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SYNOPSIS 

In recent years research on BODIPY dyes has gained momentum. BODIPY dyes 

outdistance themselves from contemporary fluorophores due to their spectacular 

photonic properties and diverse applications. They exhibit strong absorption, high 

fluorescence quantum yield and excellent thermal and photochemical stability. Their 

diverse functionalization ability makes them one of the most explored fluorophore. 

The photonic properties of BODIPYs can be tuned by incorporating suitable 

functionality at the appropriate position. Their high electron affinity makes them 

strong acceptor. Incorporation of donor groups on the BODIPYs results in donor-

acceptor (D-A) systems. 

Donor-acceptor (D-A) molecules are highly polarized molecular systems, which 

exhibit intramolecular charge transfer and strong non-linear optical behaviour. The 

strength of the donor-acceptor interaction depends on the electron donating ability of 

the donor, electron affinity of the acceptor and nature of the spacer. 

The ferrocene is undoubtedly strong electron donor and exhibits high thermal 

and photochemical stability. The reversible oxidation of metal centre from Fe(II) to 

Fe(III) makes ferrocene a highly reversible redox centre and an ideal candidate for 

diverse electrochemical studies. Ferrocene is widely studied donor in D-A systems, 

and coupled with various acceptors like porphyrin, perylenediimide, benzothiazole, 

triazene and many more.  

The BODIPYs can be functionalized at α, β and meso positions. The 

functionalization at these positions perturbs the photonic properties of BODIPYs 

significantly. We have functionalized various positions of BODIPYs with ferrocenyl 

group through varying length of spacers and evaluated different positions of 

BODIPY for their superior electronic communication and further applications into 

efficient D-A systems.  

The main objectives of the present study are, 

 To design and synthesise β-substituted ferrocenyl BODIPYs connected 

through different spacers and study their D-A interaction. 
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 To design and synthesise meso alkynylated ferrocenyl BODIPYs and to 

compare the effect of alkynylation of BODIPYs at α, β and meso positions. 

 To explore the alkynylation at meso position of the BODIPYs for the design 

and synthesis of different D-A systems, and to study their quenching of 

fluorescence as an indicator of donor strength of different aryl substituents. 

 To design and synthesise heteroatom connected ferrocenyl BODIPYs and 

study the effect of heteroatom substitution on their properties. 

 To study the reactivity and electron deficient nature of 8-chloro BODIPY for 

the synthesis of meso enamine substituted BODIPYs. 

The first Chapter describes the detailed historical development of various 

synthetic, and functionalization strategies of BODIPYs, and their utility in diverse 

fields. The recent functionalization strategies are summarized and further explored 

into D-A systems in subsequent Chapters. 

The second Chapter summarizes general experimental methods, characterization 

techniques and the details of instruments used for characterization. 

Chapter 3: Donor-acceptor β-substituted ferrocenyl BODIPYs. 

 
In this chapter a series of donor-acceptor ferrocenyl substituted BODIPYs have 

been designed, and synthesized via palladium-catalysed Suzuki, and Sonogashira 

cross-coupling reactions. The ferrocene and BODIPYs were connected through 

varying length of spacers. The UV-visible absorption results indicate intramolecular 
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charge transfer from the ferrocene to the BODIPY. The incorporation of ferrocenyl 

group on BODIPY reduces the fluorescence quantum yield. The fluorescence 

quantum yields were drastically reduced, where the ferrocenyl group was strongly 

communicating with the BODIPY. Whereas the fluorescence quantum yields were 

relatively better where the ferrocenyl group was attached through the poorly 

communicating meta linkage. The single crystal X-ray structure of ferrocenyl 

BODIPYs reveals that the conformations of the two cyclopentadienyl rings of the 

ferrocence are the function of conjugation length, and steric crowding. The 

ferrocenyl moiety directly attached to BODIPY unit by single bond, shows 

staggered conformation, whereas the ferrocenyl moiety attached to BODIPY via 

phenylacetylene linkage, shows eclipsed conformation. 

Chapter 4: Donor–acceptor meso-alkynylated ferrocenyl BODIPYs. 

 
In order to evaluate the effect of alkynylation on the α, β and meso positions 

of BODIPYs, meso-alkynylated ferrocenyl BODIPYs with varying conjugation 

length were designed, and synthesized using the palladium-catalyzed Sonogashira 

cross-coupling reaction of 8-chloro BODIPY with the corresponding 

ferrocenylethynes. These BODIPYs have been designed to improve the electronic 

communication between the donor ferrocene, and the acceptor BODIPY. The 

photonic, and electrochemical properties indicate strong charge transfer (CT) from 

ferrocene to the BODIPY. The meso alkynylated ferrocenyl BODIPYs exhibit red 
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shifted absorption than the α and β alkynylated ferrocenyl BODIPYs, reflecting 

better electronic conjugation in meso alkynylated BODIPYs. 

Chapter 5: Quenching of fluorescence as an indicator of donor-strength in meso 

arylethynyl BODIPYs. 

 

A series of meso arylethynyl BODIPYs were designed and synthesized by 

the Pd-catalyzed Sonogashira cross-coupling reaction. The effects of donor on the 

photophysical properties of the BODIPYs were explored. The DFT optimized 

structures and crystal structures show planar orientation of the donor group with 

respect to the acceptor BODIPY, which favors high degree of conjugation and 

induces strong donor-acceptor interaction. The quenching of fluorescence was 

correlated with the electron donating strength of the donor. Stronger the donor poor 

will be the quantum yield and vice versa. The anthracene, pyrene and 

triphenylamine moieties were found to have stronger electron donating ability than 

p-methoxyphenyl, phenanthrene, 1-naphthalene, biphenyl, and 2-naphthalene 

moieties. This was further supported by computational calculations and 

electrochemical analysis. 
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Chapter 6: Heteroatom connected ferrocenyl BODIPYs. 

 

A series of heteroatom connected ferrocenyl BODIPYs were designed and 

synthesized by the nucleophilic aromatic substitution reaction of 8‐chloro BODIPY, 

with ferrocenyl anilines and ferrocenyl phenols. The effects of heteroatom 

substitution at the meso position on the optical and electrochemical properties of the 

BODIPYs were studied. The absorption spectra of the BODIPYs containing 

nitrogen at the meso position show blue shift of 80 nm, whereas the BODIPYs 

containing oxygen at the meso position show blue shift of 50 nm compared to 8‐

chloro BODIPY. The DFT calculations reveal strong donor acceptor interactions. 

The TD-DFT studies indicate that the ferrocenyl group perturbs the HOMO energy 

levels and induces the absorption from HOMO-n energy levels, whereas the nature 

of heteroatom does not affect the HOMO but perturbs the LUMO energy level 

significantly. 
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Chapter 7: Oxidation of aliphatic tert-amines by 8-chloro BODIPY. 

NN
B

F F

N
R R

N
R R

NN
B

F F

Cl

CH2Cl2; RT
 

The electron deficient nature of 8-chloro BODIPY promotes the oxidation of 

aliphatic amines to enamines and in situ cross-coupling. This has been explored for 

the synthesis of various meso enamine substituted BODIPYs. The reaction 

conditions were optimized to achieve better yields. The reaction works well with 

aliphatic tert-amines bearing N-(CH-CH-) backbone. The N-alkyl substituents have 

strong influence on the properties of enamine substituted BODIPYs. The 

incorporation of enamines quenches the fluorescence of BODIPYs through 

intramolecular charge-transfer from enamine to the BODIPY. 
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Chapter 1 

General Introduction and Background  

1.1.BODIPYs 

In recent years research on BODIPY fluorophore has gained momentum due 

to its spectacular photonic properties.[1] They outdistance themselves from 

contemporary fluorophores due to strong absorption throughout the UV-Visible 

region, sharp fluorescence with high quantum yield, and excellent photochemical 

and thermal stability.[2] These unique properties make them an attractive candidate 

for wide range of applications in organic electronics, chemosensors, photovoltaics, 

NLO, bioimaging and photodynamic therapy.[3] The photonic properties of BODIPY 

fluorophore can be tuned by incorporating suitable functionality at appropriate 

position.[4] Thus the functionalization of BODIPYs is of interest to achieve the 

fluorophores of desired properties for specific applications.[5] 

The Scopus search on BODIPY reveals, substantial share of BODIPYs in 

scientific literature (Figure 1.1). About 2200 documents were published on 

BODIPYs in 2014. The Scopus analysis further highlights the applicability of 

BODIPYs in chemistry, biochemistry, materials science, engineering, physics, 

electronics, various therapeutic applications and many more fields.  

 

Figure 1.1. The Scopus analysis of the research on BODIPY fluorophore. 
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Chart 1.1. Nomenclature of s-indacene, dipyrromethane, dipyrromethene and 

BODIPY. 

The BODIPY consists of dipyrromethene moiety complexed with BF2 unit. The 

dipyrromethene is a bidentate ligand used in various metal complexes and exists in 

cis-trans isomeric forms. The complexation of dipyrromethene with BF2 makes it 

constrained into cyanine dyes and gives rigidity to the BODIPY framework, which 

prevents cis-trans isomerization. The BODIPYs are highly planar; but in certain 

BODIPYs the boron atom is slightly deviated from the average plane.[6]  

The IUPAC numbering system for 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene 

(BODIPY) dye is different than that used for dipyrromethane and dipyrromethene 

(Chart 1.1). However, the terms α, β and meso- are used in the same way for both 

dipyrromethene and BODIPYs. These nomenclature systems are widely used in 

recent literature and accepted worldwide.[7] 

The BODIPYs exhibit strong and narrow S0→S1 (π→π*) absorption band in the 

region of 500 – 525 nm (ɛ = 40000 – 80000 M-1.cm-1) with a shoulder at high energy 

region corresponding vibrational transition.[8] It also exhibits a weak absorption 

band around 375 nm corresponding to S0→S2 (π→π*) transition.[9] The BODIPYs 

emit a narrow band in the region of 530 – 560 nm. The emission is independent of 

excitation wavelength and mirror image of the absorption band. The BODIPY 

exhibits high thermal and photochemical stability and good solubility in wide range 

of solvents. The BODIPY derivatives show a range of colors in day light as well as 

under UV light (Figure 1.2). The BODIPY fluorophore have high electron affinity, 

which makes them a strong acceptor for donor-acceptor (D-A) systems.[10]  

The photonic properties of BODIPY fluorophore can be tuned by 

functionalization with appropriate substituent at α, β and meso positions. The 
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numerous synthetic methodologies and diverse functionalization ability makes them 

most studied fluorophore. In summary, the BODIPYs are a fluorophore of wide 

interest for their spectacular properties like; 

 Strong absorption throughout visible region, and extending into near-IR region. 

 High molar extinction coefficient. 

 Strong fluorescence, which results in high fluorescence quantum yield. 

 Excellent photochemical and thermal stability. 

 High electron affinity. 

 Tunable photonic properties. 

 Ease of synthetic functionalization. 

 
Figure 1.2. Colors of BODIPY derivatives in day light (A) and under UV light (B). 

1.2. Synthesis of BODIPYs 

The researchers are continuously exploring the BODIPYs for desirable 

properties. The BODIPY have emerged as fluorophore of interest for their 

application in the tunable laser dyes,[11] fluorescent labels for biomolecules and 

cellular imaging,[12] energy transfer cassettes,[13] fluorescent switches,[14] 

photosensitizers,[15] light-emitting devices,[16] drug delivery agents,[17] 

chemosensors[18] and solar cells.[19] The Life technologies (Formerly Molecular 

Probes) have commercially prepared vast number of BODIPY bio-conjugate 

derivatives.[20] The researchers from diverse fields have contributed immensely for 

the functionalization of BODIPY fluorophores. Milestones of these functionalization 

strategies are summarized in the following sections. 

1.2.1. History 

The BODIPY fluorophore was first discovered by Treibs and Kreuzer 

serendipitously in 1968. The reaction of 2,4-dimethylpyrrole with acetic anhydride 
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in the presence of BF3.OEt2 resulted mixture of mono- and di-acetylated BODIPY 

fluorophores, 1 and 2 (Scheme 1.1).[21]  

H
N

O

O

O

BF3.Et2O
N N

B
FF

O

N N
B

FF

O O
++

1 2
 

Scheme 1.1. Serendipitous discovery of BODIPY. 

The first water-soluble BODIPY fluorophore was synthesized by Wories and 

colleagues in 1985,[22] followed by significant work by Haugland and Kang on the 

BODIPY as fluorescent materials.[23]  

1.2.2. From pyrroles and acid chlorides 

The BODIPYs were synthesized from the dipyrromethene, which in turn was 

synthesized by the condensation reaction of the acid chloride and pyrrole.[24] The 

complexation of dipyrromethene with BF3·etherate in the presence of tertiary base 

results the BODIPY (Scheme 1.2). The substituted pyrroles and substituted acid 

chlorides were used to synthesize different BODIPY derivatives. 
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Scheme 1.2. Synthesis of BODIPYs from pyrroles and acid chlorides. 

1.2.3. From pyrroles and aldehydes 

This is the regularly used, classical route for the synthesis of BODIPYs. The 

acid catalyzed condensation reaction of aldehyde with pyrrole results 

dipyrromethane, which on oxidation with DDQ or p-chloranil result the 

dipyrromethene (Scheme 1.3).[25] The dipyrromethenes are unstable but on 

complexation with BF3·etherate in the presence of tertiary amine result the stable 

BODIPY fluorophore. The overall yield, by this method is about 40 – 60 %. The 

wide ranges of functional groups are compatible with these reaction conditions, but 

the use of aliphatic aldehydes has been not reported may be due to the experimental 
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complications with oxidizing agents. The use of substituted pyrroles and aldehydes 

resulted wide range of functionalized BODIPYs.  
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Scheme 1.3. Synthesis of BODIPYs from pyrroles and aldehydes. 

1.2.4. From pyrroles and acid anhydride 

The dipyrromethene can also be synthesized by condensation reaction of 

pyrroles with acid anhydride.[26] The dipyrromethene on complexation with 

BF3·etherate in the presence of tertiary amine results the BODIPY (Scheme 1.4). 

The important feature of synthesizing BODIPYs from acid anhydrides is that, the 

free carboxylic acid is produced, which may be used to attach the probe to target 

molecules. 
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Scheme 1.4. Synthesis of BODIPYs from pyrroles and acid anhydride. 

1.2.5. Synthesis of parent unsubstituted BODIPY 

Although wide range of BODIPYs were reported, their parent unsubstituted 

BODIPY was not reported until recently.  Their precursor dipyrromethene is highly 

unstable and its unblocked pyrrolic carbons are susceptible for electrophilic attack. 

In 2008-2009, three different routes for the synthesis of unsubstituted parent 

BODIPY were reported independently (Scheme 1.5).  
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Scheme 1.5. Synthesis of Parent unsubstituted BODIPY. 

In the first report (December, 2008) Jung and co-workers,[27] reacted pyrrole-2-

carboxaldehyde and unsubstituted pyrrole, in acidic conditions; followed by 

complexation with BF3.Et2O in the presence of a base (Path 1). The overall yield by 

this route was only 8 %. 

In the second report (March, 2009), Bruce and co-workers[28] (Path 2), carried 

out the oxidation of dipyrromethane to dipyrromethene by DDQ at -78 °C under 

inert atmosphere; followed by in situ complexation with BF3.Et2O in the presence of 

base DBU. The yield by this route was only 5-10 %. The structure of parent 

unsubstituted BODIPY was confirmed by 1H, 13C, 11B and 19F NMR and single 

crystal X-ray analysis. 

In the third report (July, 2009), Pena-Cabrera and co-workers (Path 3),[29] 

reacted 8-thiomethyl BODIPY and triethylsilane in presence of a catalytic amount of 

palladium and a stoichiometric amount of copper (I) thiophene-2-carboxylate 

(CuTc) in THF at 55 °C for 45 min. This route resulted parent unsubstituted 

BODIPY in 98 % yield.  

1.2.5.1. Properties of parent unsubstituted BODIPY 

The parent unsubstituted BODIPY exhibits high photostability (τ = 7.2 ns) but 

poor thermal stability. It decomposes above 50 °C temperature. It absorbs at 503 nm 

and emits at 512 nm with green fluorescence and high quantum yield (up to 93 %) in 

nonpolar and polar solvents, including water.  
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1.2.6. Synthesis of asymmetric BODIPY dyes  

The acid catalyzed MacDonald coupling-reaction of pyrrole-2-carboxaldehyde 

with α-free pyrrole resulted asymmetric dipyrromethene.[30] The dipyrromethene is 

generally isolated in its salt form, which on complexation with BF3·etherate in 

presence of base, usually a tertiary amine, affords the desired asymmetric BODIPY 

dye (Scheme 1.6). The yield of this reaction was high enough, but reduced 

significantly for electron deficient pyrroles due to self-condensation of pyrrole-2-

carboxaldehyde.  
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Scheme 1.6. Synthesis of asymmetric BODIPY dyes. 

1.3. Functionalization of the BODIPY framework 

The photonic properties of BODIPYs can be tuned by substituting it with 

suitable functionality at appropriate position. Variety of strategies have been 

developed for the functionalization of the BODIPY scaffold at the 8- (meso-), 2, 6-, 

3, 5-, 1, 7-positions and at the boron center. Numerous research groups are 

developing materials for various optoelectronic applications, and they have 

established several routes for the functionalization of BODIPYs. Some of them are 

discussed here. 

1.3.1. Knoevenagel condensation reaction 

The methyl substituents on the BODIPY core are acidic enough to participate in 

Knoevenagel condensation reaction with different aldehydes. The reaction resulted 

vinyl substituted BODIPYs (Scheme 1.7). The reaction is simple, straight forward 

and compatible with wide range of substituted aldehydes.[31] The BODIPYs can be 

decorated at α, β, βʹ and meso positions with different substituents to get near IR 

shifted absorption and emission. The methyl groups can be treated in stepwise 

manner by controlling the amount of aldehyde, concentration of reaction mixture 

and reaction time. 
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Scheme 1.7. Knoevenagel condensation reaction of methylated BODIPYs. 

1.3.2. Halogenation 

The halogenation gives extremely useful precursors for the transition metal 

catalyzed C-C and C-heteroatom bond formation reactions. Several halogenating 

agents and methodologies have been developed in recent decades.[32] The Figure 1.3 

describes the different Pd-catalyzed coupling reactions. Most of these reactions 

involve the four important steps. 

1. Oxidative addition 

2. Transmetallation 

3. Rearrangement  

4. Reductive elimination 

The halogenated precursors can be used for wide variety of 

functionalization. The various halogenation strategies have been developed 

for the halogenation of BODIPYs. The halogenation of dipyrromethane 

results halogenation at α-position selectively, whereas the halogenation of 

BODIPY framework results halogenation at β-position selectively.[33] 
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Figure 1.3. Versatility of halogenated precursors in synthesis. 

1.3.2.1. Halogenation of dipyrromethane core 
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Scheme 1.8. Halogenation of dipyrromethane core. 

The α halogenated BODIPYs can be obtained by the halogenation of 

dipyrromethane core. The halogenation occurs selectively at α-position and varying 

the amount of N-bromo succinamide (NBS), the mono, di or tri-bromo BODIPYs 

can be obtained. Excess use of NBS gives tetra, penta and hexa-bromo BODIPYs. 

Several reports use the bromine as halogenating agent instead of NBS. The α-

chlorinated BODIPYs were also synthesized by reacting dipyrromethane with NCS. 

The oxidation of halogenated dipyrromethane to dipyrromethene by DDQ or p-
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chloranil, followed by treatment with base and complexation with BF3·etherate 

results the halogenated BODIPYs.[34] 

1.3.2.2. Halogenation of BODIPYs 
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Scheme 1.9. Bromination of BODIPY at multiple positions. 

The BODIPYs are susceptible to electrophilic halogenation at the β-pyrrolic 

positions. Using different procedures they can be brominated or iodinated to get β-

halogenated BODIPYs. The halogenation of BODIPYs initially occurs at β-position 

followed by at α and βʹ-positions (Scheme 1.9). Various halogenating reagents like 

NBS, Br2, ICl, NIS and I2-HIO3 have been employed for the halogenation of 

BODIPY. The alkylation of unwanted position of BODIPY is useful strategy for 

selective halogenation at expected position. Using this strategy the BODIPYs have 

been selectively brominated at βʹ position (Scheme 1.10).[35] 

N N
B

FF

Br2

CH2Cl2
N N

B
FF

Br Br

 

Scheme 1.10. Halogenation at βʹ-position. 
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1.3.2.2.1. Halogenation at meso position  

i) With halogenated aryl substituents (aldehyde) 

NH HN N N
B

FF

i) DDQ/Chloranil

ii) Base
iii) BF3.Et2O

Ar

O

Excess pyrrol

H+

Ar Ar

X

X X

 

Scheme 1.11. BODIPYs with halogenated meso aryl substituents. 

The functionalization of BODIPYs at meso position with halogenated aryl 

substituents is relatively easy and widely used method. The use of halogenated 

aromatic aldehydes or acyl chlorides results the meso aryl halogenated BODIPYs 

(Scheme 1.11). Various electron donating and withdrawing groups have been 

introduced at this position and their photophysical properties are studied in depth.[36] 

ii) Halogenation at meso position 

Wim Dehaen and Kevin M. Smith have developed the synthetic routes for 

meso halogenated BODIPYs. Wim Dehaen et al. synthesized 8-chloro and 8-bromo 

BODIPYs from dipyrrylketone, by incorporation of the chloro and bromo groups 

through deoxygenative substitution using POCl3 and POBr3 respectively, followed 

by in situ deprotonation, and complexation with BF3·etherate (Scheme 1.12).[37] The 

8-chloro BODIPY was further used for the synthesis of 8-iodo BODIPY by halogen 

exchange with NaI. 

N
B

N
FF

X

NH HN

O i) POX3; X=Cl or Br
ii) TEA; BF3.OEt2

 Dichloroethane
 

Scheme 1.12. Synthesis of meso halogenated BODIPYs. 

Kelvin M. Smith et al. synthesized 8-chloro BODIPY by the reaction of 

dipyrrylketone with phosgene followed by treatment with BF3·etherate and N,N-di-

isopropylethylamine (Scheme 1.13).[38] The meso halogenated BODIPYs enable the 
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introduction of alkyne linkage at the meso position by Sonogashira cross-coupling 

reaction. The meso alkynylated BODIPYs ensures the planarity of meso substituent 

with BODIPY, which is not possible in the case of meso aryl substituted BODIPYs. 

Hiroshi Nishihara and coworkers have synthesized the meso alkynylated BODIPYs 

from alkynylated aldehydes and compared the effect of alkynylation at the meso 

position of BODIPYs with respect to meso aryl substituted BODIPYs.[39] 

NH HN

Cl

NH HN

O

COCl2, CH2Cl2
R R R R

N
B

N
FF

Cl

R R

Cl

BF3.Et2O

DIEA

 

Scheme 1.13. Synthesis of 8-chloro BODIPYs. 

1.3.3. Through 8-(methylthio)-BODIPY 

The 8-(methylthio)-BODIPY is an important precursor for the 

functionalization of BODIPYs at the meso position.[40] The synthesis of 8-

(methylthio)-BODIPY is outlined in Scheme 1.14.[41] The condensation reaction of 

pyrrole with thiophosgene results dipyrrothioketone. The dipyrrothioketone on 

further reaction with methyl iodide gives an intermediate which on treatment with 

base followed by complexation with BF3·etherate results 8-(methylthio)-BODIPY. 

The 8-(methylthio)-BODIPY is widely explored for the substitution reactions with 

N- and O- nucleophiles. It is also an useful intermediate for Liebeskind-Srogl cross-

coupling reactions with various boronic acids.[42]  
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Scheme 1.14. Synthesis of 8-(methylthio)-BODIPY and its synthetic utility. 

The substitution of amines at the meso position of the BODIPY gives highly 

fluorescent blue emitting laser dyes, whereas substitution with anilines results in 

quenching of fluorescence. The BODIPYs substituted with the alcohol and phenol at 

meso position show green fluorescence with good to moderate fluorescence quantum 

yields.  

The heteroatom substitution at the meso position of the BODIPY blue shifts 

the absorption by ~ 50 nm (for O-) and ~ 80 nm (for N-) compared to unsubstituted 

BODIPY (Figure 1.4). This has been assigned to the destabilization of LUMO and 

formation of merocyanine and hemicyanine type conjugated system. 
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N N
B

FF

N N

NH

B
FF

N N

O

B
FF

N N

NH

B
FF

N N

O

B
FF

Cyanine

Hemicyanine

Merocyanine  

Figure 1.4. The blue shift in the absorption spectra of heteroatom substituted 

BODIPYs (Adapted with permission from ref [43]. Copyright © (2013) American 

Chemical Society). 

1.3.4. Modification at the boron center 

N N
BN N

B
N N

B
O O

N N
B

RR

RR

O
R

Chart 1.2. Boron functionalized BODIPYs. 

The two fluorine atoms on boron of BODIPY can be replaced by different C- 

and O- substituents (Chart 1.2). This family of B-substituted BODIPYs is named 

according to the substituents on it, like aryl (C-BODIPY), ethynyl (E-BODIPY) or 

alkoxide (O-BODIPY). This family of BODIPYs exhibit high stokes shift and high 

fluorescence quantum yield. The fluorine atoms have been replaced by strongly 

fluorescent aromatic cores and studied for through space energy transfer cassettes. 

Ziessel, Ulrich, Harriman and Ortiz[44] have synthesized such molecular dyads for 

photovoltaics, electroluminescent devices and energy transfer cassettes. 
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Chart 1.3. Fused BODIPYs. 

The aryl or alkynyl substituents on the boron atom are not in conjugation with 

BODIPY fluorophore hence the absorption spectrum of these BODIPYs are 

restricted to visible region only, but the B-functionalization of fused BODIPYs 

exhibits highly red shifted absorption and emission (Chart 1.3).[45] Burgess and 

Ravikanth have fused α-substituted aryl moieties with the boron atom of BODIPYs 

to get rigidified ring fused BODIPYs, with near IR absorption and fluorescence. 

These constrained BODIPYs exhibit higher fluorescence quantum yields than their 

unconstrained derivatives due to the restricted molecular rotations and steric 

crowding. 

1.3.5. Fused BODIPYs for extension of conjugation 

The aromatic ring fused BODIPYs can be synthesized using aromatic ring fused 

pyrroles. Another way to get fused BODIPYs is to use metal catalyzed C-H 

activation to couple the aromatic substituents like anthracene, perylene or porphyrin 

(Chart 1.4).[46] The fused BODIPYs can absorb above 900 nm region. 

N N
B

FF

OMe OMe

N N
B

FF

N R

N

N N

N

N

N
B

F

F
Ni

N

N N

N

N

N
B

F

F
Ni

N

N
B

F

F

 Chart 1.4. Fused BODIPYs. 
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1.3.6. Oxidative nucleophilic reactions via C–H activation 

The α unsubstituted BODIPYs are susceptible to the nucleophilic attack 

through C-H activation under oxygen atmosphere. The metal catalyzed C-H 

activation results α-substituted BODIPYs without any pre-functionalization step.[47] 

The ring fused BODIPYs can also be synthesized through C-H activation. 

1.3.7. Similar systems like BODIPY 

1.3.7.1. Aza-BODIPY 

The introduction of nitrogen at the meso position of BODIPYs results the aza-

BODIPYs (Scheme 1.15).[48] They exhibit ~ 100 nm red shifted absorption than the 

BODIPYs, with excellent fluorescence quantum yields. The aza-BODIPYs are being 

explored for wide range of applications. 

Ar Ar'

O2N
O

2 equivalent

NH N

N

Ar'

Ar

Ar'

Ar

N N

N

B
FFAr'

Ar

Ar'

Ar
Ammonia 
Source BF3 .OEt2

 

Scheme 1.15. Synthesis of aza-BODIPYs. 

1.3.7.2. BOPHY 

Recently Ziegler[49] and Hao[50] reported a class of BODIPY type highly 

fluorescent dyes which they called bis(difluoroboron)1,2-bis((1H-pyrrol-2- 

yl)methylene)hydrazine (BOPHY) (Chart 1.5). The BOPHY derivatives are highly 

fluorescent in solution, film and solid state with large stokes shifts. The methylated 

BOPHY was further explored for Knovenagel condensation reaction with N,N-

dimethyl-(4-formyl)-aniline, and utilized for pH sensing.[51] 

N
N

N
B

N
B

FF

FFR1

R2

R3 R1

R2

R3

BOPHY

N
N

N
B

N
B

FF

FF

N

BOPHY Derivative
for pH sensing

 
Chart 1.5. BOPHY and its derivative for pH sensing. 
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1.4. Donor-Acceptor system 

The combination of electron rich moiety (Donor) and electron deficient moiety 

(Acceptor) through appropriate spacer are known as Donor-Acceptor (D-A) systems 

(Figure 1.5). They are relative in nature. The electron rich moiety, with the ability to 

donate the electrons to another moiety is known as donor. The moieties bearing 

heteroatoms with lone pair of electrons, amines, alcohols, sulphides, metallocene 

derivatives (like ferrocene and ruthenocene), or aromatic carbocycles are well 

known donors (Chart 1.6). 

The electron deficient moieties which have capacity to withdraw the electrons 

from donors are known as acceptor. The strength of acceptors to withdraw the 

electrons from donor depends on the energy levels of LUMO. Lower the LOMO, 

stronger will be the accepting power of acceptor and vice versa. The anhydrides, 

nitrogen rich heterocycles, boron complexes, ketones, amides, nitriles and esters are 

examples of acceptors (Chart 1.7). 

  
Figure 1.5. Schematic representation of Donor-Acceptor system and the effect 

of orbital couplings on the HOMO-LUMO gap. 
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Chart 1.6. Frequently used donors. 

The HOMO of D-A system becomes destabilized than that of individual donor 

and acceptor whereas the LUMO becomes stabilized than that of individual donor 

and acceptor. This results in overall lowering of the HOMO-LUMO gap and red 

shift in the absorption spectra. The strength of acceptor to withdraw the electrons 

and strength of donor to donate the electrons decides the strength of D-A system. 

The donors and acceptors are coupled to each other through conjugated or non-

conjugated spacers like single, double or triple bond, aromatic, hetero-aromatic 

ring(s) etc. The nature of spacer has key role in tuning the properties of D-A 

systems. The D-A systems have wide range of applications in diverse areas like; 

 Non-Linear Optics (NLO) and Optical Limiting Materials 

 Fluorescence Resonance Energy Transfer (FRET) 

 Two Photon Absorption 

 Solar Cell 

 Photodynamic Therapy 

 Organic Light Emitting Diodes (OLEDS) 

 Mechanochromism 
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Chart 1.7. Frequently used acceptors. 

1.5. Fluorescence of BODIPY dyes and charge transfer interactions 

The fluorescence quantum yield of the fluorophore strongly depends on the 

nature of substituents and, can be tuned by systematic variation in the nature of 

substituents. Depending on the oxidation potential or reduction potential of the 

substituents relative to the excited state of fluorophore Nagano et al. rationalized the 

principles for modulating the fluorescence quantum yield of fluorescein 

derivatives[52] and applied to the meso aryl substituted BODIPYs.[53]  The excited 

state electron can return to the ground state via fluorescence, phosphorescence, non-

radiative pathway or quenching of fluorescence either by energy transfer or by 

electron transfer. In photoinduced electron transfer the excited state can behave as 

donor or as an acceptor. In D-A systems due to electron transfer the fluorescence is 

quenched by reductive photoinduced electron transfer (Figure 1.6B). Whereas if the 

LUMO of substituent is at appropriate energy to accept the excited state electron of 

fluorophore the fluorescence is quenched through oxidative photoinduced electron 

transfer (Figure 1.6C). 

In energy transfer process the excited state electrons of the donor return to the 

ground state with emission of radiation, which is again absorbed by the acceptor unit 

with photoexcitation.[54] The excited state electron of this acceptor can exhibit 

emission with very high Stoke’s shift. 
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Figure 1.6. Fate of excited state electron depends on the nature of substituent. 

1.6. Organization of thesis 

Chapter 1 gives the detailed introduction about the historical development 

of various synthetic and functionalization strategies of BODIPYs and their utility in 

diverse fields. The recent functionalization strategies have been summarized and 

further explored in D-A systems in the subsequent chapters. 

Chapter 2 Summarizes the instrumentation and general methods used for the 

present study. 

In Chapter 3 a series of donor-acceptor ferrocenyl substituted BODIPYs 

have been designed, and synthesized via palladium catalysed Suzuki, and 

Sonogashira cross-coupling reactions. The effect of ferrocenyl group on the 

photophysical properties of BODIPYs were studied as function of varying spacer 

length. 

In Chapter 4, for the evaluation of the effect of alkynylation on the α, β and 

meso positions of BODIPYs the meso-alkynylated ferrocenyl BODIPYs with 

varying conjugation length were designed, and synthesized. The meso alkynylated 

ferrocenyl BODIPYs exhibit red shifted absorption than the α and β alkynylated 

ferrocenyl BODIPYs, which indicates better electronic conjugation in meso 

alkynylated BODIPYs. 
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In Chapter 5 a series of meso arylethynyl BODIPYs were designed and 

synthesized to study the effects of donor on the photophysical properties of the 

BODIPYs. The quenching of fluorescence was correlated with the electron donating 

strength of different donors.  

In Chapter 6 a set of heteroatom connected ferrocenyl BODIPYs were 

designed and synthesized by the nucleophilic aromatic substitution reaction of 8‐

chloro BODIPY, with ferrocenyl anilines and ferrocenyl phenols. The effects of 

heteroatom and ferrocenyl group on the optical and electrochemical properties of the 

BODIPYs were studied.  

In Chapter 7, the electron deficient nature of 8-chloro BODIPY leads to the 

oxidation of aliphatic amines to enamines and in situ cross coupling. This has been 

explored for the synthesis of meso enamine substituted BODIPYs.  
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Chapter 2 

Materials and Experimental Techniques   

2.1. Introduction 

In this chapter the materials used, general synthetic procedures, 

characterization techniques and the instrumentation employed in this thesis are 

discussed.  

2.2. Chemicals for synthesis 

Common solvents used for syntheses were purified according to known 

procedures.[1] Pyrrole, Benzaldehyde, thiophosgene, Phosphurus oxychloride 

and Boron trifluoride etherate were obtained from Spectrochem India. 

Triethylamine, N,N-Di-isoprophylethylamine, were obtained from S.D.Fine chem. 

Ltd. N,N-Dimethylethylamine, N-ethylpyrrolidine, CuI, Pd(PPh3)4, PdCl2(PPh3)2, 

ferrocene, tetrabutylammonium hexafluorophosphate (TBAF6), 4-ethynylaniline, 3-

ethynyleniline, Ethynyl ferrocene, chloranil, DDQ and trifluoroacetic acid (TFA) 

were procured from Aldrich chemicals USA. Aluminum oxide (neutral) and silica 

gel (100 – 200 mesh and 230 – 400 mesh) were purchased from Rankem chemicals, 

India. TLC pre-coated silica gel plates (Kieselgel 60F254, Merck) were obtained 

from Merck, India. 

Dry solvents dichloromethane, chloroform, tetrahydrofuran (THF), N,N-

dimethylformamide (DMF), dioxane and methanol were obtained from spectrochem 

and S.D.Fine chem. Ltd. All oxygen or moisture sensitive reactions were performed 

under nitrogen/argon atmosphere using standard schlenk method.  

The solvents and reagents were used as received unless otherwise indicated. 

The pyrrole was distilled before use. Photophysical and electrochemical studies 

were performed with spectroscopic grade solvents.  
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2.3. Spectroscopic Measurements 

2.3.1. NMR Spectroscopy 
1H NMR (400 MHz), 13C NMR (100 MHz), 11B NMR (128.37 MHz), and 

19F NMR (376.49 MHz) spectra were recorded on the Bruker Avance (III)   400 

MHz, using CDCl3 and acetone-d6 as solvent. Chemical shifts in 1H, 13C, 11B and 19F 

NMR spectra were reported in parts per million (ppm). In 1H NMR chemical shifts 

are reported relative to the residual solvent peak (CDCl3, 7.26 ppm). Multiplicities 

are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), 

m (multiplet), and the coupling constants J, are given in Hz. 13C NMR chemical 

shifts are reported relative to the solvent residual peak (CDCl3, 77.36 ppm). 

2.3.2. Mass Spectrometry 

High resolution mass spectra (HRMS) were recorded on Brucker-Daltonics, 

micrOTOF-Q II mass spectrometer using positive and negative mode electrospray 

ionizations. 

2.3.3. UV-Vis Spectroscopy 

UV-Vis absorption spectra were recorded using a Varian Cary100 Bio UV-

Vis and PerkinElmer LAMBDA 35 UV/Vis spectrophotometer. 

2.3.4. Fluorescence Spectroscopy 

Fluorescence emission spectra were recorded upon specific excitation 

wavelength on a Horiba Scientific Fluoromax-4 spectrophotometer. The slit width 

for the excitation and emission was set at 2 nm.  

The fluorescence quantum yields (ɸF) 

The fluorescence quantum yields (ɸF) of compounds 1-4 were calculated by 

the steady-state comparative method using following equation, 

ɸF= ɸst × Su/Sst  × Ast / Au × n2
Du/n2

Dst ……………….. (Eq. 1) 

Where ɸF is the emission quantum yield of the sample, ɸst is the emission 

quantum yield of the standard, Ast and Au represent the absorbance of the standard 

and sample at the excitation wavelength, respectively, while Sst and Su are the 

integrated emission band areas of the standard and sample, respectively, and nDst and 

nDu the solvent refractive index of the standard and sample, u and st refer to the 

unknown and standard, respectively. 
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2.4. Electrochemical Studies 

Cyclic voltamograms (CVs) and Differential Pulse Voltamograms (DPVs) 

were recorded on CHI620D electrochemical analyzer using Glassy carbon as 

working electrode, Pt wire as the counter electrode, and Saturated Calomel 

Electrode (SCE) as the reference electrode. The scan rate was 100 mVs‐1. A solution 

of tetrabutylammonium hexafluorophosphate (TBAPF6) in CH2Cl2 (0.1 M) was 

employed as the supporting electrolyte. 

2.5. Elemental Analysis 

Elemental analyses for elements carbon, hydrogen, nitrogen and sulphur 

were performed on the Thermo Scientific FLASH 2000 (formerly the Flash 

EA1112) elemental analyser. 

2.6. Computational Calculations 

The density functional theory (DFT) calculation were carried out at the 

B3LYP/6‐31G** level for B, F, C, N, O, H, and Lanl2DZ level for Fe in the 

Gaussian 09 program.2 

2.7. Single Crystal X-ray Diffraction Studies.  

Single crystal X-ray diffraction studies were performed on SUPER NOVA 

diffractometer. The strategy for the Data collection was evaluated by using the 

CrysAlisPro CCD software. The data were collected by the standard 'phi-omega 

scan techniques, and were scaled and reduced using CrysAlisPro RED software. The 

structures were solved by direct methods using SHELXS-97, and refined by full 

matrix least-squares with SHELXL-97, refining on F2.1. The positions of all the 

atoms were obtained by direct methods. All non-hydrogen atoms were refined 

anisotropically. The remaining hydrogen atoms were placed in geometrically 

constrained positions, and refined with isotropic temperature factors, generally 

1.2Ueq of their parent atoms. The CCDC numbers contain the respective 

supplementary crystallographic data. These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic 

http://www.ccdc.cam.ac.uk/conts/retrieving.html


42 
 

Data Centre, 12 union Road, Cambridge CB21 EZ, UK; Fax: (+44) 1223-336-033; 

or deposit@ccdc.cam.ac.uk). 
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Chapter 3 

 Donor-Acceptor β-Substituted Ferrocenyl BODIPYs  

3.1 Introduction 

 There has been myriad of reports on the design, and synthesis of materials with 

enhanced nonlinear optical (NLO) properties.[1]  It has been established that the 

donor-acceptor (D-A) type of molecular systems, show promising results.[2] 4, 4-

difluoroboradiaza-s-indacene, widely known as boron dipyrromethene (BODIPY), is 

a unique luminophore. The BODIPY dyes exhibit strong absorption, with large 

absorption coefficient, and high luminescence efficiencies.[3] They are thermally, 

and  photochemically inert, which makes them attractive candidate for variety of 

applications such as chemosensors, NIR-absorbing dyes, photovoltaic devices, and 

NLO materials.[4] The electronic properties of BODIPY can be tuned by 

functionalization at meso-position, as well as at the pyrrolic position. However 

functionalization at later position perturbs the electronic properties more 

significantly.[5] Therefore substituting the donor groups at the pyrrolic position will 

result in the donor-acceptor (D-A) system.  

 There are many reports, where the donor group is attached, at the pyrrolic position 

of the BODIPY.[6] We were interested to substitute the donor group at only one β-

pyrrolic position of the BODIPY,[7] which will result in donor-acceptor (D-A) 

system. Ferrocene is undoubtedly strong electron donor.[8] The ferrocenyl 

derivatives are thermally, and photochemically stable. There are few reports, where 

the ferrocenyl derivatives are connected to the BODIPY at different positions. [9] In 

this report, we have attached the ferrocenyl group at one of the pyrrolic position of 

the BODIPY moiety directly, via ethynyl bond, and phenylethynyl bond. We were 

interested to explore the photophysical, electrochemical, and the structural 

properties of these molecular systems. 
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3.2 Results and discussion 
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Scheme 3.1: Synthesis of Bromo BODIPY 1ʹ. 

The 2-bromo BODIPY (1ʹ) was synthesized by the bromination reaction of parent 

4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (1) (Scheme 1).[10] The 

ferrocenyl substituted BODIPYs (2-5) were synthesised by the Suzuki, and 

Sonogashira coupling reactions of mono-bromo BODIPY 1ʹ, with the ferrocenyl 

boronic acid, and the ferrocenyl substituted ethyne respectively (Scheme 2).  
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Scheme 3.2: Synthetic route for the synthesis of BODIPYs 2 – 5. 

 The bromo substituted BODIPY 1ʹ was reacted with the ferrocenyl boronic acid 

under the Suzuki coupling reaction conditions to give compound 2 in 45 % yield. 

The Sonogashira coupling reaction of bromo BODIPY 1ʹ with ethynylferrocene, 4-

ferrocenylphenylacetylene, and 3-ferrocenylphenylacetylene resulted 3, 4, and 5 in 
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78%, 58%, and 42% yields respectively. All compounds were well characterized by 
1H, 13C NMR, and HRMS techniques. Compounds 1ʹ, 2, 3, and 4 were also 

characterized by single crystal X-ray technique. 

3.3 Photophysical properties 

 
Figure 3.1. (A) Normalized electronic absorption spectra of compounds 1 – 5, 

recorded in toluene. (B) Fluorescence spectra of 1 – 5 at 0.1 absorption, excited at 

487 nm (for 1 – 3) and 540 nm (for 4 – 5) in toluene. Inset shows enlarged view. 
 
 The electronic absorption and emission spectra of compounds 1 – 5 was recorded 

in toluene at room temperature (Table 1), and displayed in Figure 6. Generally, 

BODIPY dyes exhibit strong absorption band around 500 nm along with a broad 

transition at higher energy region. The BODIPYs 1 – 5 show characteristic strong 

absorption band at 502-544 nm corresponding to S0→S1 transition, the weak-band at 

345 nm in compound 1 is assigned to S0→S2 transition of BODIPY, this band shows 

considerable red shift to 405, 404, 412 and 409 nm in compounds 2 – 5 

respectively.[5] Another weak band is observed in compounds 2 – 5 at ~350 nm 

which can be assigned to the absorption of substituted ferrocenyl moiety.[11, 5] The 

absorption maxima of BODIPYs 2 – 5 is considerably red shifted by 11 nm, 21 nm, 

41 nm, and 42 nm respectively compared to the absorption maxima at about 500 nm 

for BODIPY 1 (Table 3.1). The sequential enhancement in π-conjugation from 2 – 5 

leads to sequential red shift in the absorption spectra. The π-conjugation increases in 

the order 2 < 3 < 4 = 5. 

 The ferrocenyl substituted BODIPYs 2 – 5 show moderate extinction coefficients.  

The compound 2 shows charge transfer (CT), 3 shows in the form of  shoulder, 
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while 4 and 5 show that CT band is merged with S0→S1 absorption (evidenced from 

broadening of S0→S1 absorption band)[9a] from this data we can interpret that the 

charge transfer is more effective in 2, because the donor ferrocene is directly 

attached to BODIPY by single bond, and gradually decreases for 3 where ferrocene 

is attached via the triple bond, and the CT becomes moderate for 4 and 5 where 

ferrocene is attached via extended π-conjugated spacers. 

Table 3.1. Photophysical properties of BODIPYs 1 – 5. 
Compounda λ(S0→S1) (nm) ɛ (M-1cm-1) λem (nm)b Φc 

1 502 62400 520 0.050 
2 513 32300 535 0.001 
3 523 32400 546 0.002 
4 543 35900 590 0.009 
5 544 35700 591 0.018 

a Recorded in toluene. b Exited at λS0→S1. c Determined by using Rhodamine 6G as standard (Φst = 
0.88, ethanol).[12] 

 The ferrocenyl substituted BODIPYs 2 – 5 show substantial decrease in the 

fluorescence intensity compared to the BODIPY 1, which indicates that there is fast 

non-radiative deactivation of the exited state with intramolecular charge transfer.[13] 

The trend in the red shift in absorption spectrum of BODIPYs 2 – 5 is followed in 

the fluorescence emission also. The emission spectrum of BODIPYs 2 – 5 show red 

shift of 15 nm, 26 nm, 70 nm, and 71 nm respectively compared to BODIPY 1. The 

quantum yields of 4 and 5 (0.009 and 0.018) are much higher than that of 2 and 3 

(0.001 and 0.002), which indicate that, the electronic communication between 

ferrocenyl moiety and the BODIPY unit is poor in compounds 4 and 5 than in 

compounds 2 and 3. As result the fluorescence of 4 and 5 is relatively reduced while 

in 2 and 3 it is quenched.  

Quenching of fluorescence is in correlation with position of charge transfer band. 

In compounds 2 and 3, where CT band is distinctly observable at low energy region, 

shows maximum fluorescence quenching, while in case of 4 and 5 where the CT 

band is merged with main absorption band, shows much intense fluorescence than 2 

and 3. 
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3.4 Single Crystal X-ray Diffraction Studies  

Table 3.2. Crystal data and structure refinement parameters. 

Compound 1ʹ 2 3 4 
Empirical formula C30H20B2Br2F4N4 C25H19BF2FeN2 C27H19BF2FeN2 C33H23BF2FeN2 
Formula weight 693.94 452.08 476.10 552.19 
Temperature/K 293(2) K 150(2) K 150(2) K 150(2) K 
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic 
Space group P21/n P21/n P21/c P21/c 
Unit cell dimensions     
a/Å 10.2069(5) 10.7269(5) 10.9439(11) 16.1854(5) 
α/° 90 90 90 90 
b/ Å 21.3250(9) 7.6282(4) 6.9521(4) 13.5186(5) 
β/° 110.414(5) 100.154(4) 93.478(7) 95.882(3) 
c/ Å 13.6329(6) 24.6682(12) 28.5370(19) 11.6565(4) 
γ/° 90 90 90 90 
Volume/ Å3 2781.0(2) 1986.91(17) 2167.2(3) 2537.06(15) 
Z 4 4 4 4 
Calculated density/ Mg/m3 1.657 1.511 1.459 1.446 
Absorption coefficient/mm-1 2.971 0.793 0.731 0.636 
F(000) 1376 928 976 1136 
Crystal size/mm 0.32 × 0.28 × 0.24 0.23 × 0.16 × 0.13 0.26 × 0.21 × 0.18 0.33 × 0.28 × 0.23 
θ range from data collection/° 2.86 to 25.00 3.15 to 25.00 3.02 to 25.00 2.95 to 25.00 
Reflections collected/unique 20420 / 4893 

[R(int) = 0.0451] 
13949 / 3488 [R(int) 
= 0.0574] 

16579 / 3804 [R(int) 
= 0.0990] 

18721 / 4459 [R(int) 
= 0.0691] 

Absorption correction Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Data/restraints/parameters 4893 / 0 / 379 3488 / 0 / 280 3804 / 96 / 344 4459 / 0 / 352 
Goodness-of-fit on F2 1.058 1.085 1.068 1.040 
Final R indices [I > 2σ (I)] R1 = 0.0430, wR2 = 

0.0992 
R1 = 0.0350, 
wR2 = 0.0809 

R1 = 0.0618, 
wR2 = 0.1419 

R1 = 0.0482, 
wR2 = 0.1178 

R indices (all data) R1 = 0.0646, wR2 = 
0.1110 

R1 = 0.0440, 
wR2 = 0.0867 

R1 = 0.1132, 
wR2 = 0.1737 

R1 = 0.0678, 
wR2 = 0.1318 

Largest diff. peak and hole/e 
Å-3 

0.554 and -0.504 0.330 and -0.370 0.347 and -0.404 0.356 and -0.388 

CCDC number 888341 888338 888337 888336 

 

 The single crystals of 1ʹ, 3, and 4 were grown by slow evaporation of mixture of 

chloroform and ethanol (7:3 ratio), whereas the single crystal of 2 was grown from 

the mixture of chloroform and hexane (1:1 ratio). The crystal and refinement data 

are summarized in Table 1. The interplanar angle between the meso-phenyl ring, and 

the BF(1)F(2) mean plane is 38.65 ° in 1ʹ, 38.47° in 2, 33.52° in 3 and 39.12° in 4, 

while in case of unsubstituted BODIPY this angle is 28.16°.   
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Figure 3.2: X-ray structures of BODIPYs 1ʹ, 2, 3 and 4. (a) Front view, and (b) top 

view. 

 The huge deviation in this interplanar angle indicates huge steric hindrance in the 

substituted BODIPYs (Figure 2). The two cyclopentadienyl rings of ferrocene are 

staggered in 2, because of huge steric hindrance due to direct connectivity with the 

BODIPY core. Whereas in the case of 3, and 4 the two cyclopentadienyl rings of 

ferrocene are eclipsed, as the ferrocenyl group is away from BODIPY core. This is 

also supported by the top view of the crystal, which shows bending in the structure 

of 2, while in the case of compound 1ʹ and 3 the crystal structures show highly 

planar structure, and the compound 4 is slightly deviated from the planarity. The 

inter planar angle between the planes containing unsubstituted pyrrole ring of the 

BODIPY, and substituted ferrocenyl cyclopentadienyl ring is 4.69°, 16.67° and 

20.96° for 3, 4 and 2 respectively, which also support the deviation from planarity. 
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Single crystal structure packing 

 

Figure 3.3. Crystal packing of 1ʹ showing hydrogen bonded 2D network. Secondary 

interactions are shown by dashed lines. 

 The crystal structures of 1ʹ, 2, 3, and 4 show interesting supramolecular 

interactions through intermolecular hydrogen bonding. The intermolecular 

interactions in the crystals are displayed in Table 3. The crystal structure of 1ʹ 

consists of two molecules in asymmetric unit. The packing diagram reveals 

intermolecular C-H---F, and C-H---Br hydrogen bonding (Figure 3). The two 

molecules in asymmetric unit are interconnected via fluorine of one unit, and phenyl 

protons of another unit, C(29)-H(29)---F(1) (2.636 Å), C(28)-H(28)---F(2) (2.481 Å) 

forming a hydrogen bonded dimer, which is further linked through C(13)-H(13)---

F(3) (2.510 Å) leading to formation of 1D-polymeric chain along b-axis 

(interactions are shown with dashed lines in red colour). Moreover, each 1D-chain is 

further connected to neighbouring 1D-chain via C(12)-H(12)---Br(2) (3.092 Å) 

(interactions are shown with dashed lines in green colour) leading to the formation 

of hydrogen bonded 2D-network along c-axis, and along a-axis it is connected via 

C(17)- H(17)---F(2) (2.531 Å). 

 In the crystal structure of 2, the packing diagram shows the intermolecular C-H---

F, and C-H---π interactions (Figure 4), which leads to the formation of hydrogen 

bonded dimer. The C- H---F interactions are between pyrrolic hydrogen, and 

fluorines C(9)-H(9)---F(1) (2.641Å),  and C(9)-H(9)---F(2) (2.500Å) forming 

hydrogen bonded dimer, and this dimer is further linked to neighbouring molecule 

along c-axis via  C-H---π interaction of H(21) with ferrocenyl centroids at distance 

of  3.202 Å forming a 2D-network. 
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Figure 3.4. Crystal packing of 2 along b-axis. 

 The packing diagram of 3 exhibits intermolecular C-H---F, and C-H---π hydrogen 

bonding interactions (Figure 6). The fluorine holds two ferrocenyl hydrogens of two 

different neighboring molecules, via C(19)-H(19)---F(1) (2.561 Å) and C(15)-

H(15)---F(2) (155.14 Å) interactions. Further it is extended through C(20)-H(20)---

F(2) (135.15 Å) interactions forming linear chain. Moreover this linear chain is 

connected to neighboring molecules via C(2)-H(2)---π (Fc) (3.128Å) interaction 

between C-H of pyrrole, and π electrons of another pyrrole leading to the formation 

of 1D zigzag chain. Overall it shows sheet like structure along b-axis, and zigzag 

packing along a-axis. 

 

Figure 3.5. Crystal packing of 4 along b-axis, showing sheet like structure, both 

sides are covered by ferrocenes. 
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Figure 3.6. Crystal Packing of 3 showing zigzag pattern, along a-axis. 

 The packing diagram of crystal 4 reveals intermolecular C-H---F hydrogen 

bonding, and C-H---π interactions (Figure 4). The C-H---F interactions involve 

between F(2) of one molecule, and the aromatic H of two neighbouring molecule, 

these molecules are further interlinked through C-H---π interactions forming 1D 

polymeric chain. 
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Table 3.3. Distance and angle of intermolecular interactions in the crystal structures. 

 Interaction Distance Å (Angle °) 

1ʹ C(29)- H(29)---F(1) 2.636  145.03 

 C(28)- H(28)---F(2) 2.481  144.59 

 C(13)- H(13)---F(3) 2.510  152.31 

 C(12)-H(12)---Br(2) 3.092  101.30 

 C(17)- H(17)---F(2) 2.531  124.80 

2 C(9)- H(9)---F(1) 2.641 134.98 

 C(9)- H(9)---F(2) 2.500 172.99 

 C(11)- H(11)---F(2) 2.429 147.51 

 C(2)- H(2)---π (Fc) 3.128  

 C(21)- H(21)---π (Fc) 3.202  

3 C(19)- H(19)---F(1) 2.561 171.70 

 C(15)- H(15)---F(2) 2.555 155.14 

 C(20)- H(20)---F(2) 2.437 135.15 

 C(2)- H(2)---π (Fc) 2.785  

4 C(11)- H(11)---F(1) 2.350 140.91 

 C(22)- H(22)---F(2) 2.659 166.39 

 C(23)- H(23)---F(2) 2.658 146.36 

3.5 Experimental Section 

 General methods- Chemicals were used as received unless otherwise indicated. 

All oxygen or moisture sensitive reactions were performed under nitrogen/argon 

atmosphere using standard schlenk method. Diisopropylamine (DIPA) was received 

from commercial source, and distilled on KOH prior to use. 1H NMR (400 MHz), 

and 13C NMR (100MHz) spectra were recorded on the Bruker Avance (III)   400 

MHz, using CDCl3 as solvent. Chemical shifts in 1H, and 13C NMR spectra were 

reported in parts per million (ppm) with TMS (0 ppm), and CDCl3 (77.23 ppm) as 

standards. UV-visible absorption spectra of all compounds in toluene were recorded 

on a Carry-100 Bio UV-visible Spectrophotometer. Fluorescence spectra of all the 

compounds were recorded on a Horiba Jobin Yvon Floromax 4P spectrophotometer. 

HRMS was recorded on Brucker-Daltonics, micrOTOF-Q II mass spectrometer. 
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Synthesis and Characterization: 

2-Ferrocenyl-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (2) 

 2-Bromo-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (1ʹ) (150mg, 

0.4323 mmol), ferrocenylboronic acid (119.24 mg, 0.5188 mmol), CsF (131.14 mg, 

0.8646 mmol), Ag2O (111.1819 mg, 0.4798 mmol), and Pd(PPh3)4 (5.495 mg, 

0.0047 mmol) were dissolved in dry THF (9 mL) and the solution was degassed 

with argon. After stirring at 60°C for 4 h the solvent was removed under reduced 

pressure, and the residue was purified by column chromatography on silica gel (230-

400 mesh size) with hexane, and CH2Cl2 mixture (1:1 ratio),  and recrystallized from 

chloroform, and hexane mixture to yield the desired product as violet crystals in 

45% yield. 1H NMR (CDCl3, 400 MHz, ppm): δ= 8.02 (s, 1H), 7.91 (s, 1H), 7.61 (m, 

5H), 6.90 (s, 1H), 6.79 (s, 1H), 6.54 (s, 1H), 4.61 (s, 2H), 4.42 (s, 1H), 4.17 (s, 5H). 
13C NMR (CDCl3, 100 MHz, ppm): 145.41, 143.45, 142.67, 135.80, 135.25, 134.92, 

134.08, 130.64, 130.49, 128.53, 127.67, 124.71, 117.87, 77.81, 69.82, 69.14, 66.50. 

HRMS m/z = 452.0956 (calculated for C25H19BF2FeN2= 452.0959). UV-vis (in 

toluene): λmax (ε [M-1cm-1]): 513 nm (32300).  

 

General procedure for Sonogashira reaction for compounds 3-5 

 2-Bromo-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (1ʹ) (50mg, 0.1445 

mmol), respective ferrocenyl substituted ethyne ( 0.2167 mmol), PdCl2(PPh3)2 (5 

mg, 0.0072 mmol), CuI (2.75 mg, 0.014 mmol) and triphenylphosphine (3.79 mg, 

0.014 mmol) were dissolved in a mixture of dry THF (2 mL), and dry N,N-

diisopropylamine (1 mL) under argon atmosphere. And the reaction mixture was 

stirred at 60°C for 4 h. Following cooling to room temperature, the solvent was 

removed under reduced pressure, and the residue was purified by column 

chromatography on silica gel (230-400 mesh size) in 1:1 mixture of chloroform and 

hexane, and recrystallized in mixture of chloroform and ethanol to yield the desired 

product. 

2-Ferrocenylethenyl-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-indacene (3) 

 Yield: 78 %. 1H NMR (CDCl3, 400 MHz, ppm): δ 7.95 (s, 1H), 7.91 (s, 1H), 7.50 

(m, 5H), 6.90 (s, 2H), 6.50 (s, 1H), 4.38 (t, 2H), 4.16 (t, 2H), 4.15 (s, 5H).  13C NMR 

(CDCl3, 100 MHz, ppm): 147.05, 145.93, 145.10, 139.30, 135.54, 134.31, 133.60, 

132.22, 131.47, 130.98, 130.50, 128.58, 119.05, 114.11, 91.33, 78.27, 71.37, 70.03, 

68.97, 64.91. HRMS (ESI) m/z = 476.0924 (calculated for C27H19BF2FeN2 = 
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476.0958). UV-vis (in toluene): λmax (ε [M-1cm-1]): 523nm (32400).  

2-((4-Ferrocenyl)-phenylethenyl)-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-

indacene (4) 

 Yield: 58 %. 1H NMR (CDCl3, 400 MHz, ppm): δ 7.97 (s, 1H), 7.93 (s, 1H), 7.51 

(m, 5H), 7.25 (s, 2H), 7.17 (s, 2H), 6.94 (s, 1H), 6.91 (s, 1H), 6.52 (d, 1H), 4.87 (s, 

2H), 4.55 (s, 2H), 4.19 (s, 5H). 13C NMR (CDCl3, 100 MHz, ppm): 144.70, 144.52, 

143.11, 139.07, 134.59, 134.21, 133.26, 132.51, 131.53, 130.70, 130.42, 130.01, 

129.50, 127.57, 124.87, 107.14, 90.28, 69.02, 68.52, 67.94, 65.61. HRMS (ESI) m/z 

= 552.1279 (calculated for C33H23BF2FeN2 = 552.1272). UV-vis (in toluene): λmax (ε 

[M-1cm-1]): 543 nm (35900).  

2-((3-Ferrocenyl)-phenylethenyl)-4,4-difluoro-8-phenyl-4-bora-3a,4a-diaza-s-

indacene (5) 

 Yield: 42 %. 1H NMR (CDCl3, 400 MHz, ppm): δ 8.02 (s, 1H), 7.94 (s, 1H), 7.45-

7.55 (m, 7H), 7.36 (d, J=8Hz, 2H), 6.99 (s, 1H), 6.945 (d, J=4Hz, 1H), 6.535 (d, 

J=4Hz, 1H), 4.58 (s, 2H), 4.26 (s, 2H), 3.98 (s, 5H). 13C NMR (CDCl3, 100 MHz, 

ppm): 146.39, 144.70, 144.53, 138.79, 138.23, 134.21, 132.46, 131.14, 131.03, 

130.05, 129.49, 127.86, 127.59, 127.47, 126.65, 125.14, 122.79, 113.07, 91.21, 

80.86, 68.65, 68.17, 65.47. HRMS (ESI) m/z = 552.1293 (calculated for 

C33H23BF2FeN2 = 552.1272).  UV-vis (in toluene): λmax (ε [M-1cm-1]): 544 nm 

(35700). 

3.6 Conclusions 

 In summary we have designed and synthesized donor-acceptor ferrocenyl 

BODIPYs by the palladium catalyzed Suzuki and Sonogashira cross-coupling 

reactions. The red shift in the absorption and emission maxima is in agreement with 

an increase in the effective conjugation length. The photophysical studies show 

intramolecular charge transfer from the donor ferrocene to the acceptor BODIPY. 

The crystal structures of 1ʹ- 4 exhibit interesting supramolecular structures. We have 

shown how the optical properties of BODIPYs can be tuned by attaching appropriate 

electroactive group. 
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Chapter 4 

Meso-alkynylated ferrocenyl BODIPYs 

4.1. Introduction 

Borondipyrromethene (BODIPY) dyes are unique fluorophores with spectacular 

properties.[1] They are extensively used for 

photovoltaics,[2] optoelectronics,[3] nonlinear optics,[4] bioimaging or sensing,[5] and 

photodynamic therapy.[6] The chemistry of the BODIPY molecular systems has 

gained momentum, which is reflected in the large number of publications on the 

BODIPYs.[7] The electronic and photonic properties of the BODIPYs have been 

explored widely.[8] The BODIPY unit acts as an acceptor.[9] Recently new synthetic 

strategies have been developed for the functionalisation of the BODIPY dyes at the 

α, β, and meso positions.[10] Halogenation at these positions provides a platform for 

further modification via substitution, and cross-coupling reactions.[11] The Wim 

Dehaen group has reported the synthesis of meso-halogenated BODIPYs, which is 

an important intermediate for further derivatization.[12] The meso functionalized 

BODIPYs are mostly synthesized by the acid catalyzed condensation reaction of an 

aromatic aldehyde with pyrrole. The meso substituent in these BODIPYs shows poor 

electronic communication, due to a large dihedral angle between 

the meso phenyl ring and the BODIPY core. The electronic communication between 

the meso substituent and the BODIPY can be improved by reducing the dihedral 

angle. A convenient strategy to increase the electronic communication between 

the meso substituent and the BODIPY is introduction of a triple bond at 

the meso position.[13] Our group is interested in the design and synthesis of donor–

acceptor (D–A) molecular systems.[14] We have incorporated a donor ferrocenyl 

group with different ethynyl spacers at the meso position of the BODIPY. Here our 

aim was to explore the effect of substituting the donor ferrocenyl group via ethynyl 

linkages, at the meso position, and to explore its photonic and electronic properties. 
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4.2. Results and Discussion 
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Scheme 4.1. Synthesis of 8-chloro BODIPY 2. 

The ferrocenyl BODIPYs 3 – 6 were synthesized by the Pd-catalyzed 

Sonogashira cross-coupling reaction of 8-chloro BODIPY 2, with the respective 

ferrocenylethynes as outlined in Scheme 4.2. The key intermediate, meso-chloro 

BODIPY 2, was synthesized from the dipyrrylketone 1, by incorporation of 

the chloro group through deoxygenative substitution, followed by in 

situ deprotonation, and complexation with BF3·etherate (Scheme 

4.1).12 The dipyrrylketone 1, in turn, was synthesized by the condensation reaction 

of thiophosgene, andpyrrole, followed by oxidation with KOH–H2O2.[15] The 

ferrocenylethynes, 3-(ferrocenyl)phenylethyne, 4-(ferrocenyl)phenylethyne, and 4-

(ferrocenylethynyl)phenylethyne, were synthesized by reported procedures.[16]  

 

Scheme 4.2. Synthesis of the ferrocenyl BODIPYs 3 – 6. 

 The Sonogashira coupling reaction of the BODIPY 2 with the respective 

ferrocenylethynes at 0 °C resulted in ferrocenyl BODIPYs 3 – 6 in 60%, 65%, 50%, 

and 70% yields respectively (Scheme 4.2). The reactions were straightforward, and 

completed within half an hour, which shows the high reactivity of 8-

chloro BODIPY 2. The purification was tedious, and was achieved by repeated 

column chromatography using a chloroform–hexane mixture, followed 

by recrystallization from a mixture of chloroform–hexane–ethanol (7 : 2 : 1). The 

BODIPYs were well characterized by 1H NMR, 13C NMR, and HRMS techniques. 
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The BODIPYs 3 and 6 were also characterized by single crystal X-ray 

diffraction technique. 

A typical 1H NMR spectrum of the BODIPYs 3 – 6, shows the following types 

of protons: (a) a singlet at ~ 7.8 ppm for two α-pyrrolic protons, (b) a broad peak 

at ~ 6.5 ppm for two β-pyrrolic protons, (c) a broad peak at ~ 7.4 ppm for two βʹ-

pyrrolic protons, (d) the phenyl ring protons in ferrocenyl BODIPYs 5 and 6 are 

exhibited as two doublets between 7.5 – 7.6 ppm, (e) the phenyl ring protons in the 

ferrocenyl BODIPY 4 exhibit a typical meta-substitution pattern in the region 7.3–

7.7 ppm, (f) the ferrocenyl group exhibits three different signals. The 

unsubstituted cyclopentadienyl ring of the ferrocene exhibited a sharp singlet around 

4.2 ppm for five protons, and the mono substituted cyclopentadienyl ring exhibits 

two broad singlets for BODIPYs 4 – 6, and triplets for BODIPY 3 around 4.5 ppm, 

and 4.7 ppm for four protons. 

 

Figure 4.1. TGA plot of the BODIPYs 2 – 6. 

Thermal properties of the BODIPYs 2 – 6 were investigated 

by thermogravimetric analysis (TGA) at a heating rate of 10 °C min−1, under 

a nitrogen atmosphere (Figure 4.1). BODIPY 2shows 10 % weight loss at 193 °C, 

and 75 % weight loss at  248 °C, while 3 – 5 show 10 % weight loss between 440–

490 °C, and only 25% weight loss even at 800 °C. The thermal 

decomposition temperature (Td) shows that the ferrocenyl BODIPYs 3 – 6 are more 
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stable than the 8-chloro BODIPY 2 (Table 1). Ferrocenyl BODIPY 6, was found to 

be the least stable, and shows 10 % weight loss at only 266 °C. 

4.3. Photophysical Properties 

 
Figure 4.2. (A) UV-vis absorption spectra of BODIPYs 2 – 6 recorded in toluene. 

(B)  Emission Spectra of 2 – 6 recorded in toluene, inset shows enlarged view 

(Excited at respective λS0→S1 at concentration of 0.1 absorbance). 

 The UV-vis absorption spectra and emission of the BODIPYs 2 – 6 were 

recorded in toluene (Figure 4.2), and the corresponding data are shown in Table 4.1. 

The BODIPYs 2 – 6 show a strong absorption band between 500 to 551 nm 

corresponding to the S0→S1 transition, and a shoulder in the higher energy region 

corresponding to the respective vibronic transition. The BODIPYs 3 – 6 show a 

successive red shift in the S0→S1 absorption band by 32, 38, 40, and 45 nm 

compared to BODIPY 2 (Table 4.1).  

The weak band at ~ 370 nm in the BODIPY 2 spectrum, corresponds to the 

S0→S2 transition, and this band is red shifted to ~ 430 nm in BODIPYs 3 – 6. The 

red shift in the absorption band is consistent with the increase in conjugation length 

in the order of 6 > 5 > 4 > 3. All the ferrocenyl BODIPYs show a broad charge 

transfer (CT) band between 600–650 nm. The presence of a CT band is confirmed 

from the positive solvatochromic effect (Figure 4.3). The CT band in ferrocenyl 

BODIPY 3 is more prominent than others, which indicates strong electronic 

coupling between the donor ferrocene, and the acceptor BODIPY. 
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Figure 4.3. BODIPYs 2-6 in toluene at concentration of 10-4 M. 

The CT in the ferrocenyl BODIPYs 3 – 6 shows a pronounced effect on their 
color pattern in toluene (Figure 4.3). The solution of meso-chloro BODIPY 2 has a 
fluorescent yellow-green color while ferrocenyl BODIPYs 3 – 6 show color 
variations from red to purple. 

 

Figure 4.4. Positive solvatochromism in BODIPY 3. 

 The comparison of the absorption spectra of the ferrocenyl BODIPY 3 with 

the previously reported ferrocenyl BODIPYs (Chart 4.1), where the ferrocenyl unit 

is attached to BODIPY (via an ethynyl linkage) at the α-pyrrolic position 3a,[17a] and 

the β-pyrrolic position 3b,[14e] shows a red shift of 8 and 15 nm respectively. The 

ferrocenyl BODIPYs 3, 3a, and 3b show extinction coefficients of 74 622, 46 773, 

and 32 400 (mol−1 cm−1) respectively. The red shift in the absorption wavelength and 

increase in extinction coefficient values are attributed to the increase in conjugation, 

which follows the order 3 > 3a > 3b. Hence BODIPY 3 has superior electronic 

communication between the donor and acceptor units compared to 3a and 3b. 
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Chart 4.1. Structures of previously reported ferrocenyl BODIPYs. 

 The emission spectra of the BODIPYs 2 – 6 were recorded in toluene at 0.1 

absorbance (Figure 4.2; Table 4.1). Compound 3 is non-emissive in nature. 

The emission spectra of BODIPYs 4 – 6 show a red shift of 70 nm compared to 

that of 2, due to enhanced conjugation. The fluorescence studies revealed that the 

incorporation of the ferrocenyl moiety into the BODIPY results in quenching of the 

fluorescence due to fast non-radiative deactivation of the exited state with 

intramolecular charge transfer from the donor ferrocenyl unit to the acceptor 

BODIPY moiety,[17] which further supports the strong interaction between the donor 

and acceptor. The fluorescence quantum yield values follow the order 4 > 6 > 5 > 3. 

The trend observed in the quenching of fluorescence depends upon the nature of the 

spacer unit. The ferrocenyl BODIPY 3, linked by an ethynyl spacer is non-emissive 

in nature due to maximum electronic communication. The meta linkage in the 

ferrocenyl BODIPY 4 disrupts the extended π-conjugation compared to other 

phenylethynyl spacers, therefore exhibits better fluorescence than 3, 6 and 5. 

Table 4.1. Photophysical and electrochemicalf properties of BODIPYs 2 – 6. 

BODIP
Y 

λS0→S1 
(nm) 

ɛa 
(Mol-1.cm-1) 

λem
b 

(nm
) 

ɸF
c Td

d 

(°C) 

Eoxid
g 

(BODIPY
) 

Eoxid
h 

(Fc) 
E1 

Redg 
E2 

Redg 

2 506 102801 519 0.4700 193 1.31 -- -0.96 -1.32 
3e 538 74622 - - 446 1.03 0.25 -1.01 -1.28 
4 544 108769 566 0.0012 478 1.09 0.08 -0.95 -1.34 
5 546 88977 567 0.0001 480 1.11 0.07 -0.93 -1.32 
6 551 103285 571 0.0010 266 1.12 0.11 -0.94 -1.34 

arecorded at S0→S1,  bExcited at λS0→S1, cdetermined by using Rhodamine 6G as standard (ɸ=0.88, in 

ethanol), dDecomposition temperature at 10% weight loss, determined by TGA. eferrocenyl BODIPY 

is non emissive in nature. f electrochemical analysis was performed, in 0.1 M solution of Bu4NPF6 in 

DCM at 100 mVs-1 scan rate, versus Fc/Fc+. girreversible wave, hreversible wave. 
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4.4. Electrochemical properties 

The electrochemical properties of BODIPY 2, and the ferrocenyl BODIPYs 3 – 

6 were explored by cyclic voltammetric (CV) analysis. The overlaid CV and DPV of 

BODIPYs 2 – 6 is shown in Figure 4.5, and the data are listed in Table 4.1. All 

potentials are corrected against Fc/Fc+, as required by IUPAC.[18]  

 
Figure 4.5. Overlaid CV and DPV plots of BODIPYs 2 – 6. 

 The ferrocenyl BODIPYs 3 – 6 show one reversible oxidation wave 

corresponding to the ferrocenyl unit, along with one irreversible oxidation wave 

corresponding to the BODIPY moiety. From the ferrocenyl oxidation potentials of 

ferrocenyl BODIPYs 3 – 6, in the region 0.07 – 0.25 V, the ferrocenyl oxidation is 

becoming harder than for the free ferrocene. This is attributed to the delocalization 

of the donor ferrocenyl electrons on the acceptor BODIPY core. The 

first reduction potential values indicate that the reduction is becoming harder in case 

of 3, while in other ferrocenyl BODIPYs 4 – 6 it is not much affected compared 

to chloro BODIPY 2. This supports the stronger electronic coupling between donor 

and acceptor units in 3 than other ferrocenyl BODIPYs. 

4.5. Computational Calculations 

In order to explore the electronic structure of the ferrocenyl BODIPYs 3 – 6, 

DFT calculations were performed at the B3LYP/6-31+G** level for C, N, B, F, H, 
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and the Lanl2DZ level for Fe.[3d] The frontier molecular orbital (FMO) plots of 

BODIPYs 3 – 6 are shown in Figure 4.6. 
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Figure 4.6. HOMO, and LUMO frontier orbitals of BODIPYs at the B3LYP/6-
31+G** for C, N, B, F, H, and Lanl2DZ for Fe level. 

In BODIPYs 4 – 6 the plots of HOMO, and LUMO reveal that the maximum 

density in the HOMO exists on the donor part of the molecule, whereas the 

maximum density in the LUMO exists on the acceptor part of the molecule. This 

shows a typical donor–acceptor (D–A) system, with charge transfer process[19] The 

detailed analysis of the HOMO and LUMO in 4 – 6 reveals that the phenylethynyl 

group, which is acting as a π-bridge plays a key role in the HOMO and LUMO.  

 In the HOMO of the ferrocenyl BODIPY 3, there is a node at 

the meso carbon, hence, there is no contribution from the ethynylferrocene group. 

The LUMO of ferrocenyl BODIPY 3 is spread over the entire molecule, which 

shows appreciable delocalization over the entire molecule. 
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4.6. Single crystal X-ray diffraction studies 

N
B

N
FF

Cl

2

N
B

N
FF

O

2'

Ethanol

DCM, Hexane
12 Hrs, RT

 

Scheme 4.3. Formation of BODIPY 2' from 2. 

The single crystals of BODIPYs 3 and 6 were grown by the slow evaporation 

of a mixture of chloroform, hexane, and ethanol solution (7 : 2 : 1 ratio). Efforts to 

grow the single crystals of 8-chloro BODIPY 2 with the same solvent combination 

resulted in substitution of the chloro group with ethanol (Scheme 4.3), this indicates, 

that the chloro group is highly labile for substitution by the nucleophile.[7] The 

BODIPYs 2′, 3 and 6 crystallize in the space groups P, P21/c, and P2/n respectively. 

Figure 4.7. Crystal structures of 2ʹ, 3, and 6 (a) Front view, (b) Side view. 

 The single crystal X-ray structures of 2′, 3, and 6 are shown in Figure 4.7. 

The crystal and refinement data are summarized in Table 4.2. The crystal structure 

of 2′ consists of two asymmetric units. The cyclopentadienyl ring of the ferrocenyl 

core and the BODIPY are non-planar with an interplanar angle of 64.06° and 31.77° 

for 3 and 6 respectively. The high electronegativity of fluoride atoms leads to 

multiple C–H---F intermolecular interactions forming interesting supramolecular 
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structural motifs. The intermolecular interactions in the crystals are displayed 

in Table 4.3. 

 

Figure 4.8. Crystal packing of 3 along tilted b-axis. 

 In the crystal packing of ferrocenyl BODIPY 3, two molecules connect to 

each other in a head-to-head fashion via C(1)–H(1) F(1) and C(1)–H(1) F(2) 

interactions forming a dimeric structure (Figure 4.8a). Such a dimer connects to 

other two dimers via a C–H π interaction between H(9) and the π electron cloud 

of pyrrole (shown by the green dotted line), to form a staircase shaped sheet along 

the b-axis. The top side of this staircase shaped sheet is covered with another sheet 

by π π stacking interactions between two BODIPY cores, while the bottom side of 

the sheet is connected to another sheet by C–H π and C–H F interactions (Figure 

4.8b), forming a brickwork type complex 3-D structure along the b-axis (Figure 

4.8c). 

 

Figure 4.9. Zigzag arrangement of molecules in the crystal packing of 6 along a-

axis. 

 In the crystal packing of ferrocenyl BODIPY 6, the intermolecular hydrogen 

bonding interaction C(7)–H(7) F(1) holds two molecules one above another. 

Similarly the C–H π interactions C(13)–H(13) π (pyrrole), and C(9)–H(9) π 

(phenyl) form a layer type arrangement, and such arrangements connect one another 
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in a zigzag manner via C–H π interactions between H(17) and the π electron cloud 

of the BODIPY central ring (Figure 4.9).  

 

Figure 4.10. Complex 3-D crystal packing structure of 2ʹ. 

The crystal structure of 2′ consists of two asymmetric units, and these two 

asymmetric units behave in a very distinct manner. Each forms a different type of 

ladder like structure. The first molecule of the asymmetric unit holds the same 

molecule of another asymmetric unit in a one above another manner via C(11)–

H(11C) F(1) and C(11)–H(11A) F(2), forming a ladder (Figure 4.10a). Similarly 

the second molecule of an asymmetric unit holds the same molecule of another 

asymmetric unit via C(21)–H(21A) F(4) forming a dimeric structure, and such 

dimeric structures connect to each other diagonally via C(20)–H(20) F(4) and 

(C(22)–H(22A) π (py)) interactions to form a second ladder-like structure (Figure 

4.10b). These two ladders connect to each other in a parallel manner in such a way 

that a ladder of one molecule in an asymmetric unit is surrounded by four ladders of 

another molecule in the asymmetric unit via C(18)–H(18) F(1), C(22)–H(22B)

F(2), C(11)–H(11B) π (BODIPY), and C(9)–H(9) F(4), forming a complex 3-D 

structure (Figure 4.10c). 
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Table 4.2. Crystal data and structure refinement parameters. 
 
Compound 3 6 2’ 
Empirical formula C21H15BF2FeN2 C30H19BCll.50F2FeN2 C22H22B2F4N4O2 
Formula weight 400.01 565.31 472.06 
Temperature/K 150(2) K 150(2) K 150(2) K 
Crystal system Monoclinic Monoclinic Triclinic 
Space group P21/c P 2/n P ī 
Unit cell dimensions    
a/Å 10.4793(2) 15.2883(5) 7.7544(3) 
α/° 90 90 89.693(4) 
b/ Å 7.70330(10) 7.3885(2) 11.5491(6) 
β/° 100.674(2) 94.043 72.353(3) 
c/ Å 21.8524(4) 22.5986(6) 12.7800(5) 
γ/° 90 90 78.713(4) 
Volume/ Å3 1733.52(5) 2546.33(13) 78.713(4) 
Z 4 4 2 
Calculated density/ Mg/m3 1.533 1.475 1.468 
Absorption coefficient/mm-

1 
0.898 0.787 0.118 

F(000) 816 1150 488 
Crystal size/mm 0.23 x 0.18 x 0.13 0.33 x 0.26 x 0.21 0.33 x 0.26 x 

0.21 
θ range from data 
collection/° 

2.98 to 25.00 2.90 to 25.00 3.06 to 25.00 

Reflections 
collected/unique 

13355 / 3050 
[R(int) = 0.0187] 

20261 / 4480 [R(int) 
= 0.0511] 

7798 / 3749 
[R(int) = 0.0160] 

Absorption correction Semi-empirical 
from equivalents 

Semi-empirical from 
equivalents 

Semi-empirical 
from equivalents 

Data/restraints/parameters 3050 / 0 / 244 4480 / 0 / 339 3749 / 0 / 309 
Goodness-of-fit on F2 1.076 1.058 1.112 
Final R indices [I > 2σ (I)] R1 = 0.0269, 

wR2 = 0.0685 
R1 = 0.0738,  
wR2 = 0.2049 

R1 = 0.0339, 
wR2 = 0.0858 

R indices (all data) R1 = 0.0296, 
wR2 = 0.0704 

R1 = 0.0953, 
wR2 = 0.2274 

R1 = 0.0373, 
wR2 = 0.0882 

Largest diff. peak and 
hole/e Å-3 

0.189 and -0.339 2.355 and -1.091 0.161 and -0.233 

CCDC number 934137 934138 934139 

4.7. Experimental section 

General methods- Chemicals were used as received unless otherwise 

indicated. All oxygen or moisture sensitive reactions were performed under 

a nitrogen/argon atmosphere using standard Schlenk techniques. 1H NMR (400 

MHz), and 13C NMR (100 MHz) spectra were recorded on the Bruker Avance (III) 

400 MHz, using CDCl3 as solvent. Chemical shifts are reported in parts per million 

(ppm) relative to the residual solvent peak (CDCl3, 7.26 ppm for 1H and 77.36 ppm 
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for 13C). Multiplicities are given as: s (singlet), d (doublet), t (triplet), q (quartet), dd 

(doublet of doublets), m (multiplet), and the coupling constants, J, are given in Hz. 

Thermogravimetric analyses were performed on a Metler Toledo Thermal Analysis 

system. UV-visible absorption spectra of all compounds were recorded on a Cary-

100 Bio UV-visible Spectrophotometer. Fluorescence spectra of all the compounds 

were recorded on a Horiba Jobin Yvon Floromax 4P spectrophotometer. Cyclic 

voltammograms (CVs) were recorded on a CHI620D electrochemical analyzer using 

Glassy carbon as the working electrode, Pt wire as the counter electrode, and a 

saturated calomel electrode (SCE) as the reference electrode. HRMS was recorded 

on a Brucker-Daltonics, micrOTOF-Q II mass spectrometer. 

Synthesis and characterization 

Generalised procedure for Sonogashira coupling reaction. meso-Chloro 

BODIPY 2 (190 mg, 0.845 mmol), and corresponding ferrocenyl alkyne (0.845 

mmol) were dissolved in THF–triethylamine (10 : 1, v/v; 5 ml), and the mixture was 

cooled to 0 °C using an ice bath. The reaction mixture was purged with argon, and 

Pd(PPh3)2Cl2 (29.6 mg, 5 mol%) and CuI (16 mg, 10 mol%) were added, followed 

by stirring at 0 °C for 30 min. Upon completion of the reaction, the mixture was 

evaporated to dryness, and the crude product was dissolved in CH2Cl2, 

chromatographed on silica (1 : 1; hexanes–CHCl3), and recrystallized from a 

chloroform–hexane–ethanol (7 : 2 : 1) mixture to give 3–6 (yield 40–60%) as purple 

crystalline solids. 

8-(Ferrocenylethynyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (3). Yield: 

60% (201 mg). 1H NMR (CDCl3, 400 MHz, ppm): δ 7.82 (s, 2H), 7.34 (d, 2H, J = 4 

Hz), 6.53 (d, 2H, J = 3.8 Hz), 4.70 (t, 2H, J = 2 Hz), 4.53 (t, 2H, J = 2 Hz), 4.32 (s, 

5H); 13C NMR (CDCl3, 100 MHz, ppm): 142.46, 136.59, 128.54, 128.46, 118.24, 

110.83, 83.27, 73.38, 71.92, 71.02, 61.93; HRMS (ESI) m/z = calculated for 

C21H15BF2FeN2Na+ = 423.0542, measured 423.0548. 

8-((3-Ferrocenyl)-phenylethynyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 

(4). Yield: 65% (260 mg). 1H NMR (CDCl3, 400 MHz, ppm): δ 7.84 (s, 2H), 7.69 (s, 

2H), 7.62 (d, 2H, J = 8.04), 7.48 (d, 2H, J = 7.52), 7.43 (bs, 2H), 7.37 (dd, J = 

7.52, J = 7.8), 6.57 (s, 2H), 4.70 (s, 2H), 4.39 (s, 2H), 4.08 (s, 5H); 13C 

NMR (CDCl3, 100 MHz, ppm): 143.92, 141.05, 136.88, 130.40, 129.85, 129.49, 

129.18, 129.03, 127.69, 121.22, 118.69, 106.48, 84.22, 83.71, 70.05, 69.83, 66.89; 

HRMS (ESI) m/z = calculated for C27H19FeBF2N2 = 476.0958, measured 476.0983. 
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8-((4-Ferrocenyl)-phenylethynyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-indacene 

(5). Yield: 50% (200 mg). 1H NMR (CDCl3, 400 MHz, ppm): δ 7.83 (s, 2H), 7.57 

(d, 2H, J = 8 Hz), 7.52 (d, 2H, J = 8 Hz), 7.41 (bs, 2H), 6.56 (bs, 2H), 4.73 (s, 2H), 

4.44 (s, 2H), 4.06 (s, 5H) ppm; 13C NMR (CDCl3, 100 MHz, ppm): 144.34, 143.48, 

136.74, 133.29, 129.11, 128.05, 126.38, 118.53, 117.95, 107.74, 85.29, 83.37, 70.47, 

70.27, 67.19; HRMS (ESI) m/z = calculated for C27H19FeBF2N2 = 476.0958, 

measured 476.0958. 

8-((4-Ferrocenylethynyl)-phenylethynyl)-4,4-difluoro-4-bora-3a,4a-diaza-s-

indacene (6). Yield: 70% (294 mg). 1H NMR (CDCl3, 400 MHz, ppm): δ 7.83 (s, 

2H), 7.60 (d, 2H, J = 8 Hz), 7.54 (d, 2H, J = 8 Hz), 7.38 (s, 2H), 6.55 (s, 2H), 4.54 

(s, 2H), 4.30 (s, 2H), 4.27 (s, 5H); 13C NMR (CDCl3, 100 MHz, ppm): 143.94, 

139.60, 136.79, 133.00, 131.89, 129.35, 127.34, 119.85, 118.72, 106.02, 93.72, 

85.99, 85.73, 71.98, 70.42, 69.69, 64.62; HRMS (ESI) m/z = calculated for 

C29H19FeBF2N2 = 500.0959, measured 500.0964. 

4.8. Conclusion 

In summary we have synthesized a series of meso-alkynylated ferrocenyl 

BODIPYs by the Pd catalyzed Sonogashira cross-coupling reaction. The 

photophysical, and electrochemical properties of these ferrocenyl BODIPYs show 

considerable electronic interaction between the BODIPY core, and the ferrocenyl 

group. This electronic communication can be tuned by varying the length, and 

linkage of the spacer group. The alkynylation at meso position of BODIPY reveals 

the superior electronic communication between Donor and Acceptor BODIPY 

moiety compared to alkynylation at α and β positions. 
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Chapter 5 

Quenching of fluorescence as an indicator of donor 

strength of meso arylethynyl BODIPYs 

5.1. Introduction 

In recent years BODIPY chemistry has gained momentum, which is reflected 

from their share in most of the journals.[1] BODIPY dyes distinguish themselves 

from others due to strong absorption, sharp fluorescence and high thermal 

stability.[2] These properties of the BODIPYs make them a potential candidate in 

organic electronics and photonics.[3] Our group is interested in design of donor-

acceptor molecular systems for photonic applications.[4] The BODIPY unit acts as 

strong acceptor. Therefore functionalization of BODIPY dyes with donors will 

result in donor-acceptor (D-A) type molecular systems.[5] Various strategies are 

reported in the literature for functionalization of the BODIPY dyes at meso as well 

as pyrrolic positions.[6] In meso aryl functionalized BODIPY, the meso substituent 

adopts orthogonal orientation with respect to the BODIPY core, which hinders the 

electronic communication. One can overcome this problem by introducing the 

ethynyl linkage at the meso position, so that the substituent and the BODIPY will be 

planar, with respect to each other for better electronic communication. Wim Dehaen 

et al. have introduced efficient synthetic strategy for incorporation of the ethynyl 

linkage at the meso position.[7]  

Our previous report on ferrocenyl BODIPYs has established that the meso 

alkynylated BODIPYs show superior electronic communication than the pyrrolic 

alkynylated BODIPYs.[8] This encouraged us to study the effect of various donors at 

the meso position of the BODIPY via ethynyl linkage. In this report we have 

incorporated various donors at the meso position of the BODIPY via ethynyl linkage 

and studied their structural, electronic, photophysical, and electrochemical 

properties. 
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5.2. Results and Discussion 
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Scheme 5.1. Synthesis of meso-arylethynyl BODIPYs 2a – 2h. 

The meso-arylethynyl BODIPYs 2a – 2h were synthesized by the palladium 

catalyzed Sonogashira cross-coupling reaction of 8-chloro BODIPY 1 with 

respective arylethynes (a – h) as shown in Scheme 5.1. The 8-chloro BODIPY 1, 

was synthesized from dipyrrylketone.7 The dipyrrylketone was reacted with POCl3 

followed by in-situ deprotonation by base and complexation with BF3 etherate, 

which resulted 8-chloro BODIPY 1 in 59 % yield. The dipyrrylketone was 

synthesized by the condensation reaction of thiophosgene, and pyrrole, followed by 

oxidation with H2O2 under basic condition.
[9] The arylethynes a – h were 

synthesized from reported procedures.[10] 

The Pd-catalyzed Sonogashira cross-coupling reaction of the 8-chloro BODIPY 

1, with the respective arylethynes at 0 °C resulted, BODIPYs 2a – 2h in 44 to 77 % 

yields. These reactions were completed within half an hour due to the high reactivity 

of 8-chloro BODIPY. The BODIPYs 2a – 2h were well characterized by 1H NMR, 
13C NMR, and HRMS techniques. The BODIPYs 2d and 2e were also characterized 

by single crystal X-ray diffraction technique. 

The typical 1H NMR spectrum of the BODIPY derivatives show two α pyrrolic 

protons as singlet at ~ 7.8 ppm, whereas the β and βʹ protons appear as doublet at ~ 

6.6 and ~ 7.7 ppm. The protons of the aryl substituent appear in aromatic region. 
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Figure 5.1. TGA plot of the meso arylethynyl BODIPYs 2a – 2h. 

The thermal stability is one of the key criteria for optoelectronic applications. 

The thermal properties of the meso-arylethynyl BODIPYs (2a – 2h) were 

investigated using thermogravimetric analysis (TGA) by heating the BODIPYs 

under nitrogen atmosphere at the heating rate of 10 °C per minute and monitoring 

the weight loss against temperature (Figure 5.1). The TGA analysis shows that the 

meso-arylethynyl BODIPYs were stable enough up to 350 °C. The decomposition 

temperature at 10 % weight loss is shown in Table 5.1, indicating good thermal 

stability of the BODIPYs. 

5.3. Photophysical Properties 

 

Figure 5.2. BODIPYs 2a – 2h in dichloromethane at concentration of 10-4 M (a) 

in day light and (b) in UV light. 
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The photograph of the BODIPYs 2a – 2h in dichloromethane solvent in day 

light and in UV light is displayed in Figure 5.2. The coloring pattern of the 

BODIPYs reflects the D-A interaction. The BODIPYs 2b, 2g and 2h are non-

fluorescent with dark purple color indicating strong D-A interaction, whereas the 

BODIPYs 2a and 2c – 2f are fluorescent with yellow-red shade indicating moderate 

D-A interaction. 

 
Figure 5.3. Normalized UV-vis absorption spectra of meso-arylethynyl BODIPYs 

2a – 2h recorded in dichloromethane, inset show the enlarged view. 

The UV-vis absorption spectra of the meso-arylethynyl BODIPYs 2a – 2h were 

recorded in dichloromethane (Figure 5.3), and the corresponding data are shown in 

Table 5.1. The BODIPYs 2a – 2h show strong absorption band between 538 to 553 

nm region corresponding to the S0→S1 transition with high extinction coefficient, 

and a shoulder at higher energy region corresponding to the respective vibronic 

transition of the BODIPY. The BODIPYs 2a – 2h show red shift of 35 – 50 nm in 

the S0→S1 absorption band compared to 8-chloro BODIPY 1 (Table 5.1) due to 

enhanced conjugation. The red shift in the S0→S1 absorption band follows the order 
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of 2h>2g>2f>2e>2d>2c>2b>2a. The BODIPY 2b shows a shoulder in S0→S1 

absorption band at low energy region, which can be attributed to charge transfer.[11] 

 
Figure 5.4. Emission spectra of the meso-arylethynyl BODIPYs 2a – 2h, 

recorded in dichloromethane. 

The emission properties of the meso-arylethynyl BODIPYs 2a – 2h were studied 

in dichloromethane (Figure 5.4) and corresponding data is given in Table 5.1. The 

meso arylethynyl BODIPYs 2a, 2c – 2f and 2h emit in the 520 – 650 nm region with 

stokes shift ranging from 380 – 550 cm-1. The fluorescence quantum yields of the 

BODIPYs 2a – 2h were decreased drastically compared to the 8-chloro BODIPY 1. 

The BODIPYs 2b and 2g were non-emissive in nature. The quenching of the 

fluorescence is may be due to the intramolecular charge transfer from aryl moiety to 

the BODIPY.[12] The trend in quenching of fluorescence can be correlated to the 

electron donating ability of the aryl substituent. More the electron donating ability 

lesser will be the quantum yield. From the quantum yield values the electron 

donating ability of the aryl substituent follows the order: 

2b>2g>2h>2d>2c>2e>2f>2a. 
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Table 5.1. Photophysical and thermal properties of meso-arylethynyl BODIPYs 2a – 

2h. 

BODIPY λS0→S1 
(nm) 

ɛ/104 

(M-1.cm-1) a 
λem

b 

(nm) 
Stokes 

shift (cm-1) ɸF
c Td

d 

(°C) 
2a 538 4.4 552 472 0.23 414 
2b 540 5.0 -e -e -e 379 
2c 543 3.8 558 495 0.18 392 
2d 544 4.9 559 493 0.19 386 
2e 545 3.5 561 523 0.19 357 
2f 546 4.4 563 554 0.20 484 
2g 548 4.5 -e -e -e 504 
2h 553 4.6 565 384 0.02 365 

aRecorded at S0→S1,  bExcited at λS0→S1, cDetermined by using Rhodamine 6G as standard (ɸ=0.88, in 

ethanol), dDecomposition temperature at 10% weight loss, determined by TGA. e BODIPYs are non-

emissive. 

5.4. Electrochemical properties 

The electrochemical properties of the meso-arylethynyl BODIPYs were 

investigated by the cyclic voltametric and differential pulse voltammetric (CV and 

DPV) techniques (Figure 5.5) and corresponding data is displayed in Table 5.2. The 

potentials were referenced against Fc/Fc+ as per IUPAC guidelines.[13] The redox 

peaks were mostly irreversible or quasi reversible. The BODIPYs 2a – 2h show two 

oxidation and two reduction waves corresponding to the formation of dication and 

dianion radical respectively. Stronger the D-A interaction, better will be the 

delocalization of electrons from the donor aryl moiety to the acceptor BODIPY 

moiety, showing easier oxidation and difficult reduction of the BODIPYs. 

Table 5.2. Electrochemical properties of the meso-arylethynyl BODIPYs 2a – 2h.a 

BODIPY E2 
oxid

b 
E1 

oxid
b 

E1 
redb 

E2 
redb 

2a 1.28 1.07 -1 -1.35 

2b 1.13 0.65 (broad) -1.01 -1.29 

2c 1.35 1.1 -0.98 -1.35 
2d 1.28 1.07 -0.99 -1.28 
2e 1.28 1.07 -1.01 -1.37 
2f 1.32 0.99 -1.01 -1.32 
2g 1.22 (broad) 0.85 -1 -1.37 
2h 1.16 (broad) 0.89 -1 -1.4 

aelectrochemical analysis was performed, in 0.1 M solution of Bu4NPF6 in dichloromethane at 

100 mV s-1 scan rate, versus Fc/Fc+. birreversible wave. 
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Figure 5.5. Overlaid CV and DPV plots of the meso-arylethynyl BODIPY 2a – 2h. 

The BODIPY 2b show easiest oxidation and harder reduction indicating the 

pronounced delocalization of the electron density of the donor triphenylamine 

moiety to the acceptor BODIPY. On the other hand, the BODIPY 2c shows easiest 

reduction and harder oxidation indicating poor delocalization of the electrons of 

donor aryl group to the acceptor BODIPY. The other BODIPYs show redox peaks at 

intermediate potentials. The redox properties suggest strong D-A interaction in 

BODIPYs 2b, 2g and 2h; and moderate D-A interactions in 2a and 2c – 2f.  

5.5. Theoretical Calculations  

The electronic distribution of the meso-arylethynyl BODIPYs could be better 

understood by DFT calculations. The energy minimized structures show planar 

orientation of the BODIPY core with respect to the meso aryl substituent, which 

indicates better electronic communication. The energy optimized structures closely 

resemble with the single crystal structure. The frontier molecular orbital plots are 
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displayed in Figure 5.6. The LUMO in meso-arylethynyl BODIPYs 2b, 2g and 2h is 

majorly contributed by the BODIPY moiety, and the HOMO is contributed by the 

arylethynyl moiety, supporting strong D-A interactions. In the meso-arylethynyl 

BODIPYs 2a, 2c – 2f the HOMO is localized on the BODIPY unit and the LUMO is 

distributed on the whole molecule but majorly on the arylethynyl unit suggesting 

moderate D-A interactions. 

 

Figure 5.6. HOMO and LUMO frontier molecular orbitals of the meso-arylethynyl 

BODIPYs at the B3LYP/6-31G (d).  

5.6. Single crystal X-ray diffraction studies 

The single crystals of BODIPYs 2d and 2e were obtained by the slow 

evaporation of mixture of chloroform and hexane solution (1:3 ratio). The 

BODIPYs 2d and 2e crystallizes in the space groups P212121 and P2/c 

respectively. The crystal structure and data refinement parameters and the 

distances and angles of intermolecular interactions in the crystal structures are 

summarized in Table 5.3 and Table 5.4 respectively. 
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Table 5.3. Crystal structure and data refinement parameters. 
BODIPY 2d 2e 
Empirical formula C21 H13 B F2 N2 C21 H13 B F2 N2 
Formula weight 342.14 342.14 
Temperature/K 150(2) 150(2) 
Crystal system Orthorhombic  Monoclinic 
Space group P212121 P2/c 
Unit cell dimensions   
a/Å a = 5.5995(2) a = 10.1059(3) 
α/° 90 90 
b/ Å 13.5098(4) b = 10.4411(3) 
β/° 90 100.699(3) 
c/ Å 22.2683(8) 15.6091(5) 
γ/° 90 90 
Volume/ Å3 1684.56(10) 1618.39(8) 
Z 4 4 
Calculated density/ Mg/m3 1.349 1.404 
Absorption coefficient/mm-1 0.779 0.811 
F(000) 704 704 

Crystal size/mm 0.21 x 0.18 x 0.13 0.33 x 0.26 x 0.19 

θ range from data collection/° 3.83 to 72.10 4.23 to 72.16 

Reflections collected/unique 11102 / 3269 [R(int) = 
0.0166] 

10226 / 3147 [R(int) = 
0.0239] 

Absorption correction Semi-empirical from 
equivalents 

Semi-empirical from 
equivalents 

Data/restraints/parameters 3269 / 0 / 236 3147 / 0 / 236 
Goodness-of-fit on F2 1.023 1.090 

Final R indices [I > 2σ (I)] R1 = 0.0281,  
wR2 = 0.0735 

R1 = 0.0427,  
wR2 = 0.1244 

R indices (all data) R1 = 0.0336,  
wR2 = 0.0788 

R1 = 0.0519, 
wR2 = 0.1387 

Largest diff. peak and hole/e Å-3 0.081 and -0.099 0.198 and -0.207 

Absolute structure parameter 0.10(14) - 
CCDC number 967406 967407 
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Figure 5.7. Single crystals of BODIPYs 2d and 2e, front view and side view. 

The crystal structure of the BODIPYs 2d and 2e are shown in Figure 5.7. 

The side view of crystal structures show highly planar orientation of the aryl moiety 

and BODIPY unit.  

Table 5.4. Distance and angle of intermolecular of interactions in the crystal 

structures. 

Interaction Distance (Å) Angle of Interaction (°) 
2d   
F(1)---H(7)-C(7) 2.355 131.08 
F(1)---H(21)-C(21) 2.285 128.27 
F(2)---H(9)-C(9) 2.627 119.94 
C(17)-H(17)---π (pyrrolic) 3.044  
π---π between two BODIPY units 3.383  
2e   
F(1)---H(9)-C(9) 2.467 160.18 
F(2)---H(18)-C(18) 2.527 156.97 
π---π between two BODIPY units 3.384  
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Figure 5.8. Crystal packing of 2d. 

In the packing of BODIPY 2d, the π-π staking interaction between the two 

BODIPY units forms staircase like structure. Such a staircase like structure connects 

another stair case like structure in perpendicular direction via C(17)-H(17)---π 

(pyrrolic) interaction, if flipped to view along a-axis it looks L-shaped, hiding 

behind the π-staked molecules. The L-shaped structure further grows to form 

complex 3-D structural motif (Figure 5.8).  

Similarly in the crystal structure of 2e two molecules connect to each other in 

head to tail fashion via another molecule by two mutual F(1)---H(9)-C(9); and a 

F(2)---H(18)-C(18) interactions forming 2D chain. Such two chains connect to 

another chain in anti-parallel fashion by face to face π---π staking interactions 

between two BODIPY units (Figure 5.9a), these chains further cross links to other 

chains forming complex 3D packing diagram along tilted c-axis. In the packing 

diagram the molecules orient in such a way that the aryl part of the BODIPY units is 

at the centre and surrounded by the BODIPY moiety (Figure 5.9b). 



94 
 

 

Figure 5.9. Crystal packing of 2e along tilted b-axis 

5.7. Experimental section 

Generalized procedure for Sonogashira coupling reaction- 8-chloro 

BODIPY 1 (190 mg, 0.845 mmol), and corresponding arylethyne (0.845 mmol) 

were dissolved in THF:triethylamine (10:1,v/v; 5 ml), and the mixture was cooled to 

0 °C using an ice bath. The reaction mixture was purged with argon, and 

Pd(PPh3)2Cl2 (29.6 mg, 5 mol%), and CuI (16 mg, 10 mol%) were added, followed 

by stirring at 0 °C for 30 min. Upon completion of reaction, the mixture was 

evaporated to dryness, and the crude product was dissolved in CH2Cl2, 

chromatographed on silica (1:1; hexanes:CHCl3), and recrystallized from 

chloroform: hexane (1:3) mixture to give 2a – 2h (yield 44 – 77%) as purple 

crystalline solid. 
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BODIPY 2a 

Yellow-red crystalline solid. Yield: 77% (110 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 7.81 (s, 2H), 7.61 (d, J = 8Hz, 2H), 7.38 (d, J = 4Hz, 2H), 6.96 (d, J = 8Hz, 

2H), 6.34 (d, J = 4 Hz, 2H) 3.88 (s, 3H);  13C NMR (CDCl3, 100 MHz, ppm): 162.2, 

143.1, 136.5, 135.0, 128.9, 128.3, 118.2, 114.8, 113.0, 107.7, 84.4, 55.7;  HRMS 

(ESI-TOF) m/z = calculated for C18H13BF2N2O+Na+ = 345.0984, measured 

345.0988. 

BODIPY 2b 

Dark purple crystalline solid. Yield: 44% (90 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 7.79 (s, 1H), 7.47 (d, J = 9Hz, 2H), 7.34 (m, 6H), 7.17 (m, 6H), 7.01 (d, J = 

8.8 Hz, 2H) 6.52 (d, J = 3 Hz, 2H);  13C NMR (CDCl3, 100 MHz, ppm): 150.8, 

146.3, 142.6, 136.3, 134.5, 129.9, 128.4, 126.2, 125.1, 120.5, 118.00, 112.1, 109.3, 

85.6; HRMS (ESI-TOF) m/z = calculated for C29H20BF2N3+Na+ = 482.1616, 

measured 482.1615. 

BODIPY 2c 

Red crystalline solid. Yield: 64% (105 mg); 1H NMR (CDCl3, 400 MHz, ppm): δ 

7.84 (s, 2H), 7.74 (d, J = 8Hz, 2H), 7.69 (d, J = 8Hz, 2H) 7.65 (m, 2H), 7.49 (m, 

2H), 7.42 (m, 3H), 6.56 (d, J = 4Hz, 2H);  13C NMR (CDCl3, 100 MHz, ppm): 144.0, 

143.7, 139.8, 136.7, 133.4, 129.2, 128.5, 127.6, 127.5, 127.27, 119.7, 118.5, 106.1, 

85.1; HRMS (ESI-TOF) m/z = [M+Na]+ calculated for C23H15BF2N2+Na+= 

391.1193, measured 391.1197. 

BODIPY 2d 

Red crystalline solid. Yield: 73% (110 mg); 1H NMR (CDCl3, 400 MHz, ppm): δ 

8.23 (s, 2H), 7.88 (m, 5H), 7.65 (dd, J = 1.50 Hz and J =  8.54Hz, 1H), 7.59 (m, 

2H), 7.47 (d, J = 4Hz, 4H), 6.58 (d, J = 4Hz, 2H);  13C NMR (CDCl3, 100 MHz, 

ppm): 143.8, 136.7, 134.2, 134.1, 132.9, 129.2, 128.9, 128.4, 128.2, 128.1, 127.6, 

127.4, 118.5, 118.2, 106.6, 84.7; HRMS (ESI-TOF) m/z = calculated for 

C21H13BF2N2+Na+ = 365.1036, measured 365.1039. 
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BODIPY 2e 

Red crystalline solid. Yield: 65% (99 mg); 1H NMR (CDCl3, 400 MHz, ppm): δ 8.35 

(dd, J = 8Hz, 1H), 7.02 (d, J = 8Hz, 1H), 7.94 (m, 2H), 7.87 (s, 2H), 7.71 (m, 1H) 

7.62 (m, 1H), 7.56 (dd, J = 8Hz, 1H), 7.51 (d, J = 4Hz, 2H);  13C NMR (CDCl3, 100 

MHz, ppm): 143.8, 136.7, 133.4, 133.3, 133.2, 132.0, 129.2, 129.0, 128.1, 127.5, 

127.2, 125.6, 125.5, 118.64, 118.60, 104.4, 89.0; HRMS (ESI-TOF) m/z = 

calculated for C21H13BF2N2+Na+ = 365.1036, measured 365.1036. 

BODIPY 2f 

Red crystalline solid. Yield: 57% (99 mg); 1H NMR (CDCl3, 400 MHz, ppm): δ 8.73 

(m, 1H), 8.69 (d, J = 8Hz, 1H), 8.40 (m, 1H), 8.24 (s, 1H), 7.93 (d, J = 8Hz, 1H), 

7.88 (s, 2H), 7.77 (m, 3H), 7.67 (m, 1H), 7.52 (d, J = 2Hz, 2H), 6.60 (d, J = 4Hz, 

2H); 13C NMR (CDCl3, 100 MHz, ppm): 143.8, 136.8, 135.7, 131.6, 130.8, 130.6, 

130.3, 129.4, 129.3, 127.9, 127.9, 127.6, 127.4, 126.5, 123.4, 123.0, 118.6, 117.6, 

104.7, 88.6; HRMS (ESI-TOF) m/z = calculated for C25H15BF2N2+Na+ = 515.1193, 

measured 5151.1190. 

BODIPY 2g 

Dark purple crystalline solid. Yield: 47% (87 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 8.52 (d, J = 8Hz, 2H), 8.22 (m, 6H), 8.08 (m, 2H), 7.88 (s, 2H), 7.54 (d, J = 

4Hz, 2H), 6.61 (d, J = 8Hz, 2H);  13C NMR (CDCl3, 100 MHz, ppm): 143.4, 136.6, 

133.6, 133.5, 131.2, 131.1, 130.9, 130.1, 130.0, 128.9, 127.7, 127.3, 127.0, 126.9, 

124.9, 124.8, 124.5, 124.1, 118.5, 114.9, 106.3; HRMS (ESI-TOF) m/z = calculated 

for C27H15BF2N2+Na+ = 439.1193, measured 439.1194. 

BODIPY 2h 

Dark purple crystalline solid. Yield: 62% (108 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 8.62 (s, 1H), 8.56 (m, 2H), 8.09 (d, J = 8Hz, 2H), 7.90 (s, 2H), 7.73 (m, 

2H), 7.60 (m, 4H), 6.65 (d, J = 4Hz, 2H);  13C NMR (CDCl3, 100 MHz, ppm): 143.4, 

136.5, 134.1, 132.0, 131.2, 129.5, 129.0, 128.5, 127.5, 126.3, 126.0, 118.6, 114.5, 

103.8, 95.9; HRMS (ESI-TOF) m/z = calculated for C25H15BF2N2+Na+ = 415.1193, 

measured 415.1198. 
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5.8. Conclusion 

In summary, we have synthesized meso-arylethynyl BODIPYs. The 

photophysical and electrochemical properties of the BODIPYs can be tuned by 

varying the strength of donor. The DFT calculations, photophysical and 

electrochemical properties suggest strong donor-acceptor interactions in the 

BODIPYs 2b, 2g and 2h, and moderate interactions in 2a, and 2c – 2f. The 

quenching of fluorescence can be used as a measure of the relative electron donating 

strength of the aryl substituent. The crystal structures show interesting 

supramolecular interactions. 
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Chapter 6 

Meso Heteroatom connected ferrocenyl BODIPYs 

6.1. Introduction 

BODIPY dyes have attracted the attention of the scientific community because 

of its unique photophysical properties such as strong electronic absorption with high 

extinction coefficient, high luminescence efficiency, high thermal and 

photochemical stability, and their potential applications in laser dyes, chemosensors, 

organogelators, NIR‐absorbing dyes, organic photovoltaics, and two‐photon 

absorbing materials.[1]  

In recent years various strategies have been developed for the functionalization 

of the BODIPYs at α, β and meso positions.[2] The halogenations at these positions 

are straight forward route for the functionalisation of the BODIPY. Usually the 

halogenation of the dipyrromethane results in α‐halogenated BODIPYs whereas 

direct halogenation of the BODIPY results in β‐halogenated BODIPYs.[3] 

Wim Dehaen et al. have developed the synthetic route for the halogenation at the 

meso position of the BODIPY (8‐halogenated BODIPYs).[4] The halogen group at 

the meso position of the BODIPY undergoes rapid substitution and coupling 

reactions. We have studied the Sonogashira coupling reaction at the meso position of 

the BODIPY.[5] We were further interested in the nucleophilic aromatic substitution 

reaction of 8‐chloro BODIPYs 1 with substituted phenols and anilines and to see the 

effect of heteroatom and aromatic substituents on the photophysical and 

electrochemical properties. The ferrocenyl derivatives are of great interest because 

of their applications in nonlinear optics, sensors and asymmetric catalysis.[6] Our 

group is interested in the ferrocene based molecular systems for various photonic 

applications.[7] In this context we have chosen the para and meta linked ferrocenyl 

anilines (a and b) and ferrocenyl phenols (c and d), and treated them with 8‐chloro 

BODIPY 1. The heteroatoms (O and N) at the meso position are known to 

destabilize the LOMO energy level of the BODIPYs.[8] Therefore use of substituted 

anilines and phenols will have pronounced effect on the energy levels and 

optoelectronic properties of the BODIPY. We were interested to explore the effect 
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of heteroatom (O versus N) and ferrocenyl group on the photophysical, 

electrochemical and structural properties of these molecular systems. 

6.2. Results and Discussion 
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Scheme 6.1. Synthesis of heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c 

and 3d. 

The heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c and 3d were 

synthesized by the SNAr type substitution reactions of 8‐chloro BODIPY 1 with the 

corresponding ferrocenyl anilines (a and b) and ferrocenyl phenols (c and d) 

(Scheme 6.1). The precursors, ferrocenyl anilines (a and b) were synthesized by the 

diazotization reaction of nitroanilines with ferrocene followed by reduction with 

Sn/HCl, whereas the ferrocenyl phenols (c and d) were synthesized by the 

diazotization reaction of the aminophenols with ferrocene.[9] The reaction of 8‐

chloro BODIPY 1 with 4‐ferrocenyl aniline (a) and 3‐ferrocenyl aniline (b) in the 

presence of triethylamine as base in CH2Cl2 resulted 2a and 2b in 64% and 60% 

yields respectively. On the other hand, the reaction of the 8‐chloro BODIPY 1 with 

4‐ferrocenylphenol (c) and 3‐ferrocenylphenol (d) in the presence of K2CO3 as base 

in CH2Cl2 resulted 3c and 3d in 62% and 60% yields respectively. BODIPY 4 was 

synthesized by previously reported procedure.[4] 

All the ferrocenyl BODIPYs were well characterized by 1H, 13C, 11B and 19F 

NMR, HRMS, elemental analysis and single crystal X - ray crystallographic 

techniques. The 1H NMR spectra of the heteroatom connected ferrocenyl BODIPYs 

2a, 2b, 3c and 3d exhibit the ferrocenyl protons in the 4.0 - 4.7 ppm region, and the 

phenyl protons in the 7.0 - 7.8 ppm region with typical di - substitution splitting 

pattern. The α pyrrolic protons appear at ~ 7.7 ppm as singlet, while the β and βʹ 

protons appear at ~ 6.4 and 6.7 ppm as doublets. All the ferrocenyl BODIPYs show 

as usual triplet at ~ 0 ppm in 11B NMR. 
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Chart 6.1. Previously reported aniline and phenol substituted BODIPYs. 

6.3. Thermogravimetric Analysis 

 
Figure 6.1. TGA plots of the heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c 

and 3d recorded at the heating rate of 10 °C min‐1 under nitrogen atmosphere. 

The thermal stability is one of the key criterions for the optoelectronic 

applications of any material. The thermal properties of the heteroatom connected 

ferrocenyl BODIPYs 2a, 2b, 3c and 3d were investigated by thermogravimetric 

analysis (TGA), at 10 °C min‐1 heating rate under inert atmosphere (Figure 6.1).  

The thermal decomposition temperatures (Td) at 5 % weight loss are shown in Table 

6.1. The trend in thermal stability follows the order 2a~2b>3c>3d. The BODIPYs 

2b and 3d show sudden weight loss of 60 % at 360 °C and 310 °C respectively. This 
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suggests that the para isomers are thermally more stable than their meta isomers. 

The heteroatom connected ferrocenyl BODIPYs (2a, 2b, 3c and 3d) possess good 

thermal stability up to 275 °C. Our previously reported meso‐alkynylated ferrocenyl 

BODIPYs exhibit thermal stability up to 400 °C. This shows that the substitution at 

the meso position via heteroatom lowers the thermal stability of BODIPY.  

6.4. Photophysical Properties 

Figure 6.2 displays the color of the BODIPYs 1, 2a, 2b, 3c and 3d, in 

dichloromethane. The BODIPY 1 show lime green color. The meta substituted 

BODIPYs 2b and 3d show yellow color, while para substituted BODIPYs 2a and 3c 

show yellowish‐red color in solution. The UV‐vis absorption spectra of the 

BODIPYs 1, 2a, 2b, 3c and 3d were recorded in dichloromethane at room 

temperature (Figure 6.3) and the corresponding data are listed in Table 6.1.  

Table 6.1. Optical, electrochemical and thermal properties of the BODIPYs 1, 2a, 

2b, 3c and 3d. 

BODIPY 

Optical dataa Electrochemical datad 
Td

e 

(°C) 
λabs 

(max)b 
(nm) 

ɛ/104 
(Mol‐1.cm‐1)c 

E2
oxi 

(BODIPY) 
E1

oxi 
(Fc) 

E1
red 

(BODIPY) 
E2

red 
(BODIPY) 

1 503 9.8 1.31 ‐‐ ‐0.96 ‐1.32 193 
2a 418 5.2 1.06 0.06 ‐1.19 ‐1.39 300 
2b 419 5.1 1.12 0.03 ‐1.21 ‐1.39 309 
3c 455 5.7 1.07 0.06 ‐1.14 ‐1.25 264 
3d 455 6.5 1.12 0.10 ‐1.24 ‐1.28 254 

aMeasured in CH2Cl2. bAbsorption maxima. cExtinction coefficient recorded at λabs (max), 
dElectrochemical analysis was performed in 0.1 M solution of Bu4NPF6 in CH2Cl2 at 100 mVs‐1 scan 

rate versus Fc/Fc+, all potentials are expressed in unit volt (V). eThermal decomposition temperature 

at 5% weight loss, determined by TGA.  

 

 

 



107 
 

 
Figure 6.2. 8‐chloro BODIPY 1, and heteroatom connected ferrocenyl BODIPYs 

2a, 2b, 3c and 3d in dichloromethane at 10-4 M concentration. 

The 8-chloro BODIPY 1, show strong absorption band at 503 nm due to S0→S1 

absorption, whereas the heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c and 

3d show blue shifted absorption band at 418, 419, 455 and 455 nm respectively, 

which was assigned to HOMO-2→LUMO and HOMO-3→LUMO transitions (TD-

DFT calculations). The blue shift in the absorption is attributed to the delocalization 

of the lone pair electrons of meso substituted heteroatom into the electron deficient 

BODIPY to form cross‐conjugated hemicyanine or merocyanine resonance 

structures.[8] The higher electron releasing ability of the nitrogen than oxygen 

resulted more pronounced blue shift in the absorption band of the ferrocenyl 

BODIPYs 2a and 2b than 3c and 3d. In order to explore the effect of ferrocenyl 

group on the photonic properties of the BODIPYs (2a, 2b, 3c and 3d), their 

properties were compared with the aniline and phenol substituted BODIPY 

derivatives 4 and 5 (chart 6.1). The BODIPYs 2a, 2b and 4 (λmax= 419nm)[10] absorb 

at the similar wavelength, similarly the BODIPYs 3c, 3d and 5 (λmax= 455nm) 

absorb at the similar wavelength. This indicates that the ferrocenyl group has 

negligible effect on the electronic absorption. The heteroatom connected ferrocenyl 

BODIPYs 2a, 2b, 3c and 3d are non-emissive in nature. The phenol substituted 

BODIPY 5 (Chart 1) show high fluorescence (ϕ = 0.88). Therefore the quenching of 

fluorescence can be attributed to the fast non radiative deactivation of the exited 

state with intramolecular charge transfer from the donor ferrocenyl unit to the 

acceptor BODIPY moiety.[11] 
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Figure 6.3. Normalized electronic absorption spectra of the 8‐chloro BODIPY 1 and 

the heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c and 3d in 

dichloromethane. 

6.5. Electrochemical properties 

The electrochemical properties of the heteroatom connected ferrocenyl 

BODIPYs 2a, 2b, 3c and 3d were explored by the cyclic voltammetric (CV) and 

differential pulse voltammetric (DPV) analyses. The overlaid CV and DPV are 

shown in Figure 6.4 and the corresponding data are given in Table 6.1. The 

heteroatom connected ferrocenyl BODIPYs exhibit two reduction waves 

corresponding to the reduction of BODIPY moiety, and two oxidation waves, one 

attributed to the oxidation of ferrocenyl unit and another due to the BODIPY unit. 

The redox waves due to the BODIPY moiety are irreversible, while the ferrocenyl 

oxidation wave is reversible. The first oxidation potentials are similar in BODIPYs 

2a and 3c, on the other hand it varies substantially in 2b and 3d. The first oxidation 

indicates the removal of an electron from π (HOMO) orbital and first reduction 

indicates the addition of an electron to the π* (LUMO) orbital. The first oxidation 

potentials of the BODIPYs 2a and 3c indicate similar energies of HOMOs, whereas 

the first reduction potential indicate the easier reduction of the BODIPY 3c than 

BODIPY 2a indicating the lowering of LUMO in 3c than 2a. In case of 3c the poor 
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electron delocalization on the BODIPY favors the easier reduction. The BODIPY 3d 

shows exceptionally harder oxidation and reduction. 

 

Figure 6.4. Cyclic voltammogram and differential pulse voltammogram of the 

heteroatom connected ferrocenyl BODIPY 2a, 2b, 3c and 3d. 

6.6. Theoretical Calculations  

Table 6.2. Computed vertical transitions and their oscillator strengths and 

configurations of BODIPY 3c. 

BODIPY 
DCM 

λmax[nm] f Configuration 

3c 
423.65 

 

0.0509 

 

HOMO-2→LUMO (0.55073) 

HOMO-3→LUMO (-0.42994) 

 409.28 0.6567 
HOMO-2→LUMO (0.42888) 

HOMO-3→LUMO (0.55294) 
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To gain insight into the geometrical and electronic structures of the heteroatom 

connected ferrocenyl BODIPYs 2a, 2b, 3c and 3d computational studies were 

performed using density functional theory (DFT) at B3LYP/6‐31G** for C, N, B, F, 

H, O and Lanl2DZ for Fe level. The DFT optimized structures closely resemble to 

the crystal structures, with slight variation in bond lengths and bond angles. The 

comparison of the selected bond lengths of the DFT optimized structures and crystal 

structures are shown in Figure 6.5. In the DFT optimized structures the boron atom 

is away from the average plane of BODIPY central ring whereas in the crystal 

structures it lies in the plane of the BODIPY. Figure 6.6 visualizes the difference in 

planarity in the crystal structure and DFT optimized structure.  
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Figure 6.5. Comparison of selected bond lengths of the crystal structures and 

DFT optimized structures of the heteroatom connected ferrocenyl BODIPYs 2a, 

2b, 3c and 3d (x and y represents two different molecules in an asymmetric 

unit). 
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Figure 6.6. Comparison of the planarity of the BODIPY central ring in the 

crystal structure and the DFT optimized structure of 2a (top view). 

The energy level diagram of the frontier molecular orbitals of the BODIPYs 1, 

2a, 2b, 3c, 3d, 4 and 5, estimated by DFT calculations are shown in Figure 6.7. In 

the BODIPYs 2a and 3c the HOMOs are at the same energy level, but the LUMO in 

3c is lower in energy compared to 2a. Similar trend was observed in the BODIPYs 

2b and 3d, and in the BODIPYs 4 and 5. This indicates that the nature of heteroatom 

at the meso position does not affect the HOMO energy level considerably, but show 

pronounced effect on the LUMO. The O‐atom at the meso position of the BODIPY 

stabilizes the LUMO better than N‐atom. The delocalization of the lone pair of 

electrons of the meso substituted heteroatom is more pronounced in (N‐) 2a and 2b, 

than (O‐) 3c and 3d, which is also evident from the molecular electrostatic potential 

maps, shown in Figure 6.8. The meso substituted nitrogen atom carries positive 

potential (blue color), and the fluorines show negative potentials (brown color). 

These observations are in good agreement with the optical and electrochemical 

properties. The first oxidation potential in the BODIPYs 2a and 3c are similar 

(similar HOMO), but the first reduction in 3c is easier than 2a (lowering of LUMO 

in 3c than 2a).[12]  

Figure 6.8. Electrostatic potential map of heteroatom connected ferrocenyl 

BODIPYs 2a, 2b, 3c and 3d. Red = lowest potential (electron-rich) and blue = 

highest potential (electron-poor). Calculated by Gaussian 09W. 
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The energy level diagram (Figure 6.7) reveals that the LUMO energy level of 

BODIPYs 2a, 2b and 4 are almost at same energy level but the HOMO of BODIPYs 

2a and 2b destabilized than BODIPY 4, and the extent of destabilization is more 

pronounced in case of HOMO‐1 and HOMO‐2. Similar trend was observed in the 

BODIPYs 3c, 3d and 5. This observation indicates that the ferrocenyl group has 

negligible effect on the LUMO but shows pronounced effect on the energy of 

HOMOs. 

 
Figure 6.7. Energy level diagram of the frontier molecular orbitals of the BODIPYs 

1, 4, 2a, 2b, 5, 3c and 3d estimated by DFT calculations. 

The frontier molecular orbitals of the BODIPYs 2a, 2b, 3c, 3d, 4 and 5 are 

displayed in Figure 6.9. In the BODIPYs 2a, 2b, 3c and 3d the HOMO is localized 

on the ferrocenyl group, whereas the LUMO is located on the BODIPY moiety. The 

HOMO‐LUMO distribution reflects the strong donor‐acceptor interactions. The 

major absorption band in the electronic absorption spectrum of BODIPYs 2a, 2b, 3c 

and 3d corresponds to the BODIPY absorption, but the HOMO is localized on the 

ferrocenyl part, which suggests the origin of major absorption band from HOMO‐n 

energy levels. To get detailed analysis of the origin of the absorption bands in the 

BODIPYs (2a, 2b, 3c and 3d) TD‐DFT calculations was performed on BODIPY 3c 

at the B3LYP/6‐31 G** for C, N, B, F, H, O and Lanl2DZ for Fe level in 
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dichloromethane solvent using IEFPCM  formulation for solvent effect.[13] 

Computed vertical transitions and their oscillator strengths and configurations are 

shown in Table 6.2. The TD‐DFT calculations show good agreement with the 

experimental spectra, and reveals that the main transition (λmax) is from HOMO‐

2→LUMO and HOMO‐3→LUMO. 

 
Figure 6.9. Frontier molecular orbitals of BODIPYs 5, 3c, 3d, 4, 2a and 2b at the 

B3LYP/6‐31 G** for C, N, B, F, H, O and Lanl2DZ for Fe level.  

6.7. Single crystal X-ray diffraction studies 

The single crystals of the heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c 

and 3d were obtained by slow diffusion of hexane into the chloroform solution at 

room temperature.  The BODIPYs 2a and 3c crystallize into monoclinic P21c space 

group, 2b crystallizes into triclinic Pī space group and 3d crystallizes into 

orthorhombic P212121 space group. The crystal structure and data refinement 

parameters are shown in Table 6.3. The crystal structures of 2a, 2b and 3d contain 

two molecules (x and y) in an asymmetric unit. The front view and side view of the 

crystal structures are shown in Figure 6.10. In the crystal structures of the 
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heteroatom connected ferrocenyl BODIPYs 2a, 2b and 3d there are two molecules 

in an asymmetric unit which differ in the torsional angles of the cyclopentadienyl 

rings. In 2a the cyclopentadienyl rings of ferrocene unit are staggered in both the 

molecules of asymmetric unit. In BODIPYS 2b and 3d, one molecule in asymmetric 

unit show staggered conformation whereas another show eclipsed conformation 

(Figure 6.11). 

 
Figure 6.10. Crystal structures of the BODIPY 2a, 2b, 2c and 3d, (A) front view 

and (B) side view (x and y represents two different molecules in an asymmetric 

unit). 

The supramolecular interactions in the crystal structures lead to the marvelous 

structural motifs. The distance and angle of the supramolecular interactions are 

shown in Table 6.4.  

In the packing diagram of 2a, two molecules in an asymmetric unit are inter 

connected to each other via B(1)‐F(2)‐‐‐π (pyrrolic) interaction. One molecule in 

asymmetric unit independently form 2‐D flat sheet (red colored) via C(11)‐H(11)‐‐‐

F(1) and N(3)‐H(3A)‐‐‐F(2) interactions, similarly another molecule in asymmetric 

unit form another sheet (green colored) via C(32)‐H(32)‐‐‐F(4) and N(6)‐H(6)‐‐‐F(4) 

interactions along c‐axis. In both the sheets the ferrocenyl part is oriented at the 

periphery and the BODIPY part lies at the centre of sheet. These sheets connect to 

others via C(21)‐H(21)‐‐‐π (BODIPY), C(45)‐H(45)‐‐‐π (Fc), C(1)‐H(1)‐‐‐π (Fc), 
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C(47)‐H(47)‐‐‐π (pyrrolic), C(46)‐H(46)‐‐‐N(5) and C(26)‐H(26)‐‐‐π (Fc) 

interactions to form complex 3D structural motifs. The sheets are arranged in aabbaa 

fashion along a‐axis (Figure 6.12). 

 

 
Figure 6.11. Torsional angles in cyclopentadienyl ring in the crystal structures of 

heteroatom connected ferrocenyl BODIPYs 2a, 2b, 3c and 3d. 

The crystal structure of 2b contains two molecules in an asymmetric unit. 

These two molecules are interconnected by C(15)‐H(15)‐‐‐π (pyrrolic)  interaction. 

Two pairs of two molecules in an asymmetric unit connect to each other in head to 

head fashion to form a stair shaped 3‐D tetrameric structure via N(6)‐H(6)‐‐‐F(1), 

C(9)‐H(9)‐‐‐π (phenyl) and C(40)‐H(40)‐‐‐π (pyrrolic)  interactions. This stair 

shaped tetramer further connects to other tetramers via C(2)‐H(2)‐‐‐π (Fc), N(3)‐

H(3)‐‐‐F(3), C(19)‐H(19)‐‐‐F(3), C(49)‐H(49)‐‐‐π (Fc) and   C(39)‐H(39)‐‐‐π (Fc) 

interactions to form complex 2D sheet, which show the alternate bands of ferrocene 

and BODIPY (Figure 6.13).  
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Figure 6.12. Packing diagram of the heteroatom connected ferrocenyl BODIPY 2a 

(red and green color represent two different molecules in asymmetric unit). 
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Figure 6.13. Packing diagram of the heteroatom connected ferrocenyl BODIPY 2b. 

In the packing diagram of 3c the two mutual C(15)‐H(15)‐‐‐F(1) interactions 

and π‐‐‐π staking interaction between two BODIPY units form a dimmer like 

structure. Such dimmer like structures connects each other via C(18)‐H(18)‐‐‐F(2), 

C(17)‐H(17)‐‐‐F(2), C(2)‐H(2)‐‐‐π (ph), C(25)‐H(25)‐‐‐π (py), C(14)‐H(14)‐‐‐π (Fc), 

C(19)‐H(19)‐‐‐π (Fc) interactions to form thick sheet like structure along b‐axis, 

which looks zigzag along a‐axis (Figure 6.14). 

 

 
Figure 6.14. Packing diagram of the heteroatom connected ferrocenyl BODIPY 3c. 

In the packing diagram of 3d, two molecules in asymmetric unit connects to 

each other via C(17)‐H(17)‐‐‐π (Fc) interaction. A pair of two molecules connects 
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another pair in head to head fashion via C(36)‐H(36)‐‐‐π (BODIPY), C(15)‐H(15)‐‐‐

π (BODIPY), C(44)‐H(44)‐‐‐π (BODIPY), C(2)‐H(2)‐‐‐F(4) and C(15)‐H(15)‐‐‐F(4)  

to form a tetramer, and such tetramers connects to each other via C(8)‐H(8)‐‐‐O(2), 

C(33)‐H(33)‐‐‐F(2) and C(2)‐H(2)‐‐‐F(4) interactions forming a sheet. This sheet 

contains bands of ferrocene and BODIPY moiety alternately (Figure 6.15). 

 
Figure 6.15. Packing diagram of the heteroatom connected ferrocenyl BODIPY 3d. 

 



119 
 

Table 6.3. Crystal structure and data refinement parameters. 
BODIPY 2a 2b 3c 3d 

Empirical formula C50H40B2F4Fe2
N6 

C50H40B2F4Fe2

N6 
C50H38B2F4Fe2

N4O2 
C50H38B2F4Fe2

N4O2 
Formula weight 934.20 934.20 936.16 936.16 
Temperature/K 150(2) 150(2) 150(2) 150(2) 
Crystal system Monoclinic Triclinic Monoclinic Orthorhombic 
Space group P21/c Pī P21/c P212121 
Unit cell dimensions     
a/Å 20.5133(6) 11.3486(3) 7.88490(10) 11.0633(4) 
α/° 90 88.981(2) 90 90 
b/ Å 15.1810(4) 13.7482(3) 10.0374(2) 14.4288(6) 
β/° 110.808(3) 88.659(2) 94.228(2) 90 
c/ Å 14.5953(4) 13.9193(4) 26.0231(5) 26.8755(13) 
γ/° 90 69.607(2) 90 90 
Volume/ Å3 4248.7(2) 2034.95(9) 2053.96(6) 4290.1(3) 
Z 4 2 2 4 
Calculated density/ 
Mg/m3 

1.460 1.525 1.514 1.449 

Absorption 
coefficient/mm-1 

0.745 0.778 0.773 5.957 

F(000) 1920 960 960 1920 

Crystal size/mm 
0.23 x 0.18 x 
0.13 

0.36 x 0.32 x 
0.24 

0.23 x 0.15 x 
0.12 

0.33 x 0.27 x 
0.21 

θ range from data 
collection/° 

3.10 to 25.00 3.16 to 25.00 3.11 to 25.00 3.29 to 71.89 

Reflections 
collected/unique 

27023 / 7447 
[R(int) = 
0.0450] 

16060 / 7157 
[R(int) = 
0.0146] 

16172 / 3617 
[R(int) = 
0.0275] 

30197 / 8322 
[R(int) = 
0.0949] 

Absorption correction 

Semi-
empirical 
from 
equivalents 

Semi-
empirical 
from 
equivalents 

Semi-
empirical from 
equivalents 

Semi-
empirical from 
equivalents 

Data/restraints/parame
ters 

7447 / 0 / 577 7157 / 0 / 577 3617 / 0 / 289 8322 / 0 / 578 

Goodness-of-fit on F2 1.099 1.109 1.054 0.987 
Final R indices [I > 
2σ (I)] 

R1 = 0.0450, 
wR2 = 0.1082 

R1 = 0.0293, 
wR2 = 0.0759 

R1 = 0.0270, 
wR2 = 0.0675 

R1 = 0.0619, 
wR2 = 0.1514 

R indices (all data) 
R1 = 0.0618, 
wR2 = 0.1202 

R1 = 0.0309, 
wR2 = 0.0768 

R1 = 0.0284, 
wR2 = 0.0685 

R1 = 0.0956, 
wR2 = 0.1823 

Largest diff. peak and 
hole/e Å-3 

0.370 and -
0.323 

0.383 and -
0.378 

0.288 and -
0.319 

0.743 and -
0.696 

CCDC number 973244 973245 973246 973247 
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Table 6.4. Distance and angle of intermolecular interactions in the crystal 

structure of BODIPYs 2a, 2b, 3c and 3d. 

Interaction Distance (Å) Angle (°) 
2a   
B(1)‐F(2)‐‐‐π (pyrrolic) 3.509 (weak)  
C(11)‐H(11)‐‐‐F(1) 2.598 150.00 
N(3)‐H(3A)‐‐‐F(2) 2.148 144.33 
C(32)‐H(32)‐‐‐F(4) 2.622 131.16 
N(6)‐H(6)‐‐‐F(4) 1.958 157.52 
C(21)‐H(21)‐‐‐π (BODIPY),  3.107  
C(45)‐H(45)‐‐‐π (Fc),  3.017  
C(1)‐H(1)‐‐‐π (Fc),  2.684  
C(47)‐H(47)‐‐‐π (pyrrolic),  3.337  
C(46)‐H(46)‐‐‐N(5) 2.660 168.69 
C(26)‐H(26)‐‐‐π (Fc) 2.993  
2b   
C(15)‐H(15)‐‐‐π (pyrrolic)   2.761  
N(6)‐H(6)‐‐‐F(1) 2.218 145.50 
C(9)‐H(9)‐‐‐π (phenyl) 3.680 (weak)  
C(40)‐H(40)‐‐‐π (pyrrolic) 2.785  
C(2)‐H(2)‐‐‐π (Fc) 3.275  
N(3)‐H(3)‐‐‐F(3) 2.134 152.82 
C(19)‐H(19)‐‐‐F(3) 2.578 153.78 
C(49)‐H(49)‐‐‐π (Fc) 3.609 (weak)  
C(39)‐H(39)‐‐‐π (Fc) 3.410 (weak)  
3c   
C(15)‐H(15)‐‐‐F(1) 2.412 163.20 
C(18)‐H(18)‐‐‐F(2) 2.547 149.54 
C(17)‐H(17)‐‐‐F(2) 2.587 156.57 
C(2)‐H(2)‐‐‐π (phenyl) 2.638  
C(25)‐H(25)‐‐‐π (pyrrolic)(weak) 3.585   
C(14)‐H(14)‐‐‐π (Fc) 3.238  
C(19)‐H(19)‐‐‐π (Fc) 2.896  
3d   
C(17)‐H(17)‐‐‐π (Fc) 3.674  
C(26)‐H(26)‐‐‐F(1) 2.229 166.01 
C(13)‐H(13)‐‐‐F(2) 2.426 138.85 
C(18)‐H(18)‐‐‐F(2) 2.445 148.14 
C(33)‐H(33)‐‐‐F(2) 2.450 113.32 
C(9)‐H(9)‐‐‐F(4) 2.607 140.20 
C(8)‐H(8)‐‐‐O(2) 2.652 168.55 
C(2)‐H(2)‐‐‐F(4) 2.610 157.15 
C(18)‐H(18)‐‐‐π (BODIPY) 2.713  
C(36)‐H(36)‐‐‐π (BODIPY) 2.673  
C(15)‐H(15)‐‐‐F(4) 2.612 121.60 
C(42)‐H(42)‐‐‐π (Fc) 2.754  
C(44)‐H(44)‐‐‐F(3) 2.502 155.80 
C(38)‐H(38)‐‐‐F(3) 2.487 128.49 
C(15)‐H(15)‐‐‐π (BODIPY) 2.799  
C(44)‐H(44)‐‐‐π (BODIPY) 2.727  
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6.8. Experimental section 

Synthesis and Characterization of heteroatom connected ferrocenyl BODIPYs 

2a and 2b: 8‐chloro BODIPY 1 (100 mg, 0.44 mmol) was dissolved in 

dichloromethane (10 ml), and respective ferrocenyl aniline (122 mg, 0.44 mmol) and 

TEA (124 μL, 0.88 mmol) were added. The reaction mixture was purged with 

nitrogen and stirred at ~20 °C for 7 hr. Upon completion of reaction, the mixture 

was evaporated to dryness, and the crude product was dissolved in CH2Cl2, 

chromatographed on silica (1:3; hexanes:CHCl3), and recrystallized from 

chloroform: hexane: ethanol (7:2:1) mixture to give 2a and 2b (yield 64 % and 60 

%) as yellow‐red crystalline solid. 

BODIPY 2a 

Yellow‐red crystalline solid. Yield: 64% (132 mg); m. p: 236‐237 °C. 1H NMR 

(CDCl3, 400 MHz, ppm): δ 8.15 (bs, 1H), 7.60 (m, 4H), 7.30 (d, J = 8 Hz, 2H), 6.60 

(bs, 2H), 6.34 (m, 2H), 4.72 (t, J = 1.76 Hz, 2H), 4.41 (t, J = 1.76, 2H), 4.06 (s, 5H). 
13C NMR (Acetone‐d6, 100 MHz, ppm): 149.5, 142.1, 136.6, 134.5, 128.2, 127.9, 

125.0, 121.4, 114.6, 84.1, 70.6, 70.5, 67.6. 11B NMR (CDCl3, 96.3 MHz, , ppm) 0.2 

(t, JB‐F = 19.6 Hz); HRMS (ESI‐TOF) m/z = calculated for C25H20BF2N3 = 467.1067 

[M]+, measured 467.1085 [M]+. Elemental analysis calcd (%): C, 64.28; H, 4.32; N, 

9.00. Found: C, 64.66; H, 4.36; N, 8.85. UV/vis (DCM): λmax (ε [M‐1cm‐1]) 418 

(5.2× 104),  

BODIPY 2b 

Yellow‐red crystalline solid. Yield: 60% (123 mg); m. p: above 290 °C. 1H NMR 

(CDCl3, 400 MHz, ppm): δ 7.87 (bs, 1H), 7.61 (m, 3H), 7.51 (s, 1H), 7.46 (t, J = 8 

Hz, 1H), 7.20 (d, J = 8 Hz, 1H). 6.62 (bs, 2H), 6.36 (m, 2H), 4.69 (t, J = 2 Hz, 2H), 

4.38 (t, J = 2 Hz, 2H), 4.04 (s, 5H) 13C NMR (Acetone‐d6, 100 MHz, ppm): 149.5, 

143.5, 139.5, 134.5, 131.2, 127.2, 125.1, 124.8, 121.4, 114.6, 84.01, 70.4, 70.36, 

67.3. 11B NMR (CDCl3, 96.3 MHz, ppm) 0.22 (t, JB‐F = 21.2 Hz); HRMS (ESI‐TOF) 

m/z = calculated for C25H20BF2N3 = 467.1067 [M]+, found 467.1067 [M]+. 

Elemental analysis calcd (%): C, 64.28; H, 4.32; N, 9.00. Found: C, 64.46; H, 4.40; 

N, 8.75. UV/vis (DCM): λmax (ε [M‐1cm‐1]) 419 (5.1 × 104),  

Synthesis and Characterization of heteroatom connected ferrocenyl BODIPYs 

3c and 3d: 8‐chloro BODIPY 1 (100 mg, 0.44 mmol) was dissolved in 

dichloromethane (7 ml), and respective ferrocenyl phenol (123 mg, 0.44 mmol) and 
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K2CO3 (121 mg, 0.88 mmol) were added. The reaction mixture was purged with 

nitrogen and stirred at ~20 °C for 7 hr. Upon completion of reaction, the mixture 

was evaporated to dryness, and the crude product was dissolved in CH2Cl2, 

chromatographed on silica (2:1; hexanes:CHCl3), and recrystallized from 

chloroform: hexane: ethanol (7:2:1) mixture to give 3c and 3d  (yield 67 % and  60 

%) as yellow‐red crystalline solid. 

BODIPY 3c 

Yellow‐red crystalline solid. Yield: 62% (85 mg);  m. p: 188 °C. 1H NMR (CDCl3, 

400 MHz, ppm): δ 7.75 (s, 2H), 7.57 (d, J = 8 Hz, 2H), 7.17 (d, J = 8 Hz, 2H), 6.74 

(d, J = 4.04 Hz, 2H), 6.41 (m, 2H), 4.69 (t, , J = 1.76, 2H), 4.39 (t, J = 1.76, 2H), 

4.06 (s, 5H) 13C NMR (CDCl3, 100 MHz, ppm): 159.7, 153.6, 140.7, 139.0, 127.6, 

126.8, 126.2 120.3, 116.8, 83.4, 69.9, 69.7, 66.6. 11B NMR (CDCl3, 96.3 MHz, 

ppm) 0.16 (t, JB‐F = 21.2 Hz); HRMS (ESI‐TOF) m/z = calculated for 

C25H19BF2N2O = 468.0907 [M]+, measured 468.0911 [M]+. Elemental analysis calcd 

(%): C, 64.15; H, 4.09; N, 5.98; O, 3.42. Found: C, 64.62; H, 4.24; N, 5.66. UV/vis 

(DCM): λmax (ε [M‐1cm‐1]) 455 (5.7 × 104). 

BODIPY 3d 

Yellow‐red crystalline solid. Yield: 60% (71 mg); m. p: 138 °C. 1H NMR (CDCl3, 

400 MHz, ppm): δ 7.76 (s, 2H), 7.48 (m, 1H), 7.40 (t, J = 8 Hz, 1H), 7.33 (t, J = 2 

Hz, 1H), 7.06 (m, 1H), 6.77 (d, J = 2.28 Hz, 2H), 6.42 (m, 2H), 4.67 (t, J =1.76, 

2H), 4.37 (t, J =1.76, 2H), 4.03 (s, 5H). 13C NMR (CDCl3, 100 MHz, ppm): 159.8, 

155.9, 143.3, 140.8, 130.5, 126.8, 126.3, 124.5, 117.35, 117.32, 116.9, 82.9, 69.87, 

69.83, 66.7. 11B NMR (CDCl3, 96.3 MHz, ppm) 0.20 (t, JB‐F = 19.6 Hz); HRMS 

(ESI‐TOF) m/z = calculated for C25H19BF2N2O = 468.0907 [M]+, measured 

468.0906 [M]+. Elemental analysis calcd (%): C, 64.15; H, 4.09; N, 5.98; O, 3.42. 

Found: C, 64.52; H, 4.35; N, 5.61. UV/vis (DCM): λmax (ε [M‐1cm‐1]) 455 (6.5 × 

104). 

6.9. Conclusion 

In summary heteroatom connected ferrocenyl BODIPYs (2a, 2b, 3c and 3d) 

were synthesized by the nucleophilic aromatic substitution reaction. The nature of 

heteroatom perturbs the optical, electrochemical, and thermal properties of the 

BODIPYs substantially. The extent of blue shift in the absorption spectra of the 
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BODIPYs is due to the delocalization of the lone pair electrons of the heteroatom to 

the electron deficient BODIPY, which is supported by DFT calculations. The 

computational calculations show strong donor‐acceptor interactions. The heteroatom 

at the meso position of BODIPY destabilizes the LUMO energy level whereas the 

ferrocenyl group destabilizes the HOMO, HOMO-1 and HOMO-2 energy levels. 

The crystal structures of the BODIPYs 2a, 2b, 3c and 3d show interesting 

interactions in crystal packing.  
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Chapter 7 

Oxidation of aliphatic tert-amines by 8-chloro 

BODIPY and in situ cross-coupling  

7.1. Introduction 

 The research on BODIPY dyes have gained momentum, which is reflected from 

their large number of publications.[1] The BODIPY dyes are fluorophore of choice 

due to their strong electronic absorption, high fluorescence quantum yield and 

excellent thermal and photochemical stability.[2] The photonic properties of the 

BODIPYs can be tuned by incorporating diverse functionalities.[3] In recent years 

various methods have been developed for the functionalization of BODIPYs at α, β 

and meso positions.[4] 

 Our group is involved in the development of donor-acceptor (D-A) materials for 

various optoelectronic applications.[5] We have introduced a variety of donors at the 

meso as well as at the β pyrrolic positions of the BODIPY.[6] The functionalization 

at the meso position is of interest as it exhibits better electronic communication.[7] 

 The 8-chloro BODIPY (1) is a versatile precursor for the meso functionalization. It 

undergoes rapid Pd-catalyzed coupling and substitution reactions.[8] We have 

explored variety of Sonogashira cross-coupling reactions of BODIPY 1.[6c,7b] During 

these coupling reactions, we observed sudden change in the color of BODIPY 1 

solution on addition of triethylamine. While monitoring the progress of the reaction 

via TLC, we observed trace amount of yellow colored impurity below the expected 

cross coupled major product. The pursuit of our curiosity to explore the formation of 

same impurity in different reactions leads to surprising results. 

 The reaction of BODIPY 1 with triethylamine resulted in enamine adduct at the 

meso position of the BODIPY. Usually the enamines are synthesized by catalysts 

like FeCl3, Pd(OAc)2 and pincer-ligated iridium complex.[9] Here they are 

incorporated into the BODIPY moiety without any catalyst. Thus the 8-chloro 

BODIPY (1) itself might be promoting the oxidation of triethylamine and C-C bond 

formation. Similar transformation was reported for the reaction of p-chloranil with 
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triethylamine, leading to the enamine substituted quinone.[10] 

 In this chapter we discuss the novel methodology for C-C bond formation and 

synthesis of enamine substituted BODIPYs via catalyst free oxidation of tertiary 

amines and coupling with 8-chloro BODIPY and their optical properties. 

7.2. Results and Discussion 

 The reaction of triethylamine with 8-chloro BODIPY 1 in dichloromethane 

solvent at room temperature resulted enamine substituted BODIPY 2 (Table 7.1). 

The BODIPY 2 was purified by column chromatography and characterized by 1H, 
13C, 11B and 19F NMR, HRMS and single crystal X-ray diffraction techniques. The 

reaction conditions were optimized to achieve better yield (Table 7.1). The reaction 

yield and time was found to be independent of solvents and catalysts like Pd(OAc)2 

or CuI. The reaction was fast in open atmosphere (15 hrs) but sluggish under argon 

atmosphere (48 hrs). The dichloromethane was optimal solvent for the reaction and 

purification. The reaction works well in dichloromethane solvent, with four 

equivalents of triethylamine in air and completes within 15 hrs. 

Table 7.1. Screening results of reaction optimization. 

NN
B

F F

N

N

NN
B

F F

Cl

1 2  
Entry Conditions Temperature Yield 

% 
Reaction 

Time 
1 DCM, in Ar atmosphere RT 31 48 hrs 
2 THF, in Ar atmosphere RT 30 48 hrs 
3 DCM + CuI, in Ar atmosphere RT 30 48 hrs 
4 DCM + Pd(OAc)2, in Ar 

atmosphere 
RT 32 48 hrs 

5 DCM + Pd(OAc)2, in Ar 
atmosphere 

60 °C 31 48 hrs 

6 DCM, in air RT 31 15 hrs 
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Table 7.2. Screening of the substrates and optical properties of the BODIPYs 1 – 5. 

NN
B

F F

N
R R

N
R R

NN
B

F F

Cl

CH2Cl2, RT,
Air, 15 Hrs  

Entry Substrate Product/sa λmax (nm)b 
[ɛ / 104 (Mol-1.cm-1)]c 

1 

N

 
6 

 

NN
B

F F

N

 
2, Yield- 31 % 

476 
 [3.34] 

2 

N

 
7 

NN
B

F F

N

 
3, Yield- 18% 

477  
[3.38] 

3 

N

 
8 

NN
B

F

N

F  
4a, Yield- 13% 

 
 
477 
[3.87] 

  

NN
B

F

N

F  
4b, Yield- 9% 

504 
[3.40] 
466 
[2.99] 

4 

N

 
9 

NN
B

F F

N

 
5a, Yield- 12% 

 
477 
[3.14] 

  

NN
B

F

N

F  
5b, Yield- 7% 

447 
[3.9] 

5 

N  
10 

No expected product, 
Starting decomposed  

6 
N  

11 
No expected product, 
Starting decomposed  

(a) Isolated yields. (b) Absorbance measured in dichloromethane at 10-6 M concentration. (c) 
Recorded at λmax. 
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 In order to explore the scope of the reaction under optimized conditions, the 

reaction was carried out with different tert-amines (Table 7.2). The reaction of 8-

chloro BODIPY (1) with N,N-dimethylethylamine (7), resulted BODIPY 3 in 18% 

yield (Entry 2), whereas the reaction of BODIPY 1 with triethylamine (6) gave 

BODIPY 2 in 31 % yield (Entry 1).  The better yield of BODIPY 2 compared to 

BODIPY 3 indicates that the N-methyl substituents are not involved in the reaction 

and more the number of N-ethyl substituents better will be the yield. 

 Further the reaction of 8-chloro BODIPY (1) with N,N-diisopropylethylamine  

(DIPEA) (8) (Entry 3), resulted two products, BODIPY 4a and 4b. The BODIPY 4a 

was obtained from the reaction of N-ethyl part whereas 4b from the reaction with N-

isopropyl part of DIPEA (8). The better yield of BODIPY 4a than 4b indicates the 

higher reactivity of N-ethyl group than the N-isopropyl group. Similarly the reaction 

of 8-chloro BODIPY 1 with N-ethyl piperidine (9) resulted BODIPYs 5a and 5b 

from the reaction with N-ethyl and N-CH2-CH2- groups respectively (Entry 4). The 

reaction with N,N-diisopropylethyl amine (8) and N-ethylpiperidine (9) proves that 

the N-(CH-CH-) group is essential for the reaction by this methodology. All the 

reactions yielded exclusively E isomers. 

 After successful reactions with aliphatic amines we checked the feasibility of the 

reaction for aromatic amines, N-ethyl carbazole (10) and N-ethyl-N-phenylaniline 

(11) (Entry 5 and 6). The reactions with these aryl substrates were not feasible even 

after addition of external bases like pyridine, K2CO3 or CsCO3 and leads to the 

decomposition of the BODIPY (1). The inert nature of these substrates may be due 

to steric crowding or better electron delocalizing ability of the aromatic substituents. 

In all the reactions the blackish-green, sticky polar compound was observed, which 

was difficult to purify and characterize. 

 The enamine substituted BODIPYs were well characterized by 1H NMR, 13C 

NMR and HRMS techniques. The 1H NMR spectra of the BODIPYs exhibits α, β 

and βˈ protons at 7.6, 6.4 and 7.0 ppm respectively. In BODIPYs 2, 3, 4a and 5a the 

trans protons of vinyl bond appears at 5.9 and 7.8 ppm, with the coupling constant J 

= 12 Hz. In BODIPYs 3 and 4a the N-alkyl protons appear separately at 3.1-3.8 

ppm, whereas in BODIPYs 2 and 5a they appear at 3.5 ppm collectively.  
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7.3. Single crystal X-ray diffraction studies 

 The BODIPYs 2, 4a, 4b and 5a were also characterized by single crystal X-

ray diffraction technique. Crystal data and structure refinement parameters are listed 

in Table 7.3. The front view and side view of the crystal structures are shown in 

Figure 7.1. The side view of the crystals reveals non planar conformation of the 

BODIPYs. 

Table 7.3. Single crystal data and structure refinement parameters. 
BODIPY 2 4a 4b 5a 
Empirical formula C15 H18 B F2 N3 C17 H22 B F2 N3 C17 H22 B F2 N3 C16 H18 B F2 N3 
Formula weight 289.13 317.19 317.19 301.14 
Temperature/K 150(2) 150(2) 150(2) 150(2) 
Crystal system Monoclinic Monoclinic Monoclinic Monoclinic,  
Space group P 21/n P 21/c P 21/n P 21/c 
Unit cell dimensions     
a/Å a = 8.3942(3) 9.2376(16) 11.1777(8) a = 7.8218(4) 
α/° 90 90 90 90 
b/ Å 12.6829(4) 14.7140(12) 11.3773(5) b = 23.1144(9) 
β/° 95.074(3) 127.73(3) 109.830(8) 110.867(6) 
c/ Å 14.0136(4) 15.929(3) 14.4649(9) c = 8.5337(4) 
γ/° 90 90 90 90 
Volume/ Å3 1486.08(8) 1712.2(5) 1730.45(18) 1441.66(11) 
Z 4 4 4 4 
Calculated density/ 
Mg/m3 

1.292 1.230 1.217 1.387 

Absorption 
coefficient/mm-1 

0.785 0.088 0.087 0.101 

F(000) 608 672 672 632 
Crystal size/mm 0.26 x 0.18 x 0.13 0.33 x 0.26 x 0.21 0.33 x 0.28 x 0.21 0.33 x 0.26 x 0.21 

θ range from data 
collection/° 

4.71 to 72.08 3.02 to 24.99 3.34 to 25.00 3.10 to 25.00 

Reflections 
collected/unique 

9691 / 2895  
[R(int) = 0.0210] 

13178 / 3000 
[R(int) = 0.0417] 

9413 / 3022 
[R(int) = 0.0609] 

11087 / 2523 
[R(int) = 0.0371] 

Absorption correction Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Semi-empirical 
from equivalents 

Data/restraints/parameter
s 

2895 / 0 / 190 3000 / 0 / 212 3022 / 0 / 212 2523 / 0 / 199 

Goodness-of-fit on F2 1.044 1.108 1.020 1.127 
Final R indices [I > 2σ 
(I)] 

R1 = 0.0550, 
wR2 = 0.1567 

R1 = 0.0515, 
wR2 = 0.1262 

R1 = 0.0550,  
wR2 = 0.1179 

R1 = 0.0374, 
wR2 = 0.0857 

R indices (all data) R1 = 0.0606,  
wR2 = 0.1627 

  R1 = 0.0632, wR2 
= 0.1352 

R1 = 0.0979,  
wR2 = 0.1443 

R1 = 0.0445, 
wR2= 0.0889 

Largest diff. peak and 
hole/e Å-3 

0.300 and -0.261 0.302 and -0.261 0.186 and -0.202 0.198 and -0.209 

CCDC number 1001550 1001551 1001552 1001553 
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Figure 7.1 Single crystal structures of BODIPYs 2, 4a, 4b and 5a. Front view 

(above) and Side view (below). 

7.4. Photophysical Properties 

 The electronic absorption spectra of the BODIPYs 1 – 5 were recorded in 

dichloromethane (Figure 7.2) and the corresponding data are presented in Table 7.2. 

The BODIPYs 2, 3, 4a and 5a show blue shift of ~27 nm compared to 8-chloro 

BODIPY 1. The blue shift in the absorption spectra can be attributed to the cross 

conjugation due to the delocalization of lone pair electrons of the nitrogen atom into 

the electron deficient BODIPY.[11] The BODIPYs 4b and 5b behaves differently 

from rest of the BODIPYs. The BODIPY 4b, bearing the methyl substituent at the 

double bonded carbon shows broad absorption band at 504 nm with a shoulder at 

466 nm, whereas the BODIPY 5b bearing the piperidine ring at the double bonded 

carbon shows highly blue shifted broad absorption band at 447 nm. The higher blue 

shift in BODIPY 5b compared to 4b can be attributed to the more planar 

conformation of the enamine with respect to the BODIPY. The BODIPYs 2 – 5 are 

poorly emissive in dichloromethane. 
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Figure 7.2. Normalized electronic absorption spectra of BODIPYs 1 – 5 in 

dichloromethane. 

7.5. Experimental section 

Reaction Procedure- 8-chloro BODIPY (200mg, 0.88 mmol), was dissolved in the 

20 ml dry DCM and, respective tertiary amine (3.54 mmol) was added. The reaction 

mixture was stirred at room temperature; and the progress of the reaction was 

monitored by TLC. After completion of reaction the solvent was removed at the 

reduced pressure without heating, and the crude product was purified by column 

chromatography by using DCM: hexane (2:1).  

Characterization data 

BODIPY 2 

Yellow-red crystalline solid. Yield: 31% (79 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 8.89 (d, J = 12 Hz, 1H), 7.60 (s, 2H), 6.98 (d, J = 4 Hz, 2H), 6.41 (m, 2H), 

6.03 (d, J = 12 Hz, 1H), 3.50 (m, 4H), 1.35 (t, J = 8 Hz. 6H). 13C NMR (CDCl3, 100 

MHz, ppm): 155.4, 147.7, 134.5, 131.3, 121.0, 114.4, 96.3, 52.0, 44.2, 15.0, 12.7. 
11B NMR (CDCl3, 128 MHz, ppm) 0.41 (t, JB-F = 29.5 Hz); UV/vis (DCM): λmax (ε 
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[M-1cm-1]) 477 (3.38× 104). HRMS (ESI-TOF) m/z = calculated for C15H18BF2N3 = 

312.1457 [M+Na]+, measured 312.1471 [M+Na]+. 

BODIPY 3 

Yellow-red crystalline solid. Yield: 18% (42 mg);. 1H NMR (CDCl3, 400 MHz, 

ppm): δ 8.83 (d, J = 12 Hz, 1H), 7.61 (s, 2H), 6.99 (d, J = 4 Hz, 2H), 6.41 (m, 2H), 

5.93 (d, J = 12 Hz, 1H), 3.29 (s, 3H), 3.12 (s, 3H). 13C NMR (CDCl3, 100 MHz, 

ppm): 156.0, 147.7, 134.3, 131.2, 120.7, 114.3, 96.4, 53.8, 27.5, 24.4.  UV/vis 

(DCM): λmax (ε [M-1cm-1]) 476 (3.34× 104). HRMS (ESI-TOF) m/z = calculated for 

C13H14BF2N3 = 284.1143 [M+Na]+, measured 284.1147 [M+Na]+. 

BODIPY 4a 

Yellow-red crystalline solid. Yield: 13% (36 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 8.01 (d, J = 12 Hz, 1H), 7.60 (s, 2H), 6.94 (d, J = 4 Hz, 2H), 6.42 (m, 2H), 

6.21 (d, J = 12 Hz, 1H), 4.32 (m, 1H), 4.82 (m, 1H), 1.38 (d, J = 4 Hz, 12H). 13C 

NMR (CDCl3, 100 MHz, ppm): 153.0, 147.9, 134.0, 131.1, 120.6, 114.2, 96.8, 51.4, 

49.2, 23.8, 20.3; UV/vis (DCM): λmax (ε [M-1cm-1]) 477 (3.87× 104). HRMS (ESI-

TOF) m/z = calculated for C16H18BF2N3 = 340.1770 [M+Na]+, measured 340.1763 

[M+Na]+. 

BODIPY 4b 

Yellow-red crystalline solid. Yield: 9% (25 mg); 1H NMR (CDCl3, 400 MHz, ppm): 

δ 7.56 (s, 2H), 6.84 (s, 2H), 6.37 (s, 2H), 6.03 (s, 1H), 4.38 (m, 1H), 3.54 (m, 1H), 

2.45 (s, 1H), 1.37 (m, 9H). 13C NMR (CDCl3, 100 MHz, ppm): 145.0, 139.6, 134.0, 

132.3, 121.6, 119.1, 114.1, 52.0, 40.2, 34.6, 21.6, 20.9, 14.9. UV/vis (DCM): λmax (ε 

[M-1cm-1]) 504 (3.40× 104) and 466 (2.99× 104). HRMS (ESI-TOF) m/z = calculated 

for C17H22BF2N3 = 340.1770 [M+Na]+, measured 340.1771 [M+Na]+. 

BODIPY 5a 

Yellow-red crystalline solid. Yield: 12% (32 mg); 1H NMR (CDCl3, 400 MHz, 

ppm): δ 7.84 (d, J = 12 Hz, 1H), 7.59 (s, 2H), 6.97 (d, J = 4 Hz, 2H), 6.40 (m, 2H), 

6.06 (d, J = 12 Hz, 1H), 3.54 (m, 4H), 1.77 (m, 6H).  13C NMR (CDCl3, 100 MHz, 

ppm): 156.0, 147.7, 134.3, 131.2, 120.9, 114.3, 96.0, 53.8, 27.1, 24.0. UV/vis 
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(DCM): λmax (ε [M-1cm-1]) 477 (3.14× 104). HRMS (ESI-TOF) m/z = calculated for 

C16H18BF2N3 = 324.1457 [M+Na]+, measured 324.1444 [M+Na]+. 

BODIPY 5b 

Yellow-red crystalline solid. Yield: 7% (18 mg); 1H NMR (CDCl3, 400 MHz, ppm): 

δ 7.78 (s, 1H), 7.61 (s, 2H), 6.84 (d, J = 4 Hz, 2H), 6.41 (m, 2H), 3.44 (m, 4H), 2.80 

(t, J = 8H, 2H), 2.15 (p, J = 8 Hz, 2H), 1.33 (t, J = 8 Hz, 3H). 13C NMR (CDCl3, 100 

MHz, ppm): 155.6, 147.7, 133.8, 131.4, 123.8, 113.9, 110.2 52.6, 47.0, 25.7, 21.8, 

14.0; UV/vis (DCM): λmax (ε [M-1cm-1]) 447 (3.9× 104). HRMS (ESI-TOF) m/z = 

calculated for C16H18BF2N3 = 324.1457 [M+Na]+, measured 324.1556 [M+Na]+. 

7.6. Conclusion 

 In Summary, a novel route for the introduction of enamines at the meso position of 

the BODIPYs was developed via oxidation of tert-amines and in situ cross coupling 

with 8-chloro BODIPY. The reaction resembles with the reaction of p-chloranil with 

triethyl amine and indicates the electron deficient nature of 8-chloro BODIPY. The 

N-ethyl substituents are more reactive compared to the N-(CH2-CH2-) and N-(CH-

(CH3)2 substituents. The electronic absorption of meso enamine substituted 

BODIPYs show blue shift of ~ 27 nm than the 8-chloro BODIPY (1). The alkyl 

substituents at the vinyl carbons have strong influence on the photophysical 

properties of these BODIPYs.  
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Conclusions and scope for future work  

Conclusions 

In recent years BODIPY based Donor-acceptor (D-A) systems have gained 

immense attention of scientific community. The nature of D-A interaction depends 

on the electron donating ability of donor, electron withdrawing strength of acceptor 

and nature of the spacer connecting them. The BODIPY fluorophores are one of the 

strong acceptor. They exhibit strong absorption and high fluorescence quantum 

yield. The photonic properties of BODIPYs can be tuned by slight variation in the 

nature of substituents.  

The BODIPYs can be functionalized at α, β and meso positions. We have 

functionalized various positions of BODIPYs with ferrocenyl group through varying 

spacers and evaluated different positions of BODIPY for their superior electronic 

communication, and explored into efficient D-A systems. 

In chapter 3, the BODIPYs were functionalized at the β-position with ferrocenyl 

group through varying length of spacers. The conformation between two 

cyclopentadienyl rings of ferrocene was found to be the function of conjugation 

length and steric hindrance. The cyclopentadienyl rings of ferrocene exhibits 

staggered conformation in sterically crowded ferrocenyl BODIPY with short 

conjugation length, whereas they exhibits eclipsed conformation in ferrocenyl 

BODIPY with lower steric crowding and elongated conjugation length. The 

photonic properties of ferrocenyl BODIPYs were function of the spacer between 

BODIPY and ferrocene. The nature of spacers determine the strength of D-A and 

charge transfer interaction. The β alkynylated ferrocenyl BODIPYs exhibit blue 

shifted absorption than the previously reported α alkynylated ferrocenyl BODIPYs, 

which suggests the superior electronic communication in α-alkynylated ferrocenyl 

BODIPYs.  

In Chapter 4, we have designed and synthesized the meso-alkynylated ferrocenyl 

BODIPYs with varying conjugation lengths. The meso alkynylated ferrocenyl 

BODIPYs exhibit the red shifted absorption and higher extinction coefficient than α 

and β alkynylated BODIPYs. The trend in red shift follows the order meso>α>β 

alkynylated BODIPYs. This suggests the superior electronic communication in meso 
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alkynylated ferrocenyl BODIPYs. The photonic properties of meso alkynylated 

ferrocenyl BODIPYs were also the function of the spacer between ferrocene and 

BODIPY core. 

In chapter 5, we have synthesized various meso aryl alkyne substituted 

BODIPYs by Sonogashira cross-coupling reaction. The photophysical and 

electrochemical properties of the BODIPYs can be tuned by varying the strength of 

donor. These aryl alkynylated BODIPYs show gradual red shift in the absorption 

with increasing conjugation length. The quenching of fluorescence was correlated 

with the electron donating strength of the donor. Stronger the donor poor will be the 

quantum yield and vice versa. The anthracene, pyrene and triphenylamine moieties 

were found to have stronger electron donating ability than p-methoxyphenyl, 

phenanthrene, 1-naphthalene, biphenyl, and 2-naphthalene moieties. This was 

further supported by computational calculations and electrochemical analysis. 

In chapter 6, the series of heteroatom connected ferrocenyl BODIPYs were 

designed and synthesized by the nucleophilic aromatic substitution reaction of 

8‐chloro BODIPY, with ferrocenyl anilines and ferrocenyl phenols. The effects of 

heteroatom substitution at the meso position on the optical and electrochemical 

properties of the BODIPY were studied. The absorption spectra of the BODIPYs 

containing nitrogen at the meso position show blue shift of 80 nm, whereas the 

BODIPYs containing oxygen at the meso position show blue shift of 50 nm 

compared to 8‐chloro BODIPY. The DFT calculations reveal strong donor acceptor 

interactions. The TD-DFT studies indicate that the ferrocenyl group perturbs the 

HOMO energy levels and induces the absorption from HOMO-n energy levels, 

whereas the nature of heteroatom does not affect the HOMO but perturbs the LUMO 

energy level significantly. 

In chapter 7, the electron deficient nature of 8-chloro BODIPY was used for the 

oxidation of aliphatic amines to enamines and in situ cross-coupling. This has been 

explored for the synthesis of various meso enamine substituted BODIPYs. The 

reaction conditions were optimized to achieve better yields. The reaction works well 

with aliphatic tert-amines bearing N-(CH-CH-) backbone. The N-alkyl substituents 

have strong influence on the properties of enamine substituted BODIPYs. The 

incorporation of enamines quenches the fluorescence of BODIPYs through 

intramolecular charge-transfer from enamine to the BODIPY. 
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Scope for future work 

The thesis highlights the superior electronic communication of the meso 

alkynylated BODIPYs and explored the meso position for various D-A systems. 

Wide range of donors were incorporated at the meso position of BODIPY.  The 

theoretical studies by Acebal et al. indicates the great potential of meso-alkynylated 

BODIPYs as NLO materials.[1] Thus the various aryl substituted meso alkynylated 

BODIPYs can be used for NLO applications. 

The incorporation of donor at the meso position of BODIPY results in blue 

shifted absorption and poor quantum yields. This suggests that the incorporation of 

acceptors at the meso position of BODIPYs may result the red shifted absorption 

and emission with higher fluorescence quantum yields. The photonic properties of 

BODIPYs can be tuned effectively by incorporating various acceptors through 

varying length of spacers. This can be further explored as a measure of relative 

acceptor strength of different acceptors. 

The meso enamine substituted BODIPYs are non-fluorescent due to the 

charge transfer from donor enamine to the acceptor BODIPY. The protonation of 

enamines can regain the fluorescence of these BODIPYs, thus the enamine 

substituted BODIPYs can be used as ‘fluorescence ON’ sensor for acid.  
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