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                                               Preface  

 

This report on “Nonlinear Finite element Analysis of singly curved ruled Surfaces” is 

prepared under the guidance of Dr. Kaustav Bakshi. during this report, we've studied static  

bending and free vibration of laminated composite one by one incurvate spherical shells 

victimization the  geometrically nonlinear approach. A finite component model is 

developed and valid by examination the results with those printed within the literature. 

difficult boundary conditions are accustomed replicate the state of affairs that the shell 

could face in industrial condition.   

The study is aimed to support active civil engineers whereas planning roofs and sheds in  

buildings/industries following Indian codes of apply. I even have tried to the most 

effective of my talents and information to elucidate the content in an exceedingly lucid 

manner. I even have additionally another 3-D  models and figures to form it a lot of 

illustrative. 
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Abstract 

In this report ,a nonlinear finite element solutions of bending responses of 
functionally graded spherical panels are presented. the material properties of 
functionally graded material are graded in thickness direction in line with a power-law 
distribution of volume fractions. A general nonlinear mathematical shell model has been 
developed based on higher order shear deformation theory. The model is discretised 
using finite element steps and the governing equations are obtained through variational 
principle. The nonlinear responses area unit evaluated through an on the spot unvarying 
methodology. The model is validated by comparing the responses with the vailable 
published literatures. The efficacy of gift model has also been established by 
demonstrating a simulation based nonlinear model developed in ABAQUS 
environment. the effects of power-law indices, support conditions and different 
geometrical parameters on bending behaviour of functionally graded shells are obtained 
and discussed in detail. 
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CHAPTER 1  

Introduction  

 

A thin shell is outlined as a shell with a thickness that is little compared to its alternative 

dimensions and within which deformations aren't giant compared to thickness. A 

primary difference between a shell structure and a plate structure is that, within the 

unaccented state, the shell structure has curvature as critical the plates structure that is 

flat Membrane action in a very shell is primarily caused by in-plane forces (Plane 

stress), but there is also secondary forces ensuing from flexural deformations. wherever 

a flat plate acts the same as a beam with bending and shear stresses, shells square 

measure analogous to a cable that resists hundreds through tensile stresses. the perfect 

skinny shell should be capable of developing each tension and compression. 

In this report we are going to show regarding the past studies conducted by 

numerous researchers on shell structures and an in-depth finite component modeling for a 

laminated composite plate subjected to static load whereas future study involves extending 

the model to incorporate geometric nonlinearity. 

 

        CHAPTER 2  

      Literature Review 

1. J.N. Reddy (1984) presented an extension of the Sanders shell theory for doubly 

curved shells to a shear deformation theory of laminated shells. The theory 

accounts for transverse shear strains and rotation about the normal to the shell mid-

surface. Exact solutions of the equations were presented for simply supported, 

doubly curved, cross-ply laminated shells under sinusoidal, uniformly distributed, 

and concentrated point load at the center. Fundamental frequencies of cross-ply 

laminated shells were also presented. 

2. Alwar and Narasimha (1991) proposed an analytical solution based on the 

Chebyshev-Galerkin spectral method. The effects of various geometric and 

material parameters on the nonlinear axisymmetric response of laminated annular 

shells subjected to uniform external pressure have been studied. It was also 

observed that softening nonlinearity of these shells increases with an increase in 

the ratio of radius to heights but decreases with an increase in orthotropy ratio and 

number of layers. 

3. Gautham and Ganesa (1992) analyzed axisymmetric and non-symmetric 

vibrations of spherical shells using the thick shell theory and semi-analytical 



method to reduce the dimension of the problem. It can be observed that influence 

of boundary condition was grater in the shallow shells. 

4. Chakravorty et. al. (1994) studied the free vibration behavior of doubly curved, 

point-supported laminated composite shells. The fundamental frequency was 

observed to increase with increase in the number of layers for both antwasymmetric 

and symmetric stacking sequences. 

5. Chakravorty, Bandyopadhyay and Sinha (1994) conducted a finite element 

analyswas to study the free vibration behavior of doubly curved, point-supported 

laminated composite shells. The fundamental frequency was observed to increase 

with increase in the number of layers for both antisymmetric and symmetric 

stacking sequences. 

6. Okasha el-Nady and Negm (2004) presented a simple method for the solution of 

arbitrarily laminated composite spherical shells by expanding displacement 

functions in Chebyshev series. The method was used to solve a variety of spherical 

shell problems with different fiber orientations and boundary conditions. 

7. Okasha el-Nady and Negm (2005) presented a simple method for the free 

vibration analysis of cross-ply laminated composite spherical shells by expanding 

the displacement functions in Chebyshev series The method was made highly 

automated by casting the equations in a standardized matrix form, and then 

systematically converting them to a standard eigenvalue problem .The method was 

used to obtain the natural frequencies and mode shapes of isotropic as well as 

laminated shell. 

8. Arciniega, Reddy (2006) have presented a finite element computational model for 

the nonlinear analysis of shell structures and considered a consistent shell 

formulation for the nonlinear analysis of multilayered composites and functionally 

graded shells. A simple tensor-based displacement finite element model was 

developed and a family of Lagrangian elements with high-order interpolation 

polynomials was employed. The first-order shell theory with seven parameters was 

derived with exact nonlinear deformations and under the framework of the 

Lagrangian description. 

9. Lee, Reddy and Rostam-Abadi (2006) did nonlinear finite element analysis of 

laminated composite shell structures with smart material laminae. Third-order 

shear deformation theory using Sanders nonlinear shell kinematics was chosen for 

the laminated composite shell formulations. A number of parametric studies were 

carried out to understand the damping characteristics of laminated composites with 

embedded smart material layers. It was observed that the spherical shell has the 

biggest deflection suppression and smallest maximum deflection. 

10. Umut Topal (2006) studied about mode-frequency analyses of laminated spherical 

shell using a finite element model, based on first-order shear deformation theory 

and it was observed that when width to thickness ratio, material anisotropy and 

angle of fiber orientation increase then the non-dimensional fundamental 

frequency increased. The fundamental frequencies in the case of angle-ply 



laminate were higher than those in the case of both cross-ply laminate for the effect 

of the material anisotropy. 

11. Panda and Sing (2009) studied the buckling and post-buckling behaviors of a 

laminated composite spherical shallow shell panel embedded with shape memory 

alloy (SMA) fibers under a thermal environment. It was observed that the 

consideration of full geometric non-linearity effect in the stiffness matrix. The non-

linear stiffness matrices was the reason for the divergence trend noted in a few 

cases and it can be observe that the geometric non-linearity was predominant on 

the material non-linearity for laminated structures. 

12. Lee and Chung (2009) developed a finite element formulation based on the 

Sanders higher order theory to study the free vibration of laminated composite shell 

panels with delamination around quadrilateral cutouts. The authors showed that the 

effect of interactions between the radius–length ratio and various other parameters. 

13. Umut Topal (2012) studied the frequency optimization of symmetrically 

laminated angle-ply spherical shells. It was observed that the shell aspect ratio 

increases, the maximum fundamental frequency deiminases because of a decrease 

in the shell stiffness. The maximum fundamental frequency decreases as the 

curvature ratio increases and it can be observed that the curvature ratio has no effect 

on the optimum fiber orientations. The maximum and minimum fundamental 

frequencies occur for CCCC and SSSS (where C – Clamped and S 

– Simply supported) boundary conditions, respectively. 

14. Lal et. al. (2012) The sensitivity of failure index (FI) changes with the layup 

sequences, number of layers,plate side to thickness ratio, plate aspect ratio, 

boundary conditions, amplitude ratios, types of loading, types of failure theory and 

modulus ratio. Among the system properties studied, the elastic modulus in 

transverse direction and lateral loading have dominant effect on the COV of FI 

when compared to other system properties subjected UDL or sinusoidal loading 

using Tsai–Wu and Hoff-man’s failure. Between the Tsai–Wu and Hoffman’s 

theory of failures considered Hoffman’s failure theory is more sensitive as compare 

to Tsai–Wu failure theory. 

15. Bakshi and Chakravorty (2013) concluded to provide accurate non linear first ply 

failure load of composite conoidal shells the proposed code is capable. and we also 

observe that cross ply laminations are relatively better options to fabricate the 

conoidal shell surface than angle ply ones. 

16. Panda and Singh (2013) studied linear static and free vibration behaviors of 

laminated composite square spherical shell panel using finite element method. The 

model had discretized using eight- noded, six degrees of freedom shell element. It 

was observed that thick laminate suffers with higher transverse bending and normal 

stresses as compared to thin laminates. The non-dimensional natural frequency 



increases with increase in number of layers and was higher for angle ply than the 

cross-ply laminates. 

17. Panda and Singh (2013) worked on thermal post buckling of doubly curved 

composite spherical shell panel using nonlinear finite element method. It can be 

observed that the buckling was very sensitive to the support condition and the type 

of lamination scheme, and the post buckling strength increases with increase in the 

curvature ratio, the thickness ratio, the amplitude ratio, and the number of layers. 

18. Khaire, Ambhore and Jagtap (2014) investigated nonlinear free vibration 

response of functionally graded (FGMs) spherical shell. For this study a nine noded 

Lagrange element having 63 DOFs per element was used for discretizing the 

laminate. An HSDT model was used, and 4 × 4 mesh was used. It was observed 

that the higher order shear deformation theory can provide accurate results for 

natural frequencies of FGM spherical shell. 

19. Das, Singla, Srivastava (2016) studied three-dimensional finite element method 

(FEM) based on thermo-mechanical stress analysis of a laminated fiber reinforced 

polymer (FRP) composite spherical shell structure subjected to elevated thermal 

filed. It can be observed that due to curvature effect of the shell structure the stress 

concentration was not only limited to free edges rather may exist inside the shell 

boundaries hence care should be taken to select appropriate mesh to capture stress 

concentrations. 

20. Ghosh and Chakravorty (2017) observed that the finite element code can be 

accepted as a successful tool to explore the first and ultimate ply failure aspects of 

composite hypar shells. Solutions obtained for the benchmark problem using the 

present method indicated this fact. The lamina wise failure investigation and using 

that information to evolve tailored laminates was utilized as design 

guidelines to fabricate stiff shell surfaces for a given material consumption 

21. Ghosh and Chakravorty (2017) compared the first ply and ultimate ply failure 

load values for different boundary conditions and found that clamped shells having 

the maximum number of support constraints yield the highest load values. 

22. Behera, Garg, Patro and Sharma (2018) presented free vibration responses of 

laminated composite spherical shell panels (SSLCP) without and with central 

cutouts (square, circular and rectangular) using finite elements. It was observed 

that among simply supported and clamped boundary conditions, clamped boundary 

condition was the more desirable for SSLCP with or without cutouts. 

23. Mohammad Zannon (2018) applied third-order shear deformation theory to 

analytically derive the frequency characteristics of thick spherical laminated 

composite shells. The theory for thick laminated shells was applied to solve simply 

supported shells with cross-ply laminates. It was observed that the natural 

frequency of the shell increase if the radius to span ratio increase. 

24. Ghahfarokhi and Rahimi (2018) worked on vibration correlation technique 

(VCT) which presented a very good correlation for grid-stiffened composite 



cylindrical shells when the maximum load adopted in the VCT was higher than 

68% of the experimental buckling load. 

25. Eva Kormanikova (2018) presented mode-frequency analysis of laminated 

spherical shell using a finite element model. The model was based on first order 

shear deformation theory. It was observed that the frequencies in the case of angle-

ply laminate were higher than in the same for cross-ply laminate. The frequencies 

in the case of symmetric layup were the same than in the case of antisymmetric 

layup for both types of laminates. This topic can be extended for different finite 

element formulations, boundary conditions, aspect ratios and number of layers. 

26. Chaubey, Kumar and Chakrabarti (2019) studied the shear buckling of 

laminated spherical shells with multiple cutouts in the present mathematical model 

a transverse shear stresses have been varied parabolically across the thickness. It 

was observed that with an increase in cutout size, dimensionless buckling load 

decreases and it also observed that with increase in eccentricity (e) dimensionless 

shear buckling load increases for SSSS, CCCC, CCSS and CCFF (Where C – 

Clamped, S – Simply supported and F – free) boundary conditions. 

27. Zolt an Juhasz and Andras Szekr enyes (2019) proposed an efficient analytical 

solution technique for delaminated doubly curved shells. It was shown that the 

results obtained with the use of the improved version of the Sanders shell theory 

were very close to the FE results. The through-the-width delamination has been 

modelled with the use of the systems of exact kinematic conditions, which results 

in a very compact model as there was no need for contacts between the delaminated 

top and bottom regions. 

28. Bing Hu, Cong Gao, Hang Zhang,Haichao Li ,Fuzhen Pang and Jicai Lang 

(2020) used Ritz method to investigate the vibration characteristics of isotropic 

moderately thick annular spherical shell with general boundary conditions. The 

Ritz method has fast convergence and delightful accuracy through the comparative 

study. 

29. Mohammad Zannon,Abdullah Abu-Rqayiq,Ammar Al-bdour (2020) 

conducted free vibration analyses of FG spherical shells. A third-order shear 

deformation theory that allows extensibility along the thickness direction was 

executed and the influence was studied. It was observed that the fundamental 

frequency decreases as the ratio R/a increases, clamped FG shell panels presented 

higher frequency values than the simply supported ones and the fundamental 

frequency of FG spherical shell panels decreases as the exponent p in power-law 

increases. 

30. Ahmadi et. al. (2020) observed that softening behavior of the frequency–response 

curve was inversely proportional to linear elastic foundation and also observed that 

increasing the volume fraction power leads to increase the response amplitude. 

31. Shamloofard, Hosseinzadeh and Movahhedy (2020) presented a new shell super 

element for finite element analysis of spherical shell structures. This super element 

had first-order shear deformation theory. The presented super element can analyze 

partial spherical sectors with and without apex and complete spherical shells 



properly and it was observed that the super element predicts the behavior of 

spherical shells under local loads and boundary conditions. 

32. Amabili and Reddy (2020) introduced a rigorous higher-order polynomial along 

the thickness coordinate to develop a theory for doubly curved, laminated 

composite shells. The developed third-order thickness and shear deformation 

theory had a single additional parameter to describe the thickness deformation with 

respect to the well-known Reddy’s shear deformation theory. The developed 

theory keeps geometric nonlinear terms in all the kinematic parameters in the 

formulation. That enabled its application to problems with large displacements and 

large strains. 

33. Bakshi et. al. (2020) presented a finite element code predict the linear and 

nonlinear transverse displacement of the shell. Among the shell options considered 

the cross-ply laminations of clamped ones turned out to be the best option for the 

practicing civil engineers to achieve the minimum displacement 

 0 0 0 
 within a given cost of fabrication. The 0 /90 /0 shell showed the best 

performance considering all the shell options. 

34. Bakshi et. al. (2020) observed that if the practicing engineers adopt only one 

stiffener for the shell roof, then that should be oriented along the arch direction (y-

stiffener) to achieve the minimum transverse displacements. The nonlinear 

approach must be implemented for all other stiffener arrangements considered by 

the authors. 

35. Ahmadi, Bayat and Duc (2021) presented a semi‐analytical procedure for 

investigating the non‐linear primary resonant of an imperfect stiffened FG doubly 

curved shallow shells exposed to thermal conditions and harmonic excitation. 

Material properties of shells were gradually changed along the thickness direction 

of the FGM shallow shells, and it was observed that the frequency response curve 

with or without initial imperfection and stiffener, increases the amplitude of 

response. 

36. Zhi-Min Li, Tao Liu, Pizhong Qiao (2021) studied a new shell of arbitrary 

curvatures and arbitrary fiber stacking sequences for large amplitude vibration of 

shear deformable laminated doubly curved shells. The governing equations were 

derived based on an extended higher order shear deformation shell theory, 

including von Kármán type of kinematic nonlinearity and stiffness couplings. It 

was a two‐step perturbation technique combining with the Galerkin method was 

employed to determine the linear and nonlinear vibration frequencies and forced 

responses. 

37. Bakshi (2021) studied the non-dimensional fundamental frequencies and mode 

shapes of laminated composite singly curved stiffened shells for varying boundary 

condition, lamination and stiffener properties like orientations, eccentricities, 

numbers and depth. The conclusion was the nonlinear approach was essential for 

both shell and stiffener for correct predictions of natural frequencies and mode 



shapes. The relatively simpler linear approach was recommended for shells having 

single x – stiffener only. 

38. Chatterjee, Ghosh and Chakravorty(2021) concluded that the uniformly 

distributed FPF pressures of cross ply shells were significantly more than those of 

angle ply shells and among cross ply shells again the antisymmetric lamination 

turns out to be the best choice. They also concluded that CFFC shell can be 

preferred over CFCF shell options. 

39. Bakshi (2021) studied the non-dimensional fundamental frequencies and mode 

shapes of laminated composite singly curved stiffened shells for varying boundary 

condition, lamination and stiffener properties like orientations, eccentricities, 

numbers and depth. it was observed that the first mode of vibration governs the 
dynamic performance of 450/-450/-450/450 clamped shell. The higher modes must 

be considered for the 450/-450/-450 simply supported shell. 
    

 

 

                                                  CHAPTER -3 
                    Mathematical Formulation and FE Modeling 
 

3.1 Governing Equation 

 

 

We consider a spherical shell of length a, width b, thickness h, and mean radius R. An 

orthogonal curvilinear coordinate system (x 1 , x 2,  and x 3)  is considered to represent 

the geometry and deformation of the spherical shell when x 1 and x 2 axes are located in 

the midplane of the shell and considering the first-order shear deformation theory 

 

 
 

Spherical shell with uniformly distributed pressure (𝑞) 
 

The total potential energy (π) of the shell is defined as the summation of total strain energy (𝑈) stored in the volume 

and the external work done on the surface (𝑊).  

1 
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2 ∫ {𝜀} ்{𝜎}𝑑𝑣 + −

𝑈

∫ ∫ {𝑑}்{𝑞}𝑑𝐴

𝑊
 

 

Where, ε is the strain matrix, σ is the stress matrix, 𝑑 is the deformation vector and 𝑞 is the external load vector applied 

on the shell. {𝑞} =  {0   0  𝑞௭   0   0}் , where 𝑞௭ is the pressure applied on the shell. The governing equation for the 

shell is derived based on the principle of minimum potential energy. Thus to minimize with respect to {𝑑}, it has to 

satisfy the following condition:  

𝑑𝜋

𝑑{𝑑}
= 𝜓; {𝜓 = 0, 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

                   {𝜓 = 0. 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑎𝑙𝑙𝑦 𝑛𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 

 

The expression 𝛹  for an initial estimate of the displacements, which indicates the existence of residual unbalanced 

forces, and geometrically nonlinear analysis, becomes necessary for minimizing the potential energy using a Newton-

Raphson iterative approach. At the end of the iterations, the shell follows the equilibrium condition, i.e. 𝛹 = 0.   

3.2 Laminate constitutive relation  

The constitutive relation for the laminated composite is given as  

{𝜎} = [𝐷]{𝜀}  

Where [𝐷] is adopted from Chakravorty et al. (1995) and {𝜎} is the laminate stress resultant vector given as  

𝑎𝑠  {𝜎} = ∫
/ଶ

ି/ଶ
൛𝜎௫ 𝜎௬ 𝜏௫௬ 𝜎௫. 𝑧 𝜎௬ . 𝑧 𝜏௫௬. 𝑧 𝜏௫௭  𝜏௬௭    ൟ′𝑑𝑧 

3.3 Finite Element Formulation  

An eight noded doubly curved thin shell is used with five degrees of freedom per node. The displacement field for 

each element is given as {𝑑} = {𝑢 𝑣 𝑤 𝛼 𝛽}், where 𝑢, 𝑣, and 𝑤 are the translational deformation of shell along x, y 

and z axis, and α, β are the rotations of the mid surface along y and x direction, respectively. The nodal values for {𝑑} 

are estimated by using the shape functions 𝑁 as 

 {𝑑} = ∑଼
ୀଵ [𝑁]{𝑑} 

 The mid surface strain vector is expressed as 

{𝜀} = {𝜀} + {𝜀}ே  



Where {𝜀} and {𝜀}ேare linear and nonlinear strains at the mid-surface of the shell adopted from Sander’s nonlinear 

strain displacement relations and Von Karman type geometric nonlinearity. The obtained nonlinear equilibrium 

formulation is solved using the Newton-Raphson iterative method. For this, an initial guess for the shell displacements 

is used to calculate the residual forces. After certain iterations, an improved solution is obtained using the Taylor series 

expansion.  

 

 

2.4 ABAQUS Modeling 

 

The data information for the FE modeling of the spherical shell is done using 

ABAQUS FE package. Dimensions of the spherical shell, material properties of the 

composite laminate and boundary conditions are given as input to the application.   
 

 

(a) BCs and loading on shell                                         (b) Meshing details of the shell 
 

Figure 2: A typical representation of the FE model on ABAQUS application 

 

0.1 Material properties are as follows and kept same for all the laminates unless specified. 

0.1 N/m2 is given as loading on the top of the shell surface. Width and length of the 

plan area is taken as 1000 mm.  

  

 

 

 

 

  



 
                              Material constants  

E11  142.5  GPa  
E22  9.79  GPa  
E33  9.79  GPa  

G12=G1
3  

4.72  GPa  

G23  1.192  GPa  
ν12=ν13  0.27    

ν23  0.25    
 
 

 

 

 

                                               CHAPTER-4 
                                  Numerical Problems and Results 

 

4.1 Validation- 

To validate the finite element model, the static bending and free vibration values for the 
spherical shell is compared with those given in Reddy (1984). Simply supported 
boundary conditions are chosen with static displacement and fundamental frequencies 
being computed via FE simulations. The material and geometric properties are given as 
the footnote in the tables. The values are mentioned in nondimensional form, which for 
transverse displacement and fundamental frequency is given as follows. The results are 
presented in table 1 and 2, respectively. 

                                          
From tables 1 and 2, on comparing with the published values we can depict that the values 

are in good agreement. 

 

Table 1: Fundamental frequencies    in radian/sec of laminated composite shell 
Lamination 00/900 00/900/00 00/900/900/00 

J.N Reddy [1] 9.687 15.183 15.184 
Present FEM (2×2) 4.23 4.296 4.294 

(4×4) 8.58 8.67 8.66 
(6×6) 8.88 12.96 12.93 
(8×8) 8.88 13.94 13.33 

         

a/b=1,a/h=100,E11=25E22,G12=G13=0.5E22,G23=0.2E22,ν=0.25,E22=106N/cm2,R/a

=1030 



 

 

 
 
 
 
Table 2: Maximum downward deformation in ‘mm’ of laminated composite shell 

Lamination 00/900 00/900/00 00/900/900/00 

J.N Reddy [1] 16.980 6.697 6.833 
Present FEM (2×2) 16.54 6.728 7.304 

(4×4) 16.58 6.720 7.302 
(6×6) 16.59 6.719 7.301 
(8×8) 16.59 6.718 7.301 

a/b=1,a/h=100,E11=25E22,G12=G13=0.5E22,G23=0.2E22,ν=0.25,E22=106N/cm2,R/a

=1030 
 

 

 

4.2 Nonlinear response with different boundary conditions and lamination angle  

For the spherical shell 

 

Nonlinear deflections and fundamental frequencies are computed for the spherical shell 

with varying radii as given in Table 3 and 4, respectively. The results are in non-

dimensional form. Here, a and b are kept constant and radii is varying as per its ratio with 

a. The results highly vary with different boundary conditions and lamination angle. 

However, as we increase the ratio, the shell takes a plate configuration and deflections are 

significantly high.    

 

 

Table 3: Non-dimensional deflections (ŵ × 105) of laminated composite spherical shell  

Boundary 
conditions  

Lamination  Ryy/a =  
0.75  

Ryy/a =  
1.0  

Ryy/a =  
1.25  

Ryy/a  =  
1.5  

Ryy/a =  
3.0  

Ryy/a =  
5.0  

Ryy/a  =  
10.0  

CCCC  

0/90  0.3702  0. 6621 1.051 1.513 5.132 17.08 70.83 

0/90/0  0.3451  0.5967 0.9297 1.396 6.185 15.8.0 49.37 

0/90/0/90   0.3526 0.6297 0.9568 1.365 5.826 18.14 59.69 

0/90/90/0   0.3521 0.6201 0.9736 1.345 5.604 16.48 53.78 

45/-45  0.3305  0.6290 1.025 1.502 5.403 15.70 70.78  

45/-45/45   0.3926 0.7166 1.105 1.543 5.556 17.93 63.23 

45/-45/45/-45   0.3851 0.7130 1.091 1.518 5.590 17.99 61.19 

45/-45/-45/45   0.3998 0.7369 1.116 1.541 5.642 18.23 61.76 

Boundary 
conditions  

Lamination  Ryy/a =  
0.75  

Ryy/a =  
1.0  

Ryy/a =  
1.25  

Ryy/a =  
1.5  

Ryy/a =  
3.0  

Ryy/a =  
5.0  

Ryy/a =  
10.0  

SSSS  
0/90   0.5383 0.9186 1.389 1.922 6.422 19.78 84.08 

0/90/0   0.3727 0.6466 0.9773 1.357 5.177 15.32 58.01 



0/90/0/90  0.3646  0.6101 0.9126 1.285 5.001 15.48 67.46 

0/90/90/0   0.3375 0.5770 0.8709 1.211 4.937 14.33 61.92 

45/-45  0.4924  0.7414 1.091 1.596 6.281 15.97 73.09 

45/-45/45   0.3294 0.5850 0.9340 1.358 5.170 14.53 62.43 

45/-45/45/-45  0.3413  0.6024 0.9684 1.403 5.017 15.07 63.15 

45/-45/-45/45  0.3396  0.5807 0.9267 1.343 4.903 14.73 63.15 

CSCS  

0/90  0.3838  0.5911 1.088 1.553 5.314 17.54 69.37 

0/90/0   0.3862 0.6712 0.9858 1.335 5.858 16.03 46.68 

0/90/0/90   0.3254 0.5924 0.9543 1.316 5.275 16.63 58.97 

0/90/90/0   0.3517 0.6070 0.8941 1.214 5.450 14.88 49.48 

45/-45  0.4611  0.7102 1.032 1.507 5.819 15.54 71.13 

45/-45/45  0.3718  0.6572 1.025 1.458 5.511 16.11 62.95 

45/-45/45/-45  0.3645  0.6558 1.030 1.463 5.340 16.54 62.40 

45/-45/-45/45  0.3759  0.6511 1.009 1.424 5.338 16.52 62.68 

SCSC  

0/90  0.5086  0.8848 1.376 1.876 6.266 19.25 84.33 

0/90/0  0.3240  0.5810 0.9463 1.341 5.487 15.20 63.13 

0/90/0/90  0.3885  0.6531 0.9807 1.324 5.350 16.85 67.31 

0/90/90/0  0.3264  0.5945 0.9617 1.371 5.002 16.12 66.71 

45/-45   0.4329 0.7128 1.193 1.524 5.801 15.57 71.14 

45/-45/45  0.3413  0.6375 1.335 1.442 5.520 16.11 62.96 

45/-45/45/-45  0.3499  0.6551 0.9724 1.457 5.344 16.54 62.40 

45/-45/-45/45   0.3519 0.6520 0.9867 1.432 5.344 16.52 62.68 
 
 
 Table 4- Non-dimensional fundamental frequency (ϖ) of laminated composite                                        
spherical shell 
 

Boundary 
conditions  

Lamination  Ryy/a 
=  
0.75  

Ryy/a =  
1.0  

Ryy/a 
= 1.25  

Ryy/a =  
1.5  

Ryy/a =  
3.0  

Ryy/a =  
5.0  

Ryy/a  = 
10.0  

CCCC  

0/90   73.64 59.21 49.76 43.35 28.02 23.25 15.02 

0/90/0   75.21 62.20 53.97 46.15 32.19 26.55 17.28 

0/90/0/90   75.15 61.89 52.35 45.63 31.52 28.46 16.83 

0/90/90/0   75.52 62.57 55.23 48.76 35.56 27.23 17.28 

45/-45   65.97 55.42 47.63 43.19 29.97 23.49 14.38 

45/-45/45   72.01 62.02 50.72 50.77 32.57 24.13 15.96 

45/-45/45/-45   71.81 61.70 49.19 49.12 38.04 27.08 16.21 

45/-45/-45/45   72.38 62.39 50.16 51.46 37.95 26.89 16.15 

SSSS  
0/90   

72.63 
57.93 48.07 41.22 24.06 18.09 12.18 



0/90/0   
73.83 

59.75 51.46 43.25 25.79 19.01 13.89 

0/90/0/90   
74.04 

59.75 52.94 43.92 26.05 19.85 14.95 

0/90/90/0   
74.14 

60.07 53.72 44.05 28.33 22.43 13.88 

45/-45   
64.03 

53.66 45.43 39.52 29.84 19.66 11.52 

45/-45/45   
69.80 

58.18 49.85 43.18 30.89 20.35 12.45 

45/-45/45/-45   69.81 58.12 49.89 43.23 33.23 24.06 15.26 

45/-45/-45/45   
70.18 

58.49 50.61 45.30 34.16 24.44 15.08 

Boundary 
conditions  

Lamination  Ryy/a 
=  
0.75  

Ryy/a =  
1.0  

Ryy/a 
= 1.25  

Ryy/a =  
1.5  

Ryy/a =  
3.0  

Ryy/a =  
5.0  

Ryy/a =  
10.0  

CSCS  

0/90   73.51 59.12 49.69 43.10 27.08 21.61 14.14 

0/90/0  58.18 62.14 51.32 45.65 29.88 23.92 14.99 

0/90/0/90   75.02 61.19 52.21 47.27 31.85 23.62 15.46 

0/90/90/0    75.46 62.32 53.87 48.19 34.30 24.32 16.02 

45/-45   64.97 54.60 46.68 41.09 25.45 21.68 14.01 

45/-45/45  72.31 60.25 49.16 44.32 28.53 23.46 15.18 

45/-45/45/-45  70.94 60.06 52.84 47.94 35.68 26.01 15.65 

45/-45/-45/45  71.50 60.57 53.34 48.44 35.88 25.62 15.58 

SCSC  

0/90   72.76 57.93 48.13 41.40 25.19 20.11 13.14 

0/90/0   73.89 59.85 49.65 42.86 27.17 23.54 15.19 

0/90/0/90  74.27 60.32 51.30 44.32 29.56 24.16 15.32 

0/90/90/0  74.20 60.25 51.18 44.19 29.42 24.50 15.33 

45/-45  65.16 54.60 46.62 41.15 27.89 24.98 13.99 

45/-45/45  70.87 60.26 52.89 46.12 32.53 25.65 15.44 

45/-45/45/-45  70.81 60.07 53.01 47.56 34.03 25.99 15.70 

45/-45/-45/45  71.25 60.63 53.39 48.50 35.88 26.64 15.61 
  
 

4.3 Nonlinear response with different boundary conditions and a/h ratio for the 

spherical shell 

Next we vary a/h ratio for the same boundary conditions as indicated above. The 

results are given in tabular form in Table 5 and 6.   

 

Table 5: Non-dimensional deflections (ŵ × 105) of laminated composite spherical 
shell, a/b = 1.0, a = 1.0 m  



Boundary 
conditions  

a/h ratio  Ryy= 
0.75 m  

Ryy  = 
1.0 m  

Ryy  =  
1.25 m  

Ryy/= 1.5 
m  

Ryy= 3.0 
m  

Ryy= 5.0 
m  

Ryy= 10.0 
m  

0/90/0  
CCCC  

80  0.5273  0.907
6 

1.471 2.2187 9.3671 27.3304 66.0545 

100  0.3451  0.596
7 

0.9297 1.396 6.1851 15.8 49.37 

120  0.2469  0.422
3 

0.6501 0.9461 4.3101 11.4871 37.8990 

0/90/0 
SSSS  

80  0.5658  0.971
4 

1.4468 1.9882 8.4023 23.6522 86.2614 

100  0.3727  0.646
6 

0.9773 1.3574 5.1770 15.32 58.01 

120  0.2624  0.458
5 

0.7013 0.9832 3.4351 10.5786 40.5321 

0/90/0  
CSCS  

80   0.5771 0.979
6 

1.4185 1.9883 9.1972 23.5155 62.2654 

100  0.3862  0.671
2 

0.9858 1.3355 5.8582 16.03 46.68 

120  0.2757  0.989
6 

0.7262 0.9930 3.9687 11.464 18.4304 

0/90/0  
SCSC  

80  0.5105  0.911
9 

1.4355 2.0624 8.5566 24.238 95.6442 

100  0.3240  0.581
0 

0.9245 1.341 5.4873 15.2 63.13 

120  0.2373  0.398
7 

0.6394 0.9340 3.7910 10.572
8 

43.7844 

  
  
  
  
  
  
  

Table 6: Non-dimensional fundamental frequencies (ϖ) of laminated composite 
spherical shell, a/b = 1.0, a = 1.0 m  

Boundary 
conditions  

a/h ratio  Ryy= 
0.75 m  

Ryy  = 
1.0 m  

Ryy  = 
1.25 m  

Ryy/= 1.5 
m  

Ryy= 3.0 
m  

Ryy= 
5.0 m  

Ryy= 
10.0 m  

0/90/0  
CCCC  

80   194.02 51.77 45.94 42.02 31.74 22.18 15.23 

100  237.81 62.27 53.97 48.51 36.43 25.76 17.29 

120  278.97 72.76 62.20 55.17 39.09 29.52 19.08 

0/90/0 
SSSS  

80  189.19 48.81 41.67 36.75 25.32 20.01 11.96 

100  195.84 59.78 50.34 43.86 28.24 23.29 13.89 

120  277.46 70.80 59.11 42.59 31.29 27.76 14.23 



0/90/0  
CSCS  

80   194.02 51.67 57.12 41.67 31.11 21.11 14.64 

100   237.69 62.14 53.85 48.25 35.89 24.88 16.15 

120   281.24 72.68 51.77 54.97 38.60 28.80 17.78 

0/90/0  
SCSC  

80   189.29 48.96 52.46 37.15 26.14 21.11 12.63 

100  233.73 59.88 50.55 44.17 28.97 24.25 15.18 

120   278.22 70.79 49.45 51.27 31.97 25.64 17.34 
 

 

4.4 Nonlinear response with different boundary conditions and a/h ratio for the 
spherical shell 
 

Next we vary a/b ratio for the same boundary conditions as indicated above. The 

results are given in tabular form in Table 7 and 8.   

 

Table 7: Non-dimensional deflections (ŵ × 105) of laminated composite spherical shell 
(a/h = 100)  

Boundary 
conditions 

a/b 
ratio  

Ryy= 0.75 
m  

Ryy  =  
1.0 m  

Ryy  = 
1.25 m  

Ryy/= 1.5 
m  

Ryy= 3.0 
m  

Ryy= 5.0 m  Ryy= 10.0 
m  

0/90/0  
CCCC  

0.5   0.6807 1.1567 1.8001 4.0861 49.0492 18.23E-04 9.425E-04 

1.0  0.3451 0.5967 0.9297 1.396 6.1851 15.8 49.37 

2.0   8.4468 12.249
6 

16.9473 34.0194 35.4154 39.4735 60.0492 

0/90/0 
SSSS  

0.5  0.9543  1.3194 1.5426 1.7634 13.9467 22.6486 50.0101 

1.0  0.3727 0.6466 0.9773 1.3574 5.1770 15.32 58.01 

2.0  11.1460 24.5193 30.2174 39.4203 40.493 6.43E-04 10.243E-
03 

0/90/0  
CSCS  

0.5  1.0132  1.4164 1.9467 2.2197 16.820 6.18E-04 2.642E-04 

1.0  0.3862   0.6712 0.9858 1.3355 5.8582 16.03 46.68 

2.0   0.1103 0.1729 0.2890 0.3094 1.1093 2.6435 17.6272 

0/90/0  
SCSC  

0.5  0.6426  0.4014 2.4865 4.4253 45.6197 23.6185 68.9473 

1.0  0.3240  0.5810 0.9245 1.341 5.4873 15.2 63.13 

2.0   7.9258 24.3196 29.8429 32.1846 0.8644 1.5497 4.2843 
  
  
  
  
  
  
  
  
  



Table 8: Non-dimensional fundamental frequencies (ϖ) of laminated composite 
spherical shell  

Boundary 
conditions  

a/b ratio  Ryy= 
0.75 m  

Ryy  =  
1.0 m  

Ryy  =  
1.25 m  

Ryy/= 1.5 
m  

Ryy= 3.0 
m  

Ryy= 
5.0 m  

Ryy= 10.0 
m  

0/90/0  
CCCC  

0.5   254.184 39.422 27.459 25.163 12.784 8.596 12.502 

1.0  237.81  62.270 53.97 48.51 36.43 25.76 17.29 

2.0  246.617  151.22
7 

124.36
5 

130.095 99.568 64.167 35.426 

0/90/0 
SSSS  

0.5  213.597  34.526 28.753 80.159 40.456 20.312 4.167 

1.0  195.84  59.72 50.34 43.86 28.24 23.29 13.89 

2.0   259.35 63.301 53.357 45.852 38.429 51.496 86.426 

0/90/0  
CSCS  

0.5   287.159 35.842 28.453 32.256 19.547 10.129 13.92 

1.0   237.69 62.14 53.85 48.25 35.89 24.88 16.15 

2.0  298.365 111.85
2 

107.74
5 

104.54 95.914 67.997 30.589 

0/90/0  
SCSC  

0.5  280.365  35.928 25.856 22.698 11.036 7.889 5.248 

1.0  233.73 59.88 50.55 44.17 28.970 24.25 15.18 

2.0   279.159 155.94
6 

115.75
6 

122.800 77.542 49.835 29.426 
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