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ABSTRACT

For mechanical power transmission, gears play an important role in this
process. It is very incredibly cost-effective and efficient for power
transmission. Gearboxes have a broad multitude of purposes and may be
found in a wide variety of sectors, including the industries workshop,
automobile sector, marine propulsion systems, the aviation sector, and
many more. A malfunction in the gear train can not only lead to large
financial losses but also has the potential to be lethal. Because of this, it is
essential to locate a problem in a gearbox before it results in a breakdown
of catastrophic proportions. Several different modes might cause a gear to
fail, including fatigue, impact, wear, or plastic deformation. The most
common cause of failure in gearing is fatigue. Where the fault is going to
propagate, then the system generates the vibration. Further, gear failure

occurred due to excessive vibration.

Vibration measurement is an effective, non-intrusive, robust, economical
method to monitor machine conditions during start-ups, shutdowns, and
normal operation. Three types of techniques are used in vibration analysis:
time-domain analysis, frequency-domain analysis, and time-frequency
domain analysis. In real situations, a gearbox generates non-stationary
vibration signals. Time-domain and frequency-domain techniques are not
suitable for non-stationary or time-varying signals because these are
amplitude and frequency-modulated signals. Numerous innovative gear
faults diagnosis methods have been developed by researchers. Various time-
frequency techniques such as short-time Fourier transform (STFT), wavelet
transform (WT), Hilbert-Huang transform (HHT), and Wigner-Ville
distribution (WVD), have been employed for the study of non-stationary
signals. Due to limitations in these techniques, the impact has been reduced
in performance. Therefore, we have proposed new techniques that can
automatically diagnose gearbox faults. In those methods, the gear vibrations

signals are decomposed to sub-band signals using flexible analytic wavelet



transform (FAWT), iterative variation mode decomposition (VMD),
Fourier- Bessel series expansion (FBSE)-empirical wavelet transform
(EWT). Various statical and entropy-based features are extracted from all
of the sub-band signals. The Kruskal-Wallis test is used to obtain
statistically meaningful results. Subsequently, these quantitative features
are fed to the different multiclass classifiers like Least-Squares Support
Vector Machine (LS-SVM), random forest, multilayer perceptron, and J48

classifiers.

In the previous work, various faults such as chipped tooth fault, missing
tooth fault, wear, crack, and pitting have been investigated in spur gears
using different classifiers. But micron level of wear and crack fault analysis
has not been studied. Hence, this work is focused on the diagnosis of micron

level of wear and crack faults in gears.

The purpose of this work is too automated gearbox fault diagnosis using

advanced signal processing techniques.

Keywords: Gearbox; Gear fault detection; vibration; non-stationary
signals; feature extraction; flexible analytic wavelet transform (FAWT);
iterative variation mode decomposition (VMD); Fourier- Bessel series
expansion (FBSE)-empirical wavelet transform (EWT); multiclass
classifiers; Least-Squares Support Vector Machine (LS-SVM); random

forest; multilayer perceptron; J48 classifiers.
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Chapter 1

Introduction and Literature Review

In the chapter, automated techniques for gearbox faut diagnosis utilising
advanced signal processing techniques are discussed and presented. Also,
we will go through a detailed evaluation of the previously published work
in the field of gearbox fault diagnostics. In addition, a discussion of the
objectives of the thesis and its scope are included in this chapter. The outline

of the thesis’s structure is laid out at the end.

1.1 Introduction

When it comes to power generation and industrial applications, rotating
machines, which include motors, rotors, bearings, gears, and generators, are
quite substantial components. They serve a broad variety of purposes,
including power generation, the propulsion of machines, and many more.
However, gears play crucial role in any application, they have a chance to
break down with time. The consequences of these shortcomings might
include a reduction in efficiency, an increase in energy consumption, even
catastrophic failure in extreme cases and significant economic losses [1].
Based on the statistics, gearbox faults are responsible for 80% of all failures
that occur in gearbox equipment, and inside the gearbox, gear faults are
responsible for 60% of all failures that occur [2]. To prevent these problems,
it is essential to diagnose gear faults as soon as possible. When it comes to
identifying problems with gear systems, there are many kinds of diagnostic
techniques available. Vibration analysis, acoustic emission condition
monitoring, oil and lubrication analysis, and thermography are the most
popular types of analysis techniques frequently used [3], [4]. Each of these

methods comes with a set of benefits and limitations, and the method that
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proves to be the most effective will be determined by the machine that is

being used in particular situations.

Analysis of vibration is one of the diagnostic techniques that is used most
frequently in the field of gear fault detection. Vibration analysis can be done
using handheld devices or more sophisticated online systems that
continuously monitor the machine. Applications of signal processing were
first developed in the early 1980s for the purpose of analysing vibrations in
gearboxes. Phase modulation was utilised by McFadden et al. [5] for the
early identification of defects in gearboxes, whereas both amplitude and

phase modulation were utilised for the detection of gear fatigue [6].

In the process of diagnosing problems with rotating equipment, oil and
lubrication analysis is another essential approach. It is estimated that the
cleanliness of the oil has a significant impact on the life span of gearboxes,
with a contribution of up to 50% to the increase or decrease in total run-
time [3]. The purpose of this method is to identify any impurities or
indications of wear in the machine by analysing samples of the oil that is
used in the machine. An analysis of the oil (unhealthy lubricants) can show
issues such as excessive wear on gears, damaged bearings, or other
components. S. Sheng [7] proposed some first-hand oil and wear debris
analysis based on testing of full-scale wind turbine gearboxes. Experiments
were carried out using spur gearbox and operating at different load
conditions to perform oil/wear debris analysis [8]. The author studied such
parameters as lubricant film thickness, viscosity, temperature, and their

effects on gear teeth contact.

Thermography is a technique for monitoring the temperature of rotating
equipment that does not require physical touch and makes use of infrared
cameras. The experts can spot difficulties with the machine such as
overheating, problems with the insulation, and bearing wear by analysing

the thermal patterns that are created by the machine. Thermography is



particularly helpful for locating faults in components or places that are
difficult to access, such as those are in locations that are hard to reach. An
ensemble tensor decomposition was developed by J. Song et al.[9] for the
purpose of extracting a weak target signal from infrared thermography
videos for the identification of cracks. The infrared thermography for
condition monitoring tool was described by S. Bagavathiappan et al. [10] as
a method that does not involve physical touch and can be used to monitor

the temperatures of things or processes in real time.

Acoustic analysis, which makes use of sound waves to identify variations,
is another method for diagnosing defects in rotating machinery, noisy
engines, and equipments. T. Nowakowski et al. [11] proposed a system for
monitoring the condition of tram gearboxes that is based on trackside
acoustic data. Experimental research conducted by E. Caso et al. [12] on

acoustic emissions from active surface deterioration in planetary gears.

In conclusion, it is essential to detect problems with gear machines to
ensure the reliable operation of this equipment and to prevent failures that
might result in expensive repairs. To determine the reliability of machinery
over an extended period, it is necessary to perform periodic preventative

maintenance on it.

1.2 Literature review

A literature review is done to become familiar with vibration analysis based
advanced signal processing techniques, different types of faults in gear, and
classifiers involved in gear fault diagnosis (GFD). The vibration analysis
has been done by using various advanced signal processing techniques.
Also, the literature survey includes the different methods applicable to

GFD.

1.2.1 Gear fault diagnosis using vibration signals



The process of fault diagnosis using vibration signals typically involves
several steps:

1. Signal acquisition: Vibration signals are acquired using accelerometers
or other sensors mounted on the gear system. Location to mounting the
sensor is affected the quality of actual signal of equipment, need to locate a
place in scientific manner. The signals can be collected continuously or
periodically depending on the monitoring strategy.

2. Pre-processing: The vibration data are pre-processed to get remove any
noise or distortions that can mess up the analysis later on. Filtering,
resampling, decomposition, and data segmentation are some of the more

common pre-processing procedures for signals that are utilised.

3. Feature extraction: The vibration signal is analysed to extract features
that are indicative of gear faults. After decomposing the signals, features are
extracted from them, like time-domain statistics, frequency-domain

indicators, and time-frequency domain parameters.

4. Fault diagnosis: From the extracted features, first identify the significant
features. These significant features are fed to various techniques such as
rule-based systems, statistical analysis, and machine learning algorithms to
diagnose gear faults. The diagnosis can be binary (healthy vs. faulty) or
multi-class (identifying specific fault types), which has been used

frequently.

T. Wang et al.[13] shown the guideline to working in fields of vibration-
based condition monitoring and fault detection of wind turbine planetary
gearbox. To defect identification in planetary gearboxes, X. Yu et al.[14]
proposed an analytical vibration signal model as well as signature analysis
in the resonance zone. The theoretical derivations and proposed approach
are validated in this study using numerical simulation and laboratory
experiments. V. Gunasegaran, and V.Muralidharan [15] proposed vibration

signals based gear fault diagnosis to obtained from a rotating spur gear



system with an accelerometer, and the statistical characteristics are

extracted for classification.

1.2.2 Vibration signal analysis techniques

A gearbox is going to generate non-stationary vibration signals while
operating in real-life situations [16]. Vibration measurement is an effective,
non-intrusive, robust, economical method to monitor machine condition
during start-ups, shutdowns, and normal operation. The following
are vibration signal analysis techniques that are applied for the diagnosis of

gear problems:

1. Time-domain analysis: This technique provides information about what
the signal values are present with respect to time. This involves analysing
the vibration signal in the time domain to extract statistical features. This
statistical feature is called a time-domain indicator, such as mean, standard
deviation, skewness, kurtosis, energy ratio, time synchronous averaging
(TSA) etc. These features can provide insights into the amplitude and
distribution of the vibration signal, which can be indicative of gear faults
such as tooth wear and cracks. The drawback of this technique is that it
leaves out information about the frequency. Sharma et al. [17] presented
enhanced TSA to increase signal-to-noise ratio (SNR), and statistical
characteristics were applied to identify gear crack under fluctuating profiles
of speed. RMS and peak values of vibration signals were utilised by Igba et
al. [18] for the purpose of condition monitoring of wind turbine gearboxes.
If the root mean square (RMS) and peak values are used appropriately, it
has been shown that they can serve as useful indicators of the gearbox’s
health. Maximum kurtosis property-based fault diagnosis method has been
proposed by W. Youssef [19]. Also, suggested that this feature is very

effective for impulsive nature of the gear tooth spall effect.

2. Frequency-domain analysis: It provides information like the

frequencies present in the signal. This involves analysing the vibration
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signal in the frequency domain using various techniques. Frequency-
domain features can provide insights into the spectral content of the
vibration signal, which can indicate gear faults such as pitting and
misalignment. Frequency-domain indicators are side band level factor
(SLF), side band index, correlated kurtosis, mean frequency, root mean
frequency, spectral kurtosis, etc. For example, the gear mesh frequency and
its harmonics are important features in diagnosing gear faults. The
drawback of this technique is that it loses time information. Y. Wang et
al.[20] showed the details of spectral kurtosis for fault detection, diagnosis,
and prognostics of rotating machines. Also highlights the spectral kurtosis
(SK) approach, which expands the idea of kurtosis to that of a function of
frequency that indicates how the impulsiveness of a signal. The spectral
kurtosis-based approach was proposed by T. Barszcz et al.[21] as a

technique to diagnose tooth cracking in the planetary gear of a wind turbine.

3. Time-frequency domain analysis: The primary objective behind time-
frequency (TF) domain analysis is to develop a joint function that can
explain the characteristics of signals on a time-frequency plan. The
limitations of the above approaches are overcome by using this TF analysis
method. This approach has been growing in prominence in the field of gear
problem diagnostics over the past two decades. TF techniques [22] are
short-time Fourier transform (STFT), the wavelet transform (WT), the
Hilbert-Huang transform (HHT), the Wigner-Ville distribution (WVD), the
empirical mode decomposition (EMD), wavelet packet transform (WPT),
spectrograms and wavelet scalograms etc. TF domain indicators can
provide insights into the dynamic behaviour of the gear system, such as
dynamic misalignment, looseness, and other issues. Those indicators are
entropy-based indicators, such as Shannon entropy, cross-correntropy, log
energy entropy, Stein’s unbiased risk estimate entropy, Shannon entropy,
norm entropy, threshold entropy, and NP4 (fourth order normalization

power), etc. Y. Wei et al [23] reviewed TF techniques called Early Fault



Diagnosis (EFD) approaches for fault diagnosis of rotating machinery like
gears, rotors, and bearings. A. Kumar et al. [24] reviewed the latest and most
widely used diagnostic methods and their developments in vibration-based

condition monitoring for gear defects.
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Figure 1. 1 A chirp signal can be described in all three domains: (a) in
terms of time, (b) in terms of frequency, and (c) in terms of both time and

frequency [22].

In addition to these techniques, machine learning algorithms such as neural
networks and support vector machines can be used for gear fault diagnosis
using vibration signals. These algorithms can learn the complex
relationships between vibration signal features and gear faults and provide

accurate and automated diagnosis.

1.2.3 Advanced signal processing techniques

Advanced signal processing methods are employed to extract more complex
and hidden features from signals, which can be used to identify and fix the
problems in gear machinery more accurately and reliably. Some of the

advanced signal processing methods are described below. For more detailed



TF analysis based advanced signal processing technique are referred from

[22].

1. Wavelet analysis: Morlet and Grossmam, et al., introduced the WT
in the 1980s. Wavelet analysis is a TF analysis technique that can
provide high-resolution time-frequency representations of non-
stationary signals such as sound and vibration signals [25]. Wavelet
based TF analysis techniques are continuous wavelet transform
(CWT), discrete wavelet transform (DWT), WPT, etc.

2. Wigner-Ville Distribution: In 1932, Wigner published the WVD
in the context of the study of quantum physics. Ville later extended
the WVD to the field of signal processing. The time-frequency
distribution that provides a high-resolution representation of the
time-varying spectral content of a signal [22], [26].

3. Hilbert-Huang transform: The HHT is a technique for signal
processing that may give a TF analysis of non-stationary and
nonlinear data such as vibration signals. HHT is a useful tool for
locating and diagnosing problems, such as the wear and tear on gear
teeth and cracks [27], [28].

4. Cyclostationary analysis: This technique is for signal processing
that may give spectral analysis of cyclostationary signals such as
vibration signals. It may be utilised to detect and diagnose problems
such gear pitting, wear, and misalignment [29], [30].

5. Empirical mode decomposition: EMD is a technique for signal
processing that may deconstruct a signal into a sequence of intrinsic
mode functions (IMFs). These IMFs can be used to locate and
diagnose defects in rotating gear. EMD may be utilised to locate
and diagnose problems such as gear tooth wear and cracks in
mechanical components [31], [32].

6. Variational mode decomposition:  Variational = Mode

Decomposition (VMD) is a signal processing technique used to



decompose a signal into a finite number of modes. It achieves this
by minimizing the cross-term energy between modes while
preserving the intrinsic mode properties. VMD iteratively separates
signal components with distinct frequencies, providing a spectral
decomposition useful in analyzing non-stationary signals.
In general, Time-domain and frequency-domain techniques are not suitable
for non-stationary or time-varying signals because these are amplitude and
frequency modulated signals [22]. Various TF techniques such as STFT,
WT, HHT, and WVD, have been employed for the study of non-stationary
signals [22]. Due to limitations in these techniques, the impact has been
reduced in performance. STFT has a problem of selection of size and type
of windowing, and WT has a problem of selecting mother wavelet and the
number of levels [33]. The CWT method would be extremely useful for the
identification of gear faults. There are several studies, where a combination
of different mother wavelets and classifiers were used for the fault diagnosis
of gearboxes [34], [35], [36]. Disadvantage of CWT is Lower computation
efficiency [33]. It was further found that the efficiency of the CWT can be
improved by using the dyadic dilation and translation parameter [37], giving
rise to a new technique, which is commonly known as the DWT. The DWT-
based techniques with the addition of different classifiers are now widely
used for fault diagnosis of gearboxes [38], [39], [40]. However, there are a
few inevitable limitations single fixed wavelet basis of DWT [33], [41]. For
example, for the enhancement of DWT, and WPT is being used to deduce
and discern the high-frequency region for transient components [42]. But
the limitation of WPT and DWT is the single fixed wavelet basis
subsampling, which reduces the time-based resolution. Y. Hong et al. [43]
combined the Hilbert spectrum based on the maximal overlap discrete WPT
to analyze the gear fault vibration signals. Y. Wang et al. [44] proposed the
dual-tree complex wavelet transform (DTCWT) based signal denoising
method for fault diagnosis rotating machinery. The DTCWT was also used

for the analysis of the gearbox vibration signals [45], and biomedical signals



[46]. Cai et al. [47] presented a new approach by sparsity-enabled signal
decomposition using the tunable Q-factor wavelet transform (TQWT). The
authors also verified their approach by using both the simulated and
practical gearbox vibration signals. Compared to the other WT, the TQWT
was found to adjust the Q-factor and the redundancy. However, for the
selection-based Q-factor and the redundancy, the TQWT could not provide
the proper selection of the dilation factor [48]. The flexible analytic wavelet
transform (FAWT) was initially introduced by 1. Bayram [48]. The FAWT
is a relatively new concept, which provides an easy way to control
redundancy, dilation factor, and Q-factor. Although FAWT was mainly
used in biomedical signals [49], [50], [51] its use has not been explored for

mechanical signals.

In contrast, the WVD has higher resolution in time-frequency domain, but
a couple of cross terms appear in the distribution. The HHT utilizes EMD
for the signal analysis [52]. EMD is a powerful technique widely used for
condition monitoring of a gearbox [31]. It decomposes a time domain signal
into a set of oscillatory modes. After decomposition, each signal becomes a
monocomponent signal called as IMFs [31]. A. Parey et al. [32] applied
EMD on simulated torsional vibration signal from a spur gear pair and
demonstrated that the kurtosis of IMF allows detection of the fault before
the same statistical parameter calculated on the original signal. C. Junsheng
et al. [53] proposed that IMFs defined by the energy difference tracking
method reflect the natural and realistic information of the analyzed signal.
EMD has been used for gear and other faults analysis by many other
researchers [54], [55], [56], [57], [58], [59], [60], [61]. However, EMD
lacks a mathematical theory and has a problem of mode mixing and end
effects, sensitivity to noise and sampling, high computational complexity,
and requires a large data series. Over the past decade, researchers have
resolved a few problems of EMD using required amendments [62], [63],
[64],[65], [66] and some work may be found using a modified EMD method
showing good results [67], [68] [69]. But still, amendments are required to
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reduce the limitations. Recently, a new emerging technique known as VMD
was introduced by K. Dragomiretskiy and D. Zosso [70]. VMD is a

multiresolution technique that overcomes the limitations of EMD [16], [70].

For the investigation of non-stationary signals, J. Gilles [71] developed an
innovative constructing approach called the EWT. The authors [72]
conducted more research on the EWT method to determine its applicability
with multivariate signals, also they presented a multivariate TF formulation
that was based on the EWT method. The EWT performs substantially better
than the ensemble empirical mode decomposition (EEMD) and the EMD
when it comes to estimating mode, and it also greatly cuts down the amount
of time needed for computation [73]. EWT is a method of adaptive
decomposition that eliminates narrow-band frequency bands within the
examined signal depending on the frequency details of the spectrum. After
locating the boundary frequencies in the fourier transform (FT) based
spectrum, it next applies adaptive wavelet-based filters to the signals to
deconstruct them [72]. However, EWT is unable to accurately depict
frequency components that are tightly spaced. Challenges similar to those
experienced by the EWT approach have been found in the suggested
method. A limited work has been reported for the fault detection of gear
considering EWT, A. Kumar et al. [74] applied EWT technique over
polymer gear to detect faults, but they have not worked in enhancing the
EWT performance with combination of other filter methods such Fourier-
Bessel series expansion (FBSE). In this study, the established EWT
procedure is revised using the FBSE, so newly method is called Fourier-
Bessel series expansion (FBSE)-empirical wavelet transform. It has been
noted that the non-stationary class of the Bessel function bases in the FBSE
[75] in nature. Further, it is what makes the FBSE coefficients effective for

the spectrum analysis of non-stationary signals.

1.2.4 Gear and gear faults
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A gear is part of a rotating machine; it has teeth that connect with other
toothed parts and transfer the torque. It's called a gearbox when there are
two or more gears functioning together. There are several types of gears
used in mechanical systems. Listed are spur gears, helical gears, bevel gears,
worm gears, rack and pinion gears, planetary gears, and hypoid gears. Each
gear has its own specific requirements and strength. For this research work,
bevel gears are considered. There are many applications of bevel gears in
mechanical systems, including differential drives, power transmission
systems of helicopters and aircraft, lifts to flood gates, industrial plants, and
marine transmissions. On the other hand, gears are subject to wear, damage,
and collapse over time as a result of various factors such as high stress
concentration, material fatigue, misalignment, lubrication failure, and
overload situations. This can result in expensive downtime, malfunctioning
machinery, and safety issues. In Fig. 1.2, the different types of faults in

gears are shown.

Scuffing defect Normal gear, gear with a missing tooth and gear with a

chipped tooth

~

Figure 1. 2 Various type of gear faults. [Ref: Google images]

For this research, mainly wear and crack as faults in the gear systems have
been focused. Wear is a persistent service condition that can be seen in a
wide range of engineering applications. It can have significant financial and

technical consequences. It has been estimated that the cost of abrasive wear
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can range anywhere from 1-4% of the gross national product of an
industrialised nation [76]. This figure comes from an analysis of economic
data. It is also observed from Fig. 1.3 that the loss of usefulness of material
objects due to wear is 55% [76]. It is too high; it seems necessary to analyse
wear faults for gear fault diagnosis. Resercher frequently investigated
various faults in the fault diagnosis of gearboxes, such as a chipped tooth, a
missing tooth, a crack at the root, and face wear [34], [35], [38], [39], [77],
[78] in spur gears [79]. Micron levels of wear fault analysis has not been
studied. Hence, this work is focused on the diagnosis of micron level of

wear and varying levels of crack faults in bevel gears.

Loss of usefulness of material objects

Obsolescence Breakage Surface deterioration
(13%) (13%) (70%)
|
| |
Wear (553%) Corrosion (15%)
|
| | | |
Adhestve Abrasive Corrosive Surface
Wear (25%) Wear (20%) Wear (2%) fatigue (8%)

Figure 1. 3 Material things' causes of loss of uselessness and their

percentage estimate of the economic value.

1.2.5 Selection of features and classifiers

Pattern detection and collection of information-based knowledge is needed
for proper selection of features. In this way, Refs. [80], [81], [35] has shown
that statistically based features are suitable for the identification of bevel
gear vibration signal analysis. Therefore, in this work statistical based
features such as kurtosis, standard deviation, skewness, root mean square,
create factor were used for feature extraction. The Kruskal-Wallis test is

used for identifying significant features from a given set of samples and its
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use as an input parameter for classification [50]. The non-stationary
characteristics of a signal create an inferior condition of gear vibration
signals by changing the frequency component during the operation [82].
Hence, it is very difficult to analyze such signals during the faulty condition.
Machine learning based fault detection provides a better solution in this
regard [82]. Over the last decade, researchers have frequently used a
classifier to improve the performance of the applied signal processing
methods for fault diagnosis.

Based on machine learning method such as artificial neural network (ANN),
support vector machine (SVM), least-squares support vector machine (LS-
SVM), genetic algorithms (GA), fuzzy logic, Bayesian networks, random
forest, multilayer perceptron and decision tree are used as a classification
tool for weak fault detection and health monitoring of gearbox [35], [64],
[67], [68], [69], [74], [79], [82], [83].

SVM overshoots the problem of risk minimization [81]. Muralidharan et al.
[82] reported that decision tree algorithm-based classification provided
better accuracy for fault detection of the gearbox. It was further found that
the multi-class classification via LS-SVM can produce good results as
compared to other classifiers, such as SVM, and K-nearest neighbor (KNN)
[84], [85].

Therefore, there is ambiguity about the performance of the classifier for
gear fault analysis. To resolve this issue a comparative study of classifiers
such as LS-SVM, random forest, J48, and multilayer perceptron was

performed in this work.

1.2.6 Summary of the literature
According to the findings of the aforementioned literature review, which is
mainly based on advanced signal processing techniques, gear faults, feature

selection, and classifiers, it is showing a new era for working on gear fault

diagnoses.
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The literature review has revealed that the performance of advanced signal
processing techniques are reliable for fault detection in gear systems.
FAWT is a new concept, and this methodology overcomes the limitations
of other wavelets. The emerging properties of this methodology are that it
provides an easy way to control redundancy, dilation factor, and Q-factor.
Mostly, this method has been applied to only biomedical signals. So, it is
acceptable for further work. On the other hand, EMD lacks a mathematical
theory, has issues with mode mixing and end effects, is sensitive to noise
and sampling, has high computational complexity, and it requires huge data
series. The limitations of EMD are circumvented with the multiresolution
approach known as VMD. As a result, it gets included in the new work. The
EWT cannot correctly show frequency components that are closely spaced
due to this limitation. It has been pointed out that the FBSE structure may
be found in the non-stationary class of the Bessel function. In addition, it is
what makes the FBSE coefficients useful for the investigation of the
spectrum of non-stationary signals. Therefore, the application of these two
methods together has a very positive effect when it comes to resolving the
issue of gear problems. From the literature, it has been observed that
statistically and entropy-based features are suitable for the identification of
bevel gear vibration signal analysis. Therefore, in this work statistical based
features such as kurtosis, standard deviation, skewness, root mean square,
create factor, and entropy are used for feature extraction. Literature has
shown the classifier’s reliability in detecting gear issues, but it remains
uncertain. However, some compared-based strategies have been
incorporated to see which one is the most effective in this condition: the

random forest, the J48, and the multilayer perceptron.

1.3 Motivation

This thesis aims to explore and evaluate the effectiveness of various
advanced signal processing techniques for gearbox fault diagnosis,

including machine learning, and other artificial intelligence-based
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approaches. The research will investigate the performance parameters
(accuracy, sensitivity, specificity, etc.) of these techniques in time domain

signals and demonstrate their potential to improve gearbox fault diagnosis.

The FAWT is a relatively new concept, which provides an easy way to
control redundancy, dilation factor, and Q-factor. These features were
missing in the other WT [48], [49] and hence cannot help to find important
properties, such as flexible time-frequency plane, better shift-invariance,
and tunable oscillatory for weak fault detection of mechanical signature
[86]. Based on such remarkable properties of FAWT signal processing
technique applied to micron level wear in bevel gears signals. Further,
entropy-based features are extracted from all of the sub-band signals. The
Kruskal-Wallis test is used to obtain statistically meaningful results.
Subsequently, these quantitative features are fed to LS-SVM. After that, an
investigation of the performance parameter and a comparative study has
been done with previously published methods. For this work, micron levels
of wear bevel gears are used. Wear is a persistent service condition in many
engineering applications with important economic and technical
consequences. In terms of economics, the cost of abrasive wear has been
estimated as ranging from up to 4% of the gross national product of an
industrialized nation [76]. The micron levels of wear are difficult to
diagnose in the gear, which encouraged further addition in work. It has been
observed that the FAWT based methodology has given the best

performance compared to the existing methodologies.

Researchers use EMD to analyse gear faults and other defects [54], [55],
[56], [57], [58], [99], [60], [61]. EMD lacks the mathematical theory and
has a problem with mode mixing and end effects, sensitivity to noise and
sampling, high computational complexity, and requires a large data series.
K. Dragomiretskiy and D. Zosso presented a novel method that goes by the
name VMD [70]. It is a multiresolution technique that overcomes the

limitations of EMD [16]. It is similar to EMD in structure, but a new
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approach based on constrained optimization makes it a more influential
technique [16]. It was reported that VMD provided better results as
compared to other existing techniques [16], [80], [87]. This technique is also
used in speech signals [88], [89], and yet only a few works have been
explored for mechanical signals. Iterative VMD has been used to improve
the accuracy of signal processing algorithms, especially in cases where the

data is noisy. Hence, it is taken up for study.

In the study, the FBSE-EWT technique was used for the automated
classification of gearbox fault diagnosis. @~ EWT 1is an adaptive
decomposition approach that extracts narrow-band frequency components
from the analysed signal depending on the frequency information richness
in the signal spectrum. After locating the boundary frequencies in the FT
based spectrum, it next applies adaptive wavelet-based filters to the signals
to decompose them. However, EWT is unable to accurately depict
frequency components that are tightly spaced. Challenges similar to those
experienced by the EWT approach have been found in the suggested
method. In this study, the established EWT procedure is revised using the
FBSE. It has been noted that the non-stationary nature of the Bessel function
bases in the FBSE [75] is what makes the FBSE coefficients effective for

the spectral analysis of non-stationary signals.

A comparative study is a useful way to learn more about methods, figure
out how well they work, make well-informed decisions, and find new
opportunities. But it is important to figure out which methods give the most
accurate classifications. The method demonstrated its effectiveness based
on the efficacy of its classification. Therefore, it is necessary to conduct an

analysis of the recommended approaches side by side.

1.4 Objectives and scope of the present work

To attain these objectives, the following studies have been carried out:
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e To study the automated gearbox fault diagnosis using entropy-based
features in the FAWT domain.

e To study the automated gear fault detection of micron level wear in
bevel gears using VMD.

e To study the FBSE-EWT technique used for automated classification of
gearbox fault diagnosis.

e A comparative study between the proposed advanced signal processing

techniques.

1.5 Proposed outline of the thesis

This section offers an overview of the research work that was completed for
the thesis. In addition to this, it discusses the most important findings and
outcomes of the research study.

Chapter 1 covers the research that addresses the introduction and provides
a listing of the studies that have been carried out in the past decades to
developing an automated method for diagnosing faults with gearboxes by
employing the use of advanced signal processing techniques. In this chapter,
we will also talk about the objectives and the overall scope of the thesis that
is now being presented.

Chapter 2 presents the vibration-based technique to automate bevel gear
wear fault diagnosis is presented. A flexible analytic wavelet transform
method was used to decompose the bevel gear wear signal into sub-band
signals. Various entropies were used for feature extraction from all of the
sub-band signals. The Kruskal-Wallis test was also used to obtain
statistically meaningful results. Subsequently, these quantitative features
were fed to the LS-SVM classifier. These methodologies are found to
produce the most accurate results by using the log energy entropy-based
multi-class LS-SVM classifier and the radial basis function (RBF) kernel
function. The results obtained here are compared with the previous results

obtained by different existing methods.
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Chapter 3 aims to automate the fault diagnosis of gears having a level of
wear fault at micron using VMD. VMD has been applied iteratively with
specific input parameters. The OCs of gear signals are then used to evaluate
features such as kurtosis, skewness, standard deviation, root mean square,
and crest factor. Statistically significant features are decided using the
Kruskal-Wallis statistical test to improve the realization. These statistically
significant features are fed to all three classifiers random forest, multilayer
perceptron, and J48. The key benefit of the proposed technique is that it can
identify wear gear faults automatically with high accuracy.

Chapter 4 utilized FBSE as the basis for an EWT, a novel automated
technique has been proposed. The existing EWT is to be reformed using the
FBSE method to increase the frequency resolution. A comparative study
has been done between existing EWT and proposed a novel methodology
FBSE-EWT. It has been observed that FBSE-EWT with a random forest
classifier shows better gear fault detection performance as compared to
existing EWT.

Chapter 5 presents a comparative study carried out between the proposed
methodology. In addition, it is of the utmost significance to carry out
comparative research to establish which diagnostic approaches offer the
most accurate results for gear problems. Micron level of wear gear signals
with different faults has been decomposed using the FAWT, iterative VMD,
and FBSE-EWT signal processing methods. It has been observed from the
comparative study, FAWT-based methodology exhibits high accuracy
using a random forest classifier with combined kurtosis, skewness, standard

deviation, and RMS features.

Chapter 6 includes the conclusion that may be drawn from the thesis
throughout its entirety. In the last part of the thesis, we will discuss the

potential reach of the study in the future.
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Chapter 2

Automated gearbox fault diagnosis using
Entropy-Based features in Flexible analytic

wavelet transform domain

In this chapter, a vibration-based technique to automate the bevel gear wear
fault diagnosis. It is thus expected that our novel systematic and procedural
analysis would help to accurately identify multi-class gearbox faults. A
flexible analytic wavelet transform method was used to decompose the
bevel gear wear signal into sub-band signals. Various entropies, such as
cross-correntropy, log energy entropy, Stein’s unbiased risk estimate
entropy, Shannon entropy, norm entropy, and threshold entropy were used
for feature extraction from all of the sub-band signals. The Kruskal-Wallis
test was also used to obtain statistically meaningful results. Subsequently,
these quantitative features were fed to the LS-SVM classifier. These
methodologies are found to produce the most accurate results by using the
log energy entropy-based multi-class LS-SVM classifier and the RBF
kernel function. The results obtained here are compared with the previous
results obtained by different methods, such as the CWT, DWT, WPT,
DTCWT, and TQWT.

2.1 Introduction

Fault diagnosis of the gearboxes is very important to maintain the efficacy
of the rotary systems. The gearbox failure may lead to an increase in
downtime and production loss [90]. Hence, effective and reliable working

gearboxes are needed for regular health monitoring and controlling of the
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excessive vibration of the system [91]. In this chapter, the vibration analysis
is performed using FAWT technique. The FAWT was initially introduced
by I. Bayram [48]. The FAWT is a relatively new concept, which provides
an easy way to control redundancy, dilation factor, and Q-factor. These
features were missing in the DWT [48], [49] and hence cannot help to find
important properties, such as flexible TF plane, better shift-invariance, and
tunable oscillatory for weak fault detection of mechanical signature [86]. It
was found that the FAWT based LS-SVM with Radial Basis Function
(RBF), and other kernels classifier with 10-fold cross-validation methods,
can provide better results than those of other existing techniques [49], [50].
Although FAWT was mainly applied in biomedical signals [49], [50], [51],
its use has not been explored for mechanical signals to address different
faults, that are frequently reported in fault diagnosis of gearboxes, such as
a chipped tooth, missing tooth, crack at root, and face wear [34], [35], [38],
[39], [77], [78] in spur gears [79]. It was found that the multi-class
classification using the LS-SVM is capable of producing good results when

compared to other classifiers such as the SVM and the KNN [84], [85].

To address these shortcomings, a new fault diagnosis method is proposed,
based on the FAWT. In this work, the FAWT technique with ten levels of
decompositions by employing the LS-SVM classifier for classifying the
multi-classes of gear signals and to address different faults of the bevel
gearbox has been used. In doing so, vibration signals of healthy bevel gear,
gear with different levels of wear tooth faults were acquired for gear fault
detection. The significance of this work is to automate the gear fault
diagnosis using entropy-based features in the FAWT domain. It is thus
expected that our novel systematic and procedural analysis would help to

accurately identify multi-class gearbox faults.

2.2 Proposed methodology

In this section, the steps in the proposed methodology are illustrated in Fig.

2.1. The proposed methodology is based on the FAWT technique. It
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decomposes the signals into the nth level of sub-bands with different
frequency scales. In this proposed methodology, gear signals under
different wear fault conditions were acquired from the bevel gear test setup.
The acquired signals were then decomposed into various sub-bands using
the FAWT technique. Subsequently, entropy-based features were extracted
for each band. The Kruskal-Wallis test was performed on the entropy-based
features to obtain statistically meaningful results [50]. Consequently,
classification of the fault was carried out by employing the multi-class LS-

SVM classifier.

Acquire bevel gear vibration signals for different wear levels

W
Flexible analytic wavelet tra.ﬂ%fnml (FAWT)
|

h

Sub-band signals

Entropy features

b

Use Kruskal-Wallis test to obtain
statistically significant features

A
LS-SVM multiclass clazsifier

Healthy Incipient Shight wear Moderate Severe wear
class wear tooth tooth class wear tooth tooth class

class class
Figure 2. 1 Block diagram of the proposed method
2.2.1. Flexible Analytic Wavelet Transform

The FAWT was formed by an iterative filter bank (IFB) of one low pass

and two high pass channels. Two high-pass channels were utilized to
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analyze the positive-negative frequency, and one low pass channel was used
to analyze the low-pass frequency [49], [50]. Due to this remarkable
property of positive and negative frequency separation, the FAWT helped
to select sampling rates arbitrarily in high-pass channels [49], [50], [51]. As
a result, the redundancy, dilation factor, and Q-factor were controlled

flexibly by using the Hilbert transform pairs. The frequency response of the

low-pass channel can be defined by equation (1), where H(w) refers to the

frequency response of the scaling function [19-22].

Jab, W <w,
\/EHL(:__V::))} w, Sw<w, .
H(w)= T (1

where parameters a and b control the sampling rate of the low-pass channel.

The frequency response of the high-pass channel can be defined by equation
(2), where the G(W) denotes the frequency response of the analytic wavelet

function [48], [49], [50], [51].
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where C and d4 are the parameters that control the sampling rate of high-

pass channels.

The W; and w, denote the stopband, and passband frequencies of the low-

pass filter. Also, other parameters can be written as [48], [49], [50], [51]:
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s and ¢ are the positive constants.
Following conditions (equations 4 and 5) are needed for reconstruction of

the filter bank in the FAWT,

|0(z—w)[ +o(w)[ =1 ()
(1 —%j <p< % (5)
Redundancy is expressed by equation (6) [48], [49],
__c /d (6)
1—a/b

o -factor is expressed by equation (7) [48], [49],
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0== (7)

For the analysis of gear vibration signals, the FAWT provides the facility to
use the adjustable parameter for controlling the quality factor, dilation
factor, and redundancy. For the implementation of the FAWT, a toolbox

based on MATLAB was employed [92].

2.2.2 Entropy-based features

Entropy is a quantitative measure of the degree of “disorder” of the system
[93]. According to the information theory, it provides information about the
system in a more general probability distribution [51], [94]. Evaluations of
several entropies were carried out here, which are defined in the next
subsections.

2.2.2.1 Cross-correntropy
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The cross-correntropy can be used to estimate the similarity of two random

variables. Mathematically, it can be expressed as [50],
1 N
XN,U(C’D)ZN;kG(Ui_V[) (8)

where C and D are random variables and N represents the number of

N
i=1

samples mention by (U,,7;)" .

The Gaussian kernel &, (U, -V;) can be defined as,

k, (U, —V,-)=exP(——”Ui2_lz/i" ] ©)

o

Eq. (9), o =0.51s used to control the width of the kernel parameter.
2.2.2.2 Log-energy entropy
The degree of complexity in signals is assessed using log energy entropy

[50]. It can be expressed as [50], [93],
N

ELgEn = Zlog(xf) (10)
i=1

where log (0) = 0, N represents the number of samples, and x; is the
coefficient of signal x.

2.2.2.3 Stein’s Unbiased Risk Estimate entropy (SURE entropy)
SURE, entropy provides the information of a signal which shows the

accurate representation. It can be defined as [50], [93],

Ey = N—#{i such that |xl.|£v}+2min(xi2,v2) (11)

where N represents the number of samples, x; is the coefficient of signal x,
and v is the threshold.

2.2.2.4 Shannon entropy

The uncertainty about the event is measured by Shannon entropy. It
measures the data and flat probability distribution with high entropy value.
But, the data with narrow and peaked distribution has low entropy values

[93], [94]. The Shannon entropy can be expressed as [50], [93],

Eg = _Z X log(xi2> (12)
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where x;is the coefficient of signal x.

2.2.2.5 Norm entropy
Norm entropy provides the power or energy content of a signal. It can be

defined as [93],

14

(13)
where N represents the number of samples, x; is the coefficient of

signal x, and v is the threshold.

2.2.2.6 Threshold entropy

The threshold entropy of a signal is expressed as [93],

L, if|x|>v, and
14
Ly = (14)
0, elsewhere

where x; is the coefficient of signal x and v is the threshold.
2.2.3 Kruskal-Wallis statistical test

The Kruskal-Wallis test (1952) [95] is based on a nonparametric approach
to the one-way analysis of variance (ANOVA). This test provides a better
statistically significant difference between two more classes for given
features. The statistically significant difference was measured by using
probability (p) computation. If p < 0.05 then it is considered statistically
significant difference [50]. The maximum differentiation of features
between the classes is based on the minimum p-value [50]. The Kruskal-

Wallis statistical test was performed using software MATLAB in the

present work. The test statistic (S) is calculated using the following formula:

S:[ﬁzﬂ)iz}%(oﬁq) (13)

i=1 Ol'

where W represents the sum of the rankings of each of the samples, O1is the

total sample size and o is the size of each sample, & is the number of samples.
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2.2.4 Least Square SVM classifier

The statistical learning theory was used to construct the SVM classifier
[96]. It was utilized to classify the patterns [97]. The multi-class
classification task was solved by dividing M classes into L binary
classification tasks. For classification, “one vs. all” and “one vs. one”
coding algorithms were used to represent the output of the classifier [85]. It
was further simplified with the least-squares formulation version of SVM
[78]. It can be defined as follows [50], [S1] [97].
y(m):sign{iaiyij(m,mi)+b} (16)
P
In Eq. (16), the expression has shown y;, m;, j (m, m;), b, n, and a; represent
target vector, ith input vector, kernel function, bias term, total data points,
and Lagrange multiplier, respectively.

For the multi-class problem, a training set defined as [85],

i=n,c=C

{mi’yic},-:1,c:1 ,x, eR")y, e{l,...,G} (17)

where n, C, and G represent the index of training pattern, the number of
classes, size of the multiclass label set.
The mathematical expression for the RBF kernel can be written as by the

following [49]:

=’

Jj(mm)=e > (18)

where p controls the width of the RBF kernel function.
The mathematical expression for the polynomial kernel function can be

represented as [49]:

j(m,mi)Z(miTm-Fl)r (19)
In Eq. (19), the parameter r represents the order of the polynomial

kernel.
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2.2.5 Performance metrics

In the present work, six parameters were determined for measuring the
classification performance [84]. The definition of the six parameters is as
follows: (1) Accuracy (ACC) is defined as a percentage of correctly
identified faulty and healthy gear signals divided by the total number of gear
signals. (2) Sensitivity (SEN) is the percentage of the faulty gear signals
indicated as faulty gear signals. (3) Specificity (SPF) is used to measure the
percentage of healthy gear signals recognized as healthy gear signals. (4)
Positive predictive rate (PPR) gives the percentage of results accurately
indicated as faulty gear signals. (5) Negative predictive rate (NPR) is called
the percentage of results which is accurately indicated as healthy gear
signals. (6) Matthew’s correction coefficient (MCC) assesses the
classification accuracy of imbalanced samples of faulty and healthy gear
signals. These are expressed as follows:

RP+RN

ACC=
RP+ RN +WP+WN

x100%

SEN=—"P L 100%
RP+WN

sPF=—"N  100%
RN + WP

PPR = RP x100%
RP +WP

NPR = x100%

_ RPXRN —WN xWP
D

MCC

Here,

D= J(RP+WN)RP+WP)RN +WN)(RN +WP)

In the above expression RP, RN, WP, and WN represent true positives, true

negatives, false positives, and false negatives, respectively [84].
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2.3 Experimental data collection

The vibration signals were acquired by using the Machinery Fault Simulator
(MFS). In this experimental test rig (Fig. 2.2), a three-phase AC motor (3/4
HP, 2850 RPM) was connected to one end of the rotor shaft through a
flexible coupling. The other end of the shaft was connected to a belt and
pulley arrangement, which was further coupled with a single-stage bevel
gearbox. The schematic representation of the MFS is shown in Fig. 2.3. The
technical specification of the bevel gearbox is presented in Table 2.1. The
healthy gear and gears with different health conditions are shown in Fig. 2.4
and Fig. 2.5, respectively. For the experimental analysis, the level of wear
faults in gears was created by the laser cutting machine and the cutting depth
was measured by the optical microscope. The laser cutting machine is used
to mimic the level of wear in gears. The laser setup consists of a fiber laser
(Scantech laser Pvt. Ltd.) doped with rare earth elements like Erbium,
Ytterbium, Neodymium, etc. It has a rated capacity of 50 W with a galvo
scanner which deflects the beam in two directions with a focal length of 287
mm, and spot diameter 0.2 mm. Details of the operating conditions of laser
machine to expand the level of abrasive wear faults in bevel gears are shown
in Table 2.2. Optical microscope (Dewinter Optical Inc., modelDEW507)

is used for measuring cutting depth, representing wear.

Tachometer. |A.C Motor [ =) =

Display

X
Motor ] (L_’
controller "“5"4_' ! . o

- "> ¥
e | T

A -

[Data acquisition

Figure 2. 2 Experimental test setup with the zoomed view of the

accelerometer.
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Flexible coupling Ball bearing Shafit

Magnetic break Belt & Pulley

/

Tri-axial accelerometer ——

Bevel gearbox ——p

Figure 2. 3 The schematic representation of the MF'S.

Figure 2. 4 Healthy bevel gear.

Table 2. 1 Specifications of the gearbox.

Gear ratio 1.5:1

Pitch angle (gear) 56°19°

Pitch angle (pinion) 33°41°
Pressure angle for gear and pinion | 20°

Number of teeth in pinion 18

Number of teeth in the gear 27

Module for gear and pinion 2 mm

Pitch diameter (gear) 42.8625 mm
Pitch diameter (pinion) 28.575 mm
Material (gear and pinion) Forged steel
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Table 2. 2 Details of the operating conditions of laser machine for

developing the wear faults in bevel gears.

wear faults

laser cutting

Level of abrasive | Operating | Number of | Cutting depth
5 No. wear fault power (W) | passes (micron)
(a) Incipient 30 10 20
(b) Slight 40 15 30
(c) Moderate 50 15 40
(d) Severe 50 70 50
S. | Level of Abrasive wear Cutting depth of abrasive wear
No. | abrasive faults created by faults

machine
1. | Incipient S
20 micron
2. Slight
| 30 micron
3. Moderate  —
‘ 40 micron
4. Severe _

Figure 2. 5 Gears with different wear conditions.
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Table 2. 3 Bevel-gear vibration signals in z-direction for a different level of

wear gear faults.
Bevel gear condition Vibration signal (z-direction)
Healthy gear 50

i
h
=

Amplitude(m/s”)
;

=

1 2

Sample number . 1*

Incipient wear

£
=

5

L
=

Amplitudeim/s™)
=

L=

05 1 15 2
Sample number |{|n‘1

Slight wear

LAy
=

Amplitude{m/s™)

*

=50
0 0.5 | 1.5 2
Sample number . p#
Moderate wear — 50
..:';:’ﬂ
-

0 0.5 1 1.5 2
Sample number 1o

Severe wear

-

Amplitude(m/s”)

'
N
-
=

"0 0.5 1 1.5 2
Sample number 1o*
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The experiments were conducted at various motor speeds, such as 15 Hz,
20 Hz, 25 Hz, and 30 Hz. The controller was used to manually control the
speed of the motor. Also, the manually adjustable magnetic brake was used
to apply a load of 0-4Nm on the output shaft of the gearbox. For acquiring
the real-time data of gear vibration signals, recorded by using a tri-axial
accelerometer. The acceleration measurements were carried out in all three
directions with a sampling rate of 12.8 kHz. The vibration signal in z-
direction for gears with different levels of wear faults is presented in Table

2.3.

2.4 Results and discussion

The purpose of this work was to perform an automated gear fault diagnosis
using the FAWT. The FAWT is a flexible wavelet transform that provides
flexibility to decompose a given signal into desired frequency bands with
the help of chosen control parameters. It was observed that the maximum
accuracy was obtained within the decomposition of an entire frequency
spectrum of faulty gear signal in ten sub-bands and one approximation band.
For this reason, this method was employed to decompose the gear signals
into detailed sub-bands (d1-d10) and approximation sub-band. As the
FAWT method utilizes the Hilbert transform pairs of atoms and provides
flexibility to the user by using adjustable parameters, such as dilation factor,
Q-factor, and redundancy to cover the time-frequency plane by a wavelet
frame, it was preferred over others [48], [50]. The value of control
parameters (a, b, ¢, d, and B) was used 2, 3, 1, 2, and 0.50 respectively in
the present work. After applying FAWT with 10 levels of decomposition of
the aforementioned gear signals (healthy gear signal, incipient wear gear
signal, slight wear gear signal, moderate gear signal, and severe wear gear
signal), the decomposed signals are shown in Fig. 2.6. The approximation
and detail sub-bands at this level 10 represent bands of [0, 0.7] Hz and [0.7,
2.18] Hz respectively and extended up to level 1. The sub-bands were used
to extract various entropy features namely, cross-correntropy, log energy

entropy, SURE entropy, Shannon entropy, norm entropy, and threshold

34



entropy. The Kruskal-Wallis test is used to determine any statistically
significant differences between the classes. It is measured by using
probability (p) computation [50]. Table 2.4 has shown the p-value of all
entropies features for 120 pairs of gears with different levels of abrasive
wear faults signals (healthy gear signal, incipient wear gear signal, slight
wear gear signal, moderate gear signal, and severe wear gear signal). From
Table 2.4, it is found that there is a need to omit the sub-band signal those
p > 0.05 [50]. The retentates statistically significant features are fed to the
classifier. In the proposed methodology for the classification of the wear
faults gear signals, a multi-class LS-SVM classifier with RBF and
polynomial kernels is used [50]. Also, the ten-fold cross-validation
technique [49], [51] is applied to a classifier. It is estimating errors based
on resampling for obtaining robust classification accuracy with training and
testing of the data set to train the classifiers [98]. In ten-fold cross-
validation, the complete data set is divided into ten subsets with equal size.
Processes will be repeated 10 times for Ten-fold cross-validation, each time
leaving out one of the subsets from training. This eliminates any possibility
of biases in dividing data in training and testing data sets [98]. It can be
observed from Table 2.5, for log energy entropy using a multi-class LS-
SVM classifier with RBF kernel obtained the maximum value of
classification performance. The maximum value of performance parameters
ACC, SEN, SPF, PPR, NPR, and MCC are 98.33%, 97.91%, 100%, 100%,
92.30%, and 0.95 respectively.

A comparative study between proposed and previously published work is
summarized in Table 2.6. Saravanan et al. [35] investigated the healthy gear
and gear with different faults for various loading and lubrication conditions
using statistical feature vectors from Morlet wavelet coefficients. CWT-
based ANN classifier is achieved for the overall average efficiency to be

97.5%.
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Table 2.

4 Probability (p) value for various entropies features of gear

signals.
Bands Cross Log energy SURE Shannon Norm Threshold
correntropy entropy entropy entropy entropy entropy

-09 -08 -08
Sub- 0.0265 4.9112x10 3.9067x10 0 0 3.8432x10
band 1

-07 -05 -05
Sub- 0.0546 7.2288x10 2.7819x10 0 0 2.6657x10
band 2
Sub- 0.0652 0.0057 0.0001 0.0288 0.0278 0.0001
band 3

-07 -09 -06 -06 -09
Sub- 0.065 1.3783x10 6.8544x10 7.2332x10 1.6199x10 6.8446x10
band 4

-07 -05 -09 -05
Sub- 0.1311 6.3180x10 3.6202x10 0 7.9828x10 3.5858x10
band 5

-06 -06 -06 -06 -06
Sub- 0.056 5.3102x10 2.8369x10 4751910 5.9337x10 2.8467x10
band 6
Sub- 0.2058 0.1622 0.1125 03168 0.2268 0.1118
band 7
Sub- 0.025 0 0 0 0 0
band 8

-09 -09 -05 -08 -09
Sub- 0.0064 1.6654x10 1.8462x10 2.7881x10 1.5220x10 1.8425x10
band 9

-05

Sub- 0.0117 0 0 3269810 0 0
band
10
Approx | 0.0118 0.0015 0.001 0.0007 0.0011 0.001
imation
-band

This methodology has been applied to the proposed data set and found the
overall average efficiency to be 29.78 %. Saravanan and Ramachandran
[99] used the DWT-based ANN classification with statistical features of
wavelet coefficients using gear fault diagnosis. It has been found that the
overall average efficiency of 95% is attained by the ANN classifier. This
method is applied to the existing data set and found the overall average
efficiency to be 37.52 %. Also, when comparing the proposed method 1-5,
based on WPT, DTCWT, TQWT, and FAWT with the previously published
method suggested by Saravanan et al. [35], it has been found that the overall
average efficiency to be 23.44%, 30.55%, 31.81%, 39.90%, and 53.00%.
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Table 2. 5 Performance parameters of multi-class LS-SVM using different kernels for log energy entropy.

Kernel Accuracy | Sensitivity | Specificity Positive predictive Negative predictive Matthew’s correction Parameters
function (%) (%) (%) rate (%) rate (%) coefficient

RBF 98.33 97.91 100 100 92.30 0.95 1
Polynomial | 95 95.74 92.30 97.82 85.71 0.85 4

Table 2. 6 A comparative study between current and previously published methods using the same data set.

References

Type of signals Faults Methods Features Classifier Accuracy of classification (%)

[5] Gearbox Signals Gear with wear faults CWT method Statistical features ANN 29.78
[9] Gearbox Signals Gear with wear faults DWT method Statistical features ANN 37.52
Proposed Gearbox Signals Gear with wear faults WPT method Statistical features ANN 23.44
method 1

Proposed Gearbox Signals Gear with wear faults DTCWT method  Statistical features ANN 30.55
method 2

Proposed Gearbox Signals Gear with wear faults TQWT method Statistical features ANN 31.81
method 3

Proposed Gearbox Signals Gear with wear faults FAWT method Statistical features ANN 39.90
method 4

Proposed Gearbox Signals Gear with wear faults FAWT method Statistical features LS-SVM 53.00
method 5 with RBF kernel

Proposed Gearbox Signals Gear with wear faults FAWT method Entropy features LS-SVM 98.33
method 6

with RBF kernel



From the comparative analysis, it has been observed that the FAWT based
method has given the best performance compared to the existing
methodology. So in the present work, the newly proposed method-6 based
on FAWT, Entropy features, and LS-SVM classifier has been used. There
are many advantages of the proposed method-6. It can be used for non-
stationary signals for the classification of normal and abnormal classes. It
has been applied in gearbox signals and has provided the best result with

98.33% accuracy.

2.5 Conclusion

In this work, the FAWT method, an advanced technique for signals analysis
of micron-level wear of bevel gear, has been implemented for faults
diagnosis. The gearbox signals of healthy and faulty gears are decomposed
into each sub-band and calculated the entropies are for each sub-band into
the nth level. It was observed that the log energy entropy using multi-class
LS-SVM classifier with RBF kernel resulted in the maximum value of
classification performance of 98.33%, 97.91%, 100%, 100%, 92.30%, and
0.95 for ACC, SEN, SPF, PPR, NPR, and MCC respectively. The results
obtained here are compared with the previous results obtained by different
methods, such as the CWT, DWT, WPT, DTCWT, and TQWT. Due to this
characteristic feature of the log energy entropy outperforms the other
entropies and subsequently provides the best classification of the signal
classes. This indicates that the proposed methodology is the best suitable

method for automated identification for gear faults.
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Chapter 3

Automated gear fault detection of micron level
wear in bevel gears using variational mode

decomposition

In this chapter, aims to automate the fault diagnosis of gears having level of
wear fault at micron using variational mode decomposition (VMD). VMD
has been applied iteratively with specific input parameters. VMD
decomposes the gear vibration signal into different narrowband components
(NBCs) or obtained components (OCs). Various statistical features namely
kurtosis, skewness, standard deviation, root mean square, and crest factor
are extracted from the different OCs. Kruskal-Wallis test based on
probability values have been used to identify the significant features. For
the automation of fault detection system, a comparative study has been done
using the random forest, multilayer perceptron, and J48 classifiers. The
proposed method exhibits 96.5% accuracy using random forest classifier

with combined kurtosis, skewness, and standard deviation features.

3.1 Introduction

Gears are principally used for power transmission. Bevel gears are used to
transmit power between two mutually perpendicular shafts. Generally, they
are utilized in hand drill, machine tool equipment, printing machines,
automobile machinery etc. Wear fault in a gear tooth is an unavoidable
phenomenon and has significant effects on the dynamic behavior of gears.
Analysis of wear in gear systems, therefore, is crucial from the economic
point of view. Although the vibration-based techniques have been used

frequently for analysis of localized gear tooth faults such as pitting, spalling
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and crack. However, these techniques have not been well- established for
monitoring of distributed faults such as wear fault. It is difficult to diagnose
the wear fault because wear fault normally occurs in level of micron. The
main aim of this work is to develop a vibration-based technique to diagnose

the level of wear fault at micron in bevel gears.

There are various time-frequency techniques are available. It’s having own
advantages and disadvantages. The limitations of the techniques reduce the
impact of the performance. Recently, a new emerging technique known as
VMD has been introduced by K. Dragomiretskiy and D. Zosso [70]. It is a
multiresolution technique that overcomes the limitations of EMD [16]. It is
similar to EMD in structure, but a new approach based on constrained
optimization makes it a more influential technique [16]. It was reported that
VMD provided better results as compared to other existing techniques [16],
[801], [82],[87]. This technique is also used in speech signals [88], [89], and
yet only a few works have been explored for mechanical signals. Hence, it
is taken up for study. Various faults such as chipped tooth fault, missing
tooth fault, wear, crack, pitting, etc. have been investigated in spur gears
using classifiers [79]. Micron level of wear fault analysis has not been
studied. Hence, this work is focused on the diagnosis of micron level of

wear faults in gears.

In this paper, MFS equipped with bevel gearbox has been used to
conduct experiments. For the analysis of vibration signals, healthy bevel
gear and gears with different level of abrasive wear faults have been used.
Gear fault diagnosis has been performed using iterative VMD technique.
Various statistical features are extracted from different obtained
components (OCs) and Kruskal-Wallis test based significant features are
used in three different classifiers for classification of multi-class gear sig-
nals. The significance of this work is that the gear fault diagnosis using
statistical features in VMD domain can be auto-mated. This novel

methodology provides high accuracy for gear fault diagnosis.
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3.2 Theoretical foundation
3.2.1 Variational mode decomposition

VMD signifies a real-valued signal a(¢) with a given number of sub-signals
(modes) which have specific sparsity properties. VMD decomposes a signal
into set of NBC ¢, () which are concentrated around corresponding center

frequencies @ [70], [80], [82], [88], [89]. In this method, a constrained

optimization problem is used to compute the bandwidth of NBCs as follows

[25-27, 29, 30]:

5, K(s(t)+nit]*ak(t)}jwk,

S e (1) =al)

such that *=!

2
(1

K
BinDS

2

{a,} ={a,a,,....a;} constitutes the set of obtained NBCs.

{0} ={®,@,,..., 0 } constitutes the set corresponding centre frequencies.

5(¢) constitutes dirac distribution function, and K represents the total

number of NBCs.

The augmented Lagrangian is used to solve the constrained variational
problem and the non-constrained variational problem is obtained by [70],

[80], [82], [88], [89].

o] (5L Jra(n) o

+</1(t),a(t)—zk:ak (t)> 2)

2

a(t)=> a ()] -

k 2

2
+

L({ak},{a)k},/l):zaki

2

The estimation of NBCs in the frequency domain and their center

frequencies can be expressed as follows [70], [80], [82], [88], [89]:
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Eq. (3) shows that contains of the Wiener filter structure. Using Fourier

transform modified expression for 4 is given by:
(o) (o) o o) Y o) ©)

where n shows the number of iterations. In this method input paraments
take places an important role such as a balancing parameter (&) is the
penalty factor, dual ascent ( 7 ), the narrow-band components (K ) to be
extracted, tolerance of convergence (tol), number of DC components, and

@ (init) represent initial frequencies.
3.2.2. Statistical based features extraction

In this work, the statistical operators have been used as features.

Expressions and details of features are as follows:
3.2.2.1. Kurtosis
It is a measure of the degree of tailedness of distribution as compared to a

normal distribution. Mathematical expression of kurtosis is given as follows

[32], [79], [100]:

N

Z(x,- _3)4

I R (6)

1]

= |~

=~
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3.2.2.2. Standard deviation

It is used to quantify the amount of variation in signal and mathematically

this can be defined as follows [32], [79], [100]:

(7)

3.2.2.3. Skewness

It is a measure of the asymmetry of the signal around the sample mean and

can be expressed as follows [32], [79], [100]:

S:E(x—;?)3 (8)

3.2.2.4. Root mean square

Root mean square gives the energy content and vibration amplitude of the

signal. Mathematically, it can be expressed as follows [100]:

1 < 2
RMS = /ﬁ;[x,.] )

3.2.2.5. Crest factor

Crest factor gives an idea about any impacting present in the signal and can

be expressed as follows [32], [100]:

max |x;
Y (10)

(JIVJZ[%]Z

i=1

CF =

where x is the time domain signal, N is the number of samples, I is the
simple index, X mean of the signal, o is the standard deviation of signal,

and E is the expectation operator.
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3.3 Classifiers

3.3.1. Random Forest

This classification is representing the collective decision of different
classification trees. For each class, a separate decision made by each
decision tree and allocation of the weight of each tree is used for final
decision of each class. The output of the final classification decision is made
by the consideration of each tree. Random tree method is enrolled to build
a tree [82], [101]. This classification method has been introduced by L.
Breiman [102] and developed by Liaw and Wiener [102]. This algorithm

consists of the random vector V,, ,with an 772 th number of the tree. This

vector is produced without disturbing the previous distribution of vectors,

and it is created separately from each other. Implementation of the training
input data 7 and random vector V, developing a result in a decision tree.

This is shown resulting in tree classifier G(z,v,,). The class is determined

based on margin function (MN). It is used for training through two

randomly selected vector distribution C, D as [102].

MN(C,D)=kv,I(G, (C)=D)-maxkv,I(G,(C)=) (11)

where G, (C)=G (¢, v,) and 1(.) represent the indicator function [102]. The

operator kv, denotes the average value. Higher confidence in classification

is obtained by large margin value of a respective class. The generalization

error (GR) can be expressed as [102].:
GR =P,,[MN(C,D)<0] (12)

where F, , indicates probability is over the C, D space.

3.3.2. Decision Tree

Decision tree algorithm finds out the way the attributes-vector behaves for
several instances [101]. In the construction of decision tree, top-down

approach is usually used starting with a training set or tuples [103]. A tuple
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is defined as a collection of attribute values and a class value [101]. In the
waikato environment for knowledge analysis (WEKA) software, J48 is an
open-source Java implementation of the C4.5 algorithm. In the WEKA
software, J48 is used for execution of C.45 algorithm [104].

The basic contractive guideline has been followed for the algorithm:

1. For the same class instances, tree constitutes a leaf, and the leaf is

returned by labeling with the same class.

2. The potential information, given by a test on the attribute, is calculated
for every attribute. The gain in information is calculated resulting from a

test on the attribute.

3. Selection of the best attribute for branching followed the current selection

criterion.

J48 is an addition of iterative dichotomiser 3 (ID3) decision tree algorithm.
Features such as decision trees pruning, accounting for missing values,
continuous attribute value ranges, derivation of rules, etc. are the additional

features of J48.

3.3.3. Multilayer Perceptron

The multilayer perceptron classifier is based on neural network algorithm
[35], [101], [104], [105]. It consists of a multilayer feed-forward neural
network. The construction of this class network employed with one or more
layers (hidden layer) of nodes between the input and output layers as shown
in Fig. 3.1. Weight network is used to interconnect different layers for these
nodes. Before governing the input and output layer, the hidden layer is used

for intermediate computation [101].
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Node

Input layer First hidden layer Second hidden layer Qutput layer
Figure 3. 1 Graphical description of multilayer perceptron

3.4 Proposed methodology

In this section, proposed novel methodology as shown in Fig. 3.2 is used for
automation of the gear fault diagnosis. The vibration signals of healthy
bevel gear, gear with different level of abrasive wear faults have been
acquired. In the view of the proposed methodology, the iterative VMD
method is used to analyze the gear vibration signals. OCs by iterative VMD,
which are concentrated around the center frequency. For each OCs,
statistical parameters such as kurtosis, skewness, standard deviation, root
mean square, crest factor are used features extraction. Significant features
to be obtained using the performance of the Kruskal-Wallis test. Significant
features are used as an input parameter in the multiclass-classifiers. Random
forest, J48, and Multilayer perceptron are used for performing classi-
fication and finding the classification accuracy. It has been expected that
our novel systematic and procedural analysis would help accurately identify
multi-class gearbox faults. Fig. 3.3 shows the required steps of the proposed
iterative VMD technique which was used in this work for signal

decomposition.
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Multiclass classifiers
Healthy Incipient  Slight  Moderate Severe

class wear tooth wear tooth wear tooth Wear tooth
class class class class

Figure 3. 2 Procedure of the proposed method

VMD technique which has been used in this work for signal decomposition.

In the end of this decomposition process, the gear vibration signal g[s] can

be written as a sum of OCs by VMD applied in iterative manner and re-

sidual which can be expressed as follows:

g[s]= ZQ: a[s]+s] (13)

In the Eq. (13) expressed the components g[s]| and of residual r{s]. Thus,
one can achieve decomposition of the signal in terms of components and a
residual, which is the mean trend of g[ s |. Fig 3.4 (a) Shows the each of the

OCs [OC (1), OC (1I), ..., OC(VIII)] provided different frequency bands
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ranging from low to high as shown in Fig 3.4 (b). These OCs have been

used to computed statistical parameters.

@m’r& gear vibration signal g@e

VMD applied in

iterative manner

<u>

Generate residual signal

g[s]-g[s]

QGGmponmt g,[s] .where liia

0= No of low frequency components.

Figure 3. 3 Flowchart of proposed iterative VMD technique

3.5 Experimental analysis

The experimental analysis has been carried out with same signal as

mentioned in chapter 2. Reader can follow the chapter 2.3 for more details.

3.6 Results and discussion

Gear wear is a kind of tooth surface fault in gear systems. It occurs in
gearbox due to many reasons such as dirt in housing, sand or scale from
casting, partially introduced into the housing when filling the lube oil, etc.
In this way, the micron level of wear fault has been carried out in this work.
Details of the experimental analysis is introduced in section 3.4. Table 3.1

shows gear vibration signals in x-direction for different wear conditions.
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Table 3. 1 Bevel-gear vibration signals in x-direction for different level of

wear gear faults.

Bevel gear condition Vibration signal (x-direction)
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Figure 3. 4 (a) Plots of the OCs using iterative VMD method for healthy
bevel gear signal, (b) Plots of the magnitude spectrum of respective OCs
using iterative VMD method for healthy bevel gear signal. The unit of Y axis

are arbitrary.

The iterative VMD method is applied to decompose the 200 pairs of healthy
gears signal and different level of wear faults signals. By using iterative
VMD, the gear signals are decomposed using the input parameters DC=0,
a =200, K =8, 7 =0, tol=10"", @ (init)=0. Fig. 3.4 (a) shows the plots of
the OCs and Fig. 3.4 (b) shows the respective magnitude spectrums of OCs
using iterative VMD method for healthy gear signal. The OCs of gear
signals are then used to evaluate features such as kurtosis, skewness,
standard deviation, root mean square, and crest factor. Statistically
significant features are decided using the Kruskal-Wallis statistical test to
improve the realization. Table 3.2 shows the p value of various features for

acquired of gear signals.
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Table 3. 2 Probability (p) value for various statical features of gear signals
using all conditions after employed iterative VMD.

Obtained Crest

) Standard Root mean
component | Kurtosis Skewness o factor

deviation square

(00
ocC (I 0 0.336 0.5163 0.5164 0
OoC (1D 6.614x10%* | 0.006 0.3249 0.3248 0.0226
OC (I1I) 2.380x10® | 0 9.911x10 | 9.911x10 | 0.0005
oC (IV) 9.3887x10% | 0 3.132x10% | 3.142x10°% | 0.0079
OC (V) 1.549x10°* | 0.0005 1.821x10°% | 1.285x10% | 0
OC (VD 0 0.0052 0.2355 0.8659 0
OC (VII) 0.584 1.9149x10% | 0 2.022x10% | 0.0095
OC (VIII) 5.2983x10% | 0.0194 0 0 0

Table 3. 3 Details of the architecture of the studied artificial neural

network.
Forward neural network trained with
Network type .
feed back propagation
No. of neurons in input layer | 5-30
No. of neurons in hidden layer | 5-17

No. of neurons in output layer | 5

Transfer function

output layer

Sigmoid transfer function in hidden and

Training rule

Back propagation

Leaning rule

Momentum training method

Momentum learning step size | 0.3

Momentum learning rate

0.2

53




It is observed from the Table 3.3 that obtained components can be omitted
for those features which have p value greater than 0.05 [50]. It is also
observed that the features have high discrimination between their respective
classes as p value is close to zero. These statistically significant features are
fed to all three classifiers random forest, multilayer perceptron, and J48.
Ten-fold cross-validation technique [101] has been used for training and
testing of data set to train the classifiers. In cross-validation, complete data
set is divided randomly between training set (90%) and testing set (10%).
Processes will be repeated 10 times for Ten-fold cross-validation which
eliminates any possibility of biasness in dividing data in training and testing
data set. In the present study, the parameters of the neural network used for
multilayer perceptron are shown in Table 3.3.

Table 3. 4 Details of the architecture of the studied artificial neural

network.
. Performance of the classifiers (%)
No. Features Random Multilayer 143
forest perceptron
1 Kurtosis 82.5 77.5 72.5
2 Skewness 82.5 77.5 77.5
3 Standard deviation 86.5 82 72.5
4 RMS 86.5 82 72.5
5 Crest factor 70 69 61
6 Kurtosis and skewness 90.5 88 85

Kurtosis, skewness, and
7 96.5 89.5 87
standard deviation

Kurtosis, skewness, standard
8 86.5 82 72
deviation, and RMS

Kurtosis, skewness, standard
9 deviation, RMS, and crest- 96 92.5 86

factor
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The classification performance of classifiers with significant features has
been shown in Table 3.4. From Table 3.4, it has been found that individual
features kurtosis, skewness, standard deviation, RMS and crest factor, the
random forest classifier has maximum accuracy with 82.5%, 82.5%, 86.5%,
86.5%, and 70% accuracy respectively. For kurtosis and skewness
combination, random forest classifier has the maximum accuracy with
90.5%. For kurtosis, skewness, standard deviation, and RMS combination,
random forest classifier has the maxi-mum classification performance with
86.5% accuracy. For kurtosis, skewness, standard deviation, RMS, and
crest-factor combination, random forest classifier has the maximum
classification performance with 96% accuracy. From the Table 3.4 the best
classification accuracy of 96.5% is obtained using random forest classifier
with combined kurtosis, skewness, and standard deviation features. The key
benefit of the proposed technique is that it can identify wear gear fault

automatically with high accuracy.

3.7 Conclusion

Gear wear is a major concern in the gear transmission system. In this work,
fault diagnosis of gear in the presence of level of wear in micron faults has
been done using the iterative VMD method. Experiments have been
conducted to acquire vibration signals from bevel gears for different level
of wear faults. The iterative VMD has been used to decompose the signals
into different OCs. The significant features are extracted using Kruskal-
Wallis statistical test. That significant features are fed as an input parameter
in the classifiers. Three different classifiers (random forest, multilayer
perceptron, and J48) are used to classify the multi-classes. It is observed
that random forest classifier achieves the best classification accuracy with

the combination of kurtosis, skewness, and standard deviation features.
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Chapter 4

Fourier-Bessel series expansion based
empirical wavelet transform technique used for
automated classification of gearbox fault

diagnosis

In this chapter, using Fourier-Bessel series expansion as the basis for an
empirical wavelet transform, a novel automated technique, FBSE-EWT, has
been proposed. The existing empirical wavelet transform is to be reformed
using the FBSE method to increase the frequency resolution. The proposed
novel method includes the decomposition of different levels of gear crack
vibration signals into NBCs or sub-bands. Features are extracted from the
sub-bands and the statistically significant features have been identified
using the Kruskal-Wallis test. Three classifiers are used for faults
classifications, out two are based on tree construction techniques i.e.,
random forest, and J48 decision tree classifiers, another one is based on a
neural network algorithm multilayer perceptron function classifier. A
comparative study has been done between existing EWT and proposed a
novel methodology. It has been observed that FBSE-EWT with a random
forest classifier shows better gear fault detection performance as compared

to existing EWT.

4.1 Introduction

Gearbox fault diagnosis is the process of analyzing the health and
performance of gears in machinery to detect potential faults or issues before

they become major problems. Several different modes might cause a gear

57



to fail, including fatigue, impact, wear, or plastic deformation. Further, gear
failure occurred due to excessive vibration. When it comes to monitoring
the status of machines during startups, breakdowns, and regular operations
[90], vibration measuring is a technology that is successful, discrete,
adaptable, and cost-effective. Furthermore, the article [106] provides a
detailed evaluation or selection of signal processing techniques that have
been applied to try to minimise the amount of noise that exists in the
vibration signals. The fact that non-stationary or variable in time signals are
amplitude and frequency modulated. It means that time-domain and
frequency-domain methods cannot be used to analyse these types of signals.
In real-world circumstances, the operation of a gearbox leads to the
generation of non-stationary signals due to vibration [16]. Vibration
analysis is an effective tool to diagnose such signals. Local gear faults such
as levels of a gear tooth crack [107], identification is needed to prevent any
unanticipated gear failure because tooth breakage of gear initiates due to
incipient crack in gear [108]. EWT is a new method of adaptive
decomposition that eliminates narrow-band frequency bands within the
examined signal depending on the frequency details of the spectrum. After
locating the boundary frequencies in the FT-based spectrum, it next applies
adaptive wavelet-based filters to the signals to deconstruct them [72].
However, EWT is unable to accurately depict frequency components that
are tightly spaced. Challenges similar to those experienced by the EWT
approach have been found in the suggested method.

In this study, the established EWT procedure is revised using the FBSE. It
is what makes the FBSE coefficients effective for the spectrum analysis of
such signals. Although FBSE-EWT was mostly employed in biological
signals like Vectorcardiogram Signals, Electroencephalography (EEG)
signals etc. [109], [110], [111], [112]. Researchers used the multifrequency
scale-based two-dimensional FBSE-EWT method for glaucoma detection,
which requires the segmentation of fundus photographs into sub-images.

This method proposes a rhythm separation technique and enhanced local
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polynomial (LP) approximation-based total variation (TV) for the filtering
of ocular artefacts from the EEG signals. In the process of detecting
alcoholism, a select group of researchers, including A. Anuragi et al. [113],
created and implemented a technique. They found that by combining least
squares support vector machines with radial basis kernels, they were able to
reach the highest possible levels of accuracy and sensitivity. FBSE-EWT
technique is not used to investigate gear faults like chipped teeth, missing
teeth, cracks in the root, and worn gear faces with classifiers [79]. As a
result, FBSE-EWT has been applied in this research to identify the gear
crack faults with various levels and compare the performance with EWT.

Machine learning-based defect detection is advantageous in this situation
[82]. Researchers have made extensive use of classifiers over the past
decade to increase the effectiveness of applicable signal-processing
algorithms for fault identification. In this research, we compared three well-
known classifiers to see which one is the most effective in this condition:

the random forest, the J48, and the multilayer perceptron.

4.2 Proposed methodology
Fig. 4.1 here describes the steps in the proposed approach. The bevel gear

test rig was used to collect gear signals under various crack fault conditions
for the suggested approach. It employed two separate methods EWT and
the suggested approach FBSE-EWT to break down the different levels of
gear crack vibration signals into the sub-bands. Features were extracted
from each sub-bands. Further identification of significant features is
obtained using the Kruskal-Wallis test. Therefore, multi-class classifiers
were used to carry out the fault diagnosis. Find out how the suggested novel

methodology, FBSE-EWT, compares to the existing EWT.

4.2.1. Brief introduction to Fourier-Bessel Series Expansion - Empirical

Wavelet Transform (FBSE-EWT).

The FBSE-EWT signal processing technology combines two approaches
for studying non-stationary signals, FBSE [114] and EWT [71].
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Figure 4. 1 Block diagram showing the suggested approach.

A technique known as FBSE-EWT takes a nonstationary finite energy
signal and split it up into many NBCs, each of which indicates the nature of
the signal's underlying frequency components. The boundary detection
approach in EWT uses the Fourier spectrum [71], whereas the Fourier—
Bessel frequency spectrum is used in FBSE-EWT [72], it results in an
improvement over the conventional EWT’s subsequent wavelet filter bank
[71]. EWT sub-band signals have unique center frequencies as well as
compactly defined frequency bands. The authors [72] developed EWT in

conjunction with FBSE for the analysis of non-stationary signals. It was
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observed that the time-frequency representation (TFR) with FBSE gives
better results as compared to existing EWT which is based on the Fourier
transform-based spectrum. The performance analysis of discrete energy
separation algorithm (DESA) [115] and WVD techniques [116], FBSE is
used to differentiate between mono-component non-stationary signals and
multi-component non-stationary signals. Bessel functions with non-
stationary properties are utilised as the basis function in FBSE, it is better
suited to studying non-stationary data than the Fourier transform. The EWT,
on the other hand, uses a segmentation technique to separate narrow-band
signals using empirical wavelets created from the spectrum. The EWT is an
adaptive signal decomposition approach for non-stationary signals that was
proposed in [71]. The generation of adaptive wavelet-based filters is the
inherent process of EWT. The spectral information of the signal can
potentially be identified with the use of these wavelet-based filters. After
EWT decomposition, the resultant sub-band signals have particular center

frequencies and compact frequency supports.

The FBSE-EWT is based on the building of an empirical wavelet filter bank
for the EEG signal in the FBSE domain [71], [117]. The rhythms from the
EEG are separated data using FBSE-EWT. Bessel functions must be used
as the base set of functions for the FBSE-based depiction of signals. These
Bessel functions have the characteristic of decaying with time, making them
well-suited for the efficient encoding and analysis of nonstationary signals
[115]. In addition to this, the Bessel functions are convergent and non-
periodic [114]. The FBSE-based representation doesn't have any negative
frequency components, so the FBSE approach gives double frequency
resolution when compared to the Fourier-based representation [72], [111].
A description of the FBSE-EWT approach for the signals is presented in the
following steps: [75], [113]:

Step1: The FBSE system is utilised as an analytical tool for the purpose of

acquiring the frequency spectrum of a signal x(n) that exists within the
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frequency band [0, wt]. The following is an analytical formulation for the

FBSE approach, which is founded zero-order Bessel function:

M

n

x(n) = ZG’” Bo(lp]’\; ) n=0,123 ... M-1 (1)
m=1

where G, indicates the FBSE coefficients for the input signal x(n), and

these coefficients, which may be represented as [72], are as follows:

M-1

G = m > ny) B (227 @

n=0

By (*) and B;(*) are the notations that are refer to the zero-order and first-
order Bessel functions, respectively. A zero-order Bessel function's
B,(y) = 0, the positive roots are denoted by ,,,, wherem = 1,2,3 ..... M.
The appropriate continuous time frequency C,,(Hz) [72] the m*" order of

FBSE coefficients is defined as follows:

2nCyM

m
Cs '

where Y, = Y1 +7m =mmn 3)

where Cg represents the sample rate. The previously mentioned expression

may also be presented as [72], [75], [118]:

2C,M

m CS

(4)
The range of m should be extended from 1 to M, where M is the signal
length, and it is encompassing all frequency bands of the sampled signal.
The FBSE spectral is displayed between the absolute values of the FBSE
coefficients (G,,) versus frequencies (C,,) [72].[75].

Step 2 In order to extract the relevant N + 1 boundary frequencies a; and
segment the FBSE spectrum into N sub-band signals, a scale-space

boundary recognition technique named [119] is formed. This algorithm's
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purpose is to extract those frequencies. The EWT boundary recognition
technique is utilised in order to determine the N — 1 intermediate boundary
frequencies that lie between 0 and n. After the FBSE spectral is segmented,

the boundary frequency ranges can be mathematically expressed as follows:

[0, a:], [a1, @3], [z, 3] ... ... ... [ay_q, 7]

Step 3: The bandpass filters developed by Littlewood-Paley and Meyer
[71]. were developed with a combination of scaling and empirical wavelet
functions. These are arranged by the various adaptive segregations of the
FBSE spectrum. The following mathematical equations can be used to

describe scaling and empirical wavelet functions [113]:

1, ifla| <(1-6)q;
ui(a@) =< cos [W(Z’ai)], if(l—e)a; <la| <A+ e (5)
0, otherwise
( 1, if(l+e)a; <la| <A —-6e)a;;1

cos [ﬂ®(6,2ai+1)], if(1—6€)ajy <lal <1+ 6e)ajy,

vi(a) = (6)

n[P2E9) (1 - e)a; < lal < (1+ ey

0, otherwise

where the variable € signifies the tight frame and the function @(€, @;,4) is
defined in (7). After that, the generation of the tight frame of scaling as well
as empirical wavelet functions will be possible if the condition that is given
in (8) is achieved. §(z) is an arbitrary function, and following is the

definition of the parameter § [71]:

0te, ) =6 [ 1D =9 ™

€ < min; (%) (8)
0, ifz<0

6(z)={6(z)+ 6(1—2), ifvz € [01] 9)
1, ifz=0
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The inner product is being utilized for the scaling and the wavelet function
towards acquiring detail as well as approximate coefficients from arbitrary
signals x(n). The following are a description of the detailed T(;)(k) (i =
1,2,3,............]), as well as the approximate coefficients A;(s). Here J

gives the total number of coefficients [71]:

T,k = ) x(@Dw@ =B (10)
Q=1
B () = ) x(@K@-F) (11)

The reconstruction of the i*™® detail and the approximation coefficients

signals expressed as [71]:

N;

X1, () = ) Ty (g — k) (12)
k=1
Ny

Xy () = ) By (0K, (1= 10 (13)
k=1

where X (n) and XE (n) defines detailed and approximation sub-band

signal of i™ level, respectively. N; represents the wavelet length
coefficients of i™M detailed coefficients, and N; denotes the wavelet length

vector corresponding to the approximate coefficients.

The following are some advantages of spectrum representation utilising

FBSE over traditional FT-based spectral representation:

1. To begin with, when compared to traditional Fourier representation,
the FBSE spectrum has a compact representation [72].
2. Second, the FBSE spectrum avoids the spectral representation effect

of windowing [72]. To limit the influence of spectral leakage, a
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window function is incorporated into the spectral representation that
is based on FT. On the other hand, without the influence of
windowing, the FBSE spectral can obtain signal characteristics even

for signals with a short time.

Furthermore, spectral representation using FBSE necessitates several
coefficients equal to the discrete signal’s length. This contrasts with the
traditional FT spectrum, which has a spectrum length half that of the
discrete signal being examined [115]. As a result, the FBSE-based spectrum
has a higher spectral resolution than the FT spectrum. Only an interpolated
spectrum with a smoother appearance will result from zero-padding with
signal to acquire the same length of FT spectral. The aforementioned
characteristics of the FBSE spectrum, in comparison to FT spectrum, help
to locate the optimal boundary frequencies in a more exact manner, which
is especially helpful when the signal is compact and consists of components

with closed frequency ranges.

4.2.2 Features extraction

The statistical and entropy features are extracted from EWT, and a novel
approach FBSE-EWT based on sub-bands with different frequency scale
signals. For the more details of statistical with entropy features and

classifiers, reader can follow the chapter 2.2.2, 3.2.2 and 3.3.

4.3 Experimental study:

In this experimental investigation MFS, was utilised for acquiring the gear
vibration signals. Fig. 4.2 illustrates a schematic representation of the MFS.
The experimental apparatus included a 3-phase alternating current motor
that served as the prime mover (3/4 horsepower, 2850 revolutions per

minute). This motor was linked to the shaft using a flexible connection.
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Figure 4. 2 The schematic presentation of the experimental setup.

Bevel gear

—— |

Figure 4. 3 Crack faults created by CNC wire (EDM) machine.
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Figure 4. 4 Health of the gears (a) Healthy gear (b) Gear with 0.25 mm
crack length (c) Gear with 0.50 mm crack length (d) Gear with 0.75 mm

crack length (e) Gear with 1.00 mm crack length

Table 4. 1 Details of the types of gear tooth cracks and their relative crack

length in bevel gears.

S.No. | Types of gear tooth Crack image | Crack length millimeter
crack (mm)

l. Incipient crack tooth 0.25

2. Slight crack tooth 0.50

3. Moderate crack tooth 0.75

4. Severe crack tooth 1.00
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Table 4. 2 The z-direction of vibration signal for gear with different levels

of crack faults.
Bevel gear condition Vibration signal (z-direction)
Healthy gear 2
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On the other side of the shaft was coupled with belt and pulley agreement,
which was then coupled with a bevel gearbox. For this study, the level of
crack faults made by the computer numerical control (CNC) Wire Electrical
Discharge Machine (Wire EDM) was shown in Fig. 4.3. In addition, the
length of the crack was evaluated using an optical microscope. Fig.4.4
depicts the health of gears, whereas Table 4.1 shows the types of gear tooth
cracks and their relative length in bevel gears. The studies were carried out
with the motor operating at a speed range, of 15-30 Hz. The motor’s speed
was manually controlled using the controller. Additionally, a load of 0-4Nm
was applied to the gearbox’s output shaft using the mechanically
controllable magnetic brake. A direct adhesive mounting method was
employed for fastening a triaxial accelerometer to the upper surface of the
housing of the bearing. This agreement was used to collect gear vibration
data. The acceleration readings were recorded with a sample rate of 12.8
kHz in each of the three different directions simultaneously. The vibration
signal in the z-direction is displayed in Table 4.2 for gears that have varying

degrees of crack defects.

4.4 Results and discussion

In  this work, automated gear defect diagnostics using two  different
techniques EWT and the proposed method FBSE-EWT also found the
comparison performance. For the decomposition of signals input
parameters such as (global trend removal “none”; regularization “gaussian”,
detection method “locmax”, maximum number of bands “10”) were used
respectively. Fig. 4.5 (a and b) shows the EWT based decomposed sub-
bands for all gear signals (healthy signal, incipient crack signal, slight crack
signal, moderate crack signal, and severe crack signal) with the magnitude
spectrum of their respective sub-bands. The spectrum analysis is improved
by using the FBSE-EWT approach, as illustrated in Fig. 4.6 (a and b) for
the same identical signals. Kurtosis, RMS, variance, and Shannon entropy
were some of the main characteristics that were extracted using the sub-

bands.
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Figure 4. 5 (a) Applied EWT decomposition and find sub-bands, (b)

Represent the magnitude spectrum of their respective sub-bands.

The Kruskal-Wallis test is conducted to see if there are substantive
distinctions between the categories. A calculation of probability, denoted
by p, was used to measure it [25]. Table 4.3 shows the EWT and FBSE-
EWT, p-values for 120 different pairs of gear crack signals. Also from Table
4.3, the statistical analysis indicated that it is necessary to omit the sub-
bands signal for those with p values that are more than 0.05 [31]. The
classifier gets the significant statistical features that are extracted from the
retentates. There are three different classifiers utilised in the method that
has been presented i.e., random forest, J48 decision tree classifiers, and
multilayer perceptron function classifier. To train the classifiers, the ten-
fold cross-validation method [31] was applied to both the training data sets
and the testing data sets. This was done so that the classifiers could be

properly evaluated.

70



10 ‘ Suh-h‘nnd 1 | fUUU U]
i . J . ] -“Ugi . J ]
0 0.5 1 15 2 0 2000 4000 6000 8000 10000
10, Sub-band 2 . X m“ 2000
AF ‘ , , ] oy ]
0 03 | 1.5 2 0 2000 4000 6000 8000 10000
9 4
10— Sub-hand 3 x ml i"m () .
H ‘ — o
0 0.5 I 1.5 2 0 2000 4000 6000 8000 10000
" Sub-band 4 10 10000 )
OWW%M souy L +
=10 s . s .
2 o 0.3 | s 2 2 40(100 2000 4000 6000 8000 10000
3 Sub-band 5 x10° i ' ' ‘
R wrmmron —— PO & 2000
£ [p—— " il | ] 0 L n . .
=-10 S 2000 4000 6000 5000 10000
E 0 0.5 I 1.5 2 vI)
< ! o 4000 : . .
10, . Sub-hand 6 10 ‘ 2000 } 1
et e e | 0 : - . :
-10 0 03 . s S 0 2000 4000 6000 8000 10000
- = = Vil
Sub-band 7 T 4000 : o ,
0 T T ] 2000} ﬂ 1
s ‘ ‘ X | 0 - - ‘ ‘
% 05 ! L3 2 0 20 4000 6000 8000 10000
7]
10 Sub-band 8 xm; 2000 ‘ v
o ‘ ) ‘ ] “’”ﬂ 1 . . ]
0 0.3 I L5 2 0 2000 4000 6000 8000 10000
0 Sub-band 9 x10* 4000 )
0} et = -+ { 2000 L {
-10 ‘ 0 ‘ ‘ :
0 0.5 1 15 2 0 2000 4000 6000 8000 10000
0 Sub-band 10 x10* 2000 : X :
0 mn% Mﬁ J
10 0
0 0.5 I L5 2 0 2000 4000 6000 8000 10000
Sample number w10* Frequency(Hz)
(a) (b)

Figure 4. 6 (a) Applied FBSE-EWT decomposition and find sub-bands, (b)

Represent the magnitude spectrum of their respective sub-bands.

The complete data set is randomly divided into two groups throughout the
cross-validation process. The first group is called the training set, and it
contains 90 percent of the total data. The second group is called the testing
set (10 percent). The procedures were carried out 10 times to conduct ten-
fold cross-validation, which removes any potential sources of bias from the
process of separating data into training and testing data sets. According to
Table 4.4, EWT-based individual features and their combination features,
including kurtosis, RMS, variance, and Shannon entropy, the random forest
classifier showed the highest possible performance accuracy with 57%,
62.5%, 59%, 59.5%, 66.5%, 66%, 68.5%, 59%, 59%, 61%, 65.5%, 66%,
60%, and 66.5% accuracy respectively.
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Table 4. 3 Probability (p) value for various features of gear signals using EWT and FBSE-EWT (Proposed method).

Methods EWT FBSE-EWT (Proposed method)
Bands Kurtosis RMS Variance Shannon Kurtosis RMS Variance Shannon
entropy entropy
Sub-band 1 | 1,0591x10° | 7.6275x10°5 | 7.7517 x10% | 4.7474 x10°7 | 1.2526x10°% 0 0 0
Sub-band 2 0 0 0 0 1.3039 x10-% 0 0 0
Sub-band 3 0.0001 0 0 0 0 1.0831 x107 | 1.0839 x107 | 3.4883 x10°8
Sub-band 4 0.0021 0 0 0 13918 x1078 0 0 0
Sub-band 5 0.0001 0 0 0 0.008 0 0 0
Sub-band 6 0.0010 0 0 0 0.0111 0 0 0
Sub-band 7 0.0075 0 0 0 0.0020 0 0 0
Sub-band 8 0.7022 0 0 0 0.0029 9.0985 x10%° 0 8.0157 x10°%°
Sub-band 9 0.4692 0 0 0 0.0034 1.8916 x10°7 | 1.8847 x107 | 1.4926 x10°7
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Table 4. 4 Details of the classification performance of classifiers for corresponding features using EWT and FBSE-EWT methods.

S. Features Performance of the classifiers (%) using Performance of the classifiers (%) using
No. EWT FBSE-EWT (Proposed method)
Random Multilayer J48 Random Multilayer J48
forest perceptron forest perceptron
1 Kurtosis 57 43.5 40 77.5 55 42
2 RMS 62.5 51.5 52 67 61.5 51
3 Variance 59 46 43.5 68.5 48.5 43.5
4 Shannon entropy 59.5 59.5 44 67.5 46.5 44
5 Kurtosis and RMS 66.5 55 50 83.5 66 53
6 Kurtosis and variance 66 51.5 53 73 62.5 53.5
7 Kurtosis and shannon entropy 68.5 50.5 49 84 73 55
8 RMS and variance 59 54 46 66.5 63 46
9 RMS and shannon entropy 59 53 43 69.5 60 50
10 Variance and shannon entropy 61 48 41 69.5 48 41
11 Kurtosis, RMS, and variance 65.5 54 44 72.5 68 46.5
12 Kurtosis, variance, and shannon entropy 66 54.5 42 73 61.5 43
13 RMS, variance, and shannon entropy 60 51.5 49 64.5 55 49
14 RMS, shannon entropy, and kurtosis 66.5 535 39 82.5 72.5 39
15 Kurtosis RMS, variance, and shannon entropy 66 52 45 73 67 43
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Additionally, the random forest classifier has demonstrated a high level
of accuracy with 77.5%, 67%, 68.5%,67.5%, 83.5%, 73%, 84%, 66.5%,
69.5%, 69.5%, 72.5%, 73%, 64.5%, and 82.5% from Table 4.4 FBES-EWT
based on the same feature combination. According to Table 4.4, FBES-
EWT achieved the highest classification accuracy, which was 84%, by
employing a random forest classifier that incorporated the Kurtosis and

Shannon entropy characteristics.

4.5 Conclusion

Any malfunction in gear systems increases maintenance costs and
downtime. Automated fault diagnosis of such systems could be a promising
way to deal with such conditions. The EWT and FBSE-EWT method has
been used to decompose different level of bevel gear crack fault signals.
The obtained sub-bands are used to evaluate features. To improve the
realization, statistically, significant features with (p<0.05) are decided using
the Kruskal-Wallis statistical test. These statistically significant features are
fed to the Classifiers. The maximum classification accuracy of 84% is
obtained using the FBSE-EWT method with a random forest classifier for
kurtosis and Shannon entropy features. It is observed that FBSE-EWT is-
better than the EWT for gear fault deduction. It is also observed that the
classification accuracy for the random forest is better than that of multilayer
perceptron and J48 classifiers. Comparative studies provide confirmatory
evidence that the proposed approach FBSE-EWT is superior to EWT.
Moreover, the present investigation and findings of the proposed
methodology are quite helpful for the automatic identification of crack gear

faults to diagnose the system with good accuracy.
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Chapter 5

A comparative study between the proposed

advanced signal processing techniques

In this chapter, a comparative study is carried out between the proposed
methodology. The significance is to find out, which one gives the best
classification accuracy. Micron level of wear gear signals with different
faults has been decomposed using the FAWT, iterative VMD, and FBSE-
EWT signal processing methods. After the 10 levels of decomposition
various statistical features namely kurtosis, skewness, standard deviation,
root mean square, and crest factor are extracted from the different sub
bands. Further, for identification of significant features performed by the
Kruskal-Wallis test. Those significant features are fed to different multi-
class classifiers, which are random forest, multilayer perceptron, and J48
classifiers. It has been observed from the comparative study, FAWT-based
methodology exhibits 97.66% accuracy using a random forest classifier

with combined kurtosis, skewness, standard deviation, and RMS features.

5.1 Introduction

Gear condition monitoring is the process of analyzing the health and
performance of gears in machinery to identify any potential faults or issues
before they become serious problems. It involves the use of various
techniques and technologies to detect, diagnose, and analyze the condition
of gears, including vibration analysis, oil analysis, acoustic emission
testing, and thermography. The importance of gear condition monitoring
cannot be overstated, as gears are critical components in many machines
and systems, such as automotive engines, wind turbines, and industrial

gearboxes. Failure or damage to gears can result in downtime, reduced
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productivity, and costly repairs, making it essential to monitor their
condition regularly. One of the primary benefits of gear condition
monitoring is that it allows maintenance teams to identify potential issues
early on before they escalate into more significant problems. Another
advantage of gear condition monitoring is that it helps to extend the lifespan
of gears, reducing the need for costly replacements. A comparative study is
a useful way to learn more about methods, figure out how well they work,
make well-informed decisions, and find new opportunities. But it is
important to figure out which methods give the most accurate
classifications. The method demonstrated its effectiveness based on the
efficacy of its classification. Therefore, it is necessary to conduct an analysis
of the recommended approaches side by side. In this regards, micron level
of wear gear signal with different faults has been decomposed using the

FAWT, interactive VMD, and FBSE-EWT signal processing.

5.2 Proposed methodology

In this section, the steps in the proposed methodology are illustrated in Fig.
5.1. The proposed methods based on FAWT, VMD, and FBSE-EWT are all
signal-processing techniques that are commonly wused in various
applications. The following is some information that is fundamentally
important regarding each of them:
1. FAWT: This method is used to analyse non-stationary data. The FAWT
combines the advantages of complex analysis and wavelet analysis into a
single process. This method is particularly useful for evaluating signals that
display non-stationary behaviour, such as audio, biomedical, and
mechanical signals. This is because FAWT allows for the investigation of
signals in the time-frequency domain, which includes both positive and

negative frequency separation.

2. VMD: Variational Mode Decomposition is a method of signal processing
that divides a signal into a limited number of oscillatory components. These

components are referred to as IMFs.

76



Acquire bevel gear vibration signals for different wear levels

k!

i

FAWT

Iterative VMD

FBSE-EWT

k'

Obtain co

mponents

)

i

Features computation

h

i

Use Kruskal-Wal
statistically sign

l1g test to obtain
ificant features

b

Multiclass-Classifiers
(Random forest, Multilaver perceptron and J48)

Healthy : . _
1 Y Incipient Shght wear Moderate Severe wear
C455 wear tooth tooth class wear tooth tooth class
class class

Figure 5. 1 A block diagrammatic representation of the methodology

3. FBSE-EWT: Combining a Fourier-Bessel series expansion method with

an empirical wavelet transform

analysing signals with non-stationary behaviour, such as audio and image
signals. For more details of signal processing technique, features, the

Kruskal-Wallis test, and classifiers, readers can refer to Chapters 2.2, 3.2,

and 4.2.

is the basis for the signal processing

approach known as FBSE-EWT. The FBSE-EWT is particularly helpful for

5.3 Experimental data collection

The gear vibration signals have been used as same in Chapter 2. For more

details, the reader may refer to Chapter 2.3.
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5.4 Results and discussion

The objective of this research is to provide an automated system for the
identification of gear faults by doing a comparison analysis with proposed

diagnostic approaches.
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Figure 5. 2 Applied FAWT decomposition (10 levels) on gear signals. (a)

healthy gear signal, (b) incipient wear gear signal, (c) slight wear gear

signal, (d) moderate wear gear signal, (e) severe wear gear signal
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Figure 5. 3 (a) Plots of the OCs using method for healthy bevel gear signal.

(b) Plots of the magnitude spectrum of respective OCs using iterative VMD

method for healthy bevel gear signal. The unit of Y axis are arbitrary.

The FAWT is a flexible wavelet transform that provides flexibility to

decompose a given signal into desired frequency bands with the help of

chosen control parameters. It decomposed the gear signals into detailed sub-

bands (d1-d10) and approximation sub-band. After applying FAWT with

10 levels of decomposition, the decomposed signals are shown in Fig. 5.2.

The approximation and detail sub-bands at this level 10 represent bands of

[0, 0.7] Hz and [0.7, 2.18] Hz respectively and extended up to level 1.
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Figure 5. 4 (a) Applied FBSE-EWT decomposition and find sub-bands, (b)

Represent the magnitude spectrum of their respective sub-bands.

The iterative VMD method is applied to decomposed healthy gears signal
and different level of wear faults signals. By using iterative VMD, the gear
signals are decomposed using the input parameters DC=0, « =200, K =10,
T =0, tol=10", @ (init)=0. Fig. 5.3 (a) shows the plots of the OCs and Fig.
5.3 (b) shows the respective magnitude spectrums of OCs using iterative
VMD Other proposed method FBSE-EWT also found decomposition of
signals input parameters such as (global trend removal ‘“none”;
regularization “gaussian”, detection method “locmax”, maximum number
of bands “10”) were used respectively. Fig. 5.4 (a and b) shows the

decomposed sub- bands for all gear with the magnitude spectrum of their
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Table 5. 1 Probability (p) value for various features of gear signals using

all conditions after employed FAWT.

Obtaind Kurtosis Skewness Standard Root mean Crest factor
components deviation square

Sub-band 1 0 1.7726x10" | 4.39704x10"° | 9.06345x10"" | 1.09622x10""
Sub-band 2| 0 0 0 9.4531x10" | 0

Sub-band3 | 0 0 0 9.5472x10" | 0

Sub-band 4 0 0 0 4.17236x10" | 0

Sub-band 5 0 8.06345x10" | 2.77827x10" | 3.93979x10"" | ©

Sub-band 6 0 0 0 T 14731x10" | 0

Sub-band7 | 0 0 0 5.29836x10" | ©

Sub-band 8 0 0 0 75510 0

Sub-band 9 0 1.53793x10" | 0 7.25174x10" | 0

Sub-band 10| 0 0 0 6.28929x10" | 0
Approximation- | 0 5.67791x10° | 1.15435x10 | 1.90446x10™" | 2.41416x10™"

respective sub-bands. From all the sub-bands were used to extract various
features namely kurtosis, skewness, standard deviation, root mean square,
and crest factor. The Kruskal-Wallis test is used to determine any
statistically significant differences between the classes. It is measured by
using probability (p) computation. Table 5.1, Table 5.2, and Table 5.3 has
shown the p-value of all statistical features for gears with different levels of
wear faults signals. From Table 5.1, Table 5.2, and Table 5.3, it is found
that there is a need to omit the sub-band signal those p > 0.05 [50]. The
retentates statistically significant features are fed to the classifier. These
statistically significant features are fed to all three classifiers random forest,
multilayer perceptron, and J48. Ten-fold cross-validation technique [101]

has been used for training and testing of data set to train the classifiers.
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Table 5. 2 Probability (p) value for various features of gear signals using

all conditions after employed iterative VMD.

Obtaind Kurtosis Skewness Standard Root mean Crest factor
components deviation square
Sub-band 1 0 0.1365 0.3163 0 0
Sub-band 2 23 141x10704 0.006 0.1239 0 0.0226

-09 -04 -09
Sub-band 31 3701x10 9.5499x10 9.9115x10 0 0

-05 -08
Sub-band4 1 4870510 0 3.1324x10 0 0

-05
Sub-band 5 0.3841 0.0005 1.8219x10 0 0
Sub-band 6 0 0.0052 0 0.4649 0
-05 -08

Sub-band 7 0.05841 1.91493x10 0 2.0224x10 0.0095
Sub-band 8 0 0.4163 0 2'0224)(10'“8 0.2165
Sub-band 9 2 1981x10708 0.1249 0.2365 0 0
Sub-band 10 0 0 0 0 0

Table 5. 3 Probability (p) value for various features of gear signals using
all conditions after employed FBSE-EWT.

Obtaind Kurtosis Skewness Standard Rootmean | Crest factor
components deviation square

Subband 1| | oo 1% | 0 0 0 0

Sub-band 2 1.3039)(10'06 0 0 0 0.0346
Sub-band 31 0 1.0831x10" | 1.08392x10" | 3.4883x10" | 01012
Subband4 | | zore F | 0 0 0 0.0079
Subband 5| 0,008 0.4724 0 0.3652 0.1349
Sub-band 6 0.0111 0 0 0 0

Subband 7 | 0.002 0 0 0 0.0295
Sub-band 8| 0.0029 9.0085x10" | © 8.0157x10" | 0

Sub-band 9| 0.0034 1.8916x10" | 1.8847x10" | 1.4926x10" | 0-0038
Sub-band 10 | 0 0 0 0 S 19010"

82




Table 5. 4 Details of the classification performance of classifiers for corresponding features using FAWT, iterative VMD, and FBSE-
EWT.

S. Features Performance of the classifiers (%) using | Performance of the classifiers (%) using | Performance of the classifiers (%) using
No. FAWT iterative VMD FBSE-EWT
Random Multilayer | J48 Random Multilayer J48 Random Multilayer | J48
forest perceptron forest perceptron forest perceptron
1
Kurtosis 97.16 90.16 89.03 89.30 83.32 76.5 70.50 57 43.5
2
Skewness 90.90 85.5 85.83 75.36 78.20 73.06 60.09 62.5 41.5
3
Standered deviation 92.83 92.83 84.00 84.83 85.40 75.00 68.06 59.03 56.16
4
Root mean square (RMS) 96.83 92 84.16 89.06 85.30 78.09 70.83 59.16 59.5
5
Crest factor 83.66 85.33 80.83 83.03 81.09 76.00 68.16 66.66 45.33
6
Kurtosis, and skewness 89.16 84.33 81.83 85.30 75.80 75.33 70.09 66 51.5
7 Kurtosis, Skewness, and standered
PN ? 96.66 94.16 75.83 85.32 79.83 70.03 72.05 68.5 50.16
deviation
8 .
Kurtosis, Skewness and standered | g ¢ 96.16 73.33 90.31 85.79 83.09 74.83 69.66 54.03
deviation, and RMS
9 .
Kurtosis, skewness, standered
deviation, RMS, and crest factor 96 95.33 75.83 86.16 76.16 70.03 62.05 59.06 43.06
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A comparative study between proposed methodologies is summarized in
Table 5.4. According to Table 5.4, FAWT-based individual features and
their combination features, including kurtosis, skewness, standard
deviation, RMS, and crest factor, the random forest classifier showed the
highest possible performance accuracy with 97.16%, 90.90%, 92.83%,
96.83%, 83.66%, 89.16%, 96.66%, 97.66%, 96% accuracy respectively.
Same details after using iterative VMD, it’s 89.30%, 75.36%, 84.83%,
89.06%, 83.03%, 85.30%,85.32%, 90.31%, and 86.16%. And for FBSE-
EWT gets 70.50%, 60.09%, 68.06%, 70.83%, 68.16%, 70.09%, 72.05%,
74.83%, and 62.05% accuracy respectively. Finally conclude from the
Table 5.4, FAWT-based methodology exhibits 97.66% accuracy using a
random forest classifier with combined kurtosis, skewness, standard

deviation, and RMS features.

5.5 Conclusion

To analyse the comparison research that was offered between the proposed
methodologies, the following purposes were pursued: Examining which one
offers the highest degree of classification accuracy is significant for this
purpose. According to the performance of the classification, the method
demonstrated the power of methodology. It has been observed from the
comparative study that FAWT-based methodology exhibits highest degree
of classification accuracy 97.66% using a random forest classifier with

combined kurtosis, skewness, standard deviation, and RMS features.
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Chapter 6

Conclusions and future scope

In this chapter, the findings and noteworthy contributions of this thesis
toward the evaluation of automated fault diagnosis of gearbox using
advanced signal processing techniques with different classifiers are
presented. In addition to that, it presents the potential expansion of the scope

of this study in the future.

6.1 Conclusions

In this chapter, the conclusions of gear fault diagnosis using advanced signal

processing techniques are summarized as follows:

» the FAWT method, an advanced technique for signals analysis of
micron-level wear of bevel gear, has been implemented for faults
diagnosis. The gearbox signals of healthy and faulty gears are
decomposed into each sub-band and calculated the entropies are for
each sub-band into the 10" level. It was observed that the log energy
entropy using a multi-class LS-SVM classifier with RBF kernel
resulted in the maximum value of classification performance of
98.33%,97.91%, 100%, 100%, 92.30%, and 0.95 for ACC, SEN,
SPF, PPR, NPR, and MCC respectively. The results obtained here
are compared with the previous results obtained by different
methods, such as the CWT, DWT, WPT, DTCWT, and TQWT. Due
to this characteristic feature the log energy entropy outperforms the
other entropies and subsequently provides the best classification of
the signal classes. This indicates that the proposed methodology is
the best suitable method for the automated identification of gear

faults.
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Gear wear is a major concern in the gear transmission system. In this
work, fault diagnosis of gear in the presence of level of wear in
micron faults was done using the iterative VMD method.
Experiments were conducted to acquire vibration signals from bevel
gears for a different levels of wear faults. The iterative VMD was
used to decompose the signals into different OCs. Significant
features were extracted using the Kruskal-Wallis statistical test.
That significant features were fed as input parameters in the
classifiers. Three different classifiers (random forest, multilayer
perceptron, and J48) were used to classify the multi-classes. It is
observed that the random forest classifier achieves the best
classification accuracy with the combination of kurtosis, skewness,
and standard deviation features.

Any malfunction in gear systems increases maintenance costs and
downtime. Automated fault diagnosis of such systems could be a
promising way to deal with such conditions. The EWT and FBSE-
EWT method has been used to decompose different level of bevel
gear crack fault signals. The obtained sub-bands are used to evaluate
features. To improve the realization, statistically, significant
features with (p<0.05) are decided using the Kruskal-Wallis
statistical test. These statistically significant features are fed to the
Classifiers. The maximum classification accuracy of 84% is
obtained using the FBSE-EWT method with a random forest
classifier for kurtosis and Shannon entropy features.

It has been observed from the comparative study, FAWT-based
methodology exhibits 97.66% accuracy using a random forest
classifier with combined kurtosis, skewness, standard deviation, and

root mean square (RMS) features.
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6.2 Scope for future work

This thesis covers essential challenge-based condition monitoring for fault
detection in bevel gear systems; however, there remain a few
recommendations that may be carried out in the future. For further

consideration in the future, the following study directions are suggested.

1. The proposed approaches may also be utilised to diagnose
combinations of local defects with levels of micron that may be
present in a gearbox.

2. It is also possible to investigate gears other than bevel gears,
such as spur gears, helical gears, planetary gears, and so on while
trying to diagnose a fault.

3. It is possible to evaluate the efficacy of the presented methods
for a wvariety of biological signals. Those are an
electrocardiogram (ECG) or an electromyogram (EMG), which
enables one to determine whether they are suitable for certain
signal processing. This study can assist in emphasising each
methodology's shortcomings and advantages and selecting
suitable methodologies for processing different biological
information.

4. The feasibility of the suggested techniques may also be
examined in terms of their effects on other rotating and
reciprocating equipment as well as electrical systems.

5. Based on the efficacy of proposed methodologies and created
faults, they can be applied to fault diagnosis for polymer gear.

6. Proposed methodologies can also be implicated in image

processing.
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