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ABSTRACT

Estimation is a popular computational tool for determining the internal states of a

dynamical system from noisy measurements. A recursive process of estimation is called

filtering. The conceptual filtering solution is obtained using unknown probability density

functions (PDF). Several analytical filtering solutions have been presented in the literature

by characterizing the unknown PDFs differently. The popularly known Kalman filter is

an optimal analytical filter for linear dynamical systems. However, there is still a scope

for exploring the development of an optimal nonlinear filter in the future. Thankfully,

the popularly known Gaussian filtering provides a widely accepted suboptimal solution

for nonlinear filtering problems. Some of the popular Gaussian filters are the extended

Kalman filter (EKF), unscented Kalman filter (UKF), cubature Kalman filter (CKF), and

cubature quadrature Kalman filter (CQKF).

This thesis mainly focuses on two directions: i) developing advanced filtering methods

for handling various practical irregularities and ii) developing advanced power system

state estimation (PSSE) methods for improving the PSSE accuracy in the monitoring of

real-life power system networks. However, in the middle of the thesis work, the Covid-19

outbreak was witnessed, which was soon proved to be one of the deadliest pandemics

of the last several centuries. Therefore, in the interest of scientific responsibility, a new

research direction was chosen to develop an advanced algorithm for epidemiological state

estimator (ESE) method.

In the first direction of the research, the use of state-of-art tools for data processing

and transmission in modern filtering applications invites several irregularities in the

measurement data. For example, cyber-physical systems, including communication

channels and networks, often causes delays and invites cyber threats. Similarly, the

noises are inherently non-Gaussian while they are forcefully assumed to be Gaussian. To

handle various measurement irregularities, this thesis has two contributions, as follows: i)

The thesis redesigns the linear Kalman filter for simultaneously handling the problems of

the delay and non-Gaussian noises, and ii) the thesis redesigns the traditional nonlinear

Gaussian filtering method for addressing the problems of jointly occurring delay and



cyber-attacks on the measurements.

The second focus of this thesis work is to utilize the knowledge of advanced filtering

algorithms to enhance the efficacy of the state-of-art PSSE methods. Please note that

the PSSE methods comprise a dynamical state space model of power system networks

and estimation methods. The last decades have witnessed the applications of nonlinear

Gaussian filters like EKF, UKF, and CKF for the PSSE. Moreover, parallel research is

ongoing to utilize extensions of Gaussian filtering to handle various network uncertainties,

including the lack of a precise state dynamical model, unknown noises, and non-Gaussian

outliers. Considering these scopes of research, this thesis introduces two advancements

in the PSSE methods, as discussed below: i) The accuracy of PSSE is improved by

utilizing an advanced Gaussian filter named CQKF for estimating the dynamical states

of the power system networks, ii) An advanced PSSE method is developed for addressing

various uncertainties and irregularities in power system networks, including the lack of a

precise state dynamical model, unknown noises, and non-Gaussian outliers

The third direction of this thesis is to contribute towards ESE algorithms for

strengthening the fight against Covid-19. This direction of the research was the

consequence of the scientific response that was observed at the time of Covid-19

outbreak across the world. In this direction, the thesis introduces an advanced ESE

method composed of compartment-based pandemic models and nonlinear estimator. The

proposed ESE method introduces a new compartment-based pandemic model and applies

the CKF for estimating the compartment populations.
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Chapter 1

Introduction

1.1 Background
State estimation is a process of determining states (more specifically, hidden/latent

states) from available noisy measurements [1][2][3]. A recursive process of state

estimation is referred to as filtering. The estimation and filtering algorithms are

of huge significance in various engineering domains of cyber-physical systems,

including power systems [4][5], epidemiological transmission dynamics [6],[7], target

tracking [2], network control and communication systems [8], space technology [9],

fault diagnosis [10], biomedical system [11], robotics [12], industrial diagnosis and

prognosis [13], navigation [14], financial modeling and monitoring [15], weather

forecasting [16], etc. Kalman filter (KF) [3], developed in the 1960s, has been a leading

tool for state estimation applications for the past fifty years. Hereafter, we will use the

term ‘filtering,’ which may also refer to estimation.

The discussion on the evolution of filtering theory should start much before the

Kalman filter, e.g., the Wiener filtering [2],[17]. However, our discussion begins with

Kalman filtering [3] since contemporary practitioners hardly choose to investigate the

former developments (apart from the commonly known mean square estimator).

The Kalman filtering was traditionally developed for an extensively simplified

problem formulation with the following significant simplifications: i) assuming a linear

dynamical system, ii) Gaussian approximation of arbitrary and unknown noises, and iii)

exceedingly flawless measurements [2],[18],[19].
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Although the Kalman filter is limited to linear dynamical systems, the practical

systems are inherently nonlinear [20]. A linear approximation of the inherently nonlinear

dynamical systems can sometimes be sufficiently accurate for applying the Kalman

filter. However, in many practical problems, such an approximation needs to be more

accurate, rendering the application of Kalman filtering impractical. [21]. Similarly,

the noises are naturally non-Gaussian, and a Gaussian approximation barely accurately

characterizes the real noises, leading to poor accuracy [18],[22]. Conclusively, the first

two simplifications mentioned above were well-known and understood in the filtering

theory since the early days. Thus, after developing the KF, we observed some prompt

attempts in the literature to address them. For example, a nonlinear extension of Kalman

filter, named extended Kalman filter (EKF), was developed in the sixties, just a few

years after the Kalman filter was developed. Similarly, we find some discussions [23] on

non-Gaussian noises for a long time, although an efficient solution could be developed

only a decade ago.

Unlike the first two challenges, such as the problems of nonlinear dynamical systems

and non-Gaussian noises, the third challenge, i.e., the problem of various measurement

flaws, gradually evolved in the filtering problems. More specifically, this challenge

developed with extensive using advanced tools and methodologies for data processing,

propagation, transmission, etc. For instance, the development of cyber-physical

systems drew practitioners’ attention to their utility in data processing. However,

using cyber-physical systems in data processing often influences delay. Similarly,

data processing through cyber-physical systems invites the possibility of cyber-attacks

[24][25]. Furthermore, the evolution of reliable networks and communication channels

enabled the practitioners to transmit and propagate the measurement data before

the estimator used it [26][27][28]. However, such transmission and propagation of

measurement data influence the occurrences of missing measurements (e.g., due to

packet losses) and delay (e.g., due to propagation time and queuing). Summarizing this

discussion, we cite two particular measurement flaws or irregularities, including delays

in measurements and cyber-attacks, evolving with extensive uses of advanced scientific
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tools for data processing, propagation, and transmission. The possible increasing uses

of internet-of-things (IoT) and clouds in the future may further generalize and intensify

such problems. Thus, this is when we start attempting to develop advanced filtering

algorithms to address these concerns.

This thesis aims to contribute to the three challenges mentioned earlier, including

the problems of nonlinear dynamical systems, non-Gaussian noises, and various

irregularities in measurement data. In this regard, the thesis first contributes to traditional

Kalman filtering by redesigning it to address two irregularities simultaneously, including

non-Gaussian noises and delay in measurement. Then, it studies the extensions of

Kalman filtering for nonlinear dynamical systems. Subsequently, it redesigns the

traditional nonlinear filtering method to handle two data irregularities simultaneously,

including the cyber-attack and delay.

After contributing to advancing the linear and nonlinear filtering algorithms for

handling various data irregularities, the thesis explores the practical applications

of filtering and further contributes to the application side. Out of several practical

applications of filtering, this thesis chooses to contribute to filtering applications in power

systems. Within the power system, the author believes the power system state estimation

(PSSE) is one of the most crucial applications of filtering. An efficient PSSE helps in the

accurate monitoring of power grids, which, in turn, provides a key to a reliable energy

management strategy. In the PSSE, the thesis contributes with two advancements, as

discussed below.

• In one of the contributions, the thesis enhances the PSSE accuracy by implementing

an advanced nonlinear filter, having better accuracy than the previously tested filters

in the PSSE.

• In another contribution, the thesis introduces an advanced PSSE method to address

the following drawbacks of the existing PSSE methods: i) arbitrary and ambiguous

assignment of an unknown process model for PSSE, ii) Gaussian approximation

of non-Gaussian measurement noises, and iii) inaccurate selection of arbitrary and

unknown noises.
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On a different note, the author would like to mention that the world witnessed one

of the deadliest pandemics of the last century while the thesis work was ongoing. In

the fight against this pandemic, the scientific communities across the world united and

contributed with all their knowledge. The author also joined this fight with his limited

knowledge, particularly the limited knowledge of filtering algorithms, considering it as his

scientific responsibility. As a result, as a part of this thesis work, the author contributed by

developing a compartment estimation algorithm, also known as the epidemiological state

estimator (ESE) method, for a pandemic model. Interestingly, this contribution introduced

a new pandemic model for ESE application, which fits into the scientific standards of the

twenty-first century in the fight against the pandemic. An efficient ESE gives competent

monitoring and prediction (to some extent) of the pandemic spread, which can further

help frame the administrative strategies for curbing or slowing the Covid-19 spread.

Following the above discussions, in the coming parts of this chapter, we introduce the

linear and nonlinear Kalman filtering methods, PSSE, and ESE methodology. Thereafter,

we discuss the motivation, objective, approach, and contributions of this thesis. Finally,

we highlight the publications generated out of this thesis and the thesis organization.

1.2 Introduction to linear and nonlinear Kalman

filtering
The linear Kalman filter, as well as its nonlinear extensions, is a model-based

computational tool that is implemented over a state space model. They are designed

under the Bayesian filtering framework, consisting of prediction and update steps. The

prediction and update steps obtain prior and posterior probability density functions

(PDFs). The prior and posterior PDFs are assumed to be Gaussian during the filtering.

In the linear Kalman filter, the Gaussian nature of PDFs is retained over time in linear

Kalman filtering. However, in a simplified form of the Bayesian framework, called

Gaussian filtering, the prior and posterior PDFs are assumed to be Gaussian at each

time-step. Hereafter, we will often refer to the term ‘Gaussian filtering’ for ‘nonlinear

Kalman filtering.’ In the subsequent parts of this section, we introduce the state space

model, Bayesian framework, linear Kalman filter, and nonlinear Gaussian filtering
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method.

Kalman filter is an optimal estimator method that uses a probabilistic approach

to effectively filter out noises in the process and measurements model. It can handle

incomplete state information and measurement information and still provide an accurate

estimate of the unknown states. This feature of the Kalman filter makes it suitable for

real-time state estimation or target tracking applications over other machine learning and

artificial intelligence methods.

1.2.1 Introduction to state space model

Kalman filter is a model-based computational tool [2] that requires the state space

model of dynamical systems. The state space model consists of the process and

measurement models with the following descriptions:

• Process model: It characterizes the dynamical behavior of the states. Moreover, it

consists of noises to compensate for the modeling errors of the true dynamics.

• Measurement model: It characterizes the mathematical relationship between the

observed data and the unknown states. It additionally has a noise component

to compensate for the observation errors, which may be due to device and data

processing errors.

Considering the above descriptions, the general forms of the process and measurement

models are either linear or nonlinear models [1][29]. A standard state space model for a

linear dynamical system is given as follows:

Process model

xk =Fk−1xk−1 +Qk−1. (1.1)

Measurement model

yk =Hkxk +Vk. (1.2)

Where xk ∈ Rn with dimension n and yk ∈ Rm with dimension m are state and

measurement vectors, respectively, at kth instant, represented by tk, i.e., k ∈ {0,1, ...,N}
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with N being the number of time steps. Fk and Hk are constants with appropriate

dimensions, while Qk and Vk represent process and measurement noises, respectively.

If either process or measurement or both are non-linearly dependent, then the system

is called a nonlinear dynamic system with the following state space model:

Process model

xk =fk−1(xk−1)+Qk−1. (1.3)

Measurement model

yk =hk(xk)+Vk. (1.4)

where xk ∈ Rn and yk ∈ Rm are the state and measurement variables, respectively

∀k ∈ {1,2, · · ·}. Moreover, fk : xk−1 → xk and hk : xk → yk denote general mathematical

functions in a non-linear state-space model and carry constant values in linear dynamic

systems, while Qk and Vk represent the process and measurement noises, respectively.

To this end, the author defines the filtering objective as a recursive process of

estimating the unknown states xk ∀k ∈ {1,2, · · ·}, as the measurement yk is sequentially

received ∀k ∈ {1,2, · · ·}. Kalman filtering method is based on the Bayesian probabilistic

approach to compute optimal state estimate.

1.2.2 Bayesian filtering framework

The objective of Bayesian filtering [2] framework is to determine the posterior PDF

P(xk|y1:k) [21][30] using the dynamical system model. A simple diagram of the Bayesian

framework is presented for understanding the Bayesian filtering framework in Fig. 1.1.

This objective is achieved in two steps: prediction and update, as discussed below [20],

[21],[31].

Prediction:

The prediction step determines the prior PDF P(xk|y1:k−1) to predict the desired state

at the next time interval based on the current state estimate and the system model. In this
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Figure 1.1: A simple diagram for the Bayesian filtering framework

regard, it utilizes the popularly known Chapman-Kolmogorov [18] equation, giving

P(xk|y1:k−1) =
∫

Rn
P(xk|xk−1)P(xk−1|y1:k−1)dxk−1. (1.5)

Update:

The update step obtains the desired posterior PDF P(xk|y1:k) by correcting the

predicted PDF P(xk|y1:k−1) using the information received from the latest measurement

yk, arriving at tk [2][1]. In this regard, it applies the popularly known Baye’s rule, which

gives

P(xk|y1:k) = P(xk|y1:k−1,yk,) =
1
Ck

P(yk|xk)P(xk|y1:k−1), (1.6)

where P(yk|xk) is the measurement likelihood function and Ck is a normalization

constant, given as

Ck = P(yk|y1:k−1) =
∫

Rn
P(yk|xk)P(xk|y1:k−1)dxk.

A schematic representation of the Bayesian filter is shown in Fig. 1.2. From Eqs.

(1.3) and (1.4), it can be inferred that the probabilistic approach offered by the Bayesian

filtering framework falls short in providing an analytical estimate of xk.

Hereafter, for better readability, the author considers the following notational
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P (xk|xk−1) P (yk|xk)

P (xk|yk−1)

P (xk|yk)P (xk−1|yk−1)

Ck

Figure 1.2: Schematic representation of recursive the Bayesian filter in each recursion.

simplicity: P(xk|y1:k−1) is denoted as P(xk|k−1), while P(xk|y1:k) is denoted as P(xk|k).

1.3 Linear Kalman filter

The linear Kalman filter recursively computes the optimal estimates using the

dynamical system model and available noisy measurement while minimizing the mean

square error. It implements the Bayesian filtering framework [3], which is based on

Gaussian approximations of various PDFs and noises.

• Kalman filter approximates the various conditional PDFs that appeared in the

Bayesian filtering as Gaussian, i.e.,

P(xk|k−1)≈N(xk; x̂k|k−1,Pk|k−1), (1.7)

P(xk|k)≈N(xk; x̂k|k,Pk|k), (1.8)

and

P(yk|k−1)≈N(yk; ŷk|k−1,P
yy
k|k−1), (1.9)

where N(·) represents the Gaussian distribution, whereas x̂k|k−1, x̂k|k, Pk|k−1, and

Pk|k denote the prior estimate, posterior estimate, prior covariance, and posterior

covariance of xk, respectively, while ŷk|k−1 and Pyy
k|k−1 denote the predicted estimate

and covariance of yk, respectively.

• The noises Qk and Vk are assumed uncorrelated and approximated as zero-mean
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Gaussian with covariances Qk and Rk, respectively. Thus, we get E[Qk] = E[Vk] =

E[QkV
T

k ] = 0, Qk ∼N(0,Rk) and Vk ∼N(0,Qk), where E[·] denotes the statistical

expectation operator, while Qk = E[QkQ
T
k ] and Rk = E[VkV

T
k ].

With the above approximations, [20] [21], the Kalman filter involves prediction and

update steps. In prediction step, the filter predicts the current state estimate based on the

previous state estimate and the system’s dynamics model. In the following update step,

optimal estimates are determined by employing the minimum mean square error method

based on the available state prediction and the mismatch between actual and predicted

measurements. The computational aspects for the Kalman filtering are discussed below.

Prediction

The objective is to compute the prior estimate and covariance, denoted as x̂k|k−1 and

Pk|k−1, as [3], [2]

x̂k|k−1 =Fk−1x̂k−1|k−1

Pk|k−1 =Fk−1Pk−1|k−1F
T
k−1 +Qk,

(1.10)

where x̂k−1|k−1 and Pk−1|k−1 are posterior estimates and covariance at a previous instant,

i.e., (k−1)th instant.

Update

This step computes the posterior estimate and covariance [3], x̂k|k and Pk|k,

respectively. In this regard, it updates the prior estimate and covariance, x̂k|k−1 and

Pk|k−1, respectively, using the noisy information of yk. However, the computation of x̂k|k

and Pk|k requires the measurement estimate, a mismatch between actual and estimated

measurement (innovation) and innovation covariance, denoted as ŷk|k−1, ε
y
k|k−1 and

Pyy
k|k−1, respectively, as well as the cross-covariance between the state and measurement,

Pxy
k|k−1. Therefore, before determining the desired x̂k|k and Pk|k, ŷk|k−1, ε

y
k|k−1, Pyy

k|k−1, and

Pxy
k|k−1 are determined as
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ŷk|k−1 =Hkx̂k|k−1

ε
y
k|k−1 = yk − ŷk|k−1

Pyy
k|k−1 =HkPk|k−1H

T
k +Rk

Pxy
k|k−1 = Pk|k−1H

T
k .

(1.11)

Subsequently, x̂k|k and Pk|k are obtained as [2],[17]

x̂k|k = x̂k|k−1 +Kkε
y
k|k−1

Pk|k = (I−KkHk)Pk|k−1 +KkRkKT
k ,

(1.12)

where I denotes an identity matrix, and Kk represents the Kalman gain, given as Kk =

Pxy
k|k−1(P

yy
k|k−1)

−1.

1.4 Nonlinear Gaussian filtering method
Nonlinear Gaussian filtering method As discussed, Gaussian filtering simplifies the

Bayesian filtering and extension of Kalman filtering for nonlinear dynamical systems.

The prediction and update steps for Gaussian filtering are discussed below.

Prediction:

Similar to linear Kalman filter, nonlinear Gaussian filtering computes the prior PDF

using x̂k|k−1 and Pk|k−1, as [20],[21]

x̂k|k−1 ≈
∫

Rn
fk−1(xk−1)N(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1, (1.13)

Pk|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)
T ]

≈
∫

Rn
fk−1(xk−1)fk−1(xk−1)

TN(xk−1; x̂k−1|k−1,Pk−1|k−1)dxk−1

− (x̂k−1|k−1)(x̂k−1|k−1)
T +Qk.

(1.14)

Update:

Building upon the updating technique of the linear Kalman filter, this particular step

involves the computation of the posterior estimate and covariance [20], [21], denoted

as x̂k|k and Pk|k, respectively. The computation of x̂k|k and Pk|k requires computing
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measurement estimate, ŷk|k−1, measurement covariance, Pyy
k|k−1, and the cross-covariance

between the state and measurement, Pxy
k|k−1, which are obtained as

ŷk|k−1 = E[(hk(xk)+vk) |y1:k−1]≈
∫

Rn
hk(xk)N(xk; x̂k|k−1,Pk|k−1)dxk, (1.15)

Pyy
k|k−1 = E[(yk − ŷk|k−1)(yk − ŷk|k−1)

T ]

≈
∫

Rn
hk(xk)hk(xk)

TN(xk; x̂k|k−1,Pk|k−1)dxk − (ŷk−1|k−1)(ŷk−1|k−1)
T +Rk,

(1.16)

Pxy
k|k−1 = E[(xk − x̂k|k−1)(yk − ŷk|k−1)

T ]

≈
∫

Rn
xkhk(xk)

TN(xk; x̂k|k−1,Pk|k−1)dxk − (x̂k|k−1)(ŷk|k−1)
T .

(1.17)

Subsequently, x̂k|k and Pk|k are determined as

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1), (1.18)

Pk|k = Pk|k−1 −KkPyy
k|k−1KT

k , (1.19)

where Kk denotes the Kalman gain [2], given as

Kk = Pxy
k|k−1(P

yy
k|k−1)

−1. (1.20)

To this end, the non-linear Gaussian filtering [30] can be implemented through Eqs.

(1.15) to (1.20). However, Eqs. (1.15) to (1.17) involve Gaussian weighted integrals of

the form

I(F) =
∫

Rn
F(x)N(x; x̂,P)dx, (1.21)

where x is a random variable with mean x̂ and covariance P, and F : Rn → Rn is a simple

function. The numerical methods used for integral approximation are generally defined

for standard Gaussian, i.e., for N(x;0n×1,In), with In being an n-dimensional unit matrix

and 0n×1 being an n-dimensional array of all zero elements. The author denotes this

integral as I0(F), i.e.,

I0(F) =
∫

Rn
F(x)N(x;0n×1,In)dx. (1.22)
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The analytical solutions of such integrals exist for linear systems, having constant

fk : xk−1 → xk and hk : xk → yk. Such a solution is popularly known as Kalman filter

[3]. However, in the case of nonlinear systems, fk : xk−1 → xk and hk : xk → yk (either

or both) are nonlinear. Subsequently, the desired integral (Eq. (1.22)) appears in the

form of a ‘nonlinear function × Gaussian distribution,’ which is mostly intractable

[17]. Consequently, the Gaussian filtering fails to accomplish an analytical solution. In

this regard, two approaches are popular: the derivative-based Gaussian filtering [1] and

derivative-free Gaussian filtering [20].

The nonlinear dynamics are locally linearized using the derivatives in the

derivative-based Gaussian filtering. Subsequently, the linear Kalman filtering-based

approach is applied. The readers may refer to [1],[17] for a detailed filtering algorithm

for the derivative-based Gaussian filtering, popularly known as EKF. On the other hand,

the derivative-free Gaussian filters utilize numerical methods for approximating I0(F)

with the help of deterministically chosen sets of sample points and weights. Let us

denote the sets of sample points and weights as ξ and W, respectively. Then, I0(F) is

approximated as

I0(F)≈
Ns

∑
i=1

WiF(ξi), (1.23)

where Ns is the number of sample points, and ξi and Wi ∀i ∈ {1,2, · · · ,Ns} are the ith

sample point and weight, respectively. The same numerical method can be extended for

N(x; x̂,P) by transforming ξ with mean x̂ and covariance P. Subsequently, the desired

intractable integral I(F) is approximated as

I(F)≈
Ns

∑
i=1

WiF(x̂+Σξi), (1.24)

where ΣΣT = P. The author refers to [20],[21],[17] for a detailed filtering algorithm of

the derivative-free Gaussian filtering.

The conventional Kalman filter technique is an optimal estimator but relies on the

assumption that measurements are received sequentially without any anomalies, such as i)

delayed measurement [26], ii) false data injected in measurement [32][33], iii) unknown
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or varying statistical noise information [19][34] and iii) non-Gaussian noise[35][36].

The traditional Kalman filter obtains the optimal state estimate by minimizing the mean

square error cost function between the state prediction and sequential non-delayed

measurements, assuming known statistical information on noise, i.e., Qk and Rk. Hence,

delays, false data injection, or unknown noise statistics can harm the estimation accuracy.

Furthermore, the conventional Kalman filter only captures up to second-order statistics,

which can be inadequate for non-Gaussian distributions. Nonlinear state dynamics also

face similar limitations, requiring extensions to the Kalman filter (for linear systems) and

Gaussian filter (for nonlinear systems) to achieve accurate state estimation.

Despite above mentioned limitations, the Gaussian filtering is probably the most

widely implemented nonlinear filtering method, as it provides a good trade-off between

accuracy and computational demand. This thesis is solely focused on Gaussian filtering

method whenever it comes to nonlinear filtering.

As discussed previously, the author also contribute to practical applications of

Gaussian filtering, particularly in the PSSE design applications. Furthermore, as a

scientific responsibility during the Covid-19 outbreak [38][39], the author also decided

to contribute to ESE design applications using Gaussian filter to effectively monitor the

spread of Covid-19. Thus, in the subsequent discussions, we also introduce the PSSE and

ESE methods.

The above advantages encourage using Gaussian filters in complex networks, such as

PSSE design applications and ESE design applications. When the Kalman filter is used

for the said applications, there is still scope for modification in the filtering method for

better estimation performance.

1.5 Power system state estimator (PSSE) methodology
The states of a power system describe its operating condition, including factors such

as overload and overvoltage, by monitoring power flows through transmission lines,

transformers, substations, and voltage readings at different nodes. From a mathematical

standpoint, once the bus voltage magnitudes and phase angles are known, all these

quantities can be computed. Therefore, the state of a power system can be defined as the
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set of bus voltage magnitudes and phase angles [40][4][5].

1.5.1 Evolution of dynamic PSSE

With the help of power system state estimator, system operators can assess voltage

magnitudes and angles at each power system bus bar using a limited number of available

redundant raw measurement data, such as voltage, current, and power. Prof. F. Schweppe

introduced the idea of state estimation at energy control centers of electric utilities and

independent system operators (ISOs) in the 1970s [41],[42],[43].

A few buses have voltage and power meters to satisfy the observable conditions.

These measurements are accessed from remotely located remote terminal units (RTU) to

control centers using supervisory control and data acquisition (SCADA) technology [4].

Traditionally, PSSE was static before digitization. State estimation tools, such as

the weighted least squares (WLS) method, were implemented to estimate the system

states [41],[42],[43]. One measurement snap scan takes around 2-4 secs, and an offline

WLS method takes approximately 10-15 secs for a single scan estimation [4][5].

However, such static PSSE methods suffered from several drawbacks, such as time

skewness in RTU measurements and estimates lag from real-time values by several

seconds. Consequently, the static PSSE can be more accurately stated as a tool for

quasi-steady-state operating conditions.

The 2003 blackout in the northeastern United States of America and Canada [44]

sparked interest in deploying Phasor Measurement Units (PMUs) in power systems. An

investigation into blackouts conducted afterward determined that several factors led to the

blackouts, including insufficient situational awareness, inefficient monitoring and control

systems, and inability to perform transient state analysis of the power system parameters.

In 2007, the north American synchro-phasor initiative (NASPI) was launched to promote

using PMUs in the power industry [45].

PMUs are advanced measurement devices that provide time-synchronized and highly

precise measurements of voltage and current phasors at high speeds, typically 30 to

60 data packets per second, even under fast sampling scenarios. This is a significant

improvement over traditional SCADA systems, which are limited to one measurement per
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second. The high-speed and precise measurements of PMUs help track the transients in

the power system and enable the development of a dynamic power system state estimator

(DPSSE), also known as the dynamic state estimator (DSE) method.

Although using Phasor Measurement Units (PMUs) in power systems is becoming

popular, a power system equipped entirely with PMUs is likely to be less practical in the

near future due to its high cost. As a result, there is a trend toward using a combination of

RTUs and PMUs for generating the measurements. Such a power system state estimator

is called a hybrid power system state estimator (HPSSE) or hybrid state estimator (HSE).

The present thesis implements both RTUs and PMUs for the PSSE, and from now on,

we will use the term ‘PSSE’ for either ‘DPSSE’ or ‘HPSSE.’

1.5.2 Methodology of hybrid measurement

In the PSSE design applications, the state xk is an array of voltage magnitudes Vk (p.u)

and phase angles δk (radian) for all the bus-bars at time tk [40]. A schematic representation

of power system grid is shown in Fig. 1.3. It depicts that the measurement data packets

from remotely located RTUs and time-synchronized PMUs are transmitted to the control

center through a router.

Figure 1.3: A schematic diagram of power system grid.

The measurements from RTUs and PMUs are discussed below:
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Let us denote Nbr and Nbp as the number of buses with RTUs and PMUs, respectively,

out of Nb number of buses of a power network. Considering l ∈ {1,2, ...,Nbr} and m ∈

{1,2, ...,Nb}, the RTU sensors consist of the following: i)slack bus voltage magnitude Vl ,

ii) active and reactive power injections at the lth line, denoted as Pi
l and Qi

l , respectively,

and iii) active and reactive power flows between the lth and mth lines, denoted as P f
l,m

and Q f
l,m, respectively [4][5][46]. The RTU and PMU measurements are computed from

the π-port network shown in Fig. 1.4 using Kirchhoff’s law as given below: The RTU





Vl =
√

V2
r,l +V2

i,l,

Pi
l =Vr,l ∑

l∈Nl

(GlmVr,m −BlmVi,m)+Vi,l ∑
j∈Nl

(GlmVi,m +BlmVr,m),

Qi
l =Vi,l ∑

l∈Nl

(GlmVr,m −BlmVi,m)−Vr,l ∑
l∈Nl

(GlmVi,m +BlmVr,m),

P f
l,m =(V2

r,l +V2
i,l)(glm0 +glm)−Vr,lVr,mglm −Vi,lVi,mglm −Vi,lVr,mblm +Vr,lVi,mblm,

Q f
l,m =− (V2

r,l +V2
i,l)(blm0 +blm)−Vi,lVr,mglm +Vr,lVi,mglm +Vr,lVr,mblm +Vi,lVi,mblm,

(1.25)

Figure 1.4: π-port network model for power system.

measurements data follow Eq. (1.25), where G+ jB, g+ jb, and g0 + jb0 represent the

line parameters, particularly the bus admittance matrix, the admittance of series branch,

and half shunt admittance, respectively. Similarly, the PMUs installed at buses l j ∈
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{
l1, l2 · · · ,Nbp

}
measure the voltage phasor (Vr,l and Vi,l) and the current flows (Il,m

r and

Il,m
i ) ∀m ∈ {1,2, · · · ,Nb}. Similar to the RTU models provided in Eq. (1.25), we get the

PMU models as [47]

Il,m
r =Vr,lg0

l,mVi,lb0
l,m +(∆Vr)gl,m − (∆Vi)bl,m,

Il,m
i =Vi,lg0

l,mVr,lb0
l,m +(∆Vi)gl,m − (∆Vr)bl,m.

(1.26)

where l j ∈
{

l1, l2 · · · ,Nbp
}

, m ∈ {1,2, · · · ,Nb}, ∆Vr = Vr,l −Vr,m, and ∆Vi = Vi,l −Vi,m,

with Nbp representing the number of buses having a PMU. Please note that the RTU and

PMU buses may not be connected to all other buses. Thus, the corresponding values of

m may be ignored, and the corresponding model equations of RTU and PMU may be

neglected. Following the preceding discussions and employing Kirchhoff’s laws over the

π-port model [47][48], the RTU and PMU measurements are expressed as

hr =

[
Vl|Pi

l|Qi
l|P

f
l,m|Q

f
l,m

]
, (1.27)

hp =

[
Vr,l|Vi,l|Il,m

r |Il,m
i

]
, (1.28)

where hr and hp are the sub-operators of h, denoting RTU and PMU measurements

readings, respectively. Please note that the time index k has been removed to improve

readability. Moreover, the superscripts i and f represent power injection and flow,

respectively.

For PSSE, the measurement is received from PMUs and RTUs and processed through

a router to a database as data packets. Please note that RTUs have different sample times

from PMUs. As the PMU is faster, we consider the sample time of PSSE equal to the

sample time of PMU. As part of the augmented dynamical operator hk, data is collected

in packets from installed PMUs and from the latest available RTUs measurements

at tk time instant [4][49]. Hence, the overall measurement data i.e., augmented yk,

augments the RTU measurements yr
k and PMU measurements yp

k , giving yk = [yr
k yp

k ]
T .

Consequently, the dynamic operator hk is composed of the sub-operators hr
k and h

p
k
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for RTU measurements and PMU measurements, respectively. Similarly, the augmented

measurement noise covariance is expressed as Rk = diag([Rr
k Rp

k ]), where Rr
k and Rp

k are

the noise covariances of RTU and PMU measurements, respectively.

As mentioned above, for a stochastic control expert, the PSSE problem is a typical

state estimation over the state space model particularly derived for power system

networks. As we will see in the next chapter, the state-or-art PSSE methods utilize

advanced nonlinear Gaussian filters like EKF, UKF, and CKF in [46],[49], and [48]. As

we will conclude in the coming chapter, EKF, UKF, and CKF are not the most accurate

state estimation methods. Thus, improving the PSSE accuracy by replacing the EKF,

UKF, and CKF with their more accurate alternatives is possible.

In addition to the above discussion, the growing usage of electric vehicles, traction

loads, and distributed energy resources (DERs), such as solar, wind, and others,

introduce harmonics and frequent load fluctuations into the grid. As a result, the

contemporary power grids are highly unpredictable and do not follow a deterministic

model. Consequently, real-time monitoring and control of power systems are critical for

efficient energy management to ensure a secure, reliable, and stable power delivery.

1.6 Epidemiological state estimator (ESE) methodology

Unlike power systems, the models for dynamics of biological processes, such as the

transmission of a new pandemic, is not well established. Consistent effort still ongoing to

achieve models that sufficiently characterize the dynamics [6][50],[51],[52],[53][54],[55].

As a scientific responsibility, this thesis models highly contagious Coronavirus epidemics

to monitor, identify, and suggest strategic measures to the government agencies that may

be needed to combat the virus. Our contribution is timely as the world is directly or

indirectly affected by the Covid-19 pandemic. Policymakers encourage scientific research

and knowledge-based analyses and conclusions to help make policy decisions that can

help contain the pandemic. A mathematical model for an epidemic is generally classified

as i)an agent-based epidemic model and ii) a compartment-based epidemic model. We

provide more details about the two model classes in the subsequent discussions.
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1.6.1 Agent-based epidemic modeling

Under agent-based epidemic modeling, we consider every individual in the population

as a separate agent and monitor the individuals interaction with other individuals over time

as an agent. The models under this category are generally complex and computationally

inefficient. They can capture the heterogeneity of individual behavior and the influences

of social networks between its population [56][57]. Such models also consider spatial

heterogeneity and individual differences in susceptibility and behavior. However, such

models are complex and data-sensitive.

1.6.2 Compartment-based epidemic modeling

The compartment-based epidemic model categorizes the total population into

different compartments based on the infection level in individuals. The model tracks the

flow of individuals between two compartments and the number of individuals in each

compartment over time. The most elementary model of compartmental based epidemic

model is SIR model [6]. Using this model, each individual is classified into one of

three compartments based on their disease status, such as susceptible (S), infected (I),

and recovered (R). A simple diagram of the SIR model is shown in Fig. 1.5. Later

developments under this category of models have mostly been an extension of SIR

epidemic model. Thus compartment-based epidemic model is popularly known as

SIR-family of epidemic modeling. A few advanced models diversified the traditional SIR

models by introducing compartments like exposed (E), vaccinated (V), and by further

segmenting the recovered compartment into recovered from asymptomatic infection (Re)

and recovered from symptomatic infection (R) compartments, which, in their abbreviated

forms, are named as SIRP [54],[55] SEIR [58], SEIRP [59], SEIRRP [60], SIRV [61]

epidemic models, respectively. Please note that the model involves both Re and R. The

first R in model abbreviation stands for Re, following by the recovered from infected

compartment R.

Developing a mathematical model that considers various disease-influencing

parameters is crucial to simulate real-world epidemic scenarios accurately. Such a

model can be used to estimate and analyze the impact and consequences of various
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Figure 1.5: A SIR epidemic model.

government decisions on containing the transmission of the epidemic. Additionally,

this enables decision-makers and government agencies to conduct a comparative

analysis to determine whether implementing a particular decision is justifiable from a

socio-economic perspective.

The simplicity, robustness, and computational efficiency of compartment-based

epidemic model make it popular among researchers for tracking the disease dynamics of

highly contagious diseases, such as Covid-19 pandemic. Thus, our research focuses on

contributing to the compartment-based epidemic modeling itself.

1.7 Cyber-threats on measurement data

The modern way of dealing with data often involves cyber-physical systems, which

generally integrate physical systems with intelligent communication infrastructure and

embedded software. Often, state-of-the-art control systems incorporate a wireless

communication network to transfer measurement data from geographically distant

sensors (or other measuring devices) to the remote estimator [62]. However, these

components may have inherent threats and vulnerabilities, rendering them susceptible to
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malicious exploitation and manipulation by cyber-attackers. Thus, risk identification has

emerged as a critical task in counteracting cyber-attacks. The cyber-attacker, or intruder,

often inducts false measurement data into the advanced sensors to adversely affect the

estimator’s performance. As cyber-attack manipulates the measurements with false data

injection (FDI), we often call it an FDI attack. We will frequently use the term “FDI

attack” to refer to the cyber-attack.

Although we have cyber-security methods and systems developed, we may not

trust them to overrule the FDI attacks completely. Thus, the futuristic filters should be

competently robust to address the FDI attacks.

While Gaussian filtering has a broad spectrum of applications, the efficacy of the

estimator can be adversely affected in the presence of system irregularities, such as

erroneous measurements (delayed or missing or non-Gaussian or falsely injected data),

ill-defined physical process model and non-Gaussian process noise.

1.8 Motivation
Following the previous discussions, we identify the following motivations for this

thesis work.

• As discussed previously, the state-of-the-art filtering problems often witness

measurement irregularities, such as delay measurements and non-Gaussian noises.

Thus, an advanced Kalman filter is required for handling contemporary filtering

problems and should be robust enough to handle such irregularities.

• The traditional nonlinear Gaussian filtering method ignores the delay and

cyber-attack, while such measurement irregularities are often likely to appear

in state-of-the-art filtering applications that involve cyber-physical systems for

processing and transmitting the measurement data.

• The increased usage of electric vehicles, traction loads, and distributed energy

resources (DERs) has made the power grid highly unpredictable, with a scenario

that randomly changes and does not follow a deterministic model. Therefore,

accurate PSSE must incorporate sudden and random changes in loading conditions.
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• An actual power grid witnesses various irregularities, including temporal failures

of one or more sensors, non-Gaussian outliers, and unknown statistical information

about noises. The existing PSSE failed to address these irregularities collectively.

• While pursuing the research for this thesis, the world witnessed the outbreak of one

of the deadliest pandemic of the last several centuries in terms of Covid-19. The

heartbreaking chaos worldwide strongly motivated beyond the planned framework

for the thesis and contributed to the fight against Covid-19. While a section of

the scientific community with specific expertise was busy developing medicines

and vaccines for containing Covid-19, reducing the pandemic’s spread rate was

necessary to minimize the losses before medicines and vaccines were developed.

Henceforth, it was necessary to have efficient analytical methods to help the

administrative authorities frame efficient strategies to reduce the rate of spread.

1.9 Thesis objective

The author outlines the following objectives for this thesis based on the above

discussed motivations.

• Develop an advanced Kalman filtering algorithm for handling two measurement

irregularities together, particularly the delay in measurement and non-Gaussian

noises.

• Redesigning the traditional nonlinear Gaussian filtering method for simultaneously

addressing unknown delays (in measurements) and cyber-attacks (on measurement

systems).

• Introducing a new PSSE technique by replacing the contemporary estimators with

a relatively more accurate estimator.

• Developing a robust PSSE to address non-Gaussian outliers along with the noise

adaptivity.
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• As a scientific responsibility, develop an advanced ESE method for efficiently

monitoring the transmission of pandemics, notably the Covid-19 pandemic, which

can help in efficient strategy making.

1.10 Approaches and methods

As discussed through the motivations and objectives, this thesis aims to contribute into

three different classes as discussed below: C1: Advanced linear and nonlinear filtering

methods to overcome various irregularities. C2: Advanced PSSE methods in order to

improve the accuracy as well as to improve the robustness against various uncertainties.

C3: Develop efficient methods for analyzing the spread of Covid-19 pandemic as a

scientific responsibility of a researcher in the era of Covid-19 outbreak.

In the subsequent discussions, we highlight the methods and approaches adopted for

the contributions in the three classes.

1.10.1 Model formulation

For the contributions under the C1 class, we reformulated the traditional measurement

models to incorporate the possibilities of the concerned measurement irregularities. On

the other handle, for class C2, we adopted the models of PSSE from the literature. Finally,

for class C3, we introduced a new pandemic model with more compartments in order to

efficiently monitor the Covid-19 spread.

1.10.2 Design and selection of filters

For class C1, we re-derived the traditional Gaussian filtering method for the

reformulated measurement model. For class C2, we have two contributions with the

following methods: i) a Gaussian filter, named CQKF, is adopted from the literature with

improved accuracy as compared to those already tested in PSSE literature, and then that

Gaussian filter is implemented over the PSSE models to improve the PSSE accuracy
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and ii) a Gaussian filter is first advanced to handle various uncertainties, and then, the

advanced filter is applied to the PSSE models to mitigate various limitations of the

traditional PSSE methods. Finally, for contribution C3, a Gaussian filter, CKF, is adopted

from the literature and applied to the newly developed pandemic model in this thesis.

1.10.3 Validation

The developed methods are simulated in MATLAB over a computer with a 64-bit

operating system, 32 GB RAM, and Intel i5, 3.40GHz processor configuration. For

the contributions under C2, various IEEE benchmark power system test bus systems

are considered. To conduct an extensive simulation-based study, 14-, 30-, and 118-bus

networks from the American electric power system (in the Midwest) are tested. It helps

us investigate the efficacy of the proposed PSSE under complex networks. Finally, the

contribution under C3 is investigated over real-data of Covid-19 pandemic in Delhi, the

capital city of India, between 17 January 2021 and 26 April 2021, during which the city

was witnessing its second wave of Covid-19.

1.10.4 Performance criteria

Estimation performance

Considering the complexity and severity of real-life problems, the author considers

a large number of Monte-Carlo (Mc) simulations for analyzing the state estimator

behavior under various different uncertain conditions. For validating the performances of

different contributions, one or more of various metrics, including the root mean square

error (RMSE), % RMSE, Mean square error, mean of absolute error (MAE), maximum

absolute error (MAXE), and computational time are chosen. The performance metrics,

such as RMSE, MSE, MAE, and MAXE, are expressed as

RMSE(xk) =

√√√√ 1
Mc

Mc

∑
i=1

∥∥∥x̂i
k|k −xi

k

∥∥∥
2

2
(1.29)
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%RMSE (xk) =

√√√√ 1
Mc

Mc

∑
i=1

(
xk(i)− x̂k|k(i)

xk(i)
×100

)2

, (1.30)

MSE(xk) =
1

Mc

Mc

∑
i=1

∥∥∥x̂i
k|k −xi

k

∥∥∥
2

2
(1.31)

MAE(xk) =
1

Mc

Mc

∑
i=1

∣∣∣x̂i
k|k −xi

k

∣∣∣ (1.32)

MAXE(xk) = max
∣∣∣x̂i

k|k −xi
k

∣∣∣ ∀i ∈ {1,2, ...,Mc} (1.33)

where |.|, and ||.|| denotes first and second norm, respectively.

1.11 Contribution

The main contributions of this thesis are summarized below.

• This thesis provides a detailed and up-to-date literature review on the nonlinear

filtering, PSSE, and ESE, including the contributions available for handling various

real-life pragmatic problems.

• A modified Kalman filter is proposed to address the problems of delayed

measurements and non-Gaussian outliers in a noisy environment.

• A CQKF-based advanced PSSE method is designed to improve the accuracy of the

existing PSSE methods, which utilize EKF, UKF, and CKF.

• An advanced Gaussian filtering-based PSSE algorithm is developed to address

various potential irregularities in power system models.

• Lastly, as a scientific responsibility, an advanced compartment-based stochastic

epidemic model is introduced. Subsequently, the CKF is implemented to estimate

the compartmental state dynamics to develop an advanced ESE method.
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Conferences:

1. Sumanta Kumar Nanda, Vimal Bhatia, and Abhinoy Kumar Singh, “Performance

analysis of Cubature rule based Kalman filter for target tracking,” 2020 IEEE 17th

India Council International Conference (INDICON). IEEE, 2020.

1.13 Thesis organization

The rest of the thesis is structured as follows. The thesis consists of eight chapters,

including the present one. Continuing from this chapter, the second chapter briefly

overviews the remarkable developments in estimation and filtering with their application

in PSSE and ESE methods. A brief discussion of the Bayesian framework of the

nonlinear filtering follows it. Chapter 3 contributes to the estimation with delayed

measurements. Chapter 4 developed an advanced Gaussian filtering to deal with false

data injection and randomly delayed measurement. Chapter 5 discusses the proposed

KF-based PSSE without any irregularity in measurement. Chapter 6 includes the

development of a robust and adaptive PSSE method performing under possible system

dynamics and measurement model irregularities. In Chapter 7, an advanced epidemic

model is formulated, and its stability issues with evaluating the dominant parameters

impacting the disease transmission. The last chapter of this thesis, Chapter 8, briefs

the discussions and conclusions of the thesis. Moreover, it includes the scope of future

works. In the end, an appendix is provided, which includes the algorithms developed in

different chapters.
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Chapter 2

Literature Review
As discussed in the previous chapter, this thesis aims to contribute in the following

directions: i) advancing the traditional linear and nonlinear filtering methods for handling

data irregularities like delay, cyber-attack, and non-Gaussian noises, ii) advancing the

PSSE methods to improve the accuracy and handle the uncertainties of the temporary

power system networks, and iii) developing advanced ESE methods for improving the

efficacy in monitoring the pandemic spread like the spread of Covid-19. Therefore, the

review in this chapter is classified into the following: i) Gaussian filtering methods,

ii) filtering with various measurement irregularities, including delayed measurements,

cyber-attacks, and non-Gaussian noises, iv) PSSE methods, and v) Advanced ESE

methods.

2.1 Gaussian Filtering

The previous chapter introduced two Gaussian filtering approaches: derivative-free

Gaussian filtering and derivative-based Gaussian filtering. As discussed previously, the

derivative-based Gaussian filtering is an extension of linear Kalman filter, where the

nonlinear functions are locally linearized. The popularly known extended Kalman filter

(EKF) [17] and its extensions [63][64][65] are the prevalent developments under this

approach.

The derivative-free Gaussian filters, as discussed previously, propagate the estimate

and covariance directly through nonlinear functions. However, in this case, the mean

computations involve intractable integrals, which are numerically approximated during
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the filtering using deterministic sets of sample points and associated weights. The

literature witnesses various derivative-free Gaussian filters using various numerical

approximation methods, giving different sets of sample points and associated weights.

The derivative-free Gaussian filters outperform the derivative-based Gaussian filters in

accuracy and numerical stability.

In the subsequent discussions, we review the various developments under the

derivative-based Gaussian filtering and the derivative-free Gaussian filtering.

2.1.1 Derivative-based Gaussian filters

As discussed above, the popular contributions under the derivative-based Gaussian

filtering include the EKF and its variants, which are reviewed below.

Extended Kalman filter (EKF)

The EKF was developed in the sixties [17], within a few years after the development

of the linear Kalman filter. The EKF is the earliest developed nonlinear Gaussian filter,

still widely popular in practical applications and academic developments. As discussed

previously, the EKF locally linearizes the nonlinear dynamic models by computing the

first-order derivative in terms of Jacobian. Subsequently, it applies the concept of linear

Kalman filtering over the locally linearized nonlinear dynamical models.

The EKF has a broad range of practical applications, such as in wireless sensor

networks [66], state of charge estimation in Lithium-ion batteries widely used in electric

vehicles [67], identification of online parameters for permanent magnet synchronous

motor drive [68], spoofing resilient power system state estimation [69], biomedical

systems [70],[71], [72], epidemic state estimation [73],[74], [75], etc.

Despite being used in widespread practical applications, the EKF has several

drawbacks. For example, derivative computation requires the system dynamics to be

continuous and differentiable. Similarly, the first-order linearization of the nonlinear

dynamical systems causes poor accuracy and numerical instability [63]. This problem
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becomes severe, particularly if the sampling interval is large. Please note that the

sampling interval is often system/device property, which the practitioners cannot flexibly

command to mitigate these drawbacks. Nevertheless, despite these drawbacks, the

EKF widely attracts practitioners due to its simplicity of implementation and small

computational demand. Moreover, many variants [76],[77], and [78] of the traditional

EKF are developed to mitigate its drawbacks up to some extent.

2.1.2 Derivative-free Gaussian filters

In the previous chapter, we discussed how derivative-free Gaussian filtering involves

intractable integrals, which are difficult to solve analytically and are usually approximated

numerically during the filtering. Various Gaussian filters are developed in the literature

using different numerical approximation methods. We review some of the major

developments in the subsequent discussions.

Unscented Kalman filter (UKF) and its variants

One of the earliest and most popular derivative-free filters is the UKF [63],

developed in the nineties. The UKF utilizes unscented transformation-based numerical

approximation to approximate intractable integrals using a set of sigma points and

weights [63]. The UKF is more accurate and numerically stable than the derivative-based

EKF.

In the literature, the UKF has been widely used in handling real-life problems,

i.e., [79],[80],[81]. More specifically, [79] applies the UKF for state of charge estimation

in an adaptive cell model, [49] implements the UKF for estimation of dynamic states for

power system networks, [81] applies the UKF for biomedical systems, and [55],[82] use

the UKF for ESE design applications.

Cubature Kalman filter (CKF)

Arasaratnam et al. [64] introduced the cubature Kalman filter (CKF) as an

alternative EKF and UKF. The CKF decomposes the intractable integral into spherical

and radial components, approximating the spherical integral using the third-degree
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spherical-cubature rule. In contrast, the radial integral is approximated using the

first-order Gauss-Laguerre quadrature rule. The resulting numerical approximation

method is called third-degree spherical-radial rule, which the CKF utilizes to approximate

the intractable integral with relatively improved accuracy compared to the UKF.

The CKF utilized lower orders of the spherical-cubature and Gauss-Laguerre

quadrature rules, leaving away the scope of further improving the accuracy by advancing

the orders of the spherical-cubature and Gauss-Laguerre quadrature rules. As a result, a

series of developments appeared by improving the orders of two numerical approximation

rules. This thesis briefly reviews a few other major developments below.

Cubature Quadrature Kalman filter (CQKF)

The Cubature quadrature Kalman filter (CQKF) is developed to enhance estimation

accuracy while slightly increasing computational demand [83]. It adopts the integral

decomposition approach from CKF and retains the third-degree spherical cubature rule for

approximating the spherical integral. However, it utilizes a higher-order Gauss-Laguerre

quadrature rule to approximate the radial integral. Subsequently, the CQKF introduces

a new numerical approximation method, named cubature quadrature rule, by combining

the third-degree spherical cubature rule and higher-order Gauss-Laguerre quadrature rule.

The sample points generated through this rule are referred to as cubature quadrature

points. using higher-order Gauss-Laguerre quadrature rule helps improve the accuracy

at the cost of increased computational demand.
Some other popular extensions of the CKF and CQKF are the square-root

CKF [64], square-root CQKF [84], transformed CQKF [85], simplex-spherical

CKF [86], simplex-spherical CQKF [87], and exponential-fitted CKF [88]. Furthermore,

the widespread practical application of the CKF and its extensions are reflected

in [89],[90],[91]. For example, [90] used the CKF in underwater target tracking

applications, [89] implemented the CKF for continuous glucose monitoring, while [91]

performed fault diagnosis using the CKF [92].

Other popular Gaussian filters

The Gauss-Hermite filter (GHF) [65] utilizes the univariate Gauss-Hermite quadrature

rule for numerically approximating the intractable integrals. In this filter, the sample
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points generated for approximating the intractable integrals are often known as quadrature

points. As the practical problems are mostly multivariate, the GHF utilizes the product

rule [65] to extend the univariate Gauss-Hermite quadrature rule into a multivariate

domain. However, for the product rule, the number of quadrature points increases

exponentially with the increasing system dimension [93]. Therefore, the GHF suffers

from the curse of dimensionality problem and becomes inapplicable for high-dimensional

systems. To reduce the computational demand, there are two popular variants of the GHF

available in the literature, which are discussed below.

• Sparse-grid Gauss-Hermite filter (SGHF) [93]: The SGHF replaces the product

rule with Smolyak rule, reducing the number of multivariate quadrature points.

Interestingly, it reduced the computational demand significantly without damaging

the accuracy.

• Adaptive sparse-grid Gauss-Hermite filter (ASGHF) [94]: The ASGHF utilizes

the adaptive-sparse grid method to extend the univariate quadrature rule into

a multivariate domain. The adaptive-sparse grid method considers varying

nonlinearity across different dimensions. Subsequently, it reduces the number of

the multivariate quadrature points further. As a result, the ASGHF further reduces

the computational demand compared to the GHF and SGHF without harming the

accuracy.

Some other popular contributions to GHF-based filtering are square-root

Gauss-Hermite filter [95], generalized GHF [96], and multi-sparse grid GHF [97].

Similar to the square-root unscented Kalman filter, the square-root Gauss-Hermite

filter eliminates the need for Cholesky decomposition computations. The generalized

GHF improves the accuracy further. However, the multi-sparse grid GHF reduces the

computational demand further, considering that some of the subspaces of the unknown

states are uncorrelated.

The GHF and its variants are among the most accurate Gaussian filters in the literature.

However, despite the reduced computational demands for filtering applications in general,
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the SGHF and the ASGHF, computational demand is still too large for high-dimensional

systems, a limiting constraint for their practical applications widely.

2.2 Filtering under various irregularities

The linear and nonlinear Kalman filters ignore various real-life irregularities, such

as the delay in measurements, non-Gaussian noises, and possible cyber-attacks in

the measurement systems by intruders. Interestingly, the literature witnesses various

developments in traditional linear and nonlinear filtering methods to address these

problems. In the subsequent discussions, the author briefly reviews various contributions

for handling the occurrences of one or more of such irregularities.

2.2.1 Filtering with delayed measurements

Measurement delays that may appear due to data propagation, queuing, etc., can cause

inaccurate information and adversely impact the filtering accuracy. If the delay is known,

a simple time shift can solve the problem. However, unknown delays can be challenging,

especially without time-stamping or clock access. In the literature, such a delay is known

as a random delay.

The literature pertaining to state estimation with delayed measurements has a rich

history[98],[99],[100],[101],[102]. In [98], Zhang et al. extended the Kalman filter

by introducing a re-organized innovation approach to deal with multiple delays. Later,

robust and adaptive Kalman filtering techniques were re-derived to deal with delayed

measurements [103], [99], [100]. Sun et al. [101] introduced another popular approach

by stochastically modeling the delayed measurements in terms of possible non-delayed

measurements.

For handling delay in nonlinear filtering, [104], [105][106][107], [108] are some

popular techniques. For instance, [104] and [105] re-derived the EKF and UKF for

handling delays up to one sampling interval. Later, the same approach was extended

for handling delays up to two sampling intervals [106]. To address higher delays, Singh

et al. [107] re-derived the traditional Gaussian filtering method for handling large delays.

However, these developments assume: i) delay is an integer multiple of the sampling
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interval, ii) if not known deterministically, stochastic models of the delay are known,

and iii) modeling errors and measurement errors can be characterized by Gaussian

approximated noises. Real-life problems often fail to satisfy these assumptions. Note

that the delay in measurements is not guided by the sampling intervals, which causes a

fractional delay [109] and [110].

The above-mentioned nonlinear Gaussian filtering literature for handling delayed

measurements requires a stochastic model with a sequence of delay probabilities. It

makes them less applicable to real-life problems with unknown probabilities and leads

to poor estimation accuracy. To overcome these limitations, Abhinoy et al. [111] used

the likelihood-based approach to overcome these limitations to determine the unknown

probabilistic information about the delay. Subsequently, it implemented the delay

model-based filtering approach. This algorithm is called the fractionally delayed Kalman

filter.

2.2.2 Filtering with non-Gaussian noises

In general, noises are inherently non-Gaussian, while they are assumed as Gaussian

in the traditional Gaussian filtering method. In some cases, they may be closely

approximated as Gaussian but not always, resulting in poor accuracy of the traditional

Gaussian filtering. More importantly, certain outliers in the process and measurements

are mostly non-Gaussian.

The Non-Gaussian outliers in state may result from abrupt changes in the system’s

behavior, external disturbances, or system malfunctions. Similarly, non-Gaussian outliers

in measurement data can arise from factors like data transmission quantization, impulse

noise in telephone channels, atmospheric noise caused by lightning flashes, radio

frequency interference, thunderstorms, and more [112][113].

This data irregularity is handled by leveraging information-theoretic learning

[22],[114] with correntropy maximization. It maximizes the nonlinear and local

similarity between related random variables in a joint space. This is controlled by the

Kernel bandwidth and is rooted in Renyi’s entropy [114]. Although these methods are

useful for non-Gaussian noise, they have not been extensively tested for estimation and
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filtering. Recently, Chen et al. [35] proposed a reformulated Kalman filtering approach

that uses the maximum correntropy criterion.

In recent years, there has been a growing interest in utilizing the maximum

correntropy (MC)-based design methodology [22] to handle non-Gaussian noises in

real-life applications that typically involve nonlinear systems. As a result, there have

been various contributions [115],[116],[117],[118],[119],[120] that have redesigned

well-known nonlinear Gaussian filters such as the EKF, UKF, CKF, and GHF to

incorporate this criterion.

Some other recent design criteria have also been tested for handling non-Gaussian

noises. For example, Huber-based cost function [36] and minimum entropy

criterion-based [121],[122] design have already been tested in the filtering literature.

To further improve robustness and accuracy, a versatile criterion called the generalized

maximum correntropy with freely changing Kernel shape by considering generalized

Gaussian density has been developed in [123],[124],[125].

2.2.3 Filtering with cyber-attacked measurements

The filtering accuracy is significantly impacted by the precision of the measurements,

which is vulnerable in cyber-physical systems due to the threat of deliberate tampering

and distortion through cyber-attacks [126], [127]. Intruder mainly focuses: i)

false data injection (FDI), which involves injecting false data together with true

measurements [128], ii) time asynchronous measurements (data replay attacks), which

entail introducing time delays in measurement propagation, and iii) denial-of-services,

which entails blocking any measurement availability [129], [130]. The primary focus of

this thesis is on filtering with FDI attacks.

In the literature, [128] extends the traditional EKF to handle FDI attacks, but this

method is not suitable for other Gaussian filters like the UKF, CKF, and GHF, which

offer higher accuracy. Later, [33] and [32] introduce a generalized Gaussian filtering

method to handle FDI attacks by reformulating the measurement model stochastically to

incorporate the possibility of FDI attacks and re-deriving the traditional Gaussian filtering

accordingly. Since [33] and [32] are generalized extensions of Gaussian filtering, they can
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be applied to any existing Gaussian filters, such as the EKF, UKF, CKF, and GHF.

2.3 Power System state estimator
The author classified PSSEs literature survey into without irregularities and with

irregularities as given below:

2.3.1 PSSE by ignoring various irregularities

In the year 1970, Larson et al. [131], [132] proposed sequential processing

of redundant measurement, and subsequently, Kalman filter is applied for the

estimation [133]. Da Silva et al. [134], for the first time, introduced the concept

of a forecasting-aided dynamic state estimator using Kalman filter, which was later

improvised with the advent of PMU and other intelligent electronic devices using

nonlinear Gaussian filtering methods. In the later developments, Gaussian filtering

methods, such as EKF, UKF, and CKF, are exploited for dynamic state estimation of the

power system states [46],[49],[48],[135],[136].

Numerous variants of nonlinear Kalman filtering algorithms, such as EKF, UKF, and

CKF, have been used to address the critical problems of DSE in nonlinear power system

networks. The EKF forms a Jacobian matrix, which computes the partial derivatives to

locally linearize the power system dynamic model. Due to the derivative-based local

linearization of the nonlinear PSSE models, the EKF exhibits poor estimation accuracy

and a low convergence rate [30] [21]. For solving the nonlinear dynamic equations, the

UKF and CKF methods replace the Jacobian matrix-based linearization technique with

a simpler and more stable numerical approximation approach. The UKF uses unscented

transformation-based numerical approximation [49], while the CKF utilizes a relatively

more accurate alternative named third-order spherical-radial cubature rule [30].

2.3.2 PSSE with various real-life irregularities

The aforementioned Gaussian filter-based PSSE methods have drawbacks, such

as requiring unknown mathematical models of state dynamics, unknown statistical

information on noises, and ignoring non-Gaussian outliers in process and measurements.

The typical reasons for non-Gaussian outliers are changing demands and power
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generation, instrument failures, communication limitations, uncertainties of electronic

devices, etc. [40].

The Gaussian filter-based PSSE has been extended to overcome these limitations to

improve estimation accuracy, adaptability, and robustness for real-time monitoring of

complex power networks. One such extension is Holt’s double exponential smoothing,

used for state prediction in power systems. Additionally, the concept of SHAKF [137] is

utilized in the power system monitoring for adaptive noise estimation. As described, the

adaptive Gaussian filter-based PSSE method integrates time-dependent, mathematically

derived, exact statistical information relevant to noise covariance. In contrast, the

traditional Gaussian filter-based PSSE assumes that the covariances are constant over

time, which may accidentally work for the actual power network but is selected through

trial and error. However, the reality is not the same. Readers are suggested to follow

[138],[139]. Finally, Maximum correntropy (MC) and minimum entropy (ME)-based

design criteria are used to address the irregularity of non-Gaussian outliers in [125],[117],

and [140].

2.4 Epidemiological state estimator

Knowledge-based mathematical disease dynamics models are popular to

characterize the repercussions of diseases using mathematical models [6][53][54],[55]

[58],[59],[60],[61]. Among such mathematical models, compartmental-based models are

the most popular [53]. They categorize the total population into different compartments

based on the infection level in an individual. As discussed in Chapter 1, the simplest

compartment-based model is SIR model [6]. The compartment-based models utilize a

few parameters, such as infection rate, recovery rate, recovery rate from disease, etc.

The superiority of compartment-based models improves as the number of parameters

influencing disease transmission increases. In this regard, later developments (after SIR

model) incorporated more compartments, including susceptible (S), exposed (E), infected

(I), recovered from exposed (R), recovered from infected (R), passed away (P), and

vaccinated (V) compartments. Much like the renowned SIR models, epidemic models are

commonly referred to by their compartmental names represented in abbreviated form.
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Later developments introduced SIRP [54],[55] SEIR [58], SEIRP [59], SEIRRP [60],

SIRV [61], model to characterize the nonlinear disease dynamics.

Literature on epidemic model state estimation witnesses recursive least square

estimation [60], maximum likelihood method [141], and Markov chain Monte-Carlo [142].

Sameni et al. [60] used recursive least square estimation method by minimizing linear

least square cost function. These methods are often dependent on accuracy of the

measurement data. Hasan et al. [54] developed an EKF-based ESE method using SIRP

model. As discussed previously, in the EKF, the partial derivatives are computed to locally

linearize the highly nonlinear epidemic model, which has poor accuracy and stability in

estimating the compartmental populations. Later UKF-based ESE integrated epidemic

model replaced Jacobian matrix-based linearization with simpler, more stable unscented

transformation-based numerical approximations [55]. A SEIRP model was proposed

to investigate the dynamic behavior of the Covid-19 pandemic [59]. Later, Xinhe et

al. developed an EKF-based ESE method for SEIRP epidemic model by incorporating

reinfection rate to estimate the Covid-19 compartments [73]. Similarly, Jialu et al. [141]

introduced an EKF-based estimation of SEIRP model, where the model parameters were

obtained using maximum likelihood method [141]. The above-discussed estimation

methods, such as the EKF, UKF, and their extensions, used in the [54],[55],[141],[73]

are known for their poor accuracy and stability. Thus, introducing an efficient estimation

method can further improve the accuracy.

2.5 Summary

• The Gaussian filtering provides a range of filters that can help achieve good

trade-offs between accuracy and computational demand. However, the Gaussian

filtering traditionally ignores various irregularities, and thus, it often underperforms

in practical applications.

• The optimal linear Kalman filter conventionally fails to account for a range of

real-life irregularities, such as measurement data irregularities and performance
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degradation caused by non-Gaussian outliers. These irregularities significantly

degrade estimation accuracy.

• The linear Kalman filter conventionally fails to account for a range of real-world

applicability scenarios, such as measurement data irregularities and performance

degradation caused by non-Gaussian outliers. These irregularities often manifest

in practical applications and can significantly impact accuracy. Examples of such

measurement irregularities include delayed and cyber-attacked measurements.

• The cyber-physical system is susceptible to measurement irregularities, such as

delayed and cyber-attacked measurements. The system implements suboptimal

Gaussian filters, but the presence of measurement irregularities adversely impacts

the estimator’s performance.

• The state-of-the-art PSSE methods use mixed measurements from remotely located

RTUs and PMUs. The recent literature has witnessed applications of different

Gaussian filters over the PSSE state space model to enhance accuracy.

• As discussed above, a branch of the recent research on PSSE methods focused on

advancing the Gaussian filtering methods to improve accuracy. However, this is

insufficient for handling various network uncertainties in the PSSE. Such network

uncertainties may include the lack of a precise state dynamical model, unknown

and time-varying noises, and non-Gaussian outliers. Therefore, parallel research

also focuses on addressing such uncertainties in the PSSE.

• As a need of the hour, during the outbreak of Covid-19, an immediate shift of

research was witnessed on containing the Covid-19 spread. Within the scope of

filtering knowledge, developing advanced ESE methods was crucial for developing

efficient monitoring algorithms for Covid-19 spread, which could later help in

framing efficient administrative strategies for containing the Covid-19 spread.

The ESE methods are composed of compartment-based models and nonlinear

estimators. They can estimate various compartment populations (of pandemic
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models), including susceptible, exposed, infected, recovered, and deceased

populations.
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Chapter 3

Kalman Filtering with Delayed

Measurements in Non-Gaussian

Environments
As discussed previously, the Kalman filter recursively estimates the unknown dynamical

states of a system when noisy measurements are received sequentially from individual

or centralized sensors. Several real-life applications of the linear Kalman filter have

been discussed in previous chapters: target tracking localization in mobile robots and

autonomous vehicles, estimating speech and audio signals in signal processing, etc.

Following the discussions in the previous chapters, we highlight two problems of

Kalman filter below: i) state and measurements are assumed to be Gaussian distributed,

and ii) measurements are the non-delayed i.e., the measurement received by the estimator

at time tk must be generated at the same time tk.

To understand the problems arising from delayed measurements, please note that the

estimation accuracy of Kalman filter depends on the accuracy of the estimated innovation

term ε
y
k|k−1 = yk − ŷk|k−1. With τd delay, yk carries information about the states at tk −τd .

However, ŷk|k−1, obtained by propagating x̂k−1|k−1 through state space model, estimates

the same information at tk. Thus, yk and ŷk|k−1 carry the state information separated

by τd in time, resulting in an inaccurate innovation term ε
y
k|k−1. Inaccurate innovation

results in poor filtering performance. Please note that τd is generally unknown [99,

100],[143, 144] to the practitioners; therefore, a simple time-shift cannot be applied to
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solve the delay problem. A time-varying delay with unknown τd is known as random

delay [99],[100],[143],[144], which is of interest in this chapter.

To understand the problem of non-Gaussian noises, please note that the Kalman

filtering algorithm discussed in Eq. (1.10) to (1.12) compensates the noises with up to

the second order of statistical measures (please note that the mean, representing the first

order statistical measure, is zero). Therefore, it is accurate for Gaussian noises, which

can only be characterized by the first and second order statistical measures. However,

in the case of non-Gaussian noises, higher order statistical measures are also significant,

and ignoring them results in poor accuracy [112],[145].

The Kalman filter is also subjected to several other limitations, including modeling

process dynamics in discrete-time and uncorrelated noises. However, this chapter focuses

on the aforementioned restrictions, such as non-delayed measurements in the presence of

non-Gaussian noises, which are known to decrease estimation accuracy in conventional

Kalman filter.

In particular, sudden changes in system behavior, external disturbances, or

system failures can cause non-Gaussian outliers in state estimates. Similarly, various

factors such as quantization during data transmission, impulse noise in telephone

channels, atmospheric noise caused by lightning flashes, radio frequency interference,

thunderstorms, and so on [112, 113, 146] can lead to non-Gaussian outliers in

measurement data. In addition, network systems and multiplexed communication

channels can induce time delays in measurements [104],[106],[147],[148].

This chapter introduces a new extension of the Kalman filter to deal with the

problems of unknown delayed measurements in the presence of non-Gaussian noises.

To the best of the authors’ knowledge, no filtering method has been discussed in the

literature to address the two problems together. Unlike the above discussed delay

algorithms, the proposed extension allows a fractional delay. Moreover, the proposed

filter does not require apriori knowledge of the delay probabilities. Instead, it implements

a likelihood-based approach to identify the delay stochastically. This delayed Kalman

filtering approach is reformulated using maximum correntropy criterion for estimation
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to capture the higher order statistics, which are generally non-Gaussian. The proposed

correntropy maximization based formulation fails to deliver a closed-form solution.

Therefore, a fixed-point iterative method is implemented to determine an approximate

solution numerically. The proposed algorithm is simulated for two delayed measurement

filtering problems with non-Gaussian noises. The performance analysis shows an

improved accuracy for the proposed extension compared to the existing Kalman filtering

techniques.

3.1 Modified Kalman filtering for delayed measurements

and non-Gaussian noises
From the detailed discussion in chapter 1, we redesign the traditional Kalman filtering

approach to deal with delayed measurements in the presence of non-Gaussian noises.

The proposed Kalman filtering is also performed in two steps: prediction and update. To

address the delayed measurements, it implements a likelihood based approach to identify

the unknown delay of τd . Based on the identified τd , it uses yk received at tk to update the

states at a past instant tk − τd from which yk actually arrives. Thereafter, a further time

update is performed from tk − τd to tk to determine the estimated state at tk. Moreover, to

deal with non-Gaussian noises, the measurement update step of the proposed algorithm is

designed under the correntropy maximization criterion [35].

3.1.1 Prediction
The sensor-induced non-Gaussian noises influence only the update step. This

step is also called a time update. Therefore, the existing literature for handling the

sensor-induced non-Gaussian noises, such as [35], adopts the prediction step directly

from the ordinary Kalman filter and redesigns the measurement update step under the

correntropy maximization criterion. We apply a similar approach and continue with the

Gaussian noise assumption for the time update step. It should be mentioned that the

process model is not unique and depends on the practitioner’s hypotheses. Therefore,

it can be amended to allow the Gaussian approximation to closely represent the actual

modeling error. However, the same is not valid for the measurement model, and efficient

handling of the sensor-induced non-Gaussian noises becomes important.
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As discussed earlier, the proposed filtering method considers a fractional delay, i.e.,

the delay can be a fractional multiple of sampling interval. Therefore, intermediate

sampling instants are also considered, unlike the traditional Kalman filter, which should

improve the accuracy. We denote Nint as the number of intermediate instances between

two immediate sampling instants. If T is the sampling interval, the intermediate instants

are separated by ∆t = T/Nint . We use the notation t j
k−1 = tk−1 + j∆t ∀ j ∈ {1,2, · · · ,Nint}

for jth intermediate instant between tk−1 and tk. Hence, at j = Nint , tNint
k represents tk+1.

In the remaining part of this chapter, we use the following notations to denote a statistical

measure B at tk + j∆t:

Btk+ j∆t =B(k, j)

Btk+ j∆t |ytk′ =B(k, j)|(k′)

Btk+ j∆t |ytk′+ j′δ =B(k, j)|(k′, j′).

(3.1)

Therefore, at j = 0 and j = Nint , we can write

B(k,0)|(k) =Bk|k

B(k,Nint)|(k) =Bk+1|k.
(3.2)

The proposed algorithm determines the time update parameters, i.e., x̂k|k−1 and Pk|k−1,

through intermediate steps. Please follow [111] for a detailed discussion.

3.1.2 Update

In this step, the measurement is updated. As discussed earlier, the objective of the

update step is to determine the posterior estimate of parameters at tk, i.e., x̂k|k and Pk|k,

using yk. Please note that yk ideally gives the state information at tk to be used to determine

the desired parameters. However, due to delay, it carries the state information from a

delayed instant tk −τd instead of tk. Therefore, it is appropriate to determine the posterior

estimated parameters at tk − τd instead of tk, with τd being unknown. The proposed

algorithm adopts a likelihood based approach from [111] to identify τd .
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As the measurement equation is linear, the predicted estimate and covariance of xk at

any intermediate instant t j
k−1 can be easily transformed to obtain the predicted estimate

and covariance of yk at t j
k−1. Let us denote the predicted estimate and covariance of yk

at t j
k−1 as ŷ(k−1, j)|(k−1) and S(k−1, j)|(k−1), respectively. It is worth mentioning that the

predicted estimate and covariance of xk are available for all past intermediate instants.

Thus, before the measurement yk is received at tk, we can obtain ŷ(i−1, j)|(k−1) and

S(i−1, j)|(k−1) ∀ i ∈ {1,2, · · · ,k} and j ∈ {1,2, · · · ,Nint}, which can be used to determine

the Gaussian likelihood of yk at any past intermediate instant. Thus, without harming

the generality of the proposed algorithm for handling the sensor-induced non-Gaussian

noises, we adopt the Gaussian likelihood for determining the likelihood of yk arriving

from a past intermediate instant.

To this end, let us consider a delayed instant tr + j∆t, i.e., tr ∈ {t1, t2, · · · , tk−1}. Then,

the Gaussian likelihood that yk arrives from a past instant tr + j∆t due to the delay can be

given as

L(r, j)(yk)∼
(
(2π)m det(S(r, j)|(r))

)− 1
2 × exp

(
−
(εy

(r, j)|(r))
T (S(r, j)|(r))

−1ε
y
(r, j)|(r)

2

)
, (3.3)

where det(S(r, j)|(r)) denotes the determinant of S(r, j)|(r) and ε
y
(r, j)|(r) = yk − ŷ(r, j)|(r). The

log-likelihood function can be written as

log(L(r, j)(yk))∼− 1
2

(
m log(2π)+ log(det(S(r, j)|(r)))+B(r, j)|(r)

)
, (3.4)

where B(r, j)|(r)=(εy
(r, j)|(r))

T (S(r, j)|(r))
−1ε

y
(r, j)|(r). Furthermore, additive and multiplicative

of the constant terms are removed as they do not affect index of the maximum

log-likelihood [111]. Thus, Eq. 3.4 can be re-written as

L(r, j)(yk)∼− log(det(S(r, j)|(r)))−B(r, j)|(r).
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For analytical simplification, a negative log-likelihood can be taken as

L(r, j)(yk)∼ log(det(S(r, j)|(r)))+B(r, j)|(r). (3.5)

To compute the likelihood L(r, j)(yk) for yk arriving from tr + j∆t, let us recall Eq. (1.11),

which infers that

ŷ(r, j)|(r) =H(r, j)x̂(r, j)|(r)

S(r, j)|(r) =H(r, j)P(r, j)|(r)(H(r, j))
T +R(r, j).

(3.6)

Subsequently,

ε
y
(r, j)|(r) =yk −H(r, j)x̂(r, j)|(r)

B(r, j)|(r) =
(
yk −H(r, j)x̂(r, j)|(r)

)T
(
H(r, j)P(r, j)|(r)(H(r, j))

T

+R(r, j)

)−1 (
yk −H(r, j)x̂(r, j)|(r)

)
.

(3.7)

Substituting S(r, j)|(r) and B(r, j)|(r) into Eq. (3.5) from Eq. (3.6) and (3.7), we get

L(r, j)(yk)∼ log
(
det
(
H(r, j)P(r, j)|(r)(H(r, j))

T +R(r, j)
))

+
(
yk −H(r, j)x̂(r, j)|(r)

)T
(
H(r, j)P(r, j)|(r)(H(r, j))

T

+R(r, j)

)−1 (
yk −H(r, j)x̂(r, j)|(r)

)
.

(3.8)

Remark 3.1.1 L(r, j)(yk) is a negative likelihood; therefore, a minimum of L(r, j)(yk)

gives the maximum likelihood estimate.

From the likelihood theory, a delayed measurement yk can be considered to have arrived

from the past instant where the likelihood is maximum, i.e., L(r, j)(yk) is minimum.

L(r, j)(yk) can be computed for every delayed instant, i.e., ∀ tr ∈ {t1, t2, · · · , tk−1} and

∀ j ∈ {1,2, · · · ,Nint}. Subsequently, the time instant tr∗ + j∗∆t from which yk arrives can
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be obtained from (r∗, j∗), if

(r∗, j∗)∼ argmin
(r, j)

L(r, j)(yk). (3.9)

Subsequently, τd can be given as tk − (tr∗ + j∗∆t).

The likelihood analysis concludes that yk arrives with τd delay, i.e., from a past instant

tr∗ + j∗∆t = tk − τd . Therefore, we use yk to update the posterior estimate parameters at

tr∗ + j∗∆t instead of tk. The proposed Kalman filtering algorithm adopts a maximum

correntropy [114][22] based posterior estimation to deal with non-Gaussian noises. In

this regard, let us define an error function

e(r∗, j∗) =




x̂(r∗, j∗)|(k)

yk


−




I

H(r∗, j∗)


x(r∗, j∗) = U(r∗, j∗)−V(r∗, j∗). (3.10)

The objective is to maximize the correntropy between U(r∗, j∗) and V(r∗, j∗), given as the

first moment of Kernel of e(r∗, j∗) [114],[22]. We choose the commonly accepted Gaussian

Kernel, given as [149, 150]

KU,V(i) = Gσ

(
e(r∗, j∗)(i)

)
= exp

(
−

e(r∗, j∗)(i)2

2σ2

)
, (3.11)

where σ > 0 is Kernel width, e(r∗, j∗)(i) is the ith element of e(r∗, j∗) with i ∈ {1,2, · · · , ls},

i.e., ls = n + m. Subsequently, the correntropy, i.e., the first moment of Kernel, is

approximated using the sample mean based approach as

ĈU,V =
1
ls

ls

∑
l=1

Gσ

(
e(r∗, j∗)(i)

)
, (3.12)

where CU,V denotes the correntropy between U(r∗, j∗) and V(r∗, j∗). Therefore,

the correntropy maximization problem reduces to the problem of maximizing

1
ls ∑

ls
l=1 Gσ

(
e(r∗, j∗)(i)

)
. To maintain consistency across different i, we prefer standardized

49



error. Subsequently, we define the cost function as

J(r∗, j∗) =
1
ls

ls

∑
l=1

Gσ

(
e(r∗, j∗)(i)

)
. (3.13)

where e(r∗, j∗) is standardized e(r∗, j∗).

To standardize the error function e(r∗, j∗), we re-write Eq. (6.7) as

e(r∗, j∗) =




x̂(r∗, j∗)|(k)−x(r∗, j∗)

V(r∗, j∗)


 . (3.14)

Subsequently, the error covariance can be given as

E
[
e(r∗, j∗)eT

(r∗, j∗)

]
=




P(r∗, j∗)|(k) 0

0 R(r∗, j∗)


 , (3.15)

where E [·] denotes the estimate. If Sp
(r∗, j∗)|(k) and Sr

(r∗, j∗) represent the Cholesky

decomposition of P(r∗, j∗)|(k) and R(r∗, j∗), respectively, then

E
[
e(r∗, j∗)eT

(r∗, j∗)

]
=




Sp
(r∗, j∗)|(k)(S

p
(r∗, j∗)|(k))

T 0

0 Sr
(r∗, j∗)(S

r
(r∗, j∗))

T




= S(r∗, j∗)|(k)(S(r∗, j∗)|(k))
T .

(3.16)

Note that S(r∗, j∗)|(k) represents the Cholesky decomposition of E
[
e(r∗, j∗)eT

(r∗, j∗)

]
. Please

note that the Kalman estimator is unbiased, i.e., E
[
e(r∗, j∗)

]
= 0. Subsequently, the

standardized error e(r∗, j∗) can be obtained as

e(r∗, j∗) =
(
S(r∗, j∗)|(k)

)−1 e(r∗, j∗). (3.17)
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Substituting e(r∗, j∗) from Eq. (6.7), we can write

e(r∗, j∗) = S−1
(r∗, j∗)|(k)




x̂(r∗, j∗)|(k)

yk


−S−1

(r∗, j∗)|(k)




I

H(r∗, j∗)


x(r∗, j∗)

=D(r∗, j∗)−W(r∗, j∗)x(r∗, j∗).

(3.18)

Substituting e(r∗, j∗) into Eq. (3.13), the cost function can be re-written as

J(r∗, j∗) =
1
ls

ls

∑
l=1

Gσ

(
D(r∗, j∗)(l)−W(r∗, j∗)(l)x(r∗, j∗)

)
, (3.19)

where D(r∗, j∗)(l) and W(r∗, j∗)(l) represent lth element of D(r∗, j∗) and W(r∗, j∗), respectively.

The value of x(r∗, j∗) that maximizes J(r∗, j∗) is the desired posterior estimate of x at tr∗ +

j∗∆t, i.e.,

x̂(r∗, j∗)|(k) = arg max
x(r∗, j∗)

J(r∗, j∗) (3.20)

Therefore, x̂(r∗, j∗)|(k) is a solution of

dJ(r∗, j∗)
dx(r∗, j∗)

= 0. (3.21)

Solution to a similar cost function is derived in [35] at tk for non-delayed measurements.

The same solution holds at the delayed instant tr∗ + j∗∆t as well, which gives

x(r∗, j∗) = g(x(r∗, j∗))

=

(
ls

∑
l=1

Gσ

(
e(r∗, j∗)(l)

)
(W(r∗, j∗)(l))

TW(r∗, j∗)(l)

)−1

×
(

ls

∑
l=1

Gσ

(
e(r∗, j∗)(l)

)
(W(r∗, j∗)(l))

TD(r∗, j∗)(l)

)
.

(3.22)

Please note that g(x(r∗, j∗)) is an exponential function of x(r∗, j∗) due to Gσ

(
e(r∗, j∗)(l)

)
.

Therefore, Eq. (3.22) fails to offer a closed-form solution. We adopt a fixed-point iteration

based numerical method from [35] to solve this equation. In this regard, we re-write Eq.
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(3.22) as

x(r∗, j∗) =
(
WT

(r∗, j∗)ϑ(r∗, j∗)W(r∗, j∗)

)−1(
WT

(r∗, j∗)ϑ(r∗, j∗)D(r∗, j∗)

)
, (3.23)

where

ϑ(r∗, j∗) = diag
(
ϑx
(r∗, j∗) ϑy

(r∗, j∗)

)
, (3.24)

with

ϑx
(r∗, j∗) = diag

(
e(r∗, j∗)(1), · · · , e(r∗, j∗)(n)

)
(3.25)

ϑy
(r∗, j∗) = diag

(
e(r∗, j∗)(n+1), , · · · , e(r∗, j∗)(n+m)

)
. (3.26)

A solution to Eq. (3.23) is derived in [35] at the non-delayed instant tk. However, the

same derivation can be extended for the delayed instant tr∗ + j∗∆t as well, which gives

x(r∗, j∗) = x̂(r∗, j∗)|(k−1)+K(r∗, j∗)(yk −H(r∗, j∗)x̂(r∗, j∗)|(k−1)), (3.27)

where

K(r∗, j∗) = P(r∗, j∗)|(k−1)H
T
(r∗, j∗)

(
S(r∗, j∗)|(k−1)

)−1 (3.28)

S(r∗, j∗)|(k−1) =H(r∗, j∗)P(r∗, j∗)|(k−1)H
T
(r∗, j∗)+R(r∗, j∗) (3.29)

P(r∗, j∗)|(k−1) = Sp
(r∗, j∗)|(k−1)(ϑ

x
(r∗, j∗))

−1(Sp
(r∗, j∗)|(k−1))

T (3.30)

R(r∗, j∗) = Sr
(r∗, j∗)(ϑ

y
(r∗, j∗))

−1(Sr
(r∗, j∗))

T . (3.31)

Note that x(r∗, j∗) depends on K(r∗, j∗) in Eq. (3.27), and K(r∗, j∗) further depends on x(r∗, j∗)

due to P(r∗, j∗)|(k−1), ϑx
(r∗, j∗) and ϑy

(r∗, j∗). Therefore, Eq. (3.28) also does not provide a

closed-form solution. To this end, we use the fixed-point iteration method to find the
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Initialization:
x̂0|0, P0|0

k = 1?

Yes

Previous step estimate and
covariance: x̂k−1|k−1, Pk−1|k−1

Determine prior estimate and
covariance at intermediate instants:

x̂(k−1,j)|(k−1), P(k−1,j)|(k−1)

Determine
t∗r + j∗∆t

Consider
x̂(r∗,j∗)|(k−1), P(r∗,j∗)|(k−1)

corresponding to t(r∗,j∗)

Apply fixed
point iteration:

x̂(r∗,j∗)|(k), P(r∗,j∗)|(k)

Update the estimate through
intermediate points Nru-times:

x̂k|k, Pk|k

x̂k|k

k ≤ N?

Stop

Measurement:
yk

k = k + 1

Yes

No o/p

i/p

Figure 3.1: Flow chart for implementing the proposed extension of the Kalman filter for
delayed measurements and non-Gaussian noises. Please note that k = k+1 leads to a new
iteration of estimation algorithm that finally leads to recursive state estimation.

solution numerically. The steps to be implemented for this iterative method are shown

in Algorithm 3. It should be noted that the steps presented in Algorithm 3 are similar

to the Kalman filter iteration, which makes it simple for practitioners to understand.
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It gives the desired posterior estimates at the delayed instant tr∗ + j∗∆t, i.e., x̂(r∗, j∗)|(k)

and P(r∗, j∗)|(k), based on the information received from the delayed measurement yk.

Following the notations in Eq. (3.2), x̂(k−1)|(k−1) and P(k−1)|(k−1) used in Algorithm 3

are simply x̂(k−1,0)|(k−1) and P(k−1,0)|(k−1), respectively. Finally, x̂k|k−1 and Pk|k−1 are

obtained as x̂(k−1,Nint)|(k−1) and P(k−1,Nint)|(k−1), respectively. It should be noted that

Algorithm 1 Pseudo code for computing x̂(r∗, j∗)|(k) and P(r∗, j∗)|(k).

Input: x̂(r∗, j∗)|(k−1), P(r∗, j∗)|(k−1), n, m and χ

Output: x̂(r∗, j∗)|(k) and P(r∗, j∗)|(k)
Initialization: x̂(r∗, j∗)|(k−1)(1) = x̂(r∗, j∗)|(k−1), Err = 1000 (any large value) and t = 1

1: while Err > χ do
2: Sp

(r∗, j∗)|(k) = Chol(P(r∗, j∗)|(k)), Sr
(r∗, j∗) = Chol(R(r∗, j∗)), and S(r∗, j∗)|(k) =

Chol
(
diag(P(r∗, j∗)|(k),R(r∗, j∗))

)
from Eq. (3.16)

3: D(r∗, j∗) =
(
S(r∗, j∗)|(k)

)−1
[

x̂(r∗, j∗)|(k)
yk

]

4: W(r∗, j∗) =
(
S(r∗, j∗)|(k)

)−1
[

I
H(r∗, j∗)

]

5: e(r∗, j∗) =D(r∗, j∗)−W(r∗, j∗)x̂(r∗, j∗)|(k−1)(t)
6: ϑx

(r∗, j∗) = diag
(
e(r∗, j∗)(1), · · · , e(r∗, j∗)(n)

)

7: ϑy
(r∗, j∗) = diag

(
e(r∗, j∗)(n+1), , · · · , e(r∗, j∗)(n+m)

)

8: R(r∗, j∗) = Sr
(r∗, j∗)(ϑ

y
(r∗, j∗))

−1(Sr
(r∗, j∗))

T

9: P(r∗, j∗)|(k−1) = Sp
(r∗, j∗)|(k−1)(ϑ

x
(r∗, j∗))

−1(Sp
(r∗, j∗)|(k−1))

T

10: S(r∗, j∗)|(k−1) =H(r∗, j∗)P(r∗, j∗)|(k−1)H
T
(r∗, j∗)+R(r∗, j∗)

11: K(r∗, j∗) = P(r∗, j∗)|(k−1)H
T
(r∗, j∗)

(
S(r∗, j∗)|(k−1)

)−1

12: x̂(r∗, j∗)|(k)(t +1) = x̂(r∗, j∗)|(k−1)+K(r∗, j∗)×(
yk −H(r∗, j∗)x̂(r∗, j∗)|(k−1)

)

13: Err =
||x̂(r∗, j∗)|(k)(t +1)− x̂(r∗, j∗)|(k)(t)||

||x̂(r∗, j∗)|(k)(t)||
14: t = t +1
15: end while
16: x̂(r∗, j∗)|(k) = x̂(r∗, j∗)|(k)(t)
17: P(r∗, j∗)|(k) =

(
I−K(r∗, j∗)Hk

)
P(r∗, j∗)|(k−1)

(
I−K(r∗, j∗)Hk

)T

+K(r∗, j∗)RkKT
(r∗, j∗)

18: return x̂(r∗, j∗)|(k) and P(r∗, j∗)|(k)

the practical problems mostly desire real-time filtering, which uses yk to determine the

posterior estimate and covariance at tk, i.e., x̂k|k and Pk|k. However, the proposed filtering

algorithm gives the estimate and covariance at a delayed instant tr∗ + j∗∆t, i.e., x̂(r∗, j∗)|(k)

and P(r∗, j∗)|(k). To perform a real-time filtering, we propose to determine x̂k|k and Pk|k by
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recursively updating x̂(r∗, j∗)|(k) and P(r∗, j∗)|(k) from tr∗ + j∗∆t to tk through intermediate

instants. Please note that the number of intermediate steps between tr∗ + j∗∆t and tk is

Nru = τd/∆t. Subsequently, we need Nru number of recursive updates over x̂(r∗, j∗)|(k) and

P(r∗, j∗)|(k) to obtain x̂k|k and Pk|k. The steps to be followed for this update are presented in

Algorithm 2.

The filtering strategy designed above takes care of the delayed measurements and

non-Gaussian noises in a single algorithm. It does not require any stochastic model for

the delay to be known, which is an added advantage over most of the existing delayed

filtering techniques, nor does it need to know the distribution of the Gaussian process.

However, statistical information from the past instants must be stored, increasing the

storage budget. Moreover, the computational complexity of Algorithm 3 and 2 are in

addition to the computational requirement of the ordinary Kalman filter, which results

in an increased computational time as well. A block diagram showing the steps for

implementing the proposed filtering algorithm is shown in Fig. 3.1.The proposed filtering

Algorithm 2 Pseudo code for computing x̂k|k and Pk|k from x̂(r∗, j∗)|(k) and P(r∗, j∗)|(k).

Input: x̂(r∗, j∗)|(k), P(r∗, j∗)|(k) and Nru
Output: x̂k|k and Pk|k

Initialization: x̂(r∗, j∗+0)|(k) = x̂(r∗, j∗)|(k), P(r∗, j∗+0)|(k) = P(r∗, j∗)|(k) and i = 1
1: while i ≤ Nru do
2: x̂(r∗, j∗+i)|(k) = F(r∗, j∗+i)x̂(r∗, j∗+i−1)|(k)
3: P(r∗, j∗+i)|(k) = F(r∗, j∗+i)P(r∗, j∗+i−1)|(k)(F(r∗, j∗+i))

T+
Q(r∗, j∗+i)

4: i = i+1
5: end while
6: x̂k|k = x̂(r∗, j∗+Nru)|(k)
7: Pk|k = P(r∗, j∗+Nru)|(k)
8: return x̂k|k and Pk|k

algorithm is possibly the first development under the delay filtering framework, including

[111], designed under the correntropy maximization criterion. Moreover, the ordinary

Kalman filter formulation for correntropy maximization in [35] differs substantially from

our algorithm. Some of the major differences are as follows:

• In a very fundamental difference, the proposed algorithm has a cost function (Eq.

(3.13)) different from [35] due to the delay. Thus, the design aspects of the two
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algorithms are different.

• In [35], the fixed-point iteration is applied at tk, when estimating the states using yk.

However, our derivation shows that the fixed point iteration should be implemented

on a past instant for the proposed algorithm.

• In [35], the fixed-point iteration is initialized with the latest posterior estimate.

However, our derivation shows that it should be initialized with a different estimate

associated with a hypothetically chosen intermediate instant.

We adopt the solutions of Eqs. (3.22) and (3.23) from [35]. It should be mentioned

that [35]is designed for non-delayed measurements and observes a few equations similar

to Eqs. (3.22) and (3.23) of this chapter. The equations that appeared in [35] do not have

closed-form solutions similar to the Eqs. (3.22) and (3.23) of this chapter. However, [35]

determines approximated solutions by using fixed point iteration technique. We have

applied this technique for approximation as it does not harm the validity of the proposed

algorithm for delayed measurements.

3.2 Simulation and results

In this section, the proposed MDKF method is simulated for two real-life filtering

problems with delayed measurements in the presence of non-Gaussian noises. The

performance of the proposed method is compared with the ordinary Kalman filter and a

recently developed delayed Kalman filtering algorithm. The comparison is based on the

root mean square error (RMSE). Please note that the delay is generally not much larger

than the sampling interval. Therefore, the performance analysis is limited to the delay of

up to two sampling intervals, i.e., 2-delay. We use the following abbreviations: KF for

the ordinary Kalman filter, DKF for the existing delayed Kalman filter, and MDKF for

the maximum correntropy based proposed delayed filter.
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3.2.1 Example-1

State space model

We consider a system with the following state space model

xk =




cosΘ −sinΘ

sinΘ cosΘ


xk−1 +qk (3.32)

yk =Hkxk +Vk, (3.33)

with Hk = [1,1]T . yk is a hypothetical non-delayed measurement that follows the general

assumptions of the state space model. qk is the process noise, which follows qk =

N(0,Qk), where N denotes Gaussian distribution. We consider the matrix Qk with all

elements equally being 0.01. Furthermore, fVk is a non-Gaussian measurement noise,

which is represented as a sum of two Gaussian PDFs, i.e., fVk = κg fV1,k +(1−κg) fV2,k ,

where κg ∈ [0,1] is a Gaussian coefficient. We assume Vj,k = N(0,R j,k)∀ j ∈ {1,2},

where R1,k and R2,k are taken as 0.01 and 100, respectively. It should be mentioned

that a significantly small value for R1,k compared to R2,k means that V1,k characterizes

an impulse noise and V2,k characterizes a Gaussian noise. Subsequently, Vk models an

impulsive (non-Gaussian) noise for a larger value of κg. However, as κg increases, Vk

tends to model Gaussian distribution.

True data simulation

The true states are generated using Eq. (3.32), with the initial state taken as

x0 = [1,1]T . Please note that Eq. (3.33) shows the model for hypothetical non-delayed

measurements. Therefore, it cannot be used to generate the simulated data of the desired

delayed measurements. We use a modified stochastic model based on Bernoulli random

variables incorporating the delay in the simulated measurement data. The modified model

is based on an upper bound for delay, which is taken as d-time steps. Subsequently, the
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measurement model to incorporate the delay is defined as

zk =
k−1

∑
r=k−d

Nint

∑
j=0

β(r, j)
(
H(r, j)x(r, j)+V(r, j)

)
. (3.34)

It should be mentioned that H(r, j)x(r, j)+V(r, j) is a hypothetical non-delayed measurement

at a delayed instant tr + jδ . To avoid multiple measurements at any sampling instant,

we restrict β(r, j) = 1 for only one combination of r and j at any time tk. If we define

P(β(r, j) = 1) = p(r, j), then p represents the no-delay probability. We simulate for two

different scenarios with p = 0.7 (probability of delay 0.3) and p = 0.5 (probability of

delay 0.5). We equally distribute the remaining probabilities (representing the probability

of delay) over all the past instants (including the intermediate instants) within d-delay. We

use Eq. (3.34) with Eq. (3.32) to generate the simulated data of delayed measurements.

Starting from x0, Eq. (3.32) is used to obtain x(r, j) ∀ r ∈ {k−1,k−1, · · · ,k−d} and j ∈

{Nint ,Nint −1, · · · ,1}. Subsequently, Eq. (3.34) is used to generate a sequence of delayed

measurements based on x(r, j) ∀ r ∈ {k−1,k−1, · · · ,k−d} and j ∈ {Nint ,Nint −1, · · · ,1}.

We consider 200 time steps for the true data simulation, and so, for the filtering.

Wherever it is not specified, the simulation is performed for 1-delay with κg = 0.9 and

p = 0.7. Please note that the stochastic model Eq. (3.34) is used for generating the true

simulated data only, with no role in filtering.

Filter implementation and results

For filtering, the initial estimate x̂0|0 is generated as a Gaussian random number

with mean x0 and initial covariance P0|0 = diag([0.01,0.01]), where diag represents the

diagonal matrix. As discussed earlier, the comparison of the proposed MDKF with

KF and DKF is based on RMSE. The RMSE is obtained by implementing Mc = 500

Monte-Carlo simulations. The RMSE of the ith element of state at kth instant is computed

from Eq.(1.29).

The simulation is performed for Θ = π/18. The true and estimated states are obtained

using the proposed MDKF for 1-delay with a probability of delay 0.3, which is shown

in Fig. 3.2. A close match between the true and estimated plots concludes a successful
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estimation for the proposed MDKF. The RMSE plots for the MDKF, DKF, and KF are
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Figure 3.2: Example-1: Comparison of true and estimated states obtained from MDKF
for 1-delay and 0.3 probability of delay.

shown in Fig. 3.3 to 3.6. Fig. 3.3 and 3.4 show the performance of different filters with

1-delay and delay probability of 0.3 and 0.5, respectively. Fig. 3.5 and 3.6 show the

RMSE plots for 2-delay with probability of delay as 0.3 and 0.5, respectively. Analysis

of the performance of different filters for varying delay probability is shown in Table 3.1,

which is restricted to 1-delay. The Table shows the average RMSE obtained for different

filters as the probability of delay varies. The collective analysis of the RMSE plots (Fig.

3.3 to Fig. 3.6) and Table 3.1 conclude that the RMSE is smallest for the proposed MDKF,

i.e., the accuracy is highest for the proposed MDKF. They also conclude that all filter

performance deteriorates as either or both the delay and the delay probability increase.
Performance analysis for varying noise Gaussianity

We study the performance of different filters for varying Gaussianity of the

measurement noise Vk in Fig. 3.7. As discussed previously in this section, Vk is more

Gaussian distributed as κg increases. We plotted the average RMSE for varying κg in

Fig. 3.7. The figure shows that the RMSE of all filters decreases as the κg increases,
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Figure 3.3: Example-1: RMSE plots for 1-delay with probability of delay 0.3.
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Figure 3.4: Example-1: RMSE plots for 1-delay with probability of delay 0.5.
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Figure 3.5: Example-1: RMSE plots for 2-delay with probability of delay 0.3.
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Figure 3.6: Example-1: RMSE plots for 2-delay with probability of delay 0.5.
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i.e., as Vk becomes more Gaussian distributed. Thus, we can conclude that the RMSE is

reduced as Vk tends to be more Gaussian distributed. Alternatively, we conclude that the

performance of the filters degrades as Vk deviates from Gaussianity. Interestingly, RMSE

is the lowest for the proposed MDKF for all κg, which concludes that the proposed

MDKF always outperforms the KF and DKF.

Table 3.1: Example-1: 1-delay: Average RMSE of different filters as the delay probability
varies.

Filter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MDKF 0.3369 0.3374 0.3437 0.3516 0.3639 0.3652 0.3626 0.3519 0.3372
DKF 1.135 1.163 1.188 1.210 1.229 1.238 1.242 1.239 1.231
KF 1.152 1.181 1.207 1.229 1.248 1.257 1.260 1.247 1.247

Table 3.2: Example-1: Correlation between the true and estimated states obtained for
different filters with varying κg.

Filter κg = 0.1 κg = 0.2 κg = 0.3 κg = 0.4 κg = 0.5 κg = 0.6 κg = 0.7 κg = 0.8 κg = 0.9
MDKF 0.369 0.418 0.491 0.580 0.662 0.762 0.824 0.869 0.912
DKF -0.018 -0.007 0.000 0.012 0.036 0.094 0.142 0.279 0.620
KF 0.006 0.007 0.008 0.010 0.013 0.017 0.025 0.043 0.137

Analysis of correlation between the true and estimated states
In practical problems, the correlation analysis between the true and estimated states

is often important, e.g., it is sometimes used for analyzing the time-shift between the true

and estimated signals [144]. We show the correlation obtained using different filters for

various κg values in Table 3.2. We restrict this study to 1-delay as a similar pattern is

also expected for higher delays. This table concludes that the correlation is highest for the

proposed MDKF. Alternatively, the true and estimated states are most correlated for the

proposed MDKF. Table 3.2 also concludes that the correlation improves as κg increases,

i.e., the noise Vk is more Gaussian distributed.

3.2.2 Example-2
State space model

We consider a linear dynamic system with the following state space model

xk =




1 T

0 1


xk−1 +qk (3.35)
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Figure 3.7: Example-1: Average RMSE plots for varying Gaussian coefficient (κg) with
1-delay and probability of delay 0.3.

yk =Hkxk +Vk, (3.36)

where Hk = [1 1]T . The process noise covariance is taken as as

Qk =℘




T 3/3 T 2/2

T 2/2 T


 ,

where ℘ = 10. Similar to the previous example, Vk consists of two Gaussian

components, as Vj,k =N(0,R j,k) ∀ j ∈ {1,2}, where R1,k and R2,k are taken as 0.01 and

100, respectively. The initial true data for the simulation is considered as x0 = [1,1]T

and the initial error covariance is taken as P0|0 = diag([0.01,0.01]). The initial estimate

is x̂0|0 = 1.5N(x0,P0|0). The true data simulation strategy is the same as Section 3.2.1.

The simulation is performed for 200 time steps with p = 0.7 (probability of delay 0.3)

and p = 0.5 (probability of delay 0.5), and where we don’t specify the values of d, κg,

and p, we consider d = 1, κg = 0.9 and p = 0.7.
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Performance analysis

The true and estimated plots of the proposed MDKF are shown in Fig. 3.8, which

concludes a successful estimation of the states using the proposed filter. Our further

analysis is based on RMSE, computed by performing 500 Monte-Carlo simulations. In

this regard, we plot the RMSEs for different scenarios in Figs. 3.9-3.12. The figures

conclude a reduced RMSE of the proposed MDKF, which further concludes the improved

accuracy of the proposed filter compared to the traditional filters. We further studied the

performance of the proposed MDKF for varying delay probability in Table 3.3, where a

consistent improvement in accuracy of the proposed MDKF for varying delay probability

is observed.

We further extend the performance analysis of the proposed MDKF for varying

Gaussian coefficient (κg) in Fig. 3.13. The figure concludes a consistently improved

accuracy of the proposed MDKF for all values of κg. Finally, we studied the correlation

between the true and estimated states in Table 3.4. From observations in Table 3.4, we

can conclude that the correlation is highest for the proposed MDKF for all values of κg.

Table 3.5 compares all the studied filtering method, such as MDKF, DKF, and KF.

Table 3.3: Example-2: 1-delay: Average RMSE of different filters as the delay probability
varies.

Filter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MDKF 0.384 0.395 0.406 0.414 0.430 0.427 0.431 0.427 0.425
DKF 1.000 0.977 1.031 1.052 1.023 1.029 1.063 1.026 1.040
KF 4.719 4.521 4.815 4.909 4.641 4.628 4.830 4.621 4.692

Table 3.4: Example-2: Correlation between the true and estimated states obtained for
different filters with varying κg.

Filter 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
MDKF 0.884 0.988 0.984 0.986 0.986 0.842 0.988 0.954 0.987
DKF 0.888 0.975 0.980 0.984 0.978 0.815 0.990 0.929 0.984
KF 0.636 0.483 0.736 0.770 0.673 0.493 0.833 0.355 0.751

3.3 Discussion and conclusion
A wide range of practical problems involving uncertain information, e.g., noisy sensor

data and inaccurate experimental data, lead to high demand for the Kalman filter. The

64



-8

-2

4

10

50 100 150 200
S

ta
te

 -
1

time step

True state Estimated state

(a) State-1

-3

-1

1

3

50 100 150 200

S
ta

te
 -

2

time step

True state Estimated state

(b) State-2

Figure 3.8: Example-2: Comparison of true and estimated states obtained from MDKF
for 1-delay and 0.3 probability of delay: (a) State-1 and (b) State-2.
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Figure 3.9: Example-2: RMSE plots for 1-delay with probability of delay 0.3: (a) State-1
and (b) State-2.
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Figure 3.10: Example-2: RMSE plots for 1-delay with probability of delay 0.5.

0

5

10

15

20

50 100 150 200

R
M
S
E

time step

MDKF DKF KF

0.1

0.6

100 150

(a) State-1

0

5

10

15

20

50 100 150 200

R
M
S
E

time step

MDKF DKF KF

0.7

1

100 150

(b) State-2

Figure 3.11: Example-2: RMSE plots for 2-delay with probability of delay 0.3.
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Figure 3.12: Example-2: RMSE plots for 2-delay with probability of delay 0.5.
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Table 3.5: Computational time of the proposed MDKF with other existing filter, such as
DKF, and KF.

Filter MDKF DKF KF
Computational time (sec) 0.3050 0.2788 0.2594

frequently appearing delayed measurements and non-Gaussian noises either restrict its

application or harm the estimation accuracy for many practical problems. This chapter

introduces a new modification to the Kalman filter to address these problems in a single

algorithm.

The traditional Kalman filter is formulated to consider the statistical measures of

the first and second orders. Subsequently, it ignores the higher order noise statistics

and underperforms for non-Gaussian noises. To efficiently handle non-Gaussian noise

and improve accuracy, we use the Kalman filtering technique under the correntropy

maximization criterion, which considers the higher order statistics of noise.

In the case of delayed measurements, the states are updated with mismatched

information, resulting in poor accuracy. The proposed modification mitigates this

problem by identifying the delay using a likelihood based approach. Subsequently, the

measurement is used to update the desired state at a past instant to which it corresponds.

For real-time filtering, the estimated state is further updated up to the current instant

using the state dynamics.

The proposed Kalman filtering algorithm is the first to simultaneously handle delayed

measurements and non-Gaussian noise. We tested it on two filtering problems and

compared its performance to the standard Kalman filter and an existing extension that

addresses delayed measurements. The performance analysis demonstrates that the

proposed method achieves improved estimation accuracy at the cost of a marginally

higher computational time.

The current combination of delays in measurement and cyber-attacks may also

deteriorate the already suboptimal performance of the wide application of Gaussian

filter. As using cyber-physical systems becomes more prevalent, these uncertainties in

measurement have become more prevalent and can potentially hinder the estimator’s
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effectiveness. Consequently, there is a need to extend the Kalman filter to address these

issues simultaneously.
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Chapter 4

Gaussian Filtering with False Data

Injection and Randomly Delayed

Measurements

4.1 Introduction
As discussed in Chapters 1 and 2, delay and FDI attack have been among the

growing concerns in a cyber-physical system. The Cyber-physical system integrates

communication and controller components to physical systems which may encompass

elements such as [24][126] software, embedded systems, networks, and physical

components. In cyber-physical systems, often state-of-the-art control systems

incorporate a wireless communication network to transfer measurement data from

geographically distant sensors to the remote estimator [62]. However, due to the

unreliable nature of wireless communication networks, various irregularities, such as

delays and cyber-attacks, can occur in measurement data. One such popular cyber-attack

is a false data injection attack, where an attacker injects fake data into a target system

or network. This is also called spoofing or data tampering and can be done through

various methods like manipulating data packets or altering a database. The purpose

of this attack is to mislead and deceive the target system or users, which can lead to

unauthorized access, data theft, or other malicious actions. For instance, an attacker

could inject false data into a financial system to manipulate stock prices or transfer
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money to an unauthorized account [151]. In this context, Gaussian filtering, a commonly

used technique, often underperforms or fails to produce accurate results in the presence

of these irregularities[152]. This chapter focuses on two prevalent types of irregularities:

unknown delay, caused by data propagation time, and cyber-attacks, where intruders

inject false data into the true measurement data.

We refer to Chapter 2 for a comprehensive literature review of filtering methods

designed to address delay and FDI attack in measurement. Notably, [104],[106],[108],

and [28] have extended the EKF, UKF, and CKF methods to incorporate random

delay, while [33] and [32] have reformulated the measurement model stochastically to

incorporate the possibility of FDI attacks and re-derived traditional Gaussian filtering

accordingly. Although these research developments address delay and cyber-attacks

independently, they are incapable of handling their simultaneous occurrences.

In this chapter, to the best of author’s knowledge, this filtering solution redesigns

the traditional Gaussian filtering method for handling the simultaneously occurring

delay and FDI attacks for the first time. The filtering solution provided is named as

Gaussian filtering with delay and FDI attack (GFDF). The proposed GFDF reformulates

the traditional measurement model using Bernoulli, geometric, and Gaussian random

variables to incorporate the possibilities of delay and FDI attack. It re-derives the

traditional Gaussian filtering method for a reformulated measurement model. The

re-derivation of traditional Gaussian filtering method (for the modified measurement

model) requires re-deriving the expressions of measurement estimation, covariance,

and state-measurement cross-covariance. Interestingly, the proposed GFDF is a general

extension of Gaussian filtering, which applies to any existing Gaussian filters, such as

the EKF, CKF, and GHF. This problem studies the stability of the proposed GFDF for its

EKF-based formulation. Furthermore, the improved accuracy of the proposed GFDF for

its CKF-based formulation is validated. 72



4.2 Problem Description
Recalling Chapter 1, a nonlinear dynamical cyber-physical system can be represented

by the following state space model,

xk = fk−1(xk−1)+Qk−1 (4.1)

yk =hk(xk)+Vk, (4.2)

Please note that this chapter’s scope is limited to Gaussian approximated distribution, and

refer to Chapter 1 for more details.

This problem considers that the true measurement yk may be subjected to two

measurement irregularities, such as delayed measurement or FDI attacks. These

irregularities can result in the actual observed measurement (zk) being different from yk.

Consequently, the fundamental objective of filtering is to deduce the current xk based on

the received measurement data zk.

Attackers frequently make intermittent changes to measurement data to conceal their

intrusion. We hypothesize that the data may be manipulated through FDI and/or delayed

measurement at specific instances. To accommodate these factors, The measurement

model mentioned in Eq. (4.2) is modified for zk by adopting the following modeling

techniques:

• To capture the occurrence of data alterations, two Bernoulli random variables, βk

and αk are introduced. This approach comprises the following steps: i) employ

a likelihood test to identify instances with no data alteration and to estimate the

value of βk, ii) perform a correlation analysis to detect delayed measurements and

estimate the value of αk, and iii) Inferred the presence of FDI attacks and estimated

the value.

• After detecting an FDI attack, it is possible to model the uncertain false data using

a Gaussian distribution. This is because the true measurement is randomly altered

through an amplified/attenuated multiplicative process to bypass the pre-assigned
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test. In this case, data pre-processing techniques are required to identify an

appropriate Gaussian distribution. These steps are outlined in [33].

• Incorporating the geometric distribution is a viable approach for modeling

uncertain measurement delays caused by limited resources. This approach enables

delayed measurements to be incorporated into the analysis without requiring prior

knowledge of the maximum delay. Moreover, using the geometric distribution to

model instantaneous delays is an effective way to handle larger delays.

It is worth noting that data pre-analysis and pre-processing are conducted independently

in this development, which is not included in the filtering methodology.

Throughout the rest of this chapter, the notations φ ′ and p′ will be used to denote

(1−φ) and (1− p), respectively, for any random variable φ and any probability p. This

notation applies to all random variables and probabilities.

The Bernoulli random variables βk and αk are subject to the following notion





P(βk = 1) = E [βk] = E [(βk)
c] = pa

P(αk = 1) = E [αk] = E [(αk)
c] = pd

(4.3)

where E[·] denotes the statistical expectation operator and c ∈ R is a constant. Moreover,

pa and pd denote the probabilities of no-attack and FDI attack, respectively. Similar

to Eq. (4.3), corresponding to P(βk = 0) = p′a, we get E
[
β′

k

]
= E

[
(β′

k)
c] = p′a and

E
[
(βk − pa)

2] = E
[
(βk)

2] − E [βk]
2 = pa p′a. We get similar conclusions for αk,

corresponding to P(αk = 0) = p′d , after simplification E
[
α′

k

]
= E

[
(α′

k)
c] = p′d and

E
[
(αk − pd)

2] = E
[
(αk)

2]−E [αk]
2 = pd p′d . In addition, d-delay at time tk can be

represented by using a geometric random variable denoted by Gd,k. This random variable

accounts for delays up to d sampling intervals. The probability of obtaining a value of
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Table 4.1: αk and βk values for different attacks.

Stochastic parameters Form of attack
βk = 1, αk ∈ {0,1} No-attack
βk = 0, αk = 1 FDI-attack
βk = 0, αk = 0 Delayed data

one for each entry of Gd,k can be denoted by pg. This random variable obeys





P
(
Gd,k(i) = 1

)
= E

[
(Gd,k(i))c]= Γi

P
(
Gd,k(i) = 0

)
= E

[
(Gd,k(i)′)c]= Γ′

i

E
[(

Gd,k(i)−Γi
)2 ]

= ΓiΓ
′
i,

(4.4)

where Γi = (p′g)
i−1 pg is the probability of i-delay ∀i ∈ {1,2, · · · ,d} at tk.

It is crucial to identify and account for false data to avoid its effects on filtering.

Various techniques can be employed to achieve this [128] and [33]. Stochastic quantitative

methods are instrumental in mitigating the impact of false data, as stochastic rules can

be more effective in the presence of unknown intruders and arbitrary data injection.

Pre-analysis rules, such as heuristic rules and normalization methods, can also aid in

identifying and normalizing false data. In addition, stochastic heuristics can determine the

probability of receiving a measurement and adjust amplification and attenuation factors

accordingly. False data can be closely approximated as Gaussian data using appropriate

heuristic rules and normalization methods. Suppose false data is injected at time tk,

represented as ∆k, which can be approximated as N(Ψ̂,ΣΨ) in the event of an FDI attack

at tk. It is important to note that E[∆2
k ] = ΣΨ+Ψ̂2 is used in the next section. As discussed

in [33], Ψ̂ and ΣΨ can be determined based on predefined heuristic rules and normalization

methods.

Additionally, the random variables are assumed to be independent and uncorrelated.

Specifically, we express redesigned measurement model as zk = βkyk +β′
k[αk∆kyk +

α′
k ∑

d
i=1 Gd,k(i)yk−i]. This equation can be further simplified to yield

zk = (βk +β′
kαk∆k)yk +β′

kα
′
k

d

∑
i=1

Gd,k(i)yk−i. (4.5)
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Table 4.1 presents the values of αk and βk corresponding to different types of attacks.

This study aims to re-derive the traditional Gaussian filtering method from a modified

measurement model.

Remark 1 In cyber-attacks, this modified measurement model is useful to counter both

data replay attacks and FDI attacks jointly. Moreover, this approach ensures data security

and integrity in various contexts and comprehensively controls cyber-attacks.

4.3 Design methodology of GFDF
In this section, a proposed Gaussian filtering strategy is introduced to handle

FDI and delayed measurements that occur concurrently. Prior research has shown

that irregularities in measurements can affect the filtering accuracy in a way that is

unrelated to the system’s state dynamics. Therefore, the proposed filtering strategy only

requires the re-derivation of measurement-related parameters because the traditional

Gaussian filter prediction step is independent of measurement, and only the update

step is influenced by measurement. Specifically, the measurement estimate, covariance,

and cross-covariance for the true measurement (yk) are denoted as ŷk|k−1, Pyy
k|k−1, and

Pxy
k|k−1, respectively. Similarly, the corresponding parameters for an actually received

measurement are denoted as ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1. The proposed Gaussian filter

replaces the parameters for a true measurement with those for an actually received

measurement. In the subsequent discussion, the authors derive the modified measurement

model parameters that account for the concurrent occurrence of FDI and delayed

measurements.

We derive ẑk|k−1, Pzz
k|k−1, and Pxz

k|k−1 with respect to zk (modeled in Eq. (4.5)) through

the three subsequent lemmas.

Lemma 1 : The measurement zk can be estimated as follows as a result of jointly

occurring delay and cyber-attacks: ẑk|k−1

ẑk|k−1 =(pa + p′a pdΨ̂)ŷk|k−1 + p′a p′d
d

∑
i=1

Γiŷk−i|k−1. (4.6)
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Proof : Let us denote ẑk|k−1 = E
[
zk
]
, for zk given in Eq. 4.5, computed as

ẑk|k−1 = E
[
(βk +β′

kαk∆k)yk +β′
kα

′
k

d

∑
i=1

Gd,k(i)yk−i

]
.

Please note that βk, αk, ∆k, and Gd,k(i) characterize measurement irregularities, and they

are independent of yk, which defines measurement values at the current instant. Thus, as

E[yk] = ŷk|k−1, after simplification of βk, αk, and Gd,k, we get

ẑk|k−1=E
[
βk +β′

kαk∆k
]

ŷk|k−1+E
[
α′

kβ
′
k
] d

∑
i=1

E
[
Gd,k(i)

]
ŷk−i|k−1.

Substituting E[αk], E[βk], and E[Gd,k(i)] from Eqs. (4.3) and (4.4), and their subsequent

discussions, the above equation reduces to Eq. (4.6). □

Lemma 2 : The covariance matrix Pzz
k|k−1 for zk can be given as

Pzz
k|k−1 =

(
pa + p′a pd(ΣΨ + Ψ̂

2)+2pa p′dΨ̂
)
Pyy

k|k−1 +
(

pa p′a + p′a pdΨ̂
2(1− p′a pd

)
+ p′a pdΣΨ

)

ŷk|k−1ŷT
k|k−1 + p′a p′d

d

∑
i=1

ΓiPyy
k−i|k−1 +

d

∑
i=1

(
p′a p′dΓi

(
1− p′a p′dΓi

))
ŷk−i|k−1ŷT

k−i|k−1+

d

∑
i ̸= j=1

(
p′a p′d

(
p′g
)i+ j−2 p2

g
(
1− p′a p′d

(
p′g
)i+ j−2 p2

g
))

ŷk−i|k−1ŷT
k− j|k−1.

(4.7)

Proof : The covariance matrix Pzz
k|k−1 is given as

Pzz
k|k−1 =E

[
(zk − ẑk|k−1)(zk − ẑk|k−1)

T ] . (4.8)

We can express the difference between zk and ẑk|k−1 using Eqs. (4.5) and (4.6) as

zk − ẑk|k−1 =(βk +β′
kαk∆k)(yk − ŷk|k−1)︸ ︷︷ ︸

J1

+(βk +β′
kαk∆k − pa − p′a pdΨ̂)ŷk|k−1︸ ︷︷ ︸

J2

+
d

∑
i=1

β′
kα

′
kGd,k(i)(yk−i − ŷk−i|k−1)

︸ ︷︷ ︸
J3

+
d

∑
i=1

(
β′

kα
′
kGd,k(i)− p′a p′dΓi

)
ŷk−i|k−1

︸ ︷︷ ︸
J4

.

(4.9)

By substituting zk − ẑk|k−1 from Eq. (4.9) into Eq. (4.8), we obtain Pzz
k|k−1 =
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∑
4
i=1 ∑

4
j=1E

[
JiJT

j

]
. Stochastic filtering theory typically assumes that independent

random variables possess stochastic independence properties. Applying this assumption,

it can be concluded that E[JiJT
j ] = 0 for all i ̸= j. As an example, we can write E[J1JT

2 ] =

E[(βk +β′
kαk∆k)(yk − ŷk|k−1)(βk +β′

kαk∆k − (pa + p′a pdΨ̂)]ŷT
k , which can be rewritten

as E[J1JT
2 ] = E[(βk +β′

kαk∆k)]E[(yk − ŷk|k−1)]E[(βk +β′
kαk∆k − (pa + p′a pdΨ̂)]E[ŷT

k ].

After further simplification and substituting the values from Eq. (4.3), we get E[J1JT
2 ] = 0.

Similarly, we can easily conclude for other expressions E[JiJT
j ] ∀ i ̸= j. Thus,

Pzz
k|k−1 =

4

∑
i=1

E
[
JiJT

i
]
. (4.10)

We now derive E[JiJT
i ] ∀i ∈ {1,2, · · · ,4}, which we add later to obtain Pzz

k|k−1.

For J1 given in Eq. (4.9), we can write

E
[
J1JT

1
]
= E

[
(βk +β′

kαk∆k)
2(yk − ŷk|k−1)(yk − ŷk|k−1)

T
]
.

Please note that αk and βk are independent of yk and ŷk|k−1. Moreover, as αk and βk are

independent Bernoulli random variables, we obtain E
[
(βk +β′

kαk∆k)
2]= E

[
(β2

k +β′2
k

α2
k∆2

k + 2βkβ
′
kαk∆k)

]
. Substituting the values from Eq.(3) and ∆2

k = ΣΨ + Ψ̂, we get

E
[
(βk +β′

kαk∆k)
2]= pa+ p′a pd(ΣΨ+Ψ̂2)+2pa p′dΨ̂. Subsequently, the above equation

is simplified as

E
[
J1JT

1
]
= (pa + p′a pd(ΣΨ + Ψ̂

2)+2pa p′dΨ̂)Pyy
k|k−1.

(4.11)

Similarly, for J2 given in Eq. (4.9), we obtain

E
[
J2JT

2
]
= E

[
(βk +β′

kαk∆k − (pa + p′a pdΨ̂))2ŷk|k−1ŷT
k|k−1

]
,

which is further simplified as

E
[
J2JT

2
]
=
(

pa p′a + p′a pdΨ̂
2(1− p′a pd)+ p′a pdΣΨ

)
ŷk|k−1ŷT

k|k−1. (4.12)
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Now substituting J3 from Eq. (4.9) into E
[
J3JT

3
]

to obtain

E
[
J3JT

3
]
=E
[ d

∑
i=1

β
′
kα

′
kGd,k(i)(yk−i − ŷk−i|k−1)

d

∑
j=1

β
′
kα

′
kGd,k( j)(yk− j − ŷk− j|k−1)

T
]
.

Here are some notes we ought to consider: 1) yk−i and yk− j are independent of ∀i ̸= j,

2) Gd,k(i) and Gd,k( j) are independent of ∀i ̸= j, and 3) αk and βk are independent of

each other, and also independent of yk−i and Gd,k(i) ∀i ∈ {1,2, · · · ,d}. Based on their

independently derived properties, we are able to simplify the above equation further as

E
[
J3JT

3
]
= p′a p′d

d

∑
i=1

ΓiPyy
k−i|k−1. (4.13)

To this end, for J4 given in Eq. (4.9), we get

E
[
J4JT

4
]
= E

[
d

∑
i=1

(
β
′
kα

′
kGd,k(i)− p′a p′dΓi

)2 ŷk−i|k−1ŷT
k−i|k−1

]
. (4.14)

According to various independence properties for independent random variables, the

above equation can be written as follows:

E
[
J4JT

4
]
=

d

∑
i= j=1

p′a p′dΓi(1− pa p′dΓi)ŷk−i|k−1ŷT
k−i|k−1 +

d

∑
i̸= j=1

(
p′a

p′d(p′g)
i+ j−2 p2

g
)(

1−
(

p′a p′d(p′g)
i+ j−2 p2

g
))

ŷk−i|k−1ŷT
k− j|k−1.

(4.15)

Substituting E[J1JT
1 ], E[J2JT

2 ], E[J3JT
3 ], and E[J4JT

4 ], from Eqs. (4.11), (4.12), (4.13),

and (4.15), respectively, into Eq. (4.10), Pzz
k|k−1 can be expressed in the form of Eq. (4.7).

□

Lemma 3 : The cross-covariance matrix between xk and zk can be obtained as

Pxz
k|k−1 =(pa + p′a pdΨ̂)Pxy

k|k−1 +
d

∑
i=1

p′a p′dΓiPxy
k−i|k−1. (4.16)

Proof:For zk− ẑk|k−1 given in Eq. (4.9), we get Pxz
k|k−1 = ∑

4
i=1E

[
(xk − x̂k|k−1)JT

i
]
. As

ŷk|k−1, ŷk−i|k−1, and Ψ̂ are constants and xk is independent of ∆k, we can conclude that
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∑iE
[
(xk − x̂k|k−1)JT

i
]
= 0, ∀i ∈ {2,4}, giving

Pxy
k|k−1 = E

[
(xk − x̂k|k−1)J

T
1
]
+E

[
(xk − x̂k|k−1)J

T
3
]
. (4.17)

To this end, for J1 given in Eq. (4.9), we obtain

E
[
(xk−x̂k|k−1)J

T
1
]
=E
[
(xk − x̂k|k−1)(βk +β

′
kαk∆k)(yk − ŷk|k−1)

T
]

which is simplified as

E
[
(xk − x̂k|k−1)J

T
1
]
= (pa + p′a pdΨ̂)Pxy

k|k−1.
(4.18)

Moreover, for J3 given in Eq. (4.9), we get

E
[(

xk − x̂k|k−1
)

JT
3
]
= E

[(
xk − x̂k|k−1

)( d

∑
i=1

β
′
kα

′
kGd,k(i)(yk−i − ŷk−i|k−1)

T)].

Applying the independent property, we get the following after a few simplifications and

rearrangements.

E
[
(xk − x̂k|k−1)J

T
3
]
= E

[
β
′
kα

′
k
] d

∑
i=1

(
E
[
Gd,k(i)

]
E
[
(xk − x̂k|k−1)(yk−i − ŷk−i|k−1)

T
])

.

As E
[
β ′

kα
′
k

]
= p′a p′d and E

[
Gd,k(i)

]
= Γi, we obtain

E
[
(xk − x̂k|k−1)J

T
3
]
=

d

∑
i=1

p′a p′dΓiPxy
k−i|k−1. (4.19)

Substituting Eqs. (4.18) and (4.19) into Eq. (4.17), we get Pxz
k|k−1 in the form of Eq.

(4.16). □

In light of the above discussion, we have derived a new method known as GFDF

to counter cyber-attacks on measurements and delay measurements concurrently. This

method replaces the traditional Gaussian filters estimated measurement vector ŷk|k−1,

80



the covariance matrix of the measurement error Pyy
k|k−1, and the cross-covariance matrix

between the state and measurement Pxy
k|k−1 with their counterparts for the altered

measurements, namely the estimated measurement vector ẑk|k−1, the covariance matrix

of the measurement error Pzz
k|k−1, and the cross-covariance matrix between the state and

measurement Pxz
k|k−1. These parameters are computed by utilizing the three lemmas

mentioned above. Incorporating measurement irregularities into GFDF allows a more

precise estimation of the system state even under attack and delayed measurement. The

estimated measurement vector ẑk|k−1 considers the impact of the attack and delayed

measurement, while the covariance matrix of the measurement error Pzz
k|k−1 captures the

measurement uncertainty caused by these irregularities. The cross-covariance matrix

between the state and measurement Pxz
k|k−1 reflects the relationship between the system

state and the altered measurement. For estimating the status of systems affected by

cyber-attacks, GFDF is more resilient and accurate. By including the effects of these

irregularities in the estimation process, the system becomes more resilient and remains

uninterrupted in the scenario of malicious attacks.

Remark 2 The proposed GFDF utilizes some estimate and covariance expressions from

past instants, which increases its storage requirement.

4.4 Stability of the GFDF

This section undertakes a stochastic stability analysis of the proposed filter, utilizing

the concept of “exponential boundedness in mean square.” To accomplish this, we

opt for the EKF-based formulation of the proposed filtering algorithm, abbreviated

as EKFDF. To begin, we construct the dynamic model for the estimation error of the

EKFDF. Subsequently, we demonstrate that the estimation error of the EKFDF remains

exponentially bounded in the mean square. To ensure stability, the associated parameters

must be bounded, for which a detailed explanation is given in the later part of the

chapter. Prior to continuing, we review the conventional notion used to evaluate the

aforementioned stability concept [153].
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Statement 4.4.1 A stochastic process is said to be exponential bounded in mean square

sense if there are real numbers θ1 > 0, θ2 > 0, ρ > 0, and 0 < κ ≤ 1. There exists

a positive definite function V(ζk) for a stochastic process ζk, satisfying the following

conditions 



θ1 ∥ζk∥2 ≤ V(ζk)≤ θ2 ∥ζk∥2

E [V(ζk)|ζk−1]−V(ζk−1)≤ ρ −κV(ζk−1)≤ 0
(4.20)

that jointly conclude

E
[
∥ζk∥2

]
≤ θ2

θ1
E
[
∥ζ0∥2

]
(1−κ)k +

ρ

θ1

k−1

∑
i=0

(1−κ)i, (4.21)

where ∥·∥ denotes the spectral norm. For further elaboration, please refer to [153].

Remark 3 Eq. (4.21) is the mathematical definition of “exponential boundedness in a

mean square” [153]. Therefore, if the stochastic process ζk satisfies this equation, it is

stable in the sense of exponential boundedness. Moreover, Eq. (4.21) is inferred from

Eq. (4.20); thus, ζk must satisfy the conditions in Eq. (4.20) to be exponentially stable in

mean square.
To proceed with the dynamic model for the estimation error of the proposed filter, we

recall the traditional EKF parameters [154].





x̂k|k−1 =f(x̂k−1|k−1)

Pk|k−1 =Fk−1Pk−1|k−1F
T
k−1 +Qk−1,

(4.22)

where x̂k|k−1 and Pk|k−1 represent respectively the predicted state and its error covariance

at tk; Fk−1 represents the Jacobian matrix of f(xk−1). Now consider the measurement

update parameters [154]





ŷk|k−1 =h(x̂k|k−1)

Pyy
k|k−1 =HkPk|k−1H

T
k +Rk

Pxy
k|k−1 = Pk|k−1H

T
k

x̂k|k = x̂k|k−1 +K
(

yk − ŷk|k−1

)
,

(4.23)
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with Hk denoting the Jacobian of h(xk).

Moreover, the Taylor series approximations for f(xk) and h(xk) can be given as





f(xk) = f(x̂k|k)+Fkek|k +Ft(xk, x̂k|k)

h(xk) =h(x̂k|k−1)+Hkek|k−1 +Ht(xk, x̂k|k−1),

(4.24)

where ek|k = xk − x̂k|k and ek|k−1 = xk − x̂k|k−1 are the estimation and prediction errors,

respectively; Ft(xk, x̂k|k) and Ht(xk, x̂k|k−1) denote the respective remainder terms.

The posterior estimate for zk is x̂k|k = x̂k|k−1 + K
(
zk − ẑk|k−1

)
, giving ek|k=

ek|k−1 −K(zk − ẑk|k−1). Subsequently, from Eqs. (4.1), (4.5), (4.6), (4.23), and (4.24),

the dynamical model of ek|k can be obtained as

ek|k = Ākek−1|k−1 +B̄k + C̄k + D̄k, (4.25)

where





Āk = (I− (pa + p′a pdΨ̂)KHk)Fk−1

B̄k =Qk−1 −K
(
(βk +β ′

kαk∆k)Vk +β ′
kα

′
k ∑

d
i=1 Gd,k(i)Vk−i

)

C̄k =Ft(xk, x̂k|k)−K
(
(βk +β ′

kαk∆k)Ht
(
xk, x̂k|k−1

)
+β ′

kα
′
k ∑

d
i=1 Gd,k(i)Ht

(
xk−i,

x̂k−i|k−1
))

D̄k =−K
[
(βk +β ′

kαk∆k)Hkek|k−1 +β ′
kα

′
k ∑

d
i=1 Gd,k(i)Hk−iek−i|k−1 +

(
(βk +β ′

kαk∆k)−

(pa + p′a pdΨ̂)
)
×h(x̂k|k−1)+∑

d
i=1(β

′
kα

′
kGd,k(i)− p′a p′dΓi)h(x̂k−i|k−1)+(pa + p′a pdΨ̂)

HkFk−1ek|k−1

]
.

(4.26)
Following Remark 3, the error (4.25) should satisfy Eq. (4.20) for the EKFDF to be

exponentially bounded in the mean square. Let us first introduce the following bounds

and conditions required to prove the stochastic stability of EKFDF [153].

• Fk is non-singular ∀k.

• Matrices and vectors are bounded via

where V1, V2, τ1, τ2, χ1, χ2, ξ , H, P1, P2, Q1, Q2, R1, and R2 are real numbers.
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∥Qk∥ ≤V1, ∥Vk∥ ≤V2, ∥Ft(xk−1, x̂k−1|k−1)∥ ≤ τ1∥xk−1 − x̂k−1|k−1∥2,

∥Ht(xk, x̂k|k−1)∥ ≤ τ2∥xk − x̂k|k−1∥2 ∥Fk∥ ≤ χ1, ∥Hk∥ ≤ χ2,
∥∥xk−1 − x̂k−1|k−1

∥∥
=
∥∥ek−1|k−1

∥∥≤ ξ ,
∥∥xk − x̂k|k−1

∥∥=
∥∥ek|k−1

∥∥≤ ξ
∥∥h(x̂k|k−1)

∥∥≤H, P1I≤ Pk|k ≤
Pk|k−1 ≤P2I, Q1I≤ Qk ≤Q2I, and R1I≤ Rk ≤R2I,

(4.27)

Theorem 1 For the bounds presented in Eq. (4.27), the stochastic dynamic model ek|k

(Eq. (4.25)) remains exponentially bounded in mean square. Alternatively, it satisfies

E
[∥∥ek|k

∥∥2
]
≤ θ2

θ1
E
[∥∥e0|0

∥∥2
]
(1−κ)k +

ρ

θ1

k−1

∑
i=0

(1−κ)i, (4.28)

Proof 1 We now consider the positive definite function as V(ek|k) = eT
k|kPk|kek|k, and

substitute ek|k from Eq. (4.25). Thus we can express V(ek|k) as

V(ek|k) =eT
k−1|k−1Ā

T
k P−1

k|kĀkek−1|k−1 + C̄T
k P−1

k|k
(
2Ākek−1|k−1 + C̄k

)
+2B̄T

k P−1
k|k
(
Ākek−1|k−1

+ C̄k + D̄k
)
+B̄T

k P−1
k|kB̄k +2D̄T

k P−1
k|k
(
Ākek−1|k−1 + C̄k

)
+ D̄T

k P−1
k|kD̄k.

(4.29)
We now adopt the following steps for proving that V(ek|k) satisfies the conditions given

in Eq. (4.20).

• Similar to [155], we obtain ĀT
k P−1

k|kĀk ≤ (1 − κ)P−1
k−1|k−1, which further gives

eT
k−1|k−1Ā

T
k P−1

k|kĀkek−1|k−1 ≤ (1−κ)V(ek−1|k−1).

• Note that V(ek|k) is scalar. Thus, following [155], we calculate: i) C̄T
k P−1

k|k(2Ākek−1|k−1+

C̄k)≤ λ1ξ 2, ii) B̄T
k P−1

k|kB̄k ≤ λ2, iii) 2D̄T
k P−1

k|k(Ākek−1|k−1 + C̄k)≤ λ3ξ 3 +λ4ξ 2 +

λ5ξ +λ6, and iv) D̄T
k P−1

k|kD̄k ≤ λ7ξ 2 +λ8ξ +λ9, with λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8,

and λ9 being expressions in terms of V1, V2, τ1, τ2, χ1, χ2, ξ , H, P1, P2, Q1, Q2,

R1, and R2. For more details, please refer to [155].

• The expectation operator afterwards gives E[2B̄T
k P−1

k|k(Ākek−1|k−1+C̄k+D̄k)] = 0,

as B̄k comprises the noises Qk−1 and Vk.

Following the discussion, we obtain
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E[V(ek|k)|ek−1|k−1]−V
(
ek−1|k−1

)
≤ λ3ξ

3 +
(
λ1 +λ4 +λ7

)
ξ

2 +(λ5 +λ8)ξ

+λ2 +λ6 +λ9 −κV
(
ek−1|k−1

)
.

(4.30)

Let us now define ρ = λ3ξ 3+(λ1+λ4+λ7)ξ
2+(λ5+λ8)ξ +λ2+λ6+λ9. Subsequently,

the above equation satisfies the second condition of Eq. (4.20).

Let us now apply the inverse operator and multiply eT
k|k and ek|k to the inequality of

Pk|k given in Eq. (4.27). Thus, we get

1
P2

∥ek|k∥2 ≤ V(ek|k)≤
1
P1

∥ek|k∥2. (4.31)

Substituting θ1 = 1/Pu and θ2 = 1/PL, the above inequality satisfies the first condition

of Eq. (4.20).

We now emphasize that Eqs. (4.30) and (4.31) all together satisfy Eq. (4.20). Thus, for

chosen V(ek|k) = eT
k|kPk|kek|k, the estimation error ek|k (Eq. (4.25)) satisfies Eq. (4.21),

which concludes the exponential boundedness of ek|k. Therefore, the EKFDF remains

exponentially bounded in mean square if the inequalities presented in Eq. (4.27) hold

true.

4.5 Simulation and Results

In this section, we use the CKF-based formulation of proposed GFDF to solve the

nonlinear filtering problem. To compare its performance, benchmark filters, including i)

ordinary CKF [64], ii) CKF with FDI attack handling [33], and iii) CKF with delayed

measurement handling [156],[28] were considered. We will refer to the CKF-based

formulations of CKF FA[33], MLCKF[28], and CKF GD[156]. We present two popular

CPS examples, such as multiple sinusoud estimation and power system state estimation

problem for this simulation-based studies.

This chapter presents the results for two simulation examples, such as multiple

sinusoid estimation and power system state estimation problem.
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4.5.1 Example-1: Multiple sinusoids estimation

Consider a problem of estimating multiple sinusoids [156, 157]. The state space

model is given as

xk = Ixk−1 +ωk−1 (4.32)

yk =

[ 3

∑
j=1

a j,k cos(2π f j,kkτ),
3

∑
j=1

a j,k sin(2π f j,kkτ)

]T

+ζk, (4.33)

where x = [ f1, f2, f3,a1,a2,a3]
T contains the frequencies fi and amplitudes ai of three

sinusoids; τ = 0.25 ms is the sampling time. The covariance matrices are assigned as

Q = diag([σ2
f σ2

f σ2
f σ2

a σ2
a σ2

a ]) and R = diag([σ2
r σ2

r ]).

We perform the simulation for two cases i) pa = 0.2, σ f =
√

25 mHz, σa =
√

0.8

mV , and σr =
√

0.9 V and ii) Case 2: pa = 0.5, σ f =
√

0.9 Hz, σa =
√

0.1 mV , and

σr =
√

0.1 V . The initial true state is chosen as x0 = [200,500,1000,3,4,3]T , and the

estimate x̂0|0 are considered to be normally distributed with mean x0 and covariance

P0|0 = diag
([

20,20,20,0.5,0.5,0.5
])

. This study considers ∆k to follow a normal

distribution with a mean of 0.5 and a variance of 0.4. In the presence of an attack, it

assumes pg = pd = 0.5. The filters are evaluated for 400 time-steps and 200 Monte-Carlo

runs, and the mean RMSEs for amplitudes and frequencies are compared.

The mean RMSEs for all filters for two cases are presented in Figs. 4.1 and 4.2.

The figures indicate that the proposed GFDF achieves improved accuracy compared to

all existing filters. Table 4.2 presents a relative computational time of all simulated filters

with CKF method. The table shows that the computational time of the proposed method is

slightly increased compared to traditional CKF but remains comparable to existing CKF

extensions for handling these irregularities.

This chapter presented the results obtained and derive some noteworthy conclusions.

Figs. 4.1 to 4.2 demonstrate that the accuracy, as measured by average of RMSE,

deteriorates with an increase in delay probability (pg), as expected. However, it is

found out that the average of RMSE variation is minimal for pg values in the range of

0.1 to 0.5. This implies that the filtering performance is not significantly impacted if
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Figure 4.1: Case 1: Average of RMSE comparison of CKF, MLCKF, CKF FA, CKF GD,
and GFDF against varying delay probabilities.
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Figure 4.2: Case 2: Average of RMSE comparison of CKF, MLCKF, CKF FA, CKF GD,
and GFDF against varying delay probabilities.
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Table 4.2: Relative computational time of the proposed GFDF with other existing filter,
such as MLCKF, CKF FA, CKF GD, CKF

Filter GFDF CKF GD CKF FA MLCKF CKF
Time 1.171 1.063 1.045 1.734 1

only a few measurements experience delay while others are time-synchronized. Similar

observations have been made in [28] and [156]. It is important to note that this trend may

vary depending on the system dynamics and environmental factors.

Additionally, unlike existing filters, our proposed method is not significantly impacted

by an increase in pa. This indicates that our approach is adept at capturing irregularities

and efficiently tracking state dynamics. To this end, it can be inferred that the current

FDI attack methodology fails to address delayed measurements adequately. Likewise,

existing delayed Gaussian filters like CKF GD and MLCKF are ill-equipped to handle

the potential intrusion of false data in a cyber-physical system. Conversely, the proposed

GFDF method demonstrates its viability in simultaneously addressing the challenges

posed by FDI attacks and delayed measurements.

4.5.2 Example-2: Power system state estimation

This example estimates the power system states, namely the voltage magnitude and

phase angle at each bus or node, using a limited number of noisy measurements. The

analysis is performed on the IEEE 14-bus benchmark power system network using Matlab

on a personal computer with a 64-bit operating system, 32 GB RAM, and a 2 GHz Intel

Core i3 processor.

Table 4.3 presents the measurement locations of phasor measurement units (PMUs)

and remote terminal units (RTUs) in IEEE 14-bus benchmark power system as shown

in Fig. 4.3. The PMUs are placed at specific locations to measure voltage and current

phasors (Vr, Vi, Ir, and Ii), while the RTUs provide power injections (Pi and Qi) at the

installed buses and power flows (P f and Q f ) through the specified branches. The detailed

expressions for these measurements can be found in [48]. This simulation considers
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that RTU data packets are updated every two seconds, and 30 PMU data packets were

received between two adjacent RTU data packets. The proposed GFDF-based PSSE was

implemented over 40 seconds at the PMU scan rate by incorporating the most recent PMU

sensor data with the last available RTU sensor data.

The performance of the proposed GFDF is compared with i) ordinary CKF [48]

[64], ii) CKF with FDI attack handling [33], iii) CKF with delayed measurement

handling [156, 28], and CKF with delayed and missing measurements [155] were

considered. To validate the findings, this chapter refers to the CKF-based formulations

of as CKF FA[157], MLCKF[28], CKF GD[156], and CKF DM[155]. However,

unlike example-1, due to large numbers of measurements MLCKF[28] is not feasible to

perform. This problem considers CKF DM[155], including other benchmark filters as

considered in 4.5.1.

Table 4.3: PMU and RTU measurements locations for the IEEE 14-bus benchmark power
system networks.

PMU RTU

Vr,Vi, Ir,
and I†

i

Pi and Qi††
P f and Q f †††

2, 7, 9, 13 3, 5, 13, 14 1-5, 2-1, 2-5, 3-4, 4-5, 4-7, 6-11, 6-12, 6-13, 8-7, 9-4,
9-7, 9-10, 9-14, 10-11, 12-13, 13-14

The power system state dynamics are simplified as a random walk model due to the

low likelihood of significant changes occurring between successive PMU scans. This

simulation considers a 3% randomly changing load condition throughout the simulation

period. For validating the proposed approach for large and random voltage fluctuations,

a significantly larger process noise covariance, Qk = 9 ∗ 10−6In×n, is considered rather

than a value mentioned in [134]. Here, δ r
v , δ r

pi, and δ r
p f represent the standard deviations

of sensor noises for RTU voltage, power injection, and power flow, respectively, and δ
p
v

and δ
p
i are the corresponding values for PMU voltage and current of the measurements.

To characterize sensor noises, the following values were considered [48]: δ r
v = 0.001,

δ r
pi = 0.02, δ r

p f = 0.02, δ
p
v = 0.001, and δ

p
i = 0.001. The simulations were carried out

with true initial bus voltages of x0 = 1∠0◦ and the PSSE was performed with x̂0|0 = x0
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Figure 4.3: IEEE 14 bus benchmark.
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and P0|0 = 10−6In×n. This problem sets ∆k to follow a normal distribution with a mean

of 0.5 and a variance of 0.4. In the presence of an attack, it assumes that pa = pd = 0.5.
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Figure 4.4: RMSE comparison of CKF, CKF FA, CKF GD, CKF DM, and GFDF at
Bus-9 for 0.3 delay probabilities.

Table 4.4: Performance indices (in 10−3) of the proposed GFDF-based PSSE with the existing
benchmark filters obtained by averaging the voltage magnitude (V) and phase angle δ across all
buses.

Delay prob. Error
V δ

(pg) GFDF CKF GD CKF FA CKF CKF DM GFDF CKF GD CKF FA CKF CKF DM
0.1

Average
of
RMSE

22 24 114 508 121 1.7 2.7 34.1 80.6 19.8
0.2 22.1 24.9 113.7 508 120.7 1.4 2.6 34.1 80.8 19.7
0.3 22.9 24.8 113.6 508.5 120.7 1.1 2.2 34.1 80.9 19.7
0.4 21.8 23.6 113.4 508 120.5 0.9 1.9 34.4 80.8 19.8
0.5 22.7 24 113.4 508.6 120.5 0.9 2 34.3 81.1 19.8
0.1

Average
of
MAE

3.55 3.61 18.4 361 19.6 0.238 0.366 1.88 22.33 0.95
0.2 3.575 3.905 18.28 360.7 19.49 0.18 0.27 1.84 21.92 0.92
0.3 3.68 3.97 18.27 361.2 19.49 0.16 0.23 1.82 21.75 0.91
0.4 3.49 3.70 18.21 361.1 19.43 0.148 0.212 1.825 21.643 0.91
0.5 3.491 3.70 18.21 361.27 19.43 0.143 0.2 1.815 21.608 0.904

We conducted a comparative study of the proposed GFDF-based PSSE and other

existing filters, as shown in Figures 4.4(a) and 4.5(a) and Table 6.1. The RMSE plots

for voltage magnitudes and voltage phase angles at bus 9 (Vk,9 and δk,9) are displayed in

Figure 4.4(a) and 4.5(a) for delay probabilities of 0.3 and 0.5, respectively. These plots
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Figure 4.5: RMSE comparison of CKF, CKF FA, CKF GD, CKF DM, and GFDF at
Bus-9 for 0.5 delay probabilities.

Table 4.5: Comparison of computational time for different filters.

Filter GFDF CKF GD CKF FA MLCKF CKF CKF DM
Time (sec) 4.877 5.1689 4.6438 5.929 4.6093 4.715

reveal that the CKF DM filter has significantly higher RMSEs as it did not consider falsely

injected data, resulting in poor performance compared to other filters. Furthermore,

Figures 4.4(a) and 4.5(a) demonstrate that CKF and CKF FA exhibit inferior estimation

performance compared to the proposed GFDF-based PSSE.

Table 6.1 presents the average of RMSE and average of MAE of all considered filters

for varying probabilities of delay. The results show that the proposed GFDF-based PSSE

achieves the lowest average errors, including average of RMSE and average of MAE.

Moreover, the table indicates that the filtering performance deteriorates with an increase

in the probability of delay.

The computation times of simulation based study for PSSE on a 14-bus power

system network is presented in Table 4.5. This implies that the computational time of
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the proposed GFDF is marginally higher than traditional CKF but remains comparable to

other existing CKF extensions for handling these irregularities.

4.6 Discussion and Conclusion
The practical applications of nonlinear estimation and filtering are vast, spanning

fields such as defense, power, and network systems. However, the widely accepted

Gaussian filtering method falls short in accounting for irregular measurements caused by

delay and cyber-attacks. With practical measurements often exhibiting such irregularities,

an advanced Gaussian filtering method is necessary.

The author introduced a method that employs stochastic modeling of delayed and

cyber-attack measurements to meet this need. Our proposed stochastic model employs a

Bernoulli random variable to indicate whether a measurement has been altered, either

through an FDI attack or delay. The author then redesigned the traditional Gaussian

filtering method to account for these modified measurements.

Our analysis demonstrates that the proposed method outperforms traditional Gaussian

filtering, resulting in improved estimation accuracy even in the presence of both delay and

cyber-attacks. However, it is important to note that our proposed method’s computational

budget and storage requirement are higher than the traditional Gaussian filtering method.

Up to this point, the extensions of Kalman filtering have demonstrated applicability

to a wide range of filtering applications. Nevertheless, the complex nature of power

system networks poses a significant challenge for state estimation that requires further

exploration.
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Chapter 5

Dynamic State Estimation of Power

System Using Forecasting-Aided

Cubature Quadrature Kalman Filter

5.1 Introduction
This chapter is focused on the PSSE problems. As discussed previously, the PSSE is

an estimation problem of dynamical states of a complex power system network, which

helps in online monitoring of the states of the power system networks. The bus voltages

and phase angles are the typical dynamical states. Moreover, measurements follow the

power flow equations, which are derived in Chapter 1.4, giving a nonlinear measurement

equation. Therefore, unlike Chapter 3, this chapter uses a standard nonlinear state-space

models, similar to Eqs. (1.3) and (1.4) of Chapter 1.

A detailed literature review is provided in Chapter 2 to present the chronological

developments in PSSEs. As a summary of the literature review, we highlight [46], [49],

[48], which develop advanced PSSE methods by utilizing EKF, UKF, and CKF. It is

worth mentioning that the filtering literature witnessed some recent advancements that

outperform EKF, UKF, and CKF. Thus, we can utilize such advancements in order to

improve the PSSE accuracy. One such advanced filter is CQKF, an extension of CKF for

improving accuracy.

This chapter introduces another contribution of this thesis, which develops an

95



advanced PSSE method by utilizing a forecasting-aided CQKF (FACQKF) over the state

space model for DSE. The conventional CQKF requires mathematical state dynamics

models, which are indeed unknown in PSSE design applications. The forecasting-aided

feature of the proposed FACQKF relaxes this requirement. As a forecasting technique,

the proposed FACQKF utilizes Holt’s technique to compute the unknown state transition

matrix. Additionally, the proposed FACQKF handles nonlinear dynamical equations by

using a higher-order spherical-radial rule and a second order Gauss-Laguerre quadrature

rule to approximate the intractable integrals appearing during the filtering [83]. For

simplification, the proposed FACQKF will often be mentioned as CQKF-based PSSE.

To achieve high accuracy, the proposed FACQKF has relatively higher computational

demand than the UKF- and CKF-based PSSE methods. The improved accuracy of

the modified CQKF-based PSSE is validated on the American Electric Power System

located in the Midwest, a widely recognized benchmark for power system networks. The

validation was performed on three commonly used benchmark power system networks:

the IEEE 14-, 30-, and 118-bus systems.

5.2 Dynamic power system model
For a single set of data packets from sensors, the standard discrete form of nonlinear

dynamic state space representation of real-time power flow model can be expressed using

the Eqs. (1.1) and (1.2) [48] where xk ∈ Rn and yk ∈ Rm denote state and augmented

measurement, respectively, with k ∈ {1,2, · · · ,N}. Moreover, fk−1 : xk−1 → xk and hk :

xk → yk represent standard dynamical operators. Finally, Qk ∈Rn and Vk ∈Rm represent

the process and sensor noises, respectively, approximated as zero-mean Gaussian with

covariances Qk and Rk, respectively.

The process noise Qk compensates for the modeling inaccuracy of the state dynamics

due to random fluctuations around the nominal operating conditions. Additionally,

the measurement noise Vk compensates for the sensor errors caused by time skewness

and transmission interference in the RTUs and the data packet errors in the PMUs,

respectively. For a detailed discussion on the measurement model received at time tk,

readers may follow Chapter 1.5.2.
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5.3 Forecasting-aided modified CQKF-based PSSE

For the given state space model (Eqs. (1.1) and (1.2)), the modified CQKF [83]

sequentially estimates the unknown states xk ∀k ∈ {1,2, · · · ,N}, as the sensor yk ∀k ∈

{1,2, · · · ,N} is received sequentially. The CQKF is a popular Gaussian filter [21],[30],

performed under the Bayesian framework [21], involving prediction and update steps.

The Eq. (1.21) is spherical-radial transformed as

I =
1√
(2π)n

∫
∞

ρ=0

∫

Un

F(SρZ+ x̂)ds(Z)ρn−1e−ρ2/2dρ, (5.1)

where S is the Cholesky decomposition of P, Un is the surface of an n-dimensional unit

hyper-sphere, ||Z||= 1, and ρ ∈ [0,∞) is a radial variable. Please note that ||.|| denotes l2

norm. The CQKF utilizes third-degree spherical cubature rule Eq. (5.2) for approximating

∫

Un

F(SρZ+ x̂)ds(Z)≈ 2
√

πn

2nΓ(n/2)

2n

∑
j=1

F
(

ρ [u] j + x̂
)
, (5.2)

where [u] is a set of indices representing the intersection points of unit hyper-sphere and

coordinate axes. Substituting the approximation from Eq. (5.2) into Eq. (5.1) results I as

a radial integral in ρ . The resulting expression can be transformed by substituting λ =

ρ2/2, which simplifies the remaining integral term in the form of Z =
∫

∞

λ=0F(λ )λ ιe−λ dλ

(with additional constant terms), where ι is constant. The CQKF approximates this,

thereby resulting in the integral using the higher-order Gauss-Laguerre quadrature rule

is given as [30]
∫

∞

λ=0
F(λ )λ ιe−λ dλ ≈

n′

∑
i′=1

ωi′F(λi′), (5.3)

where ι is constant, n′ denotes the number of Gauss-Laguerre quadrature points, while λi′

and ωi′ ∀i′ ∈ {1,2, . . . ,n′} represent the Gauss-Laguerre quadrature points and associated

weights. We obtain λi′ ∀i′ ∈ {1,2, . . . ,n′} as roots of n′-order Chebyshev-Laguerre

polynomial equation, given as Lι

n′ = (−1)n′λ−ιeλ dn′

dλ n′ λ
ι+n′e−λ = 0 [83]. Subsequently,
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the weights ωi′ ∀i′ ∈ {1,2, . . . ,n′} are given as ωi′ =
(n′)Γ(ι+n′+1)

λi′[L̇ι

n′(λi′)]
2 , [30] where Γ[·]

represents the gamma function, while L̇ι

n′(λ ) represents the first derivative of Lι

n′(λi′) at

λ = λi′ . Finally, the CQKF combines the third-degree spherical cubature and higher-order

Gauss-Laguerre quadrature rule to approximate the desired I as [30]

I ≈
Ns

∑
j=1

W jF(x̂+Sξ j), (5.4)

where W j = 1
2nΓ(n/2)ωi′ and ξ j =

√
2λi′[u] j ∀ j ∈ {1,2, . . .Ns}, with Ns = 2nn′

representing the total number of sample points.

Remark 4 The approximation of I in Eq. (5.4) by the n′-order Gauss Laguerre

quadrature rule increases the required quadrature points by n′-times. In turn, this leads

to an improvement in the estimation performance. The CQKF performance coincides

with CKF performance when applying for a first order Gauss Laguerre quadrature rule.

Additionally, number of required sample points is directly proportional to the dimension

of the system. Similarly, in GHF [30] and Szegőquadrature Kalman filter (SQKF) [159],

the number of support points requirement is nn′ for an n-dimensional system. Therefore,

ECKF, and GHF are ineffective for PSSE design applications because of the curse of

dimensionality.

Considering Eq. (5.4) for approximating I, we discuss below the computational aspects

of the FACQKF-based PSSE.

Prediction: The prediction step involves computation of state dynamics by Holt’s

double exponential forecasting technique and computation of apriori state mean and

covariance as discussed below:

A real-time power system process model is dynamic and complex. The state transition

function is modeled using a forecasting tool [134] that accommodates variations in state

from one time-step to the next. This chapter adopted a popular Holt’s double exponential

smoothing method for state forecasting fk(x̂k−1|k−1), owing to its simplicity and

reliability [49], [160]. Moreover, it is well suited for nonlinear optimization problems.

The state model parameters mentioned in Eq. (1.1), f(.) are computed using the
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exponential smoothing technique. It considers two components: level factor L and trend

factor T.

f(xk−1) = Lk +Tk, (5.5)

where

Lk = αhxk−1|k−1 +(1−αh)Lk−1, (5.6)

Tk = βh (Lk −Lk−1)+(1−βh)Tk−1, (5.7)

f(xk−1) = Lk = αh (1+βh)xk−1, (5.8)

Tk = (1−αh)(1+βh)xk−1 −βhLk − (1−βh)Tk, (5.9)

where α,β ∈ (0,1) are called smoothing parameters, which are obtained in offline

simulation. This paper adopts α and β values from [48] as 0.8 and 0.5, respectively.

Moreover, the initial values of L and T are initial state and zero, respectively.

Subsequently, it computes fk−1, to implement traditional derivative-less Gaussian

filtering algorithm given in Appendix C.

Update: The update step of proposed PSSE is modified to incorporate various bad

data in measurements received at control center. These bad data may occur due to

various factors, such as measurement instrument failures, communication errors, sudden

spikes, temporary equipment failures, switching operations, etc. This chapter focuses on

identifying and isolating these flawed data while performing estimation operation.

Bad data identifier: To address the issue of large errors caused by like erroneous

telemetered data or circuit breaker status changes, and to prevent their adverse effect on

estimation accuracy and PSSE reliability, this chapter incorporated a resilient method

for rejecting flawed measurements. This method aims to enhance the robustness of the

proposed estimator by effectively identifying and handling sensor outliers caused by

temporary measurement failures. By incorporating this approach, we aim to mitigate the
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adverse effects of outliers and improve the reliability and accuracy of the PSSE results.

1. The time iterated |βk|=
|(yk−ŷk|k−1)|√

(Pyy−1
k|k−1)

should be less than the positive threshold value

βth and include a precondition for state update to be followed. In this chapter, the

positive threshold value (βth) is an adjustable parameter determined by the user.

2. If |βk|> βth we skip the state update step i.e xk = x̂k|k−1, and Pk = Pk|k−1.

Assuming all state variables are mutually independent and the meter error follows normal

distribution, then L2 norm of innovation follows χ2 distribution. A detection threshold

value represents the level of confidence. If the detection threshold adopted for normalized

residual test is 2, then the confidence level is 94.46%. If the detection threshold is 2.5,

then the confidence level is 98.76%. In this paper, the bad data threshold βth is considered

as 3 for a 99.72% of detection confidence probability [161].

Remark 5.3.1 The third central moment µ3 express the skewness of a distribution.

Hence, to differentiate between sudden change in states and bad data type of anomaly,

an innovation skewness based test is conducted.

bk =
µ3√

Pyy−1

k|k−1

< βth, (5.10)

Under normal conditions, skewness maintains a symmetrical distribution with a zero

mean and standard deviation, resulting in a magnitude of zero. However, when confronted

with bad data, the skewness magnitude exceeds a predefined threshold, βth, due to the loss

of symmetry. In the presence of abrupt state changes, the skewness magnitude remains

small relative to βth. In this scenario, the skewness of the measurement distribution retains

its symmetry but with altered mean and standard deviation.

In the modified CQKF-based PSSE, we implement the CQKF through the prediction

and update steps as discussed in Appendix C with including bad data identifier condition,

through PSSE state space model. The outcome x̂k|k gives the desired estimate of the

PSSE parameters, such as the voltage magnitude and phase angle of all buses. The
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step-by-step procedure for implementing the modified CQKF-based PSSE in a real-time

power system network using a flow-chart is shown in Fig. 5.1. The author considered a

standardized IEEE benchmark power system of 14-, 30-, and 118-bus for validating the

modified CQKF algorithm, which is discussed in the subsequent section.

Remark 5.3.2 An accurate PSSE helps to formulate efficient and reliable energy

management strategies. Thus, the improved PSSE accuracy using the modified CQKF

can enhance the efficiency and reliability of modern power system networks.

Table 5.1: PMU and RTU measurements locations for the considered IEEE 14-, 30-, and
118-bus power system networks.

Network PMU RTU

Vr,Vi, Ir,
and I†

i

Pi and Qi††
P f and Q f †††

14-bus 2, 7, 9, 13 3, 5, 13, 14 1-5, 2-1, 2-5, 3-4, 4-5, 4-7, 6-11, 6-12, 6-13, 8-7, 9-4,
9-7, 9-10, 9-14, 10-11, 12-13, 13-14

30-bus 2, 3, 10,
12, 18,
24, 30

2, 3, 4, 6, 8, 10,
11, 12, 15, 16,
19, 21, 24, 27,
30

1-3, 2-4, 2-5, 2-6, 3-4, 4-6, 5-7, 10-22, 12-15, 12-16,
14-15, 17-10, 17-16, 18-15, 18-19, 19-20, 20-10, 21-22,
23-15, 24-23, 25-26, 28-8, 30-27

118-bus

1, 6, 8,
12, 15,
17, 21,
25, 29,
34, 40,
45, 49,
53, 56,62,
72, 75,
77, 80,
85, 86,
90, 94,
101, 105,
110, 114

11, 19, 25, 27,
33, 34, 38, 40,
42, 44, 45, 47,
48, 49, 50, 66,
68, 70, 73, 75,
79, 88, 92, 99,
100, 101, 103,
104, 106, 107,
109, 110, 111,
112, 113, 114,
116, 117, 118,

1-2, 3-5, 3-1, 4-5, 5-8, 5-6, 7-12, 8-9, 9-10, 12-11,
14-12, 15-13, 15-33, 16-12, 17-15, 17-16, 19-34, 19-18,
21-20, 22-21, 23-24, 23-22, 24-72, 24-70, 25-27, 26-25,
27-32, 27-115, 28-27, 29-31, 30-17, 30-26, 30-38, 30-8,
32-23, 32-31, 34-43, 36-35, 37-40, 38-65, 39-40, 40-42,
41-42, 43-44, 46-45, 46-48, 47-46, 49-54, 49-66, 50-49,
51-49, 51-52, 52-53, 54-55, 54-59, 57-56, 58-56, 58-51,
59-60, 59-61, 61-64, 63-59, 66-67, 66-62, 67-62, 68-81,
69-68, 70-74, 70-75, 71-73, 72-71, 75-118, 75-77, 76-77,
77-82, 77-78, 77-80, 83-82, 83-85, 83-84, 85-88, 85-89,
86-85, 87-86, 88-89, 89-92, 89-90, 90-91, 91-92, -93,
94-93, 96-82, 96-94, 96-95, 96-97, 98-80, 99-100, 99-80,
100-106, 100-101, 103-110, 103-100, 104-100, 104-105,
105-108, 106-107, 106-105, 108-109, 110-109, 116-68,
118-76

†PMU measurements, such as voltage phasor (Vr, Vi), and current phasors (Ir, Ii).
††Active and reactive power injections.

†††active and reactive power injections power flow between lines respectively.

5.4 Simulation and result
This section discusses validating the performance of the modified CQKF-, CKF-, and

UKF-based PSSE techniques for IEEE 14-, 30-, and 118-bus power system networks.
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A standard IEEE-14bus benchmark power system is illustrated in Fig. 4.3, for the

convenience of the reader. 30 PMU data packets were considered between the two

adjacent RTU data packets in this simulation study. The simulation study used data from

Table 5.1, including the PMU locations to measure voltage and current phasor, the buses

with power injection measurements, and the branches with power flow measurements

[47], [162], assuming that RTU data packets are updated every two seconds.

By adding the most recent PMU sensor data to the last available RTU sensor data, the

modified CQKF-based PSSE was implemented over 40 seconds period at PMU scan rate.

True data generation: Due to the low likelihood of a significant change between

two successive PMU scans, this design reduces the complexity of the power system

state dynamics to a random walk model. The measuring model used in this work is

adopted from [47] and [162]. Validating the proposed approach for large and random

voltage fluctuations, significantly larger process noise covariance, Qk = 9 ∗ 10−6In×n, is

considered rather than a value mentioned in [134]. Here, δ r
v , δ r

pi, and δ r
p f represent the

standard deviations of sensor noises for RTU voltage, power injection, and power flow,

respectively, and δ
p
v and δ

p
i are the corresponding values for PMU voltage and current of

the measurements. To characterize sensor noises, the following values were considered

[161]: δ r
v = 0.001, δ r

pi = 0.02, δ r
p f = 0.02, δ

p
v = 0.001, and δ

p
i = 0.001.

5.4.1 Case-1: Study of various benchmark electric power system

under random voltage fluctuation.

Validating the proposed approach for large and random voltage fluctuations upto 3%

of normal load, a significantly larger process noise covariance, Qk = 9 ∗ 10−6In×n, is

considered rather than a value mentioned in [134]. To begin, the simulations were carried

out with initial bus voltages of x0 = 1∠0◦ as true data, and the PSSE was performed with

x̂0|0 = x0 and P0|0 = 10−6In×n. The modified CQKF-based PSSE was validated on IEEE

14-, 30-, and 118-bus networks. The true and estimation plots for voltage magnitudes and

voltage phase angles at bus 9 (Vk,9 and δk,9) are shown in Fig. 5.2. For each network
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considered, Fig. 5.2(a) shows true-estimation plots of voltage magnitude, and Fig. 5.2(b)

shows true-estimation plots of phase angle. The voltage phasor of an estimated value

converged to the true value for all the considered IEEE system networks, as shown in

Figs. 5.2(a), 5.2(b) for magnitude and phase angle, respectively. Thus, the simulation

results indicated that the modified CQKF based PSSE technique suits the PSSE of IEEE

14-, 30-, and 118-bus networks. Furthermore, the modified CQKF-based PSSE technique

was validated across all buses in the selected power networks (IEEE 14-, 30-, and 118-bus)

and compared to the existing CKF- and UKF-based PSSE methods.
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Figure 5.2: Case-1: True and estimate plots at bus-9 (subscripts 14, 30, and 118 represent
the 14-, 30-, and 118-bus networks, respectively): (a) Voltage magnitude V (p.u.) and (b)
Phase angle δ (radian).

The modified CQKF-based PSSE was verified using 50 Monte-Carlo (Mc) simulations

to validate its improved accuracy and gain additional insights into its comparison with

CKF- and UKF-based PSSE. Average of mean square error, average of mean of absolute

error, and maximum error (MAXE) were chosen as the performance metrics and listed in

Table 5.2, along with their execution time. The performance metrics, such as average of

MSE, MAE, and MAXE are computed using Eqs. (1.29), (1.31), and (1.32), respectively.
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Table 5.2: Case-1: Estimation error performance indices (in 10−5) of the modified CQKF-based
PSSE with the existing PSSEs obtained by averaging the voltage magnitude (V) and phase angle
δ across all buses.

Network PSSE Average of MSE Average of MAE MAXE
Computational time

V δ V δ V δ

118-bus CQKF 2.284 2.3 910 943.1 125.5 128.5 0.50
CKF 2.296 2.319 920.4 943.3 125.6 128.7 0.31
UKF 2.312 2.320 921.3 943.37 125.69 128.9 0.32

30-bus CQKF 1.0 0.8 230 187 900 820 0.027
CKF 1.1 81.3 235 191 921 830 0.0162
UKF 1.13 83 240 194 940 841 0.0163

14-bus CQKF 0.50 0.1836 168 95.8 575.2 406 0.006
CKF 0.5078 0.1837 168.3 96.34 580.4 410 0.0037
UKF 0.5091 0.1837 168.6 96.57 581.8 410.3 0.0038
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Figure 5.3: Case-1: MAE (in 10−2) for voltage magnitude (V) and phase angle (δ ) of all
buses for the proposed (CQKF) and existing PSSE methods.
The modified CQKF-base PSSE method voltage magnitude (V ) shown in black color and
phase angle (δ ) shown in green color.
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The MAEs of voltage magnitude and phase angle obtained using the proposed (shown

in black and green color) and the existing PSSE methods for all power networks under

consideration were compared, as shown in Fig. 5.3. It can be observed that spikes are

displayed on bus-5 for 14-bus system (Refer Fig. 5.3(a) ), bus-22 for 30-bus system

(Refer Fig. 5.3(b)), and bus-36 for 118-bus system (Refer Fig. 5.3(c)). The spikes at

these buses revealed an increase in MAE value and can be further reduced by installing

PMU at the associated bus in the 14-, 30-, and 118-bus power system networks. It is

evident from Table 5.2 that the CQKF-based PSSE has superior estimation performance

with the least performance index values, such as average of MSE, average of MAE, and

MAXE. Combining Figs. 5.2, 5.3, and Table 5.2 yield the lowest error values for the

modified CQKF-based PSSE, indicating an improved accuracy but requiring a modest

increase in computational storage.

5.4.2 Case-2: To study handling of sudden load change and

temporary sensor failure

This case investigates the robustness of the proposed estimator under load change

conditions. This case studies the proposed estimator considering a 10% load change at

8 second in bus-3 and 10% power generation change at 16 second in bus-2 a false data

packets of null matrix is sent to the estimator as sensor failure occurred in PMU at bus-2.

Figure 6.4 illustrates the true and estimated plot of voltage and phase angle at bus-9 of a

14-bus power system. The proposed estimator demonstrates satisfactory performance by

accurately estimating the true states following an 8 second 10% load change at bus-3 and

a 16 second 10% power generation change at bus-2. In addition, the proposed estimator

takes into account the predicted mean and covariance in the event of sensor failure

between 20-24 seconds, whereas other existing PSSEs tend to diverge under similar

conditions. This feature of the proposed estimator ensures its robustness and reliability

in handling sensor failures, ultimately improving the accuracy and reliability of the state

estimation. Additionally, error performances of the PSSEs are also presented in tabulated
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format as shown in Table 5.3. It clearly validates that the proposed estimator performance

bettered during load change and sensor failure. This figure demonstrates the successful

estimation capability of the proposed robust forecasting-aided CQKF-based PSSE, even

in adverse effects. Moreover, it is evident from Figure 5.4 that the performance indices

of the existing PSSEs are inferior to those of the proposed PSSE.
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(b) Phase angle δ (radian)

Figure 5.4: True and estimate plots at bus-9 of 14-bus under load changing and sensor
failure condition.

Table 5.3: Case-2: Performance indices (in 10−3) of all PSSEs obtained by averaging the voltage
magnitude (V) and phase angle δ across all buses for 14-bus power system.

PSSE Average of MSE Average of MAE MAXE

V δ V δ V δ

CQKF 1.6 1.3 3.6 6 6.3 3.1
CKF 3 1.6 11 13.9 13 5
UKF 3.2 1.6 12 14.1 14.5 6
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5.5 Discussion and conclusion
This chapter proposed a CQKF-based PSSE algorithm and its design methodology for

the power system dynamic state estimation problem. The main advantage of the proposed

technique over the conventional approach is the increased accuracy with comparatively

few calculations to achieve improved estimation performance. The improvements in

accuracy were made possible by utilizing the spherical cubature and the Gauss-Laguerre

quadrature rule to approximate the nonlinear intractable integrals.

The proposed PSSE was validated using benchmark power system networks,

including IEEE 14-, 30-, and 118-bus systems. Simulation-based studies were conducted

on these systems, and the results showed significant improvements in estimation

performance when using the modified CQKF-based PSSE compared to CKF- and

UKF-based PSSEs. Specifically, in terms of mean absolute error deviation, the 118-bus

study demonstrated improvements of 1.14% and 1.24%, while the 30-bus study

showed improvements of 2.17% and 4.34%, respectively. The 14-bus study showed

improvements of 0.56% and 0.81% with respect to CKF- and UKF-based PSSEs,

respectively.

Generally, voltage at any point in the power system should not deviate more than

5% above or below the nominal voltage level. That means improvements are significant

in estimation performance for sensitive power networks, specifically with high voltage

magnitudes (measured in KV or MV). This can enhance online monitoring of voltage

and load angle and help to improve energy management strategy and grid stability with

reduced risk. This work implements a second order Gauss-Laguerre quadrature rule

for numerical approximation of the intractable integrals in its Gaussian PDF. Applying

higher order quadrature rules improves estimation accuracy at the cost of an increased

computational storage requirement. However, with the advent of intelligent high storage

devices, this storage may not be a major concern. However, a good trade-off can be made

between estimation accuracy and computational storage capacity for selecting the order

of Gauss-Laguerre quadrature rule. In addition, the modified CQKF-based PSSE also

characterizes a CKF-based PSSE when a Gauss-Laguerre quadrature rule is used.
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In light of numerous real-life irregularities, including unknown state dynamics,

outliers in Gaussian noises, temporary sensor failure, and unknown noise statistical

information, the GF-based PSSE requires an extension to handle such abnormalities

effectively.
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Chapter 6

Self-Adaptive Forecasting-Aided

Gaussian Filtering-based Power System

State Estimation under non-Gaussian

Outliers

As discussed earlier in Chapter 1, the growing usage of electric vehicles, traction loads,

and distributed energy resources (DERs), such as solar, wind, and others, introduce

harmonics and frequent load fluctuations into the grid, making them highly unpredictable

and fault sensitive, which needs fast online monitoring. An accurate PSSE is critical

for developing effective energy management strategies and ensuring stable, secure,

and reliable power delivery [134]. In this chapter, we propose a more robust and

computationally efficient extension of the previously existing Gaussian filter (GF)-based

PSSE approach, building upon the work presented in Chapter 5. Our proposed approach

aims to address the practical challenges discussed in Chapter 2.2 that arise in non-ideal

scenarios of complex power system networks and develop a more effective estimator, as

discussed in Chapter 5.

Recalling Chapter 2, the state-of-the-art PSSEs implement Gaussian filters, such as

EKF [46], UKF[163], and CKF [48], to recursively estimate bus voltages. The CKF-based

PSSE outperforms the EKF- and UKF-based PSSEs both in terms of accuracy, stability,
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and computational cost. In the literature review of filtering methods, several traditional

approaches, including GHF [30], SQKF [159] have been identified. However, we avoided

their implementation in the design of PSSE due to their extensively high computational

cost, making real-time monitoring for large buses difficult.

The Gaussian filtering-based traditional PSSE methods suffer from several drawbacks,

such as: i) in the prediction step, they essentially require mathematical models of state

dynamics, which is practically unknown in dynamic power networks; ii) they require

exact statistical information on noises, again unknown in real-life PSSE problems,

and iii) the process and measurements often consist of non-Gaussian outliers due to

randomly disturbed power generation-demand scenarios in a process model, and temporal

instrument failures due to various limitations of communication links, and uncertainties

in intelligent electronic devices.

The filtering and estimation literature specifically witnesses a few contributions [46],

[164], [117], [160], [165], [137], and [139]. To deal with the above limitations, Holt’s

double exponential smoothing introduced for state prediction [46], [160], introduced

a forgetting-factor based adaptive noise filtering approach [164], [139]. Maximum

correntropy (MC) and minimum entropy (ME)-based design criteria are used to address

non-Gaussian outliers, respectively, in [117], [125], and [140]. However, existing

methods only address one limitation of traditional PSSE methods, while the simultaneous

existence of all limitations can not be denied. This chapter introduces a robust

self-adaptive maximum correntropy forecasting-aided Gaussian filter (FSMCGF)-based

PSSE technique to simultaneously address the drawbacks of typical existing PSSE

methods. Through the following notes, we summarize the contributions of the proposed

FSMCGF-based PSSE method.

• A novel robust self-adaptive maximum correntropy forecasting-aided cubature

Kalman filter (FSMCGF)-based PSSE method is proposed for real-time monitoring

of power system states (voltage and phase angle) under noisy environments.

• State dynamics do not require mathematical models that are practically unknown.
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• This chapter adaptively estimates process and measurement noise covariance by

innovation- and residual-based forgetting factor method of Sage-Husa estimator.

• Numerous simulation shows the performance of FSMCGF depends on the Kernel’s

bandwidth, e.g., A smaller Kernel’s bandwidth considerably improves outlier

rejections and vice-versa. An adaptive approach is implemented by auto-adjusting

the bandwidth of the Kernel using the proposed FSMCGF-based PSSE method.

• In addition, it detects large faulty conditions sensor outliers as bad-data conditions

and eliminates them while accurately estimating the power system states.

• This chapter further includes the identifiability of noise statistics and Q/R ratio,

bad data conditions, random load fluctuation, and non-Gaussian noises in process

and measurement model. We validate our findings through extensive simulations

using different case scenarios.

• Under the proposed method, any existing Gaussian filters, such as the EKF, UKF,

and CKF, can be formulated according to the practitioner’s convenience.

• The consistency of the proposed FSMCGF-based PSSE is computed along with all

other existing PSSEs.

This chapter implements a relatively stable, more accurate, and computationally efficient

CKF-based formulation of the proposed FSMCGF-based PSSE method and validated on

American electric power systems (in the Midwest) popularly known as IEEE 14-, 30-,

and 118-bus power system networks.

6.1 Problem formulation
For a single set of data packets from sensors, the standard discrete form of nonlinear

dynamic state space representation of real-time power flow model can be expressed

using the Eqs. (1.1) and (1.2) [48], xk ∈ Rn and yk ∈ Rm denote state and augmented

measurement, respectively with k ∈ {1,2, · · · ,N}. Moreover, fk−1 : xk−1 → xk and

hk : xk → yk represent standard dynamical operators. Finally, Qk ∈ Rn and Vk ∈ Rm

represent the process and sensor noises, respectively, approximated as zero-mean
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Gaussian with covariances Qk and Rk, respectively. For a detailed discussion on dynamic

power system model, readers may please refer to Chapter 5.2.

The process noise Qk compensates for the modeling inaccuracy of the state dynamics

due to random fluctuations around the nominal operating conditions. Additionally,

the measurement noise Vk compensates for the sensor errors caused by time skewness

and transmission interference in the RTUs and the data packet errors in the PMUs,

respectively.

To this end, let us take the following notes:

• Unknown state dynamics should not be assumed constant to maintain accuracy in

PSSE and reflect the transient behavioral changes in the power system.

• Traditional PSSE methods assume process and measurement noise covariance to be

known and time-independent,potentially harming accuracy.

• Non-Gaussian outliers should not be ignored in process and measurements to

maintain accuracy in PSSE.

The complex and dynamic power system can not be modeled as a certain state transition

function fk−1. Hence, the proposed filter implements a forecasting tool to predict the

dynamic states before reaching the actual measurement. In this regard, We implement

a simplified forecasting method based on an auto-regressive integrated moving average

(ARIMA) model named Holt’s double exponential smoothing technique for tracking

the dynamics of the process model in a real-time manner [160]. The proposed method

is designed under the MC criterion for handling the non-Gaussian outliers in Gaussian

distributed noises. This design criterion uses a Kernel window between the estimated and

predicted values to characterize the nature of the non-Gaussian outliers. The proposed

method considers a time-dependent Kernel width to efficiently address the outliers’

time-varying nature. Moreover, the suggested filter employs the computationally efficient

Sage-Husa adaptive (SGA) technique, which is inspired by the Sage-Husa adaptive

Kalman filter (SHAKF) [139], to dynamically identify the noise statistics in each

recursive step. Additionally, a robust algorithm is devised to mitigate temporal faults in
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sensors without compromising the accuracy of the estimation process. This algorithm is

commonly referred to as a bad-data identifier and can effectively detect sudden false data

injected via sensors.

6.2 FSMCGF-Based PSSE method

The objective of the proposed FSMCGF-based PSSE is to estimate the unknown state

xk (bus voltages) recursively as it receives noisy measurements yk from RTU and PMU

sensors while also addressing the limitations of existing PSSEs.

We design the proposed FSMCGF-based PSSE method under the Gaussian filtering

structure [21], involving prediction and update steps. The Gaussian filtering approximates

the prior state, prior measurement, and posterior state as ℵ(xk|k−1; x̂k|k−1,Pk|k−1),

ℵ(yk|k−1; ŷk|k−1,P
yy
k|k−1) and ℵ(xk|k; x̂k|k,Pk|k), where ℵ denotes a Gaussian distribution

as discussed earlier in Chapter 1 and 5.3.

The computation of estimates and covariances involves multivariate Gaussian

weighted intractable integrals, which are numerically approximated as a weighted sum of

deterministically computed sample points. The sample points and weights, denoted as ξ

and W, respectively, are determined offline. Every Gaussian filter uses different sets of ξ

and W. For example, the CKF uses the third-degree spherical cubature rule of numerical

integration, with Ns = 2n sample points and weights. It obtains the jth sample point ξ j as
√

n[In − In], while the jth weight is given as W j = 1/2n,∀ j ∈ {1,2, · · · ,Ns}.

As the proposed FSMCGF-based PSSE method is designed for a general Gaussian

filter, we discuss its design aspects for general sample points and weights, i.e., ξ and

W. In the following discussions, we introduce the design aspects of the proposed

FSMCGF-based PSSE method in prediction and update steps.

6.2.1 Prediction
In Gaussian filtering-based PSSEs, the state prediction step aims to determine

prediction parameters x̂k|k−1 and Pk|k−1 as discussed in Chapter 5.3, by following the

Eqs. (5.5) to (5.9), and subsequently using algorithm given in Appendix C.
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6.2.2 Update

The objective of this step is to compute the desired posterior estimate x̂k|k in GF-based

PSSE method, using deterministic cubature points and weights, to estimate unknown bus

voltages with occasional non-Gaussian noises. This step computes the measurement

estimate ŷk|k−1, its covariance Pyy
k|k−1, and state-measurement cross-covariance Pxy

k|k−1

[48]. 



ŷk|k−1 =
Ns

∑
i=1

Wiξ
γ

i,k|k−1,

Pyy
k|k−1 =

Ns

∑
i=1

Wi(ξ
γ

i,k|k−1 − ŷk|k−1)(ξ
γ

i,k|k−1 − ŷk|k−1)
T +Rk,

Pxy
k|k−1 = ∑

i
Wi(ξi,k|k−1 − x̂k|k−1)(ξ

γ

i,k|k−1 − ŷk|k−1)
T ,

with ξ
γ

i,k|k−1 = γk(Sk|k−1ξi + x̂k|k−1) and ξi,k|k−1 = Sk|k−1ξi + x̂k|k−1. The Proposed

estimator uses a nonlinear kernel to suppress outliers/noise. Unlike the traditional

GF-based PSSE, which relies on vulnerable Euclidean distance in mean square error and

are prone to large outliers from demand changes, power fluctuations, instrument failures,

and communication limitations.

As discussed previously, the real-life PSSE problems witness large non-Gaussian

outliers. However, the traditional PSSEs underperform for non-Gaussian outliers. The

proposed FSMCGF-based PSSE is designed under MC criterion to overcome this

problem [115]. A definition for the correntropy is provided below:

Definition 1 Let us consider two random variables, U, and V. Then, the correntropy CU,V

between U and V is the measure of similarity between the two random variables, which is

mathematically given as [35], [166]

CU,V = E [KU,V (u,v)] =
∫
KU,VdFU,V (u,v) , (6.1)

where E[.] denotes the expectation. Moreover, KU,V denotes nonlinear mapping of U and

V into a Kernel space. We consider the usually chosen Gaussian kernel, giving
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KU,V =
∞

∑
n=0

(−1)n

2nσ2nn
E
[
(U−V)2n] . (6.2)

where e(i) = u(i)− v(i) and σ > 0 denotes kernel width. As the joint probability of U

and V is mostly unknown and only a limited number of ls samples {u(i),v(i)}ls
i=1 of U and

V are available, the correntropy is computed as Parzen Kernel estimator. As discussed

earlier in Eq. (3.13), the cost function of the nonlinear estimator can be formulated as

Jk = ĈU,V =
1
ls

ls

∑
i=1

Gσ (ek(i)) . (6.3)

In the filter design, we consider the maximization of correntropy between the true state

xk and estimated state x̂k|k i.e., maximization of cost function Jk. Hence, the best estimate

x̂k|k is a solution of Jk|max.

Under the MC-based design criterion, the best estimate x̂k|k must ensure the maximum

correntropy between the true state xk and estimated state x̂k|k. In this criterion, x̂k|k is

obtained by solving a regression model that takes into account the augmented states, given

as [166][138]




x̂k|k−1

yk


=




xk

γ(xk)


+ ek. (6.4)

Before proceeding further, we define two error quantities, εx
k|k−1 and εx

k|k, as

ε
x
k|k−1 = xk − x̂k|k−1,

ε
x
k|k = xk − x̂k|k,

(6.5)

To this end, objective is to compute the x̂k|k from the regression model in Eq. (6.4).

However, nonlinear function γ(xk) in regression model may result in a non-trivial

solution. To improve its numerical stability, the measurement model is statistically
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linearized as [167]

yk = ŷk|k−1 +Γkε
x
k|k−1 +Sk +Vk, (6.6)

where Γk = (P−1
k|k−1Pxy

k|k−1)
T is measurement slope matrix, and Sk stands for statistical

linearization error. Substituting linearized yk in Eq. (6.4), and simplified to compute

augmented error [117]

ek =




x̂k|k−1

ε
y
k|k−1 +Γkx̂k|k−1


−



In

Γk


xk = Uk −Vk, (6.7)

where measurement innovation ε
y
k|k−1 and residual ε

y
k|k errors are are

ε
y
k|k−1 = yk − ŷk|k−1 = Γkε

x
k|k−1 +Vk,

ε
y
k|k = yk − ŷk|k = Γkε

x
k|k +Vk,

(6.8)

with covariance as

E
[
ekeT

k
]
=




Sp
k|k−1(S

p
k|k−1)

T 0

0 Sr
k(S

r
k)

T


= Sk|k−1(Sk|k−1)

T . (6.9)

and E [·] denotes the expectation operator with





Sk|k−1 = chol
(
E
[
ekeT

k
])
,

Sp
k|k−1 = chol

(
Pk|k−1

)
,

Sr
k = chol

(
E
[
(Lk +Vk)(Lk +Vk)

T
])

,

= chol
(

E
[
Pyy

k|k−1 −ΓkPk|k−1Γ
T
k

])
,

(6.10)
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normalizing Eq. (6.7) by multiplying S−1
k|k−1 on both sides, gives

ek =S−1
k|k−1




x̂k|k−1

ε
y
k|k−1 +Γkx̂k|k−1


−S−1

k|k−1



I

Γk


xk=Dk −Wkxk. (6.11)

where Dk, Wk, and ek = S−1
k|k−1ek are (n+m)-dimensional arrays.

The value of xk that maximizes Jk is the desired posterior estimate of x at tk, i.e.,

xk = argmax
xk

Jk. (6.12)

Therefore, x̂k|k is a solution of

dJk

dxk
= 0. (6.13)

Eq. (6.13) computes the solution of cost function at tk as [35]

xk = g(xk) =

(
ls

∑
l=1

Gσ (ek(l))(Wk(l))TWk(l)

)−1

×
(

ls

∑
l=1

Gσ (ek(l))(Wk(l))TDk(l)

)
,

(6.14)

where Dk(l), Wk(l), and ek(l) represent lth element of Dk and Wk, and ek, respectively,

∀l ∈ {1,2, · · · ,n+m}. Please note that g(xk) is an exponential function of xk due to the

Gaussian kernel Gσ (ek(l)). Therefore, Eq. (6.14) fails to offer a closed-form solution. A

fixed-point iteration based numerical approximation method [166]

xt
k =

(
WT

k ϑkWk
)−1 (

WT
k ϑkDk

)
, (6.15)

where ϑk = diag
(
ϑx

k ϑy
k

)
, with ϑx

k = diag
(
ek(1), · · · ,ek(n)

)
, and ϑy

k = diag
(
ek(n +

1), · · · , ek(n+m)
)
. Expanding Eq. (6.15), a detailed expression of xt

k is provided in

Appendix A. As a result, as discussed in [35], the estimate and covariance of xk in every

iteration at tk time instant can be obtained as
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x̂t
k|k = x̂k|k−1 +Kt−1

k (yk − ŷk|k−1),

Pt
k|k =

(
In −Kt−1

k Γk

)
Pk|k−1

(
In −Kt−1

k Γk

)T
+Kt−1

k Rk

(
Kt−1

k

)T
,

(6.16)

where superscript t represents tth fixed-point iteration for the tk time instant. Moreover,

other parameters used in Eq. (6.16) can be obtained as



Kt−1
k = Pt−1

k|k−1Γ
T
k

(
Pyyt−1

k|k−1

)−1
,

Pyyt−1

k|k−1 = ΓkPt−1
k|k−1Γ

T
k +Rt−1

k ,

Pt−1
k|k−1 = Sp

k|k−1(ϑ
x
k)

−1(Sp
k|k−1)

T ,

Rt−1
k = Sr

k(ϑ
y
k)

−1(Sr
k)

T .

(6.17)

As a stopping criterion for the iterative process, we compute a relative error quantity

Err is smaller than the predefined tolerance level χ in every recursion,

Err =
||x̂t

k|k − x̂t−1
k|k ||

||x̂t−1
k|k ||

. (6.18)

where ||.|| denotes a second norm. Consequently, the iterative process stopped when Err

became smaller than a predefined tolerance level χ . At the end of iterative process, the

optimal solutions are computed as





x̂k|k = x̂t
k|k,

Pk|k = Pt
k|k.

(6.19)

Furthermore, we calculate the process error terms εx
k|k and εx

k|k−1, as well as the

measurement error terms ε
y
k|k and ε

y
k|k−1, to be utilized at a later time.

To this point, the proposed estimator optimizes xk in a time-independent Kernel

space, with σ prioritizing second-order moments over higher order moments (as shown

in Eq. (6.2)). The optimality of the MC criterion is dependent on the value of σ ,

which must be adapted to handle varying outlier conditions. The existing PSSEs assume
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Figure 6.1: Modified MC-based PSSE algorithm

the noise covariances Qk and Rk, which in real-time power systems may be unknown

and time-dependent. Thus, the proposed estimator’s robust and adaptive features are

presented in the following sections.
Remark 6.2.1 Large sensor outliers due to system failure may produce singular ϑk

matrix, which in turn may fail estimation algorithm. So a robust approach is given below:

• We compared |øk| = |εy
k|k−1

(
ΓkPk|k−1ΓT

k +Rk
)−1

ε
yT
k|k−1| with positive threshold

value øth and included a precondition for state update to be followed.

• If |øk|> øth, the measurement data is considered to have temporal bad data. Hence

state update is skipped, i.e xk|k = x̂k|k−1, and Pk = Pk|k−1.

The proposed estimator adaptively updates σ t
k through tth fixed-point iteration at

tk time-step in accordance with dynamically varying Gaussian Kernel, its innovation

covariance, and covariance with measurement residual at time tk.

σ
t
k =





σ
t
k−1, if tr

(
Pyyt

k|k−1

)
≤ tr

(
ε

y
k|kε

yT

k|k

)

σ
t
k−1

tr
(

Pyyt

k|k−1

)

tr
(

ε
y
k|kε

yT

k|k

) , otherwise
(6.20)
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where ε
y
k|k denotes residual error, Pyyt

k|k−1 denote innovation covariance at tth fixed-point

iteration and tr(.) denotes the trace. Please note that σ t
k → ∞ leads to ϑk → I. Thus

FSMCGF behaves as a CKF method. Conversely, σ t
k → 0 leads to ϑk → 0, resulting in

filter divergence.

The proposed PSSE adaptively estimates the unknown statistical noise information.

The nonlinear filters implemented in [168],[169] proposes Bayesian and maximum

likelihood methods, which are reliable. However, these filtering solutions are

computationally costly, and assume time-invariant dynamic error, which is unrealistic

for online monitoring. Covariance matching methods, such as SHAKF [137],[138],

estimate noise statistics using innovation or residual sequences and then employ a

matching technique. This work proposes a computationally efficient self-adaptive

covariance matching method for the MCGF-based PSSE. Based on innovation and

residual measurement error, the estimated Rk is calculated based on measurement

covariance as

Rk = ε
y
k|k−1ε

yT

k|k−1 −ΓkPk|k−1Γ
T
k ,

Rk = ε
y
k|kε

yT

k|k +ΓkPk|kΓ
T
k .

(6.21)

Readers may follow [137] and Appexndix D.1 for a detailed derivation. To ensure positive

definiteness Rk at time-step k, is computed using second expression of Eq. (6.21), and

and thus, we will use the same expression. at time-step tk Here-onwards, this chapter

represents Q̂k, and R̂k to represent adaptive noise covariance. similarly, adaptive process

noise covariance [139] Q̂k can be obtained as

Q̂k = E
[
VkV

T
k
]
= KkE

[
ε

y
k|kε

yT

k|k

]
KT

k = Kkε
y
k|kε

yT

k|kKT
k , (6.22)

where ε
y
k|k and ε

y
k|k−1 are measurement errors. Please note that a wrong selection of Rk is

reflected in measurement residual error. Therefore, we define a weighting parameter µ .

Thus, we obtain the final error value as a weighted summation of R̂k and measurement

error.

A weight is given to process and measurement noise based on the innovation in
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measurement sequence and standard deviation in current measurement covariance.

R̂k = µkR̂k−1 +(1−µk)
(

ε
y
k−1|k−1ε

yT

k−1|k−1 +ΓkPk−1|k−1Γ
T
k

)
, (6.23)

where

µk =





1, if øar
th ≥ 1

øar
th , otherwise

(6.24)

with øar
th =

tr
(

Pyyt

k|k−1

)

tr
(

ε
y
k−1|k−1ε

yT
k−1|k−1

) . Observing state model variation and innovation sequence,

complex PSSE method needs to be online tracking with self-adaptive nature of noise

covariance. The innovation sequence given in Eq. (6.24) is a judging criterion for

evaluating the change of measurement noise dynamics.

Q̂k =





Q̂k, if 0.98 ≤ R̂k/Pyyt

k|k−1 ≤ 1

µkQ̂k−1 +(1−µk)Kkε
y
k|kε

y
k|kKT

k , otherwise
(6.25)

The steps to be implemented for this iterative method are shown in Algorithm-3.

6.3 Simulation and result

In this section, we validate the improved accuracy of the proposed FSMCGF-based

PSSE method compared to the AGF- and GF-based PSSE techniques for 14-, 30-, and

118-bus networks from the American electric power system (in the Midwest). 30 PMU

data packets were received between adjacent RTU measurements in the interval of two

seconds. Readers may follow Table 5.1 for information on buses with PMU locations

(giving voltage and current phasors), power injection, and power flow for 14-, 30-, and

118-bus power system networks [47][162].

True data generation: The power system state dynamic data are same as Section

5.4. The power system state dynamics were modeled as a random walk due to the low

likelihood of significant changes between two successive PMU scans. The measurement

model used was adopted from [47], [162], and the Gaussian component of process noise
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Algorithm 3 Pseudo code for computing x̂k|k and Pk|k.

Input: x̂k−1|k−1, x̂k|k−1, Pk|k−1, n, m, χ , and øth
Output: x̂k|k and Pk|k

Initialization: x̂k|k(1) = x̂k|k−1, Err = 1000 (any large value), and t = 1
1: ε

y
k|k−1, ε

y
k−1|k−1, εx

k|k−1 and εx
k|k using Eqs. (6.5) and (6.8)

2: |øk|= |εy
k|k−1

(
ΓkPk|k−1ΓT

k + R̂k
)−1

ε
yT
k|k−1|

3: if |øk|> øth then
4: xk = x̂k|k−1 and Pk = Pk|k−1
5: else
6: while Err > χ do
7: Compute Sp

k|k−1, SR
k , and Sk|k−1 from Eq. (6.10),

8: find ek using Eq. (6.11),
9: ϑk = diag(ek(1), · · · , ek(n+m)),

10: compute x̂t
k|k and Pt

k|k using Eqs. (6.16) and (6.17),
11: update σ t

k using Eq. (6.20),
12: compute Err using (6.18),
13: t = t +1
14: end while
15: x̂k|k, and Pk|k using (6.19),
16: update Q̂k and R̂k following Eqs. (6.23)- (6.25),
17: return x̂k|k and Pk|k.
18: end if

covariance was considered as Q1,k = 9∗10−6In×n [134]. Here, the Gaussian component

of measurement noises with the following standard deviation values was considered [161]:

From RTUs: slack voltage δ r
v = 0.001, power injections δ r

pi = 0.02, and δ r
qi = 0.02,

power flows between buses δ r
p f = 0.02, and δ r

p f = 0.02, and from PMUs: voltages

(both real and imaginary) δ
p
v = 0.001, and currents between connected buses (both real

and imaginary)δ p
i = 0.001. With the given values standard deviation of the augmented

measurement model is given as

δ = diag([δ r
v δ

r
pi δ

r
qi δ

r
p f δ

r
q f δ

p
v δ

p
i ]). (6.26)

Then, we take the Gaussian noise component as Vj,k =N(0, R j,k)∀ j ∈{1,2}, with R1,k =

δ 2.

Following our problem formulation, in addition to the above discussed non-Gaussian

noise, we add a non-Gaussian outlier V2,k. Considering that outlier has an additive
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effect, the net randomness in the data becomes Vk = κgV1,k + (1 − κg)V2,k, which

becomes non-Gaussian against the Gaussian assumption of the noise. Interestingly, even

a Gaussian V2,k makes the net randomness Vk = κgV1,k + (1 − κg)V2,k non-Gaussian.

Thus, the purpose of non-Gaussian outlier is served even if we consider V2,k as Gaussian.

To incorporate non-Gaussian noises, this chapter consider weighted sum of Gaussian

PDFs fVk =
n
∑

i=1
κgi fVi,k , where

n
∑

i=1
κgi = 1, n denotes number of components and fVk ,

represents a weighted summation of Gaussian PDFs ∀i. Please note that weighted

summation of several Gaussian PDFs gives a non-Gaussian PDF. A similar modeling

approach is followed for the process noise fQk =
n
∑

i=1
κqi fQi,k with

n
∑

i=1
κqi = 1.

In order to evaluate the adaptability of the proposed estimator, correction factors

γQ = 10 and γR = 100 are multiplied with the true noise covariances Q1,k and R1,k,

respectively, to account for the wrongly assumed noise covariances Q̂1,k and R̂1,k. This

approach is employed to validate the performance of the proposed estimator under

adaptive conditions. Unless otherwise specified, the aforementioned parameters will

remain unchanged.

Performance indices: 100 Monte-Carlo (Mc) simulations were conducted to test the

estimators’ performances under uncertain states and measurements of the power system.

Considering the complexity of the power system dynamic, we study the behavior of the

buses transiently. This simulation study compares the proposed estimator with existing

GF and AGF methods using performance metrics like RMSE, MAE, and MAXE as

mentioned in Chapter 1.10.4. MSE and MAE measure overall square error and absolute

deviation between true and estimated states. MAXE computes the maximum deviation

between true and estimated states throughout Mc runs.

We conducted various simulated environments for performance validation, which

are discussed through 4 different case studies. Case-1 considered nominal base voltage,

Case-2 and 3 used x0 = 1∠0◦ as true initial states. Case-1 and 2 discussed performance

under different irregularities, Case-3 studies the performance of the proposed estimator

for handling irregularities simultaneously under loading conditions. Finally, Case-4

analyzes the consistence of the proposed PSSE with other existing PSSEs.
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Case-1: Only measurement with non-Gaussian outliers

In this case, we consider that only measurement consists of non-Gaussian outliers

with fVk ∼ 0.9 × fV1,k + 0.1 × fV2,k where fV1,k and fV2,k are pdfs of N(0, R1,k)

and N(0, R2,k), respectively with R2,k = 104δ 2. Thus, as discussed above, the net

randomness in the measurement (including measurement noise and outliers) will be

considered as summation of two non-Gaussian. We consider the model and noise

parameters same as the above discussion, while we assign the initial estimate and

covariance as x̂0|0 = x0 and P0|0 = 10−6In×n, respectively. Sample true and estimation

plots obtained using the proposed FSMCGF-based PSSE technique for voltage magnitude

and phase angle at bus 9 (Vk,9 and δk,9) are shown in Fig. 6.2. We observed other bus

voltages are also successfully estimated. The close match between true and estimated

plots shows a successful PSSE for the proposed FSMCGF-based PSSE technique. We

analyze the errors for more complex scenarios in the coming subsections.
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Figure 6.2: Case-1: True and estimate plots at bus-9 (subscripts 14, 30, and 118 represent
the 14-, 30-, and 118-bus networks, respectively).

Case-2: Gaussian process and measurement noise with random outliers
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In this case, process and measurement noise have been non-Gaussian. The

measurement noise distribution remains the same as in case-1. Here, the power network

is disrupted with hunting condition, represented by non-Gaussian outliers modeled as

fVk ∼ 0.9 × fV1,k + 0.1 × fV2,k where fV1,k and fV2,k are pdfs of N(0, R1,k) and

N(0, R2,k), respectively with R2,k = 104δ 2.

fQk ∼ 0.9× fQ1,k +0.1× fQ2,kN(0, Q2,k), (6.27)

where fQ1,k and fQ2,k are pdfs of N(0, Q1,k) and N(0, Q2,k), respectively with Q2,k =

103Q1,k.

In this test case, the proposed FSMCGF-based PSSE method was compared with

the AGF- and GF-based PSSE methods using different networks. Multiple performance

metrics, such as RMSE, MAE, and MAXE, were computed. The average MAE at each

bus for voltage and phase angle are plotted in Fig. 6.3, and it is observed that the proposed

FSMCGF method (shown in black and magenta) outperforms the GF and AGF methods

in terms of MAE for all tested environments. The minimum MAE values are achieved

for voltage (in black color) and phase angles (in pink color) for 14-, 30-, and 118-bus

networks, as shown in Fig. 6.3(a) to 6.3(c).

Case-3: Performance validation with different non-Gaussian measurement values and

Q̂k and R̂k

This case includes a performance comparison of the proposed FSMCGF-based PSSE

method with existing AGF- and GF-based PSSE under a wide range of scenarios.

• Performance metrics when both process and measurement noises include random

outliers by varying process and measurement noise Gaussian co-efficients κq, and

κr, respectively.

• Performance metrics for different random outliers in measurement noise by varying

measurement noise Gaussian co-efficient κr.

• Performance comparison for selecting Q̂k and R̂k values different from respective

true values Qk and Rk, respectively.
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Figure 6.3: Case-2: MAE (in 10−3) for voltage magnitude (V ) and phase angle (δ ) of all
buses for the proposed ( FSMCGF) and existing PSSE methods: (a) 14-bus, (b) 30-bus,
and (c) 118-bus.
The proposed FSMCGF-base PSSE method voltage magnitude (V ) shown in black color and
phase angle (δ ) shown in magenta color.
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This case has the same estimation parameters as Case-2 if not stated otherwise. A

thorough investigation was carried out for 14-, 30-, and 118-bus power system networks

to evaluate estimation accuracy in terms of average of MSE, average of MAE, and

MAXE obtained by averaging the per unit voltage and phase angle δ across all buses.

Table 6.1 shows average of MSE, MAE and MAXE for the proposed FSMCGF-based is

minimum for all tested environments, such as 14-, 30-, and 118-bus, respectively, with a

slightly higher computational time.

A high value Gaussian co-efficient κg in a Gaussian mixture model makes the

Gaussian mixture more Gaussian and less heavy-tailed. A performance comparison

test was carried out for 14-, 30-, and 118-bus power system networks to validate the

estimation superiority of the proposed filter. κg with a step variation of 0.2 with an

initial value of 0.2 is considered for tabulation. Table 6.2 indicates that the increase in

κg, i.e., less heavy-tailed or more Gaussian value, reduces the average of MAEs for all

PSSE estimators. The Value of average of MAEs reduces for all of the mentioned PSSE

estimators, and the proposed estimator was found to be adaptive to Kernel bandwidth.

This is due to increase in κg value, which assigns less weight to the outlier distribution.

By doing so, measurement noise becomes less heavy-tailed, or, alternately, more

Gaussian.

The proposed FSMCGF-based PSSE estimator considers adaptive Kernel bandwidth,

Qk, and Rk throughout its operation. To validate this, mean of error deviations are

computed by carrying out PSSE in 14-, 30-, and 118-bus environments, respectively.

Table 6.3 highlights two points:

i) Despite any mis-assumption about sensitive process and measurement noise

covariance, the proposed FSMCGF-based PSSE MAEs are minimal among other

existing PSSEs.

ii) PSSE methods perform optimally when Q̂k and R̂k are equal to their true values or

Qk/Rk = 1.

ii) The robust nature of the proposed FSMCGF-based PSSE enables it to outperform
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other existing AGF- and GF-based PSSE methods when Qk/Rk is equal to 1, as it

can handle non-Gaussian outliers effectively.

Table 6.1: Case-3: Average of error performance (in 10−4) and computational time (in
ms) comparison for voltage (V ) and phase angle (δ ) of all buses.

Network PSSE method Average of MSE Average of MAE MAXE Execution time (ms)

V δ V δ V δ

14-bus FSMCGF 0.38 0.32 40 30 15 14 6.2
AGF 3.96 2.93 130 120 550 51 6
GF 9.8 9.5 227 210 92 94 5

30-bus FSMCGF 4 3 100 100 57 50 39
AGF 17 20 290 310 110 125 38
GF 24 28 370 380 150 150 34

118-bus FSMCGF 2 2 100 100 71 75 82
AGF 25 27 370 380 260 270 80
GF 22 24 350 370 250 260 74

Table 6.2: Case-3: Comparison of average of MAEs for different PSSEs (in 10−3) with
Gaussian noise co-efficient κg for the states.

Network Filter κg = 0.2 κg = 0.4 κg = 0.6 κg = 0.8 κg = 1

V δ V δ V δ V δ V δ

14-bus FSMCGF 10 9 9 8 7 6 4.5 4.4 1 2
AGF 25 26 23 20 10 20 16 16 04 5
GF 38 42 37 41 35 38 29 31 9.5 10.4

30-bus FSMCGF 23 19 21 18 18 16 15 14 6 5
AGF 32 27 30 26 28 24 27 23 10 10
GF 41 36 40 34 37 31 31 26 12 13

118-bus FSMCGF 34 36 32 33 29 30 23 23 10 10
AGF 40 042 39 041 39 41 38 40 37 38
GF 33 35 41 43 41 42 40 41 35 37

Case-4: Concurrent effect of sudden load change, a sudden increase in power

generation with measurement noise having outliers as a mixture of Gaussian and

Laplacian noise and bad data

This case tests and validates the performance superiority of the proposed

FSMCGF-based PSSE under extremely bad power system monitoring situation,

such as the concurrent effect of the following condition:
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Table 6.3: Case-3: Comparison of average of MAEs for different PSSEs (in 10−3) with
noise mis-assumption factor γQ and γR for the V , and δ states.

Bus Filter γQ = 0.01, γR = 100 γQ = 1, γR = 1 γQ = 1, γR = 10 γQ = 10, γR = 10 γQ = 10, γR = 100

V δ V δ V δ V δ V δ

14 FSMCGF 10 12 4 4 5 5 4 4 4 3
AGF 10 12 13 12 10 11 10 12 13 13
GF 21 12 13 12 22 24 13 12 23 24

30 FSMCGF 12 10 3 3 5 4 3 3 7 5
AGF 13 11 13 9 13 11 11 9 17 16
GF 23 15 13 9 16 15 13 9 19 18

118 FSMCGF 12 13 6 6 8 8 6 6 8 8
AGF 13 14 12 13 12 13 12 13 11 12
GF 22 23 12 13 19 17 12 13 20 22

• A sudden 10% increase load occur at bus-3 after 8 second and input power

generation at bus-2 is increased by 10% after 16 seconds. Consequently, the

dynamics of the power network change considerably.

• After 20 seconds, the PMU located at the 13th bus sends falsely injected

measurement data to control center, which is inaccurate, indicating a value of 1 per

unit and a phase angle of 0 degrees.

• Unlike Case-1 and 2, here, power system measurement noises are disrupted by

random outliers due to both Gaussian distributed and Laplace distributed noise.

fVk ∼ 0.8 fV1,kN(0, R1,k)+0.15 fV2,kN(0, R2,k)+0.05 fV3,k , (6.28)

where fV1,k , fV2,k , and fV3,k are pdfs of N(0, R1,k), N(0, R2,k), and L(0, 0.05),

respectively.

Please note that N and L denote Gaussian distribution, and Laplace distribution,

respectively. A true and estimation plot for the above testing condition is shown in

Fig. 6.4. This figure shows that the proposed FSMCGF-based PSSE was successfully

estimated during the concurrent occurrence of the above-mentioned adverse effects.

6.3.1 Case-5: Consistency evaluation
The consistency (or credibility) analysis of an estimator is crucial for its

implementation in practical application like PSSE design. The consistency of an
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Figure 6.4: Case-4: True and estimate plots at bus-2 for the sudden load change condition
with non-Gaussian measurement.

estimator is evaluated by computing its normalized estimation error squared (NEES).

The NEES is computed by taking square error in the states i.e., x̂k|k −xk normalized with

the estimated state error covariance i.e., Pk|k. We consider Mc number of Monte-Carlo

simulations was considered to compute NEES at kth time-step of ith Mont-Carlo run.

NEES(i)k = ε
xT
k|kPk|kε

x
k|k, (6.29)

Average of NEES (ANEES) over Mc simulation runs is

ANEESk =
1

nMc

Mc

∑
i=1

NEES(i)k , (6.30)

A consistently high value of NEES implies that the estimator underestimates the

uncertainty in the system and vice versa. A reliable estimator makes accurate predictions

with a reasonable level of uncertainty, NEES is close to 1. ANEES belongs to chi-square

distribution, with a degree of freedom 1 was considered for this testing on a 14-bus power
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system network.

LB = n

[(
1− 2

9nMc

)
−1.96

√
2

9nMc

]3

,

UB = n

[(
1− 2

9nMc

)
+1.96

√
2

9nMc

]3

,

(6.31)

The proposed estimator NEES value with two sided 95% probability value for a

significance level of 0.05 lies well within its confidence region (between lower bound

LB=0.78 and upper bound UB=1.25), thus guaranteeing the estimator’s reliability.

NEESk of all PSSE estimator are plotted in Fig. 6.5 to test their consistency or

credibility. This figure shows that the AGF-based PSSE is inconsistent as the averaged

NEES takes all values outside UB and is said to be an optimistic estimator as the error

covariance is too small. NEESk for the proposed FSMCGF-based PSSE lies between LB

and UB. Hence, the proposed estimator behaves neither as a pessimist nor as optimistic

around the power system process and measurement uncertainties. Thus, the proposed

estimator is the most credible PSSE estimator.
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Figure 6.5: Case-5: NEES plot for consistency evaluation for 14-bus.

6.4 Discussion and conclusion

An accurate and robust PSSE is of utmost importance as it enables the development

of effective energy management plans and guarantees a secure, reliable, and stable

power distribution, particularly in light of the rise of electric vehicles, traction loads,

and distributed energy resources. The traditional PSSEs performance degrades when

the noises are inaccurately assumed and/or are variable and sensitive to non-Gaussian
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outliers. The proposed PSSE estimator optimally considers the higher order moments

through correntropy and fixed-point iteration method and, subsequently, implements an

self-adaptive Kernel bandwidth, self-adaptive Qk, and Rk method to obtain the optimal

estimation. Numerous simulation experiments were carried out on IEEE 14-, 30-, and

118-bus, including normal loading conditions, sudden load change, Gaussian noise,

Laplacian noise, mixture of Gaussian and Laplacian noises, bad data injection, show that

the proposed FSMCGF-based PSSE outperforms the traditional estimators, such as AGF

and GF in terms of performance index, such as average of MSE, MAE and MAXE. This

chapter implements a CKF based formulation of the proposed FSMCGF-based PSSE

implemented this performance validation. Results validate that estimation accuracy of

proposed FSMCGF improves by nearly 60% with a negligible higher computational cost

under proven circumstances. The proposed estimator was also found to be the most

credible estimator from their normalized estimation error squared with a 0.05 significance

level.

The contribution of this work lies in developing a robust PSSE that can withstand

various power grid abnormalities, thereby advancing power system applications.

However, the researcher also encountered another challenging case of online estimation

during their research work, which was the Covid-19 pandemic that caused countless

financial losses and human lives without a vaccine. As a scientific responsibility, the

author took the initiative to extend the CKF method for ESE applications, specifically to

estimate the population under different groups affected by the coronavirus infection.
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Chapter 7

Kalman-based Compartment

Estimation for Covid-19 Pandemic

using Advanced Epidemic Model

This chapter introduces a Gaussian filter-based advanced ESE method. Alternatively, this

chapter utilizes Gaussian filtering algorithm to estimate the compartmental populations,

including susceptible (S), exposed (E), infected (I), recovered from exposed (Re),

recovered from infected (R), passed away (P), and vaccinated individual (V) populations

of an advanced epidemic model. Although the proposed ESE method applies to any

pandemic or epidemic, this chapter will be focused on Covid-19.

Recalling Chapters 1.6, and 2.4, this chapter attempts to implement Gaussian filtering

algorithm to estimate the quantified population who are susceptible (S), exposed (E),

infected (I), recovered from exposed (Re), recovered from infected (R), passed away (P),

and vaccinated individual (V) compartments.

Covid-19, caused by SARS-CoV-2, is an airborne viral infection that originated

from Wuhan, People’s Republic of China. Since its inception, it has infected half a

billion people, killed close to 6 million people, and forced almost every country across

the world to impose strict lockdowns, resulting in significant economic losses. New

variants of the virus may make vaccines less effective over time. Mathematical analysis,

such as in [170],[171], and [172], can help reduce the burden on medical infrastructure.
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Aggressive non-pharmaceutical interventions (nPIs) may increase financial burdens [52],

so minimal financial burden nPIs should be prioritized. Furthermore, recent research

suggests that coronavirus mutates its genome sequence, resulting in new variants that

make the vaccine less effective over time. But in absence of life-time immunity providing

vaccine, dynamical model-based analytical results can help authorities frame appropriate

strategies and guidelines for the public to stop or slow the transmission of widespread

epidemic.

It is expected that model (SIR model) analysis-based strategy making should be

superior if the models comprise more parameters. With this motivation, the later

developments incorporated more compartments, including susceptible (S), exposed

(E), infected (I), recovered from exposed (Re), recovered from infected (R), passed

away (P), and vaccinated individual (V) compartments. With different combinations of

such compartments, various models, including SIRP [54],[55], SEIR [58], SEIRP [59],

SEIRRP [60], SIRV [61] models, are introduced in the recent literature. These models

are nonlinear in order to characterize the nonlinear disease dynamics. Moreover, these

models become stochastic in order to characterize the modeling errors and uncertainties

of the disease dynamics. Subsequently, the author develops GF-based ESE to online

monitor the quantified information of compartments, such as susceptible, exposed,

infected, etc. Literature on GF-based ESE, such as the EKF, UKF, and their extensions,

used in the [54], [55], [141], [73], are known for their poor accuracy and stability. Thus,

introducing an efficient estimation method can further improve the accuracy.

Summarizing the above discussions, we highlight the motivations of this chapter

below:

• Consider the exposed and infected populations separately in order to address their

inconsistent recovery pattern.

• Consider the stochastic nature of the model in order to address the limitations of

[173].

• Consider the exposed and vaccinated populations in a single model, which is yet

not considered in the literature.
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• Implement a state-of-the-art estimation technique, like the CKF, for estimating the

compartment populations with improved accuracy.

• Finally, the motivation of this chapter is to improve the accuracy of the model-based

Covid-19 spread analysis by accomplishing the above mentioned motivations.

To accomplish the above mentioned motivations, this chapter modeled an

advanced SIR model and a popularly known estimation technique named CKF to

derive analytical conclusions helpful in non-pharmaceutical policy-making. We include

various coronavirus disease impacting parameters, such as infection rate, recovery rate,

reinfection rate, mortality rate, incubation rate, recovery rate of exposed group, and

vaccination rate to model complex Covid-19 disease dynamics. The model considers

seven stages of infections: susceptible (S), exposed (E), infected (I), recovered from

exposed (Re), recovered from infected (R), passed away (P), and vaccinated (V)

population; abbreviated as SEIRRPV epidemic model. Henceforth, we will refer to

the advanced SIR model as SEIRRPV model in the acronym form of its compartment.

To validate, a mathematical analysis of the proposed epidemic model is demonstrated,

which identifies the non-negativity, uniqueness, boundary condition, basic reproduction

rate, sensitivity analysis, and stability analysis. A stochastic SEIRRPV model is then

combined with a novel estimation technique, the CKF, to derive analytical conclusions

about epidemic transmission. The CKF is a nonlinear Bayesian approximation filtering

method, performed in prediction and update steps. The implementation of the prediction

and update steps involves intractable integrals. The CKF uses third-degree spherical

cubature rule for approximating the intractable integrals. Finally, we compared our

results with existing SIR, SIRP, SEIRP, SEIRRP, SIRV models [60], [61], and [174]. The

meaning of these models can be derived from the descriptions of every word provided.

Please note that ‘recover’ represents those recovered from Covid-19 infection for SIR,

SIRP, SEIRP, and SIRV models where exposed compartment is not considered.
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7.1 Compartment based SEIRRPV model for analyzing

Covid-19 spread

This section gives an overview of the compartment-based epidemic model used to

analyze the spread of Covid-19. In general, the behavior of real-life systems or processes

is complex, and modeling their exact dynamics is challenging. However, in many cases,

the physical laws are well established in the literature to derive an approximated model,

e.g., the laws of motion can be used for approximate modeling of the motion of a moving

object [6]. On the other hand, modeling dynamics of a biological process, such as

the transmission of a new pandemic, is complex and lacks well-established physical

laws characterizing their dynamics. The Covid-19 transmissibility is dynamic and

ever-changing. It is new and unique for the scientific community, and no physical law has

yet been developed to define its transmission rate and other behavior precisely. In such

cases, the standard mathematical models are established in the literature for modeling

disease behavior based on certain hypotheses applied to the pandemic behavior. Before

introducing the proposed SEIRRPV model, we mention the following hypotheses on any

pandemic [53], [175]:

(a) The disease is contagious and spreads through direct and indirect contact or even

airborne transmission.

(b) The population remains constant during the period of the study. The deaths

(excluding those caused by pandemic) and births during the study duration are

ignored. It is worth mentioning that these numbers are expected to be small

compared to the total population.

(c) There may be some latency period during which an infected individual is not

infectious. Similarly, There may be an exposure period during which an individual

may be both infected and contagious but does not show any visible symptoms, i.e.,

asymptomatic.

(d) Every individual in the considered population has the same immunity.
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(e) Every individual in the considered population interacts equally with others in other

compartments.

It should be mentioned that the hypotheses may not be unique across the practitioners.

However, the resulting accuracy and the model complexity should be key factors in

specifying a particular set of hypotheses.

The above mentioned hypotheses are generally common for all compartment-based

modeling. A deterministic SEIRRPV model follows these hypotheses. Any modeling

study comes with inherent limitations. Here, hypotheses (b), (d), and (e) condition are

not true for coronavirus epidemic. However, we can approximate a study of shorter

duration and associated uncertainty in our model. We consider the scenario of Covid-19

pandemic in Delhi, the capital city of India, with a population of 32 million. We

implemented the proposed model to estimate the disease transmission in Delhi between

17 January 2021 and 26 April 2021. The simulation study period is important because

Delhi witnessed its second wave from March and stretched to June 2021. There was a

Covid outbreak throughout the city of Delhi. Hence, our assumption stands true that the

entire population is equally susceptible to the Covid-19 pandemic. Although the birth

rate (approximately 0.003% of total population) and natural death rate (0.03% of total

population) are negligible compared to the total population of Delhi (approximately 32

million), the imperfection in these models could result in uncertainty in the predictive

capability of Covid-19. Therefore, the author remodeled the deterministic epidemic

model as a stochastic-based SEIRRPV epidemic model. In stochastic systems, there is

no disease-endemic state, so persistence of the disease cannot be observed.

Based on the aforementioned hypothesis, we have identified several influencing

parameters of the Covid-19 pandemic that are used to model the SEIRRPV deterministic

epidemic model. These parameters are listed in below subsection.

7.1.1 Parameters involved in Covid-19 pandemic

The real-world scenarios, such as medical infrastructure, geographic demographics,

social structure, public awareness, government strategies, etc., may be linked to a
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mathematical model. These epidemic models estimate different compartments and

simulate various parameters influencing the transmission of the Covid-19 pandemic.

Some of these parameters have been explained below.

Infection rate (α)

As mentioned in the previous section, the α number of susceptible people get

infected with Covid-19 from an infected or exposed individual per unit of time. The

Covid-19 disease can be transmitted through direct and indirect contact and airborne

transmission. So, the infection rate parameter considers the level of social interaction,

population density, environment healthiness, and social cleanliness. A high contact rate

increases the infected population at a faster pace. However, strict measures and social

awareness can slow down the transmission of the SARS-COV-2 virus even in densely

populated cities or places with poor healthcare facilities. One such example is Asia’s

largest slum bearer, Dharavi, which successfully controlled the pandemic by stricter social

measures imposed by Brihanmumbai Municipal Corporation (BMC), Maharastra, India

[176], as acknowledged by the world health organization (WHO). Government authority’s

decisions include critical social distancing at the workplace, masks in populated areas,

protection against virulence and lockdown, and others.

Recovery rate (β )

It is the rate at which infected individuals are reported to have recovered on a given

day. The speedy recovery of people depends on the healthcare facilities and medication

they get. Hence, state hospitalization facilities, number of intensive care units (ICUs),

availability of clinical drugs, transportation facilities, etc., impact the recovery speed for

the pandemic. The value of β may be different for all pandemics. One influenza-infected

individual gets ill for 3-7 days (mean time =5 days), so the recovery rate β is 1/5 [60].

Reinfection rate (γ)

It is the rate at which recovered individuals get reinfected with Covid-19. In recent

times, few Covid-19 fully vaccinated people have also been infected. So, vaccination does

not make an individual fully immunized. Thus, γ is the inverse of the immunity rate. It is
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otherwise called the immunity loss rate. Preliminary studies claim the immunity rate for

Covid-19 stands for up to 4 months [177]. In SEIRP, SEIRRP-models segregate infected

people into exposed and infected compartments. Recovered people may get exposed or

infected with Covid-19. In SEIRP, SEIRRP, reinfection rate terms are specified as γe

and γ , respectively. Moreover, we have one compartment to address contaminated people

(‘infected’ compartment), so the reinfection rate for SIR, SIRV , and SIRP-models is γ .

Mortality rate (µ)

The Covid-19 pandemic has caused more than 5.8 million human deaths (updated

on February 2022) [50]. The mortality rate of the pandemic is the ratio of the daily

number of deceased people to the total infected population on the same day. Hence, the

influencing constraints for mortality rate are the same as infection rate.

Incubation rate (κ)

The transition of an asymptomatically infected individual (E) to be symptomatically

infectious individual (I) is called an incubation rate. In some cases, people are infected

and contagious. Still, they do not show any symptoms or are medically declared as

Covid-19 -ve due to the poor medical facility or by an error in real-time polymerase chain

reaction (RTPCR) test or antigen test [178]. These exposed people act as active virus

carriers, and the host may die or recover in both cases. So screening policies, contact

tracing, etc., like aspects may influence κ .

Recovery rate of exposed group (ρ)

It is the rate at which exposed group individuals recover without being infectious.

However, it can not be inspected and needs lab-based proof. It may be considered equal

to or greater than β .

Vaccination rate (Ω)

It is the rate at which people are vaccinated to be immune from the variants of

coronavirus. Vaccination drive speed not only provides a weapon to reduce infection

rate but also reduces human fatalities. However, vaccine inefficiency, ν , may reduce the
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vaccine’s effectiveness. During the vaccine testing and clinical trials, its efficiency is

evaluated.

7.1.2 Mathematical representation

We introduce the compartment models to analyze the Covid-19 transmission

behavior based on the above mentioned hypotheses. Our model is inspired by the SIR

epidemic model with inclusion of other pandemic spread impacting parameters, such

as rate of asypmtomatically infection αe, infection rate α , recovery rate β , reinfection

rate for Covid-19 recovered individual from exposed γe and infected compartment γ ,

mortality rate µ , incubation rate κ , recovery rate of exposed population ρ as discussed

in Chapter 7.1.1. Additionally, the recent vaccine rollout by Pfizer, AstraZeneca, and

others will favor the physical epidemic model. Here, vaccination rate, Ω, and vaccination

inefficacy, ν , play a vital role in controlling the pandemic. Hence, our proposed model is

also more diversified in the model formulation of complex disease transmission.

We follow transmission patterns of the pathogens in classified compartments in

terms of ordinary differential equations to formulate the proposed SEIRRPV epidemic

model. According to the World Health Organization, there are two varieties of people

infected by coronavirus: one does not have symptoms (E), and the other does (I). We

consider the scenario of Covid-19 pandemic in Delhi, the capital city of India, with a

population of 32 million. We implemented the proposed model to estimate the disease

transmission in Delhi between 17 January 2021 and 26 April 2021. The period of the

simulation study is important in the fact that Delhi witnessed its second wave of Covid-19

pandemic from March and stretched up to June of 2021. Here is assumption stands

true with the Covid-19 pandemic transmission in Delhi, i.e., total population of Delhi

is equally susceptible to the Covid-19 pandemic.

(a) Susceptible compartment individual transfer to exposed (E) asymptomatically,

and symptomatically, respectively, with infection rates of αe and α . Additionally,

recovered individuals from Re and R compartments become susceptible with

recovery rates γe and γ , respectively. Further, A small portion of vaccinated

population becomes susceptible due to vaccination at a rate of Ω.
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(b) Population from susceptible (S) and vaccinated (V) compartment transfer to

exposed (E) compartment with αeE +αI and ναeV , respectively.

(c) Incubation rate κ of exposed population and ναI of vaccinated population coming

to the infected (I) compartment from exposed (E) and vaccinated (V) population

compartment.

(d) Recovered populations from asymptomatically infected or not hospitalized or those

populations recovered from Covid-19 but went unnoticed by the government data

are included in the Re compartment. It includes the net population of inclusion of

recovery rate ρ of exposed population and exclusion of reinfected population at a

rate of γe.

(e) R compartment includes individuals β rate of infected population (I) by excluding

reinfected rate of recovered population (R).

(f) Passed away (P) compartment are the mortality rate µ of infected population (I).

(g) Vaccinated population is the net population of vaccinated people from susceptible

compartment S with Ω rate by excluding infected people both symptomatically with

ναeI and asymptomatically infected with ναE.

We follow the fundamental steps (a)-(g) to formulate our proposed deterministic

epidemic model. The following set of differential equations mathematically represents
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compartments of the SEIRRPV model.

dS
dt

=−αeSE −αSI + γeRe + γR−ΩS

dE
dt

= αeSE +αSI −κE −ρE +νV αeE

dI
dt

= κE −β I −µI +νV αI

dRe

dt
= ρE − γeRe

dR
dt

= β I − γR

dP
dt

= µI

dV
dt

= ΩS−νV αeE −νV αI

(7.1)

An infection flow graph of advanced epidemic model is presented in Fig. 7.1The system
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Figure 7.1: Infection flow graph SEIRRPV epidemic model

model obeys mass conservation property. We have

dS
dt

+
dE
dt

+
dI
dt

+
dRe

dt
+

dR
dt

+
dP
dt

+
dV
dt

= 0 (7.2)

Hence, the sum of states will be equal to total population. Expressing states in terms of

population ratio, we will get the following;

S+E + I +Re +R+P+V = 1, (7.3)
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where 1 is the total population, including deceased. The sum of system states is 1,

considering the system is a closed one i.e., no natural death and births are considered.

Figure 7.2: Block diagram of SEIRRPV epidemic model.

7.2 Problem formulation

The SEIRRPV epidemic model presented in Fig. 7.2, has been briefly discussed

in nonlinear ordinary differential equation given in Eq. (7.1). However, it is difficult to

model all the states accurately for estimation purposes in a real-world scenario. These

modeling inaccuracies can be dealt with by including a random error, Qk ∈ Rn, which

follows Gaussian distribution with mean zero and covariance of Q in the state model

of Eq. (1.3). Similarly, a measurement for the epidemic model includes the number of
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infected individuals, I, recovered individuals, R, passed away people, P, and vaccine

inoculated people, V by the Covid-19 pandemic. These measurements are available

through government data, surveys, testing, and the medical health update register. These

data may not be error free. Furthermore, the RTPCR and other available coronavirus tests

are not perfect. Hence, we model this measurement noise as Vk ∈ Rm for Covid-19, and

without loss of generality, it is assumed to be a Gaussian distribution with zero mean and

R as covariance. All groups of different Compartment models are expressed in ordinary

differential equations as derived in Section 7.1.2. The state space representation of the

proposed SEIRRPV model can be expressed as a state model and measurement model

referring to Eqs. (1.3) and (1.4) in Chapter 1.




dS
dt

dE
dt

dI
dt

dRe
dt

dR
dt

dP
dt

dV
dt




=




−αeSE −αSI + γeRe + γR−ΩS

αeSE +αSI +(ναV −κ −ρ)E

κE +(ναV −β −µ)I

ρE − γeRe

β I − γR

µI

ΩS−νV (αeE +αI)




+Q, (7.4)

and observed equation for SEIRRPV model is




I

R

P

V



=




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







I

R

P

V



+V, (7.5)

In this chapter, our objective is to estimate the states (each compartment). We will

implement a popular nonlinear Kalman filtering algorithm called as CKF, as discussed

in Section 7.4, which has better estimation accuracy among traditional filters, such as

EKF [73], and UKF [82].
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7.3 Mathematical analysis of the Proposed epidemic

Model

Considering the initial condition of epidemic model, we derived disease-free

condition and basic reproduction rate R0. Additionally, we also discussed the

well-posedness of our proposed deterministic epidemic model.

Theorem 2 (Existence and uniqueness of solution): Let t∗ ∈ R7
+. The dynamical system

Eq. (7.1) admits a unique solution on interval (0, t∗) for initial conditions satisfying

S0 > 0, E0 > 0, I0 > 0, Re0 > 0, R0 > 0, P0 > 0 and V0 > 0 [179].

Proof 2 Let us consider, Y (t) = (St ,Et , It ,Ret ,Rt ,Pt ,Vt)
T . Then Eq. (7.8) is expressed as

Y ′(t) = F(Y (t)) = ( f1, f2, f3, f4, f5, f6, f7)
T where fi are the generalized function of Y (t).

At initial condition, Y0 = (S0,E0, I0,Re0,R0,P0,V0)
T > 0. Jacobian matrix of F(Y (t)) can

be expressed as in the form of J(F(Y (t)) = δ fi
δY with i ∈ {1,2, · · ·7}. For simplicity, we

mention few elements of the J(F(Y (t)) as

J11 =

∣∣∣∣
δ f1

δS

∣∣∣∣= |−αeE −αI −Ω| ≤ ∞, J12 =

∣∣∣∣
δ f1

δE

∣∣∣∣= |−αeS| ≤ ∞,

J13 =

∣∣∣∣
δ f1

δ I

∣∣∣∣= |−αS| ≤ ∞, J14 =

∣∣∣∣
δ f1

δRe

∣∣∣∣= |γe| ≤ ∞,

J15 =

∣∣∣∣
δ f1

δR

∣∣∣∣= |γ| ≤ ∞, J16 =
δ f1

δP
= 0 ≤ ∞,

J17 =

∣∣∣∣
δ f1

δV

∣∣∣∣= |0| ≤ ∞, J21 =

∣∣∣∣
δ f2

δS

∣∣∣∣= |αeE +αI| ≤ ∞,

J22 =

∣∣∣∣
δ f2

δE

∣∣∣∣= |αeS−κ −ρ +ναeV | ≤ ∞, J23 =

∣∣∣∣
δ f2

δ I

∣∣∣∣= |αS| ≤ ∞,etc.

(7.6)

The partial derivative of model Eq. (7.1) expressed in Eq. (7.6) exists , are finite and

bounded. The system model presented in Eq. (7.1) and J(F(Y ′)), are continuous for

t > 0. Hence, F satisfies a Lipschitz condition on R7
+. The existence and uniqueness of

solution for some time interval (0, t∗) follows from Picard-Lindelof Theorem. □
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Theorem 3 (Positivity of solution): The set

D= {(S,E, I,Re,R,P,V ) ∈ R7
+ : S+E + I +Re +R+P+V ≤ N,S ≥ 0,E ≥ 0, I

≥ 0,Re ≥ 0,R ≥ 0,P ≥ 0,V ≥ 0,},
(7.7)

i.e, the dynamical system state variables of Eq. (7.1) are (St ,Et , It ,Ret ,Rt ,Pt ,Vt)

non-negative ∀ t > 0 [180].

Proof 3 Let us consider, Y (t) = (St ,Et , It ,Ret ,Rt ,Pt ,Vt)
T . Then Eq. (7.1) is expressed

as Y ′(t) = F(Y (t)) = ( f1t(.), f2t(.), f3t(.), f4t(.), f5t(.), f6t(.), f7t(.))
T where fit are the

generalized function of Y (t) ∀i ∈ {1,2, · · ·7}. Rewriting Eq. (7.1),

dS
S = ψ1t(.), where ψ1t(.) =−αeE −αI + γeRe

S + γR
S −Ω

Integrating the above expression, we get

St = S0e
∫ t

0 ψ1t(S,E,I,Re,R)dt ≥ 0 ∀t.

dE
E = ψ2t(.), where ψ2t(.) = αeS+ αSI

E −κ −ρ +νV αe

Integrating the above expression result,

Et = E0e
∫ t

0 ψ2t(S,E,I,V )dt ≥ 0 ∀t.

dI
I = ψ3t(.), where ψ3t(.) =

κE
I −β −µ +νV α

Infected population is computed as

It = I0 exp
∫ t

0 ψ3t(E,I,V )dt ≥ 0 ∀t.

δRe
Re

= ψ4t(.), where ψ4t(.) =
ρE
Re

− γe

Population recovered from exposed compartment are,

Ret = Re0e
∫ t

0 ψ4t(E,Re)dt ≥ 0 ∀t. δR
R = ψ5t(.), where ψ5t(.) =

ρE
Re

− γ

Integrating the above expression, we get

Rt = R0 exp
∫ t

0 ψ5t(I,R)dt ≥ 0∀t.

δP = ψ6t(.), where ψ6t(.) = µIt

Integrating above equation, we get

Pt = P0 +µIt(t)≥ 0 ∀t. δV
V = ψ7t(.), where ψ7t(.) =

ΩS
V −ναeE −ναI

Simplifying above equation

Vt =V0 exp
∫ t

0 ψ7t(S,E,I,V )dt ≥ 0 ∀t. Therefore, all solutions to model system Eq. (7.1)

are non-negative.□
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Theorem 4 (Boundedness of solution): The solutions of proposed model in Eq. (7.1) are

uniformly bounded with non-negative initial conditions in the region D.

Proof 4 The proposed deterministic epidemic model given in Eq. (7.1) can be expressed

as

dS
dt

+(αeE +αI +Ω)S = γeRe + γR

dE
dt

+(κ +ρ −αeS−νV αe)E = αSI

dI
dt

+(β +µ −νV α) I = κE

dRe

dt
+ γeRe = ρE

dR
dt

+ γR = β I

dP
dt

= µI

dV
dt

+(ναeE +ναI)V = ΩS

(7.8)

Considering initial conditions of the epidemic model as (S0,E0, I0,Re0,R0,P0,V0), we

simplified Eq. (7.8) by taking the Laplace transformation method. The simplified

equations are given below

St =
γeRet + γRt

φ1t

(
1− e−φ1t t

)
+S0e−φ1t t , φ1t = αeEt +αIt +Ω

Et =
αStIt
φ2t

(
1− e−φ2t t

)
+E0e−φ2t t , φ2t = κeρ −αeSt −ναVt

It =
κEt

φ3t

(
1− e−φ3t t

)
+ I0e−φ3tt , φ3t = β +µ −ναVt

Ret =
ρEt

φ4t

(
1− e−φ4tt

)
+Re0e−φ4tt , φ4t = γe

Rt =
β It
φ5t

(
1− e−φ5t t

)
+R0e−φ5t t , φ5t = γ

Pt = φ6t

∫ t

0
It dt +P0, φ6t = µ

Vt =
ΩSt

φ7t

(
1− e−φ7t t

)
+V0e−φ7t t , φ7t = ναeVt +ναVt .

(7.9)
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Taking the smallest of the upper bound i.e., supremum (sup) of the Eq. (7.9), we get

limsup
t→∞

St =
γeRet + γRt

φ1t

limsup
t→∞

Et =
αStIt
φ2t

limsup
t→∞

It =
κEt

φ3t

limsup
t→∞

Ret =
ρEt

φ4t

limsup
t→∞

Rt =
β It
φ5t

limsup
t→∞

Pt = φ6t

∫ t

0
It dt +P0 ≤ ∞

limsup
t→∞

Vt =
ΩSt

φ7t
.

(7.10)

Adding equations given in Eq. (7.10) and rewriting the expression,

limsup
t→∞

(St +Et + It +Ret +Rt +Pt +Vt) =
γeRet + γRt

φ1t
+

αStIt
φ2t

+
κEt

φ3t

+
ρEt

φ4t
+

κEt

φ3t
+

ΩSt

φ7t
= 1,

(7.11)

since St +Et + It +Ret +Rt +Pt +Vt = 1. Therefore, the solution of the system given in

Eq. (7.1) remains closed and uniformly bounded in the region R7
+.□

7.3.1 Basic reproduction rate R0

It is an indicator of emerging infections and plays a critical role in designing

control interventions for existing infections. A basic reproduction rate R0 is usually

determined by the basic reproduction number R0, which measures how many secondary

infections will occur from introducing one infected individual into a population of

entirely susceptible individuals. Therefore, it determines the extent to which the infection

spreads throughout the population.

Basic reproduction number R0 is defined as the spectral radius of negative of next

generation matrix (Ng) i.e., R0 = ρ(Ng), where spectral radius (ρ) is a dominant eigen

value of the Ng. From Eq. (7.1), it is evident that there are two infected compartments
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and five uninfected compartments. We will calculate the value of R0 by the next

generation matrix (NGM) method, as discussed in [180], [181], [182]. We compute the

transmission matrix T and transition matrix Ξ from the epidemic model. Matrices T,

and Ξ, respectively, represent the production of new infections and changes in states i.e.,

removal of existing infections production of new infections.

T =



(αeS0 +ναeV0) αS0

0 0


 , Ξ =



−(κ +ρ) 0

κ −(β +µ −ναV0)


 , (7.12)

and next generation matrix (Ng) can be computed from T and Ξ as Ng = −TΞ−1. The

next generation matrix for the proposed model is expressed as

Ng =−TΞ
−1 =−



(αeS0 +ναeV0) αS0

0 0










−(κ +ρ) 0

κ −(β +µ −ναV0)




−1



,

(7.13)

simplifying Eq. (7.13), we get

Ng =−TΞ
−1 =




αeS0+ναeV0
κ+ρ

+ ακS0
(β+µ−νV0α)(κ+ρ)

ακS0
(β+µ−νV0α)

0 0


 , (7.14)

as we discussed earlier, we computed the dominant eigen value from the linearized

infected subsystem i.e., ρ(−TΞ−1). Hence, basic reproduction rate for the proposed

SEIRRPV model is found to be:

R0 =−ρ(−TΞ
−1) =

αeS0 +ναeV0

κ +ρ
+

ακS0

(β +µ −νV0α)(κ +ρ)
, (7.15)

Eq. (7.15) can be simplified as

R0 =
(αeS0 +ναeV0)(β +µ −νV0α)+ακS0

(κ +ρ)(β +µ −νV0α)
. (7.16)
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Considering total population of the city as susceptible and vaccine inoculation is not

started i.e., S0 = 1 and V0 = 0 the simplified basic reproduction rate R0 will be

R0 =
αe (β +µ)+ακ

(κ +ρ)(β +µ)
. (7.17)

7.3.2 Sensitivity analysis S

Sensitivity indices assist us with relative variation in R0 when a parameter value

changes. Additionally, it improves the robustness of our model when different parameters

are used. The normalized sensitive index of Sp for a generalized parameter p (such as,

αe, α , β , κ , etc.) [181]

Sp =
∂R0

∂ p
p
R0

(7.18)

7.3.3 Stability analysis

A detailed stability analysis of the proposed SEIRRPV epidemic model was

presented using the following theorems:

Theorem 5 (Disease-free condition): Non-infectious equilibrium conditions for

epidemic models with non-negative parameters can be computed as

(S,E, I) = (0,0,0)

R+Re +P+V = 1, (Re ≤ 1,R ≤ 1,P ≤ 1,0 ≤V )

(7.19)

Eq. (7.19) describes a disease-free condition when there is no disease within the presence

of vaccine combination.

Proof 5 Equating Eq. (7.1) to zero and considering Eq. (7.2) along with Eq. (7.3), we

obtain equilibrium condition in Eq. (7.19).□
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Theorem 6 (Endemic condition): A model with non-negative parameters can obtain

infectious equilibrium conditions as (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗). The total population is

assumed to be susceptible due to the pandemic outbreak. This equilibrium condition is

termed an endemic equilibrium condition.

Proof 6 We obtain endemic compartment population by equating Eq. (7.1) to zero. By

simplifying equations, we get

S∗ =
γeγρ (β +µ +νV ∗α)+ γγeβκ

(αe +ν)(β +µ +νV ∗α)+καe

E∗ =
αS∗I∗

κ +ρ −νV ∗αe −αeS∗

I∗ =
κE∗

(β +µ +νV ∗α)

R∗
e =

ρE∗

γe
, R∗ =

β I∗

γ

P∗ =
∫ t

0
µI(t)dt

∣∣∣∣∣
t=t∗

V ∗ =
ΩS∗

ν (αeE∗+αI∗)

(7.20)

Theorem 7 (Local stability of disease-free condition): The disease-free equilibrium

point Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is locally asymptotically stable in D when R0 < 1 and

unstable for R0 > 1.

λ +κ +ρ −νV ∗
αe ≤ 0 (7.21)

Proof 7 Here, we presented an illustration of the stability of the epidemic system model

for the disease-free condition. We thus analyze the eigen values of the system model by

evaluating its Jacobian matrix. The SEIRRPV epidemic model is expressed in matrix
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linearization form as:

J =




J11 −αeS −αI γe γ 0 0

αeE J22 αS 0 0 0 J27

0 κ J33 0 0 0 J37

0 ρ 0 −γe 0 0 0

0 0 β 0 −γ 0 0

0 0 µ 0 0 0 0

Ω J72 J73 0 0 0 J77




, (7.22)

where J11 =−(αeE +αI +Ω), J22 = (αeS−κ −ρ +νV αe), J27 = ναeE, J33 =−
(β +µ −νV α), J37 = ναI, J72 =−νV αe, J73 =−νV α , and J77 =−ναeE−

ναI. We compute the characteristic function of the system as

λ I−J =




(λ −J11) αeS αI −γe −γ 0 0

−αeE (λ −J22) −αS 0 0 0 −J27

0 −κ (λ −J33) 0 0 0 −J37

0 −ρ 0 λ + γe 0 0 0

0 0 −β 0 λ + γ 0 0

0 0 −µ 0 0 λ 0

−Ω −J72 −J73 0 0 0 (λ −J77)




, (7.23)

In a disease-free condition (S∗,E∗, I∗) = (0,0,0). The associated Jacobian is evaluated at
the disease-free equilibrium to determine its local stability. The generalized form of the

Jacobian matrix of the associated model is given in Eq. (7.22). Thus Jacobian matrix at
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disease-free equilibrium point P∗ (S∗,E∗, I∗) = P∗ (0,0,0) is expressed as Jn

Jn =




Jn
11 0 0 γe γ 0 0

0 Jn
22 0 0 0 0 Jn

27

0 κ Jn
33 0 0 0 Jn

37

0 ρ 0 −γe 0 0 0

0 0 β 0 −γ 0 0

0 0 µ 0 0 0 0

Ω Jn
72 Jn

73 0 0 0 Jn
77




, (7.24)

where superscript n stands for disease-free condition, Jn
11 =−Ω, Jn

22 =−κ −ρ +νV ∗αe,

Jn
27 = 0, Jn

33 =−(β +µ −νV ∗α), Jn
37 = 0, Jn

72 =−νV ∗αe, Jn
73 =−νV ∗α , and Jn

77 = 0.

We compute the characteristic function of the system as

λ I−Jn =




m(λ −J11) 0 0 −γe −γ 0 0

0 (λ −Jn
22) 0 0 0 0 −Jn

27

0 κ
(
λ −Jn

33
)

0 0 0 −Jn
37

0 −ρ 0 γe 0 0 0

0 0 −β 0 γ 0 0

0 0 −µ 0 0 λ 0

−Ω −Jn
72 −Jn

73 0 0 0 (λ −Jn
77)




, (7.25)

We computed the eigen values (λ ) of Jacobian matrix Jn by simplifying det(λ I−Jn)

= 0. Eigen values are λ = 0,0,−Ω,−γ,γe, λ + β + µ + νV ∗α ≤ 0 and λ + β + µ +

νV ∗αe ≤ 0. The dominant eigen value of Jn is evaluated as

λ +κ +ρ −νV ∗
αe ≤ 0 (7.26)

Solving Eq. (7.17) we get,

R0 =
νV ∗αe

κ +ρ
. (7.27)
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We computed λ is by replacing simplified R0 in Eq. (7.26)

(κ +ρ)(R0 −1)≤ 0

R0 ≤ 1
(7.28)

We, therefore, conclude that the pandemic will be disease-free when R0 ≤ 1.□

Theorem 8 (Population to be vaccinated for a disease-free condition): The disease-free

equilibrium point Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is stable in D then vaccinated population

compartment must satisfy

V ∗ ≤ (κ +ρ)

ναe
, (7.29)

Proof 8 As we know, the eigen values of a characteristic equation must be negative or

zero to be locally stable. From Eq. (7.26), we can easily observe that eigen values are

negative when νV ∗αe − (κ +ρ) ≤ 0. So critical vaccinated population is simplified as

V ∗ ≤ (κ+ρ)
ναe

. This concludes our proof.□

Theorem 9 (Local stability for endemic condition): The endemic equilibrium point

Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is locally asymptotically stable in D when R0 > 1.

Proof 9 With a similar approach as the previous theorem, we will calculate eigen

values to validate local stability of the epidemic in an endemic condition. Therefore,

characteristic function at equilibrium point Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is λ I−Ji

λ I−Ji =




(
λ −Ji

11
)

αeS αI −γe −γ 0 0

−αeE∗ (
λ −Ji

22
)

−αS∗ 0 0 0 −Ji
27

0 −κ
(
λ −Ji

33
)

0 0 0 −Ji
37

0 −ρ 0 λ + γe 0 0 0

0 0 −β 0 λ + γ 0 0

0 0 −µ 0 0 λ 0

−Ω −Ji
72 −Ji

73 0 0 0
(
λ −Ji

77
)




, (7.30)
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where Ji
11 = −(αeE∗+αI +Ω), Ji

22 = (αeS∗−κ −ρ +νV ∗αe), Ji
27 = ναeE∗, Ji

33 =

−(β +µ −νV ∗α), Ji
37 = ναI∗, Ji

72 = −νV ∗αe, Ji
73 = −νV ∗α , and Ji

77 = −ναeE∗−

ναI∗. We further simplified endemic equilibrium point Y ∗ and expressed it in simplified

basic reproduction rate R0 as mentioned in Eq. (7.27). After simplification, we get,

νV ∗
αe =R0 (κ +ρ) , νV ∗

α =
R0α (κ +ρ)

αe
(7.31)

I∗ =
{(R0 −1)(κ +ρ)+αe}Ω

(1−R0)(κ +ρ)(α −β )−αeβ +ρα
(7.32)

E∗ =
αI∗

(1−R0)(κ +ρ)−αe
=

αΩ

(1−R0)(κ +ρ)(α −β )−αeβ +ρα
(7.33)

The characteristic equation of the matrix is given in Eq. (7.30), det(λ I−Jn) = 0 is

expressed as

λ
7 +a1λ

6 +a2λ
5 +a3λ

4 +a4λ
3 +a5λ

2 +a6λ +a7 = 0, (7.34)

where

a1 = (γ + γe +Ω) ,

a2 = (αeκ + γγe + γΩ+ γeΩ) ,

a3 = γγeΩ+2αeκΩ+αeκγ +αeκγe − γeαeE∗
ρ,

a4 = γβ (αeE∗
κ +ΩβνV ∗

α)+αeκ {(1+Ω)(γ + γe +Ω)+ γγe + γΩ+ γeΩ}

− γγeαeE∗
ρ −ΩγeνV ∗

αe −ΩνV ∗ (
α

2
e −α

2I∗−ααeI∗
)

a5 = γγeαeE∗
κβ + γαeE∗

κβ + γγeΩβνV ∗
α +αeκ

(
2γγeΩ+ γeΩ

2 + γΩ
2)

− γeαeE∗
ρΩγ −ΩγνV ∗ (

α
2
e −α

2I∗−ααeI∗
)

a6 = γαeκΩ(E∗
β + γeΩ)

(7.35)

For endemic stability, ai∀i ∈ {1,2, · · ·6} should be positive. Neglecting α2, α2
e and ααe

158



terms of the Eq. (7.35) and using the R0, E∗, I∗ and V ∗ we can derive a4 as

{(R0 −1)(κ +ρ)(α −β )≥ (αβ −ρα)+ρα −αβ}γγeΩβR0α (κ +ρ)≥ 0, (7.36)

solving Eq. (7.36) we get

R0 = 1+
ρα −αβ

(κ +ρ)(α −β )
≥ 1, (7.37)

□

Theorem 10 (Global stability for disease-free condition): The disease-free equilibrium

point Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is globally asymptotically stable in D7
+ when R0 < 1.

Proof 10 Consider a Lyapunov function L as follows

L(Y ∗) =
1
2
(S∗+E∗+ I∗)2 , (7.38)

It satisfies L(Y ∗)> 0 ∀Y ∗ ∈D7
+ and L(Y ∗)

∣∣∣∣∣
(S∗=0,E∗=0,I∗=0)

= 0 necessary for the stability

of the system model. Differentiating Eq. (7.38) with respect to time and using Eq. (7.1),

we get

L̇0 = (S∗+E∗+ I∗)
(
Ṡ∗+ Ė∗+ İ∗

)
,

L̇0 = (S∗+E∗+ I∗)(γeR∗
e + γR∗−ΩS∗−ρE∗+νV ∗

αeE∗+ναV ∗I∗−µI∗−β I∗)

(7.39)

where disease-free condition compartment population from Eq. (19) of the chapter

confirms that L̇0 = 0 at the equilibrium condition. Further, Eq. (7.39) is strictly negative,

considering the positive epidemic quantities. Thus, the global stability of the epidemic

model during disease-free conditions is validated.□

Theorem 11 (Global stability for endemic condition): The endemic equilibrium point

Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) is globally asymptotically stable in D7
+ when R0 > 1.
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Proof 11 An endemic disease has been present for a sufficiently long period of time

where both asymptomatic and infected people are above a certain positive level. The

global stability of endemic scenarios can be represented and analyzed by uniform

persistence. Epidemic model is called uniformly persistent if there exists a constant

0 < ε < 1 such that any solution Y ∗ (S∗,E∗, I∗,R∗
e ,R

∗,P∗,V ∗) with

min{limsupt→∞ (St ,Et , It ,Ret ,Rt ,Pt ,Vt)} ≥ ε ∈ D7
+

We follow the geometric approach’s salient features for testing the endemic

equilibrium’s global stability. In this regard, following the research work of [182] sixth

additive compound matrix is computed as

J[6] =




Ja
11 0 0 0 −Ja

37 Ja
27 0

0 Ja
22 0 0 0 0 0

0 0 Ja
33 0 0 0 −γ

0 0 0 Ja
44 0 0 γe

−Ja
73 µ −β 0 Ja

55 αeS αeI

Ja
72 0 0 −ρ κ Ja

66 −αeS

−Ω 0 0 0 0 αeE Ja
77




, (7.40)

where Ja
11 = J11 + J22 + J33 + J44 + J55 + J66, Ja

22 = J11 + J22 + J33 + J44 + J55 + J77,

Ja
27 = ναeE, Ja

33 = J11 + J22 + J33 + J44 + J66 + J77, Ja
37 = ναI, Ja

72 = −νV αe, Ja
44 =

J11 + J22 + J33 + J55 + J66 + J77, Ja
55 = J11 + J22+ J44 + J55 + J66 + J77, Ja

66 = J11 +

J33 + J44 + J55 + J66 + J77, Ja
73 = −νV α , and Ja

77 = J11 + J33 + J44 + J55 + J66 + J77.

From Eq. (21) of Theorem 4.6 in the chapter, we found values of the diagonal elements

of J as Jii∀i ∈ {1,2, · · ·7}.

With the validation of continuity and uniqueness, boundedness solution, initial

disease-free condition, and unique endemic equilibrium condition which satisfies

J(F(Y (t)) = δ fi
δY with i ∈ {1,2, · · ·7} = 0 we can consider the following differential

equation.

z′t =
[
M f M−1 +MJ[6]M−1

]
zt =: B(F (t,F (Y (0))))zt , (7.41)
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where Y (t) 7→ M(F(Y (t)) is a D1 non-singular




n

m+2


×




n

m+2


 matrix-valued

function in D such that ∥M(F(Y (t))−1∥ is uniformly bounded and M f is the directional

derivative of M in the direction field F and J[m+2] is the m+2 additional compound matrix

of the Jacobian matrix of Eq. (7.22).

M = diag
[
V P R Re c1I c2E S

]
,

M f = diag
[
V ′ P′ R′ R′

e c1I′ c2E ′ S′
]
,

(7.42)

Eq. (7.1) in the chapter for a small time deviation is simplified as

αeE +αI +Ω =−γeRe + γR
S

+
S′

S
, κ +ρ −νV αe −αeS =−αSI

E
+

E ′

E
, (7.43)

β +µ −νV α =−κE
I

+
I′

I
,

ρE
Re

= γe +
R′

e
Re

,
β I
R

= γ +
R′

R
,

µI
P

=
P′

P
, (7.44)

−ναeE −ναI =−ΩS
V

+
V ′

V
, (7.45)

Substituting Eqs. (7.40) and (7.42)- (7.45) in Eq. (7.41) and rederived in form of six

hyper-planes from the B matrix.

Bt =




B11 0 0 0 B15 B16 0

0 B22 0 0 0 0 0

0 0 B33 0 0 0 B37

0 0 0 B44 0 0 B47

B51 B52 B53 0 B55 B56 B57

B61 0 0 B64 B65 B66 B67

B71 0 0 0 0 B67 B77




(7.46)
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where

B11 =−(αeE +αI +µ)− (κ +ρ −αeS−ναeV )− (µ +β −ναV )− γ − γe +
V ′

V
,

B15 =−c−1
1 ναV, B16 =−c−1

2 ναeV

B22 =−(αeE +αI +Ω)− (κ +ρ −αeS−ναeV )− (µ +β −ναV )− (αeE +αI)ν

− γ − γe +
P′

P
,

B33 =−(αeE +αI +Ω)− (κ +ρ −αeS−ναeV )− (µ +β −ναV )− (αeE +αI)ν

− γe +
R′

R
,

B37 =
−γR

S
,

B44 =−(αeE +αI +Ω)− (κ +ρ −αeS−ναeV )− (µ +β −ναV )− (αeE +αI)ν

− γ +
R′

e
Re

,

B47 =
γeRe

S
,

B51 = αIνc1, B52 =
µIc1

P
, B53 =−β Ic1

R

B55 =−(αeE +αI +Ω)− (κ +ρ −αeS−ναeV )− (αeE +αI)ν − γe − γ +
I′

I
,

B56 =
αSIc1

Ec2
, B57 =

I2αc1

S
,

B61 = αeEνc2, B64 =
ρEc2

Re
, B65 =−κEc2

Ic1

B66 =−(αeE +αI +Ω)− (αeE +αI)ν − γe − γ +
E ′

E
,

B71 =−ΩS
V

, B76 =
αeS
c2

,

B77 =−(κ +ρ −αeS−ναeV )− (µ +β −ναV )− (αeE +αI)ν − γ − γe +
S′

S
,

(7.47)

Bi j∀i, j ∈ {1,2, · · ·7} represent rows and column index of B. The vector norm, |.| of

F(Y (t)) in D7
+ is implemented for stability analysis purpose. may be expressed as Our

approach is based on Li and Muldowney’s theorem [183] to determine the parametric

value of the epidemic to ensure its globally asymptotically stable. Applying Lozinskiı̆
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measure,

M(B)≤ sup{hi∀i ∈ {1,2, · · ·7}} , (7.48)

where M is Lozinskiı̆ measure with respect to l1 norm consisting of hi hyper-planes. Bi j

are the matrix norms with respect to l1 vector norms by following the detailed derivation

in Theorem 13 of [182]. Consequently, We use Eqs. (7.43) to (7.45) to simplify hi as

h1t = B11 + ∑
j ̸=1

|B1 j|

=− γeRe+γR
S + −αSI

E − κE
I − γ − γe −

(
α

c1
+ αe

c2

)
νV + S′

S + E ′
E + I′

I +
V ′
V := h̄1t ,

h2t = B22 + ∑
j ̸=2

|B2 j|

=− γeRe+γR
S + −αSI

E − κE
I − γ − γe − ΩS

V + S′
S + E ′

E + I′
I +

P′
P + V ′

V := h̄2t ,

h3t = B33 + ∑
j ̸=3

|B3 j|

=− γeRe
S + −αSI

E − κE
I − γe − ΩS

V + S′
S + E ′

E + I′
I +

R′
R + V ′

V := h̄3t ,

h4t = B44 + ∑
j ̸=4

|B4 j|

=− γR
S + −αSI

E − κE
I − γ − ΩS

V + S′
S + E ′

E + I′
I +

R′
e

Re
+ V ′

V := h̄4t ,

h5t = B55 + ∑
j ̸=5

|B5 j|

= νc1 (−αeE −Ω)(1+νc1)
(
− γeRe+γR

S + S′
S

)
+ −αSI

E − (1− c1)γ − γe − ΩS
V + E ′

E + I′
I +

(1+c1)R′
R + P′

P + V ′
V := h̄5t ,

h6t = B66 + ∑
j ̸=6

|B6 j|

= νc2 (−αI −Ω)(1+νc2)
(
− γeRe+γR

S + S′
S

)
+ −κE

I − γ − (1− c1)γe − ΩS
V + E ′

E + I′
I +

(1+c2)R′
R + P′

P + V ′
V := h̄6t ,

h7t = B77 + ∑
j ̸=7

|B7 j|

= −αSI
E − κE

I − γ − γe − ΩS
V + S′

S + E ′
E + I′

I +
V ′
V := h̄7t ,

The simplified h̄it values are negative for non-negative values of epidemic parameters.

Following LaSalle’s invariance principle [184]

∴ lim
t→∞

1
t

∫ t

0
h̄i(s)ds < 0, i ∈ {1,2, · · ·7} (7.49)

This proves that the epidemic model is globally asymptotically stable during endemic

conditions for R0 > 1.□
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7.4 Cubature Kalman filter (CKF)-based epidemic state

estimator

With the state space model of the system already discussed in Chapter 7.2, the

CKF is performed under a popular Bayesian framework of filtering [185]. The Bayesian

framework involves two steps: prediction and update. The computation of mean and

covariance involves intractable integrals of the form [64],[186] are approximated using

the third-degree spherical cubature rule [186],[187] of numerical approximation as earlier

discussed in Chapter 5.3 and second para of Chapter 6.2. The prediction and update steps

for implementing the CKF are presented in Appendix C.

The CKF algorithm in Appendix C is implemented over the state space model

corresponding to the proposed SEIRRPV model in order to estimate the desired

compartment populations. We use the standard CKF, while the state-of-the-art filtering

literature witnesses few advancements in order to marginally improve the accuracy at

the cost of increased computational budget. For example, [83] replaces the third-degree

spherical cubature rule with higher-degree spherical cubature rule while [188] redesigns

the CKF under maximum correntropy criterion in order to improve the accuracy. A

practitioner can use such advancements to marginally improve the accuracy but with an

additional computational budget.

7.5 Simulation and Results

This section discusses the performance validation of the proposed SEIRRPV

model integrated with CKF techniques. To demonstrate the superiority of the proposed

SEIRRPV model over the various epidemic parameters discussed in Section 7.1.1,

a simulation-based comparative analysis is performed. Epidemic models, such as

SIR [142], SIRV [61], SIRP [54], SEIRP [59], SEIRRP [60], along with the proposed

SEIRRPV models, are represented in the state-space model as stated in Eqs. (1.1) and

(1.2). Each model has a different state and measurement model, as suggested in Section

7.2. In this simulation-based study, two scenarios are examined. First, vaccinated models
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are validated through real-data of an epidemic outbreak that occurred in Delhi caused by

the SARS-COV-2 virus, and second, a comparison with SIR family models is performed.

We categorize simulation parameters as estimation parameters and epidemic parameters

for better understanding. We consider the below parameter values in our simulation.

Estimation parameter: We study the propagation of disease dynamics of the city for

T=200 days with a sampling period of 1 day. Here, epidemic compartments are put in the

state matrix i.e., state of a SEIRRPV model is considered as xk = [Sk Ek Ik Rek Rk Pk Vk]
T ,

with k in subscript representing the time instant tk. The initial compartment values for

Covid-19 pandemic E0, I0, Re0, R0, P0, V0 are 100, 200, 0, 1, 0, and 0, respectively.

Rest of the population is assumed to be equally susceptible to being sick due to the

ongoing pandemic. Qk is the process noise that follows Qk ≈ N(0,Qk), where ℵ

denotes Gaussian distribution. Process noise standard deviation, σx for susceptible,

exposed, infected, recovered from exposed, recovered from infection, passed away, and

vaccine inoculation are 31.622, 6.3245, 7.071, 2.236, 2.236, 1, and 7.746, respectively.

Similarly, Vk measurement noise follows Vk ≈ ℵ(0,Rk). Standard deviation σy for

the measurements of infected, recovered, passed away, and vaccine inoculation groups

are 10, 8.944, 3.162, and 10−4, respectively. x ∈ {1,2, · · ·n}, and y ∈ {1,2, · · ·m} in

subscript represent the state and measurement vector, where n and m are the number

of states and measurement vectors, respectively. The initial estimate of state x̂0|0

is generated as a Gaussian random number with mean x0, and initial covariance

P0|0 = diag([1000,1000,1000,100,100,1,500]), where diag represents diagonal matrix.

Hence, we implement the CKF technique over different epidemic models for 200 days

with a sample time of 1 day.

Epidemic parameter: Let us consider that the coronavirus causes pandemics in an

anonymous city with a population of 35 million. Epidemic parameters have been adopted

from [60] and are shown in Table 7.1.

Case N αe α β γe γ µ κ ρ ν Ω

1 32 ×106 0.3 0.13 0.05 10−4 0.08 0.04 0.9 0.8 0.35 0.002
2 35 ×106 2 2 0.05 0.071 0.1 0.032 0.2 0.08 0.35 0.002

Table 7.1: Epidemic parameters values considered.
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7.5.1 Case-1: Vaccinated model validation through real-data of

epidemic outbreak in Delhi caused by SARS-COV-2 virus

Publicly available Covid-19 pandemic data, which provide insights into epidemic

dynamics in Delhi, the capital city of India, have been implemented for simulation-based

research [50][51]. For our simulated modeling, we collected information on per day

infection, recovered, death, and vaccinated compartments. We used these data as

measurements to model our true state model between 17 January 2021 and 26 April 2021.

Please note that the extensive stress on the healthcare system left many without access

to adequate healthcare. As a result, we have more noisy information about the epidemic

outbreak. Hence, we verified the proposed model to be validated with a hundred times

more process noise standard deviation, σx for susceptible, exposed, infected, recovered

from exposed, recovered from infection, passed away, and vaccine inoculation, as

discussed earlier.

Table 7.2: Average % RMSE comparison of the SEIRRPV and SIRV model using
real-data.

Epidemic model I R P V
SEIRRPV 2.09 2.78 19.7 29.20
SIRV 2.60 2.60 nan† 29.42

nan†: %RMSE does not exist for the given compartment.

For evaluating the performances, the matrices root mean square error (RMSE)

and percentage RMSE are considered by taking Mc = 1000 number of Monte-Carlo

simulations, using Eqs. (1.29) and (1.30).

Please note that the true values of compartment populations, i,e. real-data of xk are

collected from [50] and [51]. Subsequently, the RMSE and %RMSE are obtained for

the error between the true compartment population data and the estimated compartment

population x̂k|k. Fig. 7.3 shows that the proposed SEIRRPV model successfully tracks

the Covid-19 spread. Moreover, Fig. 7.4 and Table 7.2 collectively infer that the RMSE

is reduced for the proposed SEIRRPV model in comparison to the SIRV model.
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Figure 7.3: Case-1: Estimates of different compartments in form of population ratio
(a) infected compartment, (b) recovered people from infected compartment, (c)
vaccinated people compartment.

167



17 Feb 19 Mar 18 Apr

0

5

10

15

Time-step (in days)

 I*     I**
 R*   R**
 V*   V**

RM
SE

 (i
n 1

04 )

*, and ** in superscript represent SEIRRPV , and SIRV epidemic model, respectively.

Figure 7.4: Case-1: RMSE based performance comparison between SEIRRPV and SIRV
model

7.5.2 Case-2: Comparison with SIR family models

In the above discussions, we limited the comparison of the proposed SEIRRPV

model with the SIRV model, as the two models commonly include the vaccinated

population. We now extend the comparison of the proposed SEIRRPV model with all

famous existing models under the SIR family, including the SIR, SIRP, SIRV , SEIRP,

and SEIRRP models. In this regard, we compare the percentage RMSEs for all models in

Table 7.3. The table concludes an improved accuracy of the proposed SEIRRPV model

in comparison to the existing models. To ensure that the estimation errors of the proposed

SEIRRPV model for different compartment populations are within acceptable ranges,

we plot the RMSEs of compartment populations obtained using the proposed SEIRRPV

model in Fig. 7.5.

Table 7.3: %RMSE for different models with 1000 Monte-Carlo simulations.

Model S E I Re R P V
SIR 10.57 nan† 1.607 nan† 0.0041 nan† nan†

SIRP 11.06 nan† 1.974 nan† 0.0901 0.0131 nan†

SIRV 5.359 nan† 2.246 nan† 0.0289 nan† 0.00015
SEIRP 45.19 60.57 10.31 nan† 0.0901 0.0131 nan†

SEIRRP 4.15 3.535 0.0765 1.996 0.00017 0.00017nan†

SEIRRPV 0.0020 0.0022 0.0011 0.0004 0.00001 0.000010.00002
nan†:% RMSE does not exist for the given compartment.

For a comprehensive analysis of the pandemic’s persistence, all parameters
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Figure 7.5: Case-2: RMSE of different compartments by SEIRRPV model.

corresponding to the basic reproduction number have been analyzed for sensitivity.

In this regard, we implemented Eqs. (7.16), and (7.17) in Eq. (7.18) to compute the

sensitivity index S for different epidemic parameters.

The Table 7.4 shows the sensitivity of the epidemic parameters, such as αe, α , β ,

µ , κ , ρ , ν and Ω on the epidemic. Sensitive analysis shows that the most important factor

Table 7.4: Sensitive index for different epidemic parameters

Parameter αe α β µ κ ρ ν Ω

S 1.00 0.784 -0.98 -0.63 0.11 -0.28 0.79 -4.27

in containing the epidemic is vaccination rate, followed by infection rate, which shows

no symptoms and recovery rate. The least sensitive parameter is incubation rate. Positive

sensitivity indicates that increases in relevant parameters lead to increases in R0 and vice

versa. Lower αe and higher Ω are necessary constraints for lower R0 values. As a result

of the sensitivity analysis, vaccine rate appears to be more important than the following

different nPIs.

7.6 Discussion

Covid-19 pandemic caused by SARS-COV-2 started in Wuhan city of China

and jolted the entire world within a few months. Its uniqueness is not only its speed

of transmission but also life-threatening. In this article, we estimate the dynamics of

the Covid-19 from the noisy process and measurement model. Process noise is due

to various real-life complex constraints involved in it. So, accurate information about

disease transmission is imperative to strategize correctly. Considering new developments

in vaccination, we focus on the proposed SEIRRPV epidemic model to estimate the
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susceptible, exposed, infected, recovered from exposed, recovered from infected, and

passed away people during this pandemic. In this chapter, we observed the positive

impact of various nPIs, such as social distancing, social awareness, and cleanliness, on

the Covid-19 pandemic. In addition to this, we observed a rapid decline in the infected

population by improving healthcare infrastructure and increasing the mass vaccination

drive, as shown in Table 7.4. We compared the estimation performance of the proposed

SEIRRPV model with the existing SIRV model using the real-data of Delhi and compared

it with the existing SIRV model using CKF-based method. Fig. 7.3, 7.4 and Table 7.2

validated that the proposed SEIRRPV has considerably higher estimation accuracy in

comparison to the existing SIRV models.

The monitoring and analysis of Covid-19 spread using the epidemic models, like

the proposed SEIRRPV model, give an edge in formulating appropriate administrative

strategies for its control. However, for efficient control of its spread, public awareness

is also equally important, and the public must take care of other measures, like social

distancing, use of face-masks, non-pharmaceutical interventions, hand sanitization, etc.,

seriously. In spreading such awareness, the role of print and electronic media has been

appreciated, and we may have similar expectations from the media in the future. It has

been observed that the spread of the first wave of Covid-19 (approximately between April

to July months of 2020) was relatively slower in India when people’s awareness was

considered to be at its best. However, the spread was severely faster in the second wave,

when the media reports frequently highlighted a lack of public precautions.

7.7 Conclusion

An advanced SIR epidemic model named SEIRRPV with the required mathematical

analysis is presented in this chapter. We present uniqueness, positivity, boundedness,

and stability analysis (local and global) for both infection-free and endemic conditions.

Epidemic model parameters functionalities are computed from their sensitivity indices.

A novel CKF technique is implemented on the proposed epidemic model to dynamically

estimate the compartments population. We implemented the proposed model to estimate

the disease transmission in Delhi, between 17 January 2021 to 26 April 2021. The
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simulation study period is important because it witnessed its second wave from March

and stretched until June 2021. Through simulation-based analysis, we conclude that the

proposed SEIRRPV has better performance and also provides additional information

to policy-makers about the people who are infected but non-infectious, improving

the overall efficiency of the model. However, the proposed algorithm does not give

information about the evolution of new variants of Covid-19, which may stimulate

further research. We present a comparative analysis of SIR family’s different epidemic

models. Additionally, we validate the proposed SEIRRPV model provides more accurate

information to the policy-maker to implement the social and clinical strategy with

minimal economic loss. Table 7.3 and Table 7.4, respectively, are the estimation

accuracy of the proposed epidemic model and sensitivity indices for different epidemic

parameters. It concludes that by improving healthcare infrastructure and increasing the

mass vaccination drive, epidemic outbreaks can be contained, i.e., R0 brought below

one.
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Chapter 8

Discussion and Conclusion

8.1 Discussion

The Kalman filter and its nonlinear extension, the Gaussian filter, have become

widely popular mathematical tools for various applications such as target tracking, power

systems, disease transmission monitoring, financial modeling, biomedical diagnosis,

remaining useful-life prediction for industrial equipment, fault diagnosis, prognosis,

etc. Despite the widespread applications of filtering algorithms, the literature lacks a

well-performed filtering method for accurately estimating dynamical state of systems

under various practical environment. This is mainly due to the fact that the existing

filters exhibit significant performance degradation in the presence of irregularities

such as delayed measurements, false data injection (cyber-attack), unknown or varying

statistical noise, and non-Gaussian noise. Even though the linear Kalman filtering

method is optimal for linear systems with Gaussian noises, its performance significantly

deteriorates in the presence of the above said irregularities. Although some extensions of

the nonlinear filtering algorithms are available to address such irregularities marginally,

they are generally insufficient for handling the real-life problems. Therefore, one of the

motivations of this thesis is to develop advanced filtering algorithms for handling various

irregularities.

Beyond the general filtering algorithms, this thesis also focuses on contributing
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towards improving the performance of some practical applications that utilize filtering

algorithms. Under this motivation, this thesis primarily focuses on PSSE algorithms for

improving the performance of power system networks. Moreover, since the duration of

completing the thesis work witnessed the deadly outbreak of Covid-19, as a scientific

responsibility, the author decided to utilize the knowledge of filtering algorithms in fight

against Covid-19. With this motivation, this thesis also utilizes filtering algorithms for

developing an efficient ESE method for effectively monitoring the spread of Covid-19.

In real-life PSSE design applications, traditional Gaussian filters have been

extended with forecasting techniques to compute complex power system network

process models in a generalized function form. Fortunately, existing nonlinear filters

are adequately accurate for general real-life applications, with minimal measurement

irregularities. However, measurement irregularities can severely compromise the

accuracy of filtering algorithms, which limits their practical applicability.

To discuss the contribution of developing ESE methods for efficient monitoring

of Covid-19 spread, it should be mentioned that the ESE methods are composed of a

compartment-based epidemic model, and an advanced estimation method. Thus, this

thesis is motivated to introduce an advanced compartment-based epidemic model and

subsequently, Gaussian filter is implemented to efficiently estimate the compartmental

populations. It should be mentioned that an efficient ESE helps in accurate modeling

of epidemic spread, which further helps in framing efficient administrative policies for

containing the spread of the epidemic, such as the Covid-19.

8.2 Conclusion

• The linear Kalman filter is redesigned to efficiently address the simultaneously

occurring delayed measurements and non-Gaussian noises. It utilizes the maximum

correntropy-based design criterion for handling non-Gaussian noises.

• An advanced nonlinear Gaussian filtering method, abbreviated as GFDF, is

developed for handling cyber-attacks (FDI attacks) and delayed measurements
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simultaneously. The proposed GFDF uses geometric and Bernoulli random

variables to characterize the delay and FDI attack.

• The significance of efficient PSSE methods are well discussed in Chapter 1 and 2 for

efficient and reliable power delivery. With this motivation, Chapter 5 introduced a

new PSSE, the FACQKF-based PSSE method. The proposed FACQKF-based PSSE

method improves the accuracy as compared to the existing PSSE methods, which

are mainly based on the EKF, UKF, and CKF. However, the improved accuracy

comes at the cost of marginally increased computational demand.

• An efficient, computationally effective, and reliable power system state estimator

is essential for stable power distribution with the rise of DERs. In this regard,

Chapter 6 introduces a further advanced Gaussian filter-based PSSE method

named FSMCGF-based PSSE method. In Gaussian filtering, the CKF method is

adopted due to its higher estimation accuracy, stability, and computational storage

requirement. The proposed FSMCCKF-based PSSE method eliminates various

drawbacks of typical PSSE methods, including the ambiguous approximation of

unknown process models, inefficacy in handling non-Gaussian outliers, inefficacy

in handling unknown time-varying noises, and temporal sensor failure.

• We propose a diversified epidemic model, SEIRRPV, which considers various

disease impacting parameters. The model’s existence, uniqueness, boundness,

boundary values, and local and global stability are validated mathematically.

A CKF-based ESE is applied to estimate disease transmission in Delhi from

January to April 2021. Analysis suggests improving healthcare infrastructure and

increasing vaccination efforts can help contain outbreaks.

8.3 Future Research Scope

Following the contributions of this thesis, some future research scopes are as

follows:
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• This thesis, particularly Chapter 3, introduced the concept of simultaneously

handling more than one measurement irregularities, including the delay and

non-Gaussian noises. The future research scope may be to handle more than two

irregularities simultaneously.

• The filtering algorithm designed in Chapter 4 requires some pre-processing of data

to ensure that the FDI attack can be compensated with an appropriate Gaussian PDF.

Such pre-processing ultimately requires various assumptions and approximations,

which often influence the accuracy adversely. In future research, the proposed

method can be extended further to relax the need for such data pre-processing.

• The PSSE algorithm designed in Chapter 5 can be extended further to implement

particle filter based PSSE for distributed networks. Depending on the application,

state dynamics may be complex or unknown. Therefore, machine learning or

deep learning techniques can be useful to identify these dynamics, and the above

solutions can also be applied to unknown dynamics.

• Chapter 6, introduces the concept of simultaneously handling irregularities,

including the noise adaptive and non-Gaussian noises in power systems. The future

research scope may be to handle other irregularities, such as intermittently missing

and delayed measurements.
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Appendix A

Simplifying Eq. (3.23) in terms of Eq.

(3.27)

Let us expand
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1 and
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)D(r∗, j∗)

)
. To expand

(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1, we rewrite W(r∗, j∗) given in Eq. (3.18) by substituting

S(r∗, j∗)|(k) from Eq. (3.16). Then, given ϑ(r∗, j∗) = diag
(
ϑx
(r∗, j∗),ϑ

y
(r∗, j∗)

)
and the

resulting W(r∗, j∗) expression, we obtain
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1 in the form of Eq.

(A.1).

(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1
=
(
(SpT

(r∗, j∗)|(k))
−1ϑyt−1

(r∗, j∗)(S
p
(r∗, j∗)|(k))

−1 +HT
(r∗, j∗)(S

rT

(r∗, j∗)|(k))
−1

ϑyt−1

(r∗, j∗)(S
r
(r∗, j∗)|(k))

−1H(r∗, j∗)

)−1
.

(A.1)

To further simplify Eq. (A.1), let us consider the following notations





A = (SpT

(r∗, j∗)|(k))
−1ϑxt−1

(r∗, j∗)(S
p
(r∗, j∗)|(k))

−1, C =HT
(r∗, j∗)

D = (SrT

(r∗, j∗)|(k))
−1ϑxt−1

(r∗, j∗)(S
r
(r∗, j∗)|(k))

−1, E =H(r∗, j∗)

(A.2)

Considering Woodbury matrix identity, (A + CDE)−1 = A−1 − A−1C(D−1 +

EA−1C)−1
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EA−1, which gives
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1 expression in the form of Eq. (A.3).

(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1
= Sp

(r∗, j∗)|(k)(ϑ
xt−1)−1

(r∗, j∗) SpT

(r∗, j∗)|(k)−Sp
(r∗, j∗)|(k)(ϑ

xt−1)−1

(r∗, j∗) SpT

(r∗, j∗)|(k)

HT
(r∗, j∗)

(
Sr
(r∗, j∗)|(k)(ϑ

yt−1)−1

(r∗, j∗) SrT

(r∗, j∗)|(k)+H(r∗, j∗)S
p
(r∗, j∗)|(k)(ϑ

xt−1)−1

(r∗, j∗) SpT

(r∗, j∗)|(k)H
T
(r∗, j∗)

)−1

H(r∗, j∗)S
p
(r∗, j∗)|(k)(ϑ

xt−1)−1

(r∗, j∗) SpT

(r∗, j∗)|(k).

(A.3)

To obtain WT
(r∗, j∗)ϑ

t−1
(r∗, j∗)D(r∗, j∗), let us rewrite D(r∗, j∗) by substituting S(r∗, j∗)|(k)

from Eq. (3.16) into Eq. (3.17) and expressed as

D(r∗, j∗) =




(Sp
(r∗, j∗)|(k))

−1x̂(r∗, j∗)|(k−1)

(Sp
(r∗, j∗)|(k))

−1(yk −H(r∗, j∗)x̂(r∗, j∗)|(k−1)
)


 . (A.4)

Then, for the resulting expression of D(r∗, j∗), W(r∗, j∗), and ϑt−1
(r∗, j∗), we get WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)D(r∗, j∗)

in the form of Eq. (A.5).

WT
(r∗, j∗)ϑ

t−1
(r∗, j∗)D(r∗, j∗) =(SpT

(r∗, j∗)|(k))
−1ϑxt−1

(r∗, j∗)(S
p
(r∗, j∗)|(k))

−1x̂(r∗, j∗)|(k−1)+HT
(r∗, j∗)(S

rT

(r∗, j∗)|(k))
−1

ϑyt−1

(r∗, j∗)(S
r
(r∗, j∗)|(k))

−1(
ε

y
k|k−1

)
.

(A.5)

To this end, substituting
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)W(r∗, j∗)

)−1 and
(
WT

(r∗, j∗)ϑ
t−1
(r∗, j∗)D(r∗, j∗)

)

from Eqs. (A.3) and (A.5), respectively into Eq. (3.23), we obtain the desired x̂t
(r∗, j∗)|(k−1)

in the form of Eq. (3.27) for K(r∗, j∗), Pt−1
(r∗, j∗)|(k−1), and Rt−1

(r∗, j∗) given in Eqs. (3.28), (3.30),

and (3.31), respectively.
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Appendix B

Simplifying Eq. (6.15) in terms of Eq.

(6.17)

Extending Appendix A for nonlinear system and replacing H, (r∗, j∗), respectively with

non-linear measurement slope Γk, and k−1. Eq. (6.15) is simplified using Eq. (6.21) as

D(r∗, j∗) =




(Sp
(r∗, j∗)|(k))

−1x̂(r∗, j∗)|(k−1)

(Sp
(r∗, j∗)|(k))

−1(εy
k|k−1 +Γkx̂k|k−1

)


 . (B.1)

Subsequently, Appendix A is followed to get Eq. (6.17).
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Appendix C

Analytical steps of filtering

Sample points and Weights:

Compute the deterministic sample points and weights using numerical

approximation method: ξ j and W j ∀i ∈ {1,2, · · · ,Ns}.

Prediction:

• Determine the Cholesky decomposition of initial error covariance

Pk−1|k−1 =Σk−1|k−1Σ
T
k−1|k−1,

where Σk−1|k−1 = chol(Pk−1|k−1, lower)

• Compute the transformed sampling points

ζi,k−1|k−1 =Σk−1|k−1ξ j + x̂k−1|k−1

• Propagate ζi,k−1|k−1 through process model

ζ ∗
i,k−1|k−1 = φk−1(ζi,k−1|k−1).

• Estimate the predicated mean

x̂k|k−1 = ∑
Ns
i=1 W jζ

∗
i,k−1|k−1.

• Compute the predicated error covariance

Pk|k−1 = ∑
Ns
ji=1 W jζ

∗
i,k−1|k−1ζ ∗T

i,k−1|k−1 − x̂k|k−1x̂T
k|k−1 +Qk.
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Update:

• Determine the Cholesky decomposition of predicted error covariance

Pk−1|k =Σk−1|kΣT
k−1|k,

where Σk−1|k = chol(Pk−1|k, lower)

• Compute the transformed sample points

ζi,k|k−1 =Σk|k−1ξ j + x̂k|k−1

• Propagate ζi,k|k−1 through measurement model

ζ ∗
i,k|k−1 = Ψk(ζi,k|k−1)

• Compute the predicted measurement

ŷk|k−1 = ∑
Ns
j=1 W jζ

∗
i,k|k−1

• Compute the innovation error covariance

Pyy
k|k−1 = ∑

Ns
i=1 W jζ

∗
i,k|k−1ζ ∗T

i,k|k−1 − ŷk|k−1ŷT
k|k−1 +Rk

• Compute the cross-covariance

Pxy
k|k−1 = ∑

Ns
i=1 W jζi,k|k−1ζ ∗T

i,k|k−1 − x̂k|k−1ŷT
k|k−1

• Determine the Kalman gain

Kk = Pxy
k|k−1(P

yy
k|k−1)

−1

• Compute the updated estimate of state

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

• Compute the updated error covariance of state

Pk|k = Pk|k−1 −KkPyy
k|k−1KT

k
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Appendix D

Innovation and residual covariance

D.1 Innovation covariance

Using Eqs. (1.1), (1.2), (6.5) and (6.8), the covariance of innovation is expressed as

E[εy
k|k−1ε

yT

k|k−1] = E[(Γkε
x
k|k−1 +Vk)(Γkε

x
k|k−1 +Vk)

T]=ΓkPk|k−1Γ
T
k

+Rk ⇒ Rk = E[εy
k|k−1ε

yT

k|k−1]−ΓkPk|k−1Γ
T
k , (D.1)

where ε
y
k|k−1 and Vk are uncorrelated.

D.2 Residual covariance

Using Eqs. (1.1), (1.2), (6.5) and (6.8) and using basic rules as x̂k|k−1, ε
y
k|k−1 and Vk

are uncorrelated, the simplified terms are :





E
[
Γkε

x
k|kV

T
k

]
=−ΓkE

[
x̂k|kV

T
k
]
=−ΓkE

[(
x̂k|k−1 +Kk

(
Γkε

y
k|k−1 +Vk

))
VT

k

]

=−ΓkE
[
x̂k|k−1V

T
k +KkΓkε

y
k|k−1V

T
k +KkVkV

T
k

]
=−ΓkKkRk,

E
[
Vkε

xT

k|kΓ
T
k

]
= E

[
Γkε

x
k|kV

T
k

]T
=−

(
ΓkKkRk

)T
=−RkKT

k Γ
T
k ,

ΓkPk|kΓ
T
k −ΓkKkRk = Γk

(
I−KkΓk

)
Pk|k−1Γ

T
k −ΓkKkRk = ΓkPk|k−1Γ

T
k −ΓkKkΓk

Pk|k−1Γ
T
k −ΓkKkRk = ΓkPk|k−1Γ

T
k −ΓkPk|k−1Γ

T
k Pyy−1

k|k−1Pyy
k|k−1 = 0,

(D.2)
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thus, the residual covariance is simplified as

E
[
ε

y
k|kε

yT

k|k

]
= E

[(
Γkε

x
k|k +Vk

)(
Γkε

x
k|k +Vk

)T
]
+Rk = ΓkPk|kΓ

T
k +E

[
Γkε

x
k|kV

T
k

]

+E
[
VT

k Γkε
xT

k|k
]
+Rk = ΓkPk|kΓ

T
k −ΓkKkRk −RkKT

k Γ
T
k +Rk = Rk −ΓkPk|kΓ

T
k .

(D.3)
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