proof is similar to that of Gauss-Jacobi iteration and therefore

omitted.

Denote the minimal and maximal sequences of the three iterations respectively by {(Un
P , V

n
P )},

{(Un

P , V
n

P )}, {(Un
G, V

n
G )}, {(Un

G, V
n

G)}, {(Un
J , V

n
J )} and {(Un

J , V
n

J)}. The following theorem

supplies a comparison relation between the three iterative procedures (4.26), (4.27) and

(4.28).

Theorem 4.5.2. Let the conditions in Theorem 4.5.1 holds. Then for n = 1, 2, . . . ,

(4.30)
(U

n

P , V
n

P ) ≤ (U
n

G, V
n

G) ≤ (U
n

J , V
n

J)

(Un
P , V

n
P ) ≥ (Un

G, V
n
G ) ≥ (Un

J , V
n
J )

Proof. From (4.26), (4.27) and (4.29), one can have

(4.31)
P(1)U

n

G = (G(1) − U)U
n

G = U(U
n−1

G − Un

G) + V
n−1

1G
+G(1) ≥ V

n−1

1G
+G(1)

P(2)V
n

G = (G(2) − U)V
n

G = U(V
n−1

G − V n

G) + F (U
n

G) +G(2) ≥ F (U
n

G) +G(2).

Subtracting (4.26) from (4.31) yields

(4.32)
P(1)(U

n

G − U
n

P ) ≥ V
n−1

1G
− V n−1

1P
, ∀ n ∈ N

P(2)(V
n

G − V
n

P ) ≥ F (U
n

G)− F (U
n

P ), ∀ n ∈ N.
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For n = 0, (U
0

G, V
0

G) = (U
0

P , V
0

P ) = (Ũ , Ṽ ). Then P(1)(U
1

G − U
1

P ) ≥ 0. Thus U
1

P ≤

U
1

G. Consequently, P(2)(V
1

G − V
1

P ) ≥ 0 and thus V
1

P ≤ V
1

G. Assume by induction that

(U
n−1

P , V
n−1

P ) ≤ (U
n−1

G , V
n−1

G ) for some n > 1. Then by using (4.32), one can obtain

P(1)(U
n

G − U
n

P ) ≥ 0 and hence U
n

P ≤ U
n

G. Similarly P(2)(V
n

G − V
n

P ) ≥ 0 and as a result

V
n

P ≤ V
n

G. Thus (U
n

P , V
n

P ) ≤ (U
n

G, V
n

G) for all n ∈ N. To show (U
n

G, V
n

G) ≤ (U
n

J , V
n

J),

consider (4.27), (4.28) and (4.29).

(4.33)

G(1)U
n

J = (J (1) − L)U
n

J = UUn−1

J + L(U
n−1

J − Un

J) + V
n−1

1J
+G(1)

≥ UUn−1

J + V
n−1

1J
+G(1)

G(2)V
n

J = (J (2) − L)V
n

J = UV n−1

J + L(V
n−1

J − V n

J) + F (U
n

J) +G(2)

≥ UV n−1

J + F (U
n

J) +G(2).

Subtracting (4.27) from (4.33) yields

(4.34)
G(1)(U

n

J − U
n

G) ≥ U(U
n−1

J − Un−1

G ) + V
n−1

1J
− V n−1

1G
, ∀ n ∈ N

G(2)(V
n

J − V
n

G) ≥ U(V
n−1

J − V n−1

G ) + F (U
n

J)− F (U
n

G), ∀ n ∈ N.

For n = 0, (U
0

J , V
0

J) = (U
0

G, V
0

G) = (Ũ , Ṽ ). Then G(1)(U
1

J − U
1

G) ≥ 0. Thus U
1

G ≤

U
1

J . Consequently, G(2)(V
1

J − V
1

G) ≥ 0 and thus V
1

G ≤ V
1

J . Assume by induction that

(U
n−1

G , V
n−1

G ) ≤ (U
n−1

J , V
n−1

J ) for some n > 1. Then by using (4.34), one can obtain

G(1)(U
n

J − U
n

G) ≥ 0 and hence U
n

G ≤ U
n

J . Similarly G(2)(V
n

J − V
n

G) ≥ 0 and as a result

V
n

G ≤ V
n

J . Thus (U
n

G, V
n

G) ≤ (U
n

J , V
n

J) for all n ∈ N. This proves the first inequality in

(4.30). The proof for the second inequality is omitted as it can be proved along similar

lines.

Remark 4.5.1. From Theorem 4.5.2 it is evident that both the minimal and maximal

sequences of Picard iteration converge faster than that of Gauss-Seidel iteration which in

turn converge faster than Jacobi iteration for the same initial iteration. The numerical

results in Section 4.7 confirm this and reveal that the number of iterations by the three

iterations differ extremely.
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4.6. Convergence of Finite Difference Solutions

The following theorem ensures the convergence of the discretized solutions to the exact

solutions as the mesh size tends to zero. For simplicity, the uniform mesh size case is only

considered here. The proof is similar to Theorem 4.1 in [83] and hence it is outlined.

Theorem 4.6.1. Let ((α̂, β̂), (α̃, β̃)), ((α̂k, β̂k), (α̃k, β̃k)) be ordered lower and upper solu-

tions of (4.3) and (4.15) respectively. Then the minimal solution (α∗k, β
∗
k
) and the maximal

solution (α∗k, β
∗
k) of (4.15) converge respectively to the minimal solution (α∗(xk), β

∗(xk))

and the maximal solution (α∗(xk), β
∗
(xk)) of (4.3) at every point as mesh size tends to

zero.

Proof. Assume that for any ε > 0, there exists δ = δ(ε) > 0 such that whenever |h| < δ,

(4.35) |α̂(xk)− α̂k|+ |β̂(xk)− β̂k| < ε, |α̃(xk)− α̃k|+ |β̃(xk)− β̃k| < ε

for all xk ∈ Ωh. The convergence of the maximal solution (α∗k, β
∗
k) to the corresponding

maximal solution (α∗(xk), β
∗
(xk)) as |h| → 0 for every point xk ∈ Ωh is proved here. For

given any ε > 0, it has to be shown that there exists δ = δ(ε) > 0 such that

(4.36) |α∗k − α∗(xk)|+ |β
∗
k − β

∗
(xk)| < ε when |h| < δ.

Let {(αnk , β
n

k)} and {(αn(xk), β
n
(xk))} be the respective maximal sequences of (4.22) and

(4.11). Due to the convergence of the maximal sequences to the respective maximal

solutions, there exists an integer n∗ = n∗(ε) such that for all n ≥ n∗,

|α∗k − αnk |+ |α∗(xk)− αn(xk)| <
ε

3
; |β∗k − β

n

k |+ |β
∗
(xk)− β

n
(xk)| <

ε

3

for all xk ∈ Ω
∗
h. Note that for all n ∈ N,

|α∗k − α∗(xk)| ≤ |α∗k − αnk |+ |αnk − αn(xk)|+ |αn(xk)− α∗(xk)|

|β∗k − β
∗
(xk)| ≤ |β∗k − β

n

k |+ |β
n

k − β
n
(xk)|+ |β

n
(xk)− β

∗
(xk)|.

Hence the proof is complete if one can prove that there exists an n0 ≥ n∗ and δ = δ(ε) > 0

such that

(4.37) |α(n0)
k − α(n0)(xk)|+ |β

(n0)

k − β(n0)
(xk)| <

ε

3
when |h| < δ
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for all xk ∈ Ω
∗
h. From (4.11) and (4.22), it can be seen that (αn+1(xk), β

n+1
(xk)) satisfies

the equations

(4.38)

−4hα
n+1(xi) + µαn+1(xi) = β

n
(xi) +On+1(|h|2), i ∈ Ωh

αn+1(x
′
j) = J [x

′
j, α

n+1] + g
(1)
j +On+1(|h|), j ∈ ∂Ωh

−4hβ
n+1

(xi) + µ+β
n+1

(xi) = F (xi, α
n+1(xi)) +On+1(|h|2), i ∈ Ωh

β
n+1

(x
′
j) = J [x

′
j, β

n+1
] + g

(2)
j +On+1(|h|), j ∈ ∂Ωh,

where On(|h|), On(|h|2) → 0 as |h| → 0. Let wnk = αn(xk) − αnk and znk = β
n
(xk) − β

n

k .

Subtracting (4.22) from (4.38) and using mean value theorem,

(4.39)

−4hw
n+1
i + µwn+1

i = zni +On+1n(|h|2), i ∈ Ωh

wn+1(x
′
j) = J [x

′
j, w

n+1] +On+1(|h|), j ∈ ∂Ωh

−4hz
n+1
i + µ+zn+1

i = Fu(xi, ξ
n+1
i )wn+1

i +On+1(|h|2), i ∈ Ωh

zn+1(x
′
j) = J [x

′
j, z

n+1] +On+1(|h|), j ∈ ∂Ωh,

where ξn+1
i is an intermediate value between αn+1(xi) and αn+1

i . On account of (4.24),

(4.39) can be rewritten in the vector form as

(4.40)
(M+ µJ)W

n+1
= Z

n

1 +On+1(|h|)

(M+ µ+J)Z
n+1

= Fu(ξ)W
n+1

+On+1(|h|),

where the matrices M, J and the vectors U, V, V1 are as defined in Section 5. Fu(ξ) is a

diagonal matrix with the diagonal entries corresponding to the interior mesh points are

Fu(xi, ξ
n+1
i ) and zero elsewhere. SinceM+µJ andM+µ+J are inverse positive matrices

there exists a positive constant K1 such that

(4.41)
‖W n+1‖∞ ≤ K1

(
‖Zn‖∞ + ‖On+1(|h|)‖∞

)
‖Zn+1‖∞ ≤ K1

(
K2‖W

n+1‖∞ + ‖On+1(|h|)|‖∞
)
,

where K2 is the maximum of the elements |Fu(xi, ξn+1
i )|. Let K0 = K1 max{1, K2}. Then

one can have

(4.42)
‖W n+1‖∞ ≤ K3n+1

0 ‖Z̃‖∞ +Rn+1
1 (|h|)

‖Zn+1‖∞ ≤ K3n+3
0 ‖Z̃‖∞ +Rn+1

2 (|h|),

where R
(n+1)
1 (|h|) = (K3n

0 +K3n−1
0 )‖O1(|h|)‖∞+(K3n−2

0 +K3n−4
0 )‖O2(|h|)‖∞+ · · ·+(K4

0 +

K2
0)‖On(|h|)‖∞+K0‖On+1(|h|)‖∞ and R

(n+1)
2 (|h|) = (K3n+2

0 +K3n+1
0 )‖O1(|h|)‖∞+(K3n

0 +
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K3n−2
0 )‖O2(|h|)‖∞ + · · ·+ (K6

0 +K4
0)‖On(|h|)‖∞ + (K3

0 +K0)‖On+1(|h|)‖∞. Let n0 ≥ n∗

be fixed. Since R
(n0)
1 (|h|) → 0 and R

(n0)
2 (|h|) → 0 as |h| → 0, there exists a δ1 > 0 such

that R
(n0)
i (|h|) ≤ ε

12
whenever |h| < δ1 and i = 1, 2. Similarly using (4.35), one can get

‖W̃‖∞ + ‖Z̃‖∞ ≤ ε
6K∗

whenever |h| < δ2. Thus

‖W n0‖∞ + ‖Zn0‖∞ ≤
ε

3
whenever |h| < δ = min{δ1, δ2}.

This leads to (4.37). Thus (4.36) holds and hence the theorem. The convergence of the

minimal solution can also be obtained similarly.

4.7. Algorithms

This section provides the algorithms used in the numerical implementations of the

proposed scheme and the scheme in [83] for Picard’s iterations. For a given matrix A, Ak

stands for the matrix A whose entries corresponding to all the mesh points are included.

When the entries corresponding to the boundary mesh points take their corresponding

values and zero elsewhere, the matrix A is notated by Aj. Similarly, Ai stands for the ma-

trix A in which the entries corresponding to the interior mesh points take their values and

zero otherwise. The following algorithms are given in regard to the vector representations

(4.24) given in Section 4.5 and that in Section 3 of [83] with hi = h for all i.

(i) Proposed Scheme:

Input: α̂k, α̃k, β̂k, β̃k,Mk + µJi,Mk + µ+Ji

while ε > 10−8 (say)

α1
k ← (Mk + µJi)

−1(β̂0
i +G

(1)
j );

α1
k ← (Mk + µJi)

−1(β̃0
i +G

(1)
j );

β1
k ← (Mk + µ+Ji)

−1(F (α1
i ) +G

(2)
j );

β
1

k ← (Mk + µ+Ji)
−1(F (α1

i ) +G
(2)
j );

ε = max(|α1
k − α1

k|+ |β
1

k − β1
k|);

α̂k ← α1
k; α̃k ← α1

k;

β̂k ← β1
k ; β̃k ← β

1

k;

end
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(ii) Scheme in [83]:

Input: α̂k, α̃k, β̂k, β̃k, Ai + µIi, Ai + µ+Ii

while ε > 10−8 (say)

Obtain α1
j , α

1
j , β

1
j , β

1

j using Composite Simpson’s rule.

α1
i ← (Ai + µIi)

−1( 1
h2
α̂0
j + β0

i );

α1
i ← (Ai + µIi)

−1( 1
h2
α̃0
j + β̃0

i );

β1
i ← (Ai + µ+Ii)

−1( 1
h2
β̂0
j + F (α̂i));

β
1

i ← (Ai + µ+Ii)
−1( 1

h2
β̃0
j + F (α̃i));

α1
k ← (α1

i ;α
1
j ); α

1
k ← (α1

i ;α
1
j);

β1
k ← (β1

i ; β
1
j ); β

1

k ← (β
1

i ; β
1

j);

ε = max(|α1
k − α1

k|+ |β
1

k − β1
k|);

α̂k ← α1
k; α̃k ← α1

k;

β̂k ← β1
k ; β̃k ← β

1

k;

end

4.8. Numerical Examples

In this section, an efficient numerical illustration is done in comparison with all the

examples discussed in [83]. The composite Simpson’s rule is used to approximate the

integral terms in the equations. All the numerical examples are performed with MATLAB

R2010b. This section demonstrates the efficiency of the proposed iterative scheme in

comparison with the iterative scheme in [83] by varying the initial guess, mesh size and

stopping criterion. Throughout this section, N denotes that number of partitions and the

stopping criterion chosen is |αnk − αnk |+ |β
n

k − βnk | ≤ ε.

Example 4.8.1.

Consider the following one-dimensional fourth order nonlinear elliptic problem

(4.43)

u
′′′′ − 3u

′
+ 2u = u

1+u
+ q(x), 0 < x < 1,

u(0) =
∫ 1

0
x2u(x)dx+ g(1)(0), u(1) =

∫ 1

0
x2u(x)dx+ g(1)(1)

u
′′
(0) =

∫ 1

0
x2u

′′
(x)dx− g(0)(0) u

′′
(1) =

∫ 1

0
x2u

′′
(x)dx− g(0)(1),
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where q(x) = 10 + 2x(1− x)− 2+x(1−x)
3+x(1−x)

, g(1)(x
′
) = 77

60
and g(0)(x

′
) = 77

60
+ 4

3
for x

′
= 0, 1.

Clearly α̂i = 0 and α̃i = 6 are lower and upper solutions of (4.43). Hence (4.43) has

a unique solution by Theorem 4.3.1. The corresponding discretized coupled system for

(4.43) is given by

(4.44)
−4hui + ui = vi, −4hvi + 2vi = u1

1+u1
+ qi, 0 < xi < 1

uj = J [x
′
j, u] + g

(1)
j , vj = J [x

′
j, v] + g

(2)
j , x

′
j = 0, 1,

where g
(2)
j = g

(0)
j +g

(1)
j . Clearly, (α̂i, β̂i) = (0, 0) and (α̃i, β̃i) = (6, 6) serve as the lower and

upper solutions of (4.44). Hence by Theorem 4.4.1, {(αnk , βnk )} and {(αnk , β
n

k)} converge

to the unique solution (u∗k, v
∗
k) = (2 + xk(1− xk), 4 + xk(1− xk)). Figure 4.1 and Figure

4.2 illustrate the monotone convergence of both the minimal and maximal sequences to

the unique solution at xi = 0.5. Table 4.1 provides the numerical error, order and number

of iterations for the stopping criterion ε = 10−8 where order(h) = log2

(
error(h)

error(h
2

)

)
. For a

fixed number of partitions N = 100, Table 4.2 provides the number of iterations for the

proposed and the scheme in [83] for various stopping criteria ε.

Example 4.8.2.

Consider the following two-dimensional problem defined on the rectangular domain

Ω = {(x, y) : 0 < x < 1, 0 < y < 2}.

(4.45)

42u− 104u+ u = q(x, y)− u4, (x, y) ∈ Ω

u(x
′
, y
′
) = 1

2

∫ 1

0

∫ 2

0
xyu(x, y)dxdy + g(1)(x

′
, y
′
), (x

′
, y
′
) ∈ ∂Ω

(4u)(x
′
, y
′
) = 1

2

∫ 1

0

∫ 2

0
xy(4u)(x, y)dxdy − g(0)(x

′
, y
′
), (x

′
, y
′
) ∈ ∂Ω,

where λ0 = 5
4
π2, φ(x, y) = sin(πx) sin(πy

2
), α = (λ2

0+10λ0+1)−1, q(x, y) = (1−αφ(x, y))4+

1 − φ(x, y), g(1)(x
′
, y
′
) = 1

2
+ 2 α

π2 and g(0)(x
′
, y
′
) = 5

2
α. Clearly α̂i,j = 0 and α̃i,j = 2 are

lower and upper solutions for (4.45) and thus by Theorem 4.3.1, (4.45) has a unique

solution. The corresponding coupled system for (4.45) is given by

(4.46)
−4hui,j + ui,j = vi,j, −4hvi,j + 9vi,j = 8ui,j − u4

i,j + qi,j, (i, j) ∈ Ωh,

ui,j = J [x
′
i, y

′
j, u] + g

(1)
i,j , vi,j = J [x

′
i, y

′
j, v] + g

(2)
i,j , (x

′
i, y

′
j) ∈ ∂Ωh,

where g
(2)
i,j = g

(0)
i,j + g

(1)
i,j . Clearly, (α̂i,j, β̂i,j) = (0, 0) and (α̃i,j, β̃i,j) = (2, 2) serve as the

lower and upper solutions of (4.46). Thus {(αnk , βnk )} and {(αnk , β
n

k)} converge to the
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unique solution (u∗i,j, v
∗
i,j) = (1− αφ(xi, yj), 1− α(1 + λ0)φ(xi, yj)) due to Theorem 4.4.1.

For the stopping criterion ε = 10−8, Table 4.3 provides the numerical error, order and

number of iterations for the proposed scheme with various mesh sizes. For a fixed number

of partitions N = 100, the number of iterations for the proposed scheme and the scheme

in [83] is given in Table 4.4. The basic computation algorithms (Picard, Gauss-Seidel and

Jacobi) studied in [83] are compared with the algorithms proposed in Section 4.5. This

comparison study for the stopping criterion ε = 10−4 and g
(1)
i,j = g

(2)
i,j = 0 are provided in

Table 4.5 for various mesh sizes. For ε = 10−8, Table 4.6 presents a comparison study

between the proposed scheme and the scheme in [83] for various initial guesses. For

N = 50, it can be observed that the scheme in [83] fails to converge when the initial

guess is chosen away from the exact solution whereas the proposed scheme converges even

for an initial guess chosen comparatively much away from the exact solution. Hence this

benchmark problem guarantees that the proposed iterative scheme not only accelerates

the scheme in [83] but also provides a greater flexibility in choosing the initial guess.

Example 4.8.3.

Consider the following two-dimensional problem defined on the rectangular domain

Ω = {(x, y) : 0 < x < 1, 0 < y < 2}.

(4.47)
42u− 54u+ 2u = (1− u)e−u + q(x, y), (x, y) ∈ Ω

u(x
′
, y
′
) =

∫ 1

0

∫ 2

0
x2yu(x, y)dxdy, (4u)(x

′
, y
′
) = −g(0)(x

′
, y
′
), (x

′
, y
′
) ∈ ∂Ω,

where q(x, y) = 8 + 10x(1 − x) + 10y(2 − y) + 2w − (1 − w)e−w, g(0)(x
′
, y
′
) = 2x

′
(1 −

x
′
) + 2y

′
(2 − y′) and w(x, y) = 1

5
+ xy(1 − x)(2 − y). Clearly, α̂i,j = 0 and α̃i,j = 8 are

lower and upper solution for (4.47) and Theorem 4.3.1 assures the existence of a unique

solutions of (4.47). The corresponding coupled system for (4.45) is given by

(4.48)

−4hui,j + ui,j = vi,j, −4hvi,j + 4vi,j = 2ui,j + (1− ui,j)e−ui.j + qi,j; (i, j) ∈ Ωh,

ui,j = J [x
′
i, y

′
j, u], vi,j = J [x

′
i, y

′
j, u] + g

(0)
i,j ; (x

′
i, y

′
j) ∈ ∂Ωh.

Clearly, (α̂i,j, β̂i,j) = (0, 0) and (α̃i,j, β̃i,j) = (8, 8) serve as the lower and upper solutions of

(4.48). Hence by Theorem 4.4.1, {(αnk , βnk )} and {(αnk , β
n

k)} converge to the unique solution

(u∗i,j, v
∗
i,j) = (1

5
+ xiyj(1− xi)(2− yj), 1

5
+ xiyj(1− xi)(2− yj) + 2xi(1− xi) + 2yj(2− yj)).
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Table 4.7 provides the numerical error, order and number of iterations for the stopping

criterion ε = 10−8. The number of iterations for the proposed scheme and the scheme in

[83] are given in Table 4.8 for a fixed number of partitions N = 100.

4.9. Conclusion

An efficient accelerated iterative scheme is obtained to solve a class of fourth order

elliptic equations with nonlocal boundary conditions. The monotone property as well as

the convergence of the proposed iterative scheme are obtained for both the continuous and

discretized cases. The efficiency of the proposed numerical scheme is illustrated through

the numerical implementation. The higher laxity in choosing the initial guess is also a

significant contribution of the proposed iterative scheme.

Figure 4.1. Monotone

convergence of {αni , αni }

Figure 4.2. Monotone

convergence of {βni , β
n

i }

Table 4.1. Numerical results for Example 4.8.1

N 8 16 32 64 128

Error 4.8498× 10−5 3.0315× 10−6 1.8979× 10−7 1.3081× 10−8 2.2385× 10−9

Order 3.9998 3.9976 3.8589 2.5469 −

Iterations 4 4 4 4 4

99



Table 4.2. Comparison of number of iterations for Example 4.8.1

ε 10−4 10−8 10−12

Scheme Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Iterations 11 3 19 4 27 6

Table 4.3. Numerical results for Example 4.8.2

N 8 16 32 64 128

Error 1.0788× 10−4 2.6666× 10−5 6.6508× 10−6 1.6646× 10−6 4.1913× 10−7

Order 2.0164 2.0034 1.9984 1.9897 −

Iterations 6 6 6 6 6

Table 4.4. Comparison of number of iterations for Example 4.8.2

ε 10−5 10−7 10−9

Scheme Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Iterations 20 4 27 6 34 7

Table 4.5. Comparison of different computational algorithms for Example

4.8.2

N 10 20 40

Scheme Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Picard 18 4 18 4 18 4

Gauss-Seidel 185 127 726 512 2897 2063

Jacobi 361 219 1449 882 5800 3538
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Table 4.6. Comparison of number of iterations for Example 4.8.2

(α̃i,j, β̃i,j) (6, 6) (7, 7) (35, 35) (36, 36)

Scheme Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Iterations 35 6 − 7 − 10 − −

Table 4.7. Numerical results for Example 4.8.3

N 8 16 32 64 128

Error 1.2798× 10−4 7.9986× 10−6 5.0009× 10−7 3.1453× 10−8 2.3055× 10−9

Order 4.0000 3.9995 3.9909 3.7700 −

Iterations 9 9 9 9 9

Table 4.8. Comparison of number of iterations for Example 4.8.3

ε 10−5 10−7 10−9

Scheme Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Scheme

in [83]

Proposed

Scheme

Iterations 37 6 49 8 60 10
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CHAPTER 5

A CLASS OF NONLINEAR PARABOLIC

INTEGRO-DIFFERENTIAL EQUATIONS OF VOLTERRA

TYPE

This chapter1 supplies a finite difference method based monotone iterative technique

to solve an important class of Volterra type parabolic partial integro-differential equations.

5.1. Introduction

A wide variety of physical and biological problems arising from nuclear reactor models

[6, 72, 66, 64, 88, 89] and population models [39] are dealt by using nonlinear parabolic

integro-differential equations of the form

(5.1)

θ ∂z
∂t
− ∂2z

∂x2
− az + bz2 + czz1 = q1(x, t), (x, t) ∈ ω × (0, T ]

z(x, t) = h1(x, t), (x, t) ∈ ∂ω × (0, T ]

z(x, 0) = ψ1(x), x ∈ ω,

where θ, a ∈ R+, b, c ∈ R+ ∪ {0}, z1 stands for
∫ t

0
κ(t − s)z(x, s)ds, ω is a connected

bounded domain in Rn (n = 1, 2, · · · ), h1, ψ1 are smooth functions and κ is a non-negative

continuous function in their domains.

Recently in [13] and [76],finite difference method based on monotone iterations are

studied for a class of nonlinear parabolic integro-differential equation of Volterra and

Fredholm types respectively. More specifically in [13], existence, uniqueness, convergence

analysis in terms of stopping criteria together with the monotone property of the iterative

scheme for the discretized problem are obtained for the governing equation ut − Lu +

1This chapter forms the paper by L.A. Sunny and V. A. Vijesh which is under preparation.



f(x, t, u) +
∫ t

0
g0(x, t, s, u(x, s))ds = 0 with Dirichlet initial and boundary conditions and

Lu being
∑

α=1 κ
∂
∂xα

(
D(x, t) ∂u

∂xα

)
+ vα(x, t) ∂u

∂xα
.

By utilizing the change of variable u(x, t) = exp(λt)z(x, t) where λ is a constant, (5.1)

can be rewritten as follows for a broader class of functions:

(5.2)

∂u
∂t
− 1

θ
∂2u
∂x2

+ f(u, v) = q(x, t), (x, t) ∈ ω × (0, T ]

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ]

u(x, 0) = ψ(x), x ∈ ω,

where v(x, t) stands for
∫ t

0
exp(λs)κ(t−s)u(x, s)ds, f(u, v) = a θλ−1

θ
u(x, t)+ b

θ
exp(λt)u2(x, t)+

c
θ
u(x, t)v(x, t), h(x, t) = exp(−λt)h1(x, t), ψ(x) = ψ1(x) and q(x, t) = exp(−λt)q1(x, t).

Note that one can choose λ so large that all the first and second derivatives of f with

respect to u and v are non-negative. The monotone property, convergence analysis an

error estimate in terms of stopping criteria are derived for the more general nonlinear

integro-differential equation of Volterra type.

This chapter is organised as follows. In Section 5.2, the basic definitions and results

that are used in the subsequent sections are provided. A detailed convergence analysis of

the nonlinear difference scheme is rendered in Section 5.3. The numerical implementation

is done in Section 5.4 to illustrate the efficacy of the proposed numerical scheme.

5.2. Construction of the Proposed Scheme

The discretization as well as the construction of minimal and maximal sequences

are presented in this section for the following Volterra type partial integro-differential

equation:

∂u
∂t
− 1

θ
∂2u
∂x2

+ f(u, v) = q(x, t), (x, t) ∈ ω × (0, T ]

u(x, t) = h(x, t), (x, t) ∈ ∂ω × (0, T ]; u(x, 0) = ψ(x), x ∈ ω,

where v(x, t) =
∫ t

0
κ(t, s)u(x, s)ds and the functions f, q, h, ψ are smooth and κ is non-

negative continuous in their respective domains. Let ωh and ωτ be the corresponding

meshes for the space and time domains respectively and h and τk denote the step sizes

in x and t directions respectively with t0 = 0. Applying backward and central difference

104



approximations for time and space respectively in (5.2), one can get the following:

(5.3)

LU(p, tk) + f(p, tk, U, V )− τ−1
k U(p, tk−1) = Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

U(p, tk) = h(p, tk), (p, tk) ∈ ∂ωh × (ωτ r {0})

U(p, 0) = ψ(p), p ∈ ωh,

where ∂ωh denotes the boundary of ωh

LU(p, tk) =
1

θ
LhU(p, tk) + τ−1

k U(p, tk),

LhU(p, tk) = d(p, tk)U(p, tk)−
∑

l′∈σ′ (l)

a(l
′
, tk)U(l

′
, tk),

where σ
′
(l) = σ(l) r {l}, σ(l) is a stencil of the scheme at an interior mesh point l ∈ ωh.

Assume that ωh is connected. Throughout this chapter, the coefficients of Lh satisfy the

following conditions similar to (3) in [13]:

(5.4)
d(p, tk) ≥ 0, a(l

′
, tk) ≥ 0, l

′ ∈ σ′(l);

d(p, tk)−
∑

l
′∈σ′ (l) a(l

′
, tk) ≥ 0, (p, tk) ∈ ωh × (ωτ r {0}).

The integral in (5.2) can be approximated as V (p, tk) ≈
∑k

i=1 τiκ(tk, ti)U(p, ti) using

Riemann sum. At each iteration, one has to solve a linear problem of the following type:

(5.5)
(L+ c)W (p, tk) = Ψ(p, tk, U), p ∈ ωh,

c(p, tk) ≥ 0, W (p, tk) = h(p, tk), p ∈ ∂ωh.

The following lemma is a useful tool to prove the monotone property of the proposed

iterative scheme.

Lemma 5.2.1. [90, P.261] Let the coefficients of the difference operator Lh satisfy (5.4)

and the mesh ωh be connected.

(i) If a mesh function W (p, tk) satisfies the conditions

(L+ c)W (p, tk) ≥ 0(≤ 0), p ∈ ωh

W (p, tk) ≥ 0(≤ 0), p ∈ ∂ωh,

then W (p, tk) ≥ 0(≤ 0) in ωh.
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(ii) The following estimate to the solution to (5.5) hold true.

(5.6) ‖W (., tk)‖ωh ≤ max

{
‖h(., tk)‖∂ωh ,max

p∈ωh

|Ψ(p, tk)|
c(p, tk) + τ−1

k

}
,

where ‖W (., tk)‖ωh = max
p∈ωh
|W (p, tk)| and ‖h(., tk)‖∂ωh = max

p∈∂ωh
|h(p, tk)|.

Definition 5.2.1. The mesh functions Û(p, tk) and Ũ(p, tk) are called coupled lower and

upper solutions of (5.3) if they satisfy Û(p, tk) ≤ Ũ(p, tk), (p, tk) ∈ ωh × ωτ , LÛ(p, tk) + f(p, tk, Û , Ṽ )− τ−1
k Û(p, tk−1) ≤ Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

Û(p, tk) ≤ h(p, tk), p ∈ ∂ωh; Û(p, 0) ≤ ψ(p), p ∈ ωh

and LŨ(p, tk) + f(p, tk, Ũ , V̂ )− τ−1
k Ũ(p, tk−1) ≥ Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

Ũ(p, tk) ≥ h(p, tk), p ∈ ∂ωh; Ũ(p, 0) ≥ ψ(p), p ∈ ωh.

For a fixed time step tk and a given pair of ordered lower and upper solutions of (5.3),

the sector is defined as

< Û(p, tk), Ũ(p, tk) >= {U(p, tk) : Û(p, tk) ≤ U(p, tk) ≤ Ũ(p, tk), p ∈ ωh}.

Throughout this chapter, assume that f and the time step τk satisfy the following hy-

potheses:

(H1) All the first and second derivatives of f with respect to u and v exist as a nonneg-

ative continuous function in ω × [0, T ].

(H2) The kth time step satisfies

τk <
√

1
γM
, γ = max

(t,s)∈[0,T ]×[0,T ]
κ(t, s)

0 ≤ ∂f
∂u

(p, tk, U, V ) ≤ µ, on < Û(p, tk), Ũ(p, tk) >

0 ≤ ∂f
∂v

(p, tk, U, V ) ≤M on < Û(p, tk), Ũ(p, tk) >,

where µ and M are positive constants. Using Û(p, tk) and Ũ(p, tk) as the initial iterations,

motivated from [76], two sequences namely minimal sequence {Un+1
−1 (p, tk)} and maximal
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sequence {Un+1
1 (p, tk)} respectively can be generated as follows:

(5.7)

(L+ µ)Un+1
−1 (p, tk) = µUn

−1(p, tk)− f(p, tk, U
n
−1, V

n
1 ) + τ−1

k U−1(p, tk−1)

+Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

Un+1
−1 (p, tk) = h(p, tk), p ∈ ∂ωh, U−1(p, t0) = ψ(p), p ∈ ωh

(5.8)

(L+ µ)Un+1
1 (p, tk) = µUn

1 (p, tk)− f(p, tk, U
n
1 , V

n
−1) + τ−1

k U1(p, tk−1)

+Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

Un+1
1 (p, tk) = h(p, tk), p ∈ ∂ωh, U1(p, t0) = ψ(p), p ∈ ωh,

where U−1(p, tk) = U
nk
−1(p, tk) and U1(p, tk) = Unk

1 (p, tk) are the approximations of the

exact solution on time step tk and n = 0, 1, · · · . Clearly the proposed sequences in (5.7)

and (5.8) are well defined.

5.3. Convergence Analysis

The monotone property of the sequences defined by (5.7) and (5.8) along with the

existence and uniqueness of the solution for (5.3) are deduced in this section. The follow-

ing theorem renders the monotone property of the proposed iterative schemes and their

convergence to the unique solution of (5.3).

Theorem 5.3.1. Let Û(p, tk) and Ũ(p, tk) be a pair of ordered lower and upper so-

lutions of (5.3) respectively. Then the minimal sequence {Un+1
−1 (p, tk)} and the max-

imal sequence {Un+1
1 (p, tk)} converge monotonically to the unique solution of (5.3) in

< Û(p, tk), Ũ(p, tk) > and satisfy

(5.9) Û(p, tk) ≤ Un
−1(p, tk) ≤ Un+1

−1 (p, tk) ≤ Un+1
1 (p, tk) ≤ Un

1 (p, tk) ≤ Ũ(p, tk)

for p ∈ ωh and n ∈ N.

Proof. First the monotone property of (5.7) and (5.8) at the time step t1 is proved. For

n = 0 and k = 1 in (5.7), one can get

(L+ µ) (U1
−1 − Û)(p, t1) ≥ −LÛ(p, t1)− f(p, t1, Û , Ṽ ) + τ−1

1 Û(p, t0) +Q(p, t1) ≥ 0,
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p ∈ ωh with (U1
−1 − Û)(p, t1) ≥ 0, p ∈ ∂ωh. Thus Lemma 5.2.1 leads to Û(p, t1) ≤

U1
−1(p, t1), p ∈ ωh. Similarly from (5.2.1) and (5.8) it can be concluded that U1

1 (p, t1) ≤

Ũ(p, t1), p ∈ ωh. Let W = U1
1 − U1

−1. Now

(L+ µ)W (p, t1) = µ(Ũ − Û)(p, t1) + f(p, t1, Û , Ṽ )− f(p, t1, Ũ , V̂ )

=
(
µ− ∂f

∂u
(p, t1, û, v̂)

)
(Ũ − Û)(p, t1) + ∂f

∂v
(p, t1, û, v̂)(Ṽ − V̂ )(p, t1)

[(Û , V̂ ) ≤ (û, v̂) ≤ (Ũ , Ṽ )]

(L+ µ)W (p, t1) ≥ τ1κ(t1, t1)∂f
∂v

(p, t1, û, v̂)(Ũ − Û)(p, t1).

Thus(L+ µ)W (p, t1) ≥ 0; p ∈ ωh; W (p, t1) = h(p, t1) − h(p, t1) = 0, p ∈ ∂ωh and by

Lemma 5.2.1, W (p, t1) ≥ 0 in ωh. Consequently U1
−1(p, t1) ≤ U1

1 (p, t1). Hence

(5.10) Û(p, t1) ≤ U1
−1(p, t1) ≤ U1

1 (p, t1) ≤ Ũ(p, t1), p ∈ wh.

Assume that for some n ∈ N,

Û(p, t1) ≤ Un−1
−1 (p, t1) ≤ Un

−1(p, t1) ≤ Un
1 (p, t1) ≤ Un−1

1 (p, t1) ≤ Ũ(p, t1), p ∈ wh.

Let W = Un+1
−1 − Un

−1. Now

(L+ µ)W (p, t1) = −LUn
−1(p, t1)− f(p, t1, U

n
−1, V

n
1 ) + τ−1

1 U−1(p, t0) +Q(p, t1)

= µ(Un
−1 − Un−1

−1 )(p, t1) + f(p, t1, U
n−1
−1 , V n−1

1 )− f(p, t1, U
n
−1, V

n
1 )

=
(
µ− ∂f

∂u
(p, t1, û, v̂)

)
(Un
−1 − Un−1

−1 )(p, t1) + ∂f
∂v

(p, t1, û, v̂)(V n−1
1 − V n

1 )(p, t1)

[(Un−1
−1 , V n

1 ) ≤ (û, v̂) ≤ (Un
−1, V

n−1
1 )]

(L+ µ)W (p, t1) ≥ τ1κ(t1, t1)∂f
∂v

(p, t1, û, v̂)(Un−1
1 − Un

1 )(p, t1).

Thus (L+ µ)W (p, t1) ≥ 0; p ∈ ωh; W (p, t1) = 0, p ∈ ∂ωh and by Lemma 5.2.1 one can

obtain Un
−1(p, t1) ≤ Un+1

−1 (p, t1), p ∈ ωh. Similarly from (5.8) it can be concluded that

Un+1
1 (p, t1) ≤ Un

1 (p, t1), p ∈ ωh. Now let W = Un+1
1 − Un+1

−1 .

(L+ µ)W (p, t1) = µ(Un
1 − Un

−1)(p, t1) + f(p, t1, U
n
−1, V

n
1 )− f(p, t1, U

n
1 , V

n
−1)

=
(
µ− ∂f

∂u
(p, t1, û, v̂)

)
(Un

1 − Un
−1)(p, t1) + ∂f

∂v
(p, t1, û, v̂)(V n

1 − V n
−1)(p, t1)

[(Un
−1, V

n
−1) ≤ (û, v̂) ≤ (Un

1 , V
n

1 )]

(L+ µ)W (p, t1) ≥ τ1κ(t1, t1)∂f
∂v

(p, t1, û, v̂)(Un
1 − Un

−1)(p, t1).
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Thus (L+ µ)W (p, t1) ≥ 0; p ∈ ωh; W (p, t1) = 0, p ∈ ∂ωh and by Lemma 5.2.1,

W (p, t1) ≥ 0 in ωh. Hence Un+1
−1 (p, t1) ≤ Un+1

1 (p, t1). Thus

Un
−1(p, t1) ≤ Un+1

−1 (p, t1) ≤ Un+1
1 (p, t1) ≤ Un

1 (p, t1), p ∈ ωh.

Consequently, the maximal sequence {Un
1 (p, t1)} and the minimal sequence {Un

−1(p, t1)}

are monotonically decreasing and increasing sequences respectively that satisfy (5.9). Let

nk and nk respectively denote the number of iterative steps applied for the time step tk

for the maximal and minimal sequences. Thus from (5.9) for k = 1,

(5.11) Û(p, t1) ≤ U
n1
−1(p, t1) ≤ Un1

1 (p, t1) ≤ Ũ(p, t1), p ∈ ωh.

Due to (5.11) and Definition 5.2.1, one can have

(5.12)
LÛ(p, t2) + f(p, t2, Û , Ṽ )− τ−1

2 U
n1
−1(p, t1) ≤ Q(p, t2), p ∈ ωh

LŨ(p, t2) + f(p, t2, Ũ , V̂ )− τ−1
2 Un1

1 (p, t1) ≥ Q(p, t2), p ∈ ωh.

Hence Û(p, t2) and Ũ(p, t2) are coupled lower and upper solutions with respect to U
n1
−1(p, t1)

and Un1
1 (p, t1). Similarly by induction on k, k ≥ 2, it can proved that the minimal

sequence {Un
−1(p, tk)} and the maximal sequence {Un

1 (p, tk)} are monotonically increasing

and decreasing sequences respectively that satisfy (5.9).

Theorem 5.3.2. Under the hypotheses of Theorem 5.3.1, the nonlinear difference scheme

(5.3) has a unique solution.

Proof. From the above theorem it can be observed that for each time step tk, the lim-

its lim
n→∞

Un
1 (p, tk) = U∗1 (p, tk) and lim

n→∞
Un
−1(p, tk) = U∗−1(p, tk) exist for p ∈ ωh. Define

W (p, tk) = U∗1 (p, tk)− U∗−1(p, tk), p ∈ ωh, k > 0. Now for k = 1, one have

(L+ µ) (Un+1
1 − Un

1 )(p, t1) = −LUn
1 (p, t1)− f(p, t1, U

n
1 , V

n
−1) + τ−1

1 U1(p, t0) +Q(p, t1).

As n→∞,

LU∗1 (p, t1) + f(p, t1, U
∗
1 , V

∗
−1)− τ−1

1 U∗1 (p, t0) = Q(p, t1).

Similarly

LU∗−1(p, t1) + f(p, t1, U
∗
−1, V

∗
1 )− τ−1

1 U∗−1(p, t0) = Q(p, t1).
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Thus

LW (p, t1) + f(p, t1, U
∗
1 , V

∗
−1)− f(p, t1, U

∗
−1, V

∗
1 ) = 0, p ∈ ωh

W (p, t1) = 0, p ∈ ∂ωh.

Consequently for p ∈ ωh,

(L+ ∂f
∂u

(p, t1, û, v̂))W (p, t1) = ∂f
∂v

(p, t1, û, v̂)(V ∗1 − V ∗−1)(p, t1),

= ∂f
∂v

(p, t1, û, v̂)τ1κ(t1, t1)W (p, t1).

[(U∗−1, V
∗
−1) ≤ (û, v̂) ≤ (U∗1 , V

∗
1 )]

Hence by Lemma 5.2.1, one can obtain

w(t1) ≤ τ1γM

τ−1
1

w(t1),

where w(t1) = ‖W (., tk)‖ωh . Since w(t1) ≥ 0 and due to (H2), w(t1) = 0. Hence

U∗1 (p, t1) = U∗−1(p, t1) = U∗(p, t1) and

LU∗(p, t1) + f(p, t1, U
∗, V ∗)− τ−1

1 U∗(p, t0) = Q(p, t1), p ∈ ωh.

Hence U∗(p, t1) is the unique solution of (5.3) at t1. Similar to the above argument at

k = 2, one can have

(L+ ∂f
∂u

(p, t2, û, v̂))W (p, t2) = ∂f
∂v

(p, t2, û, v̂)(V ∗1 − V ∗−1)(p, t2),

= ∂f
∂v

(p, t2, û, v̂)[τ1κ(t1, t2)W (p, t1) + τ2κ(t2, t2)W (p, t2)]

[(U∗−1, V
∗
−1) ≤ (û, v̂) ≤ (U∗1 , V

∗
1 )]

= ∂f
∂v

(p, t2, û, v̂)τ2κ(t2, t2)W (p, t2),

p ∈ ωh with W (p, t2) = 0, p ∈ ∂ωh. Hence by Lemma 5.2.1, one can obtain

w(t2) ≤ τ2γM

τ−1
2

w(t2).

Since w(t2) ≥ 0 and due to (H2), w(t2) = 0. Hence U∗1 (p, t2) = U∗−1(p, t2) = U∗(p, t2)

and LU∗(p, t2) + f(p, t2, U
∗, V ∗)− τ−1

2 U∗(p, t1) = Q(p, t2), p ∈ ωh. Hence U∗(p, t2) is the

unique solution of (5.3) at t2. Thus by induction on k, one can prove that w(tk) = 0 for

k ≥ 1.

For the rest of the discussion, the following hypothesis also holds.
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(H3) The kth time step satisfies

τk < min(
√

1
γM
, ν
γM

), ν ≤ ∂f
∂u

(p, tk, U, V ) ≤ µ on < Û(p, tk), Ũ(p, tk) >

where ν is a positive constant.

The following theorem provides the error estimate in terms of the stopping criteria

(5.13)
‖ (L+ µ) (Unk+1

1 (p, tk)− Unk
1 (p, tk))‖ωh ≤ ε and

‖ (L+ µ) (U
nk+1
−1 (p, tk)− U

nk
−1(p, tk))‖ωh ≤ ε,

where ε > 0.

Theorem 5.3.3. Under the hypotheses of Theorem 5.3.1, the following estimate holds.

max
tk∈ωτ

(
‖Un

1 (p, tk)− U∗(p, tk)‖ωh + ‖Un
−1(p, tk)− U∗(p, tk)‖ωh

)
≤ 2Tε,

where U∗(p, tk) is the unique solution of (5.3).

Proof. From (5.8) for U1(p, tk) = Unk
1 (p, tk), k ≥ 1,

(L+ µ) (Unk
1 − U

nk+1
1 )(p, tk) = LU1(p, tk) + f(p, tk, U1, V−1)

−τ−1
k U1(p, tk−1)−Q(p, tk), (p, tk) ∈ ωh × (ωτ r {0})

U1(p, tk) = h(p, tk), p ∈ ∂ωh, U1(p, t0) = ψ(p), p ∈ ωh.

Define W1(p, tk) = U1(p, tk)−U∗(p, tk) and W−1(p, tk) = U−1(p, tk)−U∗(p, tk) for p ∈ ωh.

LW1(p, tk) + f(p, tk, U1, V−1)− f(p, tk, U
∗, V ∗) = τ−1

k W1(p, tk−1)

+ (L+ µ) (Unk
1 − U

nk+1
1 )(p, tk)

(L+ ∂f
∂u

(p, tk, û, v̂))W1(p, tk) = (L+ µ) (Unk
1 − U

nk+1
1 )(p, tk)

+τ−1
k W1(p, tk−1)− ∂f

∂v
(p, tk, û, v̂)τkκ(tk, tk)W−1(p, tk),

p ∈ ωh; W1(p, tk) = 0, p ∈ ∂ωh. Hence using Lemma 5.2.1 and (H2), one can have

(5.14) w1(tk) ≤
1

τ−1
k + ν

(
ε+ τ−1

k w1(tk−1) + τkγMw−1(tk)
)
.

Similarly from (5.7), one can obtain

(5.15) w−1(tk) ≤
1

τ−1
k + ν

(
ε+ τ−1

k w−1(tk−1) + τkγMw1(tk)
)
.
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Let W (p, tk) = W1(p, tk) +W−1(p, tk). Adding (5.14) and (5.15),

w(tk) ≤
1

τ−1
k + ν

(
2ε+ τ−1

k w(tk−1) + τkγMw(tk)
)
.

Due to (H3), it reduces to w(tk) ≤ 2ετk + w(tk−1). Since w1(t0) = 0, by an induction

argument on k, one can conclude that w(tk) ≤ 2ε
∑k

l=1 τl ≤ 2Tε. This proves the theorem.

The following theorem guarantees the convergence of the solution of the nonlinear differ-

ence scheme (5.3) to the solution of (5.2) as the mesh sizes tend to zero.

Theorem 5.3.4. Let U∗(p, tk) and u∗(p, tk) be the unique solutions of (5.3) and (5.2)

respectively and Ξ(p, tk) be the local truncation error of u∗(x, t) on (5.3). The error in the

nonlinear difference scheme (5.3) satisfies the following inequality.

(5.16) e(tk) ≤ C(T )ξ, ξ = max
k≥1

ξ(tk),

where E(p, tk) = U∗(p, tk) − u∗(p, tk), e(tk) = ‖E(p, tk)‖ωh, ξ(t, k) = ‖Ξ(p, tk)‖ωh and

C(T ) = T exp(MT 2

2
).

Proof. The proof is similar to the proof of Theorem 2 in [13] and hence is omitted.

5.4. Numerical Examples

In this section, the proposed iterative scheme is illustrated by applying to different

partial integro-differential equations arising from mathematical models. Throughout this

section, N denotes the number of partitions and n denotes the number of iterations

required for the stopping criteria (5.13) with ε = 10−5. Moreover, a uniform mesh size is

used to demonstrate the algorithm.

Example 5.4.1.

Consider the partial integro-differential equation (5.1) with a = 1, b = 0, c = 1, θ =

1, κ = 1, w = [0, 1], T = 1, q1(x, t) = exp(2t)(x+xt+ x2t
2

(exp(2t)(t− 1
2
) + 1

2
)) and initial

112



and boundary conditions z(x, 0) = 0, 0 ≤ x ≤ 1; z(0, t) = 0, z(1, t) = exp(2t)t, 0 ≤ t ≤

1. After applying change of variable z(x, t) = exp(2t)u(x, t), it leads to

(5.17)
∂u

∂t
− ∂2u

∂x2
+ u+ u

∫ t

0

exp(2s)u(x, s)ds = q(x, t), 0 < x < 1, 0 < t ≤ T

with the initial and boundary conditions u(x, 0) = 0, 0 ≤ x ≤ 1; u(0, t) = 0, u(1, t) =

t, 0 ≤ t ≤ 1. Consequently, all the conditions hold true for (5.17) with Û = 0 and Ũ = 6.

Clearly u(x, t) = xt is the solution of (5.17). Table 5.1 provides the numerical error at

T = 1, its order and the number of iterations where error(h) = ‖U1(., T ) − u(., T )‖ωh ,

u(x, t) is the exact solution and order(h) = log2

(
error(h)

error(h
2

)

)
.

Example 5.4.2.

Consider the partial integro-differential equation (5.1) with a = 1, b = 1, c = 1, θ =

1, κ = 1, w = [0, 1]× [0, 1], T = 1, ψ(x) = x1(x1−1)x2(x2−1), φ(x) = x1(x1−1)+x2(x2−

1), q1(x, t) = exp(t) (ψ(x)− 2tφ(x)− t exp(t)ψ2(x) + tψ2(x)) and initial and boundary

conditions z(x, t) = 0, (x, t) ∈ ∂ω × (0, T ], z(x, 0) = 0, x ∈ ω. After applying change

of variable z(x, t) = exp(t)u(x, t), it leads to

(5.18)
∂u

∂t
− ∂2u

∂x2
1

− ∂2u

∂x2
2

+ (λ− 1)u+ exp(λt)u2 + u

∫ t

0

exp(λs)u(x, s)ds = q(x, t),

(x, t) ∈ ω × (0, T ] with the initial and boundary conditions u(x, t) = 0, (x, t) ∈ ∂ω ×

(0, T ], u(x, 0) = 0, x ∈ ω. Consequently, all the conditions hold true for (5.18) with

Û = 0 and Ũ = 3. Clearly u(x, t) = tψ(x) is the solution of (5.18). Table 5.2 provides

the numerical error at T = 1, its order and the number of iterations.

5.5. Conclusion

In this chapter, monotone iterations based on finite difference is proposed for an im-

portant class of parabolic partial integro-differential equations of Volterra type. This

result also extends the recent work of [13] to problems of higher nonlinearity. The mono-

tone property as well as the convergence of the new iterative scheme are obtained. The
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efficiency of the proposed numerical scheme is illustrated through its numerical imple-

mentation.

Table 5.1. Numerical results for Example 5.4.1

N 128 256 512 1024

Error 7.1285× 10−4 3.5561× 10−4 1.7760× 10−4 8.8746× 10−5

Order 1.0033 1.0017 1.0009 −

No. of iterations 6 6 5 5

Table 5.2. Numerical results for Example 5.4.2

N 16 32 64 128

Error 1.2473× 10−5 6.1388× 10−6 3.0467× 10−6 1.5183× 10−6

Order 1.0228 1.0107 1.0048 −

No. of iterations 6 6 5 5
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