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ABSTRACT

Randomized neural networks (RdNNs) have shown their strength in classification and

regression problems. RdNNs with less computational cost and good generalization perfor-

mance are highly desirable machine learning models. In RdNNs such as random vector

functional link (RVFL) neural network, some parameters are kept fixed (during training),

either in a stochastic or a deterministic way, and rest parameters are optimized via closed

form or iterative methods. RVFL with direct links is a special randomized network. By us-

ing a closed form solution approach, RVFL avoids concerns that back-propagation trained

networks experience, such as the local minima problem, sluggish convergence, and sensi-

tivity to learning rate setting. This thesis aims to contribute to the evolution of RVFL by

developing novel variants of RVFL for classification problems. We give an extensive review

of the progress of RVFL, which is useful for beginners as well as professionals. RVFL as-

sumes that all the samples are equally important, however, this may not be true in real world

scenarios. To handle this issue, we employ fuzzy and intuitionistic fuzzy theory to reduce

the negative influence of the noise/outliers over RVFL’s performance and develop intuition-

istic fuzzy RVFL (IFRVFL) and class probability-based fuzzy RVFL (CP-FRVFL) models.

However, IFRVFL ignores the geometrical information of the data while calculating the fi-

nal parameters. Therefore, to further improve it, we develop graph embedded intuitionistic

fuzzy weighted RVFL (GE-IFWRVFL) that uses graph embedding framework to handle the

geometrical relationship of the data. The least square method used in standard RVFL may

struggle to separate possibly overlapping patterns, whereas nonparallel hyperplane-based

classifiers such as twin support vector machine (TWSVM) and nonparallel support vector

machine (NPSVM) perform well in such situations. While SVMs have their strengths, they

are not as flexible as neural networks/deep learning models when it comes to automati-

cally learning complex features from raw data. Therefore, we combine hyperplane-based

classifiers with RdNNs and propose novel models, namely, nonparallel RVFL (NPRVFL),

extended least squares twin SVM (ext-LSTSVM) and extended robust energy-based least

squares twin SVM (ext-RELS-TSVM) to benefit from both hyperplane-based classifiers and

neural networks, providing a more flexible solution for classification problems.



Single RVFL may struggle to capture complex and intricate patterns present in the

data. Ensembles usually improve generalization performance by leveraging the advantages

of many models. They have the ability to reduce overfitting and capture a wide range

of patterns in the data. Ensembles often outperform individual models, achieving higher

accuracy and reliability in predictions. Therefore, to improve the RVFL’s stability and

generalization performance, we develop extended feature RVFL (efRVFL), an ensemble

of efRVFL (en-efRVFL), and rotated RVFL (RoF-RVFL) models. Shallow RVFLs

have limited capacity to automatically learn deep hierarchical representations from raw

data. Deep architectures, with multiple hidden layers, are better suited for learning such

representations. Deep RdNNs with non iterative learning have fast training speed, less

tunable parameters, and good generalization performance. Ensemble deep RVFL (edRVFL)

with direct links and closed form solution method has good performance. However, the

edRVFL model doesn’t consider the geometrical relationship of the data while calculating

the final output parameters. We propose an extended graph embedded RVFL (EGERVFL)

model that employs both intrinsic and penalty subspace learning criteria under the graph

embedded framework in its optimization process to calculate the output parameters. The

proposed shallow EGERVFL model has only a single hidden layer and hence, has less

representation learning. We further develop an ensemble deep EGERVFL (edEGERVFL)

that can be considered a variant of edRVFL model. Finally, we present a brief summary of

this thesis and potential future research directions.

Keywords: Random vector functional link network, intuitionistic fuzzy theory, classifica-

tion, ensemble learning, ensemble deep learning.
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Chapter 1

Introduction

Artificial intelligence (AI) endeavors to create machines capable of emulating human-

like intelligence. AI is a rapidly growing field that has the potential to revolutionize many

aspects of the world [1]. The rapid growth of AI as a field, driven by the advancement

of machine learning (ML) algorithms over recent decades, has ushered in transformative

changes in human lives. In ML, several models, such as artificial neural networks (ANNs),

support vector machines (SVMs), randomized neural networks (RdNNs), and so on, have

been developed for classification problems. In classification problem, an input variable (x)

is mapped to a discrete output (y) via a learning algorithm (f ), i.e., y = f(x,⇥), where ⇥

is the parameter of the learning algorithm and y 2 Y , where Y contains the class labels.

Depending on the cardinality of Y , the classification problem may be binary or multiclass

in nature. Therefore, developing advanced ML algorithms for classification problems holds

substantial value.

In this thesis, our objective is to develop novel RdNNs for classification problems and

their application in the diagnosis of Alzheimer’s disease. This section gives a brief overview

of the ML algorithms discussed in this thesis, followed by the research motivations, objec-

tives, major contribution, and overall outline of the thesis.
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1.1 Research background

The long history of evolution has endowed the human brain with numerous desirable

characteristics, including huge parallelism, generalization capability, adaptivity, distributed

representation and computing, and others. ANNs or neural networks (NNs), which have

been designed following biological NNs, are expected to possess some of these appealing

characteristics [2]. Researchers and scientists have employed ANNs to address a broad vari-

ety of problems arising in mathematics (such as function approximation), physics, medicine,

economics, and other fields [3]. Typically, ANNs comprise an input layer, one or more

hidden layers, and one output layer. These layers are interconnected by weighted connec-

tions, representing vital network parameters. Within these layers, neurons, often referred

to as nodes, execute intricate mathematical operations encompassing both linear or nonlin-

ear transformations. Generally, gradient descent (GD) methods are a widely used iterative

process in ANN that aims to find the best settings for the model’s parameters by comparing

the predicted outputs with the expected ones. However, GD based approaches have some

drawbacks, such as sluggish convergence, failure in obtaining global minima and being very

sensitive to learning rate [4]. In contrast to traditional GD-trained NNs, RdNNs with closed-

form solutions avoid the aforementioned problems [5]. These networks are faster to train

and have good generalization performance [6, 7]. RdNNs have simple architecture, strong

mathematical foundations [8, 9], and effective data modeling capacity [10]. Random vector

functional link (RVFL) [11] network with direct links and closed form solution approach is

a special single hidden layer feed forward neural network (SLFN) among existing RdNNs.

Research demonstrates that direct links have a significant impact on RVFL’s performance

for classification [12] and regression problems [13, 14]. These direct connections sepa-

rate RVFL from other RdNNs such as radial basis function (RBF) [15], extreme learning
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machine (ELM) [16], and so on.

On the other hand, SVM [17] is an effective maximum margin classifier rooted in statis-

tical learning theory [18], which offers a planes-based classification approach. SVM and its

variants have been successfully employed in several domains [19, 20, 21]. However, SVM

has a considerable degree of computational complexity, i.e., O(N3), where N represents

the number of samples. As a result, twin SVM (TWSVM) [22], a framework designed to

reduce the time complexity of SVM, obtains two nonparallel proximal hyperplanes to clas-

sify the data. TWSVM solves two smaller quadratic programming problems (QPPs), unlike

SVM, which solves a single large QPP. TWSVM performs well with cross-plane datasets

due to its nonparallel nature [22]. Over the last decades, numerous advanced TWSVM-

based algorithms have been proposed, such as least square twin SVM (LSTSVM) [23],

twin bound SVM (TBSVM) [24], energy-based LSTSVM (ELSTSVM) [25], Robust energy

based LSTSVM (RELSTSVM) [26], intuitionistic fuzzy TWSVM (IFTWSVM) [27], and

many others [28, 29]. According to the study [30], RELSTSVM is the most efficient classi-

fier among twin SVM-based models. Inspired by non parallel hyperplanes based learning,

several ANNs such as twin ELM (TWELM) [31] and twin RVFL [32] have been developed

under this approach. TWSVM is successful in classifying data; however, it has several chal-

lenges, such as lack of sparsity, matrix invertibility on large datasets, sensitive to feature

noise near decision boundaries [33], and it needs to reconstruct optimization problems for

nonlinear cases by taking kernel-generated surfaces into account [34]. In order to improve

TWSVM performance for classification tasks and to address the aforementioned issues,

Tian et al. [35] developed a nonparallel SVM (NPSVM), which employs ✏-insensitive and

hinge loss functions, avoids matrix inversion operations (as in TWSVMs) and directly in-

herit kernel trick in itself. NPSVM constructs only two convex QPPs for both linear and

nonlinear cases, and it doesn’t need to compute the inverse of matrices prior to training (as
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required in TWSVM) and efficiently uses the sequential minimization optimization (SMO)

algorithm to solve its QPPs. Moreover, its sparsity is similar to standard SVMs, and when

the parameters are properly chosen, NPSVM degenerates to the TWSVMs.

Single models often struggle to strike the right balance between capturing complex pat-

terns in the training data while avoiding overly specific and noisy details. This can lead to

poor generalization when applied to unseen data [36]. The ML community has paid signif-

icant attention in designing the ensemble learning approach to mitigate the aforementioned

challenges of single models. Ensemble methods combine the predictions of multiple indi-

vidual models (known as base models), each trained on a different subset or perspective of

the data. By doing so, they harness the collective wisdom of these models, effectively re-

ducing the risk of overfitting or underfitting [37]. Ensemble learning techniques have been

successfully used in classification and regression problems [38]. Combining the diverse and

unstable base models [36], the ensemble model performs better than its constituent models.

Both decision trees (DTs) and NNs are unstable classifiers (low bias, high variance) and

have been extensively studied in the ensemble learning framework [38, 39]. Extensive re-

search has been done in developing ensemble algorithms such as random forest (RaF) [40],

random subspace method [41], rotation forest (RoF) [42], and so on. Few research com-

bines DTs and NNs to develop an efficient model: an ensemble of DT and RVFL [43] was

proposed for multi-class classification problems; Katuwal and Suganthan [44] proposed an

ensemble of RVFL classifiers, wherein dropout and dropConnect regularization techniques

[45, 46] are employed; Ling et al. [47] proposed an improved ensemble of RVFLs based on

particle swarm optimization (PSO) with a double optimization strategy (DOS); and in [48],

an adaptive ensemble model combined boosting technique with RVFL network. Ensemble

models have shown excellent performance in various fields such as malaria parasite classi-

fication [49], short-term electric load forecasting [50], Alzheimer’s disease diagnosis [51],
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and so on.

Typically, conventional ML models frequently encounter challenges when attempting

to uncover intricate latent representations within data. This limitation can subsequently

hinder the resultant ensemble model’s ability to achieve high performance across a diverse

range of datasets and tasks [52]. A branch of ML called deep learning (DL) aims to use

hierarchical architectures to learn high-level representations from data. Recent research

has shown the superiority of deep architectures over shallow architectures in terms of ac-

curacy [53]. Deep neural networks (DNNs) have proven effective at identifying complex

patterns in high-dimensional data and have been successfully applied to many fields in re-

search, business, and government [54]. Conventional DNNs often pose challenges due to

their extensive parameter count, typically in the millions, which necessitates meticulous tun-

ing. Moreover, these networks may encounter sub-optimal solutions when employing the

backpropagation (BP) optimization techniques [55]. As a remedy, Deep RdNNs have been

put forth to avoid the pitfalls of the above-mentioned challenges of the DNNs [56]. Deep

RdNNs offer several advantages, such as rapid training speeds and fewer tunable parame-

ters, which make them capable of mitigating the complexity associated with conventional

DNNs [56]. Recently, cutting-edge research has been conducted within the ensemble deep

learning framework, strategically capitalizing on the synergistic potential of both deep and

ensemble learning frameworks. Shi et al. [57] proposed deep RVFL (dRVFL) and ensemble

deep RVFL (edRVFL) models, which seamlessly combine the inherent strengths of RdNNs,

DNNs, and the effectiveness of ensemble learning methods. Research [58, 59] shows that

deep and ensemble deep variants of RVFL model perform better than several deep mod-

els [60]. The ensemble deep RVFL models have shown their effectiveness and superior

performance in several domains such as Alzheimer’s disease diagnosis [61], time series

classification problem [62], and so on.
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The research outlined above deepens our fundamental comprehension of RdNNs and

serves as a compelling catalyst, inspiring us to embark on a more profound exploration

within the domain of RdNNs.

1.2 Motivation of the study

• In 2016, Zhang and Suganthan [12] conducted a comprehensive examination of RVFL

architecture in the context of classification problems. Their investigation yielded sev-

eral significant findings, including insights into the impact of output layer bias, the

presence of direct connections from the input layer to the output layer, the choice of

activation functions in the hidden layer, the scaling of parameter randomization, and

the performance assessment of methods like the Moore–Penrose pseudoinverse and

ridge regression (or regularized least square solutions) in the computation of output

weights. Consequently, the RVFL model attracted the interest of researchers from var-

ious fields due to its fast training speed, direct links, simple architecture, and universal

approximation capability, which make it a viable RNN. RVFL has undergone signif-

icant improvements over the years and has shown its strength in diverse domains,

such as biomedical [63], forecasting [50, 64, 65], industries [66], non-linear system

identification [67], driving fatigue detection [68], and many more. The absence of

a systematic literature review on the progression of RVFL presents a challenge for

both newcomers and practitioners seeking suitable models for diverse applications.

Therefore, Chapter 2 presents a detailed review of the RVFL models to bridge this

information gap and provides a consolidated and accessible resource to the research

fraternity.

• Standard RVFL assigns uniform weights to each sample and hence considers all the
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data samples to be equally significant while calculating the output parameters. How-

ever, in real-world scenarios, this uniform weighting assumption may not be ideal in

the presence of outliers and noise in the datasets. Hence, RVFL shows lower gen-

eralization performance when confronted with outliers and noise within the datasets.

Moreover, RVFL ignores the geometric and discriminative information of the data

while training. Therefore, in Chapter 3, we propose novel RVFL models addressing

the aforementioned issues.

• RVFL and ELM are two popular RdNNs. There are several research that combine

plane-based techniques (i.e. SVM, TWSVM and so on) with ANNs architectures to

benefit from both approaches. Ganaie and Tanveer [69] integrated LSTSVM with

RVFL’s features (original features and randomized features) and developed an im-

proved model. TELM [31] learns two non-parallel separating hyperplanes in the

randomized feature space. TELM performs better in terms of classification accu-

racy and has fewer optimization constraint variables than TWSVM. Borah and Gupta

[32] developed unconstrained convex minimization-based implicit Lagrangian twin

RVFL networks for binary classification (ULTRVFLC), and experimental results

demonstrate that ULTRVFLC has superior performance than existing baseline mod-

els (SVM, ELM, TWSVM and RVFL). According to study [30], RELSTSVM is the

most efficient classifier among TWSVM-based models. Moreover, NPSVM has su-

perior theoretical properties and better generalization performance than TWSVM and

SVM models. RVFL employs a least square classifier, which may encounter difficulty

in distinguishing potentially overlapping patterns in the dataset. While hyperplane-

based classifiers are suitable for classifying such data. On the other hand, SVMs do

not have the inherent capacity to learn hierarchical or deep representations from raw

data. Thus, inspired by the aforementioned studies, Chapter 4 introduces integrated
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models that amalgamate hyperplane-based learning techniques with the RVFL net-

work.

• The performance of a single RVFL model is often unstable due to the random nature

of its hidden features [70], and it has less feature extraction capability that prevents it

from capturing the complex hidden relationship within the data. Ensemble techniques

are often regarded as the cutting-edge answer to such problems. By training multiple

models and pooling their predictions, the ensemble method increases the predictive

performance of a single model [37]. The ensemble of randomized models, such as

random forests and RdNNs, effectively reduces the variance resulting from the ran-

dom feature space. Ensemble RVFL models are more stable, robust and have better

generalization performance compared to single RVFL, and have been successfully

applied in various domains such as crude oil price forecasting [71], medical domain

[72] and so on. Moreover, extensive research [42, 73] has been done in designing

ensemble classifiers, wherein several base models are trained over different feature

subsets or data subsets to get diverse base models. To improve the RVFL’s stability

and generalization performance, Chapter 5 presents novel ensemble RVFL models.

• Shallow RVFL models have limited capacity to automatically learn hierarchical and

abstract features from raw data. The single hidden layer in a shallow architecture

may struggle to capture complex relationships present in the data. Currently, DL

architectures have shown their strength in classification and regression problems.

Deep RdNNs such as edRVFL with non-iterative learning have fast training speed,

fewer unknown parameters, and good generalization performance [57, 59]. However,

edRVFL, in which each layer constitutes a base model, doesn’t consider the geomet-

rical relationship of the data while calculating the output parameters of the model.
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Therefore, in Chapter 6, we propose an ensemble deep RVFL-based model to main-

tain the inherent topological properties of the data.

1.3 Research objectives

The following are the objectives of this thesis:

[1] To present a comprehensive review of the evolution of RVFL model.

[2] To develop robust shallow RVFL models using fuzzy theory and graph embedded

approach.

[3] To propose novel hybrid models amalgamating hyperplane-based learning and ran-

domized neural networks.

[4] To propose ensemble learning based RVFLs to improve its stability and performance.

[5] To propose an enhanced ensemble deep RVFL model incorporating graph embedding

framework.

1.4 Major contributions

In this section, we provide a brief summary of our proposed works. The contributions

to this thesis are listed below.

[1] The lack of a systematic literature review on RVFL’s progression poses a challenge

for researchers. Therefore, in Chapter 2, we contribute to the research community

by providing a comprehensive review of the development of RVFL. In this review,

we discuss the shallow RVFLs, ensemble RVFLs, deep RVFLs and ensemble deep

RVFL models. The variations, improvements and applications of RVFL models are
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discussed in detail. Moreover, we discuss the different hyperparameter optimization

techniques that improve the generalization performance of RVFL. Finally, we give

potential future research directions and opportunities that can inspire the researchers

to improve the RVFL’s architecture and learning algorithm further.

[2] During the training process, the standard RVFL assigns equal weights to each sam-

ple in order to determine their respective contributions. Nevertheless, it is impor-

tant to acknowledge that in practical situations, this assumption may not be valid

due to the existence of outliers and noise within the datasets. To address these chal-

lenges, in Chapter 3, we propose three novel RVFL-based models by employing the

fuzzy weighting scheme. In the first approach, we propose an intuitionistic fuzzy

RVFL (IFRVFL) model which assigns each sample an intuitionistic fuzzy (IF) num-

ber based on its membership and non-membership values. The membership function

considers the sample’s distance from the centroid of its corresponding class, and the

non-membership function considers the sample’s distance from the centroid as well

as takes the neighbourhood information of each sample. Hence, by allocating distinct

weights to each sample, the proposed IFRVFL model exhibits enhanced intelligence

compared to the standard RVFL. Consequently, it acquires the ability to effectively

manage noise and outliers present within the datasets. As an application, we effec-

tively employ the proposed IFRVFL model for the diagnosis of AD. In the second

approach, we propose a class probability based fuzzy RVFL (CP-FRVFL) model. The

proposed CP-FRVFL uses a non-linear membership function to determine the mem-

bership value of each sample. Moreover, the k-nearest neighbour (k-NN) technique is

used to determine the class probability of each sample to take its surrounding infor-

mation. Finally, a score value is assigned to each sample based on a score function

by combining the membership function and class probability. Although the proposed
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IFRVFL model handles the issues related to noise and outliers, but the randomiza-

tion process distorts the original structure of the data. As per the literature [74], the

graph embedding approach can be used to preserve the geometrical relationships in

the datasets. Therefore, in the third approach, we propose a graph embedded intuition-

istic fuzzy weighted RVFL (GE-IFWRVFL) model. The proposed GE-IFWRVFL

model has two major benefits: (i) it leverages graph embedding to maintain the inher-

ent geometrical linkages within the datasets, and (ii) it uses IF theory to handle the

noise and outliers within the datasets.

[3] In Chapter 4, we propose integrated approaches that combine RVFL networks with

hyperplane-based models, leveraging the strengths of both methodologies for en-

hanced model performance. In the first approach, we propose a novel non-parallel

RVFL (NPRVFL), that combines NPSVM model with RVFL network. The proposed

NPRVFL encompasses two non-parallel separating hyperplanes and is designed to

acquire knowledge from the RVFL’s feature space (original features combined with

randomized features) for data classification. In the proposed NPRVFL model, each

hyperplane is subject to joint optimization, minimizing its proximity to one class

while simultaneously ensuring a substantial separation from the other class. On the

other hand, the sparse pre-trained RVFL (SP-RVFL), an advanced variant of RVFL,

employs a sparse autoencoder with l1-norm regularization to acquire enhanced hid-

den layer parameters. In the second approach, we propose novel models, namely

extended LSTSVM (ext-LSTSVM) and extended RELS-TSVM (ext-RELS-TSVM),

wherein we use SP-RVFL’s feature space (original features and auto-encoder based

hidden features) to learn the hyperplanes for data classification.

[4] RVFL is an unstable classifier due to the randomization process and has less feature
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representation due to the presence of only one hidden layer. To address these issues,

we study RVFL with ensemble learning approaches in Chapter 5. Firstly, we propose

an extended feature RVFL (efRVFL) trained over extended feature space generated

analytically from the original feature space. The proposed efRVFL has three types

of features, i.e., original features, supervised randomized (newly generated) features

and unsupervised randomized features, in its feature matrix. The proposed efRVFL

with additional features has the capability to capture non-linear hidden relationships

within the dataset. Ensemble models are more stable and have better generalization

performance than single models. Therefore, we propose an ensemble of extended

feature RVFL (en-efRVFL). Each base model (efRVFL) of en-efRVFL is trained over

different feature spaces so that more accurate and diverse base models can be gen-

erated. The outcomes of base models are integrated via the average voting scheme.

Secondly, we propose a novel ensemble method, namely, a rotated random vector

functional link neural network (RoF-RVFL), which combines rotation forest (RoF)

and RVFL classifier.

[5] Randomized shallow and deep NNs with closed form solutions avoid the shortcom-

ings of the BP-based trained NNs. The edRVFL network utilizes the strength of two

growing fields, i.e., deep learning and ensemble learning. However, the edRVFL

model harms the geometrical relationship of the data in the training process. Graph

embedded frameworks have been successfully employed to maintain the geometri-

cal relationship within data. In Chapter 6, we propose an extended graph embedded

RVFL (EGERVFL) that, unlike standard RVFL, employs both intrinsic and penalty

subspace learning (SL) criteria under the graph embedded framework in its opti-

mization process to calculate the model’s output parameters. The proposed shallow

EGERVFL has only a single hidden layer and, hence, has less representation learn-
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CHAPTER 1. INTRODUCTION

ing. Therefore, we further develop an ensemble deep EGERVFL (edEGERVFL) that

can be considered as a variant of the edRVFL model. Unlike edRVFL, the proposed

edEGERVFL model solves graph embedded based optimization problems in each

layer and, hence, has better generalization performance than the edRVFL model.

1.5 Outline of the thesis

There are seven chapters in this thesis. Figure 1.1 shows the overall visual organization

of the thesis. The following is a brief overview of the chapters:

[1] In chapter 2, we present a comprehensive review [75] of the RVFL network’s devel-

opment, followed by a brief discussion of the existing literature related to this thesis

work.

[2] In chapter 3, we propose three models, i.e., intuitionistic fuzzy RVFL (IFRVFL) [76],

class probability based fuzzy RVFL (CP-FRVFL) and graph embedded intuitionistic

fuzzy weighted RVFL (GE-IFWRVFL) [77] for classification problems.

[3] In chapter 4, we combine hyperplane-based learning techniques with RdNNs ap-

proaches and propose non-parallel RVFL (NPRVFL), extended LSTSVM (ext-

LSTSVM) [78], and extended RELS-TSVM (ext-RELS-TSVM) models [78].

[4] In chapter 5, we study RVFL with ensemble learning approaches and propose the

following models: extended feature RVFL (efRVFL) [79], ensemble of efRVFL (en-

efRVFL) [79], and rotated RVFL (RoF-RVFL) [80].

[5] In chapter 6, we develop an extended graph embedded RVFL (EGERVFL) [81] and

its ensemble deep variant, i.e. ensemble deep EGERVFL (edEGERVFL) [81].

13



CHAPTER 1. INTRODUCTION

Figure 1.1: The overall outline of the thesis.

[6] In chapter 7, we present a summary of the thesis along with potential future research

recommendations.
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Chapter 2

Literature Review

In this chapter, we present the literature related to the research work of this thesis. We

give a brief introduction of the artificial neural network in section 2.1 and randomized neural

in section 2.2. We present a comprehensive review [75] of the RVFL network in section

2.3 and ELM is discussed in section 2.4. Plane-based learning methods such as support

vector machines, twin support vector machines and its variants are presented in section 2.5.

Section 2.6 discusses some miscellaneous theories based on intelligent machine learning

models that have been developed in the literature. Decision trees and their ensemble models

are presented in section 2.7. Section 2.8 gives a brief overview of Alzheimer’s diseases and

statistical tests that are used to evaluate the performance of machine learning models are

presented in section 2.9.

2.1 Artificial neural networks

Artificial intelligence (AI) is a rapidly growing field that has the potential to transform

many aspects of the world [1]. It refers to the development of computer systems that can

perform tasks that typically require human intelligence, such as learning, decision making,

and problem-solving [82]. AI has the potential to revolutionize industries and improve
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CHAPTER 2. LITERATURE REVIEW

efficiencies in a wide range of fields, including healthcare [83], transportation [84], finance

[85], and energy [86]. Machine learning algorithms are the engine of AI. Hence, developing

advanced machine learning algorithms for various tasks is of real value.

Among machine learning algorithms, artificial neural networks (ANNs) have received

considerable attention due to their success in diverse domains such as medicine [87], chem-

istry [88], robotics [89], control systems [90], industrial applications and function approxi-

mation [91, 92], and so on. The architecture of ANN is inspired by the topology of biologi-

cal neurons [93]. The ANN consists of neurons which are simple processing units and these

neurons are connected via weighted links. The neurons do mathematical operations that are

either linear or nonlinear, and they carry out some task that enables the ANN to approximate

the unknown function (rule) that generates the data [94]. In general, the training phase of

an ANN is an iterative process, and all the parameters are tuned via the backpropagation

(BP) method [95]. However, the traditional iterative techniques based on the BP algorithm

have some challenges, i.e., slow convergence [96], not getting global minima that leads to

sub-optimal parameters [97], and very sensitive to learning rate [98].

2.2 Randomized neural networks

The behavior of neural systems with the majority of fixed connections is investigated

through randomized neural networks (RdNNs), either in a stochastic or deterministic man-

ner. Such systems often take the form of shallow/multi-layered neural network architectures

with initialized connections to one or more hidden layers that are not trained. The class of

RdNNs naturally possesses a number of intriguing aspects due to the training algorithms’

restriction to working with a small number of weights [56]. The advantages of randomiza-

tion have been extensively investigated for shallow networks [4, 99]. In addition, they are

very appealing from a theoretical perspective [100, 101] because of their randomization, and
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universal approximation properties [9, 94]. Neural networks trained using randomization-

based algorithms exhibit their attractiveness in terms of accuracy and processing speed

[102]. Numerous studies demonstrate that on short datasets, RdNNs trained via closed-form

solutions outperform neural networks trained using gradient-based methods [62]. More re-

cently, RdNNs have also emerged as multi-layer and ensemble architectural ideas [103]. As

a result, a number of fresh deep and/or ensemble-based randomization-based methods have

been developed that enhance the modeling effectiveness of earlier single-layer RdNNs ar-

chitectures while retaining the computational effectiveness of randomization-based training

[104]. Recently, a number of experimental investigations examined the potential of RdNNs

in a number of application fields, including wave height forecasting [105], intelligent fault

diagnosis [106], biomedical domain [61], renewable energy prediction [107] and so on.

2.3 Random vector functional link network: a comprehen-

sive survey

To overcome the aforementioned issues with ANNs (see Section 2.1), randomization-

based techniques have been proposed [4, 103] with fast convergence and universal approxi-

mation properties. Randomization-based neural network such as the RVFL model has sev-

eral characteristics such as fast training speed, direct links, simple architecture, and univer-

sal approximation capability, that make it a viable randomized neural network. This section

presents a comprehensive review of the evolution of the RVFL model, which can serve as an

extensive summary for beginners as well as practitioners. We discuss the shallow RVFLs,

ensemble RVFLs, deep RVFLs, and ensemble deep RVFL models. The variations, improve-

ments, and applications of RVFL models are discussed in detail. Moreover, we discuss the

different hyperparameter optimization techniques followed in the literature to improve the
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generalization performance of the RVFL model. Finally, we give potential future research

directions/opportunities that can inspire the researchers to improve the RVFL’s architecture

and learning algorithm further.

The single hidden layer feed-forward neural (SLFN) network architectures have been exten-

sively studied in the last twenty years and employed in various domains, e.g., classification

and regression problems, due to their universal approximation capability [8, 9, 94, 108, 109].

In most of the SLFN networks, the learning process is done in the output layer while weights

and biases are generated randomly in the hidden layer. The output layer weights are calcu-

lated either via closed-form solution [110] or iterative process [111]. The origin of random-

ized feedforward networks can be traced to the late 20th century [103]. In 1988, Broom-

head and Lowe [15] discussed universal approximation property using radial basis function

(RBF) network with random centers [6]. There are several other architectures [112] like

RBF network, and recurrent neural network (RNN) which have randomization-based train-

ing algorithms [4].

Moreover, Schmidt et al. [113] proposed a feed-forward neural network with random

weights based on a randomization technique. At the same time, connecting the input layer

to the output layer via direct link, Pao et al. [11, 114] proposed a random vector functional

link (RVFL) neural network in 1992, wherein the parameters (weights and biases) from the

input layer to the hidden layer are generated randomly from a fixed domain and the output

weights are needed to be computed analytically. The idea of the direct link can be traced

back to the pioneering work in fuzzy systems [115] in 1985. The direct links have shown

significant improvement in RBF networks’ performance [116] in 2002. The intention behind

creating a direct link between inputs and outputs is to capture information about how the

first derivative of the output with respect to the inputs. In 1994, Igelnik and Pao proved that

RVFL is a universal approximator [117]. Recently, Needell et al. [118] proposed RVFL
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networks for function approximation on manifolds that fill the theoretical gap lacking in

[117]. In 2016, Zhang and Suganthan [12] conducted a comprehensive evaluation of RVFL

for classification problems and concluded some remarkable results about this architecture.

After that, the RVFL model got the attention of researchers from diverse domains due to its

simple architecture, fast training speed, and universal approximation capability. The shallow

RVFL model has been employed successfully in several domains, i.e., forecasting [50, 65,

119], non-linear system identification [67], function approximation [117], classification and

regression problem [13, 120, 121], etc.

The RVFL model transforms the original feature space into randomized feature space

via a random feature map (RFM), and this randomization process makes the RVFL model

an unstable classifier. Ensemble learning techniques develop stable, robust, and accurate

models integrating the several models known as base models [38]. Combining the diverse

and accurate base models [36], the ensemble model performs better than it constitutes mod-

els. Broadly speaking, ensemble learning can be divided into three categories, i.e., bagging

[122], boosting [123] and stacking framework [124]. Thus, the RVFL model has been im-

proved (developed) in ensemble frameworks, and the more stable and robust RVFL variants

have been proposed and employed in various domains, i.e., crude oil price forecasting [125],

medical domain [126], and classification problem [127], etc. Deep learning architectures

have a high representation learning capability due to several stacked layers for extracting

informative features [56] and have been successfully employed in several domains, i.e.,

computer vision [128], bioinformatics [129], and visual tracking [130], and speech recog-

nition task [131] etc. On the other hand, utilizing the strength of two individual growing

fields, i.e., ensemble learning and deep learning, researchers are developing ensemble deep

models [52, 132]. The shallow RVFL model has been extended to deep and ensemble deep

architectures that improve its generalization performance. The deep RVFL network [57] has
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several stacked layers wherein all parameters of hidden layers are generated randomly and

kept fixed during the training process, and only output layer parameters are needed to be

computed analytically. The deep RVFL model has better representation learning compared

to the shallow RVFL model. The deep RVFL model faces memory issues when training

data size, the no. of hidden layers, and the feature dimension of the data are considerable.

Therefore, to address these issues, an implicit ensemble technique-based ensemble deep

RVFL network known as the edRVFL model has been proposed [57].

RVFL has been improved in multiple aspects both in shallow and deep frameworks and

has been applied in diverse domains. In this chapter, we present the journey of shallow

and deep RVFL along with its applications. We conclude this article with potential future

research directions that might inspire researchers to develop this architecture further.

The rest part is organized as follows. In Section 2.3.1, we present the formulation of the

standard RVFL model. Section 2.3.2 discusses the research methodology and objectives.

The improvements in shallow RVFL and their applications are discussed in Section 2.3.3.

In Section 2.3.4 and 2.3.5, we discuss the semi-supervised methods and clustering-based

methods that have been developed based on the RVFL model, respectively. We present

the ensemble learning-based RVFL model in Section 2.3.6 and Section 2.3.7 discusses the

deep architectures based on the RVFL model. Section 2.3.8 discusses the hyper-parameters

optimization and experimental setup details and Section 2.3.9 discusses the applications

of the RVFL model. In Section 2.3.10, a comparison of RVFL with other machine learning

models is given. Finally, the potential future directions with conclusions are given in Section

2.3.11. Figure 2.3 shows the layout of the review work.
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2.3.1 Mathematical formulation of RVFL network

In this section, we discuss the formulation of the standard RVFL model. Let X =

[x1, x2, · · · , xN ]T , xi 2 Rd be the training dataset and Y = [y1, y2, · · · , yN ]T , yi 2 Rc,

be the target matrix. Here, d represents the number of features in each sample (xi), and

c denotes the number of classes. RVFL is a randomized version of a single hidden layer

feedforward neural (SLFN) network, with three layers known as the input, hidden, and

output layers. All three layers consist of neurons that are connected via weights. To avoid

the implementation of the backpropagation algorithm, the weights from the input layer to

the hidden layer are generated randomly from a domain and kept fixed during the training

process. Only the output weights are analytically computed by the least square method. In

RVFL, original features are also used to link the input and output layers. The direct links

improve the generalization performance of RVFL [12]. The architecture of RVFL is given in

Fig.2.1 (a) and Figure 2.1 (b) shows the different types of architectures of the RVFL model.

Mathematically, the RVFL model, i.e., f : Rd
! Rc, can be written as:

f(xi) =
dX

k=1

�kxik +
LX

k=d+1

�k✓(hµk, xii+ �k), i = 1, 2, · · · , N. (2.1)

In particular, hµk, xii = µk · xi is the standard inner product defined on Euclidean space

(Rd). The objective function of the standard RVFL model with L hidden nodes can be

written as:

min
1

2
k�k2 +

1

2
Ck⇠k2

subject to H� � Y = ⇠. (2.2)

where k.k represents the Frobenius norm and ⇠ = [⇠1, ⇠2, . . . , ⇠N ]T is the error term
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corresponding to N samples. This is the quadratic optimization problem with linear con-

straints. � and H are the output weight matrix and the concatenation matrix consists of

input data and outputs from the hidden layer, respectively and Y is the target matrix.

The optimization problem (2.2) can be rewritten as:

min
�2R(d+L)⇥c

1

2
k�k2 +

1

2
C kH� � Y k

2 , (2.3)

here,

H = [H1 H2]N⇥(d+L),

where

H1 =

2

6664

x11 x12 · · · x1d

...
...

. . .
...

xN1 xN2 · · · xNd

3

7775

N⇥d

, (2.4)

and

H2 =

2

6664

✓(µ1 · x1 + �1) ✓(µ2 · x1 + �2) . . . ✓(µL · x1 + �L)
...

. . .
...

...

✓(µ1 · xN + �1) ✓(µ2 · xN + �2) . . . ✓(µL · xN + �L)

3

7775

N⇥L

, (2.5)

� =

2

6666664

�1

�2

...

�(d+L)

3

7777775

(d+L)⇥c

and Y =

2

6666664

y1

y2
...

yN

3

7777775

N⇥c

.

Here, �k = [�k1, �k2, · · · , �kc] is the output weight vector connecting the kth input

(hidden) node and the output nodes, where 1  k  d + L, and µj = [µj1, µj2, · · · , µjd] is
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the weight vector connecting the jth hidden node and the input nodes, 1  j  L . Also,

xi = [xi1, xi2, · · · , xid] is the ith sample. For the target matrix, yi = [yi1, yi2, · · · , yic],

1  i  N . Moreover, ✓(·) and �i are the non-constant activation function and the bias

term of ith hidden node, respectively.

The optimal solution of the problem (2.2) when � = 1
C = 0 is as follows:

� = H+Y, (2.6)

where H+ represents the Moore-penrose generalized inverse of the matrix H [133]. The

regularization term is employed to avoid the over-fitting issue.

Therefore, the optimization problem with the regularization term is solved. Let the

Lagrangian be

L(�, ⇠,↵) = C
1

2
k⇠k2 +

1

2
k�k2 � ↵T (H� � Y � ⇠), (2.7)

and obtain the partial derivatives of L w.r.t �, ⇠ and ↵ and set them to zero.

@L

@�
= 0 =) � = HT↵, (2.8)

@L

@⇠
= 0 =) ↵ = �C⇠, (2.9)

@L

@↵
= 0 =) H� � Y � ⇠ = 0. (2.10)

When the number of features is less than number of samples, from (3.19) and (3.20), we
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obtain ↵ = �C(H� � Y ). By substituting the value of ↵ in (3.18):

� = (HTH +
1

C
I)�1HTY (2.11)

When the number of samples is less than the number of features, after substituting (3.18)

and (3.19) into (3.20), we obtain ↵ = (HHT + 1
C I)

�1Y . By substituting the value of ↵ in

(3.18):

� = HT (HHT +
1

C
I)�1Y. (2.12)

Therefore, in this case the optimal solution of (2.2) is given by,

� =

8
<

:
(HTH + 1

C I)
�1HTY, (d+ L)  N,

HT (HHT + 1
C I)

�1Y, N < (d+ L),
(2.13)

where C is the regularization parameter to be tuned and I is an identity matrix of appropriate

dimension. Both matrices HTH and HHT are symmetric positive semidefinite matrix and

C > 0, so both matrices in (3.23) is positive definite, therefore, (HHT + 1
C I) and (HTH +

1
C I) are non singular matrix.

24



CHAPTER 2. LITERATURE REVIEW

(a) Shallow RVFL: Red lines show the direct links between
the input layer to output layer, black lines show the connec-
tion between the input layer to hidden layer and blue lines
show the links between the hidden layer to output layer (Best
viewed in color).

(b) Different types of architectures of RVFL model.

Figure 2.1: The architectures of RVFL model.

Figure 2.2: Algorithmic variants of the RVFL model.
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2.3.2 Research methodology

The studies included in this review were obtained by searching the Google Scholar and

Scopus search engines. The papers are the result of keywords random vector functional link

and deep RVFL. The articles are screened based on the title and abstract, followed by the

screening of the full-text version. The focus of this article is to represent the developments of

shallow RVFL, ensembles of RVFL models, deep RVFL, ensembles of deep RVFL-based

models, and their applications. Having these search strategies, we included fundamental

papers on the RVFL model proposed in the late 20th century and after that, we included all

RVFL papers from 2016 onward. This review discusses the following issues:

[1] How are the weights initialized in RVFL-based models?

[2] Techniques used to improve the robustness of the models in the presence of

noise/outliers and class imbalance problems.

[3] Techniques followed for selection of hidden nodes like kernelized approach for RVFL.

[4] How do different approaches of ensemble learning like bagging, boosting, and stack-

ing improve the performance of the RVFL-based ensemble models?

[5] Techniques followed for the development of deep RVFL-based models.

[6] Development of RVFL-based models for different scenarios like semi-supervised

learning, unsupervised learning and regression problems.

[7] How to select the different parameters of the RVFL-based models, followed by the

techniques for the optimization of these models?

[8] Approaches followed for analyzing the effect of hyper-parameters on the generaliza-

tion performance of the RVFL-based models.

[9] The loopholes in the current literature of the RVFL-based models and possible future

research directions.
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2.3.3 Developments and applications of RVFL model

In this section, we discuss the journey of improvements in the shallow RVFL architec-

ture.

2.3.3.1 Empirical evaluation of RVFL for classification and regression problems

Few scientific questions regarding the RVFL model have been addressed rigorously in

the literature. Zhang and Suganthan [12] conducted a comprehensive evaluation of the

RVFL model to answer the following questions, i.e., the impact of direct links, the effect of

bias term in the output layer, and different types of activation functions in the hidden layer,

domain from where random parameters are generated and the output weights calculation

techniques over 121 UCI classification datasets. The experimental results demonstrate that

RVFL with direct links from the input layer to the output layer has better generalization per-

formance than RVFL without direct links, and output weights calculated via the ridge regres-

sion method are better than Moore-Penrose pseudoinverse-based output weights. Moreover,

generating the random weights and biases within a suitable domain from the input layer

to the hidden layer has a significant impact on the performance of RVFL, and biases term

in the output layer may or may not have any impact on the performance of RVFL. Simi-

larly, a comprehensive evaluation of orthogonal polynomial expanded RVFL (OPE-RVFL)

[13] method was conducted in which the input patterns are expanded non-linearly using

four orthogonal polynomials, i.e., Chebyshev, Hermite, Laguerre, and Legendre with three

activation functions tansig, logsig, and tribas. The results demonstrate that direct links in

the OPE-RVFL model also have a significant impact on regression problems, and the ridge

regression-based approach is better than the Moore-Penrose pseudoinverse-based approach.

Basically, this study also supports direct links in RVFL (as in [12]). Moreover, the results

demonstrate that the OPE-RVFL model with the Chebyshev polynomial performs better

than other compared polynomials, and tansig is the best-performing activation function fol-

lowed by tribas and logsig. Table 2.1 shows the commonly used activation functions with

the RVFL model in the literature.

The random feature mapping (RFM) mechanism has a significant impact on the per-
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formance of RVFL and plays a vital role in the success of RVFL, but there is very little

research to explore this topic. Cao et al. [134] conducted an experiment to study the re-

lationship between the rank of input data and the performance of RVFL and introduced a

concept to measure the quality of RFM via dispersion degree of matrix information distribu-

tion (DDMID). Moreover, in [134], several scientific questions were addressed, such as the

relationship between the performance of the RVFL model and the rank of the input dataset,

the sensitivity of this relationship with the different types of activation function, and the

number of hidden nodes, respectively and many more. Rasheed et al. [135] implemented

standard RVFL with different activation functions in the respiratory motion prediction and

compared RVFL with direct and without direct links. The authors find out that the results

with hardlim activation function are better than results with sigmoid, sine, tribas, radbas

and sign functions, and direct links prevent RVFL from overfitting. Also, RVFL with direct

links has better generalization performance than RVFL without direct links. Dudek [14] also

conducted an experiment to answer a few scientific questions related to the RVFL model,

such as whether direct links and bias terms in the output layer are necessary for modeling

the data in regression problem and what should be the optimal domain (or optimal process)

for choosing the random parameters for the hidden layer. In this study, three methods for

selecting the random parameters are considered, and the author concludes that direct links

seem helpful in modeling the target function with linear regions. The target function with a

non-linear nature can be modeled with RVFL having no direct connections and bias terms.

2.3.3.2 RVFL with different weight initialization techniques

The RVFL model has a random initialization process from the input layer to the hidden

layer, wherein the original feature space is transformed into randomized feature space, and

hence, RVFL has a breakneck training speed and less tunable parameters. It is also capa-

ble of modeling complex (linear/non-linear) data and has universal approximation property

[117]. On the other hand, the randomization mechanism makes RVFL an unstable model.

The quality of random weights and hidden biases significantly affect the RVFL model’s per-

formance. Traditionally, the random weights and hidden biases are randomly generated with

some probability distribution from a fixed domain, i.e. [-1, 1] and [0, 1], respectively. Study
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[12] reveals that the aforementioned range is not the optimal domain for choosing the ran-

dom parameters. Zhang et al. [120] proposed a sparse pre-trained random vector functional

link (SP-RVFL) network in which a sparse autoencoder with L1 norm is employed to gener-

ate weights and hidden biases from the input layer to the hidden layer. Sparse auto-encoder

learned superior network parameters than the randomization process. The experimental

evaluation on different datasets demonstrates that SP-RVFL outperforms standard RVFL.

SP-RVFL model generates sparse weights between the input layer to hidden layer that is

better as compared to randomly generated weights.

Cao et al. [136] studied the relationship between the probability distribution of the fea-

tures (variables) in the datasets and the probability distribution of input weights and hidden

biases in a neural network with random weights (NNRW) (in particular with RVFL and

ELM). This study generated seven regression datasets with known distributions (Gaussian,

Gamma, and Uniform). The input weights and hidden biases are initialized with differ-

ent distributions, and the models, i.e., RVFL and ELM, are trained, respectively. The ex-

perimental results conclude several phenomena, such as the model having input weights

and hidden biases from the Gaussian distribution can have a faster convergence rate than

ones with the Gamma and Uniform distributions. Suppose one or more features follow the

Gamma distribution, and input weights and hidden biases follow the same distribution. In

that case, the corresponding model has a slow convergence rate and faces an over-fitting

issue, etc. In another similar study [121], experiments were conducted to study the impact

of Gaussian, Uniform, and Gamma distributions on the performance of the RVFL model,

and the results suggest that input weights and hidden biases’ probability distribution have a

significant impact on the performance of RVFL model. This study also confirms that RVFL

with direct links performs better than RVFL without direct links.

Tanveer et al. [137] proposed several ways to generate input weights and hidden biases

in RVFL, wherein twin bounded support vector machine (SVM), least-square twin SVM,

twin k-class SVM, least-square twin k-class SVM, and robust energy-based least square

twin SVM models were employed to initialize input weights and hidden biases. The ex-

periments illustrate that the twin bounded SVM-based approach has better generalization

performance with a lower model rank (Friedman rank) than other proposed approaches.
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In [138], the random subspace Fisher linear discriminant (FLD) method generates the

random weights and hidden biases wherein important features are assigned higher weights

than weights assigned to more minor essential features. Therefore, this approach improves

the performance of RVFL. Pan et al. [139] proposed a novel method, Jaya-RVFL, where

a new emerging intuitive optimization technique- Jaya algorithm [140] is employed to op-

timize the randomization range of input weights and employed to transient stability as-

sessment in power system. Lu et al. [141] proposed three classification methods, i.e.,

MobileNet-RVFL-CBA, MobileNet-ELM-CBA, and MobileNet-SNN-CBA, respectively,

to classify the brain MRI image. In each scenario, first, the MobileNetV2 [142] trained

over ImageNet data is employed to extract the features from brain MRI images and then

to improve the generalization performance of these randomized neural networks (RVFL,

ELM, and SNN [113]), chaotic bat algorithm (CBA) is utilized to optimize the random

weights and biases. The empirical evaluation of these models for classifying brain MRI

data demonstrates that MobileNet-RVFL-CBA performs better than MobileNet-ELM-CBA

and MobileNet-SNN-CBA in terms of sensitivity and overall accuracy. In the literature, it

can be seen that several approaches such as different distributions [136], autoencoder [120],

and SVM models [137] have been used to calculate the weights from input layer to hidden

layer. There is no such method which is always adaptable. Therefore, further research is

required to develop efficient techniques to initialize the weights from the input layer to the

hidden layer in RVFL.

2.3.3.3 RVFL with manifold learning theory

Maintaining the data’s global and local geometric structure while data is processed via

several randomization processes is a challenging task. Manifold learning theory helps to

overcome this issue. The standard RVFL model does not consider the geometrical aspect

of the data and hence, loses information that leads to lower generalization performance.

Li et al. [143] proposed a discriminative manifold RVFL neural network (DM-RVFLNN),

wherein a soft label matrix is used to enlarge the margin between inter-class samples that

makes the DM-RVFLNN model more discriminative, and manifold learning based with-in

class similarity graph is used to enhance the compactness and the similarity with-in class
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samples. Experiments on the rolling bearing fault diagnosis process demonstrate that the

DM-RVFLNN model is superior and effective compared to standard RVFL. Considering

the topological relationship of samples and to improve the robustness of the RVFL model, a

sparse Laplacian regularized RVFL neural network with L2,1-norm (SLapRVFL) [144] was

proposed to assess the dry weight of hemodialysis patients and the experiments demonstrate

that SLapRVFL is more robust than standard RVFL. Here, L2,1-norm was used with regular-

ization term to obtain sparse output parameters. The standard RVFL model doesn’t consider

the within-class/total variance of training data while obtaining the final output parameters;

therefore, Ganaie et al. [145] proposed two variants of the RVFL model known as total

variance minimization-based RVFL (Total-Var-RVFL) that employs the complete variance

information of the training data in the objective function of standard RVFL, and intraclass

variance minimization based RVFL (Class-Var-RVFL) wherein the variance of each sample

from its respective class is considered, and hence, both models show better generalization

performance than standard RVFL model.

Parija et al. [146] proposed minimum variance-based kernel RVFL (MVKRVFL) to

identify the seizure and non-seizure epileptic EEG signal. In MVKRVFL, both the total

variance of the training data and within class variance are minimized to improve the gener-

alization performance of the RVFL model. The kernel trick is also employed to avoid the

hidden layer nodes and activation function (as these parameters are chosen in RVFL). In

MVKRVFL, deep long short-term memory (DLSTM) [147] is employed to extract the fea-

tures from epileptic EEG signals. The empirical evaluation of the DLSTM-MVKRVFL

model over EEG data demonstrates that it efficiently classifies seizure and non-seizure

movement. In [148], co-trained RVFL (coRVFL) model is proposed in which two feature

spaces i.e., randomly projected features and sparse-l1 norm autoencoder-based features are

employed. The coRVFL model utilizes the strength of different feature spaces and improves

the generalization performance of the RVFL model. Alzheimer’s disease (AD) typically af-

fects the brain’s cognitive functions and damages the cells and memory in the brain. Having

heterogeneous medical data, it is a challenging task to diagnose it at an early stage. Dai et

al. [149] proposed a hybrid model combining features extracted from different modalities

and introduced the manifold concept in the RVFL model to enhance the diagnosis process
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of AD. Adopting the manifold theory in its optimization process, the RVFL model has the

capability of maintaining the geometrical properties of the data while calculating the final

output parameters. Literature indicates that maintaining the local and global geometrical (or

statistical) properties of the data, manifold leaning-based RVFL models have better gener-

alization performance than standard RVFL.

2.3.3.4 Robust RVFL models

The standard RVFL model employs L2 norm-based loss function that is sensitive to out-

liers and hence, affects the generalization performance of the model. The standard RVFL

doesn’t perform well over noisy datasets, and therefore, one needs to handle the noisy

datasets with extra attention. Managing noisy data is a challenging task. Thus, several

approaches have been introduced to address such problems. To deal with datasets having

noise or outliers and to reduce the complexity of the model so that the generalization per-

formance of the model can be improved, Cui et al. [150] proposed RVFL-based approach,

wherein a novel feature selection method is introduced to make the RVFL model more ef-

ficient and robust based on the augmented Lagrangian method. The proposed RVFL-FS

method can be fitted into a parallel or distributed computing environment. The RVFL-FS

method is employed for the indoor positioning system (IPS) as a regression problem to

illustrate the proposed idea. RVFL-FS model works on the idea that instead of using all

hidden nodes, one should select the hidden nodes to generate robust features. Therefore, the

RVFL-FS model is computationally efficient and robust as compared to the standard RVFL

model. Samal et al. [151] proposed a robust non-iterative RVFL, i.e., Added activation

function based exponentially enhanced robust RVFL (AAERVFL), wherein trigonometric

function based exponentially expanded input vector is connected by a weighted direct link

from the input layer to the output layer and a new activation function using a weighted linear

combination of two activation functions, i.e., the local sigmoid and global Morlet wavelet

function, is introduced. The AAERVFL model is examined with five different non-linear

systems and three real-world datasets like electricity price prediction, currency exchange

rate prediction, and stock price prediction. The experiments demonstrate the superiority of

the AAERVFL model over the standard RVFL.
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In industrial processes like the mineral grinding process, noisy data with outliers is ac-

quired due to unavoidable circumstances. Dai et al. [152] proposed robust regularised

RVFL (RR-RVFL) and its online version as well. Weight calculated from a non-parametric

kernel density estimation method is assigned to the empirical error corresponding to each

sample. Therefore, the weighting mechanism reduces the negative impact of the outliers

over the RR-RVFL model. The experiments over the mineral grinding process demon-

strate that the RR-RVFL model is more robust and has better generalization performance

than standard RVFL. In RR-RVFL model, weights are assigned using the Gaussian kernel

function which can be replaced via other efficient functions such as piece-wise continuous

function to develop more robust model. Predicting the stock market movement is a signif-

icant task for future investment. Chen et al. [153] fused the two different algorithms, i.e.,

RVFL and group method of data handling (GMDH) [154], and proposed RVFL-GMDH

model consist of many nice properties such as resist noise/outlier effectively, avoiding the

over-fitting problem and has better generalization performance compared to standard RVFL

model. The RVFL-GMDH model effectively predicts the turning point of the stock price.

Iron and steel-making-based industries are famous industries in the modern world, and now

data-driven models are being employed for the estimation of molten iron quality (MIQ) in

these industries.

Cauchy distribution weighted M-estimation-based robust RVFL [155] model was de-

veloped to estimate the molten iron quality. The training data having outliers affects the

modeling capability of standard RVFL, so extra care is needed to handle such data. There-

fore, weights are assigned to outliers in the data using Cauchy distribution so that their (out-

liers) contribution to the modeling process can be identified and the negative influence of

these outliers can be reduced. Several techniques such as the weighting method [152], and

different loss functions [155], have been used with RVFL to improve its robustness and gen-

eralization performance. The standard RVFL model with the assumption that all the samples

are equally important gives equal weights to each sample for calculating the final parame-

ters but in the real world, noisy datasets with outliers are acquired that might have negative

impact on the model performance. Therefore, one needs to take care of these datasets. In

[156], intuitionistic fuzzy theory is employed to define membership and non-membership
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function to address the above issues with the RVFL model and proposed intuitionistic fuzzy

RVFL (IFRVFL) and to check the applicability of IFRVFL, it has been employed for diag-

nosis of Alzheimer’s disease. IFRVFL is a robust and binary classifier. Similar works can

be seen in [157, 158]. Therefore, it should be extended to multiclass problems. Hazarika

and Gupta [159] proposed robust 1 norm RVFL (1N RVFL) model wherein the optimization

problem is solved via newton technique. The 1N RVFL model produces spare outputs and

hence, has less number of hidden neurons as compared to the standard RVFL model.

Table 2.1: The summary of activation functions commonly used in RVFL model

S. No. Activation function Mathematical formulation
1 Sigmoid ✓(x) = 1

1+e�x

2 Sign (Signum) ✓(x) =

8
><

>:

�1, x < 0,

0, x = 0,

1, x > 0
3 Rectified linear unit (Relu) ✓(x) = max {0, x}
4 Sine ✓(x) = sin(x)
5 Radbas ✓(x) = e�x2

6 Hard limit (Hardlim) ✓(x) =

(
1, x  0

0, otherwise,
8 Tribas ✓(x) = max{1� |x|, 0}

9 Hyperbolic tangent (Tanh) ✓(x) = 1�e�x

1+e�x

10 Radial basis function (RBF) ✓(µ, �, x) = e��kx�µk2

11 Multiquadratic ✓(µ, �, x) =
q
kx� µk2 + �2

12 Scaled exponential linear units (Selu) ✓(x) = �(max(0, x) + min(0,↵(ex � 1)))

2.3.3.5 Kernelized RVFL models

For training the standard RVFL, one needs to determine the number of enhancement

nodes and activation functions in advance. Manually determining the optimal range of hid-

den nodes and the optimal activation function is challenging task. Kernel methods can be

used to address the aforementioned issues. Chakraavorti et al. [67] proposed kernel ex-

ponentially extended random vector functional link network (KERVFLN) for non-linear

system identification. Expanding the dimension of input vector via trigonometric function

and utilizing the expended vector in the learning process increase the generalization per-

formance of the RVFL model. Here, the kernel function is used to increase the stability of
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standard RVFL, and the inputs are extended using a trigonometric function that improves the

generalization performance of the KERVFLN model. Based on the analogy of the teacher-

student interaction mechanism, Zhang and Yang [160] proposed RVFL+ and kernel RVFL+

(KRVFL+) model that utilizes the learning using privileged information (LUPI) paradigm

in the training process of standard RVFL, and the experiments demonstrate that RVFL+ has

better generalization performance compared to standard RVFL model. Moreover, a tight

generalization error bound based on the Rademacher complexity is derived for the RVFL+

model and proves the efficiency and effectiveness of the RVFL+ and KRVFL+ models. Sev-

eral machine-learning approaches have been developed to classify brain images according

to brain abnormalities in the medical domain. Machine learning tools help physicians to

make decisions. Nayak et al. [161] proposed kernel RVFL (KRVFL) model with a new

feature descriptor based on Tsallis entropy and fast curvelet transform to classify brain ab-

normalities such as brain stroke, degenerative disease, infectious, brain tumor, and normal

brain. An efficient hybrid model [162] consists of weighted multi-kernel RVFL network

(WMKRVFLN), empirical mode decomposition (EMD) based features, and water cycle al-

gorithm (WCA) was proposed to diagnose and classify the epileptic electroencephalogram

(EEG) signals. When number of samples are large enough then Kernel-based RVFL models

are not applicable to large-scale datasets.

2.3.3.6 RVFL with Bayesian inference and other techniques

Scardapane and Wang [163] proposed several alternatives to train standard RVFL by ex-

ploiting the Bayesian Inference (BI) framework. In the standard RVFL model, the optimal

output weights are generally calculated via (regularized) least square method but here (in

[163] ), the probability distribution of the output weights is derived. The Bayesian approach

has several advantages, i.e., additional prior information can be introduced in the training

process of standard RVFL and the capability of automatically inferring hyper-parameters

from given data, etc. Experimental results demonstrate that the Bayesian Inference (BI)

based approaches are better than least square approaches (as in standard RVFL). The BI

approach to train the RVFL model gives a new area of research to develop robust RVFL

model. Introducing hybrid regularization term with L2 and L1 norm into standard RVFL,
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Ye et al. [164] proposed L2 � L1 RVFL model that overcomes the stability and sparsity

issue of the standard RVFL and gives an iterative algorithm to train L2 � L1 RVFL model.

Alalimi et al. [165] employed the Spherical Search Optimizer (SSO) algorithm to optimize

the RVFL model and named it the SSO-RVFL model. The SSO algorithm improves the

parameters of the standard RVFL model. Dai et al. [166] incorporated the LUPI paradigm

into the incremental RVFL (IRVFL) model and proposed IRVFL+ that has strong theoreti-

cal foundation. IRVFL+ model has been trained via two approaches. The first one is named

IRVFL-I+ which focuses on the speed of the model and another one is IRVFL-II+ which

focuses on accuracy. Incremental learning-based RVFL model solves the problem of con-

structing an appropriate RVFL model. Here, IRVFL-II+ is computationally expensive as

compared to standard RVFL and IRVFL-I+ models. In [167], a model for artificially intelli-

gent diagnosis that uses privileged information to learn was proposed to help with ELN dif-

ferential diagnosis when dealing with single- or dual-modal picture data. In order to create a

more effective unmanned aerial vehicle automatic target recognition system, [168] research

suggests two unique machine learning methods, namely Random Vector Functional Link

Forests and Extreme Learning Forests. For EEG-based driving fatigue detection, in [68],

an auto-weighting incremental random vector functional link (AWIRVFL) network model

that combines incremental learning and online regression prediction. Although AWIRVFL

outperformed several deep learning models, its network topology is still shallow, which re-

stricts its feature learning capacity in describing the underlying characteristics of EEG data.

In another approach, the RVFL-MO method [169] optimizes the RVFL model via the

mayfly optimization (MO) algorithm to predict the performance of solar photovoltaic ther-

mal collector combined with the electrolytic hydrogen production system. Experiments

demonstrate that the RVFL-MO model performs better than standard RVFL. Elsheikh et al.

[170] proposed an enhanced RVFL model with equilibrium optimizer (EO), i.e., RVFL-EO,

to predict kerf quality indices during CO2 laser cutting of polymethylmethacrylate (PMMA)

sheets. The equilibrium optimizer (EO) algorithm is employed to obtain the parameters of

the RVFL model that enhance its generalization performance. Several statistical tests were

used to compare RVFL-EO with the standard RVFL model, and the results indicate the

superior performance of the RVFL-EO model. A novel classification method [141] based
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on MobileNet and three feed-forward neural networks with random weights, i.e., extreme

learning machine (ELM), Schmidt neural network (SNN), and RVFL network, to classify

brain magnetic resonance image (MRI) image was proposed. Here, MobileNetv2 is em-

ployed to extract features from the input brain image, and then the classification task is

executed via ELM, SNN, and RVFL models, respectively. The experimental results reveal

that the MobileNet-RVFL-CBA method performs better than other proposed MobileNet-

ELM-CBA, MobileNet-SNN-CBA methods and compared state-of-the-art methods.

Naive Bayes classifier has the capability to handle the mixed data containing categorical

and numerical attributes. On the other hand, the one-hot encoding technique is used to deal

with categorical features in neural networks. To avoid the use of one-hot encoding with

neural network, Ruz and Henriquez [171] proposed a two-stage learning approach based on

the RVFL model and Naive Bayes classifier, i.e., RVFL-NB, to handle the mixed data. In the

first stage, the Naive Bayes classifier is employed to compute the posterior probabilities for

each class, and in the second stage, the RVFL model is trained using as inputs the continuous

features and including as additional hidden units the posterior probabilities obtained in the

previous step. Single hidden layer feed-forward neural networks face a challenge, i.e., how

to choose a number of hidden neurons in the hidden layer because this choice leads to

underfitting and overfitting phenomena. To address this issue, a non-iterative method [172]

for pruning hidden neurons with random weights was proposed. The pruning method is

based on Garson’s algorithm and was employed on three neural networks, i.e., single hidden

layer neural network with random weights (RWSLFN), RVFL, and ELM, to increase their

generalization performance.

Parsimonious RVFL (pRVFL) [173] model was proposed for the data stream and hence,

performs better than the standard RVFL model. pRVFL model has flexible and adaptive

working principle wherein its structure is automatically generated and pruned. In the op-

tical fiber pre-warning system (OFPS), most of the feature extraction methods are quested

from the view of the time domain. To address this issue, using multi-level wavelet decom-

position, Wang et al. [174] extract intrusion signal features of the running, digging, and pick

mattock in the frequency domain and then for considering the feature of each intrusion type,

the average energy ratio of different frequency bands is obtained. Finally, the RVFL model
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is trained for the classification and identification of the signal. The results demonstrate that

RVFL correctly classifies the different intrusion signals. El-Said et al. [175] conducted ex-

periments with four machine learning algorithms, i.e., support vector machine (SVM) [176],

K-nearest neighbour (K-NN) [177], sequential minimal optimization regression [178, 179]

and RVFL model, to predict the air injection effect on the thermohydraulic performance of

shell and tube heat exchanger. The experimental analysis reveals that the RVFL model out-

performs compared models with excellent accuracy and better generalization performance.

Borah and Gupta [32] proposed unconstrained convex minimization based implicit La-

grangian twin RVFL for binary classification (ULTRVFLC) for addressing the overfitting

issue in the standard RVFL and hence, has better generalization capability as compared to

standard RVFL model. Unlike TWSVM and twin ELM (TELM), in ULTRVFLC, three

iterative convergent schemes are employed to make the model computationally efficient.

The least-square twin SVM (LSTSVM) [23] has been a successful classifier, and it works

on the original feature space. On the other hand, the RVFL model works on both origi-

nal and randomized features. Ganaie and Tanveer [69] proposed a novel LSTSVM model

with enhanced features obtained from the pre-trained RVFL model and hence, improved

the generalization performance of the baseline model. Prediction of international oil prices

has become a hot topic in the field of energy system modeling and analysis. Tang et al.

[180] proposed a new technique introducing a multi-scale forecasting methodology with

multi-factor search engine data (SED). Incorporating the informative SED, the multi-scale

relationship with oil price is explored, and four machine learning models, i.e., ELM, RVFL,

linear regression (LR), and backpropagation neural network (BPNN), are employed in this

task. Mary et al. [181] employed standard RVFL in the image retrieval (IR) framework

for better performance. To address the instability issue in the sliding mode control system,

Zhou and Wu [182] proposed an adaptive fuzzy RVFL (FRVFL), wherein self-mapping be-

tween fuzzy rules and hidden layers is employed and adaptive rules are also employed to

achieve self-adjustment for the output weights. FRVFL model combines RVFL with the

dynamic fuzzy system to improve its generalization performance. To address the threats

issues in android malware detection tools, in [183], a novel technique using RVFL model

with artificial jellyfish search (JS) optimizer algorithm for selecting the optimal features of
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android malware datasets, i.e., RVFL+JS, has been proposed. The JS algorithm reduces the

redundant and irrelevant features from the data that handle the storage and time complexity

issue and hence, improves the generalization performance of the RVFL+JS model. In [184],

ResNet18 was used to extract wrinkle image features, and an RVFL algorithm optimized

by the TSA algorithm based on logistic maps and opposition-based learning was proposed

for evaluating fabric wrinkle level. This was done to address the issues of low accuracy and

low efficiency in evaluating the wrinkle degree by visual perception and the shortcomings of

the current artificial neural networks in evaluating the wrinkle level. However, the amount

of fabric samples at some levels was insufficient, and just a few different fabric types were

included in the study’s fabric samples. Label distribution learning (LDL), as opposed to

multi-label learning (MLL), can reflect the importance of pertinent labels in samples, which

is why many LDL studies have lately been appearing. In [185], a unique LDL framework

based on RVFL is proposed, which can efficiently and precisely handle the live data stream.

2.3.3.7 Imbalance learning based on RVFL model

The class imbalance problem occurs when one class has small samples compared to

other classes. Standard RVFL is not capable of handling imbalanced data. Cao et al.

[186] proposed improved fuzziness-based RVFL (IF-RVFL) where synthetic minority

over-sampling technique (SMOTE) [187] is combined with fuzziness-based RVFL model

[188]. The experiments on the real-life liver disease dataset demonstrate that the IF-RVFL

model performs better than the standard RVFL and F-RVFL models. To diagnose the power

quality disturbance (PQD), Sahani and Dash [189] proposed class-specific weighted RVFL

(CSWRVFL). Here, a novel signal decomposition technique- reduced sample empirical

mode decomposition- is proposed to extract the highly correlated monocomponent mode

of oscillations. Hilbert transforms (HT) extracted the two effective power quality indices

are extracted from Hilbert transforms (HT). Finally, the combined framework RSHHT-

CSWRVFL is applied for online monitoring of the power quality disturbances (PQDs) with

better classification accuracy.
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2.3.3.8 Multi-label classification based on RVFL model

In a traditional classification problem, each sample is associated with only one target

label from a set of labels. However, each sample can be related to more than one label in

multi-label classification problems. There are several fields, i.e., medical diagnosis, music

categorization, etc., wherein multi-label data is produced. Chauhan and Tiwari [190] ex-

tended the standard RVFL for the multi-label task. In [190], randomization-based neural

networks, i.e., multi-label RVFL (ML-RVFL), multi-label kernelized RVFL (ML-KRVFL),

multi-label broad learning system (ML-BLS), and multi-label fuzzy BLS (ML-FBLS) were

proposed to handle the multi-label classification problems. Here, the ML-KRVFL model

performs better than other compared models.

Table 2.2 shows the summary of the shallow RVFL model and its variants. The ta-

ble gives a highlight of the journey of shallow RVFL in tabular form with variants name,

activation functions, hyper-parameter optimization methods/solutions, and finally their ap-

plications. In summary, researchers have developed several variants of RVFL model using

various methods such as different kind of initialization techniques [12, 120], kernel methods

[67, 160], manifold learning [144, 145], fuzzy theory [156] and so on. Kernel-based RVFL

models [161, 162] are robust, stable, and have better generalization performance than stan-

dard RVFL model. There is no need to choose activation functions and hidden nodes in

kernel-based RVFL models, however, these models are not suitable for large-scale datasets

(when N is large enough). Standard RVFL doesn’t consider geometric information of the

data while calculating the output weights whereas, using this kind of information, RVFL

variants with manifold learning theory have better generalization than standard RVFL.
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Table 2.2: The summary of shallow RVFL models

Year Literature Model description Activation function Hyper-parameter optimization or Solution Application

2022 Ganaie et al. [191] MVRVFL+ Relu Closed form Classification

2022 Malik et al. [156] Intuitionistic fuzzy RVFL (IFRVFL) Selu, relu, sigmoid, sin, hardlim,

tribas, radbas, sign function

Closed form Alzheimer’s disease diagnosis

2022 Hazarika and Gupta [159] 1-norm RVFL (1N RVFL) Sine, relu Newton technique Classification problem

2021 Samal et al. [151] A non-iterative robust AAERVFL Sigmoid, global morlet wavelet

functions

Closed form Nonlinear system identification

2021 Parija et al. [146] Minimum variance based kernel RVFL (MVKRVFL) - Closed form Epileptic EEG signal classification

2021 Chen et al. [153] Group method of data handling (GMDH) based RVFL (RVFL-GMDH) Sigmoid Iterative method Stock price prediction

2021 Zhou and Wu [182] Adaptive fuzzy RVFL (FRVFL) - Iterative method Slide mode control for manipulators

2021 Zhang et al. [192] Reinforced fuzzy clustering-based rule model (RFCRM) - Iterative method Regression problem

2021 Elkabbash et al. [183] RVFL+JS - Jellyfish search optimizer Android malware classification

2021 Guo et al. [144] Sparse Laplacian regularized RVFL (SLapRVFL) - Iterative method Assessing dry weight of hemodialysis patients

2021 Alalimi et al. [165] Spherical search optimizer based RVFL (SSO-RVFL) Tribas, sign, hardlim, radbas, sin,

sig

Spherical search optimization algorithm Prediction of oil production in China

2021 Gao et al. [64] Walk-forward EWT based RVFL (WFEWT-RVFL) - Closed form Time series forecasting

2021 Tanveer et al. [137] TBSVM-FL, TWKSVC-FL, LSTWKSVC-FL, RELSTSVM-FL,

LSTSVM-FL

Radbas Closed form (LS) Classification problem

2021 Abd Elaziz et al. [169] Mayfly optimization (MO) algorithm based RVFL (RVFL-MO) Sign, hardlim, sig, tribas, radbas Mayfly optimization algorithm solar photovoltaic thermal collector combined with

electrolytic hydrogen production system

2021 Elsheikh et al. [170] Equilibrium optimizer based RVFL (RVFL-EO) Sign, hardlim, sig, tribas, radbas Equilibrium optimization algorithm Laser cutting parameters for polymethylmethacrylate

sheets

2021 Zayed et al. [193] RVFL-CHOA Sign, tribas, sigmoid, hardlim, rad-

bas

Chimp optimization algorithm (CHOA) Solar power forecasting

2021 Ganaie et al. [148] Co-trained RVFL (coRVFL) - Closed form Classification problem

2021 Dash et al. [194] Empirical wavelet transform based robust minimum variance RVFL

(EWT-RRVFLN)

Local sigmoid function, global

morlet wavelet

Closed form (LS) Short term solar power forecasting

2021 Gao et al. [64] Walk forward empirical wavelet transformation based RVFL

(WFEWT-RVFL)

- - Time series forecasting

2021 Dai et al. [166] Incremental learning paradigm with privileged information for random

vector functional-link networks: IRVFL+

Sigmoid, sine, triangular, radial Incremental learning Classification and regression problems

2020 Ganaie and Tanveer [69] LSTSVM classifier with enhanced features from pre-trained RVFL Radbas Closed form Classification problem

2020 Ganaie et al. [145] Total-Var-RVFL, Class-Var-RVFL Relu Closed form Classification problem

2020 Hazarika and Gupta [195] Wavelet-coupled RVFL (WCRVFL) network Relu, sigmoid Closed form (LS) COVID-19 cases forecasting

2020 Dudek [14] Standard RVFL Sigmoid Closed form (LS) Regression problem

2020 Chakravorti and Satya-

narayana [67]

Exponentially extended RVFL network (ERVFLN), Kernel ERVFLN

(KERVFLN)

Tanh(.) Closed form (LS) Nonlinear system identification
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2020 Cao et al. [134] - Sigmoid, radial basis function

(RBF), sine

Classification problem

2020 Lu et al. [141] MobileNet-RVFL-CBA, MobileNet-ELM-CBA and MobileNet-SNN-

CBA

- Closed form (LS) Brain MRI image classification problem

2020 Rasheed et al. [135] Standard RVFL Sine, hardlim, sigmoid, tribas, rad-

bas, sign

Closed form (LS) Respiratory motion prediction

2020 Zhang and Yang [160] RVFL+, kernel RVFL+ Sigmoid, sine, hardlim, triangular

basis function (TBF), radial basis

function (RBF)

Closed form (LS) Classification and regression problems

2020 Ye et al. [164] L2 � L1-RVFL Sigmoid Iterative method Classification Problem

2020 Abd Elaziz et al. [196] MPA-RVFL Sigmoid, sine, hardlim, tribas, rad-

bas

Marine predators algorithm (MPA) Tensile behavior prediction

2020 Essa et al. [197] RVFL-AEO Sign, tribas, sigmoid, hardlim, rad-

bas

Artificial ecosystem-based optimization (AEO) algorithm Forecasting power consumption and water productiv-

ity of seawater

2020 Sharshir et al. [198] Firefly algorithm based RVFL (FA-RVFL) Sigmoid, radbas, hardlim, sine,

sign, tribas

Firefly algorithm Thermal performance and modeling prediction of de-

veloped pyramid solar

2020 Pan et al. [139] Jaya-RVFL - Jaya algorithm Transient stability assessment of power systems

2020 Parija et al. [162] Empirical mode decomposition (EMD) and water cycle algorithm

(WCA) based weighted multi-kernel RVFL network (WMKRVFLN)

(WCA-EMD-WMKRVFLN)

- Closed form (LS) Epileptic EEG signal classification

2019 Hussein et al. [199] Moth search algorithm based RVFL (MSA-RVFL) - Closed form (LS) Water quality analysis

2019 Zhang et al. [120] Sparse autoencoder with l1 norm based RVFL (SP-RVFL) Sigmoid Closed form (LS) Classification problem

2019 Nayak et al. [161] kernel RVFL (KRVFL) - Closed form (LS) Brain abnormalities detection

2019 Zhou et al. [200] Improved orthogonal incremental RVFL (I-OI-RVFL) Sigmoid Iterative method Data modeling

2019 Ruz and Henrı́quez [171] Naive Bayes classifier based RVFL (RVFL-NB) Sigmoid closed form Classification problem of mixed data

2019 Cao et al. [136] Standard RVFL Sigmoid Closed form (LS) Classification problem

2019 Bisoi et al. [119] Variational mode decomposition based RVFL (VMD-RVFL) Tanh Closed form (LS) Crude oil price forecasting

2019 Borah and Gupta [32] Unconstrained convex minimization based implicit Lagrangian twin

RVFL for binary classification (ULTRVFLC)

Multiquadratic Newton-Armijo stepsize method Classification problem

2019 Sahani and Dash [189] Class-specific weighted RVFL (CSWRVFL) Tanh Closed form (LS) Power quality disturbances

2019 Fan et al. [138] Random subspace fisher linear discriminant (FLD) based RVFL - Closed form (LS) Image steganalysis

2018 Wang et al. [174] Standard RVFL - Closed form (LS) Optical fiber pre-warning system

2018 Pratama et al. [173] Parsimonious RVFL (pRVFL) - FWGRLS method Data stream

2018 Henrı́quez and Ruz [172] Neural networks with random weights (NNRW) Sigmoid Closed form (LS) Regression and classification problem

2018 Vuković et al. [13] Orthogonal polynomial expanded RVFL (OPE-RVFL) Tansig, logsig, tribas Closed form (ridge regression/ Moore-Penrose pseudoin-

verse)

Regression problem

2018 Dash et al. [201] Standard RVFL, regularized online sequential network (ROS-RVFL) Radbas Closed form (LS) Indian summer monsoon rainfall prediction

2018 Nhabangue and Pillai [202] Empirical mode decomposition based improved RVFL (EMD-IRVFL) - Closed form (LS) Wind speed forecasting
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2017 Cui et al. [150] Feature selection based RVFL (RVFL-FS) - Alternative direction method of multiplier (ADMM) algo-

rithm

Fingerprinting based indoor positioning system

2017 Scardapane et al. [163] Bayesian inference RVFL (B-RVFL) - Bayesian inference algorithm Classification problem

2017 Cao et al. [121] Standard RVFL Sigmoid Closed form (LS) Regression problem

2017 Dai et al. [152] Robust regularized RVFLN (RR-RVFLN), online robust regularized

RVFL (ORR-RVFLN)

- Closed form (LS)/ Iterative method Industrial application

2017 Zhou et al. [155] Cauchy distribution weighted M-estimation-based robust RVFL

(Cauchy-M-RVFLN)

Sigmoid Iterative method Blast furnace iron-making process

2017 Xu et al. [203] Kernel RVFL (K-RVFL) - Closed form (LS) Thermal process

2017 Dai et al. [149] Manifold learning based RVFL - Closed form (LS) Analysis of alzheimer’s disease

2016 Zhang et al. [204] Multivariable incremental RVFL (M-I-RVFLN) - Iterative method Molten iron quality prediction

2016 Zhang and Suganthan [12] Standard RVFL Sigmoid, sine, hardlim, tribas, rad-

bas, sign

Closed form (ridge regression/ Moore-Penrose pseudoin-

verse)

Classification problem

2015 Zhou et al. [205] Online sequential RVFL (OS-RVFL) - Iterative method Molten iron quality prediction

2015 Ren et al. [206] Standard RVFL Logistic sigmoid Closed form (LS) Wind power ramp detection
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2.3.4 Semi-supervised methods based on RVFL model

There are datasets in which small number of samples are labeled in many applications.

RVFL variants have been successfully employed in diverse domains, i.e., classification and

regression, etc. However, there is very little research on solving semi-supervised learning

problems with the RVFL model. Table 2.3 summarizes the RVFL models developed for

semi-supervised learning. Peng et al. [207] proposed a joint optimized semi-supervised

RVFL model, i.e., JOSRVFL, in which a novel approach is used to optimize the objective

function of the JOSRVFL model. There are many techniques in machine learning to im-

prove the generalization performance of a model, and fuzzy theory is one of them. In [188],

a novel fuzziness-based RVFL model has been proposed for a semi-supervised learning

problem. Inspired by transductive SVM [208], Scardapane et al. [209] proposed a trans-

ductive RVFL (TR-RVFL) model that defines box-constrained quadratic (BCQ) problem

solvable in polynomial time. The TR-RVFL model performs better than many state-of-art

algorithms based on the manifold regularization (MR) theory. In [210], two algorithms, i.e.,

horizontally distributed semi-supervised learning (HDSSL) and vertically DSSL, were pro-

posed. Both algorithms are based on the RVFL model and alternating direction method of

multipliers (ADMM) strategy. The HDSSL and VDSSL algorithms solve DSSL problems

with horizontally and vertically partitioned data, respectively. Therefore, the RVFL model

performs well in semi-supervised problems.

Table 2.3: The summary of semi-supervised RVFL models

Year Literature Model description Activation function Hyper-parameter optimization or Solution Application
2020 Peng et al. [207] JOSRVFL and JOSELM - Iterative method Classification problem
2020 Xie et al. [210] Horizontally distributed - Iterative method Classification problem

semi-supervised learning (HDSSL),
vertically DSSL (VDSSL)

2017 Cao et al. [188] F-RVFL Sigmoid Closed form Classification problem
2016 Scardapane et al. [209] TR-RVFL Sigmoid Closed form Classification problem

2.3.5 Clustering methods based on RVFL model

Clustering is an unsupervised learning problem where samples are categorized into clus-

ters (groups) based on their similarities. In the literature, there are various clustering tech-

niques, i.e., point-based clustering methods [211] and plane-based clustering [212, 213],
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etc. Zhang et al. [214] proposed an unsupervised discriminative RVFL (UDRVFL) model

for the clustering problem. To capture the local information within data, the local manifold

learning concept has been used while global biased knowledge of the data has also been

considered so that data can be clustered in an optimal manner.

2.3.6 Ensemble frameworks based on RVFL model

Ensemble learning utilizes multiple learning algorithms, which are named base learners.

The performance of a single RVFL model is often unstable because of the random nature

of its hidden features. To improve the model’s stability and performance, it can be bene-

ficial to average the outputs from multiple RVFL models that each have different hidden

features. This approach is commonly known as ensemble learning. Ensembles of random-

ized models, such as random forests, are effective in reducing the variance resulting from

the random feature space. Thus, researchers working with RVFL models have explored the

development of ensemble RVFLs to improve the model’s stability and performance. In gen-

eral, there are two steps in ensemble learning. First, a pool of base learners is constructed

parallel or sequential. Second, the base learners are combined for decisions according to

some rules. Therefore, the ensemble RVFL method either trains multiple RVFLs or uti-

lizes a meta-RVFL to connect the outputs of the base learners. Table 2.4 summarizes the

representative literature about the ensemble RVFL models.

2.3.6.1 Ensemble RVFL-based on bagging

Bagging is short for bootstrap aggregating, which trains the base leaner using a subset

of the training data. The subsets are drawn randomly with replacement [215]. For instance,

the base learners of a rotated forest are replaced by RVFLs for classification problems [216].

Bagging generates different subsets with different features to train the RVFL with different

structures [71].
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2.3.6.2 Ensemble RVFL-based on boosting

Boosting constructs the ensemble RVFL incrementally by paying more attention to the

samples that are not correctly learned by the base RVFL. In [217], Maximum Relevance

Minimum Redundancy is utilized to select features, and the ensemble RVFL is constructed

using the Adaboost scheme.

2.3.6.3 Ensemble RVFL-based on stacking

Stacking refers to training a meta-learner that works on the outputs from all base learn-

ers. In [218], a meta-RVFL is trained to combine the results from all the base RVFL net-

works with different activation functions. In [219], an individual RVFL network is trained to

forecast each sub-series generated by the decomposition and an incremental RVFL is intro-

duced to aggregate all forecasts. In [220], the short-term load is decomposed by a two-stage

decomposition, and an incremental RVFL aggregates the forecasts from each sub-series

RVFL.

2.3.6.4 Ensemble RVFL-based on decomposition

Another branch of ensemble RVFL is the decomposition-based ensemble framework

shown in Figure 2.4. The time series is decomposed into sub-series carrying different fre-

quencies and each sub-series is modeled by an individual RVFL network. Finally, the ag-

gregation of all forecasts is the output. There are many mature signal decomposition algo-

rithms, such as the empirical mode decomposition (EMD) [221], bi-variate empirical mode

decomposition (BEMD) [222], ensemble empirical mode decomposition (EEMD) [223],

complete ensemble empirical mode decomposition (CEEMD) [224], hybrid decomposition

[225, 226] and other algorithms [227, 228]. For the decomposition block, there are many hy-

brid ensemble RVFL with signal decomposition algorithms, such as EMD [125, 219, 229],

EEMD [230, 231, 232, 233], CEEMD [234, 235, 236] and two-stage decomposition [220].

In [220], the discrete wavelet transform (DWT) is utilized to decompose the modes gener-

ated by EMD into sub-series and an incremental RVFL is trained to aggregate the forecasts

from all sub-series. Technical indicators are also utilized to augment the decomposed fea-
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tures for stock forecasting and stock trend classification [225, 226].

2.3.6.5 Ensemble weights

Determination of the ensemble weights is crucial for the final performance. If large

weights are assigned to a bad base RVFL, it is a disaster for the overall performance. Most

of the ensemble RVFL employs the equal-weight scheme [125, 229, 230, 231, 232, 233,

234, 235]. Besides the equal-weight scheme, different algorithms are proposed and applied

to learn such unequal ensemble weights. For instance, evolutionary algorithms are adopted

to learn, and ensemble weights, as well as the base learners’ parameters [71, 237, 238]. A

negative correlation learning strategy is utilized to learn the ensemble weights in [239, 240].

2.3.6.6 Diverse model pool

Besides the above ensemble RVFL, whose base learners are all RVFL networks, some

researchers utilize multiple machine learning models, including RVFL, to construct the en-

semble pool, which increases the models’ diversity. For instance, ELM, RVFL, and Schmidt

neural networks (SNNs) are trained on the same features generated from a DL model in

[239]. Finally, the majority voting mechanism combines the outputs from these three neu-

ral networks. In [241], the successive projections algorithm is utilized to build ensemble

ELM, RVFL, and feedforward networks with random weights. In [230], ELM, BPNN, and

RVFL are employed to forecast each sub-series after decomposition. In [242], the model

pool consists of RVFL and ELM, which are trained in an offline fashion first, and only a

subset of them is randomly selected for online updating. In [243], the fast Fourier transform

and Relief algorithms extract features for ensemble ELM and RVFL.

2.3.6.7 Other diversity strategies

Besides the diversity strategies of typical ensemble learning, novel diversity strategies

specifically designed for RVFL networks are investigated [71, 244]. In [244], different

RVFLs’ enhancement features are initialized according to different distributions. Five novel

diversity strategies, such as data quantity diversity, sampling interval diversity, parameter
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Figure 2.4: The architecture of decomposition-based ensemble RVFL.

diversity, ensemble number diversity, and ensemble method diversity, are proposed and

investigated in [71]. Zhang and Suganthan [245] propose a novel and efficient strategy to

increase the diversity of ensemble RVFL. A single RVFL is trained, and its hyper-parameters

are optimized by cross-validation. Then the other RVFLs’ hyper-parameters are generated

by adding a noisy deviation to the optimal value.

2.3.6.8 Others

RVFL also helps split the dataset into subsets, and each subset is learned by the oblique

decision tree [127]. In [126], a cascaded ensemble RVFL where the shallow layers’ RVFL

generate predicted values for the successive layers. Malik et al. [246] proposed a novel en-

semble model (en-efRVFL) which has extended features based RVFL model as a base model

and the output of each base model is integrated by averaging method. The en-efRVF model

has three kinds of features, i.e., original features, supervised randomized features (newly

generated), and unsupervised randomized features, and therefore generates more accurate

and diverse base model in the ensemble. In [51], conv-eRVFL model combines the CNN

model with the ensemble RVFL model and implements it for the diagnosis of Alzheimer’s

Disease. An ensemble of RVFL models is fed with the features that an eight-layer trained

CNN derives from multiple layers. The s-membership fuzzy function is incorporated into

the RVFL network as an activation function to help deal with outliers. In order to reach a

judgment, the outputs of all the bespoke RVFL classifiers are averaged and supplied to the

RVFL classifier.
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Table 2.4: Summary of ensemble RVFL models.

Year Literature Model pool Diversity strategy Ensemble strategy Application
2022 Malik et al. [246] Extended feature RVFL (efRVFL) - Averaging Classification Problem

2021 Yu et al. [71] RVFL

Data quantity diversity
Sampling interval diversity
Parameter diversity
Ensemble number diversity
Ensemble method diversity

Averaging
Adaboost
RVFL

Forecasting

2021 Lu et al. [247] RVFL,ELM and Schmidt NN - Majority voting mechanism Cerebral microbleed diagnosis
2021 Hu et al. [70] RVFL Solutions’ angle Evolutionary algorithm Forecasting
2021 Malik et al. [216] RVFL Bagging Rotated forest Classification
2020 Liu et al. [244] RVFL Different distributions Majority voting mechanism Classification
2020 Tahir et al. [218] RVFL Stacking RVFL Multichannel fall detection
2019 Chen et al. [248] RVFL Bootstrap Game theory Classification
2019 Musikawan et al. [249] RVFL Metaheuristic algorithm Liear regression Regression
2019 Xia et al. [243] RVFL and ELM Diversity strategy Ensemble strategy IGBT open-circuit fault diagnosis
2018 Shi et al. [126] RVFL Diversity strategy Ensemble strategy Parkinson’s disease diagnosis
2018 Mesquita et al. [241] RVFL, ELM and randomized feedforward NN Successive Projections Algorithm Successive Projections Algorithm Regression
2018 Lu et al. [237] RVFL De-correlation Negative correlation learning Forecasting
2018 Katuwal and Suganthan [127] Oblique decision tree The RVFL splits the data into subsets. Classification

2018

Li et al. [232]
Qiu et al. [229]
Sun et al. [233]
Tang et al. [230, 231]
Zhang et al. [125]

RVFL Signal decomposition Summation Forecasting

2017 Qiu et al. [234] Kernel ridge regression Signal decomposition RVFL Forecasting
2017 Miskony and Wang [240] RVFL De-correlation Negative correlation learning Prediction interval

2.3.7 Deep architectures based on RVFL model

The success of deep learning (DL) is based on the hierarchical representations of the raw

data [250]. DL stacks multiple hidden layers and optimizes the weights using any variants

of the backpropagation algorithm. With the help of deep architecture, the DL can extract

multi-scale features automatically. Inspired by the idea of DL, deep RVFL with multiple

enhancement layers has been proposed [57].

Table 2.5 summarizes the representative literature about different deep RVFL networks.

The main distinction among them is the utilization of direct links. Some literature only

utilizes the direct link to connect the input layer to the output layer to assist in learning the

linear patterns [251, 252]. Some literature utilizes direct links to connect all hidden layers

and output layers [57, 59, 83, 253, 254]. Therefore, the raw features are utilized to provide

clean information to each level’s representation. Furthermore, Katuwal and Suganthan [58]

proposed dense connections of all hidden layers. Another characteristic of the deep RVFLs

is the number of output layers. Multiple output layers benefit from the ensemble learning

and improve the performance [57, 59, 83, 253, 254].

The main research problem of deep RVFL is the architecture design. This section re-

views the state-of-the-art deep RVFL architectures in detail. The state-of-the-art deep RVFL

architectures are shown in Figure 2.5. These architectures can be classified into three cat-

egories, the stacked deep RVFL, the hybrid deep RVFL, and the ensemble deep RVFL
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(edRVFL).

Table 2.5: Summary of deep RVFL models.

Year Literature Direct link Output layer Activation function Application
2022 Hu et al. [255] Random skip connections Multiple output layers Four activation functions Regression
2022 Du et al. [256] From input to each hidden and output layer Dynamic ensemble sigmoid Forecasting
2022 Yu et al. [257] From input to each output layer Multiple output layers Na Landslide displacement prediction
2022 Hu et al. [258] Automatic search Multiple output layers Automatic search Classification
2022 Shi et al. [259] From input to each hidden and output layer Multiple output layers Sigmoid Semi-supervised classification
2022 Shi et al. [59] From input to each hidden and output layer Multiple output layers Sigmoid Forecasting
2022 Gao et al. [83] From input to each hidden and output layer Multiple output layers Sigmoid Forecasting
2022 Ganaie and Tanveer [260] From input to each hidden and output layer Multiple output layers Different activations Diagnosis of Alzheimer disease
2022 Malik and Tanveer [261] From input to each hidden and output layer Multiple output layers Different activations Diagnosis of Alzheimer disease
2021 Sharma et al. [61] - - s-fuzzy activation function Diagnosis of Alzheimer disease
2021 Shi et al. [57] From input to each hidden and output layer Multiple output layers Sigmoid Classification
2021 Cheng et al. [254] From input to each hidden and output layer Multiple output layers Five activation functions Time series classification
2021 Dai et al. [262] Without direct link Last hidden layer’s features Sign SAR target recognition
2019 Katuwal and Suganthan [58] Densely connected to hidden layers Last hidden layer’s features Sigmoid Classification
2019 Katuwal and Suganthan [58] From input to output layer Last hidden layer’s features Sigmoid Classification
2018 Henrı́quez and Ruz [252] From input to output layer Last hidden layer’s features Sigmoid Sentiment classification
2017 Zhang and Suganthan [251] From input to output layer Last hidden layer’s features Relu Visual tracking

2.3.7.1 Stacked deep RVFL

The stacked deep RVFL utilizes multiple enhancement layers to achieve multi-scale fea-

ture extraction. The consistent characteristic of the deep RVFL architectures is the multiple

stacked enhancement layers. The main difference among them lies in how the direct links

are connected. The sdRVFL is the most straightforward deep RVFL architecture, which

stacks multiple hidden layers, and the direct link only connects the input layer and output

layer [58, 251, 252]. The convolutional deep RVFL also establishes the direct connection

in this fashion, but the enhancement layers are convolution layers with random weights

[251, 262]. However, the direct links are not equipped with hidden layers, which weakens

the unsupervised feature extraction. The direct links are densely connected to the hidden

layers to guide the random features’ generation, and the sdRVFL(dense) is proposed [58].

The above architectures only utilize the last hidden layer’s features for decision, which may

lose valuable information from the intermediate layers. A dRVFL is proposed to take ad-

vantage of the rich information from all hidden layers in [57]. A reservoir layer is utilized

to extract features for the following deep RVFL [263].

2.3.7.2 Ensemble deep RVFL

The stacked deep RVFL does not fully use the features from intermediate layers. How-

ever, the dRVFL’s utilization of all features requires an inversion of a super large matrix
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(a) sdRVFL [58]

(b) sdRVFL(dense) [58]52
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(c) edRVFL [57]

Figure 2.5: Different types of architectures of deep RVFL model.

[57]. Therefore, the edRVFL is proposed to achieve a trade-off between computational effi-

ciency and features utilization [57, 253]. The structure of edRVFL is shown in Figure 2.5. In

edRVFL, the direct link connects each enhancement layer with the input layer to guide the

random features’ generation. An individual output layer with a direct link to the input layer

is built for each enhancement layer. Such design splits the inversion of a large matrix into

multiple mini-matrix inversion and takes advantage of all features [57]. After training all

the output layers, an ensemble block generates the final output. The majority voting mech-

anism is adopted for classification tasks [57, 254] and mean/median operation is applied

for forecasting tasks [253]. Recently, a comparative study shows that edRVFL outperforms

ensemble deep ELM on human joint angles prediction [264]. In addition to using all hidden

layers for decision-making, Yu et al. [257] proposes to utilize a genetic algorithm for selec-

tion. Since the hidden neurons are randomized without optimization, there may be inferior

neurons which hampers the generation of high-quality features in deeper layers. Therefore,

Shi et al. [59] prune the inferior neurons before generating the next layer’s neurons. In ad-

dition, a weighting scheme, which assigns different weights to the training samples in each

hidden layer, is proposed to improve the performance. The wrongly classified samples are

assigned larger weights in the next layer to increase the diversity and accuracy simultane-
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ously. The norm features from an edRVFL are concatenated with the privileged information

from another edRVFL with different activation [260]. This concatenation is fed into an-

other deep RVFL for classifications. Recently, a strategy of random skip connections is

proposed to enhance the representation ability of the edRVFL in [255]. Instead of using all

output layers, an edRVFL with a selective ensemble method is designed and succeeds in

landslide displacement prediction [257]. Following the principle of determining important

output layers, an edRVFL with a dynamic ensemble based on online performance is pro-

posed for time series forecasting [256]. An approach for the automatic design of ensemble

deep randomized neural networks is proposed in [258].

In addition to the supervised learning based on edRVFL, Hu and Suganthan [265] pro-

pose a clustering algorithm based on edRVFL’s features. The unsupervised learning is

achieved by the manifold regularization. Then, the k means is developed based on the

edRVFL features. The consensus clustering method is related to the ensemble block of

the edRVFL. Recently, a novel edRVFL for semi-supervised tasks has been proposed by

Shi et al. [259]. The proposed jointly optimized semi-supervised edRVFL (JOSedRVFL)

minimizes the loss function consisting of three components, the error term, L2 norm reg-

ularization, and manifold regularization. The L2 norm regularization aims at reducing the

model’s complexity, and the manifold regularization ensures the conditional probabilities

of similar samples are close. In [261], geometrical information under the graph embedded

framework is employed while calculating the output parameters of each hidden layer (base

model) and therefore, has better generalization performance than the edRVFl model.

2.3.7.3 Hybrid deep RVFL

Unlike the above deep RVFLs, the hybrid ones utilize other advanced feature extrac-

tion techniques, like DL, to generate the input of the decision block. The decision block

can be any RVFL’s variants, including shallow and deep architectures. For instance, fea-

tures extracted from a pre-trained ResNet-50 are fed into RVFL whose activation is s-fuzzy

membership function [61]. In [254], the ResNet extracts features from time series data, and

these features are fed into multiple edRVFL. The convolutional sparse coding deep network

extracts features and feeds them into a stacked deep RVFL [266]. In [247], the base model
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Figure 2.6: The architecture of deep convolutional RVFL.

in the ensemble learning framework is a hybrid deep RVFL whose DL performs feature

extraction, and RVFL makes decisions.

2.3.8 Hyper-parameters optimization and experimental setup

The RVFL’s performance heavily depends on hyper-parameters optimization. This sec-

tion first separately summarizes the hyper-parameters optimization of single-layer and deep

RVFLs. Finally, experimental setup, including data partitioning, evaluation metrics, and

statistical tests, are presented.

2.3.8.1 Hyper-parameters optimization for single-layer RVFL

For the canonical RVFL, these hyper-parameters include input scaling, number of hid-

den nodes, activation functions, regularization strength, and distribution of random weights.

Most literature utilizes a comprehensive grid search to tune these parameters. Grid search is

straightforward to implement and succeeds on many tasks, such as classification [12, 190],

forecasting [64, 253]. A comprehensive evaluation of RVFL for classification is conducted

by Zhang and Suganthan [12]. A grid search based on 4-fold cross-validation is utilized to

select the number of hidden nodes and regularization strength for the RVFLs with different

configurations. This study achieves some significant findings. First, the results demonstrate

the superiority of the direct links. Second, the output layer’s bias must be tuned based on

the specific task. Third, the hadlim and sign activation functions usually degenerate the ac-

55



CHAPTER 2. LITERATURE REVIEW

curacy. Finally, tuning the scaling of randomization weights (input scaling) also increases

the performance. Gao et al. [64] divides the time series into training, validation, and test

set in chronological order. Then, a grid search is conducted to select the hyper-parameters,

number of hidden nodes, and regularization strength, according to the forecasting errors on

the validation set. Choosing the optimal activation function and number of hidden neurons

is also an challenging job so some researchers adopt incremental learning techniques [166]

and kernel trick [67] to avoid these issues. Table 2.1 shows the list of activation functions

used in the literature.

However, exhaustive grid search has several drawbacks. Some literature implements

evolutionary algorithms for hyper-parameters optimization, such as levy flight based PSO

[194] and chimp optimization [193]. The evolutionary algorithms encode the hyper-

parameters into an individual, obtaining the optimal configuration after many generations.

Each generation selects the individuals whose performance is outstanding. Therefore, gen-

eration after generation, the suitable configuration survives.

Based on the above descriptions, there are two main branches of hyper-parameters tun-

ing of single-layer RVFL, the grid search, and evolutionary optimizations. The performance

of grid searches heavily relies on the researchers’ experience because they have to define the

hyper-parameters for selection manually. A detailed discussion and analysis of single-layer

RVFL’s hyper-parameters are given in [12]. For evolutionary optimization of the RVFL, the

researchers can define a large search region to allow the evolutionary algorithm to explore

the best configuration. However, the evolutionary algorithms are time-consuming because

each generation trains multiple RVFLs.

The following suggestions about tuning single-layer RVFLs are provided for researchers

and practitioners. First, large hidden dimensions are preferred for large datasets with huge

input dimensions. Second, tuning the input scaling parameter may boost the performance

on specific tasks, although the most common practice is to set the scaling factor to one.

Third, it is advisable to increase the hidden nodes when tuning the input scaling worsens

the performance. Fourth, the regularization strength of ridge regression plays a critical role

in improving performance.
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2.3.8.2 Hyper-parameters optimization for deep RVFL

As the RVFL becomes deep, the hyper-parameters that wait to be optimized grow ex-

ponentially. Whether each layer needs a different set of hyper-parameters is still an open

problem. Katuwal and Suganthan [58] utilizes a grid search to optimize the number of

hidden nodes and regularization, but the number of layers is fixed as three.

Some hyper-parameters tuning strategy is proposed for the deep RVFLs. For instance,

a two-stage tuning strategy is proposed to obtain the best configurations of edRVFL for

classification [57]. The optimal number of hidden nodes and regularization parameters are

selected for a two-layer network in the first stage. Optimizing the hyper-parameters for a

two-layer network saves computational time and also considers the effects of deep represen-

tations. Then, the second stage fine-tunes the hyper-parameters within the neighbourhood

of the obtained number of hidden nodes and regularization parameter from the first stage

optimization. Similar to the two-stage tuning, a three-stage method is proposed by Cheng

et al. [254] for time series classification. In [254], the authors tunes the number of hidden

nodes and regularization parameters for the first and second hidden layer in the first and

second tuning stages. Then, the third stage imposes a random deviation on the optimal

hyper-parameter obtained from the previous steps. The random variations can enhance the

generalization ability and reduce the computational burden of the hyper-parameters tuning.

Gao et al. [253] proposes a layer-wise grid search algorithm to determine the deep RVFL’s

hyper-parameters layer by layer. The cross-validation is conducted to obtain the best hyper-

parameters. Once the hyper-parameters tuning is finished, the hyper-parameters and hidden

states for this layer are fixed. The cross-validation is applied to the next layer. This process

is repeatedly until the hyper-parameters for the last layer are determined.The layer-wise tun-

ing offers each layer an opportunity to own different configurations. The layer-wise tuning

method is also utilized in [83].

When the neural networks become deep, the hyper-parameters tuning becomes more

challenging, because there are more hyper-parameters and the computation burden in-

creases. For the deep RVFLs, the tuning of hyper-parameters must take into account both

computational efficiency and performance. Hence, to achieve these two goals, stage-based
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[57, 254] and layer-wise tuning algorithms are proposed [83, 253]. In summary, the stage-

based tuning divides the tuning process into stages to save computation time and ensure

efficient hyper-parameter exploration. The first stage of stage-based tuning searches hyper-

parameters within a coarse region for saving computation time and exploring a large space.

The following stages are the fine tuning to further improve the accuracy. The layer-wise

tuning considers each hidden layer and the corresponding output layer as an independent

model. Hence, each layer’s tuning only works on a single-layer RVFL whose computation

is much faster than that of deep architectures. Furthermore, such tuning ensures that each

output layer performs exceptionally well. Finally, the layer-wise tuning can offer different

layers with different hyper-parameters to increase the diversity.

The preceding discussion offers some insights into tuning hyper-parameters for the deep

RVFLs. First, tuning for shallow RVFLs or each layer can save computational time. Second,

searching within a coarse region is an efficient way to explore distinctive hyper-parameters.

Third, fine-tuning based on the selected hyper-parameters from wide ranges can further

improves the performance. Fourth, assigning different hyper-parameters to each layer con-

tributes to the diversification of the edRVFL.

2.3.8.3 Experimental setup

This section presents and summarizes the experimental procedures, including data parti-

tioning, normalization, evaluation metrics, and statistical tests. For classification problems,

the researchers usually adopt the k-fold cross-validation for hyper-parameters tuning and

evaluate the models on the remaining test set [12]. If the partition schemes of the dataset

are available, the researchers must follow the same partitioning for fair comparisons, such

as annealing and audiology-std dataset [12]. With a given experimental setup, there is a

need to benchmark the models for fair comparison. There have been multiple attempts in

the literature to benchmark the performance of the models on a given experimental setup

Fernández-Delgado et al. [267]. Recently, self normalizing networks [268] released the

publicly available data partitions for reproducibility and the benchmarking of the models.

Following self normalizing networks [self normalizing ref], several studies like [57] fol-

lowed this setup for fair evaluation of the models. Recently, Del Ser et al. [102] presented
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a through survey based on randomization based machine learning models with renewable

energy prediction problems and compared them. There is still a gap for the benchmarking

of the models like lack of evaluation of the models across different hyper-parameters, their

range and so on. Thus, benchmarking of the models to ensure the progress of the literature,

reproduciblity of the results and fair comparison is needed in randomization based models.

The test set is always located at the end for time series datasets, and the remaining ob-

servations are utilized for training and hyper-parameters tuning. There are two approaches

to split the training and validation set. The first approach is the same as the cross-validation

for regression and forecasting. Some researchers formulate the observations into input pat-

terns and response values. Then, a k-fold cross-validation is conducted to tune the hyper-

parameters [229]. The second approach splits the training and validation set in chronological

order [64].

All models have limitations, and therefore evaluation and comparison of machine learn-

ing models depend on the specific dataset. A fruitful set of evaluation metrics is utilized to

evaluate the RVFL’s performance. For classification, the classification accuracy is always

the first choice [57]. Table 2.6 summarizes the forecasting errors utilized in the literature,

where, xj and x̂j represent the raw observation and its forecast, L and T represent the size

of training and test set, respectively. MAE and RMSE can be utilized when the time series

are of the same scale, although RMSE is more sensitive to outliers. MAPE is a popular

percentage error with high interpretibility. Finally, MASE is a scaled metric and can be

utilized for comparisons on different time series. In addition to the forecasting errors, the

direction statistics are utilized for comparison in some literature [230, 231]. The definition

of direction statistics (Dstat) is

Dstat =
1

L

LX

1

ai ⇥ 100%, (2.14)

where ai = 1 if (x̂j � xj�1)(xj � xj�1) > 0, or otherwise ai = 0.

In addition to the above evaluation metrics, the literature also utilizes statistical tests

to compare the different models’ performance on various datasets. In general, these tests

can be classified into two groups, the group-wise and pair-wise tests. Group-wise tests can
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Table 2.6: Forecasting errors in the literature about RVFL.

Metric Formula
Mean absolute error (MAE) 1

L

PL
1 |x̂j � xj |

Mean absolute scaled error (MASE) 1
L

PL
1

|x̂j�xj |
1

T�1

PT
t=2 |xt�xt�1|

Mean squared error (MSE) 1
L

PL
1 (x̂j � xj)2

Root mean squared error (RMSE)
q

1
L

PL
1 (x̂j � xj)2

Mean absolute percentage error (MAPE) 1
L

PL
1

��� x̂j�xj

xj

��� .

determine the overall ranking of the models on all the datasets and group them based on

the statistical distance. The literature about RVFL utilizes the Nemenyi test to compare

the models in a group-wise fashion [64, 229]. The pair-wise tests assist in comparing the

models in a pair-wise fashion, which is straightforward to show the better model. For in-

stance, the Wilcoxon test is utilized to ascertain how many algorithms edRVFL significantly

outperforms [57]. There are several others statistical tests such as Friedman test, sign-test

and so on, to evaluate the performance of machine learning models. We refer the reader to

[267, 269, 270] for more detailed information about the application of these tests to machine

learning models.

2.3.9 Time series forecasting and other applications

Time series forecasting refers to establishing the model using historical observations,

and this model is utilized to make extrapolations for future steps. Accurate and reliable

forecasts help the stakeholders and decision-makers plan, organize, maintain and develop

the system in advance in a data-driven fashion. Table 2.7 summarizes the representative

literature about forecasting by RVFL and its variants. RVFL and the improved versions

have demonstrated their outstanding performance on various forecasting tasks from different

domains, such as electricity load [64, 229], solar power [271], wind power [234], financial

time series [219] and other data [195]. Table 2.7 shows that signal decomposition algorithms

are popular for feature extraction on forecasting tasks. The signal decomposition can splits

the time series into multiple sub-series with different frequencies. Then the RVFL works on

these sub-series for forecasting. This section presents the details of all the literature about

RVFL-based forecasting.
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Table 2.7: Summary of RVFLs for forecasting.

Year Literature Feature extraction Learning category Hyper-parameter optimization Field
2022 Gao et al. [83] - edRVFL Layer-wise grid search Inpatient discharges
2021 Zayed et al. [193] - Kernelized RVFL Chimp Optimization Algorithm Solar power
2021 Dash et al. [194] Signal decomposition Expanded RVFL Particle swarm optimization Solar power
2021 Majumder et al. [272] - Online sequential kernel RVFL - Solar power
2021 Gao et al. [64] Signal decomposition Single model Grid search Electricity load
2021 Hu et al. [70] - Ensemble RVFL Evolutionary optimization Electricity load
2021 Manibardo et al. [273] Deep architecture RVFL, deep RVFL and edRVFL Bayesian optimization Road traffic
2020 Cheng and Wang [274] Signal decomposition Decomposition-based ensemble learning - Wind speed
2018/2020 Zhang et al. [125], Qiu et al. [219], Tang et al. [231] Signal decomposition Decomposition-based ensemble learning Grid search Crude oil price
2020 Wu et al. [236] Signal decomposition Decomposition-based ensemble learning Sine cosine algorithm Crude oil price
2020 Wu et al. [235] Signal decomposition Decomposition-based ensemble learning whale optimization algorithm Financial time series
2020 Zhang et al. [275] Stacked auto-encoder Incremental RVFL Grid search FCCU end-point quality
2020 Hazarika and Gupta [195] Signal decomposition Single RVFL Grid search COVID-19 cases
2019 Bisoi et al. [119] Signal decomposition Single RVFL Grid search Crude oil price
2019 Kushwaha and Pindoriya [276] Signal decomposition Decomposition-based ensemble learning Grid search Solar power
2019 Majumder et al. [277] - Kernelized RVFL Water cycle algorithm Solar power
2018 Moudiki et al. [278] - RVFL with different regularizations Grid search Financial time series
2018 Lian et al. [279] - Ensemble RVFL Grid search Landslide displacement
2018 Li et al. [232] Signal decomposition Decomposition-based ensemble learning Grid search Travel time
2018 Lu et al. [239] - Ensemble RVFL Grid search Production rate
2017/2018 Nhabangue and Pillai [202], Qiu et al. [234] Signal decomposition Decomposition-based ensemble learning Grid search Wind power
2016/2018 Qiu et al. [220, 229] Signal decomposition Decomposition-based ensemble learning Grid search Electricity load
2016 Zhang et al. [204] - Incremental RVFL Grid search Molten iron quality
2015 Zhou et al. [205] PCA Online sequential RVFL Grid search Molten iron quality

2.3.9.1 Electricity load

Electricity load forecasting is crucial for the development, maintenance, and planning of

power systems. Among the abundant forecasting methods, RVFL demonstrates its success

by many researchers. For instance, a quantile scaling method is proposed to re-distribute the

randomly weighted inputs of RVFL to avoid the saturation effects and suppress the outliers

in [50]. Signal decomposition techniques are utilized to remedy the unsupervised features of

RVFL in [64, 220, 229]. For instance, EMD decomposes the load data into several modes,

and then each mode is predicted by an RVFL. Finally, the summation is conducted to com-

bine the predictions for each mode [229]. In [220], a two-stage decomposition method is

proposed to decompose the load data, then each load is predicted by an individual RVFL,

and finally, all forecasts are aggregated by another RVFL with explanatory variables. Dif-

ferent from the above ensemble methods, a single RVFL is built on all the components

generated by EWT in [64]. The same decomposition scheme is combined with edRVFL for

short-term load forecasting in [253] and the results demonstrate edRVFL’s superiority over

a single RVFL. Moreover, a multi-modal evolutionary algorithm is utilized to optimize the

enhancement weights, bias, and combination weights of the ensemble RVFL for short-term

load forecasting [70].
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2.3.9.2 Solar power

With renewable energy development, solar power forecasting is an emerging area. In

[271], the authors compare RVFL with SLFN and RWSLFN, and the results demonstrate the

superiority of the direct link. Signal decomposition methods also work for solar time series.

For instance, in [276], maximum overlap DWT decomposes the power data into sub-series,

and an individual RVFL predicts each series. Finally, the aggregation of all forecasts is the

forecast for solar power. Moreover, some researchers utilize meta-heuristics algorithms to

optimize RVFL’s parameters automatically. For instance, in [277], the multi-kernel RVFL

whose kernel parameters are optimized by the water cycle algorithm is proposed to forecast

short-term solar power. In [193], the Chimp Optimization Algorithm (CHOA) is utilized

to determine RVFL’s hyper-parameters for predicting output power and the monthly power

production of a solar dish/Stirling power plant. Some researchers integrate signal decom-

position, evolutionary optimization, and RVFL together to boost forecasting accuracy. For

example, in [194], the EWT is utilized to decompose the time series, and the residue is

discarded. The remaining sub-series are expanded using trigonometric activation in the di-

rect link, and the enhancement states are a linear combination of two activation functions.

Finally, the RVFL is trained with a novel robust objective function by minimizing the vari-

ance of training data. Moreover, the added activation functions’ hyper-parameters are also

optimized by PSO. The new cost function also shows its improvement on RVFL in terms of

forecasting accuracy. In [272], an Online Sequential Kernel-based Robust RVFL is trained

based on Hampel’s cost function to forecast solar and wind power.

2.3.9.3 Wind power

A comparison of RVFL and other machine learning models on wind speed forecasting is

conducted in [280]. Some literature about wind power forecasting combines signal decom-

position techniques with RVFL [202, 234]. For instance, CEEMD is applied to decompose

the raw data into modes, and a kernel ridge regression predicts each mode. Finally, instead

of using a simple summation, the RVFL is trained to combine the forecasts of all methods

for wind power ramp prediction in [234]. In [202], Chebyshev expansion is utilized as func-
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tional nodes to reduce the number of activation nodes. Then it is combined with EMD for

wind speed forecasting. In addition, Hampel’s cost function is utilized for training an online

sequential kernel-based robust RVFL to forecast solar, and wind power in [272]. In Cheng

and Wang [274], a multi-objective salp swarm optimizer is adopted to determine the weights

that are used to combine the forecasts from four networks, including RVFL, for wind speed

forecasting.

2.3.9.4 Financial time series

The financial time series is different from the above data with strong cycles. The finan-

cial time series is very volatile, and it is difficult to extract features. Among all the RVFL-

related financial time series forecasting literature, most focus on crude oil prices. Similar to

the other kinds of time series forecasting literature, many researchers combine RVFL and

signal decomposition algorithms for crude oil price forecasting [125, 219, 231]. EEMD

decomposes crude oil price, and then different RVFLs are trained for each mode, including

the residue. Finally, the summation of all RVFL’s outputs is the forecast in [231]. In [219],

CEEMD decomposes the raw data into modes, and an individual RVFL is established on

each mode. Finally, forecasts of all modes are aggregated using an incremental RVFL. The

same decomposition-based structure is utilized. The difference is that improved CEEMD

with adaptive noise acts as the decomposition in [235, 236] and the sine cosine algorithm

optimizes all the parameters in[236]. In [125], bivariate EMD is utilized to decompose the

original time series into sub-series, and an individual RVFL predicts each series. Finally,

aggregate the forecasts via summation. The modes generated from VMD are fed into RVFL,

and the experimental results demonstrate the superiority of VMD over EMD in [119]. Be-

sides the decomposition-based RVFL, a novel ensemble RVFL with five diversity strategies

is proposed for crude oil price forecasting in [71].

Besides the literature about crude oil price forecasting, RVFL also succeeds on other

financial time series. For example, in [278], different regularization parameters are imposed

to the output weights of the direct link and enhancement nodes to forecast discount rates.

In [235], the improved CEEMD with adaptive noise decomposes the data into sub-series,

and each sub-series is predicted by an individual RVFL whose parameters are optimized by
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a whale optimization algorithm. Finally, the output is the summation of all forecasts. In

[281], multilingual search engine data is utilized to derive the input for RVFL to forecast

crude oil prices.

2.3.9.5 Other applications

Besides the above popular areas with a large need for forecasting, RVFL and its im-

proved versions have also succeeded in various areas, such as temperature [217], land-

slide displacement [279], COVID-19 cases [195], travel time [232], molten iron quality

[204, 205], energy consumption [233], signal-to-noise ratio [282], algae missing values

[199], temperature in subway station [283], inpatient discharges [83] and so on [273].

Among this literature, many utilize different heuristic algorithms to optimize the hyper-

parameters [169, 196, 197, 198], weights [284] or select the input features [199]. For in-

stance, firefly algorithm is utilized to select RVFL’s hyper-parameters, number of enhance-

ment nodes, bias, direct link, distribution and activation function, for thermal performance

prediction [195]. In [285], an incremental method to adjust RVFL’s structure is proposed for

time series prediction, where the network increases its enhancement nodes when the perfor-

mance degrades. For instance, in [199], a moth search algorithm is utilized to select input

features for RVFL to predict missing values of algae. In [196], Marine Predators Algorithm

is utilized to optimize RVFL’s hyper-parameters for tensile behavior prediction. In [197],

an artificial ecosystem-based optimization algorithm is utilized to optimize RVFL’s hyper-

parameters for forecasting power consumption and water productivity of seawater. In [169],

mayfly-based optimization is utilized to optimize RVFL’s hyper-parameters to forecast the

performance of Photovoltaic/Thermal Collector. In [284], the RVFL trained by PSOGA is

utilized to generate prediction intervals for landslide displacement. The RVFL is first pre-

trained using reconstructed intervals, and then the PSOGA trains the RVFL with transferred

weights based on original data.

Besides the RVFL-based on meta-heuristics, some literature also focuses on ensemble

RVFL [232, 233, 239, 279]. For instance, GA is utilized to assign ensemble weights for

each RVFL trained with bootstrap samples, and the RVFLs whose weights are higher than

the threshold are selected to construct prediction intervals for landslide displacement [279].
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In [232], EEMD is utilized to decompose the travel time into modes, and a different RVFL

predicts each mode. Finally, each mode’s forecasts are combined with linear addition. In

[217], ensemble RVFL is trained based on AdaBoost after selection features via MRMR.

Each RVFL is trained using iteratively reweighted least squares for temperature forecast-

ing. In [233], EEMD decomposes time series into sub-series, and the features with high

correlation with target variables are used for the corresponding RVFL to forecast building

energy consumption. In [239], Negative Correlation Learning is utilized for training ensem-

ble RVFL networks for production rate forecasting. Manibardo et al. [273] applies RVFL,

deep RVFL, and edRVFL to the road traffic dataset, and the hyper-parameters are deter-

mined by Bayesian optimization. Manibardo et al. [273] claims that the direct link is the

fundamental reason for RVFL and its variants’ superiority over ELM-based models.

Incremental (online) RVFL also succeeds on various time series [201, 204, 205, 275,

286]. Incremental RVFL updates its structure or weights when new observations are avail-

able. For example, in [204], the incremental RVFL adds a new node and updates its weight

incrementally until the performance degrades for the prediction of molten iron quality. In

[205], the online sequential RVFL is trained using the principal components and its estima-

tion of the previous steps to predict molten iron quality, too. In [201], RVFL and online se-

quential RVFL are compared on rainfall prediction, and the results demonstrate OS-RVFL’s

superiority for rainfall forecasting. In [286], an online RVFL-based on sliding window is

trained to temperature forecasting. In [275], a stacked auto-encoder is trained in an offline

fashion first, and then an incremental RVFL is established based on the SAE’s output when

a concept drift is detected.

In addition, different novel RVFLs are proposed for other time series. In [195], the

level one sub-series generated from discrete wavelet transformation are fed into RVFL for

COVID-19 cases forecasting. In [287], Schmidt orthogonalization is utilized to orthogonal-

ize the output vectors, and the hidden nodes are pruned according to the output weights to

predict product quality.

Although RVFL and its variants succeed in various time series forecasting tasks, the

research on spatial-temporal time series is not mature. There is only one RVFL-related

paper touching on this problem to the author’s best knowledge. In [203], a kernel RVFL is
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established to predict the temporal dynamics decomposed via the Karhunen–Loève method

from the spatial-temporal process.

2.3.10 Comparison with other state-of-the-art machine learning tech-

niques

An insightful discussion about the comparison between the RVFLs and other state-of-

the-art machine learning techniques significantly contributes to the literature. This section

mainly discusses the pros and cons of the RVFLs and other machine learning models.

The early work with randomization techniques can be traced with perceptron and stan-

dard feed-forward neural network (SLFN). In perceptron, the weights between sensor units

and response units can be generated randomly whereas the rest weights from the associator

units and the response units are calculated via reinforcement learning [288, 289]. SLFN

[113] also uses randomization technique but there are no direct links in this network. Jaco-

bian neural Network (JNN) [290] is a polynomial time randomized algorithm which gives

optimal network with probability one. Moreover, the paper [117] has some theoretical justi-

fication for RVFL and other neural networks. Backpropagation-based trained ANNs are sen-

sitive to learning rate setting, slow convergence, and trapped into local minima [96, 97, 98].

On the other hand, RVFL resolves these issues by generating the weights randomly from

the input layer to the hidden layer and the rest weights (hidden layer to output layer) are

calculated via closed form solution. The direct links in RVFL play an important role in

both classification and regression problems [12, 13]. These direct connections separate

RVFL from other randomized networks such as radial basis function (RBF) [15] and ex-

treme learning machine (ELM) [16] and so on. RVFL and its deep variants have shown

superior performance than ELM, Hierarchical ELM (H-ELM), and multi-layer kernel ELM

(ML-KELM) [58]. Support vector machine (SVM) has strong mathematical foundation and

has shown state-of-the-art results [17, 30, 291]. However, RVFL with privileged informa-

tion (RVFL+) and its kernel extension (KRVFL+) have shown superior performance than

SVM and its variants such as gSMO-SVM+ and fast SVM+ [160]. From an optimization

perspective, RVFL+ has simpler constraints than SVM+, which results in closed form solu-
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tion. Furthermore, the DRVFL shows superiority over SVM and random forest on Twitter

sentiment datasets. The DRVFL with fuzzy activation outperforms EML and kernel-ELM

on the ADNI dataset.

One popular state-of-the-art deep learning method is the Resnet. The Resnet constructs

a quite deep architecture with the help of residual links. It utilizes a backpropagation algo-

rithm to optimize the weights and bias, which takes much more time than training the RVFL

networks. In addition, the literature has demonstrated the superiority of deep RVFL over the

Resnet on tabular data classification [57, 59]. Besides tabular datasets, time series forecast-

ing is also a valuable problem. For forecasting, the long short-term memory (LSTM) and

temporal convolutional network (TCN) are two common state-of-the-art methods. Com-

pared with edRVFLs, the training is much slower. However, many literature shows that the

advanced RVFLs outperform the LSTM and TCN [253]. Furthermore, the deep stacked

RVFL method outperforms stacked denoising auto-encoder on two benchmark MR brain

datasets (MD-1 and MD-2). Some literature has demonstrated that RVFL-based models

outperform the BPNN [119].

However, RVFL does not include CNN-type feature extraction layers for image or se-

quence data. The convolution filters aim at mining local patterns from different spaces.

Then, multiple stacks of these filters assist in learning a global representation. Finally, the

gradient descent algorithms help to learn these features in an end-to-end fashion. Although

RVFL does not own the CNN’s feature extraction layers, the features learned by CNNs can

be utilized as input to the RVFL variants. In other words, the RVFL variants can be the

decision module for the features from all kinds of gradient-based deep networks [254].

2.3.11 Summary

Randomized neural networks (RdNNs) have shown their strength among machine learn-

ing models. A special kind of RdNN, the RVFL model, has emerged as a very successful

model. This review summarizes the developments of RVFLs from theoretical foundations

to various applications. The RVFL is a feed-forward neural network with random features

and direct links. The randomized features introduce non-linear representations of the in-
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put features, and the direct links reserve the linear pattern. The hidden layer’s weights are

randomly initialized and frozen during training, and only the output layer is trained with

a closed-form approach. The randomized features render RVFLs at a fast computational

speed. With the renaissance of deep learning, researchers extended the shallow RVFL to

deep architectures to enhance its representation ability. In the deep architectures of RVFL,

the hidden neurons are randomly initialized and frozen during the training step. Only the

output layers are trained, which reduces the computational burden of backpropagation. The

RVFLs with deep architectures have demonstrated their superiority over shallow ones on

classification, regression, and forecasting. Therefore, the literature shows that the hierarchi-

cal enhancement features offer a large modeling capacity and increase performance. Dif-

ferent ensemble learning algorithms, such as bagging, boosting, and stacking, are shown to

significantly boost the single RVFL’s performance. In addition, the ensemble RVFLs based

on signal decomposition demonstrate tremendous success on various forecasting tasks. The

signal decomposition algorithms first disaggregate the complex sequential data into mul-

tiple components, which assists in the RVFL’s representation ability. Then RVFL-based

models are built on each component, and the ensemble of all forecasts is the output. The

RVFL-based models have achieved significant success in various domains because of their

fast computational speed, high accuracy, and powerful representation ability and these mod-

els also have achieved state-of-the-art performance in the time series forecasting domain on

wind speed, solar energy, electricity load, etc. we hope that this review offers treasure in-

formation about the RVFL model to the researchers. We presented a thorough survey on

the developments of the RVFL model in many aspects such as shallow RVFLs, ensemble

algorithms based on the RVFL models, deep RVFL variants, etc. Also, we discussed the

applications of RVFL models, that show their applicability in the real world. The literature

has demonstrated the superiority of the RVFL-based deep models over tabular datasets [59].

68



CHAPTER 2. LITERATURE REVIEW

2.4 Extreme learning machine

Unlike standard RVFL, the ELM [16] doesn’t have direct links from input layer to the

output layer. Therefore, the objective function of ELM can be formulated as:

min
�2RL⇥m

1

2
k�k22 +

1

2
C kH� � Y k

2
2 . (2.15)

The solution of the objective function (2.15) can be calculated as:
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(2.16)

2.5 Hyperplane based learning

SVM [17] is an effective large margin classifier that was developed using statistical

learning theory [18]. Structural risk minimization (SRM) principle is at the core of statis-

tical learning. SVM and its variants have been successfully employed in several domains

such as Alzheimer’s disease prediction [19], image recognition [20], bioinformatics [21]

and so on. From SVM, numerous new algorithms are derived such as least-squares SVM

(LSSVM) [176], Pin-SVM [33], fuzzy SVM (FSVM) [292] and so on [293, 294]. However,

SVM has a considerable degree of computational complexity, i.e., O(N3), where N repre-

sents the number of dataset. Therefore, it makes sense to improve its effectiveness and sim-

plify its computation. As a result, Jayadeva et al. [22] developed twin SVM (TWSVM), a

framework designed to reduce the time required for SVM. The concept underlying TWSVM

was derived from proximal SVM via generalized eigenvalues (GEPSVM) [295] in order to

obtain two optimal nonparallel proximal hyperplanes. Each hyperplane is as far from the

other class and as close as it can be to one of the two classes. TWSVM is comparable to

SVM in terms of the classification model, however, it comes with a number of extra ad-

vantages over SVM. First, because TWSVM model solves two smaller QPPs rather than

one larger one (as in SVM), computing complexity is minimized. Additionally, TWSVM

performs well on cross-plane data sets due to its nonparallel nature. Over the last decades,
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numerous enhanced TWSVM-based algorithms have been proposed such as least square

twin SVM (LSTSVM) [23], twin bound SVM (TBSVM) [24], energy-based least squares

twin support vector machine (ELSTSVM) [25], intuitionistic fuzzy weighted least squares

TWSVMs [296], and so on [28, 29]. The robust energy based least squares twin support

vector machines (RELSTSVM) [26] added an additional regularisation component to the

ELSTSVM formulation, making the optimization problems positive definite and improving

generalization performance. According to a recent study [30], RELSTSVM is the most ef-

ficient classifier among twin support vector machine-based models.

Although TWSVM has been very successful at classifying data, it has a number of flaws,

including sparsity, the challenge of inverting matrices for large data sets, sensitivity to fea-

ture noise near decision boundaries [33], and the requirement to reconstruct optimization

problems in nonlinear cases by taking kernel-generated surfaces into account [34]. In order

to improve TWSVM for classification tasks, Tian et al. [35] developed nonparallel support

vector machine (NPSVM), which employs a ✏-insensitive and hinge loss functions, avoids

matrix inversion operations (as in TWSVMs), and kernel trick is used directly. The follow-

ing are some benefits of NPSVM: it constructs the same two convex QPPs for both linear

and nonlinear cases; it no longer requires the computation of the inverse matrices prior to

training and can be efficiently solved by the sequential minimimal optimization (SMO) al-

gorithm; it has similar sparseness to standard SVMs; and when the parameters are properly

chosen, NPSVM degenerates to the TWSVMs. Incorporating structural information with

NPSVM, Chen et al. [297] suggested the structural NPSVM (SNPSVM) model. By fully

utilizing prior knowledge to boost the generalization capabilities of the algorithm, SNPSVM

accounts for both the compactness in both classes via structural information as well as the

separability between classes. Several variants of NPSVM model have been developed such

as L2-NPBSVM [298], L1-NPSVM [299], Pin-NPSVM [300] and so on.

Here, we discuss the SVM and twin SVM variants. Let X1 2 Rm1⇥d matrix contains

the samples of class (+1) and X2 2 RN2⇥d matrix contains the samples of class (-1) with

N = m1 +m2. Where, m1 and m2 represent the number of samples in class (+1) and class

(-1), respectively, and d is the number of features. Let K : Rd
⇥ Rd

! R be the kernel

function [301] such that 8x, y,2 X , K(x, y) = h�(x),�(y)i. Where � is a mapping from
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X to high dimensional feature space and h, i represents the inner product.

2.5.1 Support vector machine

The support vector machine (SVM) [17, 302] aims to find a separating hyperplane,

f(x) = wTx + b, where w 2 Rd and b 2 R. The optimization problem of the standard

SVM is as follows:

min
w,b,⇠

1

2
||w||2 + c

NX

i=1

⇠i

subject to yi(w · xi + b � 1� ⇠i, i = 1, 2, ..., N. (2.17)

⇠i � 0, i = 1, 2, ..., N.

Where c > 0 determines the trade-off between the maximum margin and the minimal clas-

sification error and ⇠i is the error value. The dual problem corresponding to primal problem

2.17 is as follows:

min
↵

1

2

NX

i=1

NX

j=1

↵i↵jyiyjK(xi, xj)�
NX

i=1

↵i

subject to
NX

i=1

yi↵i = 0, (2.18)

0  ↵i  c, i = 1, 2, ..., N.

Where K(xi, xj) is the kernel function and ↵i is the Lagrangian multiplier. The decision

function of standard SVM is as follows:

f(x) = sgn
⇣ NX

i=1

yi↵iK(xi, x) + b
⌘
. (2.19)

2.5.2 Twin support vector machine

TWSVM [22] finds two nonparallel hyperplanes such that the hyperplanes are proximal

to the corresponding classes and at least at a unit distance from the samples of other class.
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The hyperplanes are defined as:

f1(x) = wT
1 x+ b1 = 0 and f2(x) = wT

2 x+ b2 = 0, (2.20)

where w1 and w2 are vectors in Rd and b1, b2 are real numbers. The optimization problem

of TWSVM for nonlinear case are as follows:

min
w1,b1,⌧2

1

2
k K(X1, C

T )w1 + e+b1 k
2 +C1e

T
�⌧2

subject to � (K(X2, C
T )w1 + e�b1) + ⌧2 � e�, ⌧2 � 0 (2.21)

and

min
w2,a2,⌧1

1

2
k K(X2, C

T )w2 + e�b2 k
2 +C2e

T
+⌧1

subject to (K(X1, C
T )w2 + e+b2) + ⌧1 � e+, ⌧1 � 0, (2.22)

where C = [X1;X2] and Cj > 0 for all j, is the adjustable parameter. Moreover, e+

and e� represent the vectors having one of appropriate dimension, and K(.) represents the

kernel function. ⌧1 and ⌧2 represent the error corresponding to positive and negative class,

respectively.

The Wolfe dual corresponding to optimization problems (2.21) and (2.22) are:

max
⇢

eT�⇢�
1

2
⇢TQ(P TP )�1QT⇢

subject to 0  ⇢  C1e�, (2.23)

and

max
�

eT+� �
1

2
�TP (QTQ)�1P T�

subject to 0  �  C2e+, (2.24)

where P = [K(X1, CT ), e+] and Q = [K(X2, CT ), e�]. Now, one can calculate the
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final vectors as: u1 = �(P TP + C1I)�1QT⇢, and u2 = (QTQ + C2I)�1P T�, where

u1 = [wT
1 b1]T and u2 = [wT

2 b2]T . The final decision is taken as given in [22].

2.5.3 Least squares twin support vector machine

The objective function of the linear LSTSVM [23] can be formulated as:

min
w1,b1

1

2
kX1w1 + e+b1k

2 +
C1

2
k⌧2k

2

subject to � (X2w1 + e�b1) + ⌧2 = e�, (2.25)

and

min
w2,b2

1

2
kX2w2 + e�b2k

2 +
C2

2
k⌧1k

2

subject to (X1w2 + e+b2) + ⌧1 = e+, (2.26)

where C1 and C2 are two positive parameters and ⌧1 and ⌧2 are slack variables. Unlike

TWSVM, in linear LSTSVM only system of linear equations needs to be solved. Let P1 =

[X1 e+] and P2 = [X2 e+]. After some calculation [23], the solution of (2.25 ) and (2.26)

are calculated as follow:

2

4 w1

b1

3

5 = �
�
C1P

T
2 P2 + P T

1 P1

��1
C1 P

T
2 e�, (2.27)

and

2

4 w2

b2

3

5 =
�
C2P

T
1 P1 + P T

2 P2

��1
C2 P

T
1 e+. (2.28)

Due to matrix singularity issue, uses
�
C1P T

2 P2 + P T
1 P1 + ✏⇤I

��1 and

(C2P t
1P1 + P t

2P2 + ✏⇤I)�1 in (2.27) and (2.28), respectively. Here, I is an identity

matrix of appropriate dimension and ✏⇤ is a small positive scalar. The new sample x 2 Rd

73



CHAPTER 2. LITERATURE REVIEW

is assigned a class +1 or -1 depending on which of the distance |wT
1 x+ b1| or |wT

2 x+ b2| is

minimum. Here, |.| denotes the distance of a point with the hyperplane.

2.5.4 Robust energy-based least squares twin support vector machine

The optimization problem of linear robust energy-based least squares twin support vec-

tor machines [303] is as follows:

min
w1,b1

1

2
kX1w1 + e+b1k

2 +
C1

2
k⌧2k

2 +
C3

2

������

2

4 w1

b1

3

5

������

2

subject to � (X2w1 + e�b1) + ⌧2 = E1, (2.29)

and

min
w2,b2

1

2
kX2w2 + e�b2k

2 +
C2

2
k⌧1k

2 +
C4

2

������

2

4 w2

b2

3

5

������

2

subject to (X1w2 + e+b2) + ⌧1 = E2. (2.30)

Now substitute the equality constraints into the objective function then the QPP (2.29) be-

comes:

L1 =
1

2
kX1w1 + e+b1k

2 +
C1

2
kX2w1 + e�b1 + E1k

2 +
C3

2

������

2

4 w1

b1

3

5

������

2

. (2.31)

Taking the partial derivatives of L1 with respect to w1 and b1 and putting it equal to zero,

the solution of (2.29) is given as:

2

4 w1

b1

3

5 = �
�
C1P

T
2 P2 + P T

1 P1 + C3I
��1

C1 P
T
2 E1, (2.32)
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and similarly we can do the same calculations for solving the QPP (2.30) and gets the

solution as:

2

4 w2

b2

3

5 =
�
C2P

T
1 P1 + P T

2 P2 + C4I
��1

C2 P
T
1 E2, (2.33)

where P1, P2 have same meaning as defined [303]. For a new sample x, the final decision is

taken as given in [303].

2.5.5 Nonparallel support vector machine

A generalized version of the TWSVM was developed in the recently proposed nonparal-

lel support vector machine (NPSVM) [35]. When compared to standard SVM and TWSVM,

the NPSVM model has better generalization performance. The optimization problems of the

NPSVM model are defined as follows:

min
w1,b1,⌘+,⌘⇤+,⇠�

1

2
k w1 k

2 +c1e
T
+(⌘+ + ⌘⇤+) + c3e

T
�⇠�

subject to X1w1 + e+b1  ✏e+ + ⌘+,

�X1w1 � e+b1  ✏e+ + ⌘⇤+,

� (X2w1 + e�b1) � e� � ⇠�,

⌘+, ⌘
⇤
+, ⇠� � 0.

(2.34)
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and

min
w2,b2,⌘�,⌘⇤�,⇠+

1

2
k w2 k

2 +c2e
T
�(⌘� + ⌘⇤�) + c4e

T
+⇠+

subject to X2w2 + e�b2  ✏e� + ⌘�,

�X2w2 � e�b2  ✏e� + ⌘⇤�,

(X2w2 + e�b2) � e� � ⇠+,

⌘�, ⌘
⇤
�, ⇠+ � 0.

(2.35)

where ✏ > 0, ci > 0, for i = 1, 2, 3, 4. ⌘+ and ⌘⇤+ are the error corresponding to class (+1)

and ⇠+ represent the error of class (-1). The similar meaning has ⌘�, ⌘⇤� and ⇠+. By acquir-

ing the dual problems and applying the kernel trick, a kernel method can be immediately

generated from 2.34 and 2.35. Finally, after some calculations and the Lagrangian method

(for more details see [35] ), the following dual QPPs can be defined as:

min
↵+,↵⇤

+,�2

1

2
^1 + ✏eT+(↵

T
� + ↵⇤

�)� eT��2,

subject to eT�(↵� � ↵⇤
�) + eT��2 = 0,

0  ↵�  c2e+, 0  ↵⇤
�  c2e+,

0  �2  c4e�,

(2.36)

and

min
↵�,↵⇤

�,�1

1

2
^2 + ✏eT+(↵

T
+ + ↵⇤

+)� eT+�1,

such that eT+(↵+ � ↵⇤
+)� eT+�1 = 0,

0  ↵+  c1e+, 0  ↵⇤
+  c1e+,

0  �2  c3e�,

(2.37)
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Where, ↵�,↵⇤
�, �1 and ↵+,↵⇤

+, �2 are Lagrangian multipliers.

^1 = (↵⇤
� �↵�)

TK(X1, X
T
1 )(↵� +↵⇤

�)� 2(↵� +↵⇤
�)

TK(X1, X
T
2 )�2 + �T

2 K(X2, X
T
2 )�2

^2 = (↵⇤
+ �↵+)

TK(X2, X
T
2 )(↵

⇤
+ �↵+)� 2(↵+ +↵⇤

+)
TK(X2, X

T
1 )�2 + �T

2 K(X1, X
T
1 )�2

The decision functions are defined as follows:

g1(x) = K(X1, x)(↵
⇤
� � ↵�))�K(X2, x)�2 + b1

and

g2(x) = K(X2, x)(↵
⇤
+ � ↵+))�K(X1, x)�1 + b2

The final class label is assigned by the following function:

class label(x) = argmin
i=1,2

|gi(x)|

|| ^i ||
. (2.38)

2.6 Brief introduction of fuzzy theory, intuitionistic fuzzy

theory, and graph embedding theory

This section discusses Fuzzy theory followed by intuitionistic fuzzy theory and graph

embedding framework.

2.6.1 Fuzzy theory

For addressing uncertainty issues, Zadeh [304] developed fuzzy set theory. Fuzzy set

[305, 306] is an evolution of the traditional notation of a set, often known as a crisp set.

The degree of membership of each element of the fuzzy set is defined by the membership

function. Let X be a nonempty set. Then A fuzzy set in X can be defined as follows:

A = {(x, µA(x))|x 2 A} (2.39)
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Where µA(x) is the degree of membership of each element (x) in A. The membership

function determines the degree of membership, which is in the range [0, 1] and is defined

as: µA : A ! [0, 1]. The tools and technology developed under fuzzy set theory (FST) have

been successfully employed with machine learning models in several domains including

engineering [307, 308], medical sciences [309, 310], data mining [311] and so on.

2.6.2 Intuitionistic fuzzy theory

The intuitive fuzzy set theory that Atanassov introduced [312] is an expansion of the

conventional fuzzy set theory. The traditional membership degree is changed into a mem-

bership degree, a nonmembership degree, and a hesitation degree. Finding the best strat-

egy for ranking possibilities based on the given intuitionistic fuzzy information or other

associated criteria is known as intuitionistic fuzzy decision-making. Numerous studies

have addressed intuitionistic fuzzy decision-making issues to this point, and a variety of

decision-making procedures and approaches have been put forth [313]. The intuitionistic

fuzzy theory has proved its strength for several tasks such as classification [314], EEG signal

classification[315], medical diagnosis [316], and so on. According to Intuitionistic Fuzzy

membership (IFM) scheme, each training sample is assigned an intuitionistic fuzzy number

(IFN), i.e. (↵,↵⇤), calculated via membership and non-membership functions, respectively.

Finally, a score function is defined based on ↵ and ↵⇤ values to analyze the outliers in

the dataset. Here, the degrees (values) of membership and non-membership functions are

calculated in the high-dimensional feature space similar to [317].

• The Membership function: The membership function considers the distance be-

tween each data sample and its corresponding class centroid in high-dimensional fea-

ture space. For each training sample (xi), the membership function is defined as:

↵(xi) =

8
>>><

>>>:

1� k�(xi)�D+k
r++⇠ , yi = +1

1� k�(xi)�D�k
r�+⇠ , yi = �1

(2.40)

where D+(D�) and r+(r�) are the class center and the radius of positive (negative)
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class, respectively, and ⇠ > 0 is an adjustable parameter. Here, � is the feature

mapping function that maps input space to higher dimensional feature space.

The distance (P ) between two samples defined as:

P (�(xi),�(xj)) = k�(xi)� �(xj)k , (2.41)

where k.k is the Frobenius norm.

The class center of each class is defined as:

D+ =
1

n+

X

yi=1

�(xi) and D� =
1

n�

X

yi=�1

�(xi), (2.42)

where n+(n�) denotes the number of positive (negative) class.

The radius of each class is defined as:

r± = max
yi=±1

k�(xi)�D±k . (2.43)

• The Non-membership function: In the IFM scheme, each training sample is also as-

signed a non-membership degree (value) that gives the proportion between the num-

ber of heterogeneous points and the number of all points in its neighborhood. There-

fore, the non-membership function is defined as:

↵⇤(xi) = (1� ↵(xi))�(xi), (2.44)

where 0  ↵(xi) + ↵⇤(xi)  1 and �(xi) is calculated as:

�(xi) =
|{xj : k�(xi)� �(xj)k  ⌘, yj 6= yi}|

|{xj : k�(xi)� �(xj)k  ⌘}|
, (2.45)

where ⌘ is the adjustable parameter and and | · | denotes cardinality of a set.

As we can see, the IFN scheme, i.e. calculation of degrees of membership and

non-membership functions, is executed based on the inner product distance in high-
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dimensional space. Therefore, the kernel function needs to be defined here.

Theorem 1. [317]: Let K(x, y) be the kernel function. Therefore, the inner product

distance is defined as:

k�(x)� �(y)k =
p

K(x, x) +K(y, y)� 2K(x, y). (2.46)

Corollary 1. [317]: one can calculate r± as follows:

(i) r+ = max
yi=+1

s

K(xi, xi) +
1

n2
+

X
ym=+1

X
yn=+1

K(xm, xn)�
2

n+

X
yj=+1

K(xi, xj),

(ii) r� = max
yi=�1

s

K(xi, xi) +
1

n2
�

X
ym=�1

X
yn=�1

K(xm, xn)�
2

n�

X
yj=�1

K(xi, xj).

• The score function: After calculating the degree of membership and non-

membership for each sample, the training samples are assigned the IFNs, and training

data is given as:

X⇤ = {(x1, y1,↵1,↵
⇤
1), · · · , (xN , yN ,↵N ,↵

⇤
N)}.

where ↵i and ↵⇤
i represent the degree of membership and non-membership of the

sample xi. Finally, a score function based on IFN can be defined as:

⇥i =

8
>>><

>>>:

↵i, ↵⇤
i = 0;

0, ↵i  ↵⇤
i ;

1�↵⇤
i

2�↵i�↵⇤
i
, others.

(2.47)

2.6.3 Graph embedding

Dimension reduction (DR), which tries to extract low-dimensional features from high-

dimensional data, has drawn an increasing amount of interest in the computer vision and

machine learning domains. Since the quality of the input features heavily influences how

well machine learning algorithms generalize [318], preprocessing the original data using
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DR approaches is frequently necessary to improve generalization performance. A vast

family of algorithms—supervised or unsupervised; originating from statistics or geome-

try theory—has been developed over the past few decades to offer various approaches to

the problem of dimensionality reduction. Despite the disparate driving forces behind these

algorithms, Yan et al. [74] proposed a general formulation known as graph embedding to

bring them all together within a single framework. Each algorithm for graph embedding

can be thought of as a direct graph embedding or its linear, kernel, or tensor extension of

a particular intrinsic graph that characterizes desired statistical or geometric properties of a

data set, with constraints imposed by scale normalization or a penalty graph that identifies

undesirable statistical or geometric properties. The graph embedding architecture can also

be utilized as a broad platform for creating new DR algorithms. Graph embedding has been

successfully utilized for various tasks such as GDR-ELM [319], a graph embedding-based

DR framework for DR problems, classification [320], and so on.

In graph embedding framework, there is an undirected weighted graph G = {X,⌦}, where

X 2 RN⇥m and ⌦ 2 RN⇥N are input data and similarity matrix, respectively. Each element

in matrix ⌦ represents the relationship between two graph vertices xi. Moreover, another

penalty graph Gp = {X,⌦p
}, here, each element of weight matrix ⌦p

2 RN⇥N represents

the penalty weights that are given to the specific relationship between the graph vertices xi

in X . The optimization problem of the graph embedding is defined as:

w⇤ = argmin
tr(wT

0 XTV Xw0)=q

X

i 6=j

��w0
Txi � w0

Txj

��2
⌦ij

= argmin
tr(w0

TXTV Xw0)=q

tr(w0
TXTLXw0). (2.48)

Here, tr (.) is the trace operator, w0 is the transformation matrix, L 2 RN⇥N is the graph

Laplacian matrix, i.e., L = D � ⌦ of the intrinsic graph G and D is the diagonal matrix

wherein each diagonal element Dii =
P

j ⌦ij . Typically, either V is a diagonal matrix for

scale normalization or it is the Laplacian matrix of penalty graph Gp, i.e., V = Lp = Dp
�⌦p

and q is a constant. The solution of problem (2.48) is obtained by solving generalized
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eigenvalue problem [321],

Siz = �Spz, (2.49)

here, Si = XTLX and Sp = XTV X . It means that eigen vectors of the matrix S = S�1
p Si

will form the transformation matrix. The matrix S considers both the intrinsic and penalty

graph relationships within the dataset.

2.7 Decision trees and their ensemble learning

Decision trees [322] are sequential models that logically combine a series of straight-

forward tests; each test contrasts a nominal or numeric property with a range of potential

values. In terms of comprehension, such symbolic classifiers outperform “black-box” tech-

niques like neural networks. The data is iteratively partitioned using the divide and conquer

strategy by the decision tree. An unstable classifier is produced by the tree’s recursive par-

tition, which is susceptible to changes in the input data. As a result, decision trees are

deemed to have high variance and low bias. In order to further enhance the classification

performance, unstable classifiers can be utilized with the ensemble methodology [323]. By

combining the predictions from two or more base models, ensemble learning algorithms

have achieved state-of-the-art performance in a variety of machine learning applications

[324]. Amasyali [73] proposed a meta ensemble method (improved space method) in which

new features are generated using original features and a new feature space is constructed by

concatenating original features and newly generated features, followed by training of each

base model (DT) over new feature space. The improved space method is employed over

bagging [122], random forest [40] and rotation forest [42] ensemble methods and improved

their respective generalization performances. In the literature, multiple techniques [38, 132]

have been proposed to construct efficient ensemble models. Recently, similar works have

been done for randomized neural networks and their ensemble methods. A brief overview

of random forest and rotation forest is given as follows:
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2.7.1 Random forest

Originally given by Breiman [40], Random forest (RaF) uses the idea of bagging and

random subspaces. RaF relies on a series of tree predictors, where each tree takes values

from randomly initialized vectors which are sampled independently and have the same dis-

tribution across all the trees in a forest. Diversity among the base classifiers is increased

by combining the concepts of bagging and random subspaces. Each tree is trained on the

bootstrapped version of the training data with random subspace of features. The number of

random subspace features selected controls the number of tests (split tests) to be performed

at each node, as each feature is evaluated for the split. Among these features, the one that

makes the node more pure is selected. The algorithm of RaF is given in Algorithm 2.1.

Algorithm 2.1 Random forest.
Training Phase:
Given:
X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are data labels corresponding to the training dataset.
L is the ensemble size i.e. number of trees in the forest.
Each tree in the random forest is represented as Ti, where i = 1, · · · , L.
“mtry” refers to the randomly selected features for splitting at each non-leaf node.
“minleaf” is the maximum number of samples in an impure node.
1: Each tree Ti is build using the bootstrapped versions of the training data X with
replacement.
2: At each non-leaf node, the best feature split is selected among the “mtry” randomly
selected features from the training data.
3: Repeatedly execute step 2 until one of the conditions is met:

• Node becomes pure.
• Node contains number of samples less than or equal to minleaf .

Classification Phase:
For the classification of a test sample, it is pushed down each tree in the forest, and each
tree in the forest assigns the vote to the given sample data. Then the predicted label for the
sample data is the one with the highest number of votes among the forest.
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2.7.2 Rotation forest

Before constructing each tree, rotation forest (RoF) [325] uses PCA to transform or ro-

tate the dataset. The different decision trees in the forest are uncorrelated as each tree uses a

distinct rotation matrix. The heuristics used in RoF is that features are extracted from a sub-

set of features and then a full feature set is reconstructed for each classifier. The authors used

all the principal components to construct the feature subspace. The diversity of the model

comes with the difference in the possible feature subsets. With rotation heuristic, the num-

ber of different partitions of the feature set T = n!
K!(M !)K , where K is the number of subsets

of size M , and n is the sample feature length. Different classifiers are generated on differ-

ent partitions. Under the assumption that partitions of the feature sets are equally likely, the

probability that all classifiers will be different is P (different classifiers)= T !
(T�L)!TL , where

L is the ensemble size.

The algorithm of RaF is given in Algorithm 2.2.

2.8 A brief overview of Alzheimer’s disease

The brain is the most intricate and significant organ in the human body, therefore, dis-

orders affecting it are significant from a medical point of view. According to the data, de-

mentia is a collection of symptoms that worsen with time and a chronic impairment of brain

function. The fact that dementia is both incurable and irreversible presents a considerable

challenge. Alzheimer’s Disease (AD), which was first identified by a German neurologist

named A. Alzheimer is one of the most prominent causes of dementia [326]. Dementia is

not a single disease but rather a collection of several disorders and progressive symptoms,

among which AD is by far the most common disorder. Around the world, there are more

than five crore dementia patients, out of which 70 percent are Alzheimer’s disease patients

[327]. AD is an incurable disorder that alters the biology of the brain and results in structural

degeneration. Degeneration may result in memory loss, a drop in mental capacity, and a loss

of social skills. The severity of AD may possibly cause a person’s death. Temporary mem-

ory loss is one of the earliest and perhaps hard to recognize signs of AD. Mild Cognitive

Impairment (MCI), a disease stage, exists somewhere between Cognitive Normal (CN) and
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Algorithm 2.2 Rotation forest.
Training Phase:
Given: X = M ⇥ n is the dataset with M samples each with feature length n.
Y = M ⇥ 1 are class labels corresponding to the training data set.
L := Number of decision trees in an ensemble.
S is the number of subsets and {C1, · · · , Ck} is the set of class labels.
F is the feature set.
For i = 1, · · · , L

1: Prepare the rotation matrix Ra
i :

• Split F into S subsets: Fi,j with j = 1, · · · , S.

• For j = 1, · · · , S

– Let Xi,j be the data set X for the features in Fi,j .

– Eliminate a random subset of classes from Xi,j .

– Select a bootstrap sample from Xi,j of size 75% of the number of samples in
Xi,j . Denote the new set as X 0

i,j .

– Apply PCA on X
0
i,j to get the coefficients in a matrix Zi,j .

• Arrange the Zi,j , for j = 1, · · · , S in a rotation matrix Ri.

• For construction of Ra
i , rearrange the columns of Ri to match order of the features in

F .

2: With (XRa
i , Q) as the training data, build the classifier Di.

Classification Phase:

• For a given sample x, let the classifier Di assigned the probability di,j(xRa
i ) to the

hypothesis that x belongs to class Cj . For each class Cj , calculate the confidence by
the average combination method:

µj(x) =
1

L

X

i

di,j(xR
a
i ), j = 1, · · · , k.

• Assign x to the class with the largest confidence.
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AD. Early disease detection can assist in providing patients with optimal care, postponing

AD’s negative effects, and slowing the progression of dementia. The application of machine

learning models in the diagnosis of AD has been a recent trend. Multiple machine learning

models [328] have been proposed for the diagnosis of AD [61, 329]. Orouskhani et al. [330]

employed deep triplet network with structural MRI for Alzheimer’s disease detection and

got better accuracy than the compared state-of-art models. Amini et al. [331] proposed a

novel technique that includes fMRI images, robust multitask feature extraction method, and

convolutional neural network (CNN) for diagnosis of AD. Recent studies for the diagnosis

of AD disease includes [332, 333]. For the details of the machine learning models for the

diagnosis of AD, we refer the interested readers to [334].

2.9 Statistical tests

In this section, we discuss the statistical tests used to evaluate the performance of the

models statistically.

2.9.1 Friedman test

Friedman test has been proven to be more robust than other approaches and has

been practiced by numerous researchers [269, 335] to check the statistical significance

among classifiers. This method ranks the algorithms for each dataset separately, the best-

performing algorithm on each dataset achieves the lower rank. Then, the average of the rank

across all the datasets is taken as the rank of the classifier. Let rji be the rank of the jth al-

gorithm on the ith dataset among k algorithms and N datasets. The Friedman test compares

the average rank of algorithms, Rj =
1
N

P
i r

j
i . Under the null hypothesis, which states that

all the algorithms are equivalent and so their rank Rj should be equal. If k is the number of

algorithms and N is the number of datasets then Friedman statistic

�2
F =

12N

k(k + 1)

"
X

j

R2
j �

k(k + 1)2

4

#
, (2.50)

is distributed according to �2
F with (k � 1) degrees of freedom, when N and k are big
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enough. In that case, Friedman statistic �2
F is undesirably conservative and derived a better

statistic

FF =
(N � 1)�2

F

N(k � 1)� �2
F

, (2.51)

which is distributed according to the F -distribution with k�1 and (k�1)(N�1) degrees of

freedom. If the null hypothesis is rejected, Nemenyi test [336] can be used to check whether

the performance of two among k classifiers are significantly different. Two classifiers are

said to be statistically different if the rank of two classifiers differs by at least a critical

difference (CD). Mathematically, the critical difference is given by

CD = q↵

r
k(k + 1)

6N
, (2.52)

where critical value q↵ is based on the studentized range statistic divided by
p
2 .

2.9.2 Win-tie-loss: sign test

To access the overall performances of classifiers, we count the number of datasets on

which algorithm is the overall winner. We use the sign test for the pairwise comparison of

algorithms. In this test, under null hypothesis two algorithms are equivalent if each wins on

approximately N/2 out of N datasets. If the number of wins is at least N/2 + 1.96
p
N/2,

the algorithm is significantly better with p < 0.05. If the two algorithms end with a tie, then

the number should be evenly splitted between the classifiers. However, if the number is odd

we ignore one.
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Chapter 3

Fuzzy Theory and Graph Embedding

based Random Vector Functional Link

Network

This chapter aims to develop robust shallow RVFLs. We employ fuzzy/intuitionistic

fuzzy theory to handle the outliers and noisy samples in the data, and graph embedding

theory is used to consider the geometrical relationship of the data in the training process. In

the first approach, we propose a novel intuitionistic fuzzy random vector functional link net-

work (IFRVFL) [76]. Unlike standard RVFL, ELM, and KRR which use uniform weighting

approach for generating the optimal classifier, the proposed IFRVFL uses fuzzy weight-

ing approach for calculating the final output parameters of the classifier. Under a uniform

weighting approach, standard RVFL assigns equal weights to each sample while training

and hence has less generalization performance over datasets with noise or outliers. The

proposed IFRVFL assigns each sample an intuitionistic fuzzy number which is calculated

using the membership and non-membership score of a sample. The membership score

is a function of the sample distance from the centroid of its corresponding class and the

non-membership score is a function of sample distance from the centroid as well as the

neighbourhood information of the given sample. Therefore, the proposed IFRVFL is more

efficient than standard RVFL.

Literature shows that fuzzy theory enhances machine learning models’ ability to handle
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noise in the data. A key challenge in fuzzy approaches is how to define a fuzzy membership

value for each training sample so that the model can discriminate between noise samples

and normal samples. Therefore, in the second approach, our objectives are to design an

efficient fuzzy function for the classification problem and to develop a robust fuzzy RVFL

model. As a result, we propose a class probability-based efficient score function that uses

a non-linear function as membership function to determine the membership value of each

sample. The proposed score function uses the k-NN technique to determine the class proba-

bility to take the neighbourhood information of each training sample. Finally, a score value

is assigned to each sample based on the score function, which combines the membership

value and class probability value. By incorporating the proposed score function in the ob-

jective function of the standard RVFL network, we propose a novel class probability-based

fuzzy RVFL (CP-FRVFL).

The proposed IFRVFL model doesn’t take into account the geometrical relationship of the

data while calculating the final output parameters and hence, it affects the generalization

performance of the model. In literature, graph embedded (GE) approaches are used suc-

cessfully to describe the geometrical relationship within the data. Therefore, in the last

approach of this Chapter, we propose graph embedded intuitionistic fuzzy weighted RVFL

(GE-IFWRVFL) [77]. In GE-IFWRVFL, a novel regularization term based on GE frame-

work is introduced into the optimization problem of IFRVFL. The experimental results

demonstrate that the proposed GE-IFWRVFL has better generalization performance com-

pared to the baseline models.

3.1 Proposed intuitionistic fuzzy RVFL (IFRVFL) net-

work

The standard RVFL gives equal weight to each sample while calculating the final param-

eters and hence, gets affected negatively by outliers and noise in the dataset. The proposed

IFRVFL network addresses the aforementioned issue of standard RVFL. The IFTWSVM

model solves QPPs while the proposed IFRVFL model solves the system of linear equations
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for calculating the final parameters. The kernel-based methods such as KRR and intuition-

istic fuzzy KRR (IFKRR) suffer from memory issues when number of samples are large.

On the other hand, both RVFL and ELM are randomized neural networks that give uni-

form weights to each sample for calculating the optimal classifier and hence, are not robust

to outliers in the dataset. However, the proposed IFRVFL model assigns an intuitionistic

fuzzy value, i.e., by using a function of membership and non-membership values, to each

sample in the dataset so that the outliers and noise can be handled effectively. The mem-

bership value for each sample is measured by calculating the distance between sample and

its corresponding class centroid, while the non-membership value considers the relationship

between the number of disharmonious samples and the number of samples in its neigh-

bourhood. Using these assigned values to each sample, finally, a score function is defined

to handle the outliers and noise in the datasets. The proposed IFRVFL model effectively

reduces the negative influence of outliers, and hence has better generalization performance

compared to standard RVFL.

3.1.1 Formulation of IFRVFL network

The optimization problem of the proposed IFRVFL is defined as:

min
�

1

2
k�k22 +

1

2
CkS⇠k22

subject to H� � Y = ⇠, (3.1)

where H = [h(x1), h(x2), . . . , h(xN)]T , h(xi)T = [xi  (xi)]; S = diag(⇥1,⇥2, . . . ,⇥N) is

the diagonal matrix that contains the final score values at diagonals (see Chapter 2), and ⇠ =

[⇠1, ⇠2, . . . , ⇠N ]T is the error term corresponding to N samples. Also, C is the regularization

parameter and � is the output weights matrix. The Eq. (3.1) can be reformulated as follows:

min
�2R(d+L)⇥m

1

2
k�k22 +

C

2
kS(H� � Y )k22 . (3.2)
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The optimization problem in (3.2) is a convex quadratic problem. Therefore, there exists a

unique global optimal solution to this problem. Let

L(�) =
1

2
k�k22 +

C

2
kS(H� � Y )k22 . (3.3)

Taking the derivative of L(�) with respect to � and set it equal to zero, we have

@L

@�
= � + C(SH)T (S(H� � Y )) = 0. (3.4)

If number of hidden nodes is lesser than the number of training samples, i.e., ((d+L) < N),

then one can calculate � as follows:

� =
⇣ 1

C
I + (SH)T (SH)

⌘�1

(SH)TSY. (3.5)

Here, I is an identity matrix of order d+ L. For ((d+ L) > N), substitute � = (SH)Tµ in

Eq. (3.4), then we get,

(SH)Tµ+ C(SH)T
�
S(H(SH)Tµ� Y )

�
= 0. (3.6)

After calculations, we have:

µ =
⇣ 1

C
I + SHHTS

⌘�1

SY, (3.7)

= S�1
⇣ 1

C
S�1S�1 +HHT

⌘�1

Y. (3.8)

Finally,

� = (SH)Tµ = HTSµ = HT
⇣ 1

C
S�1S�1 +HHT

⌘�1

Y. (3.9)

Therefore, the optimal solution of (3.2) is as follows:

� =

8
<

:

⇣
1
C I + (SH)T (SH)

⌘�1

(SH)TSY, (d+ L)  N,

HT
⇣

1
CS

�1S�1 +HHT
⌘�1

Y, N < (d+ L).
(3.10)
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In case, S is a singular matrix then Tikhonov regularization can be used.

3.1.2 Computational complexity

Let N be the number of samples in a dataset. Since the membership and non mem-

bership values are calculated for each data sample, hence the complexity of calculating

these values is O(N) [27]. The complexity of the proposed IFRVFL is mainly determined

by the computation of matrix inversion. By the standard procedure, the complexity of the

inversion of a matrix of order N is O(N3) [337]. Thus, the complexity of IFRVFL is

O(N3) +O(N) ⇡ O(N3) for large N .

3.2 Experiments

In this section, we evaluate the baseline models and the proposed IFRVFL model on

ADNI, UCI, and KEEL datasets.

3.2.1 Experimental setup

All the experiments are performed on a system with MATLAB R2017b, Intel(R)

Xeon(R) CPU E5-2697 v4 2.30 GHz, 128-GB RAM, and Windows-10 platform. For gen-

erating the intuitionistic fuzzy weights in IFTWSVM, IFKRR, and the proposed IFRVFL

models, the samples are transformed into higher dimensional space via kernel function.

We used Gaussian kernel, K(x1, x2) = exp(� ||x1�x2||2
µ2 ), where µ denotes the kernel pa-

rameter. The dataset is randomly partitioned into 30 : 70 ratio of testing and training

sets, respectively. The hyperparameters corresponding to different models are optimized

using a grid search approach via 5-fold cross validation. In 5-fold cross validation, the

dataset is randomly partitioned into 5 disjoint sets wherein 1 set is reserved for testing

and the rest are used for training. The performance of each model corresponding to the

best hyperparameters is given as the final accuracy of a model. The different param-

eters involved corresponding to different models are chosen from the following range:

Ci = {10�5, 10�4, · · · , 104, 105}, for i = 1, 2, 3, 4, number of hidden neurons are taken
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from the range as: N = 3 : 20 : 203. For ELM, RVFL, and the proposed IFRVFL models,

we used 8 activation functions, namely, selu, relu, sigmoid, sin, hardlim, tribas, radbas and

sign function.

The performance measures used to evaluate the algorithms are given as follows:

Accuracy, AUC =
TP + TN

TP + FP + TN + FN

Sensitivity or Recall =
TP

TP + FN

Precision =
TP

TP + FP

F-measure =
2⇥ Precision ⇥ Recall

Precision + Recall

G-mean =
p

Precision ⇥ Recall

Specificity =
TN

TN + FP

where false positive, true positive, false negative, and true negative are denoted by

FP, TP, FN and TN , respectively.

3.2.2 Evaluation on ADNI dataset

ADNI repository (adni.loni.usc.edu) scans are used in this study. The Principal Inves-

tigator of ADNI project, Michael W. Weiner, launched it in 2003 with the aim to analyze

neuroimaging approaches like positron emission tomography (PET), magnetic resonance

imaging (MRI), other tests for the diagnosis of AD from mild cognitive impairment (MCI)

stage. For further details, we refer the interested readers to www.adni-info.org. We

used Volume based morphometry (VolBM) features. The pipeline for feature extraction fol-

lowed is the same as given in [338]. The performance of the models is evaluated in terms

of accuracy for classifying the MCI versus AD cases (MCI vs AD), control normal (CN)

versus AD cases (CN vs AD) and CN versus MCI cases (CN vs MCI).

The performances of the models for the diagnosis of AD with ‘relu’ activation func-

tion are given in Table 3.1. One can see that the KRR and the proposed IFRVFL model

show the best performance on CN vs AD and CN vs MCI subjects. Here, KRR model
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Table 3.1: Algorithm’s performance for the diagnosis of AD.

Subjects IFTWSVM [27] KRR [339] IFKRR [340] ELM [341] RVFL [11] IFRVFL
(AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time)
(c1, c3, µ) (c, µ) (c, µ) (c,N) (c,N) (c, µ,N)

CN vs AD case (0.8801, 0.0335) (0.9186, 0.0036) (0.7737, 0.0101) (0.8444, 0.0022) (0.8903, 0.0008) (0.898, 0.0168)
(0.00001, 0.001, 32) (0.1, 32) (0.00001, 2) (0.0001, 183) (0.01, 3) (0.1, 32, 3)

CN vs MCI case (0.6623, 0.0817) (0.6775, 0.0098) (0.6329, 0.0293) (0.6318, 0.0027) (0.6295, 0.0009) (0.6763, 0.0276)
(100000, 1, 32) (1, 32) (0.1, 4) (0.001, 183) (0.01, 3) (0.1, 8, 163)

MCI vs AD case (0.6212, 0.0723) (0.5797, 0.0088) (0.5787, 0.0278) (0.5858, 0.0009) (0.6621, 0.0014) (0.6813, 0.4195)
(100000, 1, 32) (1, 32) (0.1, 4) (10, 63) (0.1, 43) (100000, 0.03125, 3)

Average AUC 0.7212 0.7253 0.6618 0.6873 0.7273 0.7519
Here, boldface denotes the performance of the top two models.

has winning performance with AUC equal to 91.86% and 67.75% for the case CN vs AD

and CN vs MCI, respectively. The proposed IFRVFL model has second position with AUC

equal to 89.8% and 67.63% for the case CN vs AD and CN vs MCI, respectively. Also,

the accuracy of other compared models, i.e., RVFL, IFTWSVM, ELM and IFKRR, are

89.03%, 88.01%, 84.44% and 77.37%, respectively on CN vs AD subject which is inferior

in comparison with the proposed IFRVFL model. For CN vs MCI subjects, the IFTWSVM,

IFKRR, ELM and RVFL has AUC equal to 66.23%, 63.029%, 63.18% and 62.95%, respec-

tively which is lower compared to the proposed IFRVFL model. For MCI vs AD subject,

the proposed IFRVFL model emerged as the best classifier with AUC equal to 68.13%,

followed by RVFL and IFTWSVM with AUC equal to 66.21% and 62.12%, respectively.

The rest of the models, i.e., KRR, IFKRR and ELM have AUC equal to 57.97%, 57.87%

and 58.58%, respectively on MCI vs AD subject. Thus, on MCI vs AD subject the pro-

posed IFRVFL model showed approximately. 10% more accuracy compared to the KRR,

IFKRR and ELM models. Moreover, in terms of average accuracy, the proposed IFRVFL

model emerged as the best classifier with AUC equal to 75.19% followed by RVFL model

with AUC equal to 72.73%. The overall performance of the models (with ‘relu’ activation

function for ELM, RVFL and IFRVFL) in terms of F-measure is given in Figure 3.1d. It is

clear that the performance of the proposed IFRVFL model is competitive or better among

the baseline models. Figure 3.2d gives the analysis of the models (with ‘relu’ activation

function for ELM, RVFL and IFRVFL).

Activation functions play an important role in the performance of neural networks.

Hence, we used 8 activation functions to check the suitability of each for the diagnosis of

AD. The performance of ELM, RVFL and IFRVFL models on different activation functions
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Table 3.2: The performance analysis of ELM, RVFL and IFRVFL model for the diagnosis
of AD across different activation functions.

Activation Model Subjects AUC Sens. Spec. Prec.
Selu ELM CN vs AD case 0.859 0.8604 0.8575 0.815
Selu ELM CN vs MCI case 0.635 0.5246 0.7453 0.497
Selu ELM MCI vs AD case 0.5946 0.3785 0.8107 0.5366
Selu RVFL CN vs AD case 0.8808 0.8302 0.9315 0.898
Selu RVFL CN vs MCI case 0.6131 0.4918 0.7344 0.4688
Selu RVFL MCI vs AD case 0.6321 0.5231 0.7411 0.5397
Selu IFRVFL CN vs AD case 0.8818 0.8868 0.8767 0.8393
Selu IFRVFL CN vs MCI case 0.6977 0.7705 0.625 0.4947
Selu IFRVFL MCI vs AD case 0.6549 0.7385 0.5714 0.5
Relu ELM CN vs AD case 0.8444 0.834 0.8548 0.8083
Relu ELM CN vs MCI case 0.6318 0.5246 0.7391 0.4894
Relu ELM MCI vs AD case 0.5858 0.3662 0.8054 0.5263
Relu RVFL CN vs AD case 0.8903 0.8491 0.9315 0.9
Relu RVFL CN vs MCI case 0.6295 0.5246 0.7344 0.4848
Relu RVFL MCI vs AD case 0.6621 0.5385 0.7857 0.5932
Relu IFRVFL CN vs AD case 0.898 0.9057 0.8904 0.8571
Relu IFRVFL CN vs MCI case 0.6763 0.6885 0.6641 0.4941
Relu IFRVFL MCI vs AD case 0.6813 0.8 0.5625 0.5149
Sigmoid ELM CN vs AD case 0.8547 0.8491 0.8603 0.8159
Sigmoid ELM CN vs MCI case 0.6324 0.5508 0.7141 0.4789
Sigmoid ELM MCI vs AD case 0.5896 0.4185 0.7607 0.5095
Sigmoid RVFL CN vs AD case 0.8929 0.8679 0.9178 0.8846
Sigmoid RVFL CN vs MCI case 0.649 0.5246 0.7734 0.5246
Sigmoid RVFL MCI vs AD case 0.6653 0.5538 0.7768 0.5902
Sigmoid IFRVFL CN vs AD case 0.8783 0.8113 0.9452 0.9149
Sigmoid IFRVFL CN vs MCI case 0.6977 0.7705 0.625 0.4947
Sigmoid IFRVFL MCI vs AD case 0.7284 0.7692 0.6875 0.5882
Sin ELM CN vs AD case 0.497 0.4981 0.4959 0.4214
Sin ELM CN vs MCI case 0.5382 0.5639 0.5125 0.3538
Sin ELM MCI vs AD case 0.4852 0.4954 0.475 0.3526
Sin RVFL CN vs AD case 0.8483 0.7925 0.9041 0.8571
Sin RVFL CN vs MCI case 0.729 0.7705 0.6875 0.5402
Sin RVFL MCI vs AD case 0.6604 0.6154 0.7054 0.5479
Sin IFRVFL CN vs AD case 0.886 0.8679 0.9041 0.8679
Sin IFRVFL CN vs MCI case 0.7145 0.8197 0.6094 0.5
Sin IFRVFL MCI vs AD case 0.7284 0.7692 0.6875 0.5882
Hardlim ELM CN vs AD case 0.8449 0.8377 0.8521 0.8046
Hardlim ELM CN vs MCI case 0.6378 0.4787 0.7969 0.5299
Hardlim ELM MCI vs AD case 0.6019 0.4092 0.7946 0.5325
Hardlim RVFL CN vs AD case 0.8783 0.8113 0.9452 0.9149
Hardlim RVFL CN vs MCI case 0.6326 0.4918 0.7734 0.5085
Hardlim RVFL MCI vs AD case 0.6775 0.5692 0.7857 0.6066
Hardlim IFRVFL CN vs AD case 0.862 0.7925 0.9315 0.8936
Hardlim IFRVFL CN vs MCI case 0.6814 0.7377 0.625 0.4839
Hardlim IFRVFL MCI vs AD case 0.7207 0.7538 0.6875 0.5833
Tribas ELM CN vs AD case 0.4752 0.3887 0.5616 0.3899
Tribas ELM CN vs MCI case 0.4802 0.2885 0.6719 0.2898
Tribas ELM MCI vs AD case 0.5039 0.2738 0.7339 0.3679
Tribas RVFL CN vs AD case 0.8929 0.8679 0.9178 0.8846
Tribas RVFL CN vs MCI case 0.6619 0.5738 0.75 0.5224
Tribas RVFL MCI vs AD case 0.6584 0.5846 0.7321 0.5588
Tribas IFRVFL CN vs AD case 0.8955 0.8868 0.9041 0.8704
Tribas IFRVFL CN vs MCI case 0.6935 0.7541 0.6328 0.4946
Tribas IFRVFL MCI vs AD case 0.7271 0.7846 0.6696 0.5795
Radbas ELM CN vs AD case 0.4734 0.3358 0.611 0.3856
Radbas ELM CN vs MCI case 0.521 0.3279 0.7141 0.3528
Radbas ELM MCI vs AD case 0.5152 0.3662 0.6643 0.3897
Radbas RVFL CN vs AD case 0.8929 0.8679 0.9178 0.8846
Radbas RVFL CN vs MCI case 0.6701 0.5902 0.75 0.5294
Radbas RVFL MCI vs AD case 0.6584 0.5846 0.7321 0.5588
Radbas IFRVFL CN vs AD case 0.8818 0.8868 0.8767 0.8393
Radbas IFRVFL CN vs MCI case 0.6657 0.7377 0.5938 0.4639
Radbas IFRVFL MCI vs AD case 0.7361 0.7846 0.6875 0.593
Sign ELM CN vs AD case 0.8387 0.8226 0.8548 0.8043
Sign ELM CN vs MCI case 0.6903 0.718 0.6625 0.505
Sign ELM MCI vs AD case 0.6504 0.5723 0.7286 0.5513
Sign RVFL CN vs AD case 0.8466 0.8302 0.863 0.8148
Sign RVFL CN vs MCI case 0.7169 0.7541 0.6797 0.5287
Sign RVFL MCI vs AD case 0.6941 0.5846 0.8036 0.6333
Sign IFRVFL CN vs AD case 0.8603 0.8302 0.8904 0.8462
Sign IFRVFL CN vs MCI case 0.6989 0.8197 0.5781 0.4808
Sign IFRVFL MCI vs AD case 0.7291 0.8154 0.6429 0.5699
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(a) CN vs AD

(b) MCI vs AD

(c) CN vs MCI

(d) All Models

Figure 3.1: F-measure analysis of the classification models for AD.
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(a) CN vs AD

(b) MCI vs AD

(c) CN vs MCI

(d) All Models

Figure 3.2: G-mean analysis of the classification models for AD.
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is given in Table 3.2.

For CN versus AD subject, The proposed IFRVFL model has highest (among all mod-

els) AUC equal to 89.8% with ‘relu’ activation function and RVFL has best accuracy equal

to 89.29% with ‘sigmoid’, ‘tribas’ and ‘radbas’ activation functions. For MCI versus AD

subject, ELM has poor performance (among all models) with AUC equal to 48.52% with

‘sin’ activation function and best performance 65.04% accuracy with ‘sign’ activation func-

tion. The proposed IFRVFL model has overall winning performance with AUC equal to

73.61% with ‘radbas’ activation function. For CN versus MCI subject, RVFL with 72.9%

accuracy is overall winner (among all models) with ‘sin’ activation function. Figure 6.3a

to Figure 3.1c gives the F-measure analysis of the models (NNs) with different activation

functions. For CN vs AD subject, the proposed IFRVFL and RVFL models have competi-

tion and for MCI vs AD and CN vs MCI subjects, the proposed IFRVFL model has overall

winning performance.

Figure 3.2a to Figure 3.2c gives the G-mean analysis of the models (NNs) across differ-

ent activation functions. For CN vs AD subject, the proposed IFRVFL model has best per-

formance with ‘selu’, ‘relu’, ‘sin’, ‘tribas’ and ‘sign’ activation functions. For MCI vs AD

subject, the proposed IFRVFL model is overall winner and ELM has lower performance

with all activation functions. For CN vs MCI subject, the proposed IFRVFL model is per-

forming best except with ‘sin’ and ‘sign’ activation functions. Figure 3.3 shows the overall

generalization of the models across different activation functions. From the Figure, it is

clear that the proposed IFRVFL model shows superior performance compared to ELM and

RVFL models in MCI vs AD subject. Moreover, in CN vs AD and CN vs MCI subjects,

the proposed IFRVFL model is competitive to RVFL model and better than the ELM model.

3.2.3 Evaluation on UCI and KEEL datasets

To check the overall performance of the models, we evaluated them on benchmark

datasets from the UCI [342] and KEEL [343] repository. The classification performance

of the models in terms of AUC is given in Table 3.3.

From this Table, it is clear that the proposed IFRVFL model is best with average accu-
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(a) CN vs AD

(b) CN vs MCI

(c) MCI vs AD

Figure 3.3: Performance evaluation of ELM, RVFL and proposed IFRVFL models on AD.
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Table 3.3: Evaluation of algorithms on UCI and KEEL datasets.

Dataset Name IFTWSVM [27] KRR [339] IFKRR [340] ELM [341] RVFL [11] IFRVFL
(AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time) (AUC, Time)
(c1, c3, µ) (c, µ) (c, µ) (c,N) (c,N) (c, µ,N)

abalone9-18 (0.7502, 0.1185) (0.6964, 0.0176) (0.7022, 0.054) (0.6614, 0.0015) (0.7035, 0.0124) (0.7683, 0.0334)
(0.001, 10, 0.25) (0.0001, 4) (10, 0.125) (100, 83) (100, 183) (100000, 0.25, 3)

aus (0.8482, 0.0846) (0.842, 0.0138) (0.8023, 0.0445) (0.8484, 0.0032) (0.8492, 0.001) (0.8526, 0.0306)
(1000, 10, 4) (0.1, 32) (0.00001, 0.125) (0.01, 203) (0.001, 43) (0.001, 32, 43)

checkerboard Data (0.8482, 0.0809) (0.842, 0.0112) (0.8023, 0.1005) (0.8484, 0.0033) (0.8492, 0.0007) (0.8526, 0.0314)
(1000, 10, 4) (0.1, 32) (0.00001, 0.125) (0.01, 203) (0.001, 43) (0.001, 32, 43)

cleve (0.8216, 0.0198) (0.8162, 0.0022) (0.7422, 0.0114) (0.8371, 0.0024) (0.851, 0.0016) (0.7725, 0.0097)
(0.1, 10, 16) (10, 4) (0.01, 1) (0.0001, 143) (0.0001, 203) (0.0001, 16, 3)

ecoli-0-1-4-6 vs 5 (0.9321, 0.0329) (0.9753, 0.0024) (0.9938, 0.0083) (0.9963, 0.0016) (1, 0.0006) (0.9753, 0.0075)
(100000, 0.01, 0.5) (10000, 0.03125) (0.00001, 0.0625) (100, 143) (1000, 63) (10, 0.125, 63)

ecoli-0-1-4-7 vs 2-3-5-6 (0.9174, 0.0459) (0.9, 0.0024) (0.8391, 0.0467) (0.83, 0.0005) (0.8, 0.0036) (0.8446, 0.0066)
(100000, 10, 1) (0.01, 8) (0.1, 0.25) (10, 43) (10, 143) (100000, 2, 43)

ecoli-0-1-4-7 vs 5-6 (0.8642, 0.0282) (0.875, 0.061) (0.8696, 0.0113) (0.875, 0.001) (0.875, 0.0024) (0.875, 0.0107)
(10, 0.001, 0.5) (100000, 0.125) (1, 0.0625) (10, 83) (10, 163) (10, 2, 103)

ecoli-0-1 vs 5 (0.8868, 0.0286) (0.8259, 0.0024) (0.8259, 0.009) (0.8303, 0.0003) (0.8259, 0.0013) (0.8333, 0.0042)
(100, 0.01, 0.5) (1, 1) (0.01, 0.25) (1000, 23) (0.1, 63) (0.1, 8, 63)

ecoli-0-2-6-7 vs 3-5 (0.6667, 0.0268) (0.8333, 0.0015) (0.6288, 0.0051) (0.9333, 0.0016) (1, 0.0003) (0.9924, 0.0078)
(10000, 0.1, 8) (1, 2) (0.1, 0.03125) (0.1, 83) (1, 23) (100, 16, 23)

ecoli-0-3-4-6 vs 5 (0.8083, 0.0278) (0.825, 0.0015) (0.825, 0.0046) (0.795, 0.0004) (0.8333, 0.0012) (0.8333, 0.0038)
(10, 0.001, 1) (0.00001, 0.125) (0.00001, 0.125) (0.1, 23) (0.01, 203) (10, 2, 63)

ecoli-0-3-4-7 vs 5-6 (0.863, 0.0273) (0.9428, 0.0019) (0.9138, 0.0174) (0.9228, 0.0005) (0.8928, 0.0002) (0.8138, 0.0048)
(1000, 10, 16) (0.001, 32) (0.00001, 0.03125) (10, 43) (0.1, 23) (0.1, 2, 3)

ecoli-0-4-6 vs 5 (0.9286, 0.0233) (0.8571, 0.0012) (0.8571, 0.0051) (0.8605, 0.0011) (0.8571, 0.0004) (0.9013, 0.0063)
(100, 0.0001, 0.5) (100, 0.0625) (0.00001, 0.03125) (1000, 103) (1000, 43) (100, 1, 103)

ecoli-0-6-7 vs 3-5 (0.8833, 0.0238) (0.9208, 0.0033) (0.9125, 0.0047) (0.8983, 0.0005) (0.9375, 0.0003) (0.9833, 0.0072)
(100, 10, 1) (0.00001, 0.0625) (10, 0.03125) (100000, 43) (10, 43) (1000, 8, 23)

ecoli0137vs26 (0.9872, 0.0321) (0.9706, 0.0024) (0.9321, 0.0114) (0.9529, 0.0006) (0.9706, 0.0015) (0.9449, 0.0145)
(100000, 1000, 4) (10, 0.125) (1, 0.125) (0.01, 43) (1, 143) (0.01, 1, 123)

ecoli2 (0.8571, 0.0328) (0.7218, 0.0025) (0.8087, 0.0077) (0.6926, 0.0011) (0.8072, 0.0007) (0.9341, 0.0086)
(0.00001, 100, 1) (1, 4) (100, 0.03125) (10, 63) (10, 63) (100, 2, 23)

ecoli3 (0.8571, 0.0283) (0.7218, 0.004) (0.8087, 0.0347) (0.6926, 0.0008) (0.8072, 0.0103) (0.9341, 0.0092)
(0.00001, 100, 1) (1, 4) (100, 0.03125) (10, 63) (10, 63) (100, 2, 23)

heart-stat (0.8398, 0.0238) (0.8717, 0.0035) (0.7866, 0.0679) (0.8653, 0.0019) (0.8574, 0.0013) (0.8647, 0.0065)
(10, 10, 16) (10, 16) (0.01, 0.5) (0.0001, 183) (0.0001, 123) (100000, 0.125, 123)

new-thyroid1 (0.9444, 0.0256) (0.9912, 0.0013) (0.9825, 0.0169) (0.9947, 0.0004) (1, 0.0003) (0.9825, 0.0043)
(0.0001, 0.0001, 4) (0.00001, 0.25) (10, 0.0625) (10, 43) (10, 23) (10, 0.03125, 23)

pima (0.7582, 0.0907) (0.7613, 0.0535) (0.6886, 0.0563) (0.73, 0.0091) (0.7452, 0.0007) (0.7827, 0.059)
(0.001, 1, 2) (1, 16) (1, 0.03125) (0.001, 83) (100, 23) (1000, 0.5, 3)

shuttle-6 vs 2-3 (0.75, 0.0262) (0.9924, 0.0028) (0.9394, 0.0072) (0.9985, 0.0003) (1, 0.0002) (0.9924, 0.0221)
(0.0001, 0.0001, 2) (0.00001, 0.0625) (0.00001, 0.03125) (10, 23) (0.1, 3) (0.1, 2, 3)

shuttle-c0-vs-c4 (1, 0.6015) (0.9865, 0.2812) (1, 0.5837) (0.9892, 0.0007) (0.9865, 0.0017) (0.9865, 0.2233)
(0.0001, 0.00001, 16) (0.01, 32) (0.00001, 2) (0.1, 23) (0.1, 43) (0.0001, 0.5, 23)

sonar (0.7877, 0.0216) (0.8192, 0.004) (0.8626, 0.0046) (0.7591, 0.0013) (0.736, 0.0024) (0.7394, 0.0067)
(0.001, 0.01, 32) (0.00001, 8) (0.001, 4) (0.01, 183) (0.1, 183) (0.1, 32, 43)

vehicle1 (0.7859, 0.1416) (0.7766, 0.0181) (0.7366, 0.0782) (0.7626, 0.0029) (0.7683, 0.0011) (0.7954, 0.0379)
(0.001, 0.1, 16) (0.001, 32) (1, 0.5) (100, 163) (10, 83) (100000, 0.03125, 203)

vehicle2 (0.9819, 0.1389) (0.9974, 0.0246) (0.9738, 0.1828) (0.9889, 0.0046) (0.9893, 0.0066) (0.9758, 0.0558)
(0.001, 0.01, 32) (0.001, 16) (0.01, 0.25) (10, 203) (1, 203) (1000, 32, 103)

vowel (0.9482, 0.202) (0.8279, 0.0365) (0.8279, 0.0914) (0.7582, 0.002) (0.8704, 0.0023) (0.8631, 0.0637)
(0.00001, 0.001, 1) (0.00001, 0.0625) (0.00001, 0.0625) (100, 103) (100, 143) (100, 2, 163)

wpbc (0.564, 0.0216) (0.4944, 0.0025) (0.5195, 0.0115) (0.5811, 0.0015) (0.6716, 0.0003) (0.7356, 0.0044)
(0.01, 0.1, 32) (0.00001, 8) (0.1, 1) (0.1, 143) (10, 3) (0.00001, 0.5, 203)

yeast-0-2-5-6 vs 3-7-8-9 (0.7525, 0.1946) (0.7492, 0.0303) (0.6332, 0.3775) (0.7122, 0.0023) (0.6924, 0.0023) (0.743, 0.0897)
(10, 1000, 16) (0.1, 0.125) (0.0001, 0.25) (100000, 123) (10, 143) (1, 0.03125, 143)

yeast-0-5-6-7-9 vs 4 (0.7137, 0.0664) (0.7137, 0.0076) (0.6619, 0.024) (0.6517, 0.0017) (0.6625, 0.0027) (0.7277, 0.0164)
(100, 10, 16) (1000, 0.03125) (10, 0.125) (10, 123) (1, 163) (10000, 0.25, 203)

Average Accuracy 0.8409 0.841 0.817 0.8309 0.8514 0.8679
Average Rank 3.3214 3.4821 4.6071 3.8036 3.0893 2.6964

racy equal to 86.79% and average rank equal to 2.6964. In terms of average accuracy, the

proposed IFRVFL model is followed by RVFL with 85.14%, KRR with 84.1%, IFTWSVM

with 84.09%, ELM with 83.09% and IFKRR with 81.7%. Since average accuracy can be a

biased measure, as the outperformance in one dataset may compensate the loss over other

datasets. Hence, we rank the model on each dataset to analyze the performance.

The average rank of IFTWSVM, KRR, IFKRR, ELM, RVFL and the proposed IFRVFL

are 3.32, 3.48, 4.61, 3.8, 3.09 and 2.7, respectively. After simple calculations, we get
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Table 3.4: Pairwise win-tie-loss

IFTWSVM [27] KRR [339] IFKRR [340] ELM [341] RVFL [11]
KRR [339] [12, 1, 15]
IFKRR [340] [8, 1, 19] [7, 4, 17]
ELM [341] [13, 0, 15] [11, 1, 16] [18, 0, 10]
RVFL [11] [14, 0, 14] [14, 5, 9] [20, 2, 6] [19, 1, 8]
IFRVFL [17, 0, 11] [15, 4, 9] [23, 1, 4] [17, 1, 10] [16, 3, 9]

�2
F = 17.3040, FF = 3.8079, for N = 28, k= 6. From statistical F-distribution Table, at

5% level of significance FF (5, 135) = 2.28. Since 3.8079 > 2.28, hence we refuse the null

hypothesis. Thus, there is significant difference among models. To check the significant

difference between different pairs of the models, we follow the Nemenyi posthoc test. For

Nemenyi test, the critical difference, CD = q↵

q
k(k+1)
6N = 2.85

q
6⇥7
6⇥28 = 1.425. Two mod-

els are said to be significantly different if their average rank differs by at least CD. With

the Nemenyi test, significant difference exist between (IFRVFL, IFKRR) with difference

equal to 1.91 and (RVFL, IFKRR) with difference equal to 1.52. However, the Nemenyi

test fails to detect the significant difference between the proposed IFRVFL model and other

baseline models i.e., IFTWSVM, KRR, ELM and RVFL models. However, one can see that

the average rank of the proposed IFRVFL model is better compared to the given baseline

models. Furthermore, we employ the pairwise win-tie-loss sign test to analyze the models.

The pairwise analysis of the models is given in Table 3.4. With N = 28, the two models

are significantly different if either of the models win on approximately. � 19.1857 datasets.

From Table 3.4, it is evident that significant difference exists between IFRVFL and IFKRR

models with proposed IFRVFL model being better compared to IFKRR model. Also, RVFL

is statistically better compared to IFKRR model. However, win-tie-loss sign test fails to de-

tect the significant difference between proposed IFRVFL model and other baseline models

like IFTWSVM, KRR and ELM models. One can see that the proposed IFRVFL model

wins on more datasets compared to IFTWSVM, KRR and ELM models. With the afore-

mentioned analysis of the proposed IFRVFL model with different performance measures

and statistical tests, it is clear that the performance of the proposed IFRVFL is competitive

or better compared to the baseline models.
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3.3 Class probability-based fuzzy random vector func-

tional link (CP-FRVFL) network

In Section 3.1, we developed intuitionistic fuzzy RVFL (IFRVFL) network that uses

membership and non membership value based score function to deal with noisy and outlier

samples in the data. IFRVFL network uses a linear function to calculate the membership

value of a sample. Under this scheme, training samples which are present on the boundary

of the classes, a very low membership value (near zero) is assigned. Therefore, one may

lose the important samples and hence model may have lower generalization performance.

In this approach, our objectives are to design an efficient fuzzy function for classification

problem and then to develop a robust Fuzzy RVFL network. As a result, we propose a class

probability-based efficient score function that uses a non-linear function (smooth, bounded,

and continuous function) to determine the membership value of each sample. The proposed

fuzzy function uses the k-NN technique to determine the class probability value to take

the neighbourhood information of each training sample. Finally, a score value is assigned

to each sample based on the score function integrating the membership function and class

probability. By incorporating the proposed score or fuzzy value in the objective function of

the standard RVFL network, we propose a novel class probability-based fuzzy RVFL (CP-

FRVFL) network.

The way a fuzzy function is defined is crucial because it decides how actively training

samples will participate in the classification process?. Next, we present the proposed score

function followed by the mathematical formulation of the proposed CP-FRVFL network.

3.3.1 Membership function

Designing an effective fuzzy function that assigns an appropriate membership value to

each training sample to assess its contribution in calculating the classifier’s parameters is

necessary to minimize the impact of noise and outlier samples [344, 345]. By calculating

each sample’s distance from the center of its class, the membership function assigns a value

to each sample in order to identify its class membership. Intuitively, samples close to the

103



CHAPTER 3. FUZZY THEORY AND GRAPH EMBEDDING BASED RANDOM
VECTOR FUNCTIONAL LINK NETWORK

class center should be valued higher than ones farther from the center. The membership

function (Mf ) is defined as follows:

Mf (x) =

8
>>><

>>>:

sech✓
⇣

kx�x+k
r+

⌘
, x 2 C+,

sech✓
⇣

kx�x�k
r�

⌘
, x 2 C�.

(3.11)

Here, x+ and x� are the center of the positive (C+) and negative (C�) classes, respectively.

Moreover, ✓ is the parameter that needs to be tuned to get an appropriate membership func-

tion. Each class center is defined as follows:

x+ =
1

n1

X

xi2C+

xi and x� =
1

n2

X

xi2C�

xi, (3.12)

where n1(n2) denotes the number of samples in positive (negative) class, respectively. The

radius (r±) of positive (negative) class is defined as follows:

r± = max
x2C±

��x� x±�� . (3.13)

3.3.2 Proposed score function

The data points which are on equal distance ( from the class center) may have different

contributions in calculating the final parameters of the classifier. Therefore, the membership

value (MV) based on only distance function is not enough to determine the belongingness

of a sample to its own class. While assessing if a training sample belongs to its own class,

we also consider its relationship to other class in order to take additional information. Here,

to describe the class probabilities of the samples to their respective classes, we employ the

k-NN approach [346]. Let xi be the feature vector of the ith training sample, we selects its

k-nearest neighbours {xi1, xi2, ..., xik} in the original feature space. Let vi be the number of

samples of same class as of xi in its k-nearest neighbour. Finally, the class probability of xi
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Figure 3.4: Flowchart of the proposed CP-RVFL.

is determined as follow:

pi =
vi
k
, i = 1, 2, ..., N. (3.14)

The higher probability (pi) of xi indicates that it has more surrounding samples of its own

class and therefore, less possibility of it being a noise or outlier sample and vice versa.

Finally, we define a score function (S) that integrates the membership function and class

probability as follows:

Sf (xi) = Mf (xi)⇥ pi, i = 1, 2, ..., N. (3.15)

The proposed score function Sf takes into account both a sample’s distance from the cor-

responding class center and its surrounding information. The importance of a point x in

the training process increases/decreases as the value of Sf increases/decreases. Next, we

present the CP-FRVFL’s mathematical formulation.

3.3.3 The proposed CP-FRVFL network

By incorporating the membership function and class probability-based score value into

the objective function of the RVFL network, we propose CP-FRVFL network. In contrast to

the standard RVFL network, the proposed CP-FRVFL network gives specific consideration

and weights to each sample to determine their role in calculating the network’s parameters.

Figure 3.4 shows the flowchart of the proposed model. The proposed optimization problem
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with equality constraints is formulated as follows:

min
�2R(d+L)⇥m

1

2
k�k22 +

1

2
�kD1/2⇣k22

subject to G� � Y = ⇣, (3.16)

where G is the feature matrix containing original features and randomized features cal-

culated via hidden layer. � is the output weights matrix and D = diag(s1, s2, · · · , sN)

is the diagonal matrix which contains the score values calculated via (3.15) and ⇣ =

[⇣1, ⇣2, · · · , ⇣N ]T is the weights matrix and error term corresponding to N samples. The

first term in the proposed objective function corresponds to the regularization term that pre-

vents the CP-FRVFL network from over-fitting; the second term is the weighted error and

� is the parameter that controls the trade-off between the error and regularization term.

The optimization problem (3.16) is a convex quadratic problem and hence, it has a unique

solution. The Lagrange function of the problem (3.16) is defined as follows:

L(�, ⇣,↵) =
1

2
�
��D1/2⇣

��2
+

1

2
k�k2 � ↵T (G� � Y � ⇣), (3.17)

and obtain the partial derivatives of L w.r.t �, ⇣ and ↵ and set them equal to zero.

@L

@�
= 0 =) � = GT↵, (3.18)

@L

@⇣
= 0 =) ↵ = ��D⇣, (3.19)

@L

@↵
= 0 =) G� � Y � ⇣ = 0. (3.20)

From (3.19) and (3.20), we obtain ↵ = ��D(G� � Y ). By substituting the value of ↵ in

(3.18), we get:

� = (GTDG+
1

�
I)�1GTDY, (3.21)

106



CHAPTER 3. FUZZY THEORY AND GRAPH EMBEDDING BASED RANDOM
VECTOR FUNCTIONAL LINK NETWORK

After substituting (3.18) and (3.19) into (3.20), we obtain ↵ = (DGGT + 1
�I)

�1DY , By

substituting the value of ↵ in (3.18),

� = GT (DGGT +
1

�
I)�1DY. (3.22)

Therefore, in this case the optimal solution of (3.16) is given by,

� =

8
<

:
(GTDG+ 1

�I)
�1GTDY, (d+ L)  N,

GT (DGGT + 1
�I)

�1DY, N < (d+ L),
(3.23)

where � is the regularization parameter to be tuned and I is an identity matrix of appropriate

dimension. Let x be the unseen sample and Oi be the output of the final layer’s ith node,

i = 1, 2, ...,m, then the final class is assigned to x by the decision function is as follows:

class label (x) = argmax
i=1,2,...,m

{Oi
}. (3.24)

3.3.4 Computation complexity analysis

In CP-FRVFL, matrix inverses are computed to calculate the output layer weights.

Hence, the complexity of the models is determined by the size of the matrices to be inverted.

By the standard procedure, O(N2) memory and O(N3) time are required to calculate the

inverse a matrix of size N ⇥ N [337]. The CP-FRVFL model calculates the output layer

weights either in the primal or dual, which results in reducing the complexity of the model

by choosing the min(N, d+ L). Thus, the time complexity of the CP-FRVFL model is ap-

proximately either O(N3) or O((d+ L)3). Moreover, ELM has a time complexity of either

O(N3) or O(L3).

3.3.5 Experiments

In this section, we discuss the experimental results among the baseline models and the

proposed CP-FRVFL model on UCI and KEEL datasets.
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Figure 3.5: F-measure plot of the models on KEEL datasets

3.3.5.1 Experimental setup

All the experiments are performed with MATLAB R2017b and all the tuning parameters

related to IFTWSVM, IFKRR, ELM, RVFL, MVRVFL and IFRVFL and the proposed CP-

FRVFL are the same as described in Subsection (4.2.1). For the proposed CP-FRVFL, the ✓

parameter is tuned from the range {.3, .7, .9, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6, 2.8, 3}. The

experiments are conducted over UCI and KEEL datasets [342, 343]. The dataset is randomly

partitioned into 30 : 70 ratio of testing and training sets, respectively. The hyperparameters

corresponding to different models are optimized using grid search approach via 5-fold cross

validation. The performance of each model corresponding to the best hyperparameters is

given as the final accuracy of a model.

3.3.5.2 Experimental results over KEEL and UCI datasets

The experimental results corresponding to the proposed CP-FRVFL and the baseline

models are shown in Table 3.5. One can see that the proposed CP-FRVFL model has the

highest average AUC equal to 88.18%, followed by IFRVFL with average AUC equal to
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Figure 3.6: G-mean plot of the models on KEEL datasets

86.239%. Moreover, IFTWSVM, IFKRR, ELM, RVFL and MVRVFL have average AUC

equal to 84.316%, 79.636%, 84.755%, 86.17% and 86.239%, respectively. The results

shows that the proposed CP-FRVFL model is almost 2% superior to RVFL and IFRVFL

models and 4% superior to IFTWSVM model. Sometimes average accuracy might be

skewed because performance in one dataset can sometimes make up for performance in

another. To evaluate the performance, we rank the model on each dataset. In this case,

each model is ranked on the datasets, with the lower performing model receiving a higher

rank and the higher performing model receiving a lower rank. Therefore, the most suc-

cessful model has a lower rank. To validate the performance of the models statistically,

we employ the Friedman test. After some calculation, �2
F = 12.86 and FF = 2.2806.

Here, we have N = 20 number of datasets and k = 7 compared models. Therefore, from

the statistical F-distribution table, F (6, 114) = 2.18. Since, 2.2806 > 2.18, hence, the

null hypothesis is rejected. Thus, there is a significant difference among the compared

models. To evaluate the classification performance of the proposed CP-FRVFL and RdNN

models further, we also conduct the experiments on UCI datasets and the corresponding
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Table 3.5: The experimental results of the proposed CP-FRVFL and the compared models
on KEEL datasets.

Dataset Name IFTWSVM [27] IFKRR [340] ELM [341] RVFL [11] MVRVFL[145] IFRVFL [76] CP-FRVFL
(AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.)
(Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.)

aus (0.8482, 0.8617) (0.8023, 0.7872) (0.8484, 0.8447) (0.8492, 0.8723) (0.8518, 0.8532) (0.8526, 0.8617) (0.8536, 0.8723)
(0.8348, 0.81) (0.8174, 0.7789) (0.8522, 0.8238) (0.8261, 0.8039) (0.8504, 0.8236) (0.8435, 0.8182) (0.8348, 0.8119)

cmc (0.6881, 0.5924) (0.5, 1) (0.6791, 0.5652) (0.6877, 0.5761) (0.6892, 0.5761) (0.6708, 0.5) (0.6884, 0.5543)
(0.7838, 0.6606) (0, 0.4153) (0.7931, 0.66) (0.7992, 0.6709) (0.8023, 0.675) (0.8417, 0.6917) (0.8224, 0.6892)

crossplane150 (1, 1) (0.5873, 0.7857) (0.9893, 0.9786) (0.9643, 0.9286) (0.9893, 0.9786) (0.9821, 0.9643) (0.9821, 0.9643)
(1, 1) (0.3889, 0.6667) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

ecoli-0-1 vs 5 (0.8868, 0.8333) (0.8259, 0.6667) (0.8303, 0.6667) (0.8259, 0.6667) (0.8137, 0.6333) (0.8333, 0.6667) (0.8259, 0.6667)
(0.9403, 0.5556) (0.9851, 0.8) (0.994, 0.9267) (0.9851, 0.8) (0.994, 0.92) (1, 1) (0.9851, 0.8)

ecoli-0-1-4-6 vs 5 (0.9321, 1) (0.9938, 1) (0.9963, 1) (1, 1) (0.9102, 0.85) (0.9753, 1) (1, 1)
(0.8642, 0.2667) (0.9877, 0.8) (0.9926, 0.88) (1, 1) (0.9704, 0.6222) (0.9506, 0.5) (1, 1)

ecoli-0-1-4-7 vs 2-3-5-6 (0.9174, 0.9) (0.8391, 0.7) (0.83, 0.66) (0.8, 0.6) (0.82, 0.64) (0.8446, 0.7) (0.85, 0.7)
(0.9348, 0.6) (0.9783, 0.7778) (1, 1) (1, 1) (1, 1) (0.9891, 0.875) (1, 1)

ecoli-0-1-4-7 vs 5-6 (0.8642, 0.75) (0.8696, 0.75) (0.875, 0.75) (0.875, 0.75) (0.875, 0.75) (0.875, 0.75) (0.875, 0.75)
(0.9785, 0.75) (0.9892, 0.8571) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

ecoli-0-2-6-7 vs 3-5 (0.6667, 0.3333) (0.6288, 0.3333) (0.9333, 0.8667) (1, 1) (0.7455, 0.5333) (0.9924, 1) (1, 1)
(1, 1) (0.9242, 0.1667) (1, 1) (1, 1) (0.9576, 0.3933) (0.9848, 0.75) (1, 1)

ecoli-0-3-4-6 vs 5 (0.8083, 0.6667) (0.825, 0.6667) (0.795, 0.6) (0.8333, 0.6667) (0.8283, 0.6667) (0.8333, 0.6667) (0.8333, 0.6667)
(0.95, 0.4) (0.9833, 0.6667) (0.99, 0.7667) (1, 1) (0.99, 0.8) (1, 1) (1, 1)

ecoli-0-3-4-7 vs 5-6 (0.863, 0.9) (0.9138, 0.9) (0.9228, 0.86) (0.8928, 0.8) (0.9328, 0.88) (0.8138, 0.7) (0.9428, 0.9)
(0.8261, 0.4286) (0.9275, 0.6429) (0.9855, 0.9014) (0.9855, 0.8889) (0.9855, 0.9036) (0.9275, 0.5833) (0.9855, 0.9)

ecoli-0-4-6 vs 5 (0.9286, 0.8571) (0.8571, 0.7143) (0.8605, 0.7429) (0.8571, 0.7143) (0.8392, 0.6857) (0.9013, 0.8571) (0.9286, 0.8571)
(1, 1) (1, 1) (0.9782, 0.8429) (1, 1) (0.9927, 0.9333) (0.9455, 0.6667) (1, 1)

ecoli0137vs26 (0.9872, 1) (0.9321, 0.9412) (0.9529, 0.9059) (0.9706, 0.9412) (0.9532, 0.9294) (0.9449, 0.9412) (0.9706, 0.9412)
(0.9744, 0.8947) (0.9231, 0.7273) (1, 1) (1, 1) (0.9769, 0.8991) (0.9487, 0.8) (1, 1)

ecoli3 (0.8571, 1) (0.8087, 0.7273) (0.6926, 0.4182) (0.8072, 0.6364) (0.7213, 0.4909) (0.9341, 1) (0.8581, 0.7273)
(0.7143, 0.2973) (0.8901, 0.4444) (0.967, 0.6014) (0.978, 0.7778) (0.9516, 0.5609) (0.8681, 0.4783) (0.989, 0.8889)

glass2 (0.8065, 1) (0.5, 1) (0.7121, 0.55) (0.8105, 0.75) (0.8137, 0.75) (0.8145, 1) (0.9274, 1)
(0.6129, 0.1429) (0, 0.0606) (0.8742, 0.22) (0.871, 0.2727) (0.8774, 0.2818) (0.629, 0.1481) (0.8548, 0.3077)

glass5 (0.4922, 0) (0.7031, 0.5) (0.7453, 0.5) (0.7188, 0.5) (0.775, 0.6) (0.7188, 0.5) (0.7188, 0.5)
(0.9844, 0) (0.9063, 0.1429) (0.9906, 0.7667) (0.9375, 0.2) (0.95, 0.3067) (0.9375, 0.2) (0.9375, 0.2)

iono (0.9216, 0.8571) (0.9575, 0.9429) (0.8245, 0.6629) (0.7788, 0.5714) (0.8075, 0.64) (0.68, 0.4571) (0.7931, 0.6)
(0.9861, 0.9677) (0.9722, 0.9429) (0.9861, 0.9592) (0.9861, 0.9524) (0.975, 0.9252) (0.9028, 0.6957) (0.9861, 0.9545)

new-thyroid1 (0.9444, 0.8889) (0.9825, 1) (0.9947, 1) (1, 1) (1, 1) (0.9825, 1) (1, 1)
(1, 1) (0.9649, 0.8182) (0.9895, 0.94) (1, 1) (1, 1) (0.9649, 0.8182) (1, 1)

shuttle-6 vs 2-3 (0.75, 0.5) (0.9394, 1) (0.9985, 1) (1, 1) (1, 1) (0.9924, 1) (1, 1)
(1, 1) (0.8788, 0.3333) (0.997, 0.96) (1, 1) (1, 1) (0.9848, 0.8) (1, 1)

vowel (0.9482, 0.9259) (0.8279, 0.7037) (0.7582, 0.5259) (0.8704, 0.7407) (0.8193, 0.6444) (0.8631, 0.7778) (0.8834, 0.7778)
(0.9705, 0.7576) (0.952, 0.5938) (0.9904, 0.8445) (1, 1) (0.9941, 0.9289) (0.9483, 0.6) (0.9889, 0.875)

yeast-0-2-5-6 vs 3-7-8-9 (0.7525, 0.6) (0.6332, 0.525) (0.7122, 0.445) (0.6924, 0.4) (0.7169, 0.455) (0.743, 0.6) (0.7049, 0.425)
(0.9049, 0.4898) (0.7414, 0.236) (0.9795, 0.7697) (0.9848, 0.8) (0.9787, 0.7666) (0.8859, 0.4444) (0.9848, 0.8095)

Average AUC 0.84316 0.79636 0.84755 0.8617 0.8451 0.86239 0.8818
Average rank 3.925 5.5 4.325 3.95 3.925 3.85 2.525
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Table 3.6: The experimental results of the proposed CP-FRVFL and the compared models
on UCI datasets.

Dataset Name ELM [341] RVFL [11] MVRVFL[145] IFRVFL [76] CP-FRVFL
(AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.) (AUC,Sen.)
(Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.) (Spec.,Prec.)

blood (0.6502, 0.3613) (0.648, 0.3387) (0.6641, 0.371) (0.6938, 0.5645) (0.6661, 0.3871)
(0.939, 0.6941) (0.9573, 0.75) (0.9573, 0.7667) (0.8232, 0.5469) (0.9451, 0.7273)

breast-cancer-wisc (0.9568, 0.9436) (0.9786, 0.9872) (0.9363, 0.9103) (0.9812, 1) (0.9812, 1)
(0.9699, 0.9484) (0.9699, 0.9506) (0.9624, 0.9342) (0.9624, 0.9398) (0.9624, 0.9398)

breast-cancer-wisc-prog (0.5274, 0.2923) (0.4663, 0.3077) (0.5673, 0.3846) (0.4447, 0.0769) (0.4663, 0.3077)
(0.7625, 0.2454) (0.625, 0.1818) (0.75, 0.2941) (0.8125, 0.1) (0.625, 0.1818)

chess-krvkp (0.9512, 0.942) (0.9602, 0.951) (0.9624, 0.9595) (0.953, 0.9488) (0.9538, 0.9382)
(0.9605, 0.958) (0.9695, 0.9675) (0.9654, 0.9636) (0.9572, 0.9549) (0.9695, 0.967)

heart-hungarian (0.8381, 0.7625) (0.8335, 0.7188) (0.7231, 0.6875) (0.8303, 0.7813) (0.8335, 0.7188)
(0.9138, 0.831) (0.9483, 0.8846) (0.7586, 0.6111) (0.8793, 0.7813) (0.9483, 0.8846)

ilpd-indian-liver (0.6049, 0.3617) (0.5869, 0.2979) (0.6178, 0.383) (0.5924, 0.5957) (0.5976, 0.3191)
(0.8481, 0.4642) (0.876, 0.4667) (0.8527, 0.4865) (0.5891, 0.3457) (0.876, 0.4839)

mushroom (0.9999, 0.9998) (1, 1) (1, 1) (0.9971, 0.9941) (1, 1)
(1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

parkinsons (0.8422, 0.7467) (0.8556, 0.8) (0.8778, 0.8) (0.8556, 0.8) (0.8667, 0.8)
(0.9378, 0.8037) (0.9111, 0.75) (0.9556, 0.8571) (0.9111, 0.75) (0.9333, 0.8)

spambase (0.9066, 0.8708) (0.9191, 0.8904) (0.9179, 0.8904) (0.915, 0.8904) (0.9185, 0.8904)
(0.9425, 0.9013) (0.9478, 0.9114) (0.9455, 0.9078) (0.9397, 0.899) (0.9466, 0.9096)

statlog-heart (0.847, 0.8722) (0.8684, 0.8889) (0.7198, 0.7222) (0.8684, 0.8889) (0.8684, 0.8889)
(0.8217, 0.7932) (0.8478, 0.8205) (0.7174, 0.6667) (0.8478, 0.8205) (0.8478, 0.8205)

tic-tac-toe (0.9789, 0.9579) (0.9684, 0.9368) (0.9737, 0.9474) (0.9684, 0.9368) (0.9737, 0.9474)
(1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

titanic (0.7016, 0.5019) (0.7094, 0.5189) (0.6874, 0.4104) (0.7091, 0.5472) (0.7094, 0.5189)
(0.9013, 0.7055) (0.9, 0.7097) (0.9644, 0.8447) (0.8711, 0.6667) (0.9, 0.7097)

twonorm (0.9735, 0.9677) (0.9757, 0.9686) (0.9703, 0.9633) (0.9757, 0.9686) (0.9753, 0.9704)
(0.9792, 0.9792) (0.9828, 0.9827) (0.9774, 0.9773) (0.9828, 0.9827) (0.9801, 0.9801)

Average AUC 0.8291 0.82847 0.81676 0.82959 0.83158
Average rank 3.46 2.85 3.04 3.31 2.35
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results are shown in Table 3.6. The proposed CP-FRVFL model has winning performance

with average AUC equal to 83.158% and IFRVFL has second position with average AUC

equal to 82.959%. Moreover, we ranked the models on each dataset and hence, the pro-

posed CP-FRVFL model has smallest average rank, i.e., 2.35. The existing models includ-

ing ELM, RVFL, MVRVFL and IFRVFL has average rank equal to 3.46, 2.85, 3.04 and

3.31, respectively. Figure 3.5 and 3.6 show the F-measure and G-mean plots of the models

on KEEL datasets, respectively. The significance of F-measure lies in its ability to effec-

tively capture both precision and recall within a single metric. The Figure 3.5 show that

the proposed CP-FRVFL model has winning performance on most of the datatsets namely,

aus, ecoli-0-1-4-6 vs 5, ecoli-0-2-6-7 vs 3-5, ecoli0137vs26, ecoli3, glass2, new-thyroid1,

shuttle-6 vs 2-3 and vowel. Another metric is G-mean which gives complete information of

both classes and Figure 3.6 shows that the proposed CP-FRVFL model has highest G-mean

over several datasets namely, aus, ecoli-0-1-4-6 vs 5, ecoli-0-1-4-7 vs 2-3-5-6, ecoli-0-1-4-

7 vs 5-6, ecoli-0-2-6-7 vs 3-5, ecoli-0-3-4-6 vs 5, ecoli-0-3-4-7 vs 5-6, ecoli-0-4-6 vs 5,

ecoli0137vs26, ecoli3, glass2, new-thyroid1, and shuttle-6 vs 2-3.

3.4 Graph embedded intuitionistic fuzzy weighted RVFL

(GE-IFWRVFL) network

RVFL assumes that all the samples are equally important, however, this may not be true

in the real-world datasets. Moreover, RVFL ignores the geometric and discriminative infor-

mation of the data. To overcome these shortcomings simultaneously, we propose a graph

embedded intuitionistic fuzzy weighted RVFL (GE-IFWRVFL) network. The proposed

GE-IFWRVFL model assigns weights to each data point based on the membership and non

membership functions similar to Section 3.1. Also, the proposed GE-IFWRVFL employ the

geometric relationship of the data under the GE framework (see Chapter 2) and enhances

the generalization performance. A novel graph regularization term is incorporated in the

proposed GE-IFWRVFL model to handle the topological structure of the data. Similar to

IFRVFL model, the proposed GE-IFWRVFL optimizes the output layer weights assigning
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appropriate weights to each sample.

3.4.1 Formulation of the proposed GE-IFRVFL network

The proposed GE-IFRVFL model minimizes the weighted error term, output layer

weights norm and a novel regularization term under GE framework that handles the geo-

metrical relationship of the data. The optimization problem of the proposed GE-IFWRVFL

model can be formulated as:

min
1

2
�kS

1
2 ⇣k22 +

1

2
k�k22 +

1

2
↵kS

1
2
w�k22

subject to B� � Y = ⇣, (3.25)

where, both � and ↵ are tunable parameters. And, S = diag(s1, s2, · · · , sN) is a diagonal

matrix, wherein si is the score value corresponding to each sample (similar to Section3.1)

and ⇣ is the error matrix. Here, B = [X H] is the concatenated matrix that contains orig-

inal features and randomized features. Eq. 3.25 give special importance to each sample

by giving weights and consider the geometrical relationship of samples by incorporating

GE term (kS
1
2
w�k22). Moreover, both intrinsic graph and penalty graph are defined over the

concatenated matrix B, i.e. Gint = {B,⌦int
} and Gpen = {B,⌦pen

}. So, Si = BTLB (see

Chapter 2) and Sp = BTV B. In the literature, for the linear discriminant analysis (LDA)

[347], the graph weights for intrinsic and penalty graph are defined as:

⌦ij =

8
<

:

1
Nci

, cj = ci,

0, otherwise,
(3.26)

⌦p
ij =

8
<

:

1
N �

1
Nci

, cj = ci,

1
N , otherwise,

(3.27)

respectively. Here, ci represents the ith class and Nci represents the number of sample
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in class (ci) and finally, Sw = S�1
p Si. The Lagrangian function of (3.25) is as follows:

L =
1

2
�kS

1
2 (B� � Y )k22 +

1

2
k�k22 +

1

2
↵kS

1
2
w�k22. (3.28)

Taking the partial derivative of (3.28) with respect to � and using the karush-kuhn-Tucker

(K.K.T.) conditions, we get,

@L

@�
= �BtS(B� � T ) + � + ↵Sw� = 0. (3.29)

After calculations, the obtained output parameter is given as:

� = (BtSB +
1

�
I +

↵

�
Sw)

�1BtSY. (3.30)

3.4.2 Computational complexity analysis

Let (X, Y ) be the training set with X 2 RN⇥d and Y 2 RN⇥c. Here, N and d are the

number of samples and number of features respectively. In the proposed model, we need

to calculate the matrices (Sw), S, and the inverse of a square matrix of order (d + L). So

the computational cost of GE-IFWRVFL is approximately O(d + L)3 + O(N(d + L)3) +

O(N2(d+ L)).

3.4.3 Experimental results

This section discusses the experimental results of the proposed GE-IFWRVFL model

and the baseline models.

3.4.3.1 Experimental setup

In this research, the simulations are performed on Windows-10 operating system, 8�GB

RAM, Intel(R) Xeon(R) CPU E5�2697 v4 2.30 GHz and MATLAB R2017b. We used

Gaussian kernel, K(x, y) = exp(�(kx � yk2)/µ2) to calculate the weights in the kernel

space. Here, µ represents the kernel parameter. The experiments are conducted over UCI

and KEEL datasets [342, 343]. The dataset is randomly divided into 70 : 30 ratio for
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Table 3.7: Experimental results of the baseline models, i.e. ELM, IFTWSVM, KRR, RVFL,
IFKRR, IFRVFL, MVRVFL and the proposed GE-IFWRVFL model.

Dataset IFTWSVM [348] KRR [339] IFKRR [340] ELM [341] RVFL [110] IFRVFL [76] MVRVFL[145] GE-IFWRVFL
abalone9-18 75.02 69.64 70.22 66.14 70.35 76.83 64.78 82
brwisconsin 98.76 99.38 50 99.5 99.07 99.38 99.07 98.45
bupa-or-liver-disorders 69.65 67.89 59.45 71.89 69.89 64.96 70.51 70.67
checkerboard Data 84.82 84.2 80.23 84.84 84.92 85.26 85.18 84.49
cmc 68.81 69.69 50 67.91 68.77 67.08 68.92 68.92
crossplane130 100 100 51.33 100 100 100 99.6 100
crossplane150 100 96.43 58.73 98.93 96.43 98.21 98.93 98.21
ecoli-0-1 vs 5 88.68 82.59 82.59 83.03 82.59 83.33 81.37 83.33
ecoli-0-1-4-6 vs 5 93.21 97.53 99.38 99.63 100 97.53 91.02 100
ecoli-0-1-4-7 vs 5-6 86.42 87.5 86.96 87.5 87.5 87.5 87.5 87.5
ecoli-0-2-3-4 vs 5 92.11 97.37 98.25 99.65 89.12 92.11 96.77 99.12
ecoli-0-2-6-7 vs 3-5 66.67 83.33 62.88 93.33 100 99.24 74.55 100
ecoli-0-3-4-6 vs 5 80.83 82.5 82.5 79.5 83.33 83.33 82.83 82.5
ecoli-0-6-7 vs 3-5 88.33 92.08 91.25 89.83 93.75 98.33 78.08 93.75
ecoli-0-6-7 vs 5 73.36 74.18 71.72 81.69 75 79.23 82.51 80.87
ecoli0137vs26 98.72 97.06 93.21 95.29 97.06 94.49 95.32 97.06
ecoli2 85.71 72.18 80.87 69.26 80.72 93.41 72.13 92.16
ecoli3 85.71 72.18 80.87 69.26 80.72 93.41 72.13 92.16
glass5 49.22 72.66 70.31 74.53 71.88 71.88 77.5 99.22
heart-stat 83.98 87.17 78.66 86.53 85.74 86.47 87.53 86.11
iono 92.16 96.53 95.75 82.45 77.88 68 80.75 88.69
led7digit-0-2-4-5-6-7-8-9 vs 1 90.16 90.97 50 90.73 94.19 92.58 90.08 92.58
new-thyroid1 94.44 99.12 98.25 99.47 100 98.25 100 99.12
pima 75.82 76.13 68.86 73 74.52 78.27 73.41 79.85
ripley 92.03 92.04 50 91.5 91.77 91.33 90.77 92.03
Average Accuracy 84.58 85.61 74.49 85.42 86.21 87.22 84.05 89.95
Average Rank 4.94 4.24 6.5 4.38 4.12 3.94 4.86 3.02

Table 3.8: Significance difference among the models based on the Nemenyi test.

IFTWSVM [348] KRR [339] IFKRR [340] ELM [341] RVFL [110] IFRVFL[76] MVRVFL[145]
GE-IFWRVFL X

Here, Xrepresents the significant difference exists between the row and the column
method. Empty entries represent that there is no

significance difference between the row and the column method.

training and testing sets, respectively. Grid search is applied for the optimization of hyper-

parameters of different models with 5 fold cross validation scheme. The adaptable pa-

rameters, i.e. � and ↵ corresponding to the models are taken from the following range:

{10�5, 10�4, . . . , 104, 105}. The number of hidden layer neurons hL is selected from the

range 3 : 20 : 203 and relu activation function is employed.

3.4.3.2 Experiments analysis

The experimental results corresponding to the proposed GE-IFWRVFL and the baseline

models are shown in the Table 3.7. The results show that the proposed GE-IFWRVFL model

has better generalization performance compared to the baseline models in term of average

accuracy and average rank. The baseline models MVRVFL, KRR, IFTWSVM, IFKRR,

ELM, RVFL, IFRVFL, and the proposed GE-IFWRVFL models have the average accuracy

84.05%, 85.61%, 84.58%, 74.49%, 85.42%, 86.21%, 87.22% and 89.95%, respectively.
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Table 3.9: Win-tie-loss count (pairwise).

IFTWSVM [348] KRR [339] IFKRR [340] ELM [341] RVFL [110] IFRVFL[76] MVRVFL[145]
KRR [339] [16, 1, 8]
IFKRR [340] [8, 0, 17] [5, 2, 18]
ELM [341] [13, 1, 11] [11, 2, 12] [19, 0, 6]
RVFL [110] [13, 1, 11] [12, 5, 8] [20, 1, 4] [14, 2, 9]
IFRVFL [76] [16, 2, 7] [12, 4, 9] [21, 1, 3] [10, 2, 13] [12, 4, 9]
MVRVFL [145] [12, 0, 13] [8, 1, 16] [17, 0, 8] [11, 2, 12] [9, 3, 13] [10, 1, 14]
GE-IFWRVFL [17, 2, 6] [15, 5, 5] [23, 1, 1] [15, 2, 8] [14, 6, 5] [13, 5, 7] [16, 2, 7]

Here, win-tie-loss [x,y,z] represents that the row method has x-times wins, y-times ties,
and z-times loses corresponding to the column method.

Statistical tests are conducted to evaluate the performance of the models from statistical

perspective. In Friedman test [269], algorithms are assigned rank based on their classifica-

tion accuracy on each dataset. The average rank of the baseline models IFTWSVM, KRR,

IFKRR, ELM, RVFL, IFRVFL, MVRVFL and the proposed GE-IFWRVFL model are 4.94,

4.24, 6.5, 4.38, 4.12, 3.94, 4.86 and 3.02, respectively, are given in Table 3.7. One can see

that the proposed GE-IFWRVFL model has the lowest rank among all models. After per-

forming simple calculations, �2
F is 29.39 and FF is 4.8442 for k = 8 models with N = 25

datasets. The critical value at FF (7, 168) is 2.065 from the F distribution table at ↵ = 0.05

significant level. Here, the value FF = 4.8442 > 2.065. Therefore, we reject the null hy-

pothesis and it indicates that there are statistical differences among the compared models.

In addition, for pairwise comparison between the models, the Nemenyi post hoc [269] test

is performed. If the average rank of the models differs by at least critical difference (CD),

then the models are said to be significantly different. After calculation, we get CD=2.1. Ta-

ble 3.8 shows that there are significant differences exist between IFKRR and the proposed

GE-IFWRVFL method. Moreover, we also examine the win-tie-loss (pairwise) sign test for

the statistical analysis of the models. The two models’ performances are said to be statisti-

cally different, if the number of total wins of a model is at least equal to 17.4. Therefore,

significant difference exists between two models if win >= 17.4. Table 3.9 shows the total

count of pairwise win-tie-loss of baseline models as well as the proposed GE-IFWRVFL

model. It can be observed that the proposed GE-IFWRVFL model has wins between 13 to

23 out of 25 datasets with respect to baseline models. It shows the superiority of the pro-

posed GE-IFWRVFL model over the baseline models. The proposed GE-IFWRVFL model

is significantly different from IFTWSVM and IFKRR model based on the sign test. The
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results indicate that the graph regularization term improves the generalization performance

of IFRVFL model. The overall results indicate that the incorporation of the intuitionistic

fuzzy theory and graph embedding into the proposed GE-IFWRVFL model results in better

generalization performance from the baseline models.

3.5 Experimental results analysis of all proposed models

on ADNI dataset

We have conducted the experiments of the proposed IFRVFL, GE-IFWRVFL, and CP-

FRVFL models on the ADNI dataset to evaluate their performance. Table 3.10 shows the ex-

perimental results on a common experimental setup. The proposed CP-FRVFL has superior

performance at 75.79% average AUC, followed by GE-IFWRVFL at 75.36%, and IFRVFL

at 75.19% and RVFL has last place at 72.73%. one can observe that IFRVFl has the lowest

average rank (1.67) among all three proposed models and CP-FRVFL has a second posi-

tion at 2.33.And, IFRVFL has overall 2 wins with no tie and loss. Moreover, CP-FRVFL

has 1 win and GE-IFWRVFL has no wins. IFRVFL has a winning performance for the

MCI vs AD case and as per the literature, it is the hardest case to diagnose. The proposed

GE-IFWRVFL has better performance than the proposed IFRVFL in terms of average AUC.

For CN vs MCI case, both the proposed CP-FRVFL and GE-IFRVFL models have better

performance than the standard RVFL and proposed IFRVFL models.

Table 3.10: Experimental results of the proposed IFRVFL, GE-IFWRVFL, and CP-FRVFL
models on the ADNI dataset.

RVFL [110] IFRVFL[76] GE-IFWRVFL[77] CP-FRVFL
CN vs AD 0.8903 0.898 0.8834 0.8843
CN vs MCI 0.6295 0.6763 0.7001 0.7188
MCI vs AD 0.6621 0.6813 0.6773 0.6705
Average AUC 0.7273 0.7519 0.7536 0.7579
Average Rank 3.33 1.67 2.67 2.33
Overall win tie loss [0, 0, 2] [2, 0, 0] [0, 0, 1] [1, 0, 0]
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3.6 Summary

Standard RVFL has lower generalization performance over datasets with noise or out-

liers because it uses a uniform weighting strategy, which gives each training sample the same

weight. In this chapter, we addressed this issue using fuzzy/intuitionic fuzzy techniques and

to maintain the topological structure of the data, we use graph embedding technique. We

proposed three variants of RVFL namely, IFRVFL, CP-FRVFL, and GE-IFWRVFL models.

First, the proposed IFRVFL model uses intuitionistic fuzzy weighted approach for calculat-

ing the final parameters and hence, gets better optimal parameters than standard RVFL. The

proposed IFRVFL model is robust to outliers and gives special attention to each sample by

assigning different weights to consider its importance in classification problems. The pro-

posed IFRVFL model is fast compared to IFTWSVM model as the former optimizes the

objective function via optimization of system of linear equations while the later optimizes

the pair of quadratic programming problems. Also, as the size of the dataset increases

IFTWSVM, KRR and IFKRR suffer from memory issues and have more computational

complexity. However, the proposed IFRVFL model has less complexity and fewer memory

issues when either the sample size is large or feature size is large but not both. We evalu-

ated the proposed IFRVFL and the existing models for the diagnosis of AD. The proposed

IFRVFL emerged as the best classifier for the diagnosis of MCI versus AD subject, which

is hard to classify as per the literature. Also, in CN versus AD and CN versus MCI case, the

proposed IFRVFL model is among the top two performing models. Furthermore, we evalu-

ated the effect of 8 different activation functions on the performance of randomized neural

networks i.e., ELM, RVFL, and the proposed IFRVFL model. To check the robustness of

the classification models, we evaluated the models on benchmark binary datasets. Second,

we proposed a class probability-based effective score function that calculates each sample’s

membership value using a non-linear membership function. The proposed score function

leverages the k-NN technique to calculate the class probability to use each training sample’s

neighbourhood information. Each sample is then given a score value based on the score

function, which combines the class probability and membership value. Then, we proposed

a novel class probability-based fuzzy RVFL (CP-FRVFL) by inserting the proposed score
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values into the objective function of the standard RVFL network. The experimental results

on KEEL and UCI datasets demonstrate that the proposed CP-FRVFL model has superior

performance as compared to the baseline models. Third, we proposed a novel Graph Em-

bedded intuitionistic fuzzy weighted RVFL (GE-IFWRVFL) network. Graph Embedding

defines intrinsic and penalty graph to describe the geometrical properties of the data. Un-

like RVFL and IFRVFL models, the proposed GE-IFWRVFL model considers the geomet-

rical relationship of the data while calculating the final output parameters. The experimental

results demonstrate that the proposed GE-IFWRVFL model has better generalization perfor-

mance with the highest average accuracy and lowest average rank compared to the baseline

models. The results also indicate that after having geometrical information about the data,

the proposed GE-IFWRVFL model performs better than the IFRVFL and RVFL models.

Moreover, results show that the proposed GE-IFWRVFL model performs better than the

MVRVFL and IFTWSVM models.

This chapter developed three improved variants of the standard RVFL. The proposed

IFRVFL and GE-IFWRVFL models are suitable for medium-sized datasets that contain

noise and outliers. Nevertheless, these models are inefficient when dealing with massive

data sets due to the necessity of calculating score weights in the kernel space. Moreover, the

proposed CP-FRVFL is suitable for datasets having noise/outliers. RVFL still faces several

issues. For instance, it utilizes a least square classifier, which may struggle to differentiate

potentially overlapping patterns in the dataset. Additionally, it relies on computing the in-

verse of the matrix to get the final output parameters. In the following chapter, we address

these concerns by employing hyperplane-based classification approaches.
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Chapter 4

Random Vector Functional Link

Network and Support Vector Machines

based Novel Architectures

RVFL is an efficient network and has good generalization performance for pattern clas-

sification. However, it still has a few challenges, i.e. RVFL employs a least square clas-

sifier, which may encounter difficulty in distinguishing potentially overlapping patterns in

the dataset and it computes the inverse of matrix to calculate the final output parameters.

SVMs have better classification performance on datasets having overlapping patterns. On

the other hand, SVMs do not have the inherent capacity to learn hierarchical or deep rep-

resentations from raw data. The Kernel-based models such as SVMs suffer from higher

computation and memory issues when the number of samples is large. A novel framework

that combines SVMs with RVFL neural network can adapt and leverage the strengths of

both hyperplane-based classifiers and neural networks, providing a more flexible solution

for classification problems. There are several research [16] that combine SVM-based tech-

niques with ANN architectures to take benefits from both fields. In this chapter, inspired by

the work [31, 69] and the nonparallel classifier, i.e., NPSVM [35] and RVFL network, first,

we propose a novel nonparallel RVFL (NPRVFL) model, which has superior properties as

compared to NPSVM and RVFL network. Unlike RVFL, the proposed NPRVFL model

finds two nonparallel proximal hyperplanes in RVFL’s feature space (original features +
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randomized features) to classify the data. This dual-hyperplane classification mechanism

serves to significantly enhance the RVFL’s efficacy in capturing complex patterns inherent

in the data. Unlike RVFL and Twin SVM, the proposed NPRVFL doesn’t need to cal-

culate the inverse of a matrix while calculating the final output parameters of the model.

Second, we propose extended robust energy-based least squares twin support vector ma-

chines (ext-RELS-TSVM) [78] and extended least squares twin support vector machines

(ext-LSTSVM) [78], wherein the hyperplanes are calculated over extended feature space to

improve the generalization performance of the baseline models.

4.1 Proposed nonparallel RVFL (NPRVFL) model

Unlike the standard RVFL network, in the proposed NPRVFL model, we need to con-

struct two nonparallel proximal hyperplanes in the RVFL’s feature space (D1 and D2) that

pass through the origin.

P+(x): d̂(x+)�+ = 0 and P�(x): d̂(x�)�� = 0 (4.1)

Let D1 = [X1 H1], D2 = [X2 H2] and d̂(x) = [x  (x)]. Here  (.) is an activation

function. Let positive class (+1) has m1 samples and negative class (-1) has m2 samples,

where N = m1 +m2. Assume that X1 2 Rm1⇥d represents all positive class samples and

X2 2 Rm1⇥d represents all negative class samples. Moreover, �+ and �� are the weights

vector of hyperplanes corresponding to positive and negative classes, respectively. Let us

define matrices H1 and H2 to represent the hidden layer (having L nodes) and output of the

samples belonging to positive and negative classes, respectively. Thus,

H1 =

2

6664

 1(x
+
1 ) · · ·  L(x

+
1 )

...
...

...

 1(x+
m1

) · · ·  L(x+
m1

)

3

7775
and H2 =

2

6664

 1(x
�
1 ) · · ·  L(x

�
1 )

...
...

...

 1(x�
m2

) · · ·  L(x�
m2

)

3

7775
(4.2)
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We seek two nonparallel hyperplanes (Eq. 4.1) by solving following convex QPPs:

min
�+,⌘+,⌘⇤+,⇠�

1

2
k �+ k

2 +c1e
T
+(⌘+ + ⌘⇤+) + c2e

T
�⇠�

subject to D1�+  ✏e+ + ⌘+,

�D1�+  ✏e+ + ⌘⇤+,

�D2�+ � e� � ⇠�,

⌘+, ⌘
⇤
+, ⇠� � 0, (4.3)

and

min
��,⌘�,⌘⇤�,⇠+

1

2
k �� k

2 +c3e
T
�(⌘� + ⌘⇤�) + c4e

T
+⇠+

subject to D2��  ✏e� + ⌘�,

�D2��  ✏e� + ⌘⇤�,

D1�� � e+ � ⇠+,

⌘�, ⌘
⇤
�, ⇠+ � 0, (4.4)

where ci (i = 1, 2, 3, 4) represents the regularization parameters, e+ and e� are vectors of

one of appropriate dimension. To get the solution of QPPs (4.3) and (4.4), Karush Kuhn

Tucker condition is employed. The Lagrangian of the problem (4.3) is calculated as:

L(�+, ⌘+, ⌘
⇤
+, ⇠�,↵

+
1 ,↵

+
2 ,↵
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+ (↵+
1 )
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+ (↵+
2 )
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+ (↵�
3 )

T (D2�+ + e� � ⇠�)

� (↵+
4 )

T⌘+ � (↵+
5 )

T⌘⇤+ � (↵�
6 )

T ⇠�. (4.5)
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Using the necessary and sufficient K.K.T. conditions, we have

@L

@�+
= �+ +DT

1 ↵
+
1 �DT

1 ↵
+
2 +DT

2 ↵
�
3 = 0, (4.6)

@L

@⌘+
= c1e+ � ↵+

1 � ↵+
4 = 0, (4.7)

@L

@⌘⇤+
= c1e+ � ↵+

2 � ↵+
5 = 0, (4.8)

@L

@⇠�
= c2e� � ↵�

3 � ↵�
6 = 0. (4.9)

From Eq. (4.6), we have

�+ = DT
1 (↵

+
2 � ↵+

1 )�DT
2 ↵

+
3 . (4.10)

Since all ↵±
i � 0 and from Eqs. (4.7), (4.8) and (4.9), we have, 0  ↵+

1 ,↵
+
2  c1e+

and 0  ↵�
3  c2e�. After putting Eq. (4.10) into the Lagrangian (4.5) and using Eqs.

(4.6)-(4.9), we obtain the dual QPP (4.3) as follows:
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2

4 D1DT
2

�D1DT
2

3

5, M3 = D2DT
2 , the problem (4.11) is reformulated as:

min
⇡̄

1

2
⇡̄T⇤⇡̄ + K̄T ⇡̄

subject to 0  ⇡̄  C̄.

(4.12)

After solving QPP (4.12), we get �+. The Lagrangian of the QPP (4.4) is calculated as:
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Using the necessary and sufficient K.K.T. conditions, we have
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From Eq. (4.14), we have

�� = DT
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�
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1 )�DT
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3 . (4.18)

Since all ↵±
i � 0 and from Eqs. (4.15), (4.16) and (4.17), we have, 0  ↵�

1 ,↵
�
2  c3e�

and 0  ↵�
4  c4e+. After putting Eq. (4.18) into the Lagrangian (4.13) and using Eqs.

(4.14)-(4.17), we obtain the dual problem of the problem ( 4.4) as follows:
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Using the above notations, the problem (4.19) is reformulated as

min
⇡̂

1

2
⇡̂T ⇤̂⇡̂ + K̂T ⇡̂

subject to 0  ⇡̂  Ĉ, (4.20)

where Ĉ = [c3(e�)T c3(e�)T c4(e�)T ]T . After solving QPP (4.20), we get ��.

For be a new sample x, a class is assigned using the following decision function:

g(x) = argmin
{m=+,�}

|d̂(x)�m|. (4.21)

4.2 Experimental results

In this section, we evaluate the baseline models and the proposed NPRVFL model on

UCI datasets.

4.2.1 Experimental setup

All the experiments are performed on a system with MATLAB R2017b, Intel(R)

Xeon(R) CPU E5-2697 v4 2.30 GHz, 128-GB RAM, and Windows-10 platform. We used
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Gaussian kernel, K(x1, x2) = exp(� ||x1�x2||2
µ2 ), where µ denotes the kernel parameter. The

dataset is randomly partitioned into 30 : 70 ratio of testing and training sets, respectively.

The hyperparameters corresponding to different models are optimized using grid search

approach via 5-fold cross validation. In 5-fold cross validation, the dataset is randomly

partitioned into 5 disjoint sets wherein 1 set is reserved for testing and the rest are used

for training. The performance of each model corresponding to the best hyperparameters

is given as the final accuracy of a model. For general TWSVM with pinball loss function

(pin-GTSVM) [349], SVM, TWSVM, NPSVM and the proposed NPRVFL models, the dif-

ferent parameters involved corresponding to different models are chosen from the following

range: ci = {10�5, 10�4, . . . , 104, 105} for i = 1, 2, 3, 4. For ELM, RVFL, MVRVFL, and

the proposed NPRVFL models, the number of hidden neurons is taken from the range as

N = 3 : 20 : 203. Here, we take relu activation function in all NN-based models. The

parameter ✏ is chosen from the range as: 0 : 0.05 : 0.5.

Table 4.1: The experimental results of the proposed NPRVFL and the baseline models on
UCI datasets.

Datasets pin-GTSVM [349] SVM [17] TWSVM [22] NPSVM [35] ELM [341] RVFL [11] MVRVFL[145] NPRVFL
balloons 0.5 0.75 0.75 0.75 0.6 0.5 0.5 0.75
breast-cancer 0.6964 0.6478 0.6944 0.6915 0.6774 0.6994 0.7123 0.7044
breast-cancer-wisc 0.9571 0.939 0.8937 0.9246 0.9568 0.9786 0.9363 0.9427
breast-cancer-wisc-diag 0.9444 0.9515 0.9444 0.9154 0.9521 0.9589 0.9129 0.9637
congressional-voting 0.5895 0.5586 0.5895 0.4621 0.4931 0.5021 0.5123 0.6186
credit-approval 0.7969 0.8078 0.7571 0.8831 0.8559 0.8654 0.831 0.8638
echocardiogram 0.7273 0.7682 0.8015 0.8182 0.8091 0.8182 0.8136 0.8182
fertility 0.4348 0.4701 0.413 0.5707 0.4946 0.5408 0.4565 0.4348
haberman-survival 0.4975 0.5623 0.5 0.4806 0.5418 0.5589 0.5993 0.6818
heart-hungarian 0.7419 0.6659 0.6902 0.8023 0.8381 0.8335 0.7231 0.8303
hepatitis 0.8206 0.7718 0.7369 0.6986 0.6794 0.6185 0.784 0.8554
ionosphere 0.9726 0.8932 0.8539 0.808 0.8793 0.8334 0.8334 0.9384
molec-biol-promoter 0.735 0.735 0.735 0.735 0.694 0.6898 0.7519 0.7613
musk-1 0.9575 0.9508 0.9512 0.8531 0.836 0.9031 0.7573 0.8685
parkinsons 0.8889 0.8889 0.9333 0.8 0.8422 0.8556 0.8778 0.9333
pittsburg-bridges-T-OR-D 0.4286 0.5179 0.5893 0.6071 0.45 0.4821 0.4643 0.7857
statlog-australian-credit 0.4594 0.4801 0.5066 0.519 0.5302 0.5603 0.5275 0.5197
statlog-german-credit 0.6092 0.6475 0.6644 0.6729 0.649 0.6619 0.6485 0.6895
statlog-heart 0.8031 0.718 0.7693 0.8176 0.847 0.8684 0.7198 0.8188
vertebral-column-2clases 0.7668 0.7424 0.7776 0.8333 0.8295 0.822 0.8117 0.8582
Average AUC. 0.7164 0.7233 0.7276 0.7322 0.7228 0.7275 0.7087 0.7819

4.2.2 Experimental analysis on UCI datasets

The experimental results corresponding to the proposed NPRVFL and the baseline mod-

els are shown in Table 4.1. One can see that the proposed NPRVFL model has the highest

average AUC equal to 78.19%, followed by NPSVM with average AUC equal to 73.22%.
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Table 4.2: Friedman ranks of the proposed NPRVFL and the baseline models on UCI
datasets.

Dataset Name pin-GTSVM [349] SVM [17] TWSVM [22] NPSVM [35] ELM [341] RVFL [11] MVRVFL[145] NPRVFL
balloons 7 2.5 2.5 2.5 5 7 7 2.5
breast-cancer 4 8 5 6 7 3 1 2
breast-cancer-wisc 2 5 8 7 3 1 6 4
breast-cancer-wisc-diag 5.5 4 5.5 7 3 2 8 1
congressional-voting 2.5 4 2.5 8 7 6 5 1
credit-approval 7 6 8 1 4 2 5 3
echocardiogram 8 7 6 2 5 2 4 2
fertility 6.5 4 8 1 3 2 5 6.5
haberman-survival 7 3 6 8 5 4 2 1
heart-hungarian 5 8 7 4 1 2 6 3
hepatitis 2 4 5 6 7 8 3 1
ionosphere 1 3 5 8 4 6.5 6.5 2
molec-biol-promoter 4.5 4.5 4.5 4.5 7 8 2 1
musk-1 1 3 2 6 7 4 8 5
parkinsons 3.5 3.5 1.5 8 7 6 5 1.5
pittsburg-bridges-T-OR-D 8 4 3 2 7 5 6 1
statlog-australian-credit 8 7 6 5 2 1 3 4
statlog-german-credit 8 7 3 2 5 4 6 1
statlog-heart 5 8 6 4 2 1 7 3
vertebral-column-2clases 7 8 6 2 3 4 5 1
Average rank 5.125 5.175 5.025 4.7 4.7 3.925 5.025 2.325

Further, pin-GTSVM, SVM, TWSVM, ELM, RVFL, and MVRVFL have average AUC

equal to 71.64%, 72.33%, 72.76%, 72.28%, 72.75% and 70.87%, respectively. The results

show that the proposed NPRVFL model is almost 5% superior than NPSVM and 6% supe-

rior than RVFL model. It demonstrates that the proposed hybrid NPRVFL model has better

generalization performance than its constitutes models. One can observe that the proposed

NPRVFL model has AUC equal to 96.37% on breast-cancer-wisc-diag dataset, whereas, the

existing NPSVM has AUC equal to 91.54%. Moreover, the proposed NPRVFL model has

AUC equal to 85.54% and NPSVM has AUC equal to 69.86% over the hepatitis dataset.

To evaluate the performance further, we rank the model on each dataset. Therefore, the

most successful model should have a lower rank. Table 4.2 shows the Friedman ranks and

one can observe that the proposed NPRVFL model has smallest rank, i.e., 2.35, whereas

RVFL model has second position with 3.925 rank. Both NPSVM and ELM have 4.7 ranks.

Moreover, we employ the Friedman test. After calculation, �2
F = 22.67 and FF = 3.67.

Here, we have N = 20 number of datasets and k = 8 compared models. Therefore, from

the statistical F-distribution table, F(7,133) = 2.08. Since, 3.67 > 2.08, hence, the null hy-

pothesis is rejected. Thus, there is a significant difference among the compared models.

To check the pairwise significant difference between the models, we follow the Nemenyi

posthoc test. For the Nemenyi test, after calculations, the critical difference (C.D.) = 2.34.
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The models are deemed to be significantly distinct if their average ranks differ by at least

2.34. Therefore, the proposed NPRVFL model is statistically different from pin-GTSVM,

SVM, TWSVM, NPSVM, ELM, and MVRVFL models.

4.2.3 Computational complexity analysis

Let m be the number of samples. The computational complexity of classical SVM is

approximately O(m3). For TWSVM, it solves two problems and each of which is about

size (m/2). Thus, its computation complexity is O(2(m/2)3). TWSVM is nearly four

times faster than SVM. As for NPSVM, it also solves two problems and each of them is

about size (3m/2). Thus, the optimization of NPSVM costs around O(2(3m/2)3) [350].

The computational cost of NPRVFL comes from calculating the RVFL’s feature space and

solving two QPPs and each of them is nearly size (3m/2). The optimization of NPRVFL

costs around O(2(3m/2)3).

4.3 Support vector machines with randomized neural

network-based autoencoder

Auto-encoder is a special type of ANN that is used to learn informative features from

data. RVFL uses two types of features, i.e., original features and randomized features,

that make it a special randomized NN. These hybrid features improve the generalization

performance of the RVFL network. We used a sparse auto-encoder with L1 norm regular-

ization to learn the auxiliary feature representation from the original feature space. These

new autoencoder-based features are concatenated with the original features to get the ex-

tended feature space. Finally, the proposed extended RELS-TSVM (ext-RELS-TSVM) and

extended LSTSVM (ext-LSTSVM) get the hyperplanes over extended feature space.
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Figure 4.1: Flowchart of the proposed models.

4.3.1 Proposed ext-RELS-TSVM and ext-LSTSVM

In this section, we discuss the proposed binary classification algorithms. The optimiza-

tion problem of the sparse auto-encoder with L hidden neurons can be written as:

⌦✓ = min
✓

||Ĥ✓ �X||
2
2 + ||✓||1, (4.22)

where Ĥ 2 RN⇥L represents the hidden layer output matrix, and ✓ 2 RL⇥m is the output

weights matrix. The optimization problem (4.22) is solved via a fast iterative shrinkage

thresholding algorithm (FISTA) [111] and the hidden biases are calculated as:

�i =
1

m

mX

j=1

✓ij, i = 1, 2, . . . , L, (4.23)

where �i represents the bias in the ith enhancement node of the hidden layer. The process of

constructing the proposed ext-RELS-TSVM model is given in Algorithm 4.1 and a similar

process is followed for constructing the proposed ext-LSTSVM with extended feature space.

The flowchart of the proposed ext-RELS-TSVM model is given in Figure 4.1.

4.3.1.1 Computational complexity analysis

Let M ⇥ d be a binary class training dataset with m1 number of samples belonging

to the positive class and m2 number of samples belonging to a negative class such that

M = m1 +m2. By standard mathematical implementation, the inversion of d⇥ d requires

O(d3) times [351]. In the LSTSVM model, two matrix inversions are required for each of

size (d+1)⇥ (d+1). Most of the computational complexity comes from matrix inversion.

Thus, the time complexity of LSTSVM is given as: 2⇥ O((d + 1)3) ⇡ 2⇥ O(d3). RELS-

TSVM has a similar computational complexity to the LSTSVM model. The approximate
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Algorithm 4.1 Extended RELS-TSVM

• Input: Let X contains the original training samples. Let �(·) and L be the given
activation function and number of neurons in the hidden layer used in auto-encoder
4.22 and let the matrix F1 2 RN1⇥m contains samples of class +1 (from X) and the
rest samples of class -1 is contained in matrix F2 2 RN2⇥m.

• Calculate the output weight matrix ✓ by solving 4.22 and then calculate the biases by
4.23. Apply the non-linear activation function �(.) to calculate the additional features
matrix from the original feature matrix as:

X̂ = �(X✓T + �) (4.24)

X̂ is the additional feature representation of the original feature space X .

• Define the extended feature space as X⇤ = [X, X̂] and obtained F ⇤
1 = [F1, F̂1] and

F ⇤
2 = [F2, F̂2], where F̂1 and F̂2 are the samples of class +1 and -1, respectively from

X̂.

• After getting the extended feature space, define the objective function of ext-RELS-
TSVM as:

min
w1,b1

1

2
kF ⇤

1w1 + e1b1k
2 +

�1

2
k⌘1k

2 +
�3

2

����


w1

b1

�����
2

s.t. � (F ⇤
2 w̄1 + e2b1) + ⌘1 = E1 (4.25)

and

min
w2,b2

1

2
kF ⇤

2w2 + e2b2k
2 +

�2

2
k⌘2k

2 +
�4

2

����


w2

b2

�����
2

s.t. (F ⇤
1w2 + e1b2) + ⌘2 = E2. (4.26)

• Solve (4.25) and (4.26) as discussed in [303] and obtained the corresponding solu-
tions. Let x0 be the new sample, then the final decision of the proposed ext-RELS-
TSVM is taken as in the conventional RELS-TSVM.
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Table 4.3: Classification accuracy (%) of LSTSVM, RELS-TSVM, SP-RVFL and proposed
ext-LSTSVM, ext-RELS-TSVM. The best results are highlighted in bold.

Datasets LSTSVM [23] RELS-TSVM [303] SP-RVFL [120] ext-LSTSVM ext-RELS-TSVM
breast-cancer 72.5352 72.8873 75 73.5915 69.7183
breast-cancer-wisc 97 97.4286 97 97.4286 97.4286
chess-krvkp 95.3692 95.4631 96.9962 96.9337 97.0901
congress-voting 58.945 58.945 61.4679 61.4679 58.945
credit-approval 87.064 86.7733 86.6279 87.5 86.6279
echocardiogram 84.8485 84.8485 85.6061 85.6061 84.8485
heart-hungarian 84.9315 85.6164 85.274 86.3014 82.8767
molec-biol-promoter 65.3846 64.4231 81.7308 56.7308 89.4231
oocytes trisopterus nucleus 2f 80.5921 80.5921 81.0307 82.5658 84.7588
ozone 97.1609 97.1609 97.1609 97.1609 97.082
parkinsons 88.7755 86.7347 90.8163 88.7755 91.8367
pima 76.6927 76.5625 76.8229 77.6042 76.4323
statlog-australian-credit 67.0058 66.8605 68.0233 67.0058 66.4244
statlog-german-credit 78.5 77.7 77.3 77.4 79.4
tic-tac-toe 97.5941 97.5941 99.0586 98.954 97.5941
Average accuracy 82.16 81.97 83.99 82.34 84.03

Table 4.4: Friedman rank of LSTSVM, RELS-TSVM, SP-RVFL and proposed ext-
LSTSVM, ext-RELS-TSVM.

Datasets LSTSVM [23] RELS-TSVM [303] SP-RVFL [120] ext-LSTSVM ext-RELS-TSVM
breast-cancer 4 3 1 2 5
breast-cancer-wisc 4.5 2 4.5 2 2
chess-krvkp 5 4 2 3 1
congress-voting 4 4 1.5 1.5 4
credit-approval 2 3 4.5 1 4.5
echocardiogram 4 4 1.5 1.5 4
heart-hungarian 4 2 3 1 5
molec-biol-promoter 3 4 2 5 1
oocytes trisopterus nucleus 2f 4.5 4.5 3 2 1
ozone 2.5 2.5 2.5 2.5 5
parkinsons 3.5 5 2 3.5 1
pima 3 4 2 1 5
statlog-australian-credit 2.5 4 1 2.5 5
statlog-german-credit 2 3 5 4 1
tic-tac-toe 4 4 1 2 4
Average rank 3.5 3.53 2.43 2.3 3.23
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computational complexity of each proposed ext-LSTSVM and ext-RELS-TSVM model has

2⇥O((d+ L)3), where L is the extended features. In addition to this, some computational

cost comes from calculating the extended feature space by using a sparse autoencoder with

L1 norm.

4.3.1.2 Experimental setup and results analysis

In this section, we discuss the experimental setup details and illustrate the obtained re-

sults. All the experiments are carried out over the publicly available binary datasets in

the UCI repository [352] and we set up the same environment and naming convention as

in [267]. We used relu, selu, and sigmoid activation functions and via grid search se-

lected the optimal function. The number of neurons varies in range 10: 20: 300. The

parameters �(1,2,3,4) and the energy parameters E(1,2) are taken from the range as follows:

{2j | j = �5,�4, . . . , 5} and {0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, respectively. All experiments are

conducted on a computer running Windows 10 with 16 GB of RAM and MATLAB R2021a.

Table 4.3 shows the average accuracy of the proposed ext-LSTSVM and ext-RELS-

TSVM models and baseline models. One can see that the proposed model ext-RELS-

TSVM has the highest accuracy (84.03 %) which is almost 2% higher than RELS-TSVM

(81.97 %). The other models have the following accuracy, i.e., ext-LSTSVM (82.34 %),

LSTSVM (82.16 %), and SP-RVFL (83.99 %). There is a small improvement of 0.16%

in ext-LSTSVM as compared to standard LSTSVM. The proposed ext-LSTSVM model

has better accuracy than LSTSVM on 10 out of 15 data sets. There are some datasets

where one can observe the impact of additional features approaches such as the proposed

ext-LSTSVM has winning performance with significant improvements over the following

datasets, i.e., chess-krvkp, congress-voting, echocardiogram, heart-hungarian and pima with

accuracy 96.93%, 61.47%, 85.61%, 86.30% and 77.60%, respectively. The proposed ext-

RELS-TSVM has better accuracy (84.03 %) than existing RELS-TSVM (81.97 %). One

can observe that on chess-krvkp dataset there is almost 2% improvement in accuracy in

the proposed ext-RELS-TSVM model as compared to the RELS-TSVM model. It shows

that having additional features in the training process is an effective approach. Moreover, we

conducted a Friedman rank test that rank the models according to their performance on each
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(a) Chess-krvkp (b) Heart-hungarian

(c) Echocardiogram (d) Parkinsons

Figure 4.2: Performance of ext-RELS-TSVM with varying number of neurons, �1 and �2.
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dataset. Table 4.4 shows the average rank of each given model. The proposed ext-LSTSVM

has the smallest average rank (2.3) among the compared models, the second average rank

model is SP-RVFL (2.43) and the third average rank model is ext-RELS-TSVM (3.23). The

lower rank reflects that the model performance is good over maximum datasets. It shows

that the proposed models have comparable results with SP-RVFL. It can also be observed

that the proposed ext-RELS-TSVM and ext-LSTSVM have lower rank than the conven-

tional RELS-TSVM and LSTSVM, respectively. It reflects that there is advantage of us-

ing autoencoder based features that improve the generalization performance of the baseline

models. Figure 5.2 shows the classification performance of the proposed ext-RELS-TSVM

model on chess-krvkp, heart-hungarian, echocardiogram and parkinsons data sets. In Figure

5.2a and 5.2b, x-axis and y- axis represents �1 and number of neurons in the hidden layer

parameters, respectively and z-axis shows the accuracy of the proposed ext-RELS-TSVM

model. In Figure 5.2a, one can see that the accuracy of the proposed ext-RELS-TSVM

model is increasing as the number the neurons increases. The decreasing performance of

the ext-RELS-TSVM can be seen in Figure 5.2b with higher �1 values and small number

of neurons. It shows that having proper tuning of the neurons, one can get the optimal per-

formance of ext-RELS-TSVM model. In Figure 5.2c and 5.2d, x-axis and y- axis represent

�2 and �1 parameters, respectively and z-axis shows the classification performance of the

proposed ext-RELS-TSVM model. Figure 5.2c shows that the proposed ext-RELS-TSVM

has lower performance with higher �2 values and small �1 values and as the value of the �2

parameter is decreasing the performance of ext-RELS-TSVM is increasing. The proposed

ext-RELS-TSVM model has decreasing performance with higher �1 values on Parkinsons

dataset in Figure 5.2d. Therefore, to get the best performance of the ext-RELS-TSVM

model, one must carefully adjust the parameters according to the problems.
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4.4 Experimental results analysis of the proposed

NPRVFL, ext-RELS-TSVM, and ext-LSTSVM mod-

els on ADNI dataset

To evaluate the common performance of the proposed models, we conducted the ex-

periment on the ADNI dataset. Table 4.5 shows the experimental results. The proposed

NPRVFL has superior performance at 76.78% average accuracy, followed by ext-RELS-

TSVM at 72.89%, ext-LSTSVM at 72.07%, and RVFL at 72.73%. Except NPRVFL, all

models have the same average rank and the proposed NPRVFL has the lowest rank at 1,

which indicates that in all three cases, NPRVFL has a winning performance. One can

observe that the proposed NPRVFL has 70.33% AUC for MCI vs AD case, which is the

hardest case to classify. Table 4.6 shows the experimental results of the models proposed

in chapters 3 and 4. One can observe that NPRVFL has the overall best performance w.r.t

average accuracy and average rank.

Table 4.5: Experimental results of the RVFL and the proposed ext-LSTSVM, ext-RELS-
TSVM, and NPRVFL models on the ADNI dataset.

RVFL [110] ext-LSTSVM ext-RELS-TSVM NPRVFL
CN vs AD 0.8903 0.8492 0.8818 0.9117
CN vs MCI 0.6295 0.6353 0.6728 0.6883
MCI vs AD 0.6621 0.6777 0.6321 0.7033
Average accuracy 0.7273 0.7207 0.7289 0.7678
Average rank 3 3 3 1
Overall win tie loss [0, 0, 1] [0, 0, 1] [0, 0, 1] [3, 0, 0]

Table 4.6: Experimental results of the RVFL and the proposed models, IFRVFL, GE-
IFWRVFL, CP-FRVFL, ext-LSTSVM, and ext-RELS-TSVM, and the NPRVFL on the
ADNI dataset.

RVFL [110] IFRVFL GE-IFWRVFL CP-FRVFL ext-LSTSVM ext-RELS-TSVM NPRVFL
CN vs AD 0.8903 0.898 0.8834 0.8843 0.8492 0.8818 0.9117
CN vs MCI 0.6295 0.6763 0.7001 0.7188 0.6353 0.6728 0.6883
MCI vs AD 0.6621 0.6813 0.6773 0.6705 0.6777 0.6321 0.7033
Average accuracy 0.7273 0.7519 0.7536 0.7579 0.7207 0.7289 0.7678
Average rank 5.33 2.67 3.67 3.33 5.33 6 1.67
Overall win tie loss [0, 0, 1] [0, 0, 0] [0, 0, 0] [1, 0, 0] [0, 0, 1] [0, 0, 1] [2, 0, 0]
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4.5 Summary

In this chapter, we presented three variants of the standard RVFL model. Unlike standard

RVFL, which uses a least square classifier to classify the data, all three proposed models use

hyperplane-based techniques for classification tasks. The proposed models have the poten-

tial to maintain transparency in the decision-making process, simultaneously capitalizing on

the expressive representation capabilities inherent in neural networks. We proposed nonpar-

allel RVFL model which classifies the data using proximal hyperplanes. Unlike NPSVM,

the hyperplanes in the proposed NPRVFL pass through the origin. The proposed NPRVFL

constructed two primal problems with inequality constraints and uses ✏ insensitive loss func-

tion and soft margin loss function (Hinge loss function). We conducted the experiments over

several UCI datasets and the experimental results demonstrate that the proposed NPRVFL

model has superior performance than baseline models, i.e., RVFL and NPSVM models. The

proposed NPRVFL model has almost 5% more accuracy than NPSVM and RVFL.

In the second approach, we proposed improved variants of RELS-TSVM and LSTSVM

with extended feature space for binary classification problems. First, the additional features

are calculated via sparse auto-encoder with L1-norm regularization from the original fea-

ture space and second, the conventional RELS-TSVM and LSTSVM are trained over new

extended feature space (original + additional features). The experiments over 15 UCI bi-

nary datasets demonstrate that the proposed idea improves the generalization performance

of these baseline models. There are almost 2% improvements in the performance (average

accuracy) in RELS-TSVM model (by using spare autoencoder-based features) and the pro-

posed ext-LSTSVM has won over 10 out of 15 datasets as compared to LSTSVM model. It

shows that sparse auto-encoder-based features have significant information and improve the

generalization performance of baseline models.

Here, we developed three variants of the standard RVFL. The proposed models are suit-

able for datasets that contain overlapping patterns. The proposed NPRVFL can adapt and

leverage the strengths of both hyperplane-based classifiers and neural networks, providing

a more flexible solution for classification problems. Unlike RVFL, ext-RELS-TSVM, and

ext-LSTSVM, the proposed NPRVFL doesn’t need to calculate the inverse of the matri-
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ces to calculate the final output parameters. The proposed dual-hyperplane classification

mechanism serves to significantly enhance the RVFL’s efficacy in capturing complex pat-

terns inherent in the data. However, RVFL and the proposed models use a random feature

mapping mechanism, and hence, it has an unstable performance. Ensembles often enhance

generalization by combining the strengths of multiple models. They can mitigate overfitting

and capture diverse patterns in the data. The variability in individual RVFL models can be

averaged out in an ensemble, leading to a more stable overall prediction. In the next chapter,

we study RVFL with ensemble learning approaches.
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Chapter 5

Random Vector Functional Link

Network based Ensemble Learning

In the previous chapters, the proposed RVFL variants are robust, however, they are un-

stable classifiers and have less features representation learning. Single RVFL may encounter

challenges in effectively capturing intricate and complex patterns inherent in the dataset.

Ensemble methodologies typically enhance the generalization performance by harnessing

the strengths of multiple models. They possess the capability to mitigate overfitting issues

and adeptly capture a diverse spectrum of patterns within the dataset. Ensembles frequently

surpass the predictive efficacy of individual models, thereby achieving heightened levels

of accuracy and reliability in their predictions. In this chapter, we improve the robustness,

stability, and generalization performance of RVFL with ensemble learning methods. With

the randomization process, RVFL is unstable and sensitive to noise/outliers due to L2 norm.

The standard RVFL has only one hidden layer to extract the meaningful features from the

original dataset and hence, it is less capable of representing more complex hidden patterns

within dataset. To make the shallow RVFL model powerful in representation learning and

motivated by [73, 353], in this chapter, we propose extended feature RVFL (efRVFL) [79]

model that is trained over extended feature space generated from original dataset. Using re-

gression technique, new features are constructed via original features. The new features are

concatenated with original features to get extended feature space. This feature mechanism

makes the proposed efRVFL model more capable of capturing highly non-linear hidden
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patterns within datasets. In the proposed efRVFL model, the extended feature space is gen-

erated via randomization process. Therefore, the feature matrix has original features, newly

generated features (supervised) features, and randomized features (unsupervised). In the

proposed efRVFL, the parameters between the input layer and hidden layer are generated

randomly and fixed throughout the training phase. And, the output parameters between

the hidden layer and the output layer are calculated via the closed-form method. Further-

more, to increase the stability and robustness capability of the proposed efRVFL, we also

develop an ensemble of extended feature RVFL [79], i.e., en-efRVFL. In the proposed en-

efRVFL model, each base model (efRVFL) is trained over different extended feature spaces

to increase individual accuracy and diversity among the base models. The final decision of

en-efRVFL is taken via average voting scheme. Three fundamental reasons, i.e., statistical,

computational, and representational [354], justify why an ensemble model may perform

better than a single model. The statistical problem arises when the size of hypothesis space

is very large compared to the amount of training data on which the classifier is trained.

Several machine learning algorithms (such as NNs) perform local search to get the solution

therefore it might get stuck in local optima. Optimal training of NNs is NP-hard prob-

lem. Therefore, to construct an ensemble model by doing the local search from different

starting points may give a better approximation function than any of the individual base

models. Since the proposed efRVFL model is a flexible classifier therefore by constructing

an ensemble (en-efRVFL) out of several efRVFL models, the en-efRVFL model can reduce

the risk of choosing the wrong classifier. Rotation forest [42] algorithm generates diverse

base models, i.e., DT wherein each DT is trained over different feature space generated

via principal component analysis (PCA) technique. We propose an ensemble of RVFL in

RoF framework (RoF-RVFL) [80], where RVFL has been employed as base model. The

proposed methodologies are discussed in the subsequent sections as follows:
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5.1 Proposed extended feature RVFL (efRVFL) and an en-

semble of efRVFL (en-efRVFL) classifiers

In this section, we discuss the proposed efRVFL and en-efRVFL.

5.1.1 Feature generation method

The feature generation method [73] (see algorithm 5.1) has two parameters µ and !,

where µ is the number of randomly selected features (from X) and ! is the order of design

matrix (A). Let µ = 2 and ! = 1 then using the linear regression method, the new features

are calculated as follows:

A = [10s Xi Xj], (5.1)

� = (ATA)�1ATY, (5.2)

gf = A�, (5.3)

where Xi and Xj are two original features chosen randomly from X . A and Y represent

the design matrix and the class labels vector, respectively. gf is the newly generated feature

vector. Similarly, if we take µ = 4 and ! = 2, the matrix A is calculated as follows:

A = [10s Xi Xj Xk Xl XiXj XiXk XiXl XjXk XjXl XkXlX
2
i X2

j X2
k X2

l ].

For binary classification problems, Y vector has only 1 and �1 values. One versus all

approach is used in multi-class classification problems, i.e., one class is randomly chosen as

positive and all other classes are considered as negative. The procedure for computing the

extended feature space is given in Algorithm 5.1. The find� function takes input training

matrix (X), design matrix order (!), class labels (Y ), randomly selected (µ) feature indexes

and returns v vector of c-dim using standard linear regression method, where, c is measured

as C(µ + !,!) =
�
µ+!
!

�
. In the proposed efRVFL model, the original feature space of

dimension d is extended analytically upto 2d and it is called extended feature space (E).
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Algorithm 5.1 Extended feature space [73]
1: Let X 2 RN⇥d be the given input dataset and Y contains the target labels.
2: The feature generation method has two parameters µ and !, where µ is the number of
randomly selected features and ! is the order of design matrix A. Initialize µ and ! and let
E = X .
3: For i = 1, 2, . . . , µ do
4: Generate a vector V containing a random permutation of the integers from 1 to d.
5: For j = 1 : µ : d� (µ� 1) do
6: Pi,j,1···µ= choose µ feature indices as V (j : j + (µ� 1)) Comment: Pi,j have selected µ
feature indices for jth new feature.
7: �i,j,1···c =find�(X,!, Y, Pi,j,1...µ) Comment: �i,j,1...c has dim c.
8: Calculate a new feature as gf = A . . . �i,j,1..c.
9: Generate the extended feature space E = [E gf ].
10: EndFor
11: EndFor

5.1.2 Extended feature RVFL (efRVFL) model

Similar to standard RVFL, the proposed efRVFL also has direct links from the input

layer to the output layer. Having these direct links, efRVFL gets the capability to deal

with linear relationships within the dataset. Most of the data coming from the real world

has non-linear complex hidden relationships. Therefore, to capture non-linear relationships,

in efRVFL, nonlinear transformation (activation function, �) is employed from the input

layer to the hidden layer. In the proposed efRVFL model, we construct supervised random-

ized features from original inputs without having multiple hidden layers. Hence, extended

feature space is generated using original features. Finally, the extended feature space is non-

linearly transformed into randomized feature space. Therefore, the proposed efRVFL model

uses original features, extended features, and randomized features for data modelling pro-

cess. Let X̄ contains the features constructed via feature generation technique given in Al-

gorithm 5.1, and if µ divides d then atmost d new features can be added into the original fea-

ture space. In this case, let xi = [xi1, xi2, . . . , xid] 2 Rd and x̄i = [xi(d+1), . . . , xi(2d)] 2 Rd,

where x̄i is the newly generated features vector corresponding to xi input vector. The ex-

tended feature space is defined as:

E = [X X̄]N⇥2d, (5.4)
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let x̂i = [xi x̄i] 2 R2d be the extended feature vector corresponding to xi vector and here,

X̄ =

2

6664

x1(d+1) . . . x1(2d)

...
. . .

...

xN(d+1) . . . xN(2d)

3

7775

N⇥d

(5.5)

The proposed efRVFL network i.e., g : R2d
! Rm is defined as follows:

g(x̂i) =
dX

k=1

�̂kxik +
2dX

k=d+1

�̂kxik +
2d+LX

k=2d+1

�̂k�(⇠k · x̂i + �k), for all i. (5.6)

In the proposed efRVFL model, the hidden layer output matrix is calculated as:

Ĥ = [X X̄ H0], (5.7)

where

H0 =

2

6664

�(⇠1 · x̂1 + �1) . . . �(⇠L · x̂1 + �L)
...

. . .
...

�(⇠1 · x̂N + �1) . . . �(⇠L · x̂N + �L)

3

7775

N⇥L

, (5.8)

Ĥ 2 RN⇥(2d+L) and H0 is the matrix of non-linear transformed features calculated via hid-

den layer with input as extended feature space. The optimization problem of the proposed

efRVFL model is formulated as follows:

min
�̂2R(2d+L)⇥m

1

2

���Ĥ�̂ � Y
���
2

2
+ ↵

1

2

����̂
���
2

2
, (5.9)

The final parameter �̂ is calculated via closed form solution given in Chapter (2).

5.1.3 Ensemble of extended feature RVFL (en-efRVFL) model

Ensemble learning improves the stability, robustness, and generalization capability of

a model. The proposed efRVFL model is an unstable classifier. Therefore, we propose
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an ensemble of efRVFL (en-efRVFL). The diagram of the proposed en-efRVFL is given

in Figure 5.1. The aforementioned feature generation method uses randomization process

(as vector V ) for calculating the new (additional) features. Hence, each efRVFL model

is trained over different extended feature spaces. This mechanism generates diverse and

accurate base models (efRVFL).

Algorithm 5.2 Ensemble method of extended feature RVFL
1: Given: Let X be the training dataset of order N ⇥ d and Y contains the class labels.
Here, N and d are the number of samples and the number of features, respectively. Let T̄
be the number of base classifiers in an ensemble and gi denotes the base model (efRVFL).
Initialize the value of µ and ! that is the parameters of the feature generation method.
2: Training Phase
3: For i = 1, 2, . . . , T̄ do
4: Construct the extended feature space (Ei) via Algorithm 5.1 for base model (gi).
5: Train the base model gi over Ei.
6: EndFor
7: Classification phase
8: For i = 1, 2, . . . , T̄ do
9: A new sample x is given as the input to each base model (gi).
10: EndFor
11: The final decision of the ensemble is taken by the average voting scheme.

Let gj be the base model (efRVFL) and T be the number of base models in the proposed

en-efRVFL. As output, each (gj) gives the class probabilities. For a given sample x, the

output of each gj is an m-dim label vector (g1j , g2j , . . . , gmj ), where gij is the output of gj for

the class label ci. The ensemble model (F ) takes its decision on the basis of the averag-

ing voting scheme. The pseudocode for constructing the proposed en-efRVFL is given in

Algorithm 5.2.

5.1.4 Computational complexity

Let (X, Y ) be the training set, where X 2 RN⇥d and Y 2 RN⇥m. Here, N and d are

the number of samples and number of features, respectively, and the number of classes is

m. Suppose each layer has L number of hidden neurons. In deep RVFL models, let L0 be

the number of layers. In all RVFL-based networks, the computation of matrix inverses is

involved in calculating the output layer weights. Hence, the complexity of the models is
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Figure 5.1: Architecture of the proposed en-efRVFL model.

determined by the size of the matrices to be inverted. By the standard procedure, O(N2)

memory and O(N3) time are required to calculate the inverse a matrix of size N ⇥N [337].

The standard RVFL model solves the output layer weights either in the primal or dual, which

results in reducing the complexity of the model by choosing among the min(N, d + L).

Thus, the time complexity of RVFL model is either O(N3) or O((d+L)3). The complexity

of dRVFL is either O(N3) or O((d + LL0)3) whichever results in lower computation. In

the edRVFL model, the matrix inversions are required which are of the size N ⇥ N or

((L+ d)⇥ (L+ d)) for the first layer and ((2L+ d)⇥ (2L+ d)) for the higher layer RVFL

models. In the proposed models, we need to calculate the extended feature space wherein

atmost d new feature can be generated. For each new feature, we need to take the inverse of a

square matrix of order c. Therefore, the computational complexity of calculating d features

is equal to O(dc3). The computational complexity of the proposed efRVFL model is either

O(dc3)+O(N3) or O(dc3)+O((2d+L)3) depending on whether the parameters are being

calculated in primal or dual space, respectively. In the proposed en-efRVFL model, we

have T̄ number of base models. Therefore, it has either O(T̄ dc3) +O(T̄N3) or O(T̄ dc3) +

O(T̄ (2d+ L)3) complexity.

5.1.5 Experiments

In this section, we give the details of the datasets and discuss the experimental results of

the proposed efRVFL and en-efRVFL on the UCI dataset, sparse datasets and NDC dataset

[355]. Moreover, we perform the statistical analysis of the models.
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Table 5.1: The statistics of the UCI classification datasets.

Datasets #Samples #Attributes #Classes
adult 48,842 15 2
car 1728 7 4
hill valley 1212 101 2
steel plates 1941 28 7
cardiotocography 3clases 2126 22 10
connect 4 67557 43 2
contrac 1473 10 3
abalone 4177 9 3
image segmentation 2310 19 7
cardiotocography 10clases 2126 22 10
led display 1000 8 10
miniboone 130,064 51 2
pt shape 1600 65 100
musk 2 6598 167 2
wq white 4898 9 7
chess krvkp 3196 37 2
bank 4521 17 2
nursery 12,960 9 5
om states 2f 1022 26 2
waveform noise 5000 41 3
optical 5620 63 10
chess krvk 28,056 7 18
ozone 2536 73 2
letter 20,000 17 26
page blocks 5473 11 5
pendigits 10,992 17 10
om nucleus 4d 1022 42 2
pt margin 1600 65 100
ringnorm 7400 21 2
magic 19020 11 2
spam base 4601 58 2
statlog german-credit 1000 25 2
molec biol splice 3190 61 3
statlog image 2310 19 7
statlog landsat 6435 37 6
statlog shuttle 58000 10 7
thyroid 7200 22 3
titanic 2201 4 2
pt texture 1600 65 100
yeast 1484 9 10
twonorm 7400 21 2
wall following 5456 25 4
waveform 5000 22 3
wq red 1599 12 6
mushroom 8124 22 2
semeion 1593 257 10
Here, om, pt and wq denotes oocytes merluccius, plant and Wine-quality, respectively.

5.1.5.1 Datasets

We compare the proposed efRVFL and en-efRVFL models over UCI datasets [267]

against several FNN models [11, 45, 268, 356, 357, 358, 359, 360] and deep RVFL classi-

fiers [57]. We performed the experiments on 46 UCI datasets that are used in [57]. These

datasets come from diverse domain such as biology, physics, etc. Table 5.1 shows the statis-

tics of these publicly available classification datasets. To further evaluate the effectiveness

of the proposed models, we conducted the experiments on 12 sparse datasets used in [57].

These sparse datasets have high feature dimensions. The technical details of the sparse

datasets are given in Table 5.2.
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Table 5.2: The sparse dataset details.

Dataset #Samples #Attributes #Classes
RELATHE 1427 1000 2
bbc 2225 1000 5
bbcsport 737 1000 5
hill-valley 1212 101 2
musk-1 476 167 2
arrhythmiȧ 452 263 13
BASEHOCK 1993 1000 2
musk-2 6598 167 2
low-res-spect 531 101 9
RCV1 9625 1000 4
semeion 1593 257 10
TDT2 9394 1000 30

5.1.5.2 Experimental setup details

All the experiments have been done on the PC with Window 10 and 16-GB RAM and

MATLAB R2017a and Intel(R) Core(TM) i7 CPU @ 3.00GHz processor. For the proposed

efRVFL and en-efRVFL models, the number of hidden nodes is chosen from the range

{256, 512, 1024} for those datasets whose samples are less than 10, 000 and for the rest

datasets the hidden nodes are chosen from the range {1024, 2048, 4096}. The regularization

parameter ↵ for the proposed models is set to be 1/C, where C is chosen from the range

{2�6, 2�4, · · · , 212}. The number of base models in the proposed en-efRVFL model is set

to be 10. We used three activation functions, i.e., selu, relu and sigmoid function. The two

stage hyperparameter tuning method given in [57] is employed in experiments. Following

[73], we have also chosen the hyper-parameters as µ = 4 and ! = 2 in the feature generation

method.

5.1.5.3 Experiments analysis over UCI datasets

We conducted the experiments over 46 UCI datasets. The classification perfor-

mances of the compared models, i.e., Self Normalizing Neural Network (SNN), MSRAinit

(MS), WeightNorm (WN) Network, Highway (HW) Network, LayerNorm (LN) Net-

work, Batchnorm (BN) Network, ResNet Network, RVFL, Deep RVFL( dRVFL), En-

semble of deep RVFL (edRVFL) and the proposed efRVFL and en-efRVFL models are

shown in Table 5.3. One can observe that the proposed en-efRVFL model has win-
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Table 5.3: Classification accuracy (%) of the models on UCI datasets.

Dataset MS⇤ [356] HW⇤ [45] ResNet⇤ [357] BN⇤ [358] WN⇤ [359] LN⇤ [360] SNN⇤ [268] RVFL⇤ [11] dRVFL⇤ [57] edRVFL⇤ [57] efRVFL† en-efRVFL†
abalone 62.84 64.27 64.66 63.03 63.51 61.78 66.57 66.12 66.33 65.81 66.38 66.52
adult 84.87 84.53 84.84 84.99 84.53 85.17 84.76 85.25 85.12 85.25 85.09 85.21
bank 88.76 88.85 87.96 88.23 88.5 89.2 89.03 89.71 89.87 89.6 90.09 90.02
car 98.61 95.6 92.82 96.06 97.69 99.07 98.38 97.74 97.97 98.04 98.03 98.38
cardiotocography-10clases 84.18 84.56 81.73 79.1 86.06 83.62 83.99 82.82 83.62 83.24 83.76 84.75
cardiotocography-3clases 89.64 91.71 90.21 90.96 89.45 90.21 91.53 92.37 92.84 92.66 92.7 93.08
chess-krv̇k 86.06 52.55 85.43 87.81 76.73 89.38 88.05 57.82 68.39 70.07 67 67.65
chess-krv̇kp 99 99 99.12 98.62 99.12 98.75 99.12 98.84 99.03 99.12 98.72 99.41
connect-4 88.31 85.99 87.16 87.29 88.33 88.56 88.07 81.15 83.94 84.77 85.52 86.81
contrac 51.36 50.54 51.36 45.38 47.55 45.92 51.9 52.85 55.37 54.01 52.85 53.13
hill-valley 51.16 50 53.96 50.5 49.34 50.5 52.48 69.64 58.75 67 65.84 63.7
image-segmentation 90.9 90.24 89.19 84.81 89.38 88.38 91.14 88.33 89.1 88.52 90.52 54.05
led-display 72 70.4 71.6 62.8 69.2 64.8 76.4 74.7 73.9 74.4 74.6 74.9
letter 97.12 89.84 97.62 97.96 95.8 97.42 97.26 94.55 97.23 97.46 97.15 97.69
magic 86.29 86.73 87.23 87.13 86.9 86.2 86.92 86.17 86.55 86.81 86.81 86.97
minibone 92.5 92.7 92.54 92.62 92.72 93.13 93.07 92.14 92.33 92.72 93.81 94.29
molec-biol-splice 84.82 88.33 85.57 85.19 84.94 86.07 90.09 82.56 82.34 84 89.15 90.06
mushroom 100 100 100 99.9 99.5 99.5 100 100 100 100 100 100
musk-2 99.45 99.15 99.64 99.82 99.27 99.51 98.91 98.29 99.04 98.57 98.64 99.39
nursery 99.88 100 99.4 99.4 99.66 99.66 99.78 97.92 98.32 98.7 99 99.24
om nucleus 4ḋ 81.96 71.76 80 80.78 80.78 76.86 82.35 85.1 82.75 84.41 84.61 85.98
om states 2ḟ 94.9 94.9 93.73 93.33 90.2 94.12 95.29 91.96 91.86 93.63 93.04 93.63
opticȧl 96.66 96.44 96.27 97.16 96.38 97.55 97.11 98.05 98.16 98.27 96.99 98.27
ozone 97.32 97.16 96.69 96.69 97.48 97.16 97 97.04 97.12 97.2 97.08 97
page-blocks 97.08 96.56 96.05 96.13 97.3 97.08 95.83 96.49 96.6 96.56 96.29 96.27
pendigits 97.14 96.71 97.08 97.34 96.2 96.57 97.06 97.23 97.77 97.46 97.6 98
pt-margin 81.25 83.75 79.75 76 81.75 84.25 81.25 81.81 81.88 81.88 82.81 84.56
pt-shape 63.5 63.25 51.5 28.5 65.75 67.75 72.75 67.63 71.75 72.31 69.56 71.81
pt-texture 79 79 80 82 81.75 84.25 81.25 83.88 84.06 85.25 83.94 85.69
ringnorm 98.43 96.92 98.11 98.43 97.19 98.27 97.51 97.14 98.26 97.97 98.24 98.49
semeion 92.96 94.47 91.46 93.72 93.22 94.47 91.96 92.9 93.47 92.96 91.71 93.91
spambase 94.61 94.35 94.61 94.26 95.04 95.13 94.09 93.39 93.61 93.87 93 93.98
statlog-german-credit 72.8 77.6 77.2 75.2 74 74 75.6 78.8 76.2 77.7 77.8 78.4
statlog-image 97.57 95.84 95.84 96.71 95.15 97.57 95.49 96.71 96.79 96.84 96.71 97.18
statlog-landsat 90.75 91.1 90.55 90.4 89.25 90.4 91 90.25 90.7 91.2 90.2 90.95
statlog-shuttle 99.83 99.77 99.92 99.88 99.88 99.87 99.9 99.87 99.88 99.91 99.92 99.93
steel plates 75.67 76.08 76.29 70.31 78.56 75.88 78.35 75.52 58.66 76.44 75.98 75.98
thyroid 97.7 97.08 97.99 97.78 98.07 97.52 98.16 95.45 95.92 95.65 95.51 96.18
titanic 79.09 79.27 77.27 78 78.18 78.91 78.36 78.82 78.82 78.82 78.55 78.55
twonorm 97.78 97.08 97.35 97.57 97.3 97.24 98.05 97.65 97.78 97.81 97.73 97.81
wall-following 90.76 92.3 92.23 93.33 92.74 91.28 90.98 88.56 90.71 90.3 91.75 93.33
waveform 83.12 83.2 83.6 83.6 83.76 84.48 84.8 86.7 86.34 86.44 86.06 86.58
waveform-noise 83.28 86.96 85.84 84.8 86.4 85.04 86.08 86.38 86.32 85.7 86.26 86.86
wq-red 62.5 56.25 61.5 54.5 55.75 61 63 63 61.75 65.63 62.63 63.69
wq-white 64.79 55.64 63.07 53.35 54.82 65.44 63.73 58.48 62.36 63.3 57.9 62.64
yeast 61.73 60.65 54.99 49.06 58.76 60.92 63.07 61.73 60.24 61.66 60.58 60.18
The results of ⇤ models are taken from [57].
†denotes the proposed models and bold face denotes best results.

ning performance over cardiotocography-3clases (93.08%), chess-krvkp (99.41%), mini-

bone (94.29%), oocytes merluccius nucleus 4d (85.98%), pendigits (98%), plant-margin

(84.56%), plant-texture (85.69%), ringnorm (98.49%), statlog-shuttle (99.93%) datasets.

The best classification performances on each data are highlighted in bold.

Furthermore, we perform the Friedman rank test [269] employed in [267] to assess the

performance of each model.

The average rank of compared models, the proposed efRVFL and en-efRVFL models are

given in Table 5.4. It can be observed that the proposed en-efRVFL model has the smallest

rank that is equal to 3.91. The lower rank indicates that the proposed en-efRVFL model

has the winning performance among all the compared models over maximum datasets. The

ensemble of deep RVFL (edRVFL) model has the second lowest rank that is equal to 5.3

and then followed by SNN that has a rank 5.4. The proposed efRVFL model has the fourth

position with a rank 6.23 among 12 models. It shows that the proposed shallow efRVFL

148



CHAPTER 5. RANDOM VECTOR FUNCTIONAL LINK NETWORK BASED
ENSEMBLE LEARNING

Table 5.4: Statistical comparison (on UCI datasets) between en-efRVFL and other baseline
classification models.

Model Average rank p-value
en-efRVFL† 3.91
edRVFL [57] 5.3 0.07346
SNN [268] 5.4 0.13622
efRVFL† 6.23 0.0001
LN [360] 6.26 0.02382
dRVFL [57] 6.45 0.00001
MS [356] 6.52 0.0164
HW [45] 7.28 0.00012
RVFL [11] 7.38 0.00001
ResNet [357] 7.53 0.00018
WN [359] 7.6 0.00064
BN [358] 8.13 0.0001
The p-value is calculated from paired Wilcoxon test.
Low rank shows better performance.
† denotes the proposed models.

Table 5.5: Statistical evaluation of RVFL based classification models on UCI datasets.

Model Average rank p-value
en-efRVFL† 1.88
edRVFL [57] 2.65 0.07346
dRVFL [57] 3.25 0.00001
efRVFL† 3.34 0.0001
RVFL [11] 3.88 0.00001
The p-value is calculated from paired Wilcoxon test.
Low rank shows better performance.
† denotes the proposed models.

model with extended features is performing better than many other deep models such as

ResNet, HW, LN, MS, WN, BN and dRVFL, and standard RVFL as well. The experimental

results show that the extended feature space gives more information to the efRVFL model

as compared to the original feature space.

We also perform the Wilcoxon test and calculate p-values to discover the fact that

whether there exists any significant difference between the best-performing model and other

given models. It shows that except edRVFL and SNN, the proposed en-efRVFL model sig-

nificantly outperforms the other compared models, i.e., HW, LN, BN, MS, RVFL, ResNet,

dRVFL, and WN.
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Table 5.6: Statistical evaluation of classification models on UCI datasets.

en-efRVFL† edRVFL[57] SNN [268] efRVFL† LN [360] dRVFL [57] MS [356] HW [45] RVFL [11] ResNet [357] WN [359] BN [358]
en-efRVFL† 0 0 0 0 0 s+ s+ s+ s+ s+ s+ s+
edRVFL 0 0 0 0 0 0 0 0 0 0 0 s+
SNN 0 0 0 0 0 0 0 0 0 0 0 s+
efRVFL† 0 0 0 0 0 0 0 0 0 0 0 0
LN 0 0 0 0 0 0 0 0 0 0 0 0
dRVFL s� 0 0 0 0 0 0 0 0 0 0 0
MS s� 0 0 0 0 0 0 0 0 0 0 0
HW s� 0 0 0 0 0 0 0 0 0 0 0
RVFL s� 0 0 0 0 0 0 0 0 0 0 0
ResNet s� 0 0 0 0 0 0 0 0 0 0 0
WN s� 0 0 0 0 0 0 0 0 0 0 0
BN s� s� s� 0 0 0 0 0 0 0 0 0
Here, s+ means the model in the corresponding row is statistically better than the model in the corresponding column
and s� mean the model in the corresponding row is statistically worse than the model in the corresponding column.
† denotes the proposed models.

We also compared RVFL-based models and calculated their Friedman rank and p-value.

The corresponding results are shown in Table 5.5. One can observe that in this family,

the proposed en-efRVFL model has the smallest average rank that is equal to 1.88 which

means that, en-efRVFL has winning performance in this family. The edRVFL model with

rank 2.65 is followed by dRVFL, the proposed efRVFL and RVFL with rank 3.25, 3.34,

and 3.88, respectively. Moreover, Table 5.6 gives the pairwise statistical comparison of the

proposed efRVFL and en-efRVFL models and the other baseline models. Here, zero entries

denote that no significant difference exists between the models in the row and column of the

corresponding cell, s+ and s� denote that a significant difference exists among the models

in the row and column of the corresponding cell with the row model performing better and

worse compared to the column model, respectively. The proposed en-efRVFL model is

significantly better than dRVFL, MS, HW, RVFL, ResNet, WN and BN deep models.

5.1.5.4 Experiments analysis over sparse datasets

As SNN and RVFL-based models perform well on UCI datasets, we compare these

models with the proposed en-efRVFL and efRVFL model over 12 sparse datasets. The

classification performances of these models are shown in Table 5.7. One can observe that

the proposed en-efRVFL model outperforms on 9 out of 12 datasets among all compared

models. The proposed en-efRVFL model has highest average accuracy that is equal to 99.39

% over musk-2 dataset and second highest performance with average accuracy 97.56 % over

bbcsport dataset. As compare to SNN model, the proposed en-efRVFL model wins over 11

datasets out of 12 datasets. Similar to previous calculations, we employ the Friedman rank
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test and Wilcoxon test to check whether there is any significant difference between the

proposed en-efRVFL model and other models.

Table 5.7: Evaluation of FNN-based classification models over the sparse datasets.

Dataset SNN [268] RVFL [11] dRVFL [57] edRVFL [57] efRVFL† en-efRVFL†
arrhythmiȧ 65.49 71.46 70.58 69.91 70.8 70.8
BȦSEHOCK 98.03 96.59 96.39 97.04 94.63 96.39
bbċ 96.06 96.63 96.49 96.81 96.23 97.08
bbcsport 92.43 97.28 97.28 97.15 97.15 97.56
hill-valley 52.48 69.64 58.75 67 63.37 63.7
low-res-spect 85.71 89.85 88.35 89.66 90.6 91.54
musk-1 87.39 80.67 83.82 88.24 88.66 89.71
musk-2 98.91 98.29 99.04 98.57 98.82 99.39
RCV1 69.62 93.21 93.08 93.18 92.73 94.02
RELATHE 84.07 86.62 86.05 86.33 85.7 88.51
semeion 91.96 92.9 93.47 92.96 91.33 93.91
TDT2 78.07 96.33 96.22 96.37 96.07 96.56

Table 5.8: Statistical comparison (on sparse datasets) of en-efRVFL and other RVFL mod-
els.

Model Average rank p-value
en-efRVFL† 1.58
RVFL [11] 3.04 0.08364
edRVFL [57] 3.21 0.07186
dRVFL [57] 3.83 0.00338
efRVFL† 4.25 0.0038
SNN [268] 5.08 0.0048
The p-value is calculated from paired Wilcoxon test.
Low rank shows better performance.
† denotes the proposed models.

Table 5.8 shows the average rank and p values of the compared models. The proposed

en-efRVFL model has the smallest rank, i.e., 1.58, among all the compared models. The

proposed efRVFL with average rank 4.25 is also performing better than deep SNN model

that has the average rank 5.08. Except RVFL and edRVFL, the proposed en-efRVFL model

outperforms significantly than dRVFL, efRVFL and SNN models. The proposed en-efRVFL

model has the average accuracy, 97.56 % and 91.54 % over small sparse dataset such as

bbcsport, low-res-spect, respectively. The proposed efRVFL and en-efRVFL models have

overall good performance on small and large datasets.
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5.2 Proposed rotated random vector functional link neural

network (RoF-RVFL) classifier

In this section, we discuss the proposed rotated random vector functional link neural

network (RoF-RVFL) ensemble classifier. Here, RVFL is employed as base classifier in

rotation forest [42]. Let F be the attribute set of the original data set and it is split randomly

into K subsets of attributes, where every subset contains (M = d
K ) features (let d is divisible

by K). Now, PCA is employed to each subset of attributes and constructs the full attribute

set for every model in the ensemble. All principal components derived through PCA are

taken to keep all the information of the dataset. Using these principal components make a

sparse rotation matrix Ri as follows:

Ri =

2

6666664

b(1)i,1 , . . . , b
(M1)
i,1 0 · · · 0

0 b(1)i,2 , . . . , b
(M2)
i,2 · · · 0

...
...

. . .
...

0 0 · · · b(1)i,K , . . . , b
(MK)
i,K

3

7777775
. (5.10)

Correspond to the original features, columns of Ri are rearranged to R⇤
i . Let f1, f2, ..., fT̄ be

the RVFL classifiers in the proposed RoF-RVFL model. Calculate the hidden-layer output

matrix H for each base model fi as:

H =

2

6664

�(w1.(x1R⇤
i ) + z1) . . . �(wL.(x1R⇤

i ) + zL) x1R⇤
i

...
. . .

...
...

�(w1.(xNR⇤
i ) + z1) . . . �(wL.(xNR⇤

i ) + zL) xNR⇤
i

3

7775
. (5.11)

where xi and �(.) denote the input pattern vector and the activation function, respectively;

and wi and zi are the hidden layer weights and biases, respectively, with i = 1, ..., L. Each

fi assign probability fi,� for every class, � = 1, ...,m. Let x be a test sample, using the
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averaged method, measure the confidence for every class A� as:

F ⇤
� (x) =

1

T̄

T̄X

i=1

fi,�(xR
⇤
i ), � = 1, ...,m. (5.12)

Finally, x will be assigned a class with the maximum confidence. The pseudocode of the

proposed RoF-RVFL model is given in Algorithm 5.3.

Algorithm 5.3 RoF-RVFL
Training Phase

• X: The training dataset (N ⇥ d matrix); Y: Target vector containing the class labels;
T̄ : The number of classifiers in the ensemble; K: The number of attribute subsets

• {A1, ..., Am}: the set of class labels

For i = 1, ..., T̄

• Prepare the rotation matrix R⇤
i :

– Split the feature set F into K subsets Fi,t (t = 1, ..., K), randomly.

– For t = 1, ..., K

* Choose the columns of X according to the features in Fi,t to compose a
submatrix Xi,t.

* Draw a bootstrap sample X
0
i,t (the size of this set is generally smaller than

that of Xi,t) from Xi,t.

* Apply PCA on X
0
i,t to get a matrix Bi,t whose jth column contains the

coefficients of the jth principal component.

– Arrange the matrices Bi,t (t = 1, ..., K) in a rotation matrix Ri as in Eq. (5.10).

– Rearrange the columns of Ri to construct R⇤
i corresponding to the original fea-

tures in the set F.

• Use (XR⇤
i , Y ) as the training set to train RVFL classifier (fi).

Classification phase

• For a new sample x, measure the confidence for every class as in Eq. (5.12) and refer
x to the class with the maximum confidence.
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Table 5.9: Accuracies (%) of the classification models corresponding to different datasets.

Datasets RVFL [114] RaF [40] RoF [42] RoF-RVFL
abalone 64.61 64.2 64.92 65.01
balance-scale 89.74 86.86 86.86 90.38
blood 77.67 76.07 76.34 77.94
breast-cancer-wisc 97.29 97.29 97.29 97.29
breast-cancer-wisc-prog 80.1 76.02 82.65 81.12
congressional-voting 61.7 61.01 59.86 61.7
echocardiogram 84.85 83.33 84.09 85.61
ecoli 87.2 87.5 87.8 88.69
fertility 85 88 87 87
haberman-survival 74.34 71.71 67.11 75
heart-hungarian 83.22 82.88 83.9 85.27
ilpd-indian-liver 73.29 70.89 74.32 73.46
iris 95.95 95.95 96.62 96.62
led-display 72.2 73 71.5 73.9
libras 84.44 77.5 86.39 85.28
lung-cancer 46.88 46.88 53.13 50
mammographic 81.98 80.83 78.96 83.13
molec-biol-promoter 81.73 83.65 91.35 87.5
oocytes merluccius nucleus 4d 83.43 77.94 83.14 84.71
oocytes merluccius states 2f 91.57 91.47 92.55 92.06
oocytes trisopterus nucleus 2f 80.7 80.59 82.35 82.79
ozone 97.08 97.12 97.12 97.16
parkinsons 88.27 87.24 90.82 88.78
pima 75.65 75.52 75.78 75.91
pittsburg-bridges-MATERIAL 90.38 91.35 92.31 92.31
pittsburg-bridges-SPAN 69.57 63.04 66.3 70.65
pittsburg-bridges-TYPE 67.31 65.38 68.27 67.31
planning 71.11 71.11 70 71.11
post-operative 72.73 71.59 67.05 72.73
seeds 96.15 92.31 93.27 95.19
statlog-australian-credit 65.26 65.26 64.1 67.73
statlog-german-credit 76.9 78.4 77 78.2
statlog-heart 88.06 85.82 84.33 88.06
statlog-vehicle 77.61 75.83 78.79 80.21
synthetic-control 96 98.33 98.83 98.33
trains 75 87.5 87.5 87.5
twonorm 97.85 96.66 97.77 97.85
vertebral-column-2clases 83.44 83.44 84.74 85.71
vertebral-column-3clases 82.79 85.06 82.14 83.77
waveform 84.92 84.1 85.66 85.98
waveform-noise 86.52 84.94 85.4 86.46
zoo 96 98 99 98
Average Accuracy 81.34 80.75 81.77 82.7
Average Rank 2.8 3.21 2.44 1.55
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5.2.1 Experimental results and analysis

In this subsection, experimental analysis is done to illustrate the performance of the

proposed RoF-RVFL. All the experiments are conducted on MATLAB-2017b on a PC with

8 GB RAM Intel(R) Core(TM) i7-6700 CPU 3.41GHz. We conduct the experiments over

UCI [342] datasets and the detailed information about all datasets are given in [267]. In

Table 5.9, the average accuracy and the average rank of the proposed RoF-RVFL model,

RVFL, RaF and RoF are shown.

5.2.2 Experimental setup

The parameters range in RVFL is, L = 3 : 203 and � = (12)
C , where C = �5 : 14. The

sigmoid function is used as an activation function. The random parameters (Weights and

biases) are chosen randomly from [-1,1] and [0,1], respectively. And we fix the ensemble

size T̄ = 50. We use the same parameter setting for rotation forest (RoF) as in [361].

5.2.3 Statistical tests

To illustrate the statistical significance among the proposed RoF-RVFL and the existing

algorithms, i.e., RaF, RoF and RVFL, we use the Friedman test [362].

Table 5.10: Nemenyi post hoc test: Here, numbers mean there is a significant difference
between the row algorithm and the column algorithm. The row models are better than the
column models.

RVFL RaF RoF RoF-RVFL
RVFL
RaF
RoF 0.77
RoF-RVFL 1.25 1.67 0.89

With simple calculation, we obtain �2
F = 38.0357, and FF = 17.7284. With q = 4 and

n = 42 datasets, FF is distributed with 3 and 123 degrees of freedom. With ↵ = 0.05, the

critical value of F(3,123) = 2.67. Hence, there are significance difference among the models
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as the null hypothesis is rejected. After calculation,

CD = 2.5690 ⇤
p

(3 ⇤ 4)/(6 ⇤ 42),

= 0.7237. (5.13)

Moreover, one can see the detailed information about the Nemenyi test in Table 5.10. To

evaluate the performance of the existing models and the proposed RoF-RVFL model in

pairwise manner, we use pairwise sign test. From Table 5.11, one can notice that RoF-

RVFL is significantly better than RVFL, RaF and RoF algothims. RoF is statistically better

than RaF model.

Table 5.11: Pairwise win tie loss: x-y-z means that row model win x-times, ties y-times and
loses z-times with respect to the column model.

RVFL RaF RoF RoF-RVFL
RaF 11-6-25
RoF 24-1-17 27-3-12
RoF-RVFL 34-6-2 34-5-3 27-5-10

5.2.4 Parameter sensitivity

In this section, we analyze the effect of parameter L (the number of neurons in the hid-

den layer) over the performance of the proposed model (RoF-RVFL) and RVFL. In Figure

5.2a and 5.2b, one can observe that as the number of neurons is increasing, the performance

of RVFL and RoF-RVFL increases. From Figure 5.2c and 5.2d, we can observe the perfor-

mance of RVFL and RoF-RVFL with number of neurons are reversed, i.e. for large enough

neurons, the performance of RVFL is worse but RoF-RVFL has better performance.

In Figure 5.2e, we can notice that the performance of RVFL is fluctuating with neurons and

the performance of RoF-RVFL is smooth. In Figure 5.2f, RVFL outperforms RoF-RVFL

over the statlog-heart dataset. As one can see the performance of the models is sensitive to

the parameters so one needs to select the appropriate value of the parameters.
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(a) Abalone (b) Synthetic-control

(c) Waveform (d) Mammographic

(e) Waveform-noise (f) Statlog-heart

Figure 5.2: The classification performance of the proposed RoF-RVFL and RVFL models
with varying number of hidden neurons.
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5.3 Experimental results analysis of the proposed models

on ADNI dataset

To further evaluate the performance of the proposed models in Chapter 5, we conducted

the experiment with the ADNI dataset, and the corresponding results are shown in Table

5.12. The results demonstrate that the proposed en-efRVFL has superior performance at

78.47%, followed by RoF-RVFL at 75.23%. The results demonstrate that the proposed

ensemble en-efRVFL model has 3 wins with 0 losses and the lowest average rank at 1. Apart

from these results, we compare the models proposed in Chapter 5 with the models proposed

in Chapters 3 and 4. The corresponding results are Table 5.13. One can observe that among

all proposed shallow models, i.e. IFRVFL, GE-IFWRVFL, CP-FRVFL, ext-LSTSVM, ext-

RELS-TSVM, NPRVFL, and efRVFL, the proposed NPRVFL has the best performance at

76.78% and the proposed efRVFL has the worst performance at 70.59%. The proposed CP-

FRVFL has the second position among shallow models. Moreover, the proposed ensemble

en-efRVFL model has the highest average accuracy at 78.47 and the lowest average rank at

1.33. One can also observe that all the proposed models except efRVFL and ext-LSTSVM

have superior performance to the existing RVFL model on the ADNI dataset.

Table 5.12: Experimental results of the RVFL and the proposed models, i.e. efRVFL, Rof-
RVFL, and en-efRVFL on the ADNI dataset.

RVFL [110] efRVFL RoF-RVFL en-efRVFL
CN vs AD 0.8903 0.8831 0.8968 0.9127
CN vs MCI 0.6295 0.6135 0.6878 0.7407
MCI vs AD 0.6621 0.6211 0.6723 0.7006
Average AUC 0.7273 0.7059 0.7523 0.7847
Average Rank 3 4 2 1
Overall win tie loss [0, 0, 0] [0, 0, 3] [0, 0, 0] [3, 0, 0]
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Table 5.13: Experimental results of the RVFL and the proposed models, i.e. IFRVFL, GE-
IFWRVFL, CP-FRVFL, ext-LSTSVM, ext-RELS-TSVM, NPRVFL, efRVFL, RoF-RVFL,
en-efRVFL on the ADNI dataset.

RVFL [110] IFRVFL GE-IFWRVFL CP-FRVFL ext-LSTSVM ext-RELS-TSVM NPRVFL efRVFL RoF-RVFL en-efRVFL
CN vs AD 0.8903 0.898 0.8834 0.8843 0.8492 0.8818 0.9117 0.8831 0.8968 0.9127
CN vs MCI 0.6295 0.6763 0.7001 0.7188 0.6353 0.6728 0.6883 0.6135 0.6878 0.7407
MCI vs AD 0.6621 0.6813 0.6773 0.6705 0.6777 0.6321 0.7033 0.6211 0.6723 0.7006
Average Accuracy 0.7273 0.7519 0.7536 0.7579 0.7207 0.7289 0.7678 0.7059 0.7523 0.7847
Average Rank 7.33 4 5 5 7.33 8.33 2.33 9.33 5 1.33
Overall win tie loss [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 1] [0, 0, 0] [1, 0, 0] [0, 0, 2] [0, 0, 0] [2, 0, 0]

5.4 Summary

In this chapter, we developed ensemble variants of the standard RVFL. Ensembles usu-

ally improve generalization by leveraging the advantages of many models. They have the

ability to reduce overfitting and capture a wide range of patterns in the data. Ensembles

tend to be more robust in the face of noisy or uncertain data. They can smooth out indi-

vidual model errors, leading to more reliable predictions. We proposed extended feature

RVFL (efRVFL) and its ensemble, i.e., en-efRVFL, where supervised randomized features

(new features) are generated analytically from the original features to get an extended fea-

ture space. Three types of features, i.e., original features, supervised randomized features

(newly generated features) and (unsupervised) randomized features participate in the pro-

posed efRVFL model for classification. Generally, randomization-based NNs are unstable

classifiers, and thus, ensemble learning approach develops stable and more accurate models

compared to the single model. Therefore, we proposed an ensemble of extended feature

RVFL (en-efRVFL) model. In the proposed en-efRVFL model, each efRVFL model is

trained over different extended feature space so that accurate and diverse base models can

be generated which leads to better generalization performance. Experiments over 46 UCI

datasets demonstrate that the proposed efRVFL and en-efRVFL models have better gen-

eralization performance than the standard RVFL and other compared deep models. The

proposed efRVFL model performs better than several deep networks, i.e., ResNet, LN, MS,

HW, WN, BN, and dRVFL networks. The proposed en-efRVFL has the lowest rank (3.91),

among all the compared models over 46 UCI datasets that shows the superiority of the

proposed en-efRVFL. Moreover, among the RVFL-based models, the proposed en-efRVFL

model has the lowest rank (1.88). To further check the efficiency of the proposed models,
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we conducted the experiments over 12 sparse datasets. The proposed en-efRVFL model

has the lowest rank (1.58) over sparse datasets. The overall empirical evaluation of the

proposed efRVFL and en-efRVFL model shows that the proposed en-efRVFL model has

winning performance among the compared deep FNN models.

In another approach, we proposed a novel NN-based ensemble model, i.e., RoF-RVFL.

The proposed RoF-RVFL model employs an unsupervised feature extraction technique

(PCA) to extract new features from the original datasets. To evaluate the performance of the

proposed RoF-RVFL model, extensive experiments have been conducted over 42 bench-

mark datasets and the experimental results illustrate that RoF-RVFL performs better than

other algorithms, i.e., RaF, RoF, and RVFL, in terms of classification accuracy. Results

show that feature extraction techniques can boost the performance of the ensemble classi-

fier.

In this chapter, we studied RVFL using different ensemble learning approaches. The

proposed ensemble models show better generalization performance than standard RVFL.

The proposed efRVFL and en-efRVFL models are suitable for datasets with an insufficient

amount of features, as they operate effectively on an extended feature space. One can use

the proposed RoF-RVFL with datasets where features are highly correlated (collinear), PCA

can decorrelate these features by transforming them into a new set of uncorrelated variables

(principal components). This can be beneficial in cases where multicollinearity poses chal-

lenges for certain statistical models. However, the proposed models have less feature rep-

resentation learning as they use shallow RVFL. The standard RVFL is a shallow model that

restricts its ability to learn deep feature representations. Deep architectures, with multiple

hidden layers, have a higher capacity for learning hierarchical and complex representations

from the data. This allows them to capture intricate patterns and relationships, potentially

leading to improved performance. The next chapter discusses this issue of RVFL using

more advanced theory, i.e., ensemble deep learning.
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Chapter 6

Random Vector functional Link Network

with Ensemble Deep Learning

Chapter 3 to Chapter 5 developed novel models that use shallow RVFL that have limited

capacity to automatically learn hierarchical and abstract features from raw data. The single

hidden layer in a shallow architecture struggles to capture complex relationships present in

the data. Deep architectures with multiple hidden layers can automatically learn deep fea-

ture representations, which may be beyond the capability of a shallow model. Randomized

shallow/deep neural networks with closed-form solutions avoid the shortcomings that ex-

ist in the BP-based trained NNs. Ensemble deep random vector functional link (edRVFL)

network utilizes the strength of two growing fields, i.e., deep learning and ensemble learn-

ing. However, the edRVFL model doesn’t consider the geometrical relationship of the data

while calculating the final output parameters corresponding to each layer considered as base

model. In the literature, GE frameworks have been successfully used to describe the geo-

metrical relationship within data. Inspired by the works [73] and [57], in this chapter, we

propose extended GE RVFL (EGERVFL) [81] model trained over extended feature space

that is generated from original feature space. The proposed EGERVFL model is more ca-

pable of capturing the nonlinear hidden relationship within dataset compared to standard

RVFL. The proposed EGERVFL model has more information about the data due to addi-

tional features. The graph regularization term based on SL criteria is also used in the opti-

mization problem of the proposed EGERVFL model that handles the geometrical properties
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of the data. The proposed EGERVFL model is different from standard RVFL as the former

model employs graph embedding regularization term in the optimization problem while the

later ignores them. The EGERVFL model has only a single hidden layer and hence, has less

representation learning. Therefore, we extend the proposed shallow EGERVFL model to an

ensemble deep framework known as ensemble deep EGERVFL (edEGERVFL) [81] model.

The proposed edEGERVFL model trains EGERVFL in each layer whereas the edRVFL

trains standard RVFL. The proposed edEGERVFL model is also different from the dRVFL

model as the later one is a deep RVFL network in which all hidden layers outputs are con-

catenated in a single randomized feature matrix with original features for calculating the

final output parameter, whereas the proposed edEGERVFL model follows implicit ensem-

ble learning approach in which each layer is considered as base model and the final output

parameters are calculated via averaging/voting method.

The main highlights of this chapter are as follows:

• We proposed a novel extended GE RVFL model that is trained over new extended fea-

ture space generated analytically from the original features. The proposed EGERVFL

model, unlike standard RVFL, incorporates the SL criteria under the GE framework

in its optimization problem to calculate the final output parameters.

• The proposed shallow EGERVFL model has a single hidden layer and hence, has

less capability to capture the complex hidden relationships within the dataset. There-

fore, we further propose a novel ensemble deep EGERVFL (edEGERVFL) model

that follows the deep learning and implicit ensemble learning approaches. The pro-

posed edEGERVFL model has rich representation learning compared to the proposed

shallow EGERVFL model.

• We employ the proposed EGERVFL and edEGERVFL models for the diagnosis of

AD. The outcomes of the experimental results demonstrate that the proposed models

are effective and have better generalization performance compared to the baseline

models.

• The proposed EGERVFL and edEGERVFL models have best performance compared

to the baseline models for CN vs MCI and CN vs AD cases.
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6.1 Proposed models

In this section, we present the shallow extended graph embedded RVFL (EGERVFL)

and its extension to an ensemble deep framework, i.e., edEGERVFL model.

6.1.1 Extended graph embedded RVFL (EGERVFL) model

Unlike standard RVFL, the proposed EGERVFL considers the geometrical aspect of

the data while training and hence, has good generalization performance. The optimization

problem of the EGERVFL model is defined as follows:

min
�

1

2

���Ĥ� � Y
���
2

+
1

2
�tr(�TS�) +

1

2
⌘ k�k2 , (6.1)

where first term represents the empirical error, second term represents the graph regulariza-

tion term and the last term represents the regularization term with l2 norm. � is the output

weights matrix. Moreover, tr(.) represents the trace of a matrix and S has the same meaning

as defined in Chapter 2 (Section 2.6.3). Ĥ is the concatenated matrix that contains, origi-

nal features, newly generated features, and randomized features, as calculated in Chapter 5.

Both regularization parameters � and ⌘ handle the impact of these two regularization terms.

The problem (6.1) is a convex quadratic problem. Therefore, this problem has a unique

global solution. Taking the derivative of (6.1) with respect to � and set it equal to zero, we

get,

@L

@�
= ĤT (Ĥ� � Y ) + �S� + ⌘� = 0, (6.2)

after simple calculations, we get the final parameter,

� = (ĤT Ĥ + �S + ⌘I)�1ĤTY. (6.3)

After calculating the output weights matrix �, the output of the proposed GE RVFL model

for a new given sample x is calculated similarly to standard RVFL.

There are two choices for choosing matrix S. First, when Sp = I , in this case, the matrix
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S considers only intrinsic training data relationship. In the proposed EGERVFL model,

randomized feature space is used for making the intrinsic graph G = {Ĥ,⌦}. In this case,

the matrix S can be defined by S = ĤTLĤ , where L 2 RN⇥N as defined in Chapter 2

(Section 2.6.3). The matrix S is calculated in the randomized feature space (Ĥ). Second,

the matrix S considers both intrinsic and penalty training data relationships. In this case,

the randomized feature space is used to generate both graphs, i.e., G = {Ĥ,⌦} and Gp =

{Ĥ,⌦p
}, ⌦ and ⌦p

2 RN⇥N . The intrinsic and penalty matrices are defined as: Si =

ĤTLĤ and Sp = ĤTLpĤ , here, L and Lp are graph Laplacian matrices of G and Gp,

respectively. Finally, S is defined as: S = S�1
p Si. When Sp is a singular matrix, we

calculate the pseudoinverse of the matrix. To apply the graph embedding approach [74],

we use three methods, i.e., linear discriminant analysis (LDA) [347], mixture discriminant

analysis (MDA) [74] and local Fisher discriminant analysis (LFDA) [363]. For LDA model,

it uses the following graph weights for intrinsic and penalty graphs:

⌦ij =

8
<

:

1
Nci

, cj = ci,

0, otherwise,
(6.4)

⌦p
ij =

8
<

:

1
N �

1
Nci

, cj = ci,

1
N , otherwise,

(6.5)

respectively. Similarly, the MDA model defines these graph weights as follows:

⌦ij =

8
>>><

>>>:

1, ci = cj and hj 2 Ni,

1, ci = cj and hi 2 Nj,

0, otherwise,

(6.6)

⌦p
ij =

8
>>><

>>>:

1, ci 6= cj and hj 2 Ni,

1, ci 6= cj and hi 2 Nj,

0, otherwise.

(6.7)
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Finally, the LFDA model defines these graph weights as:

⌦ij =

8
<

:

�ij
Nci

, cj = ci,

0, otherwise.
(6.8)

⌦p
ij =

8
<

:
�ij

⇣
1
N �

1
Nci

⌘
, cj = ci,

1
N , otherwise.

(6.9)

Here, �ij measures the similarity between hi and hj in the randomized feature space (Ĥ).

Also, ci represents the classes and Nci represents the number of sample in class (ci). We em-

ploy the heat kernel function for calculating the similarity measure, i.e., �ij = e
�khi�hjk

2

2�2 ,

where � is a scaling parameter. Figure 6.1 shows flowchart of the proposed EGERVFL

model.

Algorithm 6.1 Extended Graph embedded RVFL (EGERVFL)
1: Let X 2 RN⇥d be the given training data set. �(.) is the activation function. Initialize
⌧ and ! parameters used for generating extended feature space (see Chapter 5). Hidden
weights and biases (b) are generated randomly.
2: Calculate the extended feature space (E) (given in Chapter 5) and randomized feature
space (Ĥ).
3: Calculate intrinsic and penalty graph weights ⌦ and ⌦p from (6.4) to (6.8).
4: Calculate the graph Laplacian matrices L = D � ⌦ and Lp = Dp

� ⌦p.
5: Calculate: Si = ĤTLĤ, Sp = ĤTLpĤ and S = S�1

p Si.
6: Calculate the final output weights of the proposed model by (6.3).

6.1.2 Ensemble deep EGERVFL (edEGERVFL) model

The proposed EGERVFL model has only one hidden layer and hence, it has less repre-

sentation learning. Deep models are successful because of their rich representation learning

and have better generalization performance compared to shallow models. Therefore, we

propose ensemble deep variant of EGERVFL model, i.e., ensemble deep extended GE RVFL

(edEGERVFL). Similar to standard edRVFL, the proposed edEGERVFL model has several

hidden layers and each layer constitutes a base model in the ensemble learning framework.
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Figure 6.1: The flowchart of the proposed EGERVFL model.

The first hidden layer’s output in the proposed edEGERVFL model is defined as:

L̂(1) = �([X X̄]W (1)), (6.10)

and for higher hidden layers (i > 1) is defined as:

L̂(i) = �([L̂(i�1)X X̄]W (i)). (6.11)

Where X and X̄ have the same meaning as given in Chapter 5. In the proposed edEGERVFL

model, each base model considers the geometrical relationship of the data while training.

Unlike edRVFL, that trains RVFL at each layer, the proposed edEGERVFL model trains

EGERVFL at each layer.

The output weights corresponding to each layer are calculated by Eq. (6.3). The final

decision of the proposed edEGERVFL model is taken by the averaging method (similar to

[57]).

6.2 Computational complexity

Let (X, Y ) be the training set with X 2 RN⇥m and Y 2 RN⇥c. Here, N and m are

the number of samples and number of features, respectively and c is the number of classes.
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Suppose hl is the number of hidden nodes in each layer and k represents the number of layers

considered in deep RVFL models. In all the RVFL-based models, the optimization of output

layer weights involves the computation of matrix inverses. Hence, the complexity of the

models is determined by the size of the matrices to be inverted. By the standard procedure,

the matrix inversion of size N ⇥ N require O(N2) memory and O(N3) time [337]. The

standard RVFL model solves the output layer weights either in the primal or dual space,

which results in reducing the complexity of the model by choosing among min(N,m+hl).

Thus, the time complexity of RVFL model is either O(N3) or O((m+hl)3). The complexity

of dRVFL is either O(N3) or O((m + khl)3) whichever results in lower computation. In

the edRVFL model, the matrix inversions are required which are of the size N ⇥ N or

((hl +m)⇥ (hl +m)) for the first layer and ((2hl +m)⇥ (2hl +m)) for the higher layers.

In the proposed models, we need to calculate the extended feature space wherein atmost d

new features can be generated. For each new feature, we need to take the inverse of a square

matrix of order d. Therefore, the computational complexity of calculating m features is

equal to O(md3). Then, we need to calculate the matrix (S) which involves the inverse of a

square matrix of order (2m + hl) so the corresponding complexity is O((2m + hl)3). The

computational complexity of the proposed EGERVFL model is O(md3)+2O((2m+hl)3) as

the EGERVFL model works in feature space. In the proposed edEGERVFL model, we have

k number of hidden layers. Therefore, it has O(md3)+O((2m+ hl)3)+O(k(2m+2hl)3)

complexity.

6.3 Experiments

In this section, we illustrate the experimental results of the proposed EGERVFL,

edEGERVFL and compared models.

6.3.1 Experimental setup

All the experiments are conducted over MATLAB R2017b and the workstation with

Intel Xenon(R) CPU E5-2697 v4 2.30 GHZ and 128 GB RAM. The datasets are randomly

partitioned into 70 : 30 ratio. Here, 70% of the samples are used for training whereas 30%
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samples are reserved for testing the models. We use 5 fold cross validation on the training

set for optimizing the hyperparameters corresponding to different classification models.

The hyperparameters corresponding to different classification models are obtained via

grid search approach. The regularization parameters (� = ⌘) for the proposed models are

set to be 1
C where C is chosen from the following range {2�6, 2�4, · · · , 212} and the number

of hidden neurons are taken from {1028, 2048, 4096}. We used three activation functions,

i.e., sigmoid, relu and selu in our experiments. We followed 2-stage tuning method [57] for

obtaining the optimal hyperparameters. In the first stage, we optimize the parameters and

get optimal hidden nodes h⇤
l and regularization parameter ⌘⇤ wherein we fixed the hidden

layers to two. In the second stage, number of layers and other parameters are tuned in the

neighbourhood of h⇤
l and ⌘⇤.

6.3.2 Evaluation on ADNI dataset

The scans from the ADNI repository (adni.loni.usc.edu) are used in this study. In 2003,

the Principal Investigator of ADNI project, Michael W. Weiner, launched the project. The

aim of this project is to analyze the neuroimages like PET (positron emission tomogra-

phy), MRI (magnetic resonance imaging) and other tests for the early diagnosis of the

AD from the MCI stage. For detailed information, we refer the interested readers to

www.adni-info.org. In this study, Volume-based Morphometry (VolBM) based fea-

tures are used. The feature extraction pipeline followed is the same as in [338]. The classifi-

cation models are analyzed via generalization performance over three cases, i.e., CN versus

MCI, CN versus AD, and MCI versus AD cases.

For VolBM analysis, Freesurfer’s recon-all pipeline (version 6.0.1) [364, 365] is used

on structural MRI images. Out of 150 MRI images, 1 MCI image failed to process in

Freesurfer. So, feature selection was performed on 149 images. We extracted 23 sub-

cortical tissue volumes (SCV), 34 WM tissue volumes (WMV), and 34 cortical thickness

(CT) measures of every subject. To check the performance of our model on an independent

dataset, we downloaded 817 sMRI images from ADNI baseline dataset [366, 367], out of

which 4 images failed to process through the Freesurfer pipeline. Thus, our baseline dataset
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includes 228 CN, 398 MCI, and 187 AD images. For more information one can visit [328].

6.3.3 Experimental results and discussion

In this section, we discuss the experimental results based on the proposed EGERVFL and

edEGERVFL models and the compared models, i.e., standard RVFL, deep RVFL (dRVFL)

and ensemble deep RVFL (edRVFL) models. To evaluate the strength of randomized feature

space and its effects on the models, we used three different activation functions, i.e., selu,

relu and sigmoid functions. We also used some metrics such as Accuracy (AUC), Sensitivity

(Sens.), Specificity (Spec.), F-measure, and Precision (Prec.) to evaluate the classification

performances of the models. In the feature generation method, ⌧ is the randomly selected

feature parameter. These additional features give the strength to the proposed models to

capture the nonlinear hidden relationship within dataset. So we conducted the experiments

with ⌧ = 3, 4. The EGERVFL(3) or edEGERVFL(3) with MDA represent the results of the

proposed EGERVFL or edEGERVFL model with ⌧ = 3 and MDA-based GE approach. A

similar meaning is followed for LDA and LFDA also. The performance of the models to

classify the different stages of AD is analyzed in this study.

Table 6.1: Experimental results of the algorithms on CN vs AD case.

Act. RVFL dRVFL edRVFL EGERVFL(3) EGERVFL(4) edEGERVFL(3) edEGERVFL(4)
MDA

(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)
(Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.)

Selu (0.8432, 0.9057) (0.8997, 0.8679) (0.8929, 0.8679) (0.8303, 0.8113) (0.8398, 0.8302) (0.9023, 0.8868) (0.8997, 0.8679)
(0.7808, 0.75) (0.9315, 0.902) (0.9178, 0.8846) (0.8493, 0.7963) (0.8493, 0.8) (0.9178, 0.8868) (0.9315, 0.902)

Relu (0.8295, 0.9057) (0.8535, 0.8302) (0.9049, 0.9057) (0.8303, 0.8113) (0.8655, 0.8679) (0.9091, 0.8868) (0.8955, 0.8868)
(0.7534, 0.7273) (0.8767, 0.8302) (0.9041, 0.8727) (0.8493, 0.7963) (0.863, 0.8214) (0.9315, 0.9038) (0.9041, 0.8704)

Sigmoid (0.8903, 0.8491) (0.9023, 0.8868) (0.8603, 0.8302) (0.8997, 0.8679) (0.9254, 0.9057) (0.8834, 0.8491) (0.8877, 0.8302)
(0.9315, 0.9) (0.9178, 0.8868) (0.8904, 0.8462) (0.9315, 0.902) (0.9452, 0.9231) (0.9178, 0.8824) (0.9452, 0.9167)

LFDA
Selu (0.8432, 0.9057) (0.8997, 0.8679) (0.8929, 0.8679) (0.8303, 0.8113) (0.8398, 0.8302) (0.8586, 0.8679) (0.9091, 0.8868)

(0.7808, 0.75) (0.9315, 0.902) (0.9178, 0.8846) (0.8493, 0.7963) (0.8493, 0.8) (0.8493, 0.807) (0.9315, 0.9038)
Relu (0.8295, 0.9057) (0.8535, 0.8302) (0.9049, 0.9057) (0.8303, 0.8113) (0.8655, 0.8679) (0.9091, 0.8868) (0.8955, 0.8868)

(0.7534, 0.7273) (0.8767, 0.8302) (0.9041, 0.8727) (0.8493, 0.7963) (0.863, 0.8214) (0.9315, 0.9038) (0.9041, 0.8704)
Sigmoid (0.8903, 0.8491) (0.9023, 0.8868) (0.8603, 0.8302) (0.8997, 0.8679) (0.9254, 0.9057) (0.8808, 0.8302) (0.8834, 0.8491)

(0.9315, 0.9) (0.9178, 0.8868) (0.8904, 0.8462) (0.9315, 0.902) (0.9452, 0.9231) (0.9315, 0.898) (0.9178, 0.8824)
LDA

Selu (0.8432, 0.9057) (0.8997, 0.8679) (0.8929, 0.8679) (0.8166, 0.8113) (0.8492, 0.8491) (0.8655, 0.8679) (0.856, 0.8491)
(0.7808, 0.75) (0.9315, 0.902) (0.9178, 0.8846) (0.8219, 0.7679) (0.8493, 0.8036) (0.863, 0.8214) (0.863, 0.8182)

Relu (0.8295, 0.9057) (0.8535, 0.8302) (0.9049, 0.9057) (0.8303, 0.8113) (0.8586, 0.8679) (0.8655, 0.8679) (0.9023, 0.8868)
(0.7534, 0.7273) (0.8767, 0.8302) (0.9041, 0.8727) (0.8493, 0.7963) (0.8493, 0.807) (0.863, 0.8214) (0.9178, 0.8868)

Sigmoid (0.8903, 0.8491) (0.9023, 0.8868) (0.8603, 0.8302) (0.8929, 0.8679) (0.9066, 0.8679) (0.8535, 0.8302) (0.8098, 0.8113)
(0.9315, 0.9) (0.9178, 0.8868) (0.8904, 0.8462) (0.9178, 0.8846) (0.9452, 0.92) (0.8767, 0.8302) (0.8082, 0.7544)

The performances of the top two models are shown in bold face.
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[1] CN vs AD case: The classification performances of the models are shown in Ta-

ble 6.1. For MDA case, one can see that the proposed edEGERVFL(3) has highest

performance with AUC equal to 90.23%, the proposed edEGERVFL(4) and dRVFL

got second position with AUC equal to 89.97% for selu activation function. For

other activation functions, i.e., relu and sigmoid, the proposed edEGERVFL(3) and

EGERVFL(4) are the best performing models with AUC equal to 90.91% and 92.54%,

respectively. It shows that edEGERVFL(3) performs better with selu and relu function

as compared to sigmoid function. One can observe that the features space generated

by ⌧ = 3 is more informative than the space generated by ⌧ = 4. The proposed

EGERVFL(4) model with sigmoid function has almost 6% and 2.5% better accuracy

than edRVFL and dRVFL model, respectively. These increments in accuracy show the

efficiency of the proposed models. For LFDA case, both proposed edEGERVFL(3)

and edEGERVFL(4) have better performance with AUC equal to 90.91% and second

highest models are dRVFL and edRVFL with AUC equal to 89.97% and 90.49% with

selu and relu activation functions, respectively. Moreover, proposed EGERVFL(4)

has highest AUC equal to 92.54% with sigmoid function. For LDA case, dRVFL

model is the winner with AUC equal to 89.97% with selu function and the proposed

edEGERVFL(4) has the second position with AUC equal to 90.23% with relu func-

tion and finally, the proposed EGERVFL(4) has highest AUC equal to 90.66% among

the compared models with sigmoid function. Over all conclusion is that the proposed

edEGERVFL(3) or (4) has the best performance with selu and and relu activation

functions and with MDA and LFDA cases. For the LDA case, dRVFL and edRVFL

models are performing better than the proposed models. One can observe from Fig-

ure 6.2a that the higher F-measure values are achieved by the proposed EGERVFL

model. The proposed edEGERVFL model has competitive performance with the ex-

isting dRVFL and edRVFL models. A higher F-measure indicates high precision and

recall which means that our proposed model has less false positive and false negative,

that is very important for a classifier. Figure 6.3a shows the model’s performances

with different activation functions and LDA, LFDA and MDA cases as well. Here, F-

measures corresponding to EGERVFL(3) or (4) are higher compared to other models.
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(a) CN vs AD (b) CN vs MCI

(c) MCI vs AD

Figure 6.2: F-measure box plot analysis of the models for AD.

[2] CN vs MCI case: Table 6.2 shows the classification performances of the models

for CN vs MCI case. For MDA case, among all compared models, the proposed

edEGERVFL(3) has the highest AUC equal to 65.25%, 68.14% and 69% with selu,

relu and sigmoid activation functions, respectively. Also, one can observe that the

features space generated by ⌧ = 3 is more informative than the space generated by

⌧ = 4. The proposed edEGERVFL(3) with sigmoid function has almost 2% better

accuracy than edRVFL model. For the LFDA case, the proposed edEGERVFL(3)

with AUC equal to 65.57% and 65.22% corresponding to selu and relu functions has

better performance whereas, it has highest performance with AUC equal to 69.82%

with sigmoid function.

The proposed EGERVFL(3) with AUC equal to 63.77% and 64.98% has second posi-

tion with selu and relu functions, respectively. For the LDA case, the EGERVFL(3)

model has winning performance that has AUC equal to 64.59% with selu function.

One can see that edRVFL is performing well compared to the proposed models with

171



CHAPTER 6. RANDOM VECTOR FUNCTIONAL LINK NETWORK WITH
ENSEMBLE DEEP LEARNING

(a) CN vs AD (b) CN vs MCI

(c) MCI vs AD

Figure 6.3: F-measure analysis of the models for AD.
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Table 6.2: Experimental results of the algorithms on CN vs MCI case.

Act. RVFL dRVFL edRVFL EGERVFL(3) EGERVFL(4) edEGERVFL(3) edEGERVFL(4)
MDA

(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)
(Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.)

Selu (0.5381, 0.459) (0.5873, 0.5574) (0.6181, 0.541) (0.6377, 0.541) (0.5018, 0.4098) (0.6525, 0.5082) (0.6358, 0.459)
(0.6172, 0.3636) (0.6172, 0.4096) (0.6953, 0.4583) (0.7344, 0.4925) (0.5938, 0.3247) (0.7969, 0.5439) (0.8125, 0.5385)

Relu (0.5908, 0.541) (0.5951, 0.5574) (0.615, 0.5738) (0.6498, 0.5574) (0.5506, 0.4918) (0.6814, 0.5738) (0.5971, 0.4754)
(0.6406, 0.4177) (0.6328, 0.4198) (0.6563, 0.443) (0.7422, 0.5075) (0.6094, 0.375) (0.7891, 0.5645) (0.7188, 0.4462)

Sigmoid (0.6564, 0.5082) (0.6181, 0.541) (0.6744, 0.6066) (0.608, 0.4426) (0.6529, 0.5246) (0.69, 0.6066) (0.6533, 0.541)
(0.8047, 0.5536) (0.6953, 0.4583) (0.7422, 0.5286) (0.7734, 0.4821) (0.7813, 0.5333) (0.7734, 0.5606) (0.7656, 0.5238)

LFDA
Selu (0.5381, 0.459) (0.5873, 0.5574) (0.6181, 0.541) (0.6377, 0.541) (0.469, 0.3443) (0.6557, 0.4754) (0.624, 0.459)

(0.6172, 0.3636) (0.6172, 0.4096) (0.6953, 0.4583) (0.7344, 0.4925) (0.5938, 0.2877) (0.8359, 0.58) (0.7891, 0.5091)
Relu (0.5908, 0.541) (0.5951, 0.5574) (0.615, 0.5738) (0.6498, 0.5574) (0.5506, 0.4918) (0.6522, 0.4918) (0.6412, 0.5246)

(0.6406, 0.4177) (0.6328, 0.4198) (0.6563, 0.443) (0.7422, 0.5075) (0.6094, 0.375) (0.8125, 0.5556) (0.7578, 0.5079)
Sigmoid (0.6564, 0.5082) (0.6181, 0.541) (0.6744, 0.6066) (0.6319, 0.459) (0.6529, 0.5246) (0.6982, 0.623) (0.6533, 0.541)

(0.8047, 0.5536) (0.6953, 0.4583) (0.7422, 0.5286) (0.8047, 0.5283) (0.7813, 0.5333) (0.7734, 0.5672) (0.7656, 0.5238)
LDA

Selu (0.5381, 0.459) (0.5873, 0.5574) (0.6181, 0.541) (0.6459, 0.5574) (0.4569, 0.3279) (0.5838, 0.4098) (0.5186, 0.459)
(0.6172, 0.3636) (0.6172, 0.4096) (0.6953, 0.4583) (0.7344, 0.5) (0.5859, 0.274) (0.7578, 0.4464) (0.5781, 0.3415)

Relu (0.5908, 0.541) (0.5951, 0.5574) (0.615, 0.5738) (0.5783, 0.5082) (0.5467, 0.4918) (0.4663, 0.3934) (0.5923, 0.6066)
(0.6406, 0.4177) (0.6328, 0.4198) (0.6563, 0.443) (0.6484, 0.4079) (0.6016, 0.3704) (0.5391, 0.2892) (0.5781, 0.4066)

Sigmoid (0.6564, 0.5082) (0.6181, 0.541) (0.6744, 0.6066) (0.6041, 0.4426) (0.6197, 0.4426) (0.6943, 0.623) (0.6369, 0.5082)
(0.8047, 0.5536) (0.6953, 0.4583) (0.7422, 0.5286) (0.7656, 0.4737) (0.7969, 0.5094) (0.7656, 0.5588) (0.7656, 0.5082)

The performances of the top two models are shown in bold face.

selu and relu activation functions. However, the proposed edEGERVFL(3) has overall

best accuracy (for LDA case) 69.43% with sigmoid function whereas RVFL, dRVFL

and edRVFL has accuracy 65.64%, 61.81% and 67.44%, respectively. Here, the pro-

posed edEGERVFL(3) model with MDA and LFDA cases is the best-performing

model. Figure 6.2b shows the box plot diagram among the compared models. It can

be observed that the proposed edEGERVFL model has higher F-measure compared

to other models. F-measure is a harmonic mean of precision and recall. Therefore,

higher F-measure indicates high both precision and recall. As can be observed from

Figure 6.3b that edEGERVFL with LDA (sigmoid), LFDA (sigmoid), MDA (relu) and

MDA (sigmoid) shows winning performance with higher F-measure. The proposed

edEGERVFL(3) achieved 69.82% accuracy (with sigmoid) which is better compared

to the baseline models. Here, edRVFL achieved 67.44% which is second highest.

Hence, the proposed model is at least 2% more accurate compared to the baseline

models.

[3] MCI vs AD case: The classification performances of the models for MCI vs AD case

are given in Table 6.3. For the MDA case, edRVFL and the proposed EGERVFL(4)

have a first and second positions with AUC equal to 66.01% and 64.15% with selu

function, respectively. The edEGERVFL(4) with AUC equal to 63.06% is performing
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better than edRVFL with AUC equal to 61.02%. As one can see that our proposed

model is at least 2% more accurate than the edRVFL model with relu function. The

dRVFL model with AUC equal to 66.61% has the winning performance with sig-

moid function. For LFDA and LDA case, both dRVFL and edRVFL models are per-

Table 6.3: Experimental results of the algorithms on MCI vs AD case.

Act. RVFL dRVFL edRVFL EGERVFL(3) EGERVFL(4) edEGERVFL(3) edEGERVFL(4)
MDA

(AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.) (AUC, Sens.)
(Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.) (Spec., Prec.)

Selu (0.5624, 0.4462) (0.6308, 0.5385) (0.6601, 0.5077) (0.5872, 0.4154) (0.6415, 0.4615) (0.5782, 0.4154) (0.5896, 0.3846)
(0.6786, 0.4462) (0.7232, 0.5303) (0.8125, 0.6111) (0.7589, 0.5) (0.8214, 0.6) (0.7411, 0.4821) (0.7946, 0.5208)

Relu (0.5862, 0.5385) (0.5968, 0.4615) (0.6102, 0.4615) (0.6043, 0.3692) (0.6167, 0.4923) (0.6018, 0.4) (0.6306, 0.4308)
(0.6339, 0.4605) (0.7321, 0.5) (0.7589, 0.5263) (0.8393, 0.5714) (0.7411, 0.5246) (0.8036, 0.5417) (0.8304, 0.5957)

Sigmoid (0.6229, 0.4154) (0.6661, 0.6) (0.6365, 0.5231) (0.601, 0.3538) (0.6177, 0.3692) (0.6281, 0.4615) (0.6326, 0.4615)
(0.8304, 0.587) (0.7321, 0.5652) (0.75, 0.5484) (0.8482, 0.575) (0.8661, 0.6154) (0.7946, 0.566) (0.8036, 0.5769)

LFDA
Selu (0.5624, 0.4462) (0.6308, 0.5385) (0.6601, 0.5077) (0.5827, 0.4154) (0.6415, 0.4615) (0.6333, 0.5077) (0.6152, 0.4)

(0.6786, 0.4462) (0.7232, 0.5303) (0.8125, 0.6111) (0.75, 0.4909) (0.8214, 0.6) (0.7589, 0.55) (0.8304, 0.5778)
Relu (0.5862, 0.5385) (0.5968, 0.4615) (0.6102, 0.4615) (0.5832, 0.3538) (0.6147, 0.4615) (0.6216, 0.4308) (0.5787, 0.3538)

(0.6339, 0.4605) (0.7321, 0.5) (0.7589, 0.5263) (0.8125, 0.5227) (0.7679, 0.5357) (0.8125, 0.5714) (0.8036, 0.5111)
Sigmoid (0.6229, 0.4154) (0.6661, 0.6) (0.6365, 0.5231) (0.601, 0.3538) (0.633, 0.4) (0.6281, 0.4615) (0.6249, 0.4462)

(0.8304, 0.587) (0.7321, 0.5652) (0.75, 0.5484) (0.8482, 0.575) (0.8661, 0.6341) (0.7946, 0.566) (0.8036, 0.5686)
LDA

Selu (0.5624, 0.4462) (0.6308, 0.5385) (0.6601, 0.5077) (0.5827, 0.4154) (0.6569, 0.4923) (0.581, 0.4923) (0.5941, 0.3846)
(0.6786, 0.4462) (0.7232, 0.5303) (0.8125, 0.6111) (0.75, 0.4909) (0.8214, 0.6154) (0.6696, 0.4638) (0.8036, 0.5319)

Relu (0.5862, 0.5385) (0.5968, 0.4615) (0.6102, 0.4615) (0.5909, 0.3692) (0.6147, 0.4615) (0.5832, 0.3538) (0.5916, 0.4154)
(0.6339, 0.4605) (0.7321, 0.5) (0.7589, 0.5263) (0.8125, 0.5333) (0.7679, 0.5357) (0.8125, 0.5227) (0.7679, 0.5094)

Sigmoid (0.6229, 0.4154) (0.6661, 0.6) (0.6365, 0.5231) (0.601, 0.3538) (0.6241, 0.4) (0.6236, 0.4615) (0.6005, 0.4154)
(0.8304, 0.587) (0.7321, 0.5652) (0.75, 0.5484) (0.8482, 0.575) (0.8482, 0.6047) (0.7857, 0.5556) (0.7857, 0.5294)

The performances of the top two models are shown in bold face.

forming better than the proposed models. Finally, one can observe that the proposed

EGERVFL(3) or (4) is performing better than the standard RVFL model with all three

activation functions and with MDA, LFDA and LDA cases. It can be observed from

Figure 6.2c that the proposed models don’t perform well compared to the existing

models except RVFL. Of course, in this case, our proposed models are not perform-

ing well as can be seen in Figure 6.3c. Here, overall the dRVFL model is performing

very well.

6.3.4 Results analysis on UCI datasets

Apart from AD datasets, we conducted the experiments on 14 publicly available UCI

datasets [267] to validate the performance of the proposed models. Table 6.4 shows the

corresponding results. Here, the results of RVFL, dRVFL and edRVFL models are taken

from paper [57]. The results show that the proposed edEGERVFL (LFDA) has the highest
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Table 6.4: Experimental results of the models on the UCI datasets.

Datasets RVFL dRVFL† edRVFL† EGERVFL(MDA) EGERVFL(LFDA) EGERVFL(LDA) edEGERVFL(MDA) edEGERVFL(LFDA) edEGERVFL(LDA)
car 97.74 97.97 98.04 98.32 98.26 98.03 97.04 97.41 95.87
cardiotocography 10clases 82.82 83.62 83.24 83.33 83.33 83.29 85.59 85.57 86.3
cardiotocography 3clases 92.37 92.84 92.66 93.08 92.84 92.56 85.97 84.44 85.13
image segmentation 88.33 89.1 88.52 88.71 89.29 89.24 95.5 95.28 94.19
led display 74.7 73.9 74.4 74.6 74.5 74.8 73.41 76.99 74.07
oocytes merluccius nucleus 4d 85.1 82.75 84.41 85.88 85.39 84.8 81.47 82.07 78.7
oocytes merluccius states 2f 91.96 91.86 93.63 92.94 93.73 93.33 94.17 94.11 90.47
plant margin 81.81 81.88 81.88 83.44 83.88 83.69 89.8 87.91 85.57
plant shape 67.63 71.75 72.31 70.5 70.38 70.31 84.94 81.47 74.4
plant texture 83.88 84.06 85.25 85.06 84.94 84.56 91.79 91.67 91.38
semeion 92.9 93.47 92.96 90.33 90.33 90.58 94.48 93.43 90.23
statlog image 96.71 96.79 96.84 96.19 96.19 96.53 98.13 98.08 97.83
steel plates 75.52 58.66 76.44 76.24 75.98 75.67 63.11 82.51 81.58
yeast 61.73 60.24 61.66 60.71 60.92 60.78 61.56 61.03 62.11
Average Accuracy 83.8 82.78 84.45 84.24 84.28 84.16 85.5 86.57 84.85
Average Rank 6.43 6.07 4.82 5.04 4.86 5.57 3.79 3.43 5

86.57% accuracy. The other two proposed edEGERVFL (MDA) and edEGERVFL (LDA)

models have 85.5%, and 84.85% accuracy, respectively. The existing edRVFL model has

84.45% accuracy that is almost 2% less accurate than the proposed edEGERVFL model.

One can observe that the proposed shallow EGERVFL with MDA, LFDA, LDA has ac-

curacy, 84.24%, 84.28% and 84.16%, respectively. All these three variants (of RVFL) are

performing better than standard RVFL that has 83.8% accuracy. We have also conducted

the Friedman rank test [362] that gives a lower rank to the best-performing model and

the highest rank is given to the least-performing model. Here, the proposed edEGERVFL

with LFDA and MDA has lowest (3.43) and second lowest (3.79) ranks, respectively and

hence, the proposed ensemble deep models have better generalization performance than

the existing baseline models. The reason behind that why edEGERVFL (LFDA) is the

best-performing model because of its weighting mechanism that uses kernel function for

calculating the similarity measure while the others, LDA and MDA don’t use the same.

The similar observation can be seen from shallow EGERVFL (LFDA). It has better gen-

eralization performance than the proposed EGERVFL with LDA and MDA. The proposed

edEGERVFL (MDA) is performing better than the proposed edEGERVFL (LDA) model.

Similarly, one can observe that EGERVFL (MDA) has better generalization performance

than EGERVFL (LDA).
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6.4 Experimental results of the proposed models on ADNI

dataset

To check the combined performance of the proposed models, we conducted the experi-

ments with the shallow and deep RVFL models on the ADNI dataset, and the corresponding

results are shown in Table 6.5. It shows the experimental results of a shallow extended graph

embedded RVFL (EGERVFL) and its deep variant (edEGERVFL) with LDA, LFDA, and

MDA techniques. All deep proposed models, i.e. edEGERVFL (LFDA), edEGERVFL

(MDA), and edEGERVFL (LDA) have superior performance with average accuracy at

77.64%, 77.46%, and 76.84%, respectively. One can observe that all proposed shallow mod-

els (EGERVFL (LDA), EGERVFL (LFDA), EGERVFL (MDA) ) have better generalization

performance than the standard RVFL model. Among deep models, edEGERVFL (MDA)

has the lowest average rank at 2.33, followed by edEGERVFL (LDA) at 3. The proposed

deep models have almost 4% more average accuracy than standard RVFL. Among shallow

models, the proposed EGERVFL (MDA) has the highest average accuracy (74.93%) and

a small average rank (3.33). The last row in Table 6.5 shows overall win-tie-loss which

demonstrates that the edEGERVFL with LFDA and MDA has 1-1 winning with no loss.

Moreover, Table 6.6 shows the performance of the models proposed in Chapter 3 to Chapter

6. The results show that the proposed en-efRVFL has a first position at 78.24%, followed

by edEGERVFL at 77.64%, NPRVFL at 76.78%.

Table 6.5: Experimental results of the RVFL and the proposed shallow EGERVFL and deep
EGERVFL models on the ADNI dataset.

RVFL [110] EGERVFL (LDA) EGERVFL (LFDA) EGERVFL (MDA) edEGERVFL (LDA) edEGERVFL (LFDA) edEGERVFL (MDA)
CN vs AD 0.8903 0.8997 0.9091 0.9091 0.912698 0.904762 0.920635
CN vs MCI 0.6295 0.6974 0.6455 0.6455 0.708995 0.740741 0.719577
MCI vs AD 0.6621 0.6298 0.6857 0.6934 0.683616 0.683616 0.683616
Avearge AUC 0.7273 0.7423 0.7468 0.7493 0.7684 0.7764 0.7746
Average Rank 6.67 5.67 3.67 3.33 3 3.33 2.33
Overall win-tie-loss [0, 0, 2] [0, 0, 1] [0, 1, 0] [1, 2, 0] [0, 0, 0] [1, 0, 0] [1, 0, 0]

6.5 Summary

In this chapter, we developed shallow and ensemble deep variants of the RVFL. Ensem-

ble Deep models can automatically learn hierarchical and abstract features from raw data.
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Table 6.6: Experimental results of the RVFL and the proposed models, i.e. IFRVFL, GE-
IFWRVFL, CP-FRVFL, ext-LSTSVM, ext-RELS-TSVM, NPRVFL, efRVFL, RoF-RVFL,
en-efRVFL, EGERVFL, and edEGERVFL on the ADNI dataset.

RVFL [110] IFRVFL GE-IFWRVFL CP-FRVFL ext-LSTSVM ext-RELSTSVM NPRVFL efRVFL RoF-RVFL en-efRVFL EGERVFL (MDA) edEGERVFL (LFDA)
CN vs AD 0.8903 0.898 0.8834 0.8843 0.8492 0.8818 0.9117 0.8831 0.8968 0.9127 0.9091 0.9048
CN vs MCI 0.6295 0.6763 0.7001 0.7188 0.6353 0.6728 0.6883 0.6135 0.6878 0.7407 0.6455 0.7407
MCI vs AD 0.6621 0.6813 0.6773 0.6705 0.6777 0.6321 0.7033 0.6211 0.6723 0.7006 0.6934 0.6836
Average Accuracy 0.7273 0.7519 0.7536 0.7579 0.7207 0.7289 0.7678 0.7059 0.7523 0.7847 0.7493 .7764
Average Rank 9.33 5.67 6.66 6.69 9.33 10 2.67 11.33 6.67 1.5 5 3.17
Overall win-tie- loss [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 0] [0, 0, 1] [0, 0, 0] [1, 0, 0] [0, 0, 2] [0, 0, 0] [1, 1, 0] [0, 0, 0] [0, 1, 0]

The depth of the ensemble deep architecture allows for the extraction of features at multi-

ple levels, capturing complex patterns and relationships that a shallow model may struggle

to represent. We proposed extended graph embedded RVFL (EGERVFL) model that can

be considered a variant of standard RVFL. Unlike standard RVFL, the proposed EGERVFL

model is trained over extended feature space and hence, possesses more capability to capture

the nonlinear hidden relationships within the dataset. Moreover, we used the graph regular-

ization term in the optimization problem of the proposed EGERVFL model under the GE

framework that incorporates the geometrical relationship within data. Shallow networks

are not good for representation learning. Therefore, we extended the proposed shallow

EGERVFL model to an ensemble deep framework namely, the ensemble deep EGERVFL

(edEGERVFL) model. The proposed edEGERVFL model solves GE-based optimization

problem in each layer and hence has better generalization performance. To evaluate the pro-

posed models, we employed them for the diagnosis process of AD. The experimental results

demonstrate the strength and efficiency of the proposed models. The proposed EGERVFL

model (with MDA, LFDA, and LDA) has better classification performance compared to the

standard RVFL model for all three cases. The proposed edEGERVFL model (with MDA

and LFDA) has the overall best performance among the compared models on CN vs AD and

CN vs MCI. Moreover, the proposed models are implemented over UCI datasets and the re-

sults demonstrate that the proposed EGERVFL and edEGERVFL with LFDA have better

generalization performance compared to the baseline models. The proposed deep model,

i.e. edEGERVFL is suitable for the problems where one needs deep feature representation

learning, fast training speed, and better generalization performance.
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Chapter 7

Conclusions and Future Works

Randomized neural networks have shown their strength among machine learning mod-

els. In this thesis, we focused on a special kind of randomized network, i.e. RVFL, that has

emerged as a very successful randomized network. We developed novel variants of RVFL

for classification problems and their application in the diagnosis of Alzheimer’s disease.

The proposed works use a wide range of approaches including feature engineering, fuzzy

and intuitionistic fuzzy theory, graph embedding theory, hyperplane-based learning, deep

representations, and ensemble learning to develop novel RVFL variants. The brief summary

of this thesis is as follows:

7.1 Conclusions

First, we presented a thorough survey on the developments of the RVFL model in dif-

ferent aspects, i.e., shallow RVFL, ensemble algorithms based on the RVFL, deep RVFL

variants, etc. Also, we presented applications of the RVFL models that show their appli-

cability in the real world. The presented comprehensive survey of RVFL can serve as an

extensive summary for beginners as well as practitioners.

Second, we proposed three variants of RVFL, i.e., intuitionistic fuzzy RVFL (IFRVFL),

class probability-based fuzzy RVFL (CP-FRVFL) and graph embedded intuitionistic fuzzy

weighted RVFL (GE-IFWRVFL) network. Unlike standard RVFL, which uses a uniform

weighting approach, the proposed models use fuzzy or intuitionistic fuzzy weighting ap-
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proach to decide the contributions of the samples in the training process and hence, get

better generalization performance than standard RVFL. The proposed models are robust to

noise and outliers and give special attention to each sample based on their importance in

classification problems. The proposed IFRVFL model is employed for the diagnosis of AD

and has shown the highest performance in MCI versus AD cases. As per the literature,

discrimination between MCI versus AD cases is hard compared to other cases of AD. The

proposed CP-FRVFL model uses a novel score function to determine the importance of

each sample in the training process and the experimental results on KEEL and UCI datasets

demonstrate that the proposed CP-FRVFL model has superior performance than the com-

pared models. Moreover, the proposed GE-IFWRVFL model employs graph embedding

approach that uses intrinsic and penalty graphs to describe the geometrical properties of

the data. Unlike RVFL and IFRVFL models, the proposed GE-IFWRVFL model considers

the geometrical relationship of the data while calculating the final output parameters. The

experimental results demonstrate that the proposed GE-IFWRVFL model has better gener-

alization performance with the highest average accuracy and lowest average rank compared

to the baseline models.

Third, we proposed two novel models that combine hyperplane-based approaches with

RdNN techniques. In one approach, we integrate NPSVM with the RVFL network and

hence, the hybrid model, i.e., NPRVFL, has better generalization performance than the

baseline models. Unlike NPSVM, the proposed NPRVFL model gets the hyperplanes in ran-

domized features space and hence, takes the benefits of RVFL’s features space to classify the

data. The proposed NPRVFL’s hyperplanes pass through the origin. The results show that

the proposed NPRVFL has superior performance than the NPSVM and RVFL models. In

another approach, we incorporate hybrid features (original features and autoencoder-based

features) into LSTSVM and RELS-TSVM, and propose extended LSTSVM and extended

RELS-TSVM models. Experimental results and statistical tests demonstrate that the pro-

posed models show better generalization performance.

Fourth, we proposed an extended feature RVFL (efRVFL) model that is trained on higher

dimensional space (extended feature space) generated from the original feature space analyt-

ically. The proposed efRVFL model consists of additional non-linear transformed features
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and hence, is capable of capturing the highly non-linear patterns within datasets. Instead of

stacking the several hidden layers (for higher representation learning) in the RVFL model,

we employed a simple linear regression method for generating supervised randomized fea-

tures (new features) from original features and hence, the proposed efRVFL model has better

representative features. Ensemble learning develops more stable and robust model that has

better generalization performance than a single model. The proposed efRVFL model is an

unstable classifier. Therefore, we developed an ensemble of extended feature RVFL (en-

efRVFL) model. The proposed en-efRVFL model trains each base model (efRVFL) over

different feature spaces so that accurate and diverse base models can be generated which

leads to better accuracy. The outcomes of base models are integrated via the average voting

scheme. Empirical results show that the proposed efRVFL and en-efRVFL models per-

form better than the standard RVFL model and have competitive performance with several

compared deep models. The proposed en-efRVFL model has the lower rank among all the

compared state-of-the-art deep feed-forward neural networks. Ensemble learning is more

beneficial with unstable models (low bias, high variance) such as decision trees and neural

networks. RVFL having randomized features is an unstable classifier. Therefore, a novel

neural network-based ensemble model (RoF-RVFL) has been proposed wherein the unsu-

pervised feature extraction technique PCA is employed to extract new features from the

original datasets. The proposed RoF-RVFL model uses RVFL as its base model since it is

sensitive to changes in the data set. To evaluate the performance of the proposed RoF-RVFL

model, extensive experiments have been conducted over 42 benchmark datasets and the ex-

perimental results illustrate that RoF-RVFL performs better than baseline algorithms (that

is RaF, RoF, and RVFL) in terms of classification accuracy.

Fifth, we proposed extended graph embedded RVFL (EGERVFL) model, that can be

considered as a variant of standard RVFL. Unlike standard RVFL, the proposed EGERVFL

model is trained over extended feature space and hence, possesses more capability to capture

the nonlinear hidden relationships within dataset. Moreover, we used the graph regulariza-

tion term in the optimization problem of the proposed EGERVFL model under the graph em-

bedded framework, that incorporates the geometrical relationship within data. Shallow net-

works are not good in representation learning. Therefore, we extended the proposed shallow
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EGERVFL model to ensemble deep framework and named it, the ensemble deep EGERVFL

(edEGERVFL) model. The proposed edEGERVFL model solves graph embedded-based

optimization problem in each layer and hence, has better generalization performance. To

evaluate the proposed models, we employed them for the diagnosis of AD. The experimental

results demonstrate good generalization of the proposed models. The proposed EGERVFL

model (with MDA, LFDA, and LDA) has better classification performance compared to the

standard RVFL. The proposed edEGERVFL model (with MDA and LFDA) has the overall

best performance among the compared models on CN vs AD and CN vs MCI cases. More-

over, the proposed models are implemented over UCI datasets and the results demonstrate

that the proposed EGERVFL and its ensemble deep variant edEGERVFL with LFDA have

better generalization performance compared to the other proposed models. Table 7.1 and

Table 7.2 discuss the advantages and limitations of the proposed models in this thesis.

Table 7.1: Advantages and limitations of the models developed in Chapter 3 and Chapter 4.

IFRVFL GE-IFWRVFL CP-FRVFL ext-LSTSVM ext-RELS-TSVM NPRVFL

Advantage

Uses closed-form
solution ap-
proach. Efficient
and robust to
noise and outliers

Effectively han-
dles geometrical
aspects of the
data as compared
to RVFL. Effi-
cient and robust
to noise and
outliers

Efficient and ro-
bust to noise and
outliers

Unlike LSTSVM,
it uses original
and autoencoder-
based features
and hence cap-
tures linear
and nonlinear
patterns simulta-
neously

Unlike RELS-
TSVM, it uses
original and
autoencoder-
based features
and hence cap-
tures linear
and nonlinear
patterns simulta-
neously

Unlike RVFL
and TWSVM,
it doesn’t need
to calculate the
inverse of matri-
ces to calculate
the final output
parameters

Limitations

Unstable classi-
fier. Applicable
only for binary
classification
problems and not
suitable for large
datasets.

Not suitable for
large datasets

Not suitable for
large datasets

Not applicable
when number
of samples and
features are large
enough, sensitive
to noise and
outliers

Not applicable
when number
of samples and
features are large
enough, sensitive
to noise and
outliers

Applicable
only for binary
classification
problems, Sensi-
tive to outliers

This thesis improved the RVFL model in multiple aspects. However, there is still room

to grow and much more research can be done. Next, we give potential future research

directions.

7.2 Future research directions

While reviewing the RVFL’s papers in the literature, we found some potential research

directions that the researchers in the future should explore.
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Table 7.2: Advantages and limitations of the models developed in Chapter 5 and Chapter 6.

efRVFL RoF-RVFL en-efRVFL EGERVFL edEGERVFL

Advantage
Efficient and uses
closed-form solu-
tion approach

Stable and gener-
ates uncorrelated
features

Stable and robust

Efficient and han-
dle topological
properties of data
effectively

Handle topolog-
ical properties
of data, deep
architecture, deep
feature represen-
tation

Limitations Sensitive to noise
and outliers

Sensitive to out-
liers

Not applicable
when number
of samples and
features are large
enough

Shallow architec-
ture and applica-
ble to only binary
classification

Sensitive to noise
and outliers

• Weights initialization techniques (WITs) have significant impact on the performance

of RVFL models. A few research [12, 121, 136, 137] suggest that this topic needs to be

discussed further with mathematical justifications. Moreover, several other strategies

[368] can be explored with RVFL model such as interval-based initialization [369],

variance scaling based initialization [370], data-driven initialization [371], hybrid ini-

tialization [372, 373], cluster-based initialization [374] and data statistics based ini-

tialization [375].

• Outliers or noisy samples influence the modeling capability of standard RVFL and

hence, lead to poor performance. Kernalized RVFL models are robust but can’t be

employed for large-scale dataset. Therefore, for large scale, different techniques such

as random Fourier features [376] can be used to handle the same [377]. Moreover,

RVFL with fuzzy neural networks [378], ensemble learning [38], or other advanced

techniques can be employed to develop robust RVFL variants.

• Ensemble learning and deep learning are two individual growing fields [132]. Re-

searchers have recently combined them to develop a more accurate and efficient model

that can perform well on real-world data. The RVFL model has fast training speed

and good generalization performance and has been employed successfully in various

engineering domains. Therefore, this can be a hot topic for researchers to explore

RVFL in these research directions.

• In the literature [43, 127], RVFL and decision tree have been employed together to
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develop a model with better performance. Recently, deep forest [379, 380] with bet-

ter interpretability and less tunable parameters as compared to deep neural networks

(DNNs) is a growing research field. Studying the RVFL model and decision tree with

deep forest architecture can be a new research field.

• To increase the generalization performance of machine learning models, learning with

global/local data consistency (topological properties of data) has shown its importance

among the machine learning community. The RVFL model transforms the original

features into randomized features in an unsupervised manner. Hence, the randomiza-

tion process might ruin the original feature space’s topological properties and lead to

an inefficient model. Therefore, works [143, 191] indicate that incorporating the idea

of manifold learning into the RVFL model can develop more accurate models.

• The standard RVFL handles balanced data effectively. The imbalance learning prob-

lem seriously deteriorates the performance of the RVFL model. In general, techniques

addressing imbalance data are divided into two categories, i.e., data-level approach

[187] and algorithm approaches [381] can be used with RVFL model to classify im-

balance data, effectively. Therefore, it is an opportunity for researchers to develop

other techniques to explore this research direction.

• Developments in the RVFL model have been focused on supervised problems, i.e.,

classification and regression problems. In the real-world, unlabeled data consists of

only a few labeled samples but many unlabeled samples. There is very less work

with RVFL to handle semi-supervised problems. Therefore, it is desirable to develop

variants of the RVFL model that can be employed for semi-supervised problems ef-

fectively.

• The model pool of ensemble RVFL mainly consists of learning algorithms. How-

ever, statistical methods can be included and improve the performance. For instance,

statistical forecasting methods, such as ARIMA and exponential smoothing can be

included in the model pool for forecasting tasks. Therefore, the models’ diversity is

increased significantly.
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• Most deep RVFLs networks are designed based on the conventional feed-forward

architecture. However, the deep learning community has proposed various advanced

architectures, such as the Transformer [382] and graph convolution neural network,

etc. Combining the advanced architectures and the idea of deep RVFL may maintain

high performance and reduce training time simultaneously.

• The existing literature utilizes static aggregation for the ensemble block of edRVFL.

However, such a static ensemble does not consider the evolving characteristic or the

concept drift problem. Recently, a dynamic ensemble algorithm that computes the

ensemble weights based on the latest accuracy is proposed for forecasting by Liang

et al. [383]. The output layers of edRVFL can be considered as different models.

Hence, the dynamic ensemble can be applied to combine all output layers’ forecasts.

Therefore, a dynamic ensemble that assigns evolving weights can be combined with

edRVFL to boost the performance further.

• The tuning process of edRVFL imposes a significant effect on the performance. A

layer-wise tuning algorithm is proposed for time series forecasting in [253]. Such a

tuning procedure benefits the diverse and optimal architecture of the edRVFL. How-

ever, Gao et al. [253] only implements a layer-wise tuning algorithm with Bayesian

optimization. In the future, more advanced optimization algorithms can be combined

with layer-wise tunings, such as evolutionary algorithms [384]. The marriage of layer-

wise tuning and advanced optimization algorithms will develop the RVFLs into auto-

ML in the future.

• Although the random features offer non-linearity and fast computation, the random

nature carries redundant information. Therefore, an intelligent selection of the ran-

dom features owns the strong potential to increase the performance [59, 254]. The in-

ferior features of random layers may deteriorate the performance. The existing works

only consider linear feature selection, and pruning techniques [59, 254]. However,

there are more advanced feature selection algorithms [385]. The effects of applying

different feature selection algorithms on the random features must be studied.
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• Although RVFL and its variants show superior forecasting, there are still directions

worth exploring. For instance, the augmentation of RVFL’s random features is not ma-

ture yet, although signal decomposition shows its effectiveness. If the decomposition

is done correctly, the elements generated are always high-dimensional. In RVFL and

deep RVFL, the direct links are connected to the linear output layers. Therefore, effec-

tive treatment of such high-dimensional features is critical. Potential solutions can be

dimensionality reduction, feature selection and double regularizations. Dimension-

ality reduction algorithms can be utilized to transform the huge input feature matrix

into a low-dimensional space. Then, a linear layer is trained in the low-dimensional

space. Feature selection only selects a few best features for the linear layer to learn.

As for the double regularizations, different regularizations are imposed on the direct

link and random features. If the direct link is of high dimension, its regularization

would prefer sparsity.

• RVFL’s forecasting ability on spatial-temporal time series is not investigated yet. The

spatial-temporal time series is a temporal sequence of graph signals. However, the

conventional version of RVFL is not suitable for graph data. Therefore, it is a promis-

ing direction to develop RVFL for graph data.

• Recently, multi-label learning has been emerging as an exciting research domain.

Therefore, researchers may develop randomized neural networks to handle multi-label

data. RVFL model doesn’t have enough work to manage the multi-label datasets. The

efficient and effective variants of the RVFL model should be developed for multi-label

tasks.

• Unlike supervised learning, unsupervised learning problems doesn’t have target vari-

able information. Standard RVFL model needs target information while calculating

the final parameters. Unlabeled data are clustered (or grouped) by considering their

topological properties or other properties of the data. Therefore, the needful works

are required to handle unlabeled data via RVFL model.

• The community lacks a thorough investigation that compares the performance of ran-
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domised neural networks on datasets that are openly accessible, utilising standardised

metrics, evaluation procedures, and several datasets. A benchmark for comparing the

various randomised architectures is thus needed in the field. This will encourage fu-

ture efforts to improve a randomised model from various angles, including precision,

trustworthiness, and training/inference efficiency.

• Most of the RVFL-based architectures are based on the offline training wherein all the

data is available for the training at once. However, in online scenarios the sequential

streaming data needs to be processed. RVFL models can be adapted to handle such

scenarios. Moreover, one can also focus on the development of deep RVFL architec-

tures for the online learning process. As for the edRVFL, the output layers can be

trained in an online fashion and the ensemble can be online, too.

187





Bibliography

[1] C. Zhang, Y. Lu, Study on artificial intelligence: The state of the art and future

prospects, Journal of Industrial Information Integration 23 (2021) 100224.

[2] A. K. Jain, J. Mao, K. M. Mohiuddin, Artificial neural networks: A tutorial, Com-

puter 29 (1996) 31–44.

[3] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, H. Arshad,

State-of-the-art in artificial neural network applications: A survey, Heliyon 4 (2018).

[4] L. Zhang, P. N. Suganthan, A survey of randomized algorithms for training neural

networks, Information Sciences 364 (2016) 146–155.

[5] P. N. Suganthan, On non-iterative learning algorithms with closed-form solution,

Applied Soft Computing 70 (2018) 1078–1082.

[6] W. Cao, X. Wang, Z. Ming, J. Gao, A review on neural networks with random

weights, Neurocomputing 275 (2018) 278–287.

[7] B. Widrow, A. Greenblatt, Y. Kim, D. Park, The no-prop algorithm: A new learning

algorithm for multilayer neural networks, Neural Networks 37 (2013) 182–188.

[8] J. Park, I. W. Sandberg, Universal approximation using radial-basis-function net-

works, Neural Computation 3 (1991) 246–257.

[9] F. Scarselli, A. C. Tsoi, Universal approximation using feedforward neural networks:

A survey of some existing methods, and some new results, Neural Networks 11

(1998) 15–37.

189



BIBLIOGRAPHY

[10] F. M. A. Acosta, Radial basis function and related models: an overview, Signal

Processing 45 (1995) 37–58.

[11] Y.-H. Pao, Y. Takefuji, Functional-link net computing: theory, system architecture,

and functionalities, Computer 25 (1992) 76–79.

[12] L. Zhang, P. N. Suganthan, A comprehensive evaluation of random vector functional

link networks, Information Sciences 367 (2016) 1094–1105.
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predict the missing values of algae during water quality monitoring programs based

on a hybrid moth search algorithm and the random vector functional link network,

Journal of Hydrology 575 (2019) 852–863.

[200] P. Zhou, Y. Jiang, C. Wen, T. Chai, Data modeling for quality prediction using im-

209



BIBLIOGRAPHY

proved orthogonal incremental random vector functional-link networks, Neurocom-

puting 365 (2019) 1–9.

[201] Y. Dash, S. K. Mishra, S. Sahany, B. K. Panigrahi, Indian summer monsoon rainfall

prediction: a comparison of iterative and non-iterative approaches, Applied Soft

Computing 70 (2018) 1122–1134.

[202] M. F. Nhabangue, G. Pillai, Wind speed forecasting using improved random vec-

tor functional link network, in: 2018 IEEE Symposium Series on Computational

Intelligence (SSCI), IEEE, 2018, pp. 1744–1750.

[203] K.-K. Xu, H.-X. Li, H.-D. Yang, Kernel-based random vector functional-link net-

work for fast learning of spatiotemporal dynamic processes, IEEE Transactions on

Systems, Man, and Cybernetics: Systems 49 (2017) 1016–1026.

[204] L. Zhang, P. Zhou, M. Yuan, T.-y. Chai, Multivariable dynamic modeling for molten

iron quality using incremental random vector functional-link networks, Journal of

Iron and Steel Research International 23 (2016) 1151–1159.

[205] P. Zhou, M. Yuan, H. Wang, Z. Wang, T.-Y. Chai, Multivariable dynamic modeling

for molten iron quality using online sequential random vector functional-link net-

works with self-feedback connections, Information Sciences 325 (2015) 237–255.

[206] Y. Ren, X. Qiu, P. N. Suganthan, G. Amaratunga, Detecting wind power ramp with

random vector functional link (RVFL) network, in: 2015 IEEE Symposium Series

on Computational Intelligence, IEEE, 2015, pp. 687–694.

[207] Y. Peng, Q. Li, W. Kong, F. Qin, J. Zhang, A. Cichocki, A joint optimization frame-

work to semi-supervised RVFL and ELM networks for efficient data classification,

Applied Soft Computing 97 (2020) 106756.

[208] J. Wang, X. Shen, W. Pan, On transductive support vector machines, Contemporary

Mathematics 443 (2007) 7–20.

210



BIBLIOGRAPHY

[209] S. Scardapane, D. Comminiello, M. Scarpiniti, A. Uncini, A semi-supervised random

vector functional-link network based on the transductive framework, Information

Sciences 364 (2016) 156–166.

[210] J. Xie, S. Liu, H. Dai, Y. Rong, Distributed semi-supervised learning algorithms for

random vector functional-link networks with distributed data splitting across samples

and features, Knowledge-Based Systems 195 (2020) 105577.

[211] A. K. Jain, R. C. Dubes, Algorithms for clustering data, Prentice-Hall, Inc., 1988.

[212] M. Tanveer, T. Gupta, M. Shah, A. D. N. Initiative, Pinball loss twin support vector

clustering, ACM Transactions on Multimedia Computing, Communications, and

Applications (TOMM) 17 (2021) 1–23.

[213] B. Richhariya, M. Tanveer, A. D. N. Initiative, et al., Least squares projection twin

support vector clustering (lsptsvc), Information Sciences (2020).

[214] Y. Zhang, Q. Zhu, Y. Peng, W. Kong, An unsupervised discriminative random vector

functional link network for efficient data clustering, in: 2021 4th International Con-

ference on Pattern Recognition and Artificial Intelligence (PRAI), IEEE, 2021, pp.

347–352.

[215] Z.-H. Zhou, Ensemble learning, in: Machine Learning, Springer, 2021, pp. 181–210.

[216] A. K. Malik, M. A. Ganaie, M. Tanveer, P. N. Suganthan, A novel ensemble method

of RVFL for classification problem, in: 2021 International Joint Conference on Neu-

ral Networks (IJCNN), IEEE, 2021, pp. 1–8.

[217] L. Zhang, X. Zhang, H. Chen, H. Tang, A robust temperature prediction model

of shuttle kiln based on ensemble random vector functional link network, Applied

Thermal Engineering 150 (2019) 99–110.

[218] A. Tahir, G. Morison, D. A. Skelton, R. M. Gibson, A novel functional link network

stacking ensemble with fractal features for multichannel fall detection, Cognitive

Computation 12 (2020) 1024–1042.

211



BIBLIOGRAPHY

[219] X. Qiu, P. N. Suganthan, A. G. Amaratunga, Ensemble incremental random vector

functional link network for short-term crude oil price forecasting, in: 2018 IEEE

Symposium Series on Computational Intelligence (SSCI), IEEE, 2018, pp. 1758–

1763.

[220] X. Qiu, P. N. Suganthan, G. A. Amaratunga, Ensemble incremental learning random

vector functional link network for short-term electric load forecasting, Knowledge-

Based Systems 145 (2018) 182–196.

[221] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.

Tung, H. H. Liu, The empirical mode decomposition and the hilbert spectrum for

nonlinear and non-stationary time series analysis, Proceedings of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences 454 (1998)

903–995.
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