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SYNOPSIS 

1. Introduction 

Energy demand is constantly increasing all over the world. Thus, it becomes 

imperative to look for renewable energy sources to address the issues related 

to climate change. However, the geographical variability of these renewable 

sources poses a challenge in providing a continuous power supply. 

Therefore, efficient energy storage devices are crucial to sustaining 

technological advancements by ensuring a steady electricity supply. Among 

all storage devices, batteries become the frontliner in facilitating 

uninterrupted electricity [1, 2]. Recently, lithium-ion batteries (LIBs) have 

dominated the commercial market, serving a wide range of applications 

from small-scale portable devices to large-scale electric vehicles. However, 

LIBs face challenges that make them less suitable for long-term energy 

solutions, including issues with the abundance of Li-metal, use of expensive 

transition metals (Ni and Co) as cathodes, and safety concerns [3, 4]. These 

challenges have led researchers to explore alternative storage devices that 

combine low cost with superior electrochemical properties. One such 

alternative is dual-ion batteries (DIBs), offering a promising alternative to 

LIBs [5]. The working principle of DIBs involves the interaction of both 

cations and anions with both the cathode and anode electrodes 

simultaneously. In contrast, LIBs involve Li ions interacting with one 

electrode (cathode/anode) at a time and called the rocking chair batteries. 

Aluminium anodes can be used in DIBs as they feature high volumetric 

capacity (∼8040 mAh/cm3; four times that of lithium anode), high 

abundance and environmental inertness [6, 7]. Generally, in dual-ion 

batteries (DIBs), graphite serves as both the cathode and anode electrodes, 

and during the charging process, cations and anions intercalated into the 

graphite electrode [8, 9]. DIBs commonly employ lithium salts such as 

LiPF6 and LiTFSI dissolved in carbonate solvents that serve as active 

electrolytes. However, these electrolytes encounter critical issues, including 

the decomposition of the carbonate solvent at high charging voltages (>4.5 
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V) and the co-intercalation of the solvent molecules [10]. To address these 

challenges, researchers have introduced ionic liquid (IL) electrolytes which 

can tolerate the high charging voltage without further decomposition. 

Ionic liquids are low melting point salts and remain in liquid state under 100 

ºC. ILs show several interesting properties for electrochemical application 

such as low vapor pressure, broad electrochemical window (ECW) and 

higher ionic conductivity. The electrochemical reaction of the battery is 

mainly driven by the cathodic limiting (VCL) and anodic limiting (VAL) 

potentials of the electrolyte [11] and the gap between VCL and VAL is the 

ECW. In battery, the VCL/VAL must be placed above/below the Fermi 

energy level of anode/cathode to prevent the unwanted decomposition of 

the electrolytes. On the other hand, the ECW gap depends on the HOMO-

LUMO position the ECW gap is either less or equal to the HOMO-LUMO 

gap [12]. Also, the open circuit voltage of the battery depends on the ECW 

values of the electrolytes. Therefore, the positions of VCL, and VAL are very 

important for the stability of a battery. Thus, we can calculate the electrolyte 

stability through the calculations of ECW values to understand the 

suitability of the IL based electrolytes for the high voltage DIBs. 

On the other hand, ILs can play as active intercalant species along with the 

role of a solvent. Organic cation intercalated graphite-based DIBs are 

achieved high voltage (>4.5 V) comparable to LIBs. Different organic 

cations have their unique influences to make high voltage DIBs [13]. It is 

necessary to understand the exact mechanism of the organic cations 

intercalation into the graphite anode. However, one major problem is the 

exfoliation of the graphite electrode. Therefore, finding a suitable cation 

anion pair IL is essential for low-cost high voltage DIBs. 

Thus, in this thesis using various computational approaches such as DFT, 

atomistic simulations (classical and ab initio molecular dynamics), and 

machine learning techniques, we report the role of electrochemical window 

towards the designing of ionic liquids based electrolytes for high voltage 

dual ion batteries. 
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2. Objectives 

Our main objective of this thesis is to calculate the ECW of the ILs to find 

suitable IL electrolytes for high voltage DIBs. 

i. To calculate the ECW for the different organic cations coupled with 

AlCl4 and OTf anions based ILs using various computational 

approaches. 

ii. To predict the ECW for the series of ILs electrolytes consisted of 

various cations and anions using machine learning techniques. 

iii. To investigate the intercalation mechanism of the imidazolium-

based aromatic cation (DMPI) inside the graphite anode as well as 

find the voltage of the this upon coupled with the AlCl4 intercalated 

graphite cathode. 

iv. To calculate the voltage for the intercalation of the pyrrolidinium 

based non-aromatic organic cation inside the organic anode 

(coronene) over the graphite anode. 

v. To find the suitable pair of cation and anion based ILs for the high 

voltage DIBs using machine learning techniques. 

 

3. Summary of the research work  

The contents of each chapter included in the thesis are discussed as follows: 

3.1. Introduction to DIBs and Computational Methods (Chapter 1) 

In this chapter, we have briefly discussed about the different types of DIBs 

and their working mechanisms. A thorough discussion has been presented 

about the ILs and their properties. The concept of the ECW and its role in 

battery has been explained in detail. Also, the role organic cation 

intercalation into electrode has been explained properly. 

All the properties of ILs have been calculated using the density functional 

theory (DFT), molecular dynamics (classical and ab initio method), and 

machine learning (ML) tools. Hence, we have discussed the basic principle 

behind all these computational methods as well as techniques at the end of 

this chapter.   
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3.2. Optimization of Computational Methods for DIBs (Chapter 2) 

In this chapter, a series of IL and molten salt electrolytes has been 

considered for the calculation of electrochemical window using various 

computational methods. The ILs and molten salts consist of imidazolium, 

pyrrolidinium, urea and acetamide-based cations coupled with AlCl4 and 

OTf (trifluoromethanesulfonate) anions (Figure 1). The thermodynamic 

cycle and classical molecular dynamics followed by DFT (MD+DFT) 

approaches have been implemented to calculate the ECW of all these 

electrolytes for Al DIBs. The oxidation and reduction potentials of the 

individual ions have been calculated with respect to the Al3+/Al electrode 

using the thermodynamic cycle method. Using the combined MD-DFT 

method have been deployed to calculate the cathodic (VCL) and anodic 

(VAL) potentials. We have classified MD+DFT method in two parts such as 

AIMD-min (minimization) and AIMD-sp (single point) methods. In the 

AIMD-min method, the classically simulated structure has further relaxed 

in ab initio method for few steps, then performed density of states (DOS) 

calculation to estimate the VCL and VAL. Whereas, in the AIMD-sp method, 

the classically simulated structures have considered for direct single point 

DOS calculation without further optimization. The calculated ECWs from 

the AIMD-min method are close to the experimental results compared to 

the other two methods. Classically equilibrated structures are not 

necessarily stable in DFT calculation, hence in AIMD-min method the 

structures are formed a stable potential energy surface (PES) which 

replicate the exact liquid structure present in experimental study. Overall, 

this study establishes a unique computational method to calculate the ECW 

accurately with respect to the experimental results.  
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Figure 1. Ionic liquids and molten salts (MSs) are investigated. Structures 

of cations: (a) Imidazolium moieties with a different alkyl group (where, n 

= 2, 3, 4, 6 and 8), (b) N, N-butylmethylpyrrolidinium (BMP) cations, (c) 

[AlCl2(U)2]
 +, and (d) [AlCl2(AcAm)2]

 + (where U is urea and AcAm is 

acetamide) and structure of anions: (e) AlCl4 , and (f) 

trifluoromethanesulfonate (OTf).  

 

3.3.Optimization of ML Techniques for DIBs (Chapter 3) 

In this chapter, a data driven ML technique has been constructed to predict 

the ECW for IL electrolytes in DIBs. From our previous study (Chapter 2) 

it’s confirmed that the AIMD-min method is the best among other methods 

to calculate the ECW accurately. However, calculating the ECW using 

AIMD-min method for large set of ILs is very difficult and computationally 

expensive. Hence, ML approach is a way forward to solve this challenge. 

To train the ML model we have considered ECW form the MD+DFT data 

along with few experimental values. A total of seven ML algorithms has 

been considered to train the machine. Among these algorithms extra trees 

regression (ETR) emerges as the optimal model with the lowest mean 

absolute error (MAE) of 0.37 V for the prediction of ECW (Figure 2). Our 

ML predicted MAE of 0.37 V is much lower compared to previous DFT 

computed MAE of 0.68 V for two different methods of ECW calculation. 

The model successfully predicted the ECW of 660 IL electrolytes. 

Furthermore, our predicted ECWs are in good agreement with the 

previously measured experimental results. Additionally, an interpretable 
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ML approach has been employed to understand the local and global features 

importance towards the prediction of ECW. Overall, this study promises to 

the alternative of the expensive computational study as well as helps to 

design suitable IL electrolytes for high voltage DIBs. 

 

 

Figure 2. (a) The MAEs of seven considered ML models for the train (blue) 

and test (magenta) data set. (b) The scatter plot of ML predicted vs. DFT 

calculated ECW is shown for the ETR model. 

 

3.4. Role of Aromatic Ionic Liquid for DIB (Chapter 4) 

In this chapter, imidazolium based ionic liquid, 2,3-dimethyl-1-propyl 

imidazolium chloride (DMPI-Cl) with AlCl3 salt has been implemented as 

an electrolyte, where DMPI-AlCl4 IL has treated as an active intercalant 

species. During the charging process, the aromatic DMPI cations are 

intercalated inside the graphite anode (Figure 3) and counter AlCl4 anions 

get intercalated into graphite cathode. DMPI intercalation followed the 

staging mechanisms by forming stage-1, stage-2, stage-3, and stage-4 upon 

intercalation into the graphite. Higher cell voltage of 3.7-4.6 V, comparable 

to LIBs along with maximum capacity of 62 mAh/g has been achieved. The 

charge transfer analysis presents a +0.87 |e| charge transfer from DMPI to 

graphite indicating DMPI cation intercalation into graphite during the 

charging process. Moreover, the metallic character of DMPI cation 

intercalated graphite system and diffusion barrier as low as 0.2 eV suggests 
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a constant electronic conductivity and better rate performance, respectively. 

Overall, this study provides clear understanding of the organic cation 

(DMPI) intercalation into graphite anode and helps to fabricate low-cost 

dual graphite-based DIBs with better electrochemical properties.    

 

 

Figure 3. DMPI intercalated structures: (a) Perpendicular orientation, and 

(b) Parallel orientation. Optimized structures of DMPI intercalated system; 

(c) S1 (Top), (d) S2 (Bridge 1), (e) S3 (Bridge 2), (f) S4 (Hollow). Here, 

brown, blue, cyan, and magenta colours represent graphite layer, N, C, H of 

DMPI cation, respectively.  

 

3.5. Importance of Non-aromatic Ionic Liquid for DIB (Chapter 5) 

Further to this study, a non-aromatic pyrrolidinium based IL, N-butyl-N-

methyl pyrrolidinium chloride (BMP-Cl) with the AlCl3 salt has been 

employed as an electrolyte and polycyclic aromatic hydrocarbon based 

coronene as an anode. We have systematically studied the BMP cation 

intercalation inside the coronene anode (Figure 4). The BMP intercalated 

coronene has shown lower binding energy (-1.71 eV) compared to the 

graphite intercalated (-2.36 eV). Indicating an optimal interaction with the 

coronene electrode which facilitates the overall charge/discharge 

reversibility of the DIBs. Graphite intercalated non-aromatic (BMP) cation 

binding energy is less compared to aromatic DMPI cation (Chapter 4), due 

to presence of strong π-π interaction between aromatic DMPI and graphite 
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layers. Our calculated discharge voltage of 3.1 V and 3.05 V, and maximum 

capacity of 116 mAh/g and 130 mAh/g have been observed for the graphite 

coronene dual ion battery (GCDIB) and dual graphite battery (DGB), 

respectively. Density of states (DOS) and Bader charge analysis reveals that 

BMP cation is intercalated successfully indicating reduction of electrode 

materials during charging process. These results support a clear 

understanding of BMP cation intercalation into both coronene, and graphite 

anodes and motivates towards fabrication of new class of low-cost organic 

anode DIBs with optimum electrochemical performance.   

 

 

Figure 4. Optimized structures of different orientation of BMP cation 

intercalated coronene anode (a) S1, (b) S2, and (c) S3. The blue, cyan 

colours stand for N, C of BMP cation and brown colours represent the 

coronene carbons and magenta for hydrogen of the system. 

 

3.6. Optimization of Voltage for DIBs (Chapter 6)  

In this chapter, large-scale cations and anions are screened to find suitable 

IL electrolytes for the high voltage DGBs using an interpretable ML 

approach. We have predicted the cations binding energy (BE) using ML 

techniques. Few organic cation’s BEs have calculated in DFT level to train 

the ML model. Among the eight considered ML algorithms, the XGBR is 

found to be the best fitted algorithm for the prediction of BE for the 

unknown dataset (Figure 5). Using the XGBR model, a total of 880 BEs 

have been predicted successfully. 



 

xiii 

 

 

Figure 5. The RMSEs and MAEs of eight considered ML models for the 

(a) train and (b) test data set. The scatter plots of ML predicted vs. DFT 

calculated binding energies for (c) XGBR and (d) GBR models. 

 

Moreover, our predicted BEs are in good agreement with DFT level of 

accuracy. Furthermore, using these BEs of cations and anions, we have 

calculated a comprehensive set of 20,790 voltages, including various 

combination of stages with equal number of ions. Finally, we have designed 

different classes of ~500 DGBs having low to high voltage. Overall, this 

ML predicted voltage database can serve as a guidepost for experimental 

researchers to find the optimum ILs based electrolytes to enhance the 

fabrication of cost-effective dual-ion based electrochemical devices. 

 

4. Conclusion 

The conclusion of the thesis can be outlined as follows: 

1. AIMD-min method plays as the best fitted approach for calculation of 

ECW among considered the three methods. In the thermodynamic cycle 
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approach, the ECWs of the considered ILs are dependent on the 

reduction potentials of the organic cation and oxidation potentials of 

anions. The accuracy of this method is not good which could be due to 

the non-availability of neighboring intermolecular interaction. The 

AIMD-sp method is unable to provide good accuracy of ECWs for IL 

electrolytes due to the formation of unstable potential energy surface 

(PES).  

 

2. Our ML approach provides faster and accurate ECW predictions 

compared to the MD-DFT method. Out of the seven ML algorithms 

employed, the ETR model stands out as proficient in accurately 

predicting the ECW. Using the optimized parameters of our best fitted 

ETR model, we successfully predicted the ECW values for 660 ILs. 

Hence, our findings provide a foundation for accurately predicting ECW 

values of ILs, enabling advancements in the design of IL electrolytes for 

improved DIBs performance. 

 

3. DMPI cation prefers to intercalate parallel over the perpendicular 

orientation into AB stacked graphite plane due to π-π interaction of 

aromatic imidazolium cation with graphite hexagonal rings. Our 

calculated total energy values for different stages of DMPI cation 

intercalation follow the stability trend as: stage-2 < stage-4 < stage-1 

during the initial charging process. Our calculated average voltages for 

early and later periods of intercalation (3.7 V and 4.6 V) are in good 

agreement with the experimental range (3.1-4.3 V). Thus, this study 

helps to design other organic cations intercalated graphite for high 

voltage DIBs. 

 

4. The BMP cations are strongly interacting with the graphite layer due to 

having higher binding energy of 2.36 eV compared to the coronene 

binding energy of 1.71 eV. The theoretical voltage of GCDIB is 



 

xv 

 

calculated to be 3.1 V which again very much in agreement with the 

experimental voltage range of 3.1-3.9 V. The cycle number of the 

GCDIB may increase due to the less exfoliation of the coronene 

compared to DGB.  

 

5. For the prediction of cation BEs, the XGBR algorithm emerged as the 

most suitable, as lowest RMSE of 0.15 eV for predicting BEs from an 

unfamiliar dataset. From our ML+DFT approach yielded 495 graphite-

based DIBs, where 69, 230, and 196 fell within the high voltage (HV) 

range of 4.0 < HV < 7.0, moderate voltage (MV) range of 2.5 < MV ≤ 

4.0, and low voltage (LV) range of 0.001 < LV ≤ 2.5, respectively. On 

the other hand, ILs based on BF4 and PF6 anions exhibited high voltage 

behavior when coupled with most considered cations (except 

pyridinium and thiazolium).  
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1.1. Energy Storage Devices 

Due to the unprecedented growth in science and technology, as well as the 

increase in the world population, energy consumption is increasing day by 

day. Despite the advancements in science and technology, fossil fuels are 

still the primary source of energy in the world.[1] As a result, the increased 

carbon footprint in the earth's atmosphere leads to climate catastrophe and 

global warming. Additionally, the unsustainability of non-renewable 

sources is raising concerns about future energy demand. As a result, it is 

imperative to take a bold and swift step towards the new energy sources. On 

the other hand, the sources of renewable energies like wind, solar and hydro 

powers are inexhaustible resources that serve a clean and sustainable way 

to address the growing energy problems.[2,3] Due to their intermittent 

nature, these resources are almost not usable in practical terms. Besides, 

these renewable sources are costly and limited by the geographical 

positions. Hence, this problem has carved the momentum to a new energy 

era. In this context, the energy storage devices (ESDs) are getting attention 

worldwide as key players to maintain the uninterrupted electricity to solve 

the constant energy demand. Besides, the ESDs can solve the old, 

centralized power network to grid scale energy storage system by making 

them decentralized and can be used in on-demand situations. The batteries 

are the frontrunner among ESDs because of their high voltage and capacity 

compared to other products like low-efficient solar power gadgets and 

capacitors.[4,5] 

Batteries are electrochemical energy storage systems, which convert 

electrical energy and store it in the form of chemical energy during charging. 

The chemical energy is converted to electrical energy during the discharge 

process. Nowadays, batteries are used in all the devices from small portable 

electronic devices to large-scale grid storage devices like electrical vehicles. 

Till now, researchers have developed different types of battery technologies 

such as lead acid, nickel-based batteries and other metal ion based (Li, Na, 
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K and Mg ions) batteries. Among these, the Li-ion batteries (LIBs) have 

largely captured the commercial energy market due to their high voltage and 

capacity.[6,7] The high energy demand, higher energy density and 

significant technology development has led to rapid scale up in the 

production of LIBs.[8] On the other hand, the Li metal resources are limited 

in the earth’s crust and expensive transition metal derived materials are used 

as cathode in LIBs, which are making them more costly in nature. 

Moreover, the thermal runway effect of LIBs is not resolved properly and 

the various shortcomings of LIBs make them less suitable for long-run 

energy storage devices.[9,10] Regardless, other metal ion batteries, 

particularly Na-ion batteries, have become alternative storage devices, but 

they are facing various problems like low volumetric and gravimetric 

capacity and hard to achieve the boarder voltage window, albeit of high 

abundance of Na metal.[11] Therefore, the researchers are trying to develop 

a low-cost high voltage ESD using the most abundant materials. 

1.2. Dual-Ion Batteries  

Dual-ion batteries (DIBs) have emerged as a bright prospect in energy 

storage devices with low cost and high-performance electrochemical 

properties. The mechanism of DIBs and LIBS are different.  The LIBs 

follow shuttle mechanism i.e., Li ions are interacting with one electrode at 

a time, whereas, in the DIBs, both ions are interacting with separate 

electrodes simultaneously (Figure 1.1).[12,13] Unlike LIBs, the anion has 

an immense role in DIBs mechanism. Hence, electrolytes play an important 

role in DIBs as the anions and cations originate from the electrolyte. With 

the advent of anion acceptor-type graphite intercalation compounds (GICs), 

the concept of DIBs was formed.[14,15] In 1989, McCollough and 

coworkers developed carbonaceous materials-based electrodes with non-

aqueous electrolytes.[16] For the same reason, the DIBs are also called the 

dual-carbon batteries. Later, the dual-carbon batteries have been 

conceptualized as dual-graphite batteries (DGBs), as graphite is used as 
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both the electrodes as they are cheaper compared to LIBs. In 2012, Placke 

and coworkers first pioneered the definition of “dual-ion batteries” and this 

name is used till today.[17,18] Depending on electrolytes used, various 

types of DIBs have been introduced. 

 

 

Figure 1.1: Working mechanism of (a) Rocking chair batteries like LIBs, 

where the Li ion shuttling between cathode and anode and (b) DIBs, where 

both the cations and anions are interacting cathode and anode 

simultaneously. Figure reprinted with permission from Ref. 13. Copyrights 

2020, ELSEVIER. 

 

1.2.1. Metal Salt-Solvent Based DIBs 

Metal salt-solvent based DIBs involve metal salts combined with carbonate 

based organic solvents such as ethylene carbonate (EC), ethyl methyl 

carbonate (EMC), etc., to form the active electrolyte. Recently, LiPF6 DIBs 

have emerged due to their high energy density and voltage (4.5 V).[19,20] 

Here LiPF6 salt dissolved in organic solvent is used as electrolyte while Li 

metal and graphite are considered as anode and cathode, respectively.[21] 
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The PF6 anions are intercalated/deintercalated into the graphite and Li 

cations are deposited/stripped during the charging/discharging process 

(Figure 1.2a).[22] Anion intercalation into the graphite cathode follow the 

systematic staging mechanism, as verified both computationally and 

experimentally.[23,24] Pathak and co-workers have studied the PF6 anion 

intercalation into graphite computationally.[22] They have shown different 

types of staging mechanisms such as stage-1, stage-2, stage-3 and stage-4. 

Stage-4 is found to be the most stable at the initial state of charging. In the 

final state of charging, it follows the maximum intercalation by achieving 

the stage-1 mechanism. In experiments, it is observed that carbonate 

solvents can decompose at high voltage (> 4.5 V).[25] Furthermore, the 

solvent co-intercalation has also been observed into the graphite cathode 

which can reduce the overall performance of the DIBs.[25] Hence, DIBs 

based on ionic liquid electrolytes which are composed of bulkier ions is also 

being investigated. 

 

 

Figure 1.2: Different types of DIBs: (a) metal-salt DIB (like LiPF6), (b) Al 

anode-based DIB and (c) dual graphite-based DIB. Figure reprinted with 

permission from Ref. 15. Copyrights 2022, WILEY‐VCH. 
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1.2.2. Ionic Liquids Based DIBs 

To overcome the issues of organic solvents, researchers have introduced 

room temperature ionic liquids (RTILs) electrolytes in DIBs. Carlin and 

coworkers have introduced IL electrolytes which are combination of cations 

such as 1-ethyl-3-methyl imidazolium (EMIM), 1,2-dimethyl-3-

propylimidazolium (DMPI), N, N-butyl-methyl pyrrolidinium (BMP) and 

anions such as CF3SO3 (OTf), AlCl4, PF6 and BF4.[26-28] In 2015, Lin et 

al. have introduced ultrafast charging Al-DIBs using the EMIM-Cl/AlCl3 

IL electrolyte in graphite cathode (Cn) and Al anode system.[29] The 

cathodic and anodic reactions are as follows, 

Cathode: 𝐶𝑛 + 𝐴𝑙𝐶𝑙4
− ⟷ 𝐶𝑛[𝐴𝑙𝐶𝑙4] + 𝑒−    (1.1) 

Anode: 4𝐴𝑙2𝐶𝑙7
− + 3𝑒− ↔ 7𝐴𝑙𝐶𝑙4

− + 𝐴𝑙    (1.2) 

The cathodic reaction is about the intercalation of AlCl4 anions into the 

graphite cathode where AlCl4 anion follows the proper staging mechanism 

inside the graphite layers. On the other hand, the Al2Cl7 anion also forms in 

the electrolyte medium, which gets reduced to Al to deposit on the Al 

surface of the anode (Figure 1.2b). However, in the Al-DIBs, limited 

voltage of up to 2.5 V can be achieved. Nevertheless, Lv et al. have 

introduced the organic cation (DMPI) intercalation into graphite anode as 

well as anion (AlCl4) intercalation in DGBs (Figure 1.2c).[30] They have 

achieved a high voltage of ~4.6 V. Simultaneously, they have proved that 

the ILs can be used as an active intercalant material as well as solvents. 

Moreover, Li and coworkers have studied the pyrrolidinium based ILs 

electrolytes in DGBs.[31] Therefore, it’s well understood that the 

electrolytes play a critical role in determining the electrochemical properties 

of DIBs. 

 

1.3. Non-aqueous Electrolytes  

Several types of non-aqueous electrolytes are developed over time such as 

organic solvents, additives, and ionic liquids, among others to increase the 

overall performance of the DIBs.  
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1.3.1. Organic Solvents 

The organic solvents are mainly of carbonate based like ethyl methyl 

carbonate (EMC), ethylene carbonate (EC) and propylene carbonate (PC), 

and commonly used electrolytes due to having high ionic conductivity, 

excellent solubility for active salts, low viscosity, and low cost.[32,15] On 

the other hands additives are used to improve the ionic conductivity of the 

organic solvents and save the active electrolytes from decomposition. The 

fluorine containing derivatives such as fluoroethylene carbonate (FEC), 

2,2,2-trifluoroethyl carbonate (F-EMC) and tris(hexafluoro-isopropyl) 

phosphate (HFIP) are considered the suitable additives for the DIBs. 

[33,34] However, these organic-additive based electrolytes do not perform 

well in high voltage DIBs case as it undergoes decomposition due to having 

smaller electrochemical window. On the other hand, electrode exfoliation 

occurs due to co-intercalation of the solvent molecules. To overcome these 

issues, researchers are focusing on ionic liquids (ILs) as electrolytes which 

has the potential to address all those issues. In the following sections, we 

have discussed in detail about the importance of ILs in batteries. 

 

1.3.2. Ionic Liquids  

ILs are low melting point salts which are the combination of Bronsted acid 

and base. These salts maintain a liquid state below 100 ºC, with many 

remaining liquids at room temperature due to the weak electrostatic 

interaction between cations and anions. Room temperature ionic liquids 

(RTILs) exhibit fascinating properties, including a wide electrochemical 

window (ECW), robust thermal and chemical stability, minimal volatility, 

and high ionic conductivity.[35,36] These distinctive features position them 

as ideal electrolytes for DIBs. Here, we have explained different types of 

ILs in the following section.  
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1.3.2.1. Different Types of Ionic Liquids Electrolytes 

ILs present a versatile electrolyte platform with adjustable physicochemical 

and electrochemical properties, making them highly attractive for a broad 

spectrum of applications, especially in energy storage devices. These 

compounds comprise both organic and metal cations combined with various 

anions. The pioneering work of Carlin and colleagues in 1994 marked the 

use of ILs as electrolytes in DIBs.[37] They explored different imidazolium 

cations with varying alkyl groups, paired with anions like AlCl4, BF4, PF6, 

CF3SO3 (OTf), trifluoromethanesulfonylimide (TFSI), and 

fluoromethanesulfonylimide (FSI).[30,31] Beyond imidazolium moieties, 

other organic moieties, such as pyrrolidinium and morpholium cations, have 

been investigated for DIB studies. In the realm of metal-based cations, Li-

based TFSI stands out as a commonly used electrolyte in DIB technology. 

Parallelly, the abundant metal-based K-FSI has found application as an IL 

electrolyte in DGB, where K+ and FSI anions intercalate into graphite 

electrodes.[24] 

 

1.3.2.2. Broad Electrochemical Window (ECW) of Ionic Liquids  

The ECW of the battery is thought to be characterized by the energy levels 

of the highest occupied molecular orbital (HOMO) and lowest occupied 

molecular orbital (LUMO) of the electrolyte. However, the stability of the 

electrolytes is determined by the oxidation and reduction potentials. While 

HOMO/LUMO are electronic structure properties of the electrolyte, 

oxidation/reduction potentials depend on the change of Gibbs free energy 

upon oxidation and reduction of the electrolyte. Peljo and co-workers have 

clarified the misconception between the HOMO/LUMO gap and ECW.[38] 

ECW is measured as the difference between cathodic limiting (VCL) and 

anodic limiting (VAL) potentials of the electrolyte (Figure 1.3) which lies 

within the HOMO/LUMO gap. For a stable electrolyte, the VCL should 

remain above the Fermi energy of the anode (𝜇𝐴) and VAL should remain 

below the Fermi energy of the cathode (𝜇𝐶).[39-41] Otherwise, electrolytes 
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will undergo oxidation upon the electron transfer from HOMO of the 

electrolyte to the Fermi level of the cathode. Similarly, electrolyte reduction 

can occur upon the electron transfer from Fermi level of anode to LUMO 

of the electrolyte. Therefore, the exact position of the VCL and VAL are 

important to maintain the stability of the IL electrolytes. Several 

computational techniques have been established to calculate the ECW. 

 

 

Figure 1.3: Systematic energy profile diagram of the HOMO/LUMO of 

electrolyte and Femi energy levels of electrodes, (a) schematic diagram of 

both electrodes Fermi energy levels and these are situated inside the 

HOMO-LUMO gap of electrolyte, (b) introduction of VAL and VCL instead 

of HOMO and LUMO to prevent unwanted decomposition of electrolyte, 

and (c) stable energy profile for electrochemical system. Figure reprinted 

with permission from Ref. 40. Copyrights 2020, Royal Society of 

Chemistry. 

 

Banerjee and co-workers have developed the thermodynamic cycle 

approach to calculate the ECW using the oxidation and reduction potentials 

of the individual ions.[42] On the other hand, Ceder et al. have utilized 

combined molecular dynamics and density functional (MD+DFT) approach 

to calculate the ECW using the HOMO/LUMO values of the IL 

electrolytes.[39] Moreover, Maginn and co-workers have extended the 

MD+DFT method by introducing the AIMD-min and AIMD-sp 

methods.[41] Thus, measurement of the ECW is important to understand 

the stability of IL electrolytes as well as to determine the accessible  voltage 

range of the battery. 
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1.3.2.3. Ionic Conductivity of Ionic Liquids 

In general, ionic conductivity of the IL is calculated from the Stokes-

Einstein equation (1.3).[40] 

 𝜅 =
𝑍2𝐹𝑒𝜌

6𝜋𝜂𝑀𝑤
(𝑅+

−1 + 𝑅−
−1)      (1.3) 

Where, 𝜅 is the conductivity, Z is the charge on the ion, e is the electronic 

charge, 𝜌, 𝜂 are the density and viscosity of the medium, Mw is the 

molecular weight of IL and R+, R- are the ionic radii of the cation and anion. 

From equation 1.3, it has been observed that conductivity depends on ion’s 

mobility, viscosity of the medium, number of charge carriers, ionic radius, 

density, and molecular weight. Viscosity is the most important parameter to 

determine the overall conductivity of the ILs. It has been observed that the 

conductivity is inversely proportional to the viscosity of the ILs. However, 

the contribution of anion is found to be more in the determination of 

viscosity compared to the cation.[43] For the imidazolium based ILs, the 

viscosity is affected more by the nature of anion than the cations (alkyl 

groups of the imidazolium ring). Among the cation part, the long chain alkyl 

group cations possess higher viscosity due to the strong van der Waals 

interaction of long hydrocarbon chain. However, the methyl substituted 

imidazolium ring led to high viscosity compared to the ethyl group.[43] 

Hence, ethyl and methyl substituted imidazolium ring is the most used 

cation in IL-based electrolyte in DIBs due to having optimum ionic 

conductivity.[24,29,40] Heterocyclic rings containing ILs also have higher 

conductivities due to lower molecular mass or the cation becoming more 

symmetrical.[44]   

 

1.3.2.4. Ionic Liquids as Intercalant Species 

In the previous section, we explored the utilization of ILs as a superior 

substitute for organic solvents/electrolytes, leveraging their exceptional 

attributes for enhancing the electrochemical performance of DIBs. Beyond 

serving as solvents, ILs act as active intercalant species, where both the 

cations and anions of the ILs intercalate into the layered host materials like 
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graphite. This concept has seen limited exploration, both experimentally 

and computationally.[30,31,45] Carbonaceous host materials such as 

graphite and polycyclic aromatic hydrocarbons (PAHs) can act as 

electrodes, offering enough space to accommodate the bulky cations and 

anions of ionic liquids (ILs).[46,47] The development of dual graphite 

batteries (DGB) exemplifies this, wherein imidazolium-based DMPI 

cations and AlCl4 anions intercalate into the graphite anode and cathode 

during the charging process.[30,45] Fan et al., introduced a novel IL of 1-

butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl) imide (PP14-

TFSI) based DIBs, where the PP14 cations and TFSI anions are intercalated 

inside the graphite electrode.[48] Later, a novel DGB was developed using 

the pyrrolidinium based BMP-TFSI IL with voltage of more than 3.6 V.[49] 

To reduce the exfoliation of the graphite the PAH based electrode 

(coronene) has been used for active organic cation intercalation.[46,50] 

Overall, the IL intercalation research can lead to design of cheap 

carbonaceous material based batteries with better electrochemical 

properties compared to traditional metal anode based batteries. Therefore, 

it’s necessary to study DIBs with IL electrolytes to serve the future energy 

demand.  

 

1.3.3. Molten Salts Electrolytes 

Molten Salt (MS) electrolytes are the alternative low-cost electrolytes used 

in Al-DIBs which can replace the costly imidazolium based ILs. MS 

electrolytes operate at high temperature (~180 ºC) and are the combination 

of binary and trinary salts of KCl, AlCl3 and NaCl.[51-53] Due to high 

polarization power of small size cations (Na+ and K+), their strong 

adsorption upon intercalation inside the electrode reduces the overall 

reversibility of the battery. Therefore, smaller cations are substituted with 

long alkyl chain organic cations derived from amide and urea, possessing 

optimal size and moderate ionic conductivity. Various amide-based MS 

electrolytes, including urea, acetamide, propionamide, and butyramide, are 
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explored in Al-DIBs, taking into account their physical characteristics like 

density, viscosity, and conductivity. The density and viscosity order of 

AlCl3-amide derivatives are urea > acetamide > propionamide > 

butyramide.[54] These amides can form stable complex isomers with the 

AlCl3 salt upon binding through their N and O atoms such as 

[AlCl2(urea)2]
+[AlCl4]

- and [AlCl2(acetamide)2]
+[AlCl4]

-.[55] Urea based 

MS electrolyte have good prospects due to possessing higher ionic 

conductivity and broad ECW compared to others MS electrolytes. 

Furthermore, N-ethyl urea and N-methyl urea are also known to increase 

the overall performance of the Al-DIBs.[56,57] 

 

1.4. Other Electrolytes 

Non-aqueous electrolytes of AlCl3 derivatives are highly hygroscopic in 

nature which requires to be operated in an inert gas atmosphere. Other than 

non-aqueous electrolytes, aqueous electrolytes are also a cost-effective and 

readily available option for use in DIBs. However, these electrolytes tend 

to decompose in Al-DIBs due to the high reduction potential of Al3+/Al, 

leading to the generation of H2 gas from aqueous electrolytes. To address 

this challenge, a novel class of electrolytes known as ‘water-in-salt’ 

electrolytes (WiSEs) has been developed. WiSEs primarily consist of super-

concentrated active salts in water, enhancing the electrochemical window 

of aqueous electrolytes.[58-61] Researchers have also introduced polymer 

gel electrolytes for Al-DIBs. Sun et al. first derived the gel electrolytes with 

the combination of AlCl3-acralamide along with the acidic IL of 1-ethtyl-3-

methylimidazolium chloride (EMIM-Cl).[62] A quasi-solid-state Al-DIBs 

battery has been reported by using the polymer gel electrolytes of 

Et3NHCl/AlCl3 which provides high voltage around ~2.9 V.[63] Moreover, 

hybrid electrolyte of LiAlCl4 + [EMIM]Cl based DIBs have also been 

reported, where Li interacts with the LiFePO4 cathode and Al 

deposition/stripping occurs at anode.[64]  
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1.5. Theory 

In this part, we have presented a brief outline of the theory and 

computational methods used for our thesis work. In case of solid-state 

materials, due to their periodic nature, properties are highly correlated with 

their atomic arrangements. Now, we have discussed the interaction nature 

between electrons and nucleus that determines the atomic properties of the 

materials. 

 

1.5.1. Schrödinger Equation  

Electronic structural properties of the materials and molecules can be found 

by resolving the time independent Schrödinger equation expressed as 

follows, 

 

𝐻̂Ψ(𝑟, 𝑅) = 𝐸Ψ(𝑟, 𝑅)       (1.4) 

 

Here, the properties of the system are descried by the Hamiltonian operator 

𝐻̂. Whereas, the wave function Ψ obtains the system information including 

nuclei and electrons, and operating 𝐻̂ on Ψ we obtain the total energy of the 

system E. The Hamiltonian operator 𝐻̂ for a many particles system can be 

given as,  

 

𝐻̂ = −
ℎ2

2𝑚𝑒
∑ 2∇𝑖

2
𝑖 − ∑

ℎ2

2𝑀𝐼
2∇𝐼

2 +
1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 +
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑅𝐼−𝑅𝐽|
−𝐼≠𝐽𝐼

∑
𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝑖,𝐼         (1.5) 

 

Here, 𝑚𝑒 and 𝑟𝑖 are the mass and position of the electron respectively. 

Whereas 𝑀𝐼, 𝑅𝐼 and 𝑍𝐼 represents the mass, position, and charge of the 

nuclei respectively. In the equation 1.5, the first and second terms are 

denoted for the kinetic energy of the electron and nuclei, respectively. While 

the third and fourth terms represent the electron-electron and nuclei-nuclei 
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repulsions respectively. And the last term arises from attractive interaction 

between electrons-nuclei.  

But for solid state materials, the Hamiltonian operator becomes extremely 

complicated due to large number of electrons and nuclei present in the 

system. As a results, obtaining exact solution of the Schrödinger equation 

becomes practically impossible. To find a way out of this problem there is 

necessity of utilizing some approximation. Born-Oppenheimer (BO) 

approximation is quite useful in this context.[65] 

 

1.5.1.1. Born-Oppenheimer (BO) Approximation  

In generally, the nucleus is much heavier (~1836 times) than the electron 

mass, Born-Oppenheimer approximation considers the speed of the nuclei 

to be stationary compared to the electron.[65] Therefore, the kinetic energy 

of the nuclei can be neglected in comparison to the kinetic energy of 

electron from the Schrödinger Equation. 

Hence, the Hamiltonian operator is as follows,  

 

𝐻̂ = −
ℎ2

2𝑚𝑒
∑ 2∇𝑖

2
𝑖 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 +
1

2
∑

𝑍𝐼𝑍𝐽𝑒2

|𝑅𝐼−𝑅𝐽|
− ∑

𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝑖,𝐼𝐼≠𝐽  (1.6) 

 

Now, considering a system with single nucleus the above equation becomes,  

 

𝐻̂ = −
ℎ2

2𝑚𝑒
∑ 2∇𝑖

2
𝑖 +

1

2
∑

𝑒2

|𝑟𝑖−𝑟𝑗|𝑖≠𝑗 − ∑
𝑍𝐼𝑒2

|𝑟𝑖−𝑅𝐼|𝑖,𝐼    (1.7) 

Even after employing the BO approximation to solve the Schrödinger 

Equation of a many electrons system exactly, in order to make it solvable 

some other approximations like Hartree-Fock theory (HF theory), density 

functional theory (DFT) etc. came to the picture. Therefore, in the next 

section we have discussed about density functional theory (DFT). 
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1.5.2. Density Functional Theory (DFT)  

Density functional theory (DFT) considers the electron density of a many-

body system to determine its electronic structure and properties. The 

approach is mainly depending upon the three positional coordinates, thereby 

bypasses the complexities associated with the wavefunction approach. The 

conceptual foundation for DFT was laid by Thomas-Fermi, who introduced 

the concept of using an ideal gas of non-interacting electrons. Additionally, 

Hohenberg-Kohn formulated two theorems, indispensable for DFT 

calculations. Subsequent sections will delve into an overview of 

DFT.[66,67] 

 

1.5.2.1. The Hohenberg-Kohn Theorems  

DFT is mainly built on the two theorems proposed by P. Hohenberg and W. 

Kohn as follows, 

Theorem 1: The first theorem postulates that the ground state properties of 

the many electron systems can be described by the electron density 𝑛(𝒓) of 

the interacting electrons moving under the external potential of 𝑉𝑒𝑥𝑡(𝒓). 

Principally, the ground-state energy of Schrödinger’s equation is a unique 

functional of the electron density 𝑛0(𝒓). 

Theorem 2: The second theorem describes the universal total energy 

functional 𝐸[𝜌(𝑟)] in terms of particle density 𝜌(𝑟) under the external 

potential of 𝑉𝑒𝑥𝑡(𝒓). The functional can be written as,  

 

𝐸[𝜌(𝒓)] = 𝐸𝐻𝐾[𝜌(𝒓)] + ∫ 𝑉𝑒𝑥𝑡(𝒓)𝜌(𝒓)𝑑𝒓    (1.8) 

 

where, 𝐸𝐻𝐾[𝜌(𝒓)]  represents the internal and kinetic energies of all 

interacting particles within the system. It can be inferred that the ground-

state energy of a many-body system can be determined only when the 

functional of the electron density, minimizing the system’s energy, 

corresponds to the true ground state density 𝑛0(𝒓). However, the actual 
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form of the functional for a given electron density is still not clear from the 

theorems. Hence, further development is essential.  

 

1.5.2.2. Kohn-Sham Equations  

In continuation, Kohn and Sham formulated a new set of equations to 

establish the Hohenberg-Kohn theorems. Here, they have replaced many 

body problems with a simple one electron, non-interacting particle problem. 

The approach is to describe the single particles with an effective potential 

𝑉(𝒓𝑖), termed as Kohn-Sham potential. The total ground state energy can 

be given as, 

 

𝐸[𝜌(𝑟)] =  𝑇0[𝜌(𝑟)] +
1

2
ʃʃ 

𝜌(𝑟)𝜌(𝑟)′𝑑𝑟𝑑𝑟′

|𝑟−𝑟′|
+ ʃ 𝑉𝑒𝑥𝑡(𝑟)𝜌(𝑟)𝑑𝑟 +

𝐸𝑥𝑐[𝜌(𝑟)𝑑𝑟] + 𝐸𝐼𝐼       (1.9) 

 

where, the first term represents the kinetic energy of the non-interacting one 

electron system, second term describes the electron-electron Coulombic 

interaction, the third term represents the potential energy of the valence and 

the core electrons and the fourth term accounts for the exchange-correlation 

interaction, considering all non-classical many-body effects between 

electrons. The last term denotes the nuclei-nuclei interactions. Furthermore, 

the above Kohn-Sham equation can be reduced to,  

 

[−
1

2
∇2 + 𝑉𝑒𝑓𝑓(𝑟)] 𝛹𝑖(𝑟) = 𝐸𝑖𝛹𝑖(𝑟)     (1.10) 

 

Where instead of wave function, 𝛹𝑖(𝑟) represents the Kohn-Sham orbitals, 

and 𝑉𝑒𝑓𝑓 can be represented as, 

𝑉𝑒𝑓𝑓 =  𝑉𝐻𝑎𝑟𝑡𝑟𝑒𝑒 + 𝑉𝑒𝑥𝑡 + 𝑉𝑥𝑐      (1.11) 

 

Therefore, the effective potential of the simple non-interaction single 

particle can be shown in the form of the Coulomb interaction, external 
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potential and exchange correlation. The above equation is an exactly 

solvable one, only if the exchange correlation potential is known. However, 

finding out the exact exchange correlation potential is not an easy task, and 

here also several approximations developed. Most of the approximations 

proposed for the solvation of the equation 1.10 and 1.11 are widely used 

during the simulation of molecular and solid-state problems.[68] 

 

1.5.2.3. Exchange-Correlation Functional  

The above mentioned exchange correlation potential functional in the 

Kohn-Sham equation can again be divided into two parts termed as, 

exchange part and another is correlation part.  

 

𝐸𝑥𝑐(𝑛(𝒓)) = 𝐸𝑥(𝑛(𝒓)) + 𝐸𝑐(𝑛(𝒓))     (1.12) 

 

In this equation 𝐸𝑥𝑐(𝑛(𝒓))is the exchange-correlation functional. Whereas 

𝐸𝑥(𝑛(𝒓))and 𝐸𝑐(𝑛(𝒓)) describe the exchange and correlation part of the 

system, respectively. 𝐸𝑥𝑐(𝑛(𝒓)) can be approximated using some local 

functional, which we have discussed in next sections.  

 

1.5.2.4. Local Density Approximation (LDA)  

LDA serves as an approximation method for deriving the exchange-

correlation functional. This approach involves considering a homogeneous 

electron gas to define the exchange-correlation functional, 

 

𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫ 𝑑3𝑟 𝑛(𝒓) Ɛ𝑥𝑐

ℎ𝑜𝑚(𝑛(𝒓))     (1.13) 

 

In the above equation, Ɛ𝑥𝑐
ℎ𝑜𝑚(𝑛(𝒓) is the exchange-correlation energy per 

particle with the electron density 𝑛(𝒓) in the homogeneous gas.[69,70] 

LDA approximation is generally useful for finding the ground state 

properties of solid state materials, where density varies very slowly. 

However, this approximation limits in accurately finding some crucial 
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properties like cohesive energy, formation energy, bond dissociation energy 

and adsorption energies when compared to the experimentally observed 

values. Furthermore, this method is incapable to calculate the band gap of 

semiconductor and insulator materials exactly.[71] 

 

1.5.2.5. Generalized Gradient Approximation (GGA)  

To address the constraints inherent in the LDA approximation, the GGA has 

been introduced. GGA incorporates the electron density gradient to 

characterize the exchange-correlation functional. In this scenario, the 

exchange-correlation functional can be expressed as follows. 

 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫ 𝑑3𝑟 𝑛(𝒓) Ɛ𝑥𝑐

𝐺𝐺𝐴(𝑛(𝒓), 𝛻𝑛(𝒓))     (1.14) 

where, Ɛ𝑥𝑐
𝐺𝐺𝐴(𝑛(𝒓), 𝛻𝑛(𝒓)) is the exchange-correlation energy per electron 

gradient. For the systems with rapidly varying density GGA approximation 

is extremely useful. Also, it can calculate the total, cohesive, formation, and 

adsorption energies of a system accurately with correct determination of 

lattice parameters etc. In this regard, the most widely used GGA 

approximation was developed by Perdew, Burke and Ernzerhof recognized 

as GGA-PBE functional. According to GGA-PBE functional, the exchange 

energy of the system can be estimated as,  

 

𝐸𝑥
𝑃𝐵𝐸 = ∫ 𝑑3𝑟 𝑛(𝒓) Ɛ𝑥

𝑃𝐵𝐸(𝑛(𝒓), 𝑠(𝒓))    (1.15) 

 

In the above equation, the PBE exchange energy is the product form of the 

enhancement factor 𝐹𝑥
𝑃𝐵𝐸and the LDA exchange as given below.  

 

Ɛ𝑥
𝑃𝐵𝐸(𝑛(𝒓), 𝑠(𝒓)) =  Ɛ𝑥

𝐿𝐷𝐴(𝑛(𝒓)) ∗ 𝐹𝑥
𝑃𝐵𝐸  (𝑠(𝒓))   (1.16) 

 

Moreover, some other GGA approximations are also developed and can 

calculate of the exchange correlation energy of the system such as Perdew 

and Wang (PW91), revised PBE, PBEsol etc.[72-74] 
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1.5.2.6. Projector Augmented Wave (PAW) Method 

The electronic wave function exhibits distinct behaviour for core and 

valence electrons. The wave function for core electrons exhibits rapid 

oscillations, while that for valence electrons is considerably smoother. 

Typically, conventional basis set, such as the plane wave basis set are 

employed to represent valence electrons. However, plane wave basis sets 

are not suitable for describing core region electrons due to their complex 

wave functions. Consequently, the partial wave expansion is employed to 

depict electrons in the augmented region, and this approach is referred to as 

the projector augmented-wave method (PAW).[75-78] 

This method is based on the linear transformation operator (Τ). According 

to this approach, all the electron wave functions (Ψn) are replaced by a 

pseudo wave function (Ψ̃n) which is a function of the original electron wave 

functions (Ψn) as follows,  

 

ǀΨn⟩ = 𝛵ǀΨ̃n⟩          (1.17) 

Both ǀΨn⟩ and ǀΨ̃n⟩ can be represented as linear combination of partial 

waves for each augmentation regions, 

ǀΨn⟩ =  ∑ 𝑐𝑖ǀ𝑖 𝜙𝑖⟩       (1.18) 

ǀΨ̃n⟩ =  ∑ 𝑐𝑖ǀ𝑖 𝜙̃𝑖⟩       (1.19) 

The transformation operator, 𝛵 is defined as 

𝛵 = 1 + ∑ (𝑖 ǀ𝜙𝑛⟩ −  ǀ𝜙̃𝑛⟩) ⟨𝑝̃𝑖ǀ     (1.20) 

where, ⟨𝑝𝑖ǀ is the projection function. The pseudopotential employed 

effectively addresses challenges associated with core electrons, adeptly 

converting the rapidly oscillating wave function into a smoother form. This 

method is highly beneficial for exploring the properties of solid-state 

materials. Additionally, the PAW method has been integrated with ultra-

soft pseudopotentials and linear augmented-plane-wave features. In this 

thesis, we have employed the PAW method as implemented in the Vienna 

ab-initio simulation package (VASP).[79-81] 
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1.5.3. Dispersion in Density Functional Theory  

Above discussed methodologies are insufficient to account the dispersion 

interactions at any distance R. Particularly, the Coulomb interaction and 

exchange interaction depend on the electron transition density of the 

interacting units. To determine the dispersion forces between interacting 

fragments, long-range interactions have a major role. In order to account 

these effects accurately, particular methodologies like dispersion-corrected 

density functional theory (DFT-D), van der Waals (vdW) functionals, or 

empirical force fields, are generally utilised. These methods describe the 

long-range interactions and develop a complete understanding of dispersion 

interactions in molecular or solid-state systems.  

 

𝐸𝐷𝑖𝑠𝑝
(2)

= ∑ ∑
(𝑖𝑎|𝑗𝑏)[(𝑖𝑎|𝑗𝑏)−(𝑗𝑎|𝑖𝑏)]

𝜀𝑎+𝜀𝑏−𝜀𝑖−𝜀𝑗
𝑗𝑏𝑖𝑎     (1.21) 

 

Here, addition of all the particles hole excitation between orbitals 𝑖 → 𝑎 and 

𝑖 → 𝑏 is localized on A and B fragments, respectively. Here, Ε is the 

corresponding energy of the orbital. These excitations are not considered 

for standard DFT.[82] Empirical corrections are often used to describe the 

dispersion interactions. However, the most widely used method to account 

dispersion correction is the Grimme’s DFT-Dn method. The general formula 

utilised by this approach can be expressed as follows,[83]   

 

𝐸𝐷𝑖𝑠𝑝
𝐷𝐹𝑇−𝐷 = ∑ ∑ 𝑆𝑛

𝐶𝑛
𝐴𝐵

𝑅𝐴𝐵
𝑛 𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵)𝑛=6,8,10,….𝐴𝐵    (1.22) 

 

Here, 𝐶𝑛
𝐴𝐵 define the dispersion coefficient for AB, the distance between A 

and B is denoted by 𝑅𝐴𝐵
𝑛 , 𝑆𝑛 represent the adjusted correction for the 

repulsion and 𝑓𝑑𝑎𝑚𝑝(𝑅𝐴𝐵) is the double counting effect of correlation used 

at intermediate distances.[84,85] 

In this thesis, for most of the DFT calculations we have accounted the 

nonbonded interactions using Grimme’s DFT-D3 method, which considers 
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the triplet atoms for three body effects. Consideration of dispersion 

correction does not influence any molecular property like wave function, 

but mainly contributes based on the atomic forces. As a result, a different 

relaxed geometry is obtained after optimization in comparison to the no-

dispersion calculation. 

 

1.5.4. Other Computational Tools  

Along with the VASP package we have utilised some other computational 

tool in our thesis work to understand the properties of the solid state 

materials, such as nudged elastic band (NEB) method, Bader charge 

analysis, etc. 

 

1.5.4.1. Nudged Elastic Band (NEB) Method  

There are two most important factors in chemical reactions such as kinetic 

nature and the diffusion pathways of the reaction. These properties can be 

obtained by using the NEB method which is implemented in VASP 

package. Where, the concept is to find out the saddle point of the minimum 

energy pathway (MEP) between the reactant and product of a reaction. The 

method is based on the harmonic approximation of transition state theory 

(hTST)[81] where the rate constant of the reaction for the transition around 

the saddle points can be given as, 

 

𝑘ℎ𝑇𝑆𝑇 =
∏ 𝑣𝑖

𝑖𝑛𝑖𝑡3𝑁
𝑖

∏ 𝑣𝑖
⋕3𝑁−1

𝑖

𝑒
−

(𝐸⋕−𝐸𝑖𝑛𝑖𝑡)
𝑘𝐵𝑇

⁄
     (1.23) 

In this equation, 𝐸⋕and 𝐸𝑖𝑛𝑖𝑡are the energies of the saddle point and initial 

state i.e., reactant, whereas 𝑣⋕and 𝑣𝑖𝑛𝑖𝑡 are the normal mode of frequencies 

for the saddle point and the initial state, respectively. Generally, NEB finds 

the optimized geometries of a few intermediate structures between reactant 

and product. To optimize the intermediates a spring force along the band 

between images is added. In our thesis work we have used a code developed 

Henkelmann to generate the intermediate images.[86] 
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1.5.4.2. Bader Charge  

In Bader charge analysis, is used to calculate the charges associated with 

each atom within the molecules separating the molecules into atoms. This 

method is based on the Bader partitioning scheme [87] and electronic 

charge density is utilized for the analysis. Furthermore, a 2-D surface, where 

the charge density is minimum perpendicular to the surface determines the 

density partitioning. This surface is known as zero-flux surface. Conducting 

Bader charge analysis facilitates the straightforward determination of 

multipole moments for interacting atoms or molecules. 

In this thesis, we took help of an algorithm developed by Henkelman and 

coworkers to calculate Bader charges.[88] This algorithm operates swiftly 

based on the charge density grid and is designed for decomposing the 

electronic charge density of the molecule into its atomic contributions. 

 

1.5.5. Molecular Dynamics Simulations 

Here, we have discussed the time evolution of a system by solving Newton’s 

equations of motion for a particular system. Solution of the equation will 

yield a trajectory composed of the Cartesian coordinates of each atom for 

each timescale. The trajectories from the molecular dynamics (MD) 

simulation can be analyzed using various tools, providing insights at both 

structural and thermodynamic levels.  

 

1.5.5.1. Evaluating the Equation of Motion 

Here, we are describing the concise overview of Newton’s equations of the 

motion and explain their application in molecular mechanics.[89,90] 

For an N particle system, the force (F𝑖) working on the ith particle can be 

given as, 

𝐹𝑖 = 𝑚𝑖𝑎𝑖        (1.24) 

where 𝑚𝑖 and 𝑎𝒊 are the mass and acceleration of the ith particle, 

respectively.  

Also from the potential gradient, the force can be obtained as, 
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𝐹𝑖 = −
𝛿𝑈(𝑟𝑁)

𝛿𝑟𝑖
        (1.25) 

Generally, the Hamiltonian operator ℋ relate the total energy of a system 

with the position and momenta of its particles. Where, the instantaneous 

position (r𝑖) and momentum (p𝑖) of the ith particle can be defined as 

𝑝𝑖 = −
𝛿ℋ

𝛿𝑟𝑖
        (1.26) 

𝑟𝑖 = −
𝛿ℋ

𝛿𝑝𝑖
        (1.27) 

ℋ(𝑝𝑖, 𝑟𝑖) = ∑
𝑃𝑖

2

2𝑚𝑖
+ 𝑈(𝑟𝑖)

𝑁
𝑖=1       (1.28) 

The Hamiltonian for a closed system can be expressed as a sum of kinetic 

energy (Ek) and potential energy (U). Where, the kinetic energy and 

potential energy are the function of coordinates and momenta of the 

particles. 

𝑟 = 𝑟1, 𝑟2, 𝑟3, … . . , 𝑟𝑁       (1.29) 

𝑝 = 𝑝1, 𝑝2, 𝑝3, … . . , 𝑝𝑁      (1.30) 

ℋ(𝑟, 𝑝) = 𝐸𝑘(𝑝) + 𝑈(𝑟)      (1.31) 

The kinetic energy can be given as, 

𝐸𝑘 = ∑
1

2𝑚𝑖

𝑁
𝑖=1 (𝑝𝑖𝑥

2 + 𝑝𝑖𝑦
2 + 𝑝𝑖𝑧

2 )     (1.32) 

where 𝑚𝑖, 𝑃𝑖𝑥, 𝑃𝑖𝑦, and 𝑃𝑖𝑧 are the mass and momenta along x, y, and z 

directions of the ith particle, respectively. If we know the potential function, 

the entire trajectory over time can be obtained. Though, for an N-particle 

system, finding exact solutions is often impractical. Instead, there are 

various approximate methods based on several finite-difference integration. 

All these uses Taylor series expressed as, 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡𝑉(𝑡) +
1

2
∆𝑡2𝑎(𝑡) +

1

6
∆𝑡3𝑏(𝑡) + ⋯  (1.33) 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) + ∆𝑡𝑎(𝑡) +
1

2
∆𝑡2𝑏(𝑡)    (1.34) 

𝑎(𝑡 + ∆𝑡) = 𝑎(𝑡) + ∆𝑡𝑏(𝑡)      (1.35) 

Here, r, v, 𝑎, b represent position, velocity, acceleration, and the third 

derivative, respectively. Numerous algorithms are available for these 

calculations, known for their computational efficiency and ability to 
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conserve energy and momentum. Among these, the Verlet algorithm stands 

out as a well-established method for integrations.[91] It combines Taylor 

expansions for positions at both time 𝑡 and 𝑡 − Δ𝑡. 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡𝑉(𝑡) +
1

2
∆𝑡2𝑎(𝑡) + ⋯   (1.36) 

𝑟(𝑡 − ∆𝑡) = 𝑟(𝑡) − ∆𝑡𝑉(𝑡) +
1

2
∆𝑡2𝑎(𝑡) − ⋯   (1.37) 

Adding equations 1.36 and 1.37, 

𝑟(𝑡 + ∆𝑡) = 2𝑟(𝑡) − 𝑟(𝑡 − ∆𝑡) + ∆𝑡2𝑎(𝑡)    (1.38) 

Therefore, through the estimation of positions at the current and previous 

timesteps and accelerations at the current timestep, the Verlet algorithm can 

project the new positions of the system. The velocity of the system can be 

calculated using the following equation, 

𝑣(𝑡) =
𝑟(𝑡+∆𝑡)−𝑟(𝑡−∆𝑡)

2∆𝑡
       (1.39) 

In principle, the Verlet algorithm operates in two steps by computing the 

position at two distinct times. To execute this algorithm, additional 

computer memory is necessary as it stores positions from three consecutive 

timesteps. Hence, an improved version of this algorithm, known as the 

velocity Verlet algorithm, has been introduced. In the velocity Verlet 

algorithm, velocity is first calculated at step 𝑛 + 1, followed by the 

computation of coordinates at step 𝑛 + 1. This approach allows the 

calculation of positions and velocities using the formula expressed as, 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + ∆𝑡𝑉(𝑡) +
1

2
∆𝑡2𝑎(𝑡)    (1.40) 

𝑣(𝑡 + ∆𝑡) = 𝑣(𝑡) +
1

2
∆𝑡[𝑎(𝑡) + 𝑎(𝑡 + ∆𝑡)]    (1.41) 

In this context, equation 1.40 is utilized to predict the position of the 

subsequent timestep, which is then employed to estimate the acceleration at 

the new time. Additionally, equation 1.41 allows for the calculation of 

velocity based on the position and acceleration. 

Another updated form of the Verlet algorithm is the leapfrog algorithm. In 

this approach, velocities 𝒗 are computed at time 𝑡 +
1

2
∆𝑡, and these 

velocities are then employed to calculate the positions at time 𝑡 + ∆𝑡. 
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Accordingly, the velocities "leap over" the positions, and vice versa, 

providing the benefit of explicitly calculating velocity independently of the 

positions. 

𝑟(𝑡 + ∆𝑡) = 𝑟(𝑡) + 𝑣 (𝑡 +
1

2
∆𝑡) ∆𝑡     (1.42) 

𝑣 (𝑡 +
1

2
∆𝑡) = 𝑣 (𝑡 −

1

2
∆𝑡) + 𝑎(𝑡)∆𝑡    (1.43) 

The leapfrog algorithm offers an advantage over the Verlet algorithm in that 

it only necessitates the storage of one set of positions and velocities, 

whereas the Verlet algorithm requires three consecutive positions for a 

single set of velocities. 

 

1.5.5.2. Timestep 

One important element consistently addressed in prior algorithms is the 

timestep, denoted as Δ𝑡. The frequency of integration is evaluated by this 

parameter Δ𝑡. From a mathematical standpoint, employing a larger timestep 

facilitates the simulation of extended-time dynamics with reduced 

computational cost. Nonetheless, an enlarged timestep introduces a notable 

truncation error during integration, leading to a rapid increase in the 

system’s energy over time. 

Therefore, for standard MD simulations, it is necessary to maintain a 

timestep within the range of 1 femtosecond (fs) or lower to accurately 

capture the rapidest motions within the system.  

 

1.5.5.3. Statistical Ensembles 

Statistical mechanics is the bridge between the microscopic particles of a 

system and its macroscopic observables. Performing MD simulations with 

a macroscopic number of particles is currently computationally impractical. 

Therefore, the incorporation of statistical mechanical methods becomes 

essential for extracting meaningful information. A macroscopic observable 

is composed of numerous distinct microscopic states, and an ensemble 

encompasses all possible microstates under specific constant parameters. 
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For instance, isolated systems fall under the microcanonical ensemble 

(NVE), where the total number of particles (N), volume (V), and total 

energy (E) remain constant. Within this ensemble, the energy of each 

microstate must remain constant. Consequently, exploration of the potential 

energy surface is constrained in the microcanonical ensemble due to higher 

free energy barriers relative to the total energy of the system. 

An alternative to the microcanonical ensemble is the canonical ensemble 

(NVT) and the isobaric-isothermal ensemble (NPT), where volume and 

temperature or pressure and temperature are kept constant. The NVT 

ensemble is commonly employed during the heating phase, resembling a 

closed system capable of transferring heat from an external source. In 

contrast, the production run of MD simulations often utilizes the NPT 

ensemble to represent real conditions more accurately. However, in these 

ensembles, the system’s energy is not fixed, allowing systems to 

spontaneously surmount large potential energy barriers through fluctuations 

in total energy.[91-93] 

 

1.5.5.4. Long Range Interactions 

In general, and from a computational standpoint, the calculation of bonded 

interactions is less demanding, focusing solely on atom pairs connected by 

1-3 covalent bonds. While nonbonded interactions involve all possible pairs 

of atoms in the system, making it practically infeasible to compute all these 

interactions. The primary objective is to strategically neglect specific 

interaction pairs, improving simulation efficiency though maintaining the 

authenticity of the obtained results. After a certain distance, both Lennard-

Jones (LJ) and Coulombic potentials can be ignored as their influence 

becomes negligible compared to simulation errors. To achieve this, a cut-

off scheme is employed to exclude long-range interactions beyond a defined 

distance. While the intermolecular electrostatic interaction extends over a 

greater range than the LJ interaction, hindering the use of the former 

method, the Particle Mesh Ewald (PME) scheme is widely adopted for 
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electrostatic interaction calculations in MD simulations.[94] In this scheme, 

electrostatic potentials are categorized into short- and long-range 

interactions. Short-range interactions, like LJ potentials, decay rapidly. 

Electrostatic charges are distributed on a grid, and potentials are computed 

from this grid. Ultimately, the force acting on each particle is determined 

based on its position in the grid space. 

 

1.5.5.5. Temperature and Pressure Coupling 

Chemical reactions are typically performed under constant temperature 

conditions. To align with these experimental parameters, it is recommended 

to execute MD simulations in a canonical (NVT) ensemble. Additionally, 

to ensure a consistent pressure, simulations should be conducted in the 

isobaric-isothermal (NPT) ensemble. In the NPT ensemble, the number of 

particles remains fixed, while the volume and total energy can fluctuate. 

Various methods are available to control the pressure and temperature of a 

system. For instance, the Langevin and Andersen thermostats operate by 

constraining a system variable to a predetermined distribution 

function.[95,96] The Andersen thermostat, one of the earliest thermostats 

developed for MD simulations, assigns a new velocity to a random particle 

from a Boltzmann distribution during a collision event, thereby maintaining 

the preselected temperature. Another commonly used thermostat is the 

Berendsen thermostat, which employs weak coupling methods to bring a 

variable (temperature or pressure) closer to the desired value.[97] In 

contrast, strong coupling methods enforce strict adherence to the exact, 

predetermined value. The subsequent section delves into the specifics of the 

Berendsen thermostat. 

The time average of the kinetic energy is related to the simulation 

temperature as follows, 

 

〈𝐸𝑘〉 =
1

2
∑ 𝑚𝑖𝑣𝑖

2 =𝑁
𝑖=1

3

2
𝑁𝑘𝐵𝑇     (1.44) 
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Since the velocity is directly proportional to the temperature, velocity can 

be controlled by regulating the temperature. This thermostat employs weak 

coupling by an external heat bath at temperature 𝑇𝑏𝑎𝑡ℎ, with a softening 

effect determined by the time constant 𝑟. All velocities are adjusted by a 

factor 𝜆 at each timestep. Therefore, for a specific time 𝑡, if the temperature 

is 𝑇(𝑡), the change in temperature can be approximated using the following 

equation, 

Δ𝑇 =
1

2
∑

2

3

2𝑚𝑖(𝜆𝑣𝑖)2

𝑁𝑘𝐵
−𝑁

𝑖=1
1

2
∑

2

3

2𝑚𝑖𝑣𝑖
2

𝑁𝑘𝐵

𝑁
𝑖=1     (1.45) 

 

Δ𝑇 = (𝜆2 − 1)𝑇(𝑡)       (1.46) 

After rescaling the velocities, the temperature change rate becomes directly 

proportional to the temperature difference between the system and the heat 

bath, 

𝑑𝑇(𝑡)

𝑑𝑡
=

1

𝜏
(𝑇𝑏𝑎𝑡ℎ − 𝑇(𝑡))      (1.47) 

Now, the temperature change between timestep is, 

Δ𝑇 =
𝛿𝜏

𝜏
(𝑇𝑏𝑎𝑡ℎ − 𝑇(𝑡))      (1.48) 

where 𝜏 controls the coupling strength between the system and the heat bath. 

The scaling factor can be given as, 

𝜆2 = 1 +
𝛿𝑡

𝜏
(

𝑇𝑏𝑎𝑡ℎ

𝑇(𝑡)
− 1)      (1.49) 

For high 𝜏 values the coupling becomes weak. Theoretically for τ > 100 Δ𝑇, 

system possesses natural temperature fluctuation around the average value. 

Throughout the equilibration phase of Molecular Dynamics (MD) 

simulations Berendsen thermostat is commonly employed due to its 

effectiveness in achieving the target temperature. Whereas, more precise 

thermostats are often utilized for production run due to their tendency of 

energy drift and the inability to form a canonical ensemble. One widely used 

alternative is the Nosé-Hoover thermostat.[98] In this thermostat, a novel 

fictitious variable, denoted as 𝜁, is introduced. This variable functions as 
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friction, either accelerating or decelerating the particles until the desired 

temperature is attained. This can be formulated as, 

𝑚𝑖
𝑑2𝑟𝑖

𝑑𝑡2 = 𝐹𝑖 − 𝜁𝑚𝑖𝑣𝑖       (1.50) 

𝑑𝜁(𝑡)

𝑑𝑡
=

1

𝑄
[∑ 𝑚𝑖

𝑣𝑖
2

2
−

3𝑁+1

2
𝑘𝐵𝑇𝑁

𝑖 ]     (1.51) 

Where, 𝑄 is the coupling strength of the friction 𝜁(𝑡). Here, larger 𝑄 brings 

weak coupling. The temperature is not completely fixed here, instead tends 

to the target value. 

Applying similar methods discussed for thermostat, pressure can also be 

reached to the target value. Here, to scale the dimensionality of the system, 

positions and simulation box sizes are altered. Such as, the Berendsen 

barostat, couples the pressure to a pressure bath given as, 

𝜆 = 1 − 𝜅
𝛿𝑇

𝜏𝑃
(𝑃 − 𝑃𝑏𝑎𝑡ℎ)      (1.52) 

𝑟𝑖 = 𝜆
1

3𝑟𝑖        (1.53) 

Here, 𝑟𝑖 is the rescaled coordinates, 𝜏𝑃 is the time constant, and 𝜅 is the 

isothermal compressibility which mainly controls the coupling strength to 

the pressure bath. The isothermal compressibility can be correlated to the 

volume fluctuations as, 

𝜅 =
1

𝑉
(

𝛿𝑉

𝛿𝑃
) 𝑇 =

1

𝑘𝐵𝑇

〈𝑉2〉−〈𝑉〉2

〈𝑉2〉
      (1.54) 

There are numerous ways of scaling the pressure, such as isotropic pressure 

scaling (simultaneously scaled all dimensions), semi-isotropic pressure 

scaling (any given dimensions are scaled). 

 

1.6. Machine Learning Techniques 

Machine learning (ML) constitutes a branch of artificial intelligence (AI) 

dedicated to constructing algorithms and statistical models that empower 

computers to collect insights and make informed predictions or decisions 

based on data.[99,100] Within the realm of materials science, particularly 

in the domain of batteries, ML acts a pivotal role in accelerating research, 

development, and optimization endeavors. Various high-accuracy ML 
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models have been documented to exhibit success across diverse facets of 

battery research. Over the past decade, the primary focus within the research 

community has been directed towards identifying suitable non-aqueous 

electrolytes for high voltage DIBs. The application of these ML models is 

imperative for finding potentially active electrolytes from the extensive 

collection of non-aqueous electrolytes. ML methods are broadly classified 

into three categories: supervised learning, unsupervised learning, and 

reinforcement learning. Each category serves distinct objectives and finds 

application in diverse contexts. Here is a concise explanation of each 

learning type, 

 

1.6.1. Supervised Learning  

Supervised learning is the most common type of ML, where a model is 

trained on labeled data, pairing input examples with corresponding outputs. 

[101] The model is expert at learning to make predictions or classifications 

by leveraging this labeled data. This type of learning is particularly suitable 

for datasets with known properties, allowing the model to extend its 

predictions to unknown datasets. In our research, we mainly used 

supervised learning, which further categorized into two principal subtypes: 

regression and classification. 

 

1.6.1.1. Regression 

The regression ML model involves the prediction of a continuous numeric 

value or quantity. In this context, the target variable is a real number, and 

the model is trained to establish a mapping from input features to this 

numeric output.[102] Regression models aim to capture and predict patterns 

in the data that relate to the magnitude of the output variable. Regression 

model is applicable for the task involves predicting quantities or values, 

such as predicting house prices, stock prices, temperature, or a person’s age 

based on various input features. 
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1.6.1.2. Classification 

Classification, a key facet of supervised learning, turns around the 

categorization of input data into predefined classes or categories. In this 

case, the target variable is discrete, representing distinct classes or labels. 

The model undergoes training to accurately assign input data points to 

specific classes by recognizing patterns and relationships inherent in the 

dataset. This type of model finds applications in diverse domains such as 

spam email detection, sentiment analysis, and medical diagnosis (e.g., 

classifying tumors as malignant or benign) etc.[103] 

 

1.6.2. Unsupervised Learning  

Unsupervised learning is designed for unlabeled data, where algorithms are 

designed to unveil patterns, relationships, or structures within the dataset 

without predefined target variables. The primary objective is to group or 

cluster similar data points together. This approach proves instrumental in 

tasks such as clustering, dimensionality reduction, and anomaly detection. 

Unsupervised learning serves as a valuable tool for exploring and 

comprehending the intrinsic characteristics of a dataset.[104] 

 

1.6.3. Reinforcement Learning 

Reinforcement learning (RL) is centered around training agents to make 

sequences of decisions through interaction with an environment.[105] 

Diverging from supervised learning, where models rely on labeled data, RL 

algorithms learn through feedback in the form of rewards or penalties. 

Agents navigate the environment, refining their strategy to maximize 

cumulative rewards over time. It’s a process alike to human learning 

through trial and error. Key components include the agent, which takes 

actions; the environment, where actions are taken; and the reward signal, 

which guides the learning process. RL has found applications in various 

fields, including game playing, robotics, and autonomous vehicles. 
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1.6.4. Data 

Data is the central part of any ML problem, and its significance is 

paramount. In the context of ML, data serves as the foundation upon which 

models are built, trained, and evaluated. Here we have explained the 

purpose of training and test datasets.  

 

1.6.4.1. Training Data 

Training data constitutes the portion of the dataset employed to instruct a 

ML model in making predictions or decisions. By recognizing patterns and 

relationships within the training data, the model reaches the ability to 

generalize and extend predictions to an unknown dataset. The quality and 

quantity of training data directly impacts a model’s ability to learn. More 

diverse and representative data can lead to better model performance. 

Training data is used to identify relevant features and relationships within 

the data, helping the model understand the underlying structure. During 

training, the model adjusts its parameters to minimize errors and fit the 

training data, which is essential for accurate predictions. It’s important to 

have a sufficiently large and diverse training dataset that accurately 

represents the domain of the problem to avoid overfitting (fitting the 

training data too closely). 

 

1.6.4.2. Test Data (Validation Data) 

Test data represents a distinct portion of the dataset that remains unseen by 

the model during its training phase. Its purpose is to evaluate the model’s 

performance and estimate its efficacy in making precise predictions for an 

unfamiliar dataset. The utilization of test data ensures an impartial 

evaluation of the model’s generalization capabilities. This evaluation 

observes whether the model has truly captured meaningful patterns or just 

memorized the training data. If a model exhibits strong performance on the 

training data but fails on the test data, it may be indicative of overfitting. 

Thus, test data also helps to detect overfitting issues. It can be used to fine-
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tune model hyperparameters to achieve better generalization. The train and 

test data are mainly composed of input and output value where the input 

known as the feature and the output considered as the target variable. In the 

next section, we have discussed the various types of features and their 

importance for ML study. 

 

1.6.5. Features  

Features serve an important role in ML, and these are the characteristics or 

properties of the data that are used as input for building predictive models. 

The choice and quality of features play a crucial role in the success of ML 

project. The choice of features in ML project can significantly impact the 

model’s performance. Properly handling and preprocessing various types of 

features is essential to ensure that the model can effectively learn from the 

data and make accurate predictions or classifications. Feature engineering 

and selection are crucial steps in the ML process to optimize model 

performance. Here are various types of features and their importance in ML 

as follows, 

 

1.6.5.1. Numerical Features 

Numerical features are continuous or discrete numeric values. They are the 

most common type of features in many ML applications. Numerical 

features are essential for various algorithms, including regression and 

clustering. They can represent quantities, measurements, and real-valued 

properties of data, making them versatile for many tasks. 

 

1.6.5.2. Categorical Features  

Categorical features represent discrete categories or labels, such as colors, 

types of products, or countries etc. Categorical features require special 

encoding techniques to convert them into a numerical format that ML 

algorithms can understand. Proper encoding is crucial to ensure these 

features contribute effectively to the model’s prediction. 
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1.6.5.3. Elemental Features 

Elemental features refer to the fundamental characteristics or properties 

associated with individual elements in the periodic table. These features 

include atomic number, atomic mass, electron configuration, and chemical 

reactivity. Electron configuration describes how electrons are distributed in 

atomic orbitals. Chemical reactivity is determined by the arrangement of 

electrons, influencing an element’s ability to form compounds. Elemental 

features are crucial for understanding the behavior of elements in chemical 

reactions.[106] 

 

1.6.5.4. Molecular Features 

Molecular features comprise characteristics related to the structure and 

composition of molecules. These include properties such as molecular 

weight, bond lengths, bond angles, and torsional angles. Other features 

include electronegativity, which influences polarity, and molecular 

symmetry, crucial for understanding a molecule’s stability and reactivity. 

Molecular features are central to elucidating the behavior and interactions 

of compounds in various scientific explorations from chemistry to 

bioinformatics. 

 

1.6.6. Various ML Algorithms 

Different ML algorithms are developed to study the statistics of any dataset, 

however, here we have briefly explained a few of them which are used in 

our work.  

 

1.6.6.1. Kernel Ridge Regression (KRR) 

The KRR algorithm is a part of supervised learning, primarily employed for 

regression tasks. It shares similarities with standard Ridge Regression but 

incorporates a non-linear mapping of input data into a higher-dimensional 

space, referred to as the feature space, facilitated by a kernel function.[107] 
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This mapping allows the algorithm to recognize more intricate relationships 

between input variables and the target variable. In KRR, the objective is to 

identify a function f(x) that effectively maps input variables x to the target 

variable y, utilizing a set of training data (xi, yi), where i = 1, 2, ..., n. The 

function f(x) is expressed as a linear combination of kernel functions K(x, 

x') evaluated at the training data points xi, 

𝑓(𝑥) = ∑ 𝛼𝑖 ∗  𝐾(𝑥, 𝑥𝑖)
𝑛
𝑖=1       (1.55) 

Where,  𝛼𝑖  are the coefficients of the linear combination. 

 

1.6.6.2. eXtreme Gradient Boosting Regression (XGBR) 

XGBR algorithm used for predicting continuous numerical values. We have 

a training set of N examples, where each example has M input features (x1, 

x2,...,xM) and a corresponding continuous numerical output value y. The 

XGBR algorithm aims to learn a prediction function F(x) that can exactly 

predict the value of y for any new input x.[108] In XGBR, the prediction 

function F(x) is modeled as the sum of T individual decision trees, each of 

which outputs a prediction value fi(x) for the input x. The final prediction 

value is considered by obtaining the weighted sum of the T individual 

predictions as follows, 

𝐹(𝑥) = ∑ 𝑓𝑡(𝑥)𝑇
𝑡=1        (1.56) 

 

1.6.6.3. Gradient Boosting Regression (GBR) 

The GBR model is a comprehensive ML algorithm created through the 

mixture of weak regression trees.[109] Given the training set D = {(x1, y1), 

(x2, y2)…,(xn, yn)}, the number of leaf nodes in every regression tree is J. 

We divided the input data into J disjoint areas and defined each regression 

tree as tm(x). The training goal of GBR is to minimize the loss function L, 

and the parameters of decision tree 𝜃𝑚 are determined through empirical 

risk minimization, 

𝜃𝑚 = ∑ 𝐿(𝑦𝑖, 𝑓(𝑚−1)(𝑥𝑖) + 𝑡𝑚(𝑥𝑖)𝑛
𝑖=1 )    (1.57) 
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1.6.6.4. Light Gradient Boosting Machine (LGBM) Regression 

LGBM belongs to the family of gradient boosting techniques and is known 

for its high efficiency and speed. LGBM creates an ensemble of decision 

trees in an order where each tree corrects the errors of the previous 

one.[110] LGBM handles large datasets and performs well in terms of 

training speed and memory usage. It employs a leaf-wise strategy for tree 

growth, prioritizing nodes with the maximum loss reduction. This makes 

LGBM particularly effective for tasks requiring accurate predictions with 

large and complex datasets. The prediction Ft(x) of the ensemble at the 

iteration of t for input x is as follows, 

𝐹𝑡(𝑥) = 𝐹𝑡−1(𝑥) + 𝛾. ℎ𝑡(𝑥)      (1.58) 

Where, the Ft-1(x) is the prediction of the ensemble up to iteration of (t-1), 

𝛾 is the learning rate and ht(x) is the weak learner tree added at t iteration. 

 

1.6.6.5. Extra Trees Regression (ETR) and Random Forest Regression 

(RFR) 

The ETR approach is an evolved strategy originally derived from the RF 

model. In the conventional top-down methodology, the ETR algorithm 

builds an assembly of decision or regression trees. In the RFR, two key 

steps, bootstrapping and bagging, are involved. During bootstrapping, each 

tree in the ensemble is grown using a randomly sampled training dataset. 

The bagging step is employed to partition the decision tree nodes after 

forming the ensemble. This requires selecting multiple random subsets of 

the training data in the initial bagging process. The decision-making process 

involves choosing the optimal subset and its associated value. The RFR 

incorporates a series of decision trees, where each tree represents a predictor 

[𝐺(𝑥, 𝜃𝑟)]. The uniform independent distribution vector (𝜃𝑟) is assigned 

before the tree’s growth. The ensemble is formed by combining and 

averaging all the trees, resulting in a forest of constructed trees, as expressed 

by the following equation, [111] 

𝐺(𝑥, 𝜃1, … , 𝜃𝑟) =
1

𝑅
∑ 𝐺(𝑥, 𝜃𝑟)𝑅

𝑟=1      (1.59) 
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There is distinction between ETR and RFR such as, 

1. In the ETR, all cutting points are utilized, and nodes are divided 

through random selection from these points. 

2. The ETR employs the entire set of learning samples to grow trees, 

aiming to minimize bias. 

 

1.6.6.6. Adaptive Boosting Regression (ABR) 

In ABR, the algorithm combines several weak learners to form a strong 

predictor.[112] The mathematical form can be explained by following 

points, 

1. Initialize the weight of each training sample as wi = 1/N, where N is 

the total number of training samples. 

2. For each iteration t= 1,2, 3,…,T: 

a. Train a weak learner on the training data with the current 

weights. 

b. Calculate the error of the weak learner (𝜖𝑡), 

𝜖𝑡 =
∑(𝑤𝑖∗|(𝑦𝑖−𝑓𝑡(𝑥𝑖))|)

∑ 𝑤𝑖
     (1.60) 

Where, yi is the target value for the ith training sample, ft(xi) is 

the prediction of the weak learner for the ith sample, and ∑ 𝑤𝑖 is 

the sum of weights over all training samples. 

c. Next calculate the weight of the weak learner (𝛼𝑡), 

      𝛼𝑡 = ln(
(1−𝜖𝑡)

𝜖𝑡
)       (1.61) 

d. Now, update the previously training sample (wi), 

𝑤𝑖 = 𝑤𝑖 ∗ 𝑒𝛼𝑡 |(𝑦𝑖−𝑓𝑡(𝑥𝑖))|     (1.62) 

3. The final predictor is the weighted combination of the weak 

learners, where the weight of each learner is proportional to its alpha 

value. 

 

1.6.6.7. Decision Tree Regression (DTR) 
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The DTR involves recursively partitioning the feature space into regions 

and fitting a simple model (typically a constant value) in each region. [113] 

The output of a decision tree regression can be represented by the following 

equation,  

𝑦 = ∑ 𝐶𝑖 ∗ 𝐼(𝑥 𝜖 𝑅𝑖)       (1.63) 

where, the predicted output y is determined by the constant value Ci 

associated with the region Ri to which the input x belongs. The regions Ri 

are defined by the splits in the decision tree, dependent on the input feature 

values. The objective is to find optimal splits that minimize the mean 

squared error between predicted and actual values in the training data. The 

indicator function 𝐼(𝑥 𝜖 𝑅𝑖) returns 1 if x is in region Ri and 0 otherwise. 

 

1.6.7. Hyperparameter Tunning 

Hyperparameters are predefined configurations or settings that are not 

learned from the training data but are established prior to the model training 

process. Tuning these hyperparameters is essential to optimize model’s 

performance.[114] There are several methods for hyperparameter tuning, 

each with its own advantages and use cases. Here, we have briefly explained 

different techniques of hyperparameter tuning being used in our study. 

 

1.6.7.1. Grid Search 

Grid search is a systematic approach where a range of values is given for 

each hyperparameter, and the search algorithm evaluates all possible 

combinations of hyperparameters to find the best set. Grid search is a 

straightforward method for small hyperparameter spaces but becomes 

inefficient when dealing with many hyperparameters and large search 

spaces. 

 

1.6.7.2. Random Search 

Unlike grid search, hyperparameters are sampled randomly from specified 

distributions. It explores a wider range of hyperparameter combinations 
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with fewer evaluations. Random search is particularly useful for a large 

hyperparameter space to find optimum hyperparameter quickly. 

 

1.6.8. Cross-Validation techniques 

Cross-validation (CV) is a critical technique in ML for assessing and 

validating the performance of a predictive model. It helps to determine the 

model’s stability and generalizability for the prediction of unknown data. 

Various CV methods have been discussed in this section as follows,  

 

1.6.8.1. K-Fold Cross-Validation 

In this CV method, the dataset is partitioned into ‘k’ equally sized folds. 

The model undergoes training on ‘k-1’ folds and is evaluated on the 

remaining one. This process iterates ‘k’ times, each time using a different 

fold as the test set. The final performance metric is usually an average of 

the ‘k’ results. K-fold CV is a versatile and widely adopted technique for 

evaluating model performance. It strikes a balance between the amount of 

data used for training and testing, offering a robust assessment and 

mitigating the risk of overfitting.[115] 

 

1.6.8.2. Leave One Out Cross-Validation (LOOCV) 

In the LOOCV technique, one data point is always out from the total dataset 

and treated as the test data point and model is trained by the remaining data 

point. The process will be repeated for the total number of data points and 

each iteration score will be printed. For example, we have ‘n’ number of 

points in one dataset, one point is out for test and remaining ‘n-1’ data is 

used for training. The process will be repeated up to ‘n’ steps.[116] 

 

1.6.9. Interpretable Machine Learning  

All the ML algorithms we have considered fall into the category of black 

box models, operating in a manner that poses challenges for understanding 

and interpreting the specific features influencing their predictions. To 
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overcome this limitation and to gain insights into both local and global 

trends for particular features, we incorporated interpretable models. Various 

interpretable models are elucidated as follows, 

 

1.6.9.1. Local Interpretable Model-agnostic Explanations (LIME)  

LIME is a model-agnostic method that approximates the behavior of a 

complex model in the vicinity of a specific data point by training an 

interpretable for a specific instance or prediction.[117] The process 

involves selecting an instance from the dataset and perturbing it to create a 

synthetic dataset. The complex model is then queried on these perturbed 

instances, and the responses are used to train a simpler, interpretable model, 

such as a linear model or decision tree. This interpretable model is expected 

to approximate the complex model’s behavior locally, providing insights 

into how the model arrives at its predictions for that specific instance. 

 

1.6.9.2. SHapley Additive exPlanations (SHAP) 

SHAP values are based on cooperative game theory and provide a way to 

attribute a model’s output to individual features.[118] They offer a unified 

approach to feature importance and explainability. However, SHAP is a 

model dependent technique which only works on the tree and boosting 

based ML models. SHAP values consider all possible combinations of 

features and their interactions, calculating the average contribution of each 

feature across all possible combinations. From there, SHAP values offer a 

comprehensive and globally consistent explanation for individual 

predictions using the waterfall and force plots. 
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2.1. Introduction 

Melting of glaciers, forest fires and flash floods are various catastrophes 

occurring nowadays due to climate change and global warming induced by 

utilization of non-renewable fuels. Shifting from non-renewable and 

polluting sources to green energy is very urgent to maintain both the high-

tech growth and eco-friendly environment.[1] Tapping renewable energy 

sources require the development of efficient energy storage devices such as 

batteries and capacitors.[2] In recent years, dual ion batteries (DIBs) based 

on aluminium and graphite electrodes are emerging as attractive alternatives 

to high-cost lithium-ion batteries (LIBs).[3-5] Such DIBs exhibit attractive 

features such as high voltage, low cost and high volumetric capacity.[6-8] 

However, the limited electrochemical window (ECW) potential of 

commonly used organic electrolytes causes intense side reactions and 

reduced working voltage for all batteries.[4,9] 

Ionic liquids (ILs) are used as electrolytes as they are salts which remain in 

liquid state below the temperature of 373K. Their physicochemical 

properties depend on cationic size (due to the presence of different alkyl 

groups) as well as the ionic interaction of the system. In general, ILs deliver 

interesting properties such as low vapor pressure, high thermal stability, low 

toxicity, low flammability, large electrochemical window, and relatively 

high conductivity.[10-12] Thus, ILs are considered as a potential alternative 

electrolyte over flammable organic electrolytes. Carlin and co-workers have 

introduced metal free ILs based organic moieties such as imidazolium and 

pyrrolidinium based cations coupled with anions such as AlCl4, OTf, PF6, 

and BF4 as electrolytes in DIBs.[13] Due to the higher electrochemical 

window potential of the IL electrolyte, it has been primarily studied as they 

possess high oxidative and reductive stability, which are important for high 

charging/discharging voltage (4.0-5.0 V) of the DIBs. 

The electrochemical window (ECW) of electrolytes is an important 

criterion for its usage in electrochemical applications. The ECW can be 

defined as the difference between the cathodic limiting (VCL) potential and 
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anodic limiting (VAL) potential, at which reduction and oxidation takes 

place, respectively.[14-16] Usually, ILs show a large electrochemical 

window range of 4 to 7 V, which are promising for high voltage 

batteries.[17-19] Experimentally, a cyclic voltammetry study can be 

conducted using different working electrodes such as Pt or glassy carbon 

(GC) to determine ECW using the current-voltage polarization curve.[20] 

However, measurement of ECWs depend on many factors such as 

electrodes, cutoff currents, and impurities of medium.[21] Therefore, the 

ECW can vary significantly in different experimental setup for a given IL. 

It is difficult to study the oxidation and reduction potentials of IL constituent 

ions experimentally. Koch and coworkers have found that anodic limiting 

potential is correlated well to the highest occupied molecular orbital 

(HOMO) energy of 1,2-dimethyl-3-propylimidazolium based ILs.[22] In 

the same way, Buijs and coworkers found that experimental ECW was 

correlated with the lowest unoccupied molecular orbital energy of ILs.[23] 

In the same context, Ceder and coworkers have considered an explicit 

solvent-based molecular dynamics-density functional theory (MD-DFT) 

method where, cathodic and anodic limits are represented by the energies 

of HOMO and LUMO of constituent ions for IL.[14] In most of the ILs, it 

is commonly assumed that the anode and cathode limiting potentials are 

dependent on the oxidation of anion and reduction of cations, 

respectively.[24] However, this is not true for all ILs. For instance, the 

bis(trifluoromethylsulfonyl)imide (TFSI) anion undergoes easier reduction 

compared to its corresponding N, N-propylmethylpyrrolidinium (Pyr1,3) 

cation.[14] Therefore, it is necessary to find individual oxidation and 

reduction potentials of constituent ions for a given IL, to determine the 

electrolyte with high electrochemical window potential.  

In this study, we have investigated the ECW for commonly used 

imidazolium and pyrrolidinium based ILs for Al DIBs using effective 

computational screening methods. Here, we have considered sixteen ionic 

liquid and molten salt electrolytes as shown in Figure 2.1. Different 
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computational techniques such as thermodynamic cycle method and MD-

DFT method have been utilized to find the most suitable way of calculating 

ECW. The considered ILs (imidazolium and pyrrolidinium based cations 

coupled with AlCl4 and OTf anions) are mostly used electrolytes in Al 

DIBs. Besides, we have also investigated the role of cations towards the 

ECW values as we move from aromatic (imidazolium) to non-aromatic 

(pyrrolidinium) based cations. On the other hand, AlCl4 and OTf are only 

two anions used in Al DIBs till now. Also, the contribution from cationic 

and anionic part towards ECW is noted.  

 

 

Figure 2.1: Ionic liquids and molten salts (MSs) are investigated. Structures 

of cations: (a) Imidazolium moieties with a different alkyl group (where, n 

= 2, 3, 4, 6 and 8), (b) N, N-butylmethylpyrrolidinium (BMP) cations, (c) 

[AlCl2(U)2]
 +, and (d) [AlCl2(AcAm)2]

 + (where U is urea and AcAm is 

acetamide) and structure of anions: (e) AlCl4 , and (f) 

trifluoromethanesulfonate (OTf). 

 

2.2. Methodology 

2.2.1. Thermodynamic Cycle Method 

Our main goal is to estimate the oxidation and reduction limiting potential 

for the considered ILs and MSs. We have investigated the structural (alkyl 

group variation on imidazolium and pyrrolidinium) effect of cations and 

anions on ECW with respect to Al3+/Al reference electrode. For this, we 

have considered thermodynamic cycle technique[24-26] to calculate the 
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oxidation and reduction potentials of individual ions for the Al3+/Al 

electrode as shown in Figure 2.2.  

 

 

Figure 2.2: Thermodynamic cycle for calculating the oxidation potential of 

(a) Al metal and oxidation/reduction potentials of (b) cation, and (c) anion 

of the ionic liquid.  

 

Three electron reaction process is observed for Al3+/Al electrode instead of 

one electron process as is the case for the Li+/Li electrode. Whereas the 

oxidation and reduction of cations (R+) and anions (A-) are observed to be 

one electron transfer process as shown in Figure 2.2. To calculate the free 

energy change (∆𝐺𝑟𝑒𝑓) of Al3+/Al reference electrode (Figure 2.2a), 

equation 2.1 is used: 

 

∆𝐺𝑟𝑒𝑓 = ∆𝐺𝑣𝑎𝑝(𝐴𝑙) + ∆𝐺𝑒(𝐴𝑙) + ∆𝐺𝑠𝑜𝑙(𝐴𝑙3+)   (2.1) 
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Where, ∆𝐺𝑣𝑎𝑝 is the free energy of vaporization of Al, which is calculated 

to be 246.1 kJ/mol. ∆𝐺𝑒 and ∆𝐺𝑠𝑜𝑙 are the free energies of ionization and 

solvation of Al metal, respectively.  

From Figure 2.2b and c, the oxidation free energies of cation (∆𝐺𝑜𝑥(𝑅𝑠𝑜𝑙
+ )) 

and anion (∆𝐺𝑜𝑥(𝐴𝑠𝑜𝑙
− )) of the ILs in solution phase can be calculated using 

equation 2.2 and 2.3, respectively. 

 

∆𝐺𝑜𝑥(𝑅𝑠𝑜𝑙
+ ) = ∆𝐺𝑜𝑥(𝑅𝑔

+) + ∆𝐺𝑠𝑜𝑙(𝑅2+) − ∆𝐺𝑠𝑜𝑙(𝑅+)  (2.2) 

 

∆𝐺𝑜𝑥(𝐴𝑠𝑜𝑙
− ) = ∆𝐺𝑜𝑥(𝐴𝑔

−) + ∆𝐺𝑠𝑜𝑙(𝐴) − ∆𝐺𝑠𝑜𝑙(𝐴−)   (2.3) 

 

Similarly, the reduction free energies of cation (∆𝐺𝑟𝑒𝑑(𝑅𝑠𝑜𝑙
+ )) and anion 

(∆𝐺𝑟𝑒𝑑(𝐴𝑠𝑜𝑙
− )) of ILs can be calculated using equations 2.4 and 2.5, 

respectively. 

 

∆𝐺𝑟𝑒𝑑(𝑅𝑠𝑜𝑙
+ ) = ∆𝐺𝑟𝑒𝑑(𝑅𝑔

+) + ∆𝐺𝑠𝑜𝑙(𝑅) − ∆𝐺𝑠𝑜𝑙(𝑅+)  (2.4) 

 

∆𝐺𝑟𝑒𝑑(𝐴𝑠𝑜𝑙
− ) = ∆𝐺𝑟𝑒𝑑(𝐴𝑔

−) + ∆𝐺𝑠𝑜𝑙(𝐴2−) − ∆𝐺𝑠𝑜𝑙(𝐴−)  (2.5) 

 

The Gibbs free energy change of ionization (∆𝐺𝑜𝑥(𝑅𝑔
+)) of the cations in 

gas phase (Figure 2.2b) is obtained using the equation 2.6. 

 

 ∆𝐺𝑜𝑥(𝑅𝑠𝑜𝑙
+ ) = {𝐺(𝑅2+(𝑔)) + 𝐺(𝑒−)} − 𝐺(𝑅+(𝑔))     (2.6)  

 

Where, 𝐺(𝑒−) is the free energy of the electron, which will be cancelled out 

while calculating the oxidation/reduction potentials of the systems.[24] 

Overall, the standard redox potentials can be calculated using the equations 

2.7 and 2.8 with respect to the Al3+/Al reference electrode.   

 

𝐸𝑜𝑥
0 [𝑉] (𝑣𝑠. 𝐴𝑙3+ 𝐴𝑙⁄ ) =  −(

(−∆𝐺𝑜𝑥(𝑅+ 𝐴−)𝑠𝑜𝑙⁄  [𝐽]+ ∆𝐺𝑟𝑒𝑓 [𝐽])

𝑛𝐹
)    (2.7) 



62 
 

𝐸𝑟𝑒𝑑
0 [𝑉] (𝑣𝑠. 𝐴𝑙3+ 𝐴𝑙⁄ ) =  −(

(−∆𝐺𝑟𝑒𝑑(𝑅+ 𝐴−)𝑠𝑜𝑙⁄  [𝐽]+ ∆𝐺𝑟𝑒𝑓 [𝐽])

𝑛𝐹
)   (2.8) 

 

Where, F is the Faraday constant and n is the number of electron transfers 

in reference electrode process. Therefore, the ECW of the ionic liquids can 

be calculated by the difference between two redox potentials,  

𝐸𝐶𝑊 = 𝐸𝑜𝑥
0 − 𝐸𝑟𝑒𝑑

0         (2.9) 

 

2.2.2. Molecular Dynamics and Density Functional Theory (MD+DFT) 

Method 

The cathodic limiting (VCL) and anodic limiting (VAL) potentials are 

correlated with the LUMO and HOMO of IL electrolytes, respectively and 

ECW can be measured from their difference.[16] Here, we have considered 

a combination of classical molecular dynamics (MD) simulation and ab 

initio MD (AIMD) using the periodic boundary condition (PBC) in density 

functional theory (DFT) approach to calculate the HOMO and LUMO for a 

unit cell containing cations and anions of ILs in their liquid form. Initially, 

we equilibrated each IL through classical MD simulation. From the last 2 

ns equilibrated simulation, we have considered five equilibrated snapshots 

of each 0.5 ns interval. Now we have considered two pathways, AIMD-sp 

and AIMD-min methods. In AIMD-sp method, HOMO/LUMO energies of 

each snapshot are calculated from the single point (sp) density of states 

(DOS) calculation without further geometry optimization. If we perform 

optimization, the optimized structure does not actually represent the exact 

structural orientation of the cations and anions of IL at room temperature. 

This is because the geometry optimization done at 0 K and hence after 

optimization, all optimized configurations may lead to the same geometry. 

Therefore, the DOS calculations on the optimized geometries will provide 

almost the same cathodic and anodic limiting potentials. So, we will not be 

able to sample our calculated limiting potentials from different snapshots. 

Hence, we have not considered the optimization process for all ILs 

snapshots. In AIMD-min, further we have relaxed each snapshot in AIMD 



63 
 

method and performed DOS calculation to measure the HOMO/LUMO 

energies of each snapshot.  

2.2.3. Computational Details 

2.2.3.1. Thermodynamic Cycle Method 

All the calculations have been performed in Gaussian 09 package.[27] The 

molecular geometries have been fully optimized in gas phase using Pople 

diffuse basis set of 6-31+G(d,p) at MP2 level of theory.[28] The 6-

31+G(d,p) diffuse basis set has been used for all ILs.[29-31] For the solvent 

phase calculation, we have considered self-consistent reaction field (SCRF) 

methodology. The conductor-like polarizable continuum model (CPCM) 

has been implemented which is an implicit dielectric screening solvent 

model.[32,33] We have considered the static dielectric constant and 

refractive index from the previous report.[34] Moreover, we have included 

the zero-point vibrational energy (ZPVE) and thermal correction terms for 

the calculation of reaction free energy at room temperature (298.15 K) and 

1 atm pressure. The reaction free energy (∆𝐺) change has been calculated 

as the difference between initial and final chemical species of IL.  

2.2.3.2. Molecular Dynamics Simulation  

To generate the equilibrium structure of ILs, we have performed classical 

molecular dynamics simulation with interacting potentials of PCFF 

forcefield[35] using velocity-varlet algorithm in the LAMMPS 

package.[36,37] Atomic charges of ILs have been explicitly calculated 

using the CHelpG procedure in the MP2/6-311++G(d,p) level of 

theory.[38] Initially, we considered a large system containing 128 ion pairs 

of EMIM-AlCl4 (1-ethyl-3-methyl imidazolium-AlCl4) IL to perform 

classical simulation. However, carrying out AIMD for this large system 

would be time consuming. Thus, we have reduced our system to 9 ion pairs 

maintaining volume to density ratio with a fixed box dimension of 15 Å. 

We have compared our results with the large system (128 ion pairs) where 
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the liquid density and pair distribution function are not much changing from 

small size system (Figure 2.3). In this study, we have fixed the volume of 

the box and changed the numbers of ion-pairs. Following this, we have kept 

the box dimension fixed (15 Å) for all the ILs and number of ion pairs has 

been chosen concerning their volume to density ratio. Equilibration runs 

were performed in a melt-quench procedure as follows: (i) NVT ensemble 

was considered at 600 K temperature for 1 ns with a timestep of 0.1 fs, (ii) 

then cooling from 600 to 300 K using NVT ensemble for 1 ns with a 

timestep of 0.25 fs, (iii) further equilibration in NVT at 300 K for 1 ns with  

 

Figure 2.3: The calculated equilibrated density plots of (a) 128 ion pairs, 

(b) 9 ion pairs for EMIM-AlCl4 ionic liquid, and (c) the pair distribution 

function (g(r)) of two systems.  

a timestep of 0.5 fs, and (iv) final production run has been performed in 

NPT ensemble for 47 ns at 300 K temperature and 1 atm pressure with the 

timestep of 1 fs. A cut-off distance of 14 Å has been implemented for van-
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der Waals as well as electrostatic interactions and three-dimensional 

periodicity has been considered for all simulations. Nosé-Hoover 

thermostat and barostat have been used for all NVT and NPT 

simulations.[39-41] To confirm the system equilibration, we have checked 

pair distribution function plots for each ionic liquid (Figure 2.4). From 

Figure 2.4, it has been observed that all the IL structures are well relaxed. 

From the last 2 ns MD trajectories, we have considered 5 snapshots of each  

 

Figure 2.4: Calculated pair distribution function plot of (a) AlCl4 and (b) 

OTf anions containing ILs. 

0.5 ns interval to perform the AIMD simulation. The obtained potential 

energy surfaces (PESs) from classically applied forcefield are not stable in 

high level DFT theory. The classical simulation snapshot models may not 

necessarily provide a stable configuration at DFT level. Therefore, we have 

performed an AIMD relaxation for each classical MD snapshot for AIMD-

min method. AIMD and DOS are performed using the projected augmented 
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wave (PAW) method[42] in the Vienna ab initio simulation package 

(VASP.5.4.4).[43,44] The generalized gradient approximation of Perdew-

Burke-Ernzerhof (GGA-PBE) functional account exchange-correlation has 

been implemented.[45] For comparisons of ECW values, we have 

considered the modified version of PBE functional such as revPBE (revised 

PBE) and RPBE functionals.[46,47] An energy cutoff of 470 eV is 

implemented for the plane wave basis set. The AIMD simulation has been 

performed in NVT ensemble at 300 K temperature for 3 ps with the timestep 

of 1 fs. Nosé-Hoover thermostat [39] was implemented with a Nosé mass 

of 0.01 to control the temperature throughout the simulation. Single point 

density of states was performed on the AIMD relaxed geometry to obtain 

the HOMO and LUMO energies of the ILs. Owing to large system, we have 

considered the Γ-centered k-points of 1×1×1 for DOS calculation.  

2.3. Results and Discussion 

2.3.1. Consideration of Different Ionic Liquid Electrolytes 

Two types of IL are considered for calculation of ECW: (i) room 

temperature ionic liquid electrolytes (RTILs) and (ii) molten salt IL 

electrolytes. Here, we have mainly considered two different types of organic 

cations (imidazolium and pyrrolidinium moieties) with two different types 

of anions (AlCl4 and OTf) as shown in the Figure 2.1. The imidazolium and 

pyrrolidinium based RTILs are also modelled with varying alkyl group 

substitution as shown in the Figure 2.1. The cations and anions of ILs could 

form different intermolecular forces because of this steric hindrance. This 

can also lead to the changes in physical and chemical properties of IL such 

as density, conductivity, and electrochemical window.[48,49] By varying 

the alkyl group of imidazolium ring, we have modelled six organic cation 

systems: 1-ethyl-3-methyl imidazolium (EMIM), 1-propyl-3-methyl 

imidazolium (PMIM), 1,2-dimethyl-3-propyl imidazolium (DMPI), 1-

butyl-3-methyl imidazolium (BMIM), 1-hexyl-3-methyl imidazolium 

(HMIM) and 1-octyl-3-methyl imidazolium (OMIM). These cations 
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combined with two different types of anions (AlCl4 and OTf) can form a 

total number of 12 IL electrolytes. Similarly, for pyrrolidinium based IL we 

have considered mostly used electrolyte of N, N-butyl-methyl 

pyrrolidinium (BMP) cation with AlCl4 and OTf anions. For the molten salt 

electrolytes, we have considered two systems, urea (U) and acetamide 

(AcAm) which can form complex isomers in the presence of AlCl3 but not 

in the presence of OTf anion. The most stable isomer complexes, 

([AlCl2(U)2]-AlCl4) and ([AlCl2(AcAm)2]-AlCl4), are considered.[50] 

Thus, a total of nine AlCl4 and seven OTf anions containing ILs are 

considered for ECW study. Among these, the AlCl4 based IL optimized 

structures are taken from our previous study[15] and OTf based IL 

structures have been optimized as shown in the Figure 2.5. The AlCl4 based 

ILs are stabilized through H-bonding where the Cl atom forms the 

maximum number of H-bonds with organic cation within the distances of 

2.5-2.9 Å.[51] Similarly, in OTf anion-based ILs, the H-bonds are formed 

between the most electronegative F and O atoms of OTf anion and the H 

atoms of the organic cation. 
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Figure 2.5: The optimized structures and relative energies (R.E. in eV) of 

OTf anion containing ionic liquids. Color codes: pink, grey, blue, red, green, 

and yellow are for hydrogen, carbon, nitrogen, oxygen, fluorene and sulfur 

atoms of ILs, respectively. 

2.3.2. Electrochemical Window from Thermodynamical Cycle Method 

2.3.2.1. Oxidation Potentials of Cation and Anion of Ionic Liquids 

The oxidation potentials of cations and anions are derived from the Gibbs 

free energy change with respect to the reference Al3+/Al electrode. From 
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equation 2.1, we have calculated the reference Gibbs free energy change 

(∆𝐺𝑟𝑒𝑓) of 661.61 kJ/mol for the Al3+/Al reference electrode. The oxidation 

Gibbs free energy of cation and anion reactions have been shown in Figure 

2.2. As described by equation 2.2, the required free energy parameters of IL 

cation are the oxidation Gibbs free energy of the gaseous state (∆𝐺𝑜𝑥(𝑅𝑔
+)), 

the solvation free energy of its oxidized state (∆𝐺𝑠𝑜𝑙(𝑅2+)), and the 

solvation free energy (∆𝐺𝑠𝑜𝑙(𝑅+)). Similarly in equation 2.3, the required 

parameters of IL anion are oxidation Gibbs free energy of gaseous state 

(∆𝐺𝑜𝑥(𝐴𝑔
−)), solvation free energy of its oxidized form (∆𝐺𝑠𝑜𝑙(𝐴)), and 

solvation free energy (∆𝐺𝑠𝑜𝑙(𝐴−)). The Gibbs free energy of the gas-phase 

oxidation of cation and anion is computed using equation 2.6, which 

calculates the difference between the Gibbs free energy of the ion and its 

oxidized version in the gas phase. Gibbs free energies are calculated for 

oxidized ions and their cations. The standard oxidation potentials with 

respect to the Al3+/Al reference electrode can be calculated using equation 

2.7. The calculated oxidation potentials of IL cations and anions have been 

shown in Table 2.1 using the thermodynamic cycle method.  

Table 2.1: Calculated values of 𝐸𝑜𝑥
0  and  𝐸𝑟𝑒𝑑

0  potentials (vs. Al3+/Al 

reference electrode) of the cations and anions of IL using the 

thermodynamical cycle method. Where ‘--’ indicates that the experimental 

data are not available. 

Ionic 

Liquids 

Cation Anion 

ECW 

(V) 

ECW 

(V) 

(expt.) 

𝑬𝒐𝒙
𝟎  

(V) 

𝑬𝒓𝒆𝒅
𝟎  

(V) 

𝑬𝒐𝒙
𝟎  

(V) 

𝑬𝒓𝒆𝒅
𝟎  

(V) 

EMIM-

AlCl4 
0.4704 -1.7965 0.2886 -1.8649 2.0851 3.7[52] 
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PMIM-

AlCl4 
0.4874 -1.7926 0.2886 -1.8649 2.0812 4.7[53] 

BMIM-

AlCl4 
0.5054 -1.7948 0.2886 -1.8649 2.0834 4.7[54] 

DMPI-

AlCl4 
0.3607 -1.8354 0.2886 -1.8649 2.1240 3.6[17] 

HMIM-

AlCl4 
0.4965 -1.7887 0.2886 -1.8649 2.0773 -- 

OMIM-

AlCl4 
0.5772 -1.7649 0.2886 -1.8649 2.0535 -- 

BMP-

AlCl4 
0.7710 -2.1209 0.2886 -1.8649 2.1535 -- 

Urea-

AlCl4 
0.6705 -1.6363 0.2886 -1.8649 1.9249 3.6[55] 

AcAm-

AlCl4 
0.6665 -1.4865 0.2886 -1.8649 1.7751 -- 

EMIM-

OTf 
0.4704 -1.7965 0.2730 -2.1982 2.0695 -- 

PMIM-

OTf 
0.4874 -1.7926 0.2730 -2.1982 2.0656 -- 

BMIM-

OTf 
0.5054 -1.7948 0.2730 -2.1982 2.0678 -- 

DMPI-

OTf 
0.3607 -1.8354 0.2730 -2.1982 2.1084 -- 
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HMIM-

OTf 
0.4965 -1.7887 0.2730 -2.1982 2.0617 -- 

OMIM-

OTf 
0.5772 -1.7649 0.2730 -2.1982 2.0379 -- 

BMP-

OTf 
0.7710 -2.1209 0.2730 -2.1982 2.3939 -- 

 

From Table 2.1, the absolute redox oxidation potentials are not found to 

change significantly, upon changing the alkyl group of the imidazolium 

cation. This suggests that the oxidation mainly occurs on the aromatic 

imidazolium ring and not on the long alkyl carbon chain, which matches 

with the previous report.[24] However, the pyrrolidinium based BMP 

cation shows higher redox oxidation potentials of 0.77 V (vs. Al3+/Al), 

which is much higher than the imidazolium-based IL cations. Interestingly, 

the HOMO of the BMP cation is dominated by the long alkyl carbon chain 

(Figure 2.6) i.e., the tightly bonded 𝜎 electrons of carbon chain are not 

easily oxidizable compared to the loosely bonded 𝜋 electron of the aromatic 

imidazolium ring. This indicates that the pyrrolidinium cation might tolerate 

high oxidation potentials during the charging process.  
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Figure 2.6: HOMO and LUMO orbitals of the (a) imidazolium and (b) 

pyrrolidinium cations and (c) their corresponding energy diagram. Color 

codes: blue, grey, and pink are for nitrogen, carbon, and hydrogen atoms, 

respectively. 

Similarly, we have calculated the absolute redox oxidation potentials of 

AlCl4 and OTf anions and summarized them in Table 2.1. We obtained 

almost comparable oxidation potentials of 0.288 and 0.273 V for AlCl4 and 

OTf anions, respectively. The oxidation potential of OTf anion is slightly 

lower compared to that of AlCl4 anion, i.e., OTf anion can oxidize easily 

compared to AlCl4 anion. The imidazolium cations show higher oxidation 

potentials compared to any of the studied anions. Therefore, it is expected 

that the oxidation limit of ECW is very much dependent for such anions.    

2.3.2.2. Reduction Potentials of Cation and Anion of Ionic Liquids 

Likewise, for the oxidation potentials, we have calculated the reduction 

potentials of IL cation using the equation 2.4. The required constraints are 

the reduction Gibbs free energy of its gaseous state (∆𝐺𝑟𝑒𝑑(𝑅𝑔
+)), the 

solvation energy of its reduced form (∆𝐺𝑠𝑜𝑙(𝑅)), and solvation Gibbs free 

energy (∆𝐺𝑠𝑜𝑙(𝑅+)). Similarly, the anion reduction Gibbs free energy can 

be calculated from equation 2.5, and the required constraints are the 

reduction Gibbs free energy of its gaseous state (∆𝐺𝑟𝑒𝑑(𝐴𝑔
−)), the solvation 

energy of its reduced form (∆𝐺𝑠𝑜𝑙(𝐴2−)), and solvation Gibbs free energy 

(∆𝐺𝑠𝑜𝑙(𝐴−)). The standard reduction potential with respect to Al3+/Al can 

be obtained from equation 2.8. 

The information in Table 2.1, demonstrates that the absolute redox 

potentials of cations remain relatively unchanged when the alkyl group of 

the imidazolium ring is altered. The LUMOs of the cations are mainly 

dominated by the imidazolium ring orbitals and not the alkyl chain (Figure 

2.6). As the chain is changing but the ring remains fixed, very less change 

has been observed in the reduction potential values of cations. However, the 
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reduction potential of pyrrolidinium-based BMP cation shows a higher 

value of -2.12 V compared to the imidazolium-based cations (-1.76 to -1.83 

V) shown in Table 2.1. The LUMO of the pyrrolidinium cation is positioned 

at the higher energy of 1.70 eV compared to imidazolium rings (1.56-1.62 

eV), and LUMO is mainly contributed by the non-aromatic pyrrolidinium 

ring. The electrons are more delocalized in aromatic ring (imidazolium) 

through π-π conjugation which in turn stabilizes the π* orbital (LUMO). On 

the other hand, σ* (LUMO) of the five membered cyclic ring 

(pyrrolidinium) will be in higher energy compared to the π* (LUMO) of 

imidazolium cation. Hence, the electron acceptance in 𝜎∗ LUMO of 

pyrrolidinium cation is less favourable compared to 𝜋∗ LUMO of 

imidazolium ring. Hence, the reduction of pyrrolidinium ring cation is very 

less probable compared to imidazolium ring. Therefore, the pyrrolidinium 

system could resist the solid electrolyte interface (SEI) layers formation to 

some extent due to the LUMO position of the pyrrolidinium ring compared 

to the imidazolium-based cation. 

The reduction potentials of the anions are -1.86 and -2.19 V for AlCl4 and 

OTf anions, respectively. Lower reduction potential of the AlCl4 anion 

indicates that it can be easily reduced compared to the OTf anion. Hence, it 

is expected that OTf anion is more stable against the reduction. In contrast 

to the anions, imidazolium cations have lower reduction potentials, so they 

are less stable towards reduction. Therefore, we believe that the reduction 

potential of the ECW is set by the imidazolium cations for all the 

imidazolium based ILs.   

2.3.2.3. Evaluation of ECW  

The results in Table 2.1., show that the reduction potentials of the 

imidazolium and molten salt cations have lower negative values compared 

to their anion counterparts and therefore, imidazolium and molten salt 

cations are less stable towards the reduction reaction. However, the 

reduction potential of AlCl4 anion is lower in presence of BMP cation 
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compared to any other cations. Further, the redox oxidation potentials of the 

studied anions (AlCl4 and OTf) are lower compared to the counter cations. 

Therefore, anions are less stable towards the oxidation reaction. Hence, the 

ECWs of the ILs are calculated by the difference between limiting reduction 

potentials of cations and limiting oxidation potentials of anions, as given in 

equation 2.10, and reported elsewhere.[24] Whereas in the case of BMP-

AlCl4 IL, we find that the ECW would be calculated as the difference 

between limiting oxidation and reduction potentials of anions only. Our 

calculated ECW of EMIM-AlCl4 is 2.08 V, which is far from the 

experimentally measured ECW of 2.8-3.7 V.[52] In this thermodynamic 

cycle method, molecules are treated as an individual system. This could be 

a reason that the thermodynamic cycle method calculated ECWs are not in 

comparable to the experimental measured values. In spite of this, the 

quantum mechanical calculation is a quicker processing method for 

estimating the ECW values of non-aqueous electrolytes from a large 

number of ILs. 

𝐸𝐶𝑊 = 𝐸𝑜𝑥
0 (𝑎𝑛𝑖𝑜𝑛) − 𝐸𝑟𝑒𝑑

0 (𝑐𝑎𝑡𝑖𝑜𝑛)    (2.10)   

2.3.3. Electrochemical Windows from MD+DFT Method 

The cathodic limiting (VCL) and anodic limiting (VAL) potentials can be 

calculated using LUMO and HOMO energies of the system, 

respectively.[16] In Al DIBs, the anodic oxidation and cathodic reduction 

potentials are set by 3e and 1e transfer reactions, respectively.[5,56] Hence, 

VCL and VAL are calculated using the following equation and ECW can be 

measured from their difference. 

𝐸𝐶𝑊 = 𝑉𝐴𝐿 − 𝑉𝐶𝐿 =
−𝐸𝐻𝑂𝑀𝑂

3𝑒
−

−𝐸𝐿𝑈𝑀𝑂

𝑒
    (2.11) 

2.3.3.1. AIMD-sp and AIMD-min Methods 

We have used AIMD-sp and AIMD-min methods to calculate the ECWs of 

the modelled electrolytes.  In the AIMD-min procedure, we have relaxed 
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each of the classically equilibrated snapshots through the quantum 

mechanically to get the stable potential energy surface and perform DOS. 

Whereas, we have performed only DOS for AIMD-sp without further 

AIMD relaxation of the snapshots.  Using equation 2.11, we have calculated 

ECW of the considered ILs as represented in Figure 2.7. The rectangular 

bars imply the potential stability region of each IL. The minimum stable 

potential is called the anodic limit (beyond that the IL is to be oxidized), 

while the maximum stable potential is called the cathodic limit (beyond that 

the IL is to be reduced). The limiting potentials are calculated by taking the 

average of five snapshots of each ILs.  

Table 2.2: Summary of ECWs from 𝐸𝑜𝑥
0  and  𝐸𝑟𝑒𝑑

0 , VCL and VAL from 

thermodynamical cycle, and MD+DFT methods, respectively. Where, C/A, 

and ‘--’ are represents the cation/anion and non-availability of experimental 

ECWs, respectively.  

Ionic 

Liquids 

Cycle AIMD-min AIMD-sp Expt 

𝑬𝒐𝒙
𝟎  𝑬𝒓𝒆𝒅

𝟎  
ECW 

(V) 
VCL VAL 

ECW 

(V) 
VCL VAL 

ECW 

(V) 

ECW 

(V) 

EMIM-

AlCl4 

0.28 

(A) 

-1.79 

(C) 
2.08 

-3.07 

(C) 

0.24 

(A) 
3.31 -1.09 0.17 1.26 

3.7 

[52] 

PMIM-

AlCl4 

0.28 

(A) 

-1.79 

(C) 
2.08 

-2.76 

(C) 

0.34 

(A) 
3.20 -1.02 0.12 1.14 

4.7 

[53] 

BMIM-

AlCl4 

0.28 

(A) 

-1.79 

(C) 
2.08 

-2.76 

(C) 

0.34 

(A/C) 
3.10 -0.70 0.25 0.96 

4.7 

[54] 

DMPI-

AlCl4 

0.28 

(A) 

-1.83 

(C) 
2.12 

-3.19 

(C) 

0.29 

(A/C) 
3.48 -1.20 0.22 1.37 

3.6 

[17] 

HMIM-

AlCl4 

0.28 

(A) 

-1.78 

(C) 
2.07 

-2.55 

(C) 

0.30 

(A) 
2.86 -0.64 -0.03 0.60 -- 

OMIM-

AlCl4 

0.28 

(A) 

-1.76 

(C) 
2.05 

-2.36 

(C) 

0.42 

(A) 
2.79 -0.72 0.00 0.72 -- 

BMP-

AlCl4 

0.28 

(A) 

-1.86 

(A) 
2.15 

-3.93 

(C/A) 

0.13 

(A) 
4.06 -3.62 -0.20 3.41 -- 

Urea-

AlCl4 

0.28 

(A) 

-1.63 

(C) 
1.92 

-3.85 

(C) 

-0.14 

(A) 
3.71 -1.80 -0.37 1.43 

3.6 

[55] 
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AcAm-

AlCl4 

0.28 

(A) 

-1.48 

(C) 
1.77 

-3.67 

(C) 

-0.08 

(A) 
3.58 -1.55 -0.21 1.33 -- 

EMIM-

OTf 

0.27 

(A) 

-1.79 

(C) 
2.06 

-2.94 

(C) 

0.12 

(A) 
3.06 -1.24 -0.32 0.91 -- 

PMIM-

OTf 

0.27 

(A) 

-1.79 

(C) 
2.06 

-1.30 

(C) 

0.12 

(A) 
1.42 -0.70 -0.21 0.49 -- 

BMIM-

OTf 

0.27 

(A) 

-1.79 

(C) 
2.06 

-2.36 

(C) 

0.25 

(A) 
2.61 -0.35 -0.04 0.31 -- 

DMPI-

OTf 

0.27 

(A) 

-1.83 

(C) 
2.10 

-2.42 

(C) 

0.25 

(A) 
3.18 -0.62 -0.16 0.46 -- 

HMIM-

OTf 

0.27 

(A) 

-1.78 

(C) 
2.06 

-1.60 

(C) 

0.30 

(A) 
1.88 -0.19 -0.00 0.18 -- 

OMIM-

OTf 

0.27 

(A) 

-1.76 

(C) 
2.03 

-1.60 

(C) 

0.27 

(A) 
1.84 -0.25 -0.04 0.20 -- 

BMP-

OTf 

0.27 

(A) 

-2.12 

(C) 
2.39 

-3.46 

(A/C) 

0.73 

(A) 
3.90 -3.45 0.37 3.83 -- 

 

The calculated values using both levels are in given in Table 2.2. Table 2.2 

illustrates that the ECW values calculated by the AIMD-min method are 

highly consistent with the available experimental data. Therefore, in the 

following sections we have discussed the ECW values calculated by the 

AIMD-min method.   

The calculated ECWs from the AIMD-min procedure for both anions (AlCl4 

and OTf) are shown in Figure 2.7a and discussed in this section. The 

calculated ECWs are not much changing along with the alkyl chain length 

of the organic ring moieties. We didn’t observe a clear trend in ECW values 

upon changing the alkyl chain length of organic moieties. Therefore, we can 

say that the ECW values do not depend on the alkyl chain lengths.[57] The 

calculated ECW of the commonly used imidazolium-based IL electrolyte of 

EMIM-AlCl4 is 3.31 V, which is higher than that in the EMIM-OTf of 3.06 

V. The experimentally reported ECW of EMIM-AlCl4 is in the range of 2.8-

3.7 V, which is in good agreement with our calculated value using the 

AIMD-min method.[52] The EMIM-OTf has higher ECW compared to the 
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other imidazolium-based cations with OTf anion. The calculated ECW of 

BMP-AlCl4 (4.06 V) is little higher compared to the BMP-OTf of (3.90 V). 

Our calculated ECW using AIMD-min of BMP-AlCl4 is 4.06 V, which is 

comparable to the experimentally reported pyrrolidinium based IL of 

Pyr1,3-AlCl4 (3.7 V).[58] The AIMD-min calculated ECW value of DMPI-

AlCl4 is 3.48 V, which is higher compared to the calculated values of other 

imidazolium-based ILs, which is also in agreement with the previous 

report.[17] In Figure 2.7a, we have observed that our calculated ECWs of 

the AlCl4 containing IL electrolytes are higher compared to the OTf based 

ILs. Therefore, the AlCl4 anion can play as a superior counter ion compared 

to the OTf anion.  

 

Figure 2.7: The calculated ECWs of ILs from (a) AIMD-min and (b) 

AIMD-sp methods, where the magenta and green coloured rectangular bars 

are for AlCl4 and OTf anions respectively. 

2.3.3.1.1. Electronic Structures of AlCl4 Anion Containing ILs 

We have performed the density of states calculation to understand the 

cationic and anionic contribution to the measurement of the VCL and VAL. 

Figure 2.8 represents the projected DOS of the considered nine AlCl4 

containing ILs, and the plot shows that there is a significant contribution of 

cation and anion towards the measurement of the VCL and VAL. The 

projected DOS of cation and anion allow us to reveal the IL species that 

contribute towards the HOMO (anodic limit) or LUMO (cathodic limit) 
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levels. Except in the case of DMPI-AlCl4 and BMIM-AlCl4 ILs, the 

projected DOS plot shows that HOMO is mainly constituted of the AlCl4 

anion, which implies that anodic stability is set by the AlCl4 anion. 

Similarly, the LUMO is mainly constituted by the imidazolium cation and 

therefore, the cathodic limits depend on the reduction limit of the 

imidazolium cation. All these findings are very much in agreement with our 

findings using the thermodynamical cycle approach. On the contrary, the 

projected DOS plot of DMPI-AlCl4 shows that there is a significant mixing 

of DMPI cation and AlCl4 anion in the HOMO, which implies that DMPI 

cation could contribute to the oxidative stability when coupled with AlCl4 

anion i.e., oxidation stability is no more limited by the anion only. On the 

other hand, the projected DOS of BMIM-AlCl4 shows that there is a very 

little contribution of BMIM cation in the HOMO, which indicates that the 

oxidative stability depends on the BMIM cation.  All these of our findings 

are also very much agreement with the previous report.[14] Furthermore, 

the projected DOS of BMP-AlCl4 shows that LUMO is composed of the 

BMP cationic and AlCl4 anionic states which implies that there is a 

possibility that AlCl4 anion could contribute to reductive stability along 

with the BMP cation. This type of observation has been previously noticed 

both experimentally and theoretically by Howlett et al. for the TFSI anion 

pair with pyrrolidinium system of Pyr1,3 cation.[59] Hence, the AlCl4 

anion can determine the cathodic limit in BMP-AlCl4 IL. Overall, these 

observations challenge the prevailing hypothesis that it is still anion and 

cation that determine the oxidative and reductive stability of the IL system, 

respectively.      
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Figure 2.8: Total density of states of AlCl4 anion containing ionic liquids: 

(a) EMIM-AlCl4, (b) PMIM-AlCl4, (c) DMPI-AlCl4, (d) BMIM-AlCl4, (e) 

HMIM-AlCl4, (f) OMIM-AlCl4, (g) BMP-AlCl4, h) AlCl2(U)2-AlCl4, (i) 

AlCl2(AcAm)2-AlCl4. 

2.3.3.1.2. Electronic Structures of OTf Anion Containing ILs 

Figure 2.9 shows the projected DOS of the OTf anion containing ILs. The 

projected DOS plots of all imidazolium based ILs represent that HOMOs 

are contributed from OTf anion, which implies that anodic stability is 

maintained by the OTf anion itself. Similarly, the LUMOs are contributed 

from the imidazolium-based cation, which indicates that the reductive 

stability is governed by the cation only. Imidazolium based OTf ILs follow 

the general trend, where the oxidative and reductive stabilities are 

maintained by the OTf anion and imidazolium cations, respectively.  
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Figure 2.9: Total density of states for OTf anion containing ionic liquids: 

(a) EMIM-OTf, (b) PMIM-OTf, (c) DMPI-OTf, (d) BMIM-OTf, (e) 

HMIM-OTf, (f) OMIM-OTf, and (g) BMP-OTf. 

Whereas the projected DOS of the BMP-OTf shows that the LUMO is 

mainly contributed by the OTf anion, which implies that the reductive 

stability is set by the anion only. Thus, there is a possibility of cathodic 

instability of the OTf anion when paired with the pyrrolidinium based cation 

(BMP). This phenomenon is not only observed in BMP-OTf IL but also has 

been observed in the pyrrolidinium system of Pyr1,3 cation with TFSI 

anion.[59] Therefore, it is expected that the anion can determine the anodic 

stability of electrochemical window. Such observations have also been 

found while studying using the thermodynamic cycle method of the OTf 

anion based ILs. 
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Overall, from the MD-DFT method we can calculate the individual cathodic 

and anodic limiting potentials as well as we can find out the contribution of 

anion/cation in their respective HOMO/LUMO state. 

2.3.3.2. Applicability of AIMD-min Method 

To generalize our proposed AIMD-min method for the calculation of ECW, 

we have performed several calculations such as robustness, sensitivity to 

the liquid density, and the equilibration time at AIMD level.  

Firstly, we have assessed the responsiveness of the AIMD-min method 

based on liquid density of the ILs system received from the classical MD 

simulation. For EMIM-AlCl4, the applied classical forcefield calculated 

liquid density is 1.44 g/cm3 at 300 K temperature, which is slightly higher 

than the experimental liquid density of 1.30 g/cm3 due to the applied 

classical forcefield parameters are not well optimized in the liquid phase. 

We have observed a maximum relative error of 10%, whereas the classically 

applied forcefield considers a maximum error of 5%.[16] To evaluate the 

robustness of the AIMD-min method, we have altered the size of the 

simulation box manually by ±10% to reflect the changes in density. Then, 

we performed the 50 ns simulation for further equilibration and allowing to 

achieve the artificial change of liquid density. Later, we calculated the 

ECWs using AIMD-min method and the results are summarized in Table 

2.3. Our calculated ECWs with respect to change of density are within the 

experimental range. Hence, the ECW is found to be insensitive towards the 

change of liquid density, suggesting the method is robust with the change 

of density upto ±10%.  
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Table 2.3:  Calculate ECW (V) of EMIM-AlCl4 with respect to change in 

density. 

EMIM-AlCl4 Density (g/cm3) ECW (V) 

Theoretical 

1.44 3.31 

1.58 (+10%) 3.43 

1.29 (-10%) 3.97 

Experimental 1.30 2.8-3.7[49] 

 

Secondly, we have tested the equilibration time at the AIMD level. In 

general, the ILs are having high viscosity and lead to slow dynamics. So, an 

extremely long run simulation is required to obtain the sampled PES. 

Therefore, the sample PES is obtained by using classical molecular 

dynamics simulation in this work. AIMD level equilibration requires 

confirming that the structural configuration must be stable on the PES. 

Generally, AIMD simulations are computationally expensive and highly 

time-consuming processes for large systems. Here, we have carried out 

AIMD relaxation for 300 and 3000 steps for each snapshot of classically 

equilibrated structure. The HOMO/LUMO level is calculated for each 

structure after equilibration of 300 and 3000 steps. Our calculated average 

ECWs are tabulated in Table 2.4. Without AIMD equilibrated 

configurations (AIMD-sp) the calculated ECW is 1.26 V. Upon 

equilibration of 300 and 3000 steps, the calculated ECWs are 3.27 and 3.31 

V, respectively, which are in agreement with the experimental values. 

Hence, the lower length of equilibration didn’t change the ECW 

significantly, which is always preferred for the AIMD case. Moreover, we 

have performed only AIMD up to 3000 steps without classical equilibration 

for the EMIM-AlCl4 IL. Then we have calculated the ECWs of the 

geometries obtained at 1000 and 3000 AIMD steps and the values are far  
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Table 2.4: Calculated ECWs of the different lengths of the AIMD-min 

method for EMIM-AlCl4 IL 

EMIM-AlCl4 Steps ECW (V) 

Theoretical 

0 1.26 

300 3.27 

3000 3.31 

Experimental 2.8-3.7[49] 

 

from the experimental range (Table 2.5). This suggests that the classical 

equilibration followed by AIMD is necessary to achieve the experimental 

ECW value. However, the calculated ECW is little higher for 3000 

compared to 300 equilibration steps in AIMD-min method. Hence, we have 

used 3000 equilibration steps for ECW calculation. 

Table 2.5: Calculated ECWs of the different lengths of the AIMD 

simulation without classical simulation. 

Methods ECW (V) 
Experimental ECW 

(V) 

AIMD-1ps 2.04 

2.8-3.7 [49] 

AIMD-3ps 2.25 

AIMD-sp 1.26 

AIMD-min 3.32 

 

Thirdly, we have tested functional dependencies on the ECW calculation 

for the EMIM-AlCl4 IL. We have considered three functional such as PBE, 
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revPBE and RPBE to calculate the ECW. Our calculated ECWs are 

tabulated in Table 2.6. As these are the revised version of PBE functional, 

a small improvement in ECW values can be observed. From PBE to 

revPBE/RPBE the changes of ECWs are very small (0.09/0.1 V). Hence, 

the changes of ECWs are very small upon changing the functional, so we 

continued PBE functional for all the considered ILs. 

Table 2.6: Comparison of ECWs from different functionals for EMIM-

AlCl4 IL. 

Functional ECW (V) 
Change of ECW with 

respect to PBE 

PBE 3.32 - 

revPBE 3.41 0.09 

RPBE 3.42 0.10 

 

Overall, our proposed AIMD-min method is insensitive to the changes in 

the liquid density of ILs obtain from classical simulation, insensitive to the 

short length equilibration and also less dependency of the functional. 

Therefore, we propose that the AIMD-min method can be a promising 

model for IL based systems for ECW calculation.  

2.3.4. Summary of Thermodynamic Cycle and MD+DFT Methods 

Table 2.2 summarizes the oxidation, reduction potentials from the 

thermodynamic cycle and cathodic, anodic limiting potentials from the 

MD+DFT methods. In thermodynamic cycle method, intermolecular 

interactions from the neighbouring molecules are not considered to the ions 

stability. It would be computationally challenging to deploy explicit 

solvents in this DFT-based cycle method, so we have used an implicit 

solvent model in lieu of real solvent. This could be a reason that the method 
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could not provide adequate accuracy while calculating the ECWs of the 

modelled ILs.  In the MD+DFT method, the liquid structure of IL is 

explicitly considered, along with all interior interaction has been taken into 

account in such a way that simulated IL can behave as a true solvent system. 

The calculated ECWs from this method are found to be more acceptable 

compared to thermodynamic cycle method. The calculated ECWs from the 

AIMD-sp method are not comparable with experimental measured ECWs 

which could be due to the classical model used in the calculations. The 

major drawback of this MD+DFT method is finding the suitable forcefield 

that can take account of all essential physics of liquid system to perform the 

MD simulation. This drawback is not problematic for well-known systems 

such as organic solvents, as the forcefields for these systems are well 

developed. However, our considered three methods, AIMD-min behaves as 

a best fitted method for the calculation of ECWs. The AIMD-sp method is 

not suitable since it can underestimate the accuracy of the ECWs 

calculation. Where the thermodynamic cycle method falls between these 

two AIMD methods. We believe that our calculated ECWs from the AIMD-

min method is a good comparison for future experimental and theoretical 

studies and certain ILs such as EMIM, DMPI, BMIM and BMP cations 

coupled with anions and urea-AlCl4 would be better electrolytes in DIBs 

technology.  

2.4. Conclusion 

In this study, we have systematically studied three different techniques to 

calculate the electrochemical window (ECW) potentials and find suitable 

IL electrolytes for future DIBs. Here, we have considered a series of 

imidazolium and pyrrolidinium based cations coupled with AlCl4 and OTf 

anions. The thermodynamic cycle method calculates the 

oxidation/reduction potentials of cations/anions relative to the Al3+/Al 

reference electrode to determine the ECWs of ILs. The ECWs of the 

considered ILs are dependent on the reduction potentials of the organic 
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cation and oxidation potentials of anions. Whereas the oxidation and 

reduction potentials are set by the anion only for BMP-AlCl4 case. The 

accuracy of this method is not good which could be due to the non-

availability of neighbouring intermolecular interaction. On the other hand, 

in the MD+DFT method, all interior interactions have been deployed to 

understand the essential physics of the liquid structure. In AIMD-min 

method, we have further equilibrated the classically simulated structure 

followed by calculation of cathodic (VCL) and anodic (VCL) limiting 

potentials from density of states (DOS) calculation. In AIMD-sp, we 

obtained the VCL and VAL from the single point calculation of DOS without 

further optimization. The AIMD-min method provides better ECWs for 

considered ILs compared to AIMD-sp method. Our calculated ECW of 

EMIM-AlCl4 is 3.31 V from the AIMD-min method, which is in good 

agreement with the experimental range of 2.8-3.7 V. The AIMD-sp method 

is unable to provide good accuracy of ECWs for IL electrolytes due to the 

formation of unstable potential energy surface (PES). AIMD-min method 

plays as the best fitted model for calculation of ECW among considered the 

three methods. All the interior physics of the ILs are considered in the 

AIMD-min method, therefore the IL represent a stable potential energy 

surface which is not observed in the AIMD-sp method. Also, solvation 

effects of IL have not considered in the thermodynamic cycle approach. 

Thus, the calculated ECWs from thermodynamic cycle method are far from 

experimental measured ECWs. Moreover, our proposed AIMD-min method 

is insensitive towards the change of liquid density upto (± 10%) and short 

length equilibration does not impede the accuracy of ECW value. Thus, 

AIMD-min method is highly robust for the calculation of ECW in liquid 

systems. We believe that our calculated ECWs data of the IL electrolytes 

can guide experimental researchers in the selection of IL electrolytes for 

given electrode materials. Determining the ECWs of ILs is essential for 

designing high-voltage rechargeable dual-ion batteries (DIBs) as it plays an 

imperative role. It is expected that ILs having broad ECW can deliver better 
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voltage compared to the narrow ECW based systems. Therefore, this study 

could help a step forward to accelerate the development of nonaqueous 

electrolytes in the DIBs technology.     
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3.1. Introduction 

With the increasing energy demand, lithium-ion batteries (LIBs), having 

higher capacity, stable cycle, and low self-discharge properties dominate 

the electronics markets over other batteries.[1-3] The non-uniform 

distribution and intermittent occurrence of Li metal, coupled with the 

exorbitant cost of transition metal oxide cathodes, present formidable 

obstacles to the sustainable and enduring implementation of LIBs.[4-5] 

These challenges have prompted researchers to explore alternative devices 

that offer superior electrochemical performance, cost-effectiveness, and 

environmental sustainability. In this regard, dual-ion batteries (DIBs) have 

emerged as a promising alternative due to their unique and attractive 

properties.[6-8] In DIBs, cations/anions are intercalated into the 

cathode/anode based on the charging/discharging process, whereas in 

LIBs, Li cations shuttle between two electrodes.[9,10] The novelty of 

DIBs mechanism over metal ion batteries is the contribution of anions in 

electrochemical process.[11,12] The intercalant active anions are coming 

from the salt-solvent based electrolytes. Recently, ionic liquid-based salt 

solvents have emerged as promising alternatives in DIBs due to their 

unique properties. In our study we have considered ionic liquid (IL) as an 

electrolyte as well as a solvent, playing a dual role. Therefore, solvation is 

not important as in the other cases.[13] 

Room temperature ionic liquids (RTILs) show interesting properties such 

as low vapor pressure, high ionic conductivity, and broad electrochemical 

window (ECW), which are essentials for the electrochemical 

application.[14-16] Recently, organic cations and anions of ILs are used 

as active intercalant species in dual graphite batteries (DGBs).[7,8,17,18] 

Carlin and co-workers have studied the DIBs with observed voltage of 

2.30-3.20 V, using IL electrolytes composed of cations such as 1-ethyl-3-

methyl imidazolium (EMIM+), and 2,3-dimethyl-1-propyl imidazolium 

(DMPI+) coupled with anions like AlCl4, CF3SO3, PF6, and BF4.[18-20] 
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The broad range of the ECW of the ILs allows us to achieve the high cut-

off charging voltage range of 4-5 V. 

The ECW can be defined as the difference between the anodic (VAL) and 

cathodic (VCL) limit potentials at which the oxidation and reduction of IL 

take place, respectively.[14,21,22] Such limiting potentials can be 

measured with respect to their reference electrode, where the ECW 

depends on the working electrode. It is assumed that the cathodic and 

anodic limiting potentials are governed by the reduction of cation and 

oxidation of anion, respectively.[23] However, recent experimental and 

theoretical studies have demonstrated that this is not always true.[24] 

Usually, ECW is measured using a linear voltammetry by calculating the 

individual anodic/cathodic currents which are responsible for 

oxidation/reduction of electrolytes.[25] However, such measurements of 

limiting potential depend on various factors such as electrode, use of 

arbitrary current cutoff to determine the onset redox potentials among 

others.[15] Hence, the reported ECWs in literature are varied widely. 

Other difficulty is handling the ILs experimentally because of the 

sensitivity.[26,27] In this context, computational techniques such as the 

MD-DFT method has been developed, where the combined molecular 

dynamics and density functional approach (MD-DFT) and followed by 

electronic structure calculation has been considered to calculate the ECW 

value with good accuracy.[21,23,28] However, the main drawback of this 

approach is the finding suitable forcefield to perform the classical MD 

simulation of large systems. 

To overcome the obstacles, a high throughput data driven machine 

learning approach has been adopted in this work to predict the ECW for a 

series of ILs.[29-33] We have considered ILs comprising of 10 distinct 

organic cation moieties paired with 12 different anions, as illustrated in 

Figure 3.1. To facilitate the accurate prediction of their ECWs, we have 

incorporated significant input features to train the machine and predicted 

ECW for 660 ILs. Our model’s generalizability and reliability have been 



99 
 

rigorously assessed through comparisons with experimental ECW value 

from prior studies. Moreover, interpretable machine learning techniques 

have been considered to unravel the key features influencing ECWs. Our 

findings emphasize the tremendous promise of our ML model in precisely 

predicting ECW values for IL-based electrolytes. 

 

 

Figure 3.1: Different organic cation and anion-based moieties used to 

model the ionic liquids. 

 

3.2. Methods 

3.2.1. Data Generation 

The ECW values of very few ILs have been reported experimentally. As a 

result, several computational techniques, such as thermodynamic cycle 
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and MD-DFT methods have been developed to calculate the ECW. Ceder 

and coworkers have developed the MD-DFT technique for the ECWs and 

later on Maginn and coworkers have proposed the AIMD-min method 

which is an extended MD-DFT technique.[21,23] In our previous report 

we have used ab initio MD method (AIMD-min) to calculate the ECWs, 

where we have equilibrated each IL in classically to allow the formation of 

stable liquid structure (Scheme 3.1).[26] After the classical simulation we 

have further equilibrated each configuration for 3ps using the AIMD-min 

to obtain a stable potential energy surface (PES) and perform the density 

of states (DOS) calculations of each configuration to calculate the ECW 

(more details in section 2.2.2, chapter 2).[28] We extracted the 

HOMO/LUMO energies from the calculated density of states (DOS) and 

utilized them to compute both the anodic and cathodic limiting potentials, 

which were subsequently used for the ECW calculation. Peljo and co-

workers demonstrated that there is a notable difference between the 

HOMO-LUMO gap (Eg) and ECW and the ECW window must be within 

the Eg range for the electrolyte stability.[34] Our training dataset was 

constructed using ECW values calculated through the AIMD-min method 

from our previous study as well as the reported experimental values. 
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Scheme 3.1: The steps used for the calculations of electrochemical 

windows of ionic liquids.  

 

For the prediction of the ECW, different organic moieties-based cations 

have been considered as shown in Figure 3.1. We also varied the alkyl 

groups of the organic cationic moieties and coupled them with the listed 

anions to generate different types of ILs (Figure 3.2). Further, the 

structural optimization has been performed for all the considered cations 

to obtain the most stable geometry using the Gaussian 09 package.[35] 

The structural optimization has been done using the B3LYP functional and 

6-31++G(d,p) Pople basis set and CPCM solvent model.[36-39] 



102 
 

 



103 
 

Figure 3.2: The possible organic cations from the different organic 

moieties. The individual cation can be defined by the below number and 

methyl, ethyl, propyl, and butyl groups are defined by 1, 2, 3, and 4. Color 

code: pink (H), grey (C), blue (N), red (O), green (P), and yellow (S).  

 

3.2.2. ML Models 

For the ML study, a complete work flowchart from data set bifurcation to 

user understanding has been shown in scheme 3.2. In our supervised ML 

model, we have divided the ECW data in 80:20 ratio as the train and test 

data set.[40-41] This division was carefully designed to ensure a well-

sampled representation of the overall dataset, rather than a random 

splitting approach. The train and test data sets are used for training and 

evaluating the performance of the ML model. We performed various ML 

algorithms consisting of supervised regression models such as, Kernel 

Ridge Regression (KRR), eXtreme Gradient Boosting Regression 

(XGBR), Extra Trees Regression (ETR), Random Forest Regression 

(RFR), Adaptive Boosting Regression (ABR), Decision Tree Regression 

(DTR), and Gradient Boosting Regression (GBR) using Scikit-learn 

package 0.23.1 running in Python version 3.8.2 (more details in section 

1.6.6, chapter 1).[42-44] To find the best fitted ML model, we have 

implemented randomized search cross-validation technique with 

hyperparameter tunning of each regression algorithm. The accuracy of the 

prediction performance of each model can be evaluated by the mean 

absolute error (MAE) using the following equation.  

 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑦𝑖)𝑛

𝑖=1       (3.1) 

 

Where, n is the total number of data points, Yi, and yi are the calculated 

and ML predicted ECWs, respectively. Using the hyperparameter tunning 

method to identify the best set of parameters to obtain the well optimized 

ML model. Finally, we considered the optimized ML model with lowest 
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MAE to predict the ECW for unknown data set. Furthermore, an 

interpretable ML technique has been performed using cooperative game 

theory based SHAP (SHapley Additive exPlanations) library to understand 

the contribution of local and global feature importance towards the 

predicted output.[45] The Shapley value (𝜙𝑖) signifies the importance of 

each feature and it can be computed using equation 3.2.  

 

𝜙𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑆⊆𝐹,{𝑖} [𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]    (3.2) 

 

Where, F represents all set of features and S indicates the subset of all 

features obtained from F after removing of ith feature. 𝑓𝑆∪{𝑖} and 𝑓𝑆 are the 

prediction model of with and without ith feature, respectively. 𝑥𝑆 

represents the value of the input features in the S set.  

 

 

Scheme 3.2: The machine learning workflow and interpretable analysis 

used for the study. 
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3.3. Results and Discussion 

3.3.1. Structural Orientation of the Ionic Liquids 

In the methods section we have explained the generation of the ILs by 

coupled with different cations and anions by varying the alkyl groups of 

the cationic moieties. Majorly, the alkyl chain length from methyl (1) to 

butyl (4) groups have been considered, and those are used as electrolytes 

in battery study (Figure 3.2). Besides, we have considered a few methoxy 

(OMe) and ethoxy (OEt) functional groups containing cations. Owing to 

the acyclic structure of the ammonium, phosphonium and sulfonium 

cations, which could accommodate long chain alkyl groups on the hetero 

atom without steric hindrance. Thus, we have considered the long chain 

alkyl groups containing cations for ammonium, phosphonium and 

sulfonium based system. The long chain alkyl group containing ILs are 

stable by the hydrophobic interaction of their long carbon chain.  

 

3.3.2. Data Pre-processing and Features Engineering 

The prediction of the ECW for completely unknown ILs from ML model 

trained with small dataset is quite a challenging task. However, to prevent 

the obstacles because of the small training dataset, we have incorporated 

different cations anions based ILs ECW in train set to make a well 

sampled data set and bring the homogeneity in the training set so that the 

ML predicted result must not be biased for some ILs.[46,47] In this 

context, we have considered the ECW of the ILs (imidazolium cations 

coupled with AlCl4 and OTf anions) calculated by AIMD-min method 

from our previous studies.[28] Besides, experimental ECWs have been 

considered for the 2-(cyano) pyrrolide (CNPyr) and 1,2,4-trazolide 

(124triz) anions-based IL from the previous study.[21] Thus, we have 

incorporated the ECW data of 50 ILs in the training dataset extracting 

from various computational and experimental reports to train ML models. 

Incorporating a hybrid dataset consisting of both computational and 

experimental ECW values into the training data can enhance the 
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machine’s ability to recognize the overall patterns within the dataset. This 

integration could mitigate the risk of outperformance and improve the 

predictions of ECWs for unknown dataset as such hybrid approach may be 

able to reduce the experimental and technological gaps[48] for the 

prediction of ECW. Considering the complexity of describing the change 

of ECW with changing the cations and anions of the ILs, it is difficult to 

extract exact correlated features. Whereas, the ECW is the purely 

experimental phenomena, to compute in data science exercise is 

challenging to find out its dependency on the physical observable 

parameters. However, we have considered both molecular and elemental 

features (Table 3.2) to tune the ECW with changing the ILs. We have 

extracted elemental features using the Corelated Based Features Vector 

(CBFV).[49] It has been reported that the measurement of oxidation and 

reduction potentials can be done based on the HOMO and LUMO energies 

of the anion and cation, respectively.[22,23] Hence, we have considered 

the HOMO and LUMO energies of the individual cation and anion instead 

of HOMO/LUMO energies of neutral IL molecule.  

 

Table 3.1: Molecular and elemental features of ionic liquids.  

Molecular features Elemental features 

1. Molecular weight (g/mol) 8.    Average (avg.) ionic radius (Å) 

2. Cation HOMO (eV) 
9.    Avg. Pauling electronegativity 

(EN) 

3. Cation LUMO (eV) 
10.   Avg. number of valence 

electron 

4. Anion HOMO (eV) 
11.  Avg. 1st ionization energy (IE) 

(kJ/mol) 

5. Anion LUMO (eV) 12.   Avg. polarizability (Å3) 

6. Cation dipole moment (D) 13.   Avg. boiling point (K) 
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7. Anion dipole moment (D) 
14.   Avg. heat of vaporization 

(kJ/mol) 

 

A better understanding of the features nature of the data set is often 

effective to speed up the machine learning process. The features should be 

dependent directly or indirectly on the target property and must be 

independent to each other. If the features are highly corelated to each 

other, we need to perform the dimensionality reduction process to reduce 

the complexity of the ML model and remove the unnecessary noise from 

the dataset. The assessment of the features correlations often provides 

insight towards the prediction of the ECW. In order to understand the 

linear correlation among the considered features, including the target 

variable (ECW), the correlation matrix has been plotted with Pearson 

correlation coefficients (PCCs) in Figure 3.3. The PCC helps to 

understand the co-relation among the features-features and features-target  
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Figure 3.3: Reduced Pearson’s correlation matrix for features (elemental 

and molecular feature details listed in Table 3.1) and target ECW (15). 

 

variable. The strongly correlated features are average boiling point and 

average heat of vaporization (PCC=0.99), average number of valence 

electrons and average Pauling electronegativity (PCC=0.97) as shown in 

Figure 3.4. Hence, we have dropped two features (average boiling point 

and average number of valence electron) by keeping average heat of 

vaporization and average Pauling electronegativity in training dataset and 

final engineered features correlation plot has been shown in Figure 3.3. 

Including the average heat of vaporization in the dataset can potentially 

influence the ECW values of ILs, particularly because these are low-

vapor-pressure liquids. Moreover, retaining the average Pauling 

electronegativity in the dataset shows a stronger direct correlation with 

ECW (PCC=0.32) compared to the average number of valence electrons 

(PCC=0.22) (Figure 3.4). The positive PCCs indicate the features are 

tandem, these are holding a liner relationship, while the negative 

correlation indicates the inverse relationship between them. In the 

correlation matrix, the deep brown and light-yellow colors indicate strong 

positive and negative correlation and light red colors indicate no 

correlation. Here, we have used a hybrid dataset for the training using 

experimental ECW values as well as the DFT calculated ECW values. The 

glassy carbon electrode is used in all those experiments. Hence, some 

information related to the glassy carbon electrode is already there in the 

experimental dataset. Therefore, all the ML predicted ECW values can be 

considered with respect to the glassy carbon electrode. 
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Figure 3.4: Pearson’s correlation matrix between all features (features 

numbers are tabulated in Table 3.1) and target output ECW (15). 

 

3.3.3. Machine Learning Algorithms 

We have applied seven ML algorithms on the training dataset to train the 

model. To maximize the performance of the ML algorithms we have 

implemented hyperparameter tuning using RandamizedSearchCV method  
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Figure 3.5: (a) The MAEs of seven considered ML models for the train 

(blue) and test (magenta) data set. (b) The scatter plot of ML predicted vs. 

DFT calculated ECW is shown for the ETR model.   

 

as implemented in the scikit learn package.[44] Hyperparameters are 

model dependent parameters, which change upon changing the ML 

algorithms. After optimizing the hyperparameters for each algorithm, we 

fed the optimize algorithm on the test data to evaluate the model 

performance based on MAE. Figure 3.5a shows the test and train MAEs 

for all the considered ML algorithms, represented by magenta and blue 

columns, respectively. A smaller MAE is the criteria used to determine the 

best ML algorithm. From Figure 3.5a, it is evident that the test MAEs for 

all the considered ML algorithms range from 0.35 to 0.58 V. The lowest 

test MAE of 0.35 V has been observed for the KRR algorithm, whereas 

the corresponding train MAE is 0.61 V. This indicates that the machine 

was not adequately trained to predict the ECW for the unknown dataset. In 

the case of the XGBR model, the test MAE is 0.49 V, which is 

significantly higher compared to the train MAE of 0.001 V. This suggests 

that the XGBR model may be prone to overfitting when predicting ECW. 

Additionally, the GBR, ADR, and RFR algorithms exhibited higher test 

MAEs of 0.58, 0.52, and 0.42 V, respectively, in comparison to the ETR 

model (0.37 V). Therefore, these algorithms are not suitable for accurate 

ECW prediction. On the other hand, in the DTR model, the train and test 

MAEs are in the same range, albeit with a slightly higher train MAE of 

0.46 V compared to the test MAE of 0.44 V. Based on our observations of 

the train and test MAEs, it can be concluded that the ETR model is well-

suited to predict ECW for the unknown dataset, as it exhibits the lowest 

test MAE of 0.37 V, coupled with a train MAE of 0.05 V. Interestingly, 

our ML predicted MAE (0.37 V) for the ETR model is less compared to 

the previously DFT calculated MAE (0.68 V) for two different methods of 

ECW calculation.[50] The scatter plot depicted in Figure 3.5b 
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demonstrates a close alignment between the test data and the training data, 

effectively reducing the potential issue of outperformance when predicting 

the ECWs for unknown data. This intriguing finding further supports the 

notion that incorporating a hybrid ECW data (comprising of both 

experimental and computational values) used in our training data set, 

enhances the model’s ability to accurately predict the ECW compared to 

pure DFT based methods. Our machine learning approach intelligently 

amalgamates the experimentally and computationally derived data, 

resulting in improved ECW predictions. This successful combination of 

diverse datasets contributes to the overall effectiveness of our ML-based 

approach to predict the ECW accurately. Furthermore, to assess the 

model’s generalizability and acceptability, we randomly predicted ECWs 

for a few ILs and compared them with their experimental values. The 

details of these predictions are provided in the following section. 

 

3.3.4. Prediction of ECW 

In this section, the ECW values have been predicted for the unknown 

dataset using the best parameters of the ETR model. We have successfully 

predicted the ECW values of 660 IL electrolytes for DIBs (Figure 3.6). 

Among them, the ECW values are validated with experimental findings, as 

given in Table 3.2. From Table 3.2, it has been observed that our ML 

predicted ECWs are in good agreement with the experimentally measured 

values. The absolute errors (difference between ML predicted and 

experimental ECW values) of ECWs are lesser than the test MAE (0.37 V) 

of best fitted ETR model for the considered ILs except P1113-FSI IL. The 

experimental ECW value reported for the P1113-FSI IL is with respect to 

the Pt electrode. However, our trained experimental dataset is with respect 

to the glassy carbon electrode. So, this could be the reason for the higher 

MAE compared to the test MAE. 
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Table 3.2: ML predicted vs. experimentally reported ECW values of ILs.  

Organic 

Moieties 

Ionic 

Liquids 

ML 

Predicted 

ECW (V) 

Experimental 

ECW (V) 

| 𝑨𝒃𝒔. 𝑬𝒓𝒓𝒐𝒓| 

 

Morpholium 
N1(EtOMe)-

TFSI 
4.81 4.68[51] 0.13 

Pyridinium 

N(Pro-OH)-

TFSI 
3.78 3.81[51] 0.03 

N(Hex)-

TFSI 
3.76 3.90[51] 0.14 

Ammonium N1133-TFSI 5.11 5.12[52] 0.01 

Phosphonium P1113-FSI 4.63 5.05[53] 0.42 

 

In the field of battery technology, achieving improved electrochemical 

performance often relies on electrolytes with well-accepted 

electrochemical windows (ECWs) starting from values higher than 4.00 V. 

Higher ECWs in electrolytes generally correspond to higher discharge 

voltages in DIBs, as they can withstand higher charging voltages without 

decomposition. By analyzing Figure 3.6, we observed that pyridinium and 

thiazolium-based cations offer relatively smaller ECW ranges when 

combined with various anions compared to other cation moieties. 
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Figure 3.6: The ML predicted ECWs for 660 considered ILs (Structures 

correspond to the cations given in Figure 3.2). 
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Similarly, ILs containing 2-(cyano)pyrrolide (CNPyr) anions were 

predicted to have narrow ECWs, making them unsuitable electrolytes for 

DIBs studies. On the other hand, PF6 and BF4 anions exhibited broader 

ECW ranges (4-6 V) when combined with almost all cations. 

Consequently, these two anions are commonly used in DIBs as 

electrolytes.[54,55] The OTf, sulfate, TFSI, and AlCl4 anions provided 

moderate ECW ranges (3.50-5.00 V) when paired with different cations. 

Furthermore, our ML-predicted ECW values were validated with the 

previously reported experimental values. This validation demonstrates that 

our ML predictions are consistent with existing research findings, further 

affirming the stability and prediction ability of our best fitted ETR model 

when applied to unknown data sets. Nevertheless, this comprehensive data 

set of ML-predicted ECWs can serve as a valuable guide for researchers in 

selecting suitable electrolytes for high-voltage battery technology. 

 

3.3.5. Interpretability of Algorithm 

3.3.5.1. Global Features Importance 

In our study, all the machine learning (ML) algorithms we considered are 

categorized as black box models. This means that they operate in a way 

that makes it challenging to understand and interpret the specific features 

driving their predictions. To address this limitation and gain insights into 

both local and global trends for particular features, we turned to an 

interpretable model. To facilitate this interpretability, we implemented the 

game theory based SHAP (SHapley Additive exPlanations) library. SHAP 

provides a methodology for understanding the contribution of different 

features to the overall prediction made by the ML algorithms. By 

employing SHAP, we can assess the global feature contributions and gain 

a clearer understanding of the factors influencing the predictions made by 

the ML models. By utilizing the SHAP library, we can reveal valuable 

insights into the relationship between the features and the predictions, 

shedding light on both the individual feature contributions and the overall 
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trends. This allows us to better comprehend the underlying mechanisms 

and patterns driving the ML model’s predictions.  

 

 

Figure 3.7: Visualization of global SHAP feature importance of each 

feature towards the prediction of ECW. 

 

In Figure 3.7, the blue bars represent the global features contribution 

towards the prediction of ECW values. Among the various features 

considered, the energy of the cation LUMO, the dipole moment of the 

anion, and the energy of the anion HOMO are identified as the top three 

most influential features. Figure 3.7 demonstrates that the energies of the 

cation LUMO and the anion HOMO have a significant impact on the 

ECW values of the ILs. Previous studies on calculating ECWs of ILs have 

indicated that the limiting potentials of cathodic reduction and anodic 

oxidation are influenced by the LUMO energy of cations and HOMO 

energy of anions, respectively.[22,23] Consequently, there exists a direct 

correlation between the ECW value and the LUMO energy of cations, as 
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well as the HOMO energy of anions, and any alterations in their energy 

levels can impact the ECW. Furthermore, the plot indicates a relationship 

between the dipole moment of the anion and the ECW of the ILs. This 

correlation aligns with the findings from the correlation plot (Figure 3.3), 

suggesting that the electrostatic interactions play a role in determining 

their ECW. Additionally, the average first ionization potential energy is 

correlated with the oxidation potentials of the ILs. Therefore, the 

contribution of the ionization energy of the ions can also influence the 

ECW of the ILs. While other features may contribute to the prediction of 

ECW, their individual contributions are relatively small (less than 0.10). 

Overall, the global feature analysis reveals that the most significant factors 

influencing the ECWs are the energy of the cation LUMO, the dipole 

moment of the anion, and the energy of the anion HOMO. 

 

3.3.5.2. Local Features Analysis 

Similarly, the SHAP library was utilized to analyze the individual 

contributions of features for a specific IL. The SHAP visualization plots, 

displayed in Figure 3.8, highlight the results for the P2224-CNPyr IL, 

which exhibits minimal deviation and accurate ECW predictions by the 

ML model (predicted ECW: 3.74 V vs. DFT calculated ECW: 3.70 V). 

Figure 3.8a and 3.8b present the SHAP waterfall and force plots, 

respectively, for the instance of the P2224-CNPyr IL. The SHAP waterfall 

plot illustrates the contribution of each feature value to the default 

prediction. Red and blue bars represent positive and negative 

contributions, respectively. In this plot E[f(x)] = 4.27 is the baseline 

(average expected value) and the final predicted value is the f(x) = 3.74. 

Each row’s SHAP value signifies the feature’s contribution and interaction 

towards the final prediction for this instance. For example, the anion 

dipole moment (D) of 5.32 has a negative effect on the target ECW, which 

decreases 0.26 to the prediction from the baseline. 
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Figure 3.8: (a) SHAP waterfall plot and (b) force plot for the least 

deviated ECW prediction of phosphonium based P2224-CNPyr IL.   

 

Similarly, anion HOMO (eV) of -5.05 and average 1st IE (kJ/mol) of 

1246.71 have the negative effect for ECW prediction by the decreases of 

0.16 and 0.08, respectively. On the other hand, the average ionic radius 

(Å) of 0.43 and the cation LUMO (eV) of -0.64 have positively influenced 

the ECW prediction, which increase by 0.07 and 0.05, respectively. For 

this instance, the negative contribution is more compared to the positive 

contribution for the ECW prediction. Moreover, the anion dipole moment 

and anion HOMO are turned out as the most important features for this 

instance which matches with the trend of global features importance, 

while the contribution of the cation LUMO is less. Overall, the negative 

contributions of individual features outweigh the positive contributions. 

Quantitively, the predicted value 𝑓(𝑥) is the total of average prediction of 
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all observation (𝐸[𝑓(𝑥)]) and sum of all SHAP values (𝜙𝑖) as shown in 

following equation, 

 

𝑓(𝑥) = 𝐸[𝑓(𝑥)] + ∑ (𝜙𝑖)
𝑁
𝑖=1       (3.3) 

 

Here, N is the subsets of the features and 𝜙𝑖 can be calculated from 

equation 3.2. Figure 3.8b shows the SHAP force plot which is the 

qualitative projection of the waterfall plot. From the force plot we have 

observed that red color features are pushed to model prediction score 

higher (towards the right) and the blue colored features are pushed the 

model prediction score lower (towards the left). Likewise, the SHAP 

waterfall and force plots are presented in Figure 3.9 for the Pyr14-DCA 

IL, which exhibited the most deviation in predictions (ML predicted 

ECW: 4.03 V vs. DFT calculated ECW: 4.62 V). Interestingly, the anion 

dipole moment (1.16 D) has a slightly positive effect on the ECW 

prediction for this instance, deviating from the overall trends observed in 

global features. Overall, the negative effects outweighed the positive 

effect on the ECW prediction, although the positive effect was higher for 

this instance compared to the more accurately predicted P2224-CNPyr IL. 

Therefore, the SHAP waterfall and force plots provided valuable insights 

into the individual feature contributions of the P2224-CNPyr and Pyr14-

DCA ILs, highlighting their respective characteristics and their impact on 

ECW predictions. 
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Figure 3.9: (a) SHAP waterfall plot and (b) force plot for the most 

deviated ECW prediction of pyrrolidinium based Pyr14-DCA IL.   

 

3.4.   Conclusion  

In this study, we employed supervised machine learning (ML) techniques 

to accurately predict the electrochemical window (ECW) potential of ionic 

liquid (IL) electrolytes for their application in dual-ion batteries (DIBs). 

Our ML approach provides faster and accurate ECW predictions 

compared to the MD-DFT method. Out of the seven ML algorithms 

employed, the ETR model stands out as proficient in accurately predicting 

the ECW with low MAE of 0.37 V. Notably, this ML predicted MAE of 

the ETR model outperforms the previously DFT computed MAE (0.68 V) 

from two different methods of ECW calculation. This substantial 

improvement in predictive accuracy highlights the effectiveness and 

superiority of our ML-based approach in estimating the ECW potential for 



120 
 

the studied ionic liquid electrolytes. Using the optimized parameters of our 

best fitted ETR model, we successfully predicted the ECW values for 660 

ILs. To ensure the stability and transferability of our model, we validated 

the ML-predicted ECW values of selected ILs against experimental 

values, finding excellent agreement between them. In addition, to uncover 

the intricate relationships between the considered features and the target 

ECW values, we employed the interpretability model of the game theory 

based SHapley Additive exPlanations (SHAP) library. Notably, we 

identified the energy of the cation LUMO, the anion dipole moment, and 

the energy of the anion HOMO as the top three most influential features in 

predicting ECW. Furthermore, we visualized the feature contributions 

using SHAP waterfall and force plots, providing local interpretations of 

individual features in relation to ECW predictions for specific instances. 

Interestingly, the positive and negative SHAP values of each feature 

played a role in fine-tuning the ECW of individual ILs. Importantly, our 

ML-predicted results exhibited strong agreement with previously reported 

experimental ECW values. Therefore, our findings provide a foundation 

for accurately predicting ECW values of ILs, enabling advancements in 

the design of IL electrolytes for improved DIBs performance. 
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4.1. Introduction 

Increasing utilization of renewable energy sources, like wind, 

hydroelectric and solar power is essential today for a sustainable economy. 

Due to the nature of volatility, randomness, and intermittency in such 

energy sources, they cannot be directly deployed for uninterrupted power 

supply. As a result, development of highly efficient energy storage and 

conversion systems is required to assist with the widespread usage of 

portable electronic devices in daily life.[1] Various types of rechargeable 

metal-ion batteries have been developed in the recent past such as Li-

ion[2-4], Na-ion[5-7], Mg-ion[8,9], Zn-ion[10,11] and Al-ion[12,13] 

batteries. Among them, lithium-ion batteries (LIBs) have profoundly 

dominated the energy storage market due to their high output voltage and 

gravimetric capacity.[2,4] However, using expensive transitional metal 

oxide as cathode material and less abundant Li metal as anode, may not be 

sustainable for large-scale application of LIBs in future.[14,15] Moreover, 

the safety issues and thermal runaway events are major concerns that have 

not been completely resolved.[16] Altogether, the high cost and the safety 

issues are not as an ideal choice of green energy storage in LIBs. Hence, 

new materials like graphite are being explored to develop better 

performance low-cost batteries. Owing to its redox-amphoteric nature and 

layered structure, the graphite can be reduced as well as oxidized by 

electrochemical reaction with proper cation/anion uptake and release. 

Thus, dual graphite batteries can be conceptualized, also called dual-ion 

batteries (DIBs) where both graphite anode and cathode are involved in 

intercalation/deintercalation of cation and anion, respectively during the 

charge/discharge cycle of battery.[17-20] In 1989, McCullough et al. first 

reported a DIB using graphite as both the cathode and anode along with 

the nonaqueous electrolyte of ClO4
-.[21] The graphite-based DIBs are 

considered as promising alternative rechargeable batteries because they 

have high working voltage (4.5 V), better safety and lower cost compared 

to the conventional LIBs.[22-25] In DIBs, the working principle is 
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different from the rocking chair mechanism as in LIBs. Here, the cations 

and anions are both reversibly intercalated in graphite anode and cathode 

simultaneously in charging process,  while the ions are deintercalated from 

the graphite back to the electrolyte during the discharging process.[26,27] 

Commonly used DIBs have lithium salts (like LiPF6, LiTFSI) with organic 

solvents (ethylene carbonate, ethyl methyl carbonate) as an electrolyte 

which faces several fatal problems like, (i) electrolyte decomposition at a 

high working voltage (> 4.5 V).[28] (ii) graphite exfoliation due to solvent 

co-intercalation along with ion intercalation,[28] (iii) active battery 

material loss due to solid-electrolyte interphase (SEI) formation.[29] 

Hence, compatible electrolytes and electrodes are required to reduce the 

exfoliation of graphite and replace the lithium metal. Carlin et al. have 

presented the room temperature ionic liquids (RTILs) as a better 

alternative to replace the conventional volatile organic solvents.[30]  

Ionic liquids (ILs) are low melting point salts and have emerged as an 

important part in electrochemistry to design new classes of electrolytes. 

ILs show several encouraging properties for electrochemical applications 

such as low vapour pressure, broad range of electrochemical window, and 

higher ionic conductivity.[31-33] Special feature of using ILs as 

electrolytes is that the electrochemical reaction is mainly driven due to 

their high oxidative and reductive stability and thus possess a large 

electrochemical stability window.[34-36] Several recent studies have 

considered DIBs involving IL electrolytes and revealed that the organic 

cations of the ILs such as 1-ethyl-3-methyl imidazolium cation (EMI+), N-

butyl-N-methyl pyrrolidinium (BMP+) can be intercalated into the graphite 

anode.[37-39] The broad range of electrochemical window stability of ILs 

allow for high cut-off charging voltage (4.0-5.0 V).[37-39] Carlin and co-

workers, have also studied ILs composed of cations like 1-ethyl-3-methyl 

imidazolium (EMI+) and 2,3-dimethyl-1-propyl imidazolium (DMPI+) and 

anions such as CF3SO3
-, AlCl4

-, C6H5CO2
-, PF6

- and BF4
- as electrolytes in 

dual ion battery.[30,25] Our previous reports have shown AlCl4 anion 
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along with different ILs based organic cation (imidazolium, 

pyrrolidinium) can be used as electrolytes in Al DIBs.[33,40] Using 

organic cations as charge carriers have the added advantage of preventing 

unwanted co-intercalation of solvents into the graphite anode (as in case of 

LiPF6) as well as diminished chances of solvent decomposition at high 

charging voltage. 

Consequently, apart from the intercalation mechanism, there is a lack of 

clear molecular level understanding of intercalation capacity and 

intercalated species for organic cation intercalation in graphite-like 

anodes. In this study, we have computationally modelled for the first time, 

organic cation intercalated graphite anode system successfully. We have 

chosen imidazolium-based IL, 2,3-dimethyl-1-propyl imidazolium 

chloride (DMPI-Cl) with AlCl3 at 1:1 molar ratio as electrolyte. We have 

investigated the intercalation mechanism by considering the staging 

manner of DMPI cation intercalation into the graphite anode. First 

principles calculations are performed for a systematic study of the 

structure, stability, electronic properties, and theoretical capacity along 

with average voltage of DMPI cation intercalated graphite electrode. 

Furthermore, we have also investigated the diffusion pathways of DMPI 

cation in graphite system. Along with this, we have also explained why 

EMI+ cannot be used as organic cation for dual-graphite battery research, 

although EMI based IL electrolytes are extensively used in the battery 

technology.[41,42,12] On the basis of the obtained theoretical insights, we 

believe that organic cation intercalated graphitic anodes could be utilised 

in DIBs to achieve better electrochemical features compared to DIBs using 

metal anodes, and our study would motivate further developments in 

cheaper dual graphite battery technology. 

4.2. Computational Details 

The first principles calculations have been performed using the Vienna ab 

initio simulation package (VASP).[43,44] All geometry optimizations and 
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respective calculations have been performed using generalized gradient 

approximation of Perdew-Burke-Ernzerhof (GGA-PBE) functional.[45] 

The projected augmented wave (PAW) method is used for treating 

interaction between the ions core and valence electron.[46] An energy cut 

off of 470 eV has been implemented. During the structural optimization, 

the Brillouin zone has been sampled with Γ centered k-point grid of 11 × 

11× 5 for the unit cell and 2 × 2 × 1 for the considered supercells. All 

structures have been optimized with an energy criterion of 10-5 eV/Å and 

force criterion of ≤ 0.01 eV/Å for all the atoms to obtain full relaxation 

between the atomic and lattice positions. DFT-D3 approach has also been 

considered for van der Waals corrections in our calculations.[47] We have 

modelled four different stages for both DMPI cation and AlCl4 anion 

intercalation process, where the 6 × 6 × 2 supercell of graphite containing 

288 carbon atoms for stage-1, stage-2 and stage-4 systems and 6 × 6 × 3 

supercell containing 432 carbon atoms has been chosen for the stage-3 

calculation with the same concentration of both cations and anions. The 

density of states (DOS) calculations has been performed for a 4 × 4 × 1 

supercell with a Γ centered k-point mesh of 9 × 9 × 1. The Bader charge 

analysis has been performed using the Henkelman program to determine 

the quantitative charge transfer upon intercalation of DMPI cation into 

graphite layers.[48-50] The ab Initio Molecular Dynamics (AIMD) 

simulations have been performed with NVT ensemble for a broad 

temperature range of 300-600 K for 5 picosecond (ps) timescale. Nosé-

Hoover thermostat[51] with a Nosé mass parameter of 0.01 has been 

implemented to control the temperature fluctuations. The activation 

barriers for DMPI cation diffusion pathways have been calculated using 

the climbing image nudged elastic band method (Cl-NEB).[52] The 

minimum energy paths (MEPs) are initialized by considering six image 

structures between fully optimized initial and final geometries with an 

energy convergence criterion of 10-3 eV. During the charging process, the 

net electron obtained from the external circuit (with very small-time lag) 
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induces the intercalation of DMPI cation which subsequently transfers its 

charge thereby reducing graphite. The reverse phenomenon is occurring 

for AlCl4 anion transferring charge to consequently oxidise graphite 

cathode. This time lag is very short compared to the time required to reach 

thermodynamic equilibrium of DMPI-graphite system. Hence, in our DFT 

study we have considered a neutral system of both DMPI-graphite and 

AlCl4-graphite as we carry out our calculations in equilibrium condition. 

Such consideration of neutral systems has yielded electrochemical 

performance results comparable to experimental reports in past.[27,53] 

The zero-point energy (ZPE) corrections have also been included for 

diffusion barrier calculation using the formula, ZPE = ∑
ℎ𝜈𝑖

2𝑖  , where h is 

the Planck’s constant and 𝜈𝑖 is the vibrational frequency. The ZPE is 

calculated by considering the degrees of freedom of intercalated DMPI 

into graphite system.  

4.3. Results and Discussion 

4.3.1. Structural Changes and Stable Binding Sites 

 

Scheme 4.1: Considered intercalant cation, 2,3-dimethyl-1-propyl 

imidazolium (DMPI) with labelled atoms. Here, blue, cyan, magenta, and 

brown colours indicate N, C, H, and graphite layers carbon atoms, 

respectively. 
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In DIBs, the cations (DMPI in our case, Scheme 4.1) and anions are 

reversibly intercalated/deintercalated from the cathode and anode in 

charging/discharging process, respectively. Hence, it is important to study 

the structural changes upon intercalation. We have chosen two 

possibilities of DMPI cation intercalation in the graphite layer, where one 

is oriented perpendicular to the graphite layers and the other is parallel to 

the graphite layers (Figure 4.1a, b).  

 

Figure 4.1: DMPI intercalated structures: (a) Perpendicular orientation, 

and (b) Parallel orientation. Optimized structures of DMPI intercalated 

system; (c) S1 (Top), (d) S2 (Bridge 1), (e) S3 (Bridge 2), (f) S4 (Hollow). 

Here, brown, blue, cyan, and magenta colours represent graphite layer, N, 

C, H of DMPI cation, respectively. 

Owing to the strong van der Waals interaction between imidazolium ring 

and graphite layers, the parallel orientation of DMPI cation into graphite 

layer is found to be stable. The perpendicular orientation shifts to parallel 

upon relaxation with dispersion correction. However, without vdW 

correction the perpendicular orientation is retained which proves that the 

extensive interactions between π-stacked graphite and parallel orientation 

(imidazole ring) of DMPI is responsible for this configuration being more 

stable. We have further investigated the structural distortions such as 

change in bond length and bond angle obtained due to the anisotropic van 
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der Waals interaction between layered graphite and DMPI cation. Upon 

intercalation of DMPI, the ∠C2-N3-C bond angle decreases from 124° to 

118°, and the ∠C2-N1-C decreases from 126° to 121°. Similarly, bond 

length changes are also observed in intercalated DMPI, where bond 

lengths of N1-C, N3-C and C2-C change to 1.43, 1.41 and 1.58 Å from 

1.47, 1.34 and 1.48 Å in free DMPI, respectively. The alkyl group 

variance between DMPI and EMI can be labelled as, extra methyl and 

propyl groups are present in the C2 and N1 position for DMPI, 

respectively, compared to the EMI. In our earlier report we have studied 

the effect of alkyl group variation in N1 position of imidazolium ring.[33] 

But a fundamental understanding is required in the effect of addition of 

methyl group in the C2 position of the imidazolium ring. So, with respect  

Table 4.1: Relative energy (eV) of the different binding sites of the DMPI 

cation intercalated graphite system.  

Sites Relative Energy (eV) 

Top 0.009 

Hollow 0.000 

Bridge 1 0.045 

Bridge 2 0.038 

 

to C2 position of DMPI, we have arranged four possible sites of binding in 

graphite layers, (i) S1 (Top), (ii) S2 (Bridge 1), (iii) S3 (Bridge 2) and (iv) 

S4 (Hollow) as shown in Figure 4.1c-f. In the S1 (Top) site, the C2 of 

DMPI occupies the top position of a C atom of graphite. In the S2 (Bridge 

1) site, the C2 occupies the bridging position between two non-bonded 

carbon atoms, whereas in the S3 site (Bridge 2), it occupies the bridging 

position of the C-C bond. Similarly, for the S4 (Hollow) site C2 occupies 



138 
 

the centre of hexagons (C6) of the graphite layer. Our relative energy 

calculations in Table 4.1 show that the hollow site with respect to C2 

position is most stable for DMPI cation binding into the graphite layers. 

Particularly, hollow and top site have a very small (0.009 eV) relative 

energy difference.  Hence, there is a high possibility of the equilibrium 

existence of both hollow and top sites. We have carried out AIMD 

simulations to verify the thermal stability of DMPI cation intercalated 

graphite system as well as equilibrium existence of both hollow and top 

binding sites. Upon AIMD simulation at 300 K for 5 ps, we have observed 

that while AB stacking of graphite layers are unaltered, the intercalated 

DMPI cation shifts from most stable site (Hollow) to second most stable 

(Top) site of binding as shown in Figure 4.2. Hence, from the simulation 

study we could confirm that these two sites (Hollow and Top) are equally 

stable, and we have considered hollow site for our further studies.  

 

Figure 4.2: Schematic representation of changing adsorption sites 

between Hollow and Top sites of the DMPI cation inside the graphite 

anode through the molecular dynamics simulation at 300 K temperature, 

(a) Hollow to Top and (b) Top to Hollow.   
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4.3.2. Model System 

In the DIBs, graphite intercalation compounds (GICs) are formed between 

the graphite layer and intercalant species.[53] The formation of GICs 

follows a systematic staging mechanism of intercalant insertion based on 

various competing interactions among the intercalate and intercalant. The 

van der Waals interaction between the parallelly stacked graphite layers 

needs to be overcome by the incoming DMPI cations. Again, the 

intercalated DMPI cations may experience intermolecular repulsive forces 

among themselves. Hence, the intercalation phenomena can proceed by 

maintaining a balance among these competing forces.[54-57] 

Consequently, different stages of intercalation can be considered to occur 

during charging/discharging process, which has been observed 

experimentally,[55,58] as well as theoretically.[54,56] The staging 

features can be represented by the stage index, which stands for the 

number of unintercalated graphene layer present between the intercalated 

layers. The stage-n system resembles to the “n” number of graphene sheet 

or “n-1” empty host galleries present between two intercalating layers. For 

instance, stage-1 GICs correspond to intercalation happening after every 

graphene layer, while in stage-2, intercalation will happen after a gap of 

two empty layers. In this manner, different stages are expected in DIBs 

during intercalation of DMPI cations into graphite. Hence, we have chosen 

the four most favourable intercalation stages for the same DMPI cation 

concentration. For that we have modelled the 6 × 6 × 2 supercells of 

graphite containing 288 carbon atoms for stage1, stage-2 and stage-4 

systems and their corresponding relative energies have been compared as 

shown in Figure 4.3. The stage-2 configuration is observed to be most 

stable for DMPI cation intercalation, followed by stage-4 and stage-1 for 

same concentration of DMPI cations. The energy required to overcome the 

repulsive forces between intercalant species is less than the energy 

required to overcome the van der Waals forces between graphite layers 

required for gallery height opening for intercalation.  
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Figure 4.3: Systematic representation of (a) pristine graphite and the 

staging mechanism of DMPI cation intercalation (b) stage-4, (c) stage-2 

and (d) stage-1. R.E is in eV units. Here, brown, blue, cyan and magenta 

colours represent graphite layer, N, C, H of DMPI cation, respectively.  

Hence, the DMPI favours stage-2 rather than stage-1. The stage-4 is less 

stable than stage-2, which may be due to the van der Waals repulsion 

among long carbon chain of four DMPI cations intercalated into a single 

graphene layer rather than two DMPI intercalated in two separate layers as 

in stage-2. Upon increasing the number of DMPI cations intercalating to 8, 

the relative energy difference between stage-1 and stage-2 intercalation 

decreases, (Figure 4.4) thus indicating that stage-1 would be more stable 

compared to other stages for higher concentration of DMPI cation. Owing 

to different supercell size of stage-3, the result is not comparable to other 

stages. However, the DMPI intercalation mechanism is followed during 

charging, same deintercalation mechanism is followed at the time of 

discharging process. Overall, from the theoretical stability calculation, we 

could describe the formation of different DMPI cation intercalated stages.  

Furthermore, we have considered the maximum possible intercalation in 

our supercells for each stage. In the case of stage-1, stage-2 and stage-4 of 

288 carbon containing graphite systems can intercalate a maximum of 16 

DMPI cations (Figure 4.5a), 8 DMPI cations (Figure 4.5b) and 4 DMPI 

cations (Figure 4.5d), respectively. A 6 × 6 × 3 supercell containing 432 
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carbon containing graphite system has been chosen for the stage-3 and it 

can intercalate a maximum of 8 DMPI cations (Figure 4.5c).  

 

Figure 4.4: Comparative study of stage-1 and stage-2 DMPI intercalated 

graphite system for different concentration of the DMPI cation, (a) 4 

DMPI and (b) 8 DMPI. Increase in DMPI concentration, stabilises the 

stage-1 DMPI intercalated graphite systems. R.E unit is eV.   

Other lower stoichiometry of DMPI has been chosen for all the stages. 

Thus, the generalised formula unit would be [C288(DMPI)n] where n 

values are 4, 8, 12, and 16 for stage-1. Similarly, for the other stages 

formula units have been considered such as, n = 2, 4, 6, and 8 for stage-2; 

and n = 1, 2, 3, and 4 for stage-4. For stage-3, the formula unit would be 

[C432(DMPI)n] where, n= 2, 4, 6, and 8 of DMPI. Overall, from the 

different considered stoichiometries, we have tried to get an idea about the 

maximum storage capacity of these systems and compared our results with 

experimental reports to investigate more about the staging mechanism 

followed by DMPI cation intercalation in graphite.[25]  
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Figure 4.5: Schematic representation of all optimised structure of the four 

different DMPI cation intercalated systems, (a) stage-1, (b) stage-2, (c) 

stage-3 and (d) stage-4; where, Ic and di are periodic repeating distance 

and intercalant gallery height, respectively and brown, blue, cyan, and 

magenta colours represent graphite layer, N, C, H of DMPI cation, 

respectively. 

4.3.3. Binding Energy  

Binding energy is a good criterion to investigate about the stability of 

intercalated graphite systems. We have calculated the binding energy for 

various numbers of DMPI intercalation into graphite following different 

staging mechanisms, using the following equation.  

𝐸𝐵𝑖𝑛𝑑𝑖𝑛𝑔 =  
𝐸[(𝐷𝑀𝑃𝐼)𝑥𝐶𝑚]− 𝐸𝐶𝑚−𝑥𝐸𝐷𝑀𝑃𝐼

𝑥
                      (4.1) 

where, x is the number of DMPI cations,  𝐸[(𝐷𝑀𝑃𝐼)𝑥𝐶𝑚], 𝐸𝐶𝑚
 and  𝐸𝐷𝑀𝑃𝐼 

are the total energies of DMPI intercalated graphite system, bulk graphite 

system and single DMPI cation, respectively. Hence, more negative 

binding energy value indicates the more feasible intercalation of DMPI 

cation into the graphite system as shown in Table 4.2. At a low 

concentration of DMPI cations intercalation into graphite is less 

favourable for every stage with lower binding energy (~ -2.5 eV) 

compared to intercalation at higher concentrations.  
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Table 4.2: Binding Energy per DMPI cation (eV) and Interlayer Distance 

(Å) for All the Stages with Different Concentration. 

Stages 
No. of DMPI 

cations 

Binding Energy 

(eV) 

Interlayer Distance 

(Å) 

1 

4 -2.48 6.92 

8 -3.58 7.14 

12 -3.90 7.16 

16 -3.59 7.54 

2 

2 -2.51 5.23 

4 -3.99 5.30 

6 -4.01 5.39 

8 -3.80 5.53 

3 

2 -2.45 4.64 

4 -4.04 4.61 

6 -4.26 4.71 

8 -3.76 5.03 

4 

1 -2.64 4.37 

2 -4.17 4.39 

3 -4.54 4.38 

4 -3.90 4.47 
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This low binding energy may be due to the activation barrier which needs 

to be overcome during gallery height opening against the interplanar van 

der Waals interactions among graphite layers. Further DMPI cation 

intercalation into the already opened galleries becomes more feasible in 

case of each stage with higher calculated binding energies. This 

phenomenon is also reported in several experimental studies on DIBs, 

where the experimental coulombic efficiency is very poor in the first few 

cycles.[25,27] Moreover, binding energy (~ -3.5 eV) of DMPI cation 

intercalation is found to be higher than the anion (AlCl4
-:-1.5 eV; PF6

-: -

2.9 eV) binding in graphite, which can be possible due to the - 

interaction between aromatic DMPI cations and the graphite 

layers.[54,55] However upon approaching maximum DMPI cation 

intercalation the binding energy again decreases for each stage, which 

could be due to the electrostatic repulsion between neighbouring DMPI 

cations in the same gallery. As the binding energy value is still negative, 

the effective repulsive forces between cations must be less than the 

attractive forces due to intercalation. In an experimental report by Lv et 

al., higher cut-off working voltage has been considered to maintain the 

better coulombic efficiency, which could be due to our calculated high 

binding energies (2.4-4.5 eV) for DMPI cation intercalation in graphite 

anode for all the possible stages.[25] Additionally, we have also tried to 

address the advantage of using DMPI rather than EMI for intercalation 

into graphitic anode for dual graphite batteries. We have calculated the 

binding energy of EMI cation intercalated graphite layers. Our calculated 

low binding energy (+0.007 eV for stage-1) for EMI cation intercalation 

validates the infeasibility of using EMI with graphite anode, which has 

been reported experimentally.[59] Hence, very poor electrochemical 

performance is observed which can be ascribed to the lack of alkyl 

substituents in the C2 position of the imidazolium ring of EMI cation. The 

imidazolium cations with proton in the C2 position are less stable inside 

the graphite layers. This observation can be explained by applying natural 
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bond orbital (NBO) charge calculation[60], where the C2 carbon of DMPI 

has an almost double charge (0.493 |e|) than C2 carbon (0.288 |e|) of EMI 

(Figure 4.6). So, the resultant interaction of DMPI-graphite is more 

compared to the EMI-graphite. This is also reflected in the experimental 

XRD studies, where any characteristic peak is absent for EMI-graphite 

system.[59] Overall, from binding energy calculations, we can conclude 

that the DMPI cation has fair binding strength which is essential in DIBs, 

and graphite can be used as a potential anode.  

 

Figure 4.6: Schematic representation of NBO charge analysis on the C2 

carbon atom of (a) DMPI and (b) EMI cations.  

4.3.4. Staging Mechanism and XRD Analysis 

To relate the staging mechanism actually occur during DMPI intercalation 

into graphite, we have simulated XRD patterns for our optimised 

intercalated systems. We have compared our simulated XRD patterns with 

the experimental results.[25] We notice that the graphite structure gets 

deformed upon intercalation of the DMPI cations along with increase in 

the interlayer spacing. As the gallery height (3.35 Å) of graphite is less 

than the DMPI cation size (4.6 Å),[61] the graphite interlayer spacing 

increases in the very first intercalation step. After the intercalation of 

DMPI cation, the average gallery height expansion in graphite is found to 

be 115%, which is comparable to reports of various anion intercalation in 

graphite.[54,55] The average interlayer distance can be calculated by the 

following formula,  
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Average interlayer distance =

total height of the stage−n having n−1 galleries or n graphite layers

n−1 galleries or n graphite layers
  

The average interlayer distance for all the stages has been included in 

Table 4.2. The distance between two layers of DMPI intercalated graphite 

i.e., the intercalant gallery height (di) remains similar (~7.1-7.6 Å) for all 

the stages which are comparable with the experimental report (7.16 Å) for 

DMPI intercalation.[59] Our simulated XRD pattern of DMPI intercalated 

system for all the stages (n=1-4) as shown in Figure 4.7, helps to 

understand the structural changes in graphite system. The XRD patterns 

suggest the structural changes in graphite upon intercalation with 

characteristic shifting of (002) peak of graphite. To index the stage 

number (n) of the GICs, two characteristics peaks are observed, such as 

(00n +1) and (00n + 2) planes along the stacking direction upon the XRD 

analysis. The d00n+1 represents the spacing between adjacent layers. The 

intercalant gallery height (di), gallery expansion (∆𝑑) and periodic 

repeating distance (Ic) of a particular stage index ‘n’ are calculated using 

the d-spacing values as, 𝐼𝑐 =  𝑑𝑖 + (𝑛 − 1) × 3.35 =  ∆𝑑 + 𝑛 × 3.35 =

(𝑛 + 1)  × 𝑑00𝑛+1 ; similarly for d00n+2 , 𝐼𝑐 = (𝑛 + 2) ×  𝑑00𝑛+2  ;  where 

∆𝑑 = 𝑑𝑖 − 3.35 and 3.35 Å is the interlayer distance between two 

consecutive graphite layers.[62] In the case of pristine graphite an intense 

peak is found at 2q= 26.5° belonging to its (002) plane generally.[12] For 

our simulated XRD pattern, we can identify such a peak at 26.16° for the 

pristine system which shifts to 25.88°, 25.18°, 25.75° and 24.96° for 

stage-1, stage-2, stage-3 and stage-4 intercalation, respectively as shown 

in Figure 4.7. In the previous report of experimental DMPI intercalation 

by Lv et al., the (002) peak of the system found to shift from 2θ =26.4° for 

pristine graphite to 2θ = 26.0° for GIC.[25] Consequently, from our XRD 

plots we can suggest that the stage-1 intercalation (2θ = 25.88°) of DMPI 

cation in graphite occurs predominantly (Figure 4.4), which also agrees 

with an experimental study by Sutto et al.[59]  
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Figure 4.7: Schematic diagram of simulated XRD pattern of pristine 

graphite and different stages of DMPI intercalated systems where 2q 

ranges in 22° - 34°.  

4.3.5. Electrochemical Properties 

In this section, we have discussed the electrochemical performance of a 

DIB with dual-graphite electrodes, where DMPI cations are paired with 

the AlCl4 anions. Upon charging, the DMPI cations and AlCl4 anions are 

expected to undergo intercalation into graphite anode and cathode, 

respectively, while during discharging both the ions are expected to 

diffuse back to the electrolyte. Hence to investigate the electrochemical 

properties of DMPI with graphite anode, it is necessary to also include the 

AlCl4 anion intercalation into graphite cathode.  
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4.3.5.1. AlCl4 Intercalation into Graphite Cathode   

Anion intercalation phenomena for layered structure like graphite 

electrode has been well studied both theoretically and 

experimentally.[54,12] Our previous study has also established the exact 

staging mechanism pathway for AlCl4 anion intercalation into the graphite 

cathode.[54] Motivated by those studies, we have modelled four stages (n 

=1-4) for AlCl4 anion intercalation keeping the concentration of AlCl4 

anion fixed. From our relative energy calculations, we could confirm that 

in the initial period of charging process, stage-4 AlCl4 intercalation is 

more favourable (Figure 4.8). From our simulated XRD data, we could 

identify (005) and (006) planes at 2θ = 23.32° and 28.07° with the d-

spacing of 3.81 and 3.17 Å, respectively. For experimental diffraction 

patterns, 2θ values are obtained at 23.7° and 28.5° with the d-spacing of 

3.77 and 3.15 Å which are comparable with our simulated patterns.[12]  

 

Figure 4.8: Systematic illustration of different staging mechanism of 

AlCl4 anion intercalation, (a) graphite, (b) stage-4, (c) stage-2, and (d) 

stage-1, where R.E (eV) is the relative energies of same concentration of 

AlCl4 ions. Here, brown, blue and green colour represents carbon, 

aluminium and chlorine, respectively. 
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4.3.5.2. Voltage Calculations 

The open circuit voltage (OCV) is one of the most important parameters in 

deciding a suitable battery which stands for the output voltage of a battery 

at full intercalation capacity or at full charge in other words. As in DIB 

system, the IL electrolytes (DMPI-AlCl4) behave not only as a charge 

carrier but also as the active material towards electrochemical activity. 

The OCV depends upon both cathode and anode reactions of the DIB 

system. The discharge voltage can be calculated from the following 

cathodic and anodic reaction, 

Cathode reaction: 𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦 + 𝑒−  ↔  𝐶𝑛 + 𝑦𝐴𝑙𝐶𝑙4
−           (4.2) 

Anode reaction: 𝐶𝑚(𝐷𝑀𝑃𝐼)𝑥  ↔   𝐶𝑚 + 𝑥𝐷𝑀𝑃𝐼+ + 𝑒−     (4.3) 

Overall: 𝐶𝑚(𝐷𝑀𝑃𝐼)𝑥 + 𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦  ↔  𝑥𝐷𝑀𝑃𝐼+ +  𝑦𝐴𝑙𝐶𝑙4
−  +  𝐶𝑚 +  

𝐶𝑛               (4.4) 

where, x and y are the number of DMPI cations and AlCl4 anions, 

respectively. Cm and Cn are graphite anode and graphite cathode, 

respectively. From the above reaction it is evident that the reaction 

mechanism of the DIB also includes contribution from electrolyte 

medium.  

 The cell voltage (V) can be calculated from the Nernst equation,  𝑉 =

 
−∆𝐺𝑐𝑒𝑙𝑙

𝑧𝐹
; where, z and F are the number of electrons transferred and 

Faraday constant, respectively, while  ∆𝐺𝑐𝑒𝑙𝑙 is the change in Gibbs free 

energy during the chemical reactions. 

     ∆𝐺𝑐𝑒𝑙𝑙 =  ∆𝐻𝑐𝑒𝑙𝑙 − 𝑇∆𝑆𝑐𝑒𝑙𝑙;   ∆𝐺𝑐𝑒𝑙𝑙 = ∆𝐸𝑐𝑒𝑙𝑙 + 𝑃∆𝑉𝑐𝑒𝑙𝑙 − 𝑇∆𝑆𝑐𝑒𝑙𝑙 

As our calculations are performed at 0 K temperature, so the change in 

volume (∆𝑉𝑐𝑒𝑙𝑙) and entropy (∆𝑆𝑐𝑒𝑙𝑙) of the reactions are negligible. Thus, 

the Gibbs free energy change only depends upon the change of internal 

energy (∆𝐸𝑐𝑒𝑙𝑙). 
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Therefore, the internal energy change of the overall reaction would be,  

∆𝐸𝑐𝑒𝑙𝑙 = {𝑥𝐸𝐷𝑀𝑃𝐼+ + 𝑦𝐸𝐴𝑙𝐶𝑙4
− +  𝐸𝐶𝑚

+  𝐸𝐶𝑛
} − {𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4

−)𝑦] +

 𝐸[𝐶𝑚(𝐷𝑀𝑃𝐼+)𝑥]}                      (4.5) 

where, E[Cn(AlCl4
−)y], E[Cm(DMPI+)x], EAlCl4

− and  EDMPI+ are the total energy 

of AlCl4 intercalated graphite system and DMPI intercalated graphite 

system, AlCl4 and DMPI fragments, respectively.  ECm
 and ECn

 are total 

energy of the graphite system. EAlCl4
− and  EDMPI+ are calculated by the 

optimizing of AlCl4 anions and DMPI cations as a molecular species due 

to the nonavailability of their crystal structure.  

Then the average voltage would be,  

𝑉 = (
{𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4

−)𝑦]+ 𝐸
[𝐶𝑚(𝐷𝑀𝑃𝐼+)𝑥]

}− {𝑥𝐸
𝐷𝑀𝑃𝐼++𝑦𝐸𝐴𝑙𝐶𝑙4

−+ 𝐸𝐶𝑚+ 𝐸𝐶𝑛}

𝑧
)       (4.6) 

To understand the exact mechanism of intercalation in a DMPI-AlCl4 

DIB, we have considered the different staging intercalation behaviour of 

both cations and anions at initial and final periods of the charging process. 

Therefore, based on our model we have considered all combinations of 

staging behaviour possible upon intercalating four cations and anions into 

graphite anode and cathode to replicate the initial charging environment, 

which is presented in Table 4.3. The highest calculated voltage is 5.25 V, 

which is obtained from the combination of stage-2 DMPI - stage-4 AlCl4 

intercalated system. Experimental evidence suggests that the voltage 

plateaus range within 3.1-4.3 V with cut-off charging voltage at 4.4 V 

[25] indicating that the discharging voltage would remain lower than 4.4 

V. However, our observation and literature suggest that stage-4 

intercalation in case of AlCl4 is more feasible compared to the other stages 

during the initial charging process. The combination of stage-3 DMPI - 

stage-4 AlCl4 and stage-4 DMPI - stage-4 AlCl4 yields voltage of 5.23 and 

5.16 V, respectively, which are also higher than the considered cut-off 
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voltage in experimental report. Interestingly, the combination of stage-1 

DMPI - stage-4 AlCl4 voltage values gives an output voltage of 3.74 V, 

which matches with the experimental voltage range 3.1- 4.3 V. In 

addition, our calculated results and experimental evidence supports that 

stage-1 formation of DMPI is more feasible than other stages.[25,59] Thus 

we propose that during initial charging process, the stage-1 DMPI - stage-

4 AlCl4 intercalation occurs. However, when the charging process 

approaches completion, both DMPI and AlCl4 ions are expected to follow 

stage-1 type of intercalation into graphite system. Considering the 

combination of stage-1 DMPI - stage-1 AlCl4 results in OCV of 4.6 V for 

maximum intercalation (16 cations and anions) at both the electrodes, 

which is comparable with the upper limit of reported experimental 

voltage.[25] 

Table 4.3: Calculated theoretical voltage (V) with different stages of 

DMPI cations and AlCl4 anions.  

         DMPI 

AlCl4 

Stage-1 Stage-2 Stage-3 Stage-4 

Stage-1 1.61 3.12 3.17 3.03 

Stage-2 2.10 3.61 3.66 3.52 

Stage-3 3.25 4.76 4.80 4.67 

Stage-4 3.74 5.25 5.23 5.16 

 

Furthermore, we have calculated the gravimetric capacity (C) for our 

considered DIB system. The gravimetric capacity of both cathode and 

anode can be calculated using the following equation,[54]  

𝐶𝑐𝑎𝑡ℎ𝑜𝑑𝑒 =  𝐶𝑎𝑛𝑜𝑑𝑒 =  
𝑛𝑥𝐹

𝑀𝑓
       (4.7) 
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where, n is the number of electrons transferred per formula unit, 𝑥 is the 

number of ions intercalated, F is the Faraday constant, Mf is the mass of 

formula unit, and Ccathode and Canode are the capacity of the cathode and 

anode, respectively. The total cell capacity (Ctotal) can be expressed as a 

combination of the individual capacity of both cathode and anode.[63]  

𝐶𝑡𝑜𝑡𝑎𝑙 =  
1

1

𝐶𝑎𝑛𝑜𝑑𝑒
  +  

1

𝐶𝑐𝑎𝑡ℎ𝑜𝑑𝑒
  +  

1

𝐶𝑀

                               (4.8)  

Where, 1/CM is the specific mass of the other cell components such as 

electrolyte, separator, and current collector. 1/CM varies significantly with 

cell to cell design process, so the contribution of 1/CM in total theoretical 

cell capacity is neglected. Therefore, the theoretical cell capacity can be 

given by, 

𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐶𝑎𝑛𝑜𝑑𝑒 × 𝐶𝑐𝑎𝑡ℎ𝑜𝑑𝑒

𝐶𝑎𝑛𝑜𝑑𝑒 +  𝐶𝑐𝑎𝑡ℎ𝑜𝑑𝑒
      (4.9) 

Our calculated gravimetric capacity for the early stage of the charging 

process (four number of intercalated ions) is 15 mAh/g which reaches a 

maximum capacity of 62 mAh/g upon full intercalation (sixteen number of 

ions). In the experimentally produced DMPI-AlCl4 DIB, initial 

gravimetric capacity was reported to be 27 mAh/g which could further be 

increased upto 82 mAh/g at higher current density with subsequent loss in 

coulombic efficiency of the cell.[25] During the initial charging process 

by considering four ions intercalation, as the DMPI cations follow stage-1 

and AlCl4 anions follow the stage-4 intercalation, a partial gravimetric 

capacity of 15 mAh/g is calculated. In a fully charged system considering 

sixteen ions intercalation, both DMPI and AlCl4 ions follow the stage-1 

intercalation, resulting in maximum capacity of 62 mAh/g. Based on our 

theoretical insights and available experimental observations, we believe 

that graphite-like layered materials can be further explored as anode 

material for intercalating large size organic cations in order to achieve 

higher output voltages (~4.6 V) compared to batteries based on 
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intercalation of AlCl4
- ions only (~2.0 V).[12,54] Moreover, we have 

calculated volume expansion for DMPI intercalation in graphite to be 

~115%. So, the expansion due to DMPI intercalation is less compared to 

AlCl4 intercalation in graphite system (150-160%).[54] However, the 

reported cycle life values (1000 cycles) are less for DMPI-graphite system 

which could be due to the strong interaction between aromatic DMPI 

cation and graphite, hindering repeated intercalation/deintercalation cycle.  

4.3.6. Electronic Properties 

We have studied the electronic structure circumstance of the DMPI cation 

intercalated graphite system to understand the nature of interaction 

between DMPI cation and graphite host, as organic cation intercalation is 

less common compared to the anion intercalation into layered graphitic 

structure. During charging, the electron flows from cathode to anode 

through the external circuit which allows the adsorption/intercalation of 

cations and anions into the anode and cathode material, respectively. 

Similarly, during discharge, the reverse phenomena happen as electron 

flows from anode to cathode thus providing electricity. Hence, constant 

electronic conductivity of the electrodes during charge/discharge cycle is 

essential in a battery. The electronic conductivity can be interpreted from 

the DOS plots on the basis of nature of the Fermi region. Figure 4.9a 

represents the total DOS (TDOS) and projected DOS (PDOS) for the 

DMPI intercalated graphite system. Graphite is known to show good in-

plane electronic conductivity because of presence of the pz electronic 

states at the Fermi and no interplane conductivity as s, px and py electronic 

states are far from the Fermi. In comparison with DOS plot of well-known 

pristine graphite system, in our DOS plot of cation intercalated graphite, 

the Fermi level is shifted towards the conduction band due to the charge 

transfer from DMPI to graphite. Hence, the electronic conductivity is 

maintained as shown by the presence of electronic states at the Fermi in 

Figure 4.9a. The DMPI-graphite system is found to be metallic in nature 
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due to overlapping between 2p orbital of imidazolium ring of cation 

containing C and N atom with the 2p orbital of graphite C atoms.  The 

shifting of the Fermi level towards the conduction band indicates the 

reduction of graphite layers which satisfies the criteria for selection of a 

suitable DIBs anode material. 

The qualitative charge transfer between DMPI cation and graphite layers 

can be illustrated by plotting charge density difference (CDD) of the 

systems before and after intercalation. Thus, CDD can be calculated from 

the following equation, 

 𝜌𝐶𝐷𝐷 =  𝜌𝑡𝑜𝑡𝑎𝑙 − ∑  𝜌𝑖
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

 𝑖                      (4.10) 

Where, 𝜌𝑡𝑜𝑡𝑎𝑙  is the total charge density of the DMPI-graphite system and  

 𝜌𝑖
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

  is the charge density of the individual fragments. The CDD 

plot has been shown in Figure 4.9b, where yellow colour represents the 

charge density accumulation and cyan colour represents the charge density 

depletion. From the CDD plot, we can infer that charge from the loosely 

bounded p-electron cloud of the DMPI imidazolium ring is transferred to 

the graphite layers. Furthermore, the C2 containing methyl group of the 

DMPI also transfers less amount of charge to the graphite layers. The 

charge transferred from the propyl chain of the DMPI cation is less 

because of tightly bounded s-electron of the C-C and C-H bonds. Overall, 

net charge is gained by the graphite layers and lost by the DMPI cation, 

thus indicating partial ionic interaction between them. To justify this 

qualitative explanation, we have determined the quantitative charge 

transfer using the Bader charge analysis. Quantitatively, 0.87 |e| charge 

transfer is found to occur from DMPI to graphite layer which signifies the 

electrochemical reduction of graphite and DMPI being cationic, during the 

charging process. Overall from the DOS and CDD study, we can conclude 

that the graphite can also be used as an anode material for DMPI cation 

intercalation along with as a cathode material for AlCl4 anion intercalation 
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thus behaving as an amphoteric electrode material for dual graphite battery 

technology.[17,19,20]  

 

Figure 4.9: (a) TDOS and PDOS of the DMPI cation intercalated 

graphite. The Fermi level is set to zero. (b) Isosurface (0.0008 |𝑒|Å−3 ) for 

the CDD plot of DMPI intercalated system, where yellow colour indicates 

the electron density accumulation and cyan colour indicates electron 

density depletion. 

4.3.7. Diffusion Pathway of DMPI Cation  

The fast charge/discharge rate of DIB can be explained from the diffusion 

barriers of DMPI cation in the graphite layers. The diffusion barrier has a 

high impact on the battery performance, where the charging/discharging 

rate can be determined by the mobility of DMPI cations on the AB stacked 

plane of the graphite layers. Hence, trouble-free diffusion and high 

mobility of DMPI cations is a prerequisite for developing a dual graphite 

battery with a fast charge/discharge rate. To determine the diffusion 

barriers of the DMPI cation within graphite lattice using the CI-NEB 

method, we have considered four minimum energy pathways (MEPs) of 

diffusion initiating from the most stable site (Hollow) of DMPI cation to 

next most stable binding site (Hollow) on the AB stacked graphite in 

Figure 4.10a.[52] The MEPs have been shown in the Figure 4.10b. For 

diffusion of DMPI cation along path-1, a minimum energy barrier of 0.2 

eV is obtained. Similarly, for path-2, path-3, and path-4 the diffusion 
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barrier is calculated to be 0.35, 0.36, and 0.44 eV, respectively. Our 

calculated diffusion energy barrier values are very much comparable with 

the various reported alkali metal cation intercalated graphite systems such 

as for Li or Na (0.2-0.4 eV).[64,65] Therefore, our diffusion studies 

indicate that the organic DMPI cation intercalated anode can be used for 

high performance DIB with high discharge voltage, low diffusion barrier, 

and high electronic conductivity. Recently, both experimental and 

computational results have found that high diffusion barrier of the ions 

have tendency to form the dendrite which reduce the crystallinity nature of 

the electrode and also reduce the overall cycle life of the battery.[66-68] 

 

Figure 4.10: Schematic representation of the four diffusion barriers 

pathway, (a) Nearest possible most stable site of the hollow in AB 

stacking, where green, red, yellow and orange colour arrows indicate the 

path-1, path-2, path-3 and path-4, respectively. (b) Energy profile diagram 

of four diffusion process, where path-1, path-2, path-3 and path-4 energy 

barriers are 0.2 eV, 0.35 eV, 0.36 eV and 0.44 eV, respectively.  

4.4. Conclusion and Outlook 

In this work, we have carried out a systematic computational investigation 

of organic cation (DMPI) intercalation into the graphite anode for the first 

time. Based on the dispersion-corrected density functional theory 

calculations, we have investigated the staging mechanism of DMPI cation 

intercalation, charge transfer mechanism from the graphite anode, 
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diffusion barrier, and electrochemical properties like voltage and specific 

capacity. Here, we have modelled four different stages (stage-1, stage-2, 

stage-3, and stage-4) of DMPI cation intercalated graphite system to 

investigate the staging mechanism and electrochemical properties. To 

verify the stability, we have calculated the binding energy of the DMPI 

cation intercalated graphite system, where DMPI cation prefers to 

intercalate parallel over the perpendicular orientation into AB stacked 

graphite plane due to 𝜋-𝜋 interaction of aromatic imidazolium cation with 

graphite hexagonal rings.  Further, we have validated the thermal stability 

of the DMPI cation intercalation at stable hollow site of AB stacked 

graphite using AIMD simulations. We also report the existence of thermal 

equilibrium between the hollow and top site of DMPI intercalation. Upon 

intercalation of DMPI cation, interlayer spacing of graphite is found to 

increase from 3.34 Å to 7.2 Å which facilitates trouble-free diffusion of 

DMPI cation through graphite layers. Our calculated diffusion barriers 

support this fact, and we observe a quite small barrier of 0.2 eV for DMPI 

cation diffusion inside graphite. Our calculated total energy values for 

different stages of DMPI cation intercalation follow the stability trend as: 

stage-2 < stage-4 < stage-1 during the initial charging process. However, 

later stages of DMPI intercalation into graphite are expected to follow 

stage-1 type intercalation mechanism as is evident by the decrease in 

relative energy of stage-1 compared to other stages with increase in 

concentration of DMPI cations. Our simulated XRD patterns for stage-1 

DMPI cations intercalation process and stage-4 AlCl4 anion intercalation 

process match with the experimental XRD patterns of the electrodes 

during charging process, thus validating the staging mechanism proposed 

by us. Our calculated average voltages for early and later periods of 

intercalation (3.7 V and 4.6 V) are in good agreement with the 

experimental range (3.1-4.3 V). These results signify the importance of 

using graphite anodes for organic cation intercalation along with AlCl4 

anion intercalation in cathodes to achieve better electrochemical 
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performance compared to DIBs using metal anodes along with AlCl4 

intercalated graphitic cathodes. The metallic character of graphite before 

and after DMPI cation intercalation obtained from DOS plots confirm the 

constant electronic conductivity of graphite anode. The CDD and 

quantitative Bader charge analysis suggest +0.87 |e| charge transfer 

occurring from the DMPI cation imidazolium ring to the host graphite 

carbon atoms, thus indicating the electrochemical reduction of graphite 

during the charging process. Additionally, we have addressed some of the 

shortcomings of the dual-ion batteries are electrolyte decomposition and 

exfoliation of the electrode materials. There is minimal scope of 

electrolyte decomposition occurring at our calculated output voltage of 3.7 

V as it is lower than the experimentally determined cut-off voltage (4.4 

V). Exfoliation can result in the loss of crystallinity of the electrode. 

Exfoliation can occur (1) due to lack of proper synchronization of volume 

expansion and contraction of electrode upon charging and discharging 

process, (2) all ions are not fully deintercalated in discharge process. As 

the volume expansion is limited for DMPI intercalated graphite system, 

hence the exfoliation can occur from presence of DMPI cation inside the 

graphite layer in discharge process due to high binding energy between 

DMPI cation and graphite. Overall, this study provides an in-depth 

understanding of the interaction between DMPI cation and graphite and 

help in explaining the different staging mechanisms in both cation and 

anion to obtain the precise electrochemical properties such as voltage and 

storage capacity for DMPI-AlCl4 graphite DIBs. We believe these findings 

will motivate further exploration of various organic cations which can be 

suitably intercalated into anodes and coupled with AlCl4 intercalated 

graphite cathodes to design high performance dual ion batteries at par with 

lithium-ion battery technology. 
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5.1. Introduction 

Climate change is becoming the most critical global issue in the current 

scenario. Shift from non-renewable and polluting sources like fossil fuel to 

renewable energy sources, is crucial to maintain the high-tech growth in 

geopolitics.[1] On the other hand, batteries are frontrunner among energy 

storage technologies to facilitate uninterrupted electricity.[2] Since the last 

few decades, researchers have developed different types of metal-ions 

based batteries such as Li-ion,[3-5] Na-ion,[6-8] Al-ion,[9-11] and Mg-

ion batteries.[12,13] Among them, Li-ion batteries have seen the most 

commercialization due to their high voltage and capacity[14,15] However, 

Li-ion batteries are not a suitable option for long term energy storage due 

to the limited resources of Li metal anode in the earth’s crust and use of 

expensive transition metal (Ni and Co) oxides as cathode.[16] Moreover, 

the safety concerns and thermal runaway events are not properly 

solved.[17] In this contrast, Na-ion batteries would perform as better 

energy storage devices on the basis of high abundance of Na metal and 

potentially low cost compared to Li.[18] However, Na-ion batteries 

technology faces several challenges like low gravimetric and volumetric 

capacity and hard to achieve broader voltage window.[19] Therefore, it is 

necessary to build low cost, but highly efficient energy storage devices 

using the most abundant materials.  

     The graphite electrode based low-cost dual graphite batteries (DGBs) 

have recently been conceptualized owing to their redox amphoteric nature 

where it can be reduced and oxidized in electrochemical reaction in proper 

cation/anion uptake and release process.[20-22] Hence, dual graphite 

batteries are also known as dual ion batteries (DIBs) where 

intercalation/deintercalation of cations and anions occur at both the 

graphite cathode and anode, respectively, in terms of charging/discharging 

cycle of battery.[23-25] The research in DIBs have been started with the 

finding of the acceptor type graphite intercalation compounds (GICs). 

Anion acceptor graphite cathodes are well established in DIBs 
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study.[10,26] The DIBs and LIBs follow different mechanistic pathways. 

LIBs follow the rocking chair style mechanism i.e., only Li+ ions are 

shuttling between the electrodes for charge/discharge cycle.[4,5] In DIBs 

case, cations and anions are reversibly intercalated to anode and cathode 

electrodes in the charging process, and in discharge process ions revert to 

electrolytes.[27,28] Furthermore, the DIBs generally use lithium-

containing salts (LiPF6, LiTFSI) with highly volatile carbonate based 

organic solvent electrolytes which undergo decomposition at a high 

working voltage of >4.5 V.[29] Thus, electrolytes with high stability are 

mandatory for DIBs. Previous studies have focused on non-aqueous 

solvents such as cyclic/linear carbonates, dimethylformamide, dimethyl 

sulfoxide, and sulfones which can be used as electrolytes upon mixing 

with salts.[30,31] However, these solvents have shown relatively poor 

oxidative stability which leads to the lowering of Coulombic efficiency 

and decrease in reversibility. Carlin et al. and Placke et al. introduced 

room temperature ionic liquids (RTILs) electrolyte as a better alternative 

to traditional organic solvents.[25,32] 

      Ionic Liquids (ILs) have played an important role in designing a new 

class of electrolytes, due to their possessing certain interesting properties 

such as higher ionic conductivity, low vapor pressure and broad 

electrochemical window, which are important in the development of 

battery technology.[33-35] The electrochemical reaction has mainly been 

focused due to possessing high oxidative and reductive stability of ILs 

electrolyte which results in higher electrochemical stability window, thus 

accepting the high cut-off charging voltage (4.0-5.0 V).[14,24,36] Carlin 

et al. have studied different metal free ILs based cations such as 2,3-

dimethyl-1-propyl imidazolium (DMPI+),1-ethyl-3-methyl imidazolium 

(EMI+), N-butyl-N-methyl pyrrolidinium (BMP+) coupled with anions like 

𝐴𝑙𝐶𝑙4
−, 𝐶𝐹3𝑆𝑂3

−, 𝑃𝐹6
−and 𝐵𝐹4

− as electrolytes in DIBs.[30,37-39] Our 

previous computational study has demonstrated DGB with DMPI-AlCl4 

ionic liquid-based electrolyte where the natural graphite-based battery 
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shows a higher discharge voltage of 3.74 V, which is in good accordance 

with the experimental voltages.[21] Owing to the large size of the organic 

DMPI cation, the interlayer distance of graphite anode is expanded from 

3.4 to 7.8 Å in the charging process. However, the constant 

expansion/contraction of the graphite anode due to 

intercalation/deintercalation of large cations during charge/discharge 

process tends to exfoliate the graphite anode resulting in poor cycling 

performance, lower capacity, and reducing the reversibility of the 

DIBs.[40] Therefore, it is important to explore the DIB anode suitable for 

room temperature ionic liquid electrolytes which accomplish the superior 

cyclic performance and high reversible capacity. Redox active organic 

materials are the encouraging alternative anode electrode due to easy 

availability, high theoretical capacity, and easy preparation. Thus, various 

organic compounds have been tested as anode materials, which can 

reversibly interact with a cation such as BMP providing good specific 

capacity and moderate voltage. Several redox active organic electrodes are 

reported such as 1,4,5,8-napthalenetetra carboxylic dianhydride 

(NTCDA), polyparaphenylene, and conjugated-carbonyl 

compounds.[38,41,42] Furthermore, polycyclic aromatic hydrocarbons 

(PAHs) have been developed as potential cathode materials due to the 

availability of the intercalation space for the guest ions and redox active 

nature.[43] Besides, many reports on PAHs have shown that using of 

coronene as an electrode material is an economic, flexible and 

environmentally safe.[44-46] Our previous report has studied with 

different PAHs based cathode electrodes such as pyrene, perylene, 

triphenylene and coronene for Al DIBs.[47] Among these, coronene has 

shown better electrochemical properties compared to other PAHs. 

Furthermore, the previous reports have shown that coronene has low 

solubility in IL electrolyte and there is no loss of active electrode 

material.[43,48] Recently, Fang et al. have designed a novel organic DIB 

using coronene as anode with BMP-TFSI electrolyte.[48] 
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Inspired from these experimental studies and attractive features of PAHs 

as anode, here we have modelled two DIB systems computationally, 

coronene anode used with graphite cathode and graphite employed as both 

anode and cathode in the other case. We have considered pyrrolidinium-

based IL, N-butyl-N-methyl pyrrolidinium chloride (BMP-Cl) with AlCl3 

at a 1:1 molar ratio as the electrolyte. We have explored the intercalation 

mechanism of organic BMP cation into the coronene as well as graphite 

anode. Using the first principles calculations, we have performed the 

systematic study of the structure, stability, electronic properties, and 

electrochemical properties of the electrodes for the development of 

organic batteries. Further to this, we have calculated the average voltage 

of BMP cation intercalated graphite coronene dual-ion battery (GCDIB) 

and dual graphite battery (DGB), respectively. Moreover, we have 

calculated the diffusion pathway of BMP cations inside the coronene as 

well as graphite. Based on obtained theoretical results, we believe that the 

polycyclic aromatic hydrocarbon based coronene can be used as potential 

anode material for DIBs technology to accomplish the better 

electrochemical features compared to metal anode-based DIBs, and this 

study would encourage further developments of low-cost and high voltage 

DIBs.  

5.2. Computational Details  

All the calculations have been performed using first principles method in 

the Vienna ab initio simulation package (VASP.5.4.4).[49,50] The 

generalized gradient approximation of the Perdew-Burke-Ernzerhof 

(GGA-PBE) exchange correlation functional has been used for all ground 

state relaxation and other respective calculation.[51] The valence electron 

and core ion interactions are considered by implementing the projected 

augmented wave (PAW) method[52] and the plane wave cut-off energy 

set to 470 eV. The DFT-D3 approach has been considered for taking 

account of van der Waals correction in our calculation.[53] All the 

structures have been optimized with the energy criterion of 10-5 eVÅ−1 
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and Hellmann-Feynman force criterion of ≤ 0.01 eVÅ−1 for all the atoms 

to obtain the fully relaxed structure between atomic and lattice position. 

For the calculation of the BMP cation intercalation inside the coronene 

unit cell, we have chosen Γ-centered k-point mesh of 3×5×3 for Brillouin 

zone sampling. Similarly, for the graphite anode we have considered 

4×4×1 supercell with Γ-centered k-point mesh of 2×2×1 for Brillioun 

zone sampling. We have considered the three different stages for the both 

BMP cation and AlCl4 anion intercalation of graphite anode and cathode, 

respectively, where a 6×6×2 supercell of graphite containing 288 carbon 

atoms for the stage-1, stage-2 and stage-4 systems. Due to different 

supercell model of stage-3, we have not considered them in our 

calculation. For the density of states calculation, the Brilloun zone is 

sampled with k-point mesh of 11×13×11 and 9×9×1 for coronene and 

graphite anodes, respectively. Bader charge analysis has been performed 

using the Henkelman program to quantify and understand the charge 

transfer process between intercalant species (BMP cation) and host 

anodes.[54-56] Ab initio molecular dynamics (AIMD) simulations have 

been carried out in broad range of temperature 300-600 K for 5 

picosecond (ps) timestep using Nosé-Hoover thermostat[57] with a Nosé 

mass of 0.01 to control the temperature fluctuation in NVT ensemble. The 

diffusion energy barrier of BMP cation has been calculated using the 

climbing image nudged elastic band method (Cl-NEB)[58] by considering 

six and four images for the graphite and coronene anodes, respectively. 

 

5.3. Results and Discussion 

5.3.1. Different Orientations and Stable Binding Sites of BMP Cation  

In the DIBs, the cation and anions are reversibly intercalated/ 

deintercalated from the cathode and anode with respect to charge/ 

discharge cycle, respectively. So, it is essential to understand the exact 

orientation of the BMP cation intercalation inside the anodes. Here, we 

have chosen the two different orientations of the BMP cation where the 
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methyl (Me) group of BMP cation is placed parallel and perpendicular 

towards the graphite layer (Figure 5.1a and b). Among these the 

perpendicular orientation is more stable by 0.14 eV compared to the 

parallel orientation. It is believed that the C-H∙∙∙ 𝜋 interaction in 

perpendicular orientation is more because the 3H of Me group are situated 

as the tridentate binding mode towards the one carbon atom of central C-C 

bond of aromatic graphene and therefore, it is more stable compared to the 

parallel orientation Me group as they cannot directly interact with 

graphitic layers.[59] Furthermore, we have considered the four different 

binding sites with respect to the N atom of BMP cation inside the graphite 

layers, such as (i) B1 (Bridge 1), (ii) B2 (Bridge 2), (iii) T (Top), and (iv) 

H (Hollow), as shown in Figure 5.1c-f. The reason behind the 

consideration of N atom, is the presence of localized positive charge on 

the N atom of BMP cation which suggests that the substantial interaction 

would occur between N atom and graphite layers. In the Bridge 1 site, the 

N atom occupies the bridging position between two bonded carbon atoms, 

whereas in the Bridge 2 site the N atom occupies the bridging position of 

the two non-bonded carbon atoms of graphite layers. Similarly, in the T 

site where N atom of BMP cation occupies the top position of a carbon 

atom of graphite layers and Hollow site N atom occupies the center of 

hexagons (C6) of the graphite layers.  
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Figure 5.1: BMP cation intercalated graphite anode with (a) parallel 

orientation, (b) perpendicular orientation of methyl group of BMP. 

Optimized structures of different binding sites of BMP cation (c) Bridge 1 

(B1), (d) Bridge 2 (B2), (e) Hollow (H), and (f) Top (T). The Blue, cyan, 

magenta and brown colours stand for N, C, H of BMP cation and graphite 

layers carbon, respectively.  

 

From the relative energy calculation, Bridge 2 binding site is more stable 

compared to other binding sites (Table 5.1). However, these relative 

energy values are very small, suggesting that all four possible sites are 

thermodynamically accessible upon intercalation of the BMP cation inside 

the graphite anode.  

 

Table 5.1: Relative energy of the different binding sites of the BMP 

cation intercalated graphite anode. 

Sites Relative Energy (eV) 

Bridge 1 0.038 

Bridge 2 0.000 

Top 0.036 

Hollow 0.035 

 

To identify the most stable binding site for the BMP cation into the 

coronene anode, three possible intercalation orientations are investigated, 

namely S1, S2 and S3 (Figure 5.2). Due to unsymmetrical special 

arrangement of polycyclic aromatic ring of the coronene, the binding sites 

are not regular as it is in graphite case. These orientations are described 

with the consideration of different position of the long alkyl chain (butyl 

group) and methyl group of BMP cation inside the coronene anode. In the 

S1 site, the butyl and methyl groups occupy the c-direction and negative a-
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direction of coronene unit cell, respectively. Similarly, for the S3 site, the 

butyl and methyl groups occupy the negative a-direction and c-direction of  

 

 

Figure 5.2: Optimized structures of different orientation of BMP cation 

intercalated coronene anode (a) S1, (b) S2, and (c) S3. The blue, cyan 

colours stand for N, C of BMP cation and brown colours represent the 

coronene carbons and magenta for hydrogen of the system. 

 

coronene unit cell, respectively. The S2 site is similar with the S3, with the 

methyl group slightly tilted towards the positive b-direction of unit cell. 

From our relative energy calculation, the S1 orientation is more stable 

compared to other two orientations (Table 5.2), as the BMP cation is 

placed on the vacant site of the coronene cell. Whereas, in S3 binding site 

the BMP cation orientation is the highly unstable by 4.96 eV (relative to 

S1), due to the intramolecular repulsion between hydrogen atoms of BMP 

and the hydrogen of polycyclic aromatic rings. 

  

Table 5.2: Relative energy of different binding sites of coronene-BMP. 

Sites Relative Energy (eV) 

S1 0.00 

S2 1.24 

S3 4.96 

 

Moreover, to check the thermal stability, we have performed AIMD 

simulation of the range of 300-600 K temperature for both BMP cation 

intercalated anodes: graphite and coronene. In the simulation, the 
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individual polycyclic aromatic rings remained intact with the unit cell of 

coronene, and no significant change has been observed in AB stacked 

graphite layers even in higher temperature. Small change has been 

observed for bond lengths and bond angles of the BMP cation at high 

temperature of 600 K. Therefore, we can say from the AIMD simulation 

that in temperature range of (300-600 K) the geometrical orientation of 

BMP cation is stable enough. 

 

5.3.2. Model System and Binding Properties 

In DIBs, formation of graphite intercalation compounds (GICs) is well 

established phenomena where both cations and anions are intercalated into 

the graphite layers. The GICs formation follows the staging mechanism of 

intercalant insertion based on different competing interaction between the 

intercalate and intercalant species. During the intercalation process, BMP 

cation needs to overcome the van der Waals attraction of the parallelly 

stacked graphite layers as well as the intermolecular repulsive forces 

between themselves. Hence, the intercalation phenomena can be continued 

by maintaining a balance between two competing forces. Based on this, 

we have considered the various stages of intercalation mechanism during 

the charge/discharge process.[10] In this fashion, we have chosen three 

most favourable stages, stage-1, stage-2 and stage-4 with a fixed number 

of four BMP cation molecules (Figure 5.3). Stage-1 corresponds to 

intercalation occurring in every graphite gallery. Similarly in stage-2 and 

stage-4, intercalation can occur in alternate two and four galleries of 

graphite bulk, respectively. Our calculated relative energy trends have 

shown the stage-4 intercalation process is most stable followed by stage-2 

and stage-1. Opening of each of the four galleries of the graphite in stage-

1 requires more energy, which is not balanced by the energy released in 

binding of BMP cation inserted in each gallery of graphite. However, in 

the case of stage-4, the energy released upon insertion of four BMP 

cations into a graphite layer is high compared to energy required in 
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opening one gallery of graphite. Similarly, the competition between 

energy released due to BMP binding and the energy required for gallery 

opening must be intermediate in stage-2 compared to stage-1 and stage-4 

processes.  

 

 

Figure 5.3: Schematic representation of (a) graphite and staging process 

of BMP cation intercalation into the graphite anode (b) stage-4, (c) stage-

2, and (d) stage-1. The magenta, cyan, blue and brown colours stand for H, 

C, N of BMP cation and graphite layers carbon, respectively.  

 

To further investigate the stability of the individual model stages, we have 

calculated the binding energy for BMP cation intercalated anodes using 

the following equation.  

 

𝐸𝐵𝑖𝑛𝑑𝑖𝑛𝑔 =  
𝐸[(𝐵𝑀𝑃)𝑥ℎ𝑜𝑠𝑡]−𝐸ℎ𝑜𝑠𝑡−𝑥𝐸𝐵𝑀𝑃

𝑥
     (5.1) 

 

Where, 𝐸[(𝐵𝑀𝑃)𝑥ℎ𝑜𝑠𝑡], 𝐸ℎ𝑜𝑠𝑡 and 𝐸𝐵𝑀𝑃 stand for the total energy of BMP 

cation intercalated host materials, individual energy of bulk host materials 

and energy of free BMP cation, respectively. Here, host signifies the 

coronene and graphite anodes and 𝑥 is the number of BMP cations. Thus, 

more negative binding energy implies more feasible intercalation of BMP 

cations into considered anode systems. The binding energy of different 
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stages for a fixed concentration of four BMP cation intercalated graphite 

anode has been presented in Table 5.3. The low binding energy (-0.49 eV) 

for the stage-1 is due to the activation barrier that must be overcome 

against the van der Waals interaction among the graphite layers during the  

 

Table 5.3: Binding energy of BMP cation intercalated graphite (fixed 

concentration of four BMP cations) and coronene systems (increasing 

concentration of BMP cations). 

 

gallery opening. The stage-4 formation is more favourable in BMP cations 

intercalation process in graphite anode among other two stages because of 

higher binding energy of -2.36 eV. The binding energy of non-aromatic 

BMP cation intercalated graphite (-2.36 eV) is less compared to 

imidazolium based aromatic cation (DMPI) intercalated graphite system (-

3.5 eV) calculated in our previous report.[21] The high binding energy of 

aromatic cation (DMPI) is because of strong 𝜋 − 𝜋 interaction with 

graphite layers which is absent in non-aromatic BMP cation. Thus, we 

believe that due to lower binding energy in case of BMP, the faster 

reversibility of the BMP cation intercalation/deintercalation into/from 

graphite will be maintained compared to DMPI cation during 

charging/discharging process of battery. Moreover, our calculated binding 

energy (-2.36 eV) of BMP is found to be neither high nor low compared to 

other commonly used anions (𝑃𝐹6
−: -2.9 eV, 𝐴𝑙𝐶𝑙4

−: -1.5 eV) binding in 

graphite electrode.[10,60] 

Graphite System Coronene System 

Stages 
Binding 

Energy (eV) 

Average 

Interlayer 

Distance 

(Å) 

No. of BMP 

cation 

Binding 

Energy 

(eV) 

1 -0.90 

1 -0.49 7.9 2 -1.32 

2 -1.87 5.8 3 -1.35 

4 -2.36 4.7 4 -1.71 
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For the coronene anode, we have considered the 1×1×2 supercell with 

enough vacant space for intercalating up to four BMP cation. From the 

equation 5.1, we have computed the binding energy of BMP cation 

intercalated coronene system as shown in Table 5.3. Our calculated 

binding energy shows that upon increasing the BMP cations the binding 

energy values increases. Consequently, four BMP cation intercalated 

coronene becomes more stable (Figure 5.4). The more available vacant 

space and highly flexible nature of coronene anode can easily 

accommodate the BMP cation. The less binding energy value of -0.90 eV 

for one BMP intercalation, could also be the reason of experimentally 

observed poor Coulombic efficiency (60%) for the early stages of 

charging process.[48] Subsequent intercalation of BMP cations leads to 

increase in the binding energy value up to 1.71 eV. This as well gets 

reflected in the increase of overall columbic efficiency to (80-90%), 

observed experimentally. Moreover, our calculated average binding 

energy matches with the other anion such as AlCl4 (-1.79 eV) intercalated 

to PAH cathodes.[47] The optimum binding energy is required as a 

criterion for the battery study to maintain the overall reversibility of the 

ions.  

 

Figure 5.4: Optimized structure of BMP intercalated coronene, where (a) 

1 BMP; (b) 2 BMP; (c) 3 BMP; and (d) 4 BMP cations. The blue, cyan 
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colors stand for N, C of BMP cation and brown colors represent the 

coronene carbons and magenta for hydrogen of the system. 

 

Upon the intercalation of the BMP cation into the graphite the average 

interlayer distance of the graphite increases from 3.4 to 7.9 Å as shown in 

Table 5.3. The average interlayer distance (𝑑𝑖) can be calculated as 

follows, 

Average Interlayer Distance (di) =
Total height of the different stages

number of gallery
 

 

The increased interlayer distance is directly reflected on the volume 

expansion of the electrode. Meanwhile, a lack of proper synchronization 

of the volume expansion and contraction of electrode has been observed 

upon charging/discharging process which can lead to the severe 

exfoliation of the electrode. Whereas in coronene electrode structure, due 

to the unique spatial arrangement of individual coronene molecules and 

available vacant sites, the volume expansion is less compared to the 

graphite anode. Thus, the volume expansion in maximum BMP 

intercalated graphite anode (stage-1) is higher (148%) compared to 

coronene anode (53%), (Figure 5.5). Overall, from the binding energy and 

volume expansion calculations, we can conclude that the BMP cation has 

moderate binding strength with both the considered anodes which is 

essential in DIBs. Coronene has better prospects as a potential anode 

material over graphite due to less volume expansion.  
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Figure 5.5: Volume expansion plot of both coronene and graphite anodes. 

 

5.3.3. Electrochemical Properties 

Here we have discussed the electrochemical properties of both dual 

graphite battery (DGB) and graphite coronene dual-ion battery (GCDIB), 

where the BMP cations are paired up with the AlCl4 anions. In the 

charging, the AlCl4 anions and BMP cations are intercalated into the 

graphite cathode and anode in DGB, respectively. In the GCDIB, BMP 

cations are intercalated into coronene anode and AlCl4 anions are 

intercalated into the graphite cathode. To investigate electrochemical 

properties of full DIB, it is necessary to study the AlCl4 intercalation 

inside the graphite cathode as well. Previously, our group has carried out 

extensive study on AlCl4 anion intercalation in the graphite cathode.[10] 

Here, we have considered different stages such as stage-1, stage-2 and 

stage-4 of AlCl4 anions intercalation into graphite electrode and 

suggesting that stage-4 is more stable followed by stage-2 and stage-1 

(Figure 4.8, chapter 4). Besides low cost and safety concerns, the open 
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circuit voltage (OCV) and charge capacity are the most important criterion 

for the practical feasibility of the considered DIBs. In the DIB, BMP-

AlCl4 is not only used as an IL but also as the active charge carrier in 

terms of the electrochemical activity. From the cathodic and anodic 

reaction, we could calculate the OCV of DIB. Firstly, we have considered 

the following discharge voltage equations for the DGB systematically.  

 

Cathodic Reaction: 𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦 + 𝑦𝑒−  ↔ 𝑦𝐴𝑙𝐶𝑙4
− + 𝐶𝑛  (5.2) 

 

Anodic Reaction: 𝐶𝑚(𝐵𝑀𝑃)𝑥  ↔ 𝑥𝐵𝑀𝑃+ + 𝐶𝑚 + 𝑥𝑒−  (5.3) 

 

When the equal number (𝑥 = 𝑦) of BMP cations and AlCl4 anions are 

intercalated into graphite cathode and anode, the overall reaction would be 

as follows, 

 

Overall Reaction: 𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦  +  𝐶𝑚(𝐵𝑀𝑃)𝑥  ↔ 𝑥𝐵𝑀𝑃+ +  𝑦𝐴𝑙𝐶𝑙4
− +

 𝐶𝑛 +  𝐶𝑚            (5.4) 

 

where, 𝐶𝑚 and 𝐶𝑛 are the anode and cathode, respectively and 𝑥 is the 

number of BMP cations and 𝑦 is the numbers of AlCl4 anions. The cell 

voltage can be calculated using the following Nernst equation, 𝑉 =
−∆𝐺𝑐𝑒𝑙𝑙

𝑧𝐹
, 

where F and z are the Faraday constant and number of electrons 

transferred, respectively. Due to negligible contribution from change of 

volume and entropy as all the calculations have been performed in 0 K 

temperature, so the change of free energy can be equated with the change 

of internal energy of the BMP intercalated systems. Therefore, the change 

of internal energy for the overall reaction would be, 

∆𝐸 = 𝑥𝐸𝐵𝑀𝑃+ + 𝑦𝐸𝐴𝑙𝐶𝑙4
− + 𝐸𝐶𝑚

+ 𝐸𝐶𝑛
− {𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦] + 𝐸[𝐶𝑚(𝐵𝑀𝑃)𝑥]} 

         (5.5) 
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Where, 𝐸[𝐶𝑚(𝐵𝑀𝑃)𝑥], 𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦], 𝐸𝐵𝑀𝑃+ and 𝐸𝐴𝑙𝐶𝑙4
− are the total energy of 

the BMP cation intercalated graphite system and AlCl4 intercalated 

graphite system, and the individual fragments of BMP cation and AlCl4 

anion, respectively. 𝐸𝐶𝑚
 and 𝐸𝐶𝑛

 are the total energy of graphite 

electrodes. 𝐸𝐵𝑀𝑃+ and 𝐸𝐴𝑙𝐶𝑙4
− are the calculated optimizing energy of the 

individual molecule of BMP cation and AlCl4 anion, respectively due to 

unavailability of their crystal structure. Thus, the average voltage can be 

formulated as follows,  

 

𝑉 =
{𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦]+𝐸[𝐶𝑚(𝐵𝑀𝑃)𝑥]}−{𝑥𝐸

𝐵𝑀𝑃++𝑦𝐸𝐴𝑙𝐶𝑙4
−+𝐸𝐶𝑚+𝐸𝐶𝑛}

𝑧
  (5.6) 

 

In GCDIB, the cathodic reaction is same as DGB, and anodic reaction can 

be given as follows, 

 

Anodic Reaction: 𝐶𝑜𝑟𝑜(𝐵𝑀𝑃)𝑥  ↔ 𝑥𝐵𝑀𝑃+ +  𝐶𝑜𝑟𝑜 + 𝑥𝑒− (5.7) 

 

Thus, the average voltage equation for GCDIB would now be,  

 

𝑉 =
{𝐸[𝐶𝑛(𝐴𝑙𝐶𝑙4)𝑦]+𝐸[𝐶𝑜𝑟𝑜(𝐵𝑀𝑃)𝑥]}−{𝑥𝐸

𝐵𝑀𝑃++𝑦𝐸𝐴𝑙𝐶𝑙4
−+𝐸𝐶𝑜𝑟𝑜+𝐸𝐶𝑛}

𝑧
  (5.8) 

 

where, 𝐸[𝐶𝑜𝑟𝑜(𝐵𝑀𝑃)𝑥] and 𝐸𝐶𝑜𝑟𝑜 are the total energy of the BMP cation 

intercalated coronene anode and free coronene materials, respectively. To 

investigate the exact mechanism of the charging/discharging process, we 

have studied the different staging intercalation behaviour of both BMP 

cations and AlCl4 anions at the initial and final state of charge in DGB. 

Therefore, based on our model we have calculated all possible value of 

average voltage as shown in Table 5.4, by intercalating four cations and 

anions to replicates the initial state of charging in DGB. The combinations 

of stage-1 BMP−stage-1 AlCl4, and stage-1 BMP−stage-2 AlCl4 have 

provided the lower voltage values of 0.13 and 0.10 V, respectively. This 
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may be due to the activation of electrode by the ions intercalation which 

agrees with our calculated lower binding energy values in stage-1 process 

of both BMP and AlCl4 intercalated graphite systems. The highest 

calculated voltage is 3.79 V, which is obtained in the stage-4 BMP−stage-

4 AlCl4 intercalated system. Owing to lack of exact experimental evidence 

of the BMP-AlCl4 DGB, we have compared our calculated voltage values 

with the BMP-TFSI, DGB, where both AlCl4 and TFSI are used as an 

active intercalant anion species in DIB study. The experimental voltage 

window was observed in the range of 1.0-4.6 V for the BMP-TFSI with a 

very high voltage discharge plateau achieved at 3.7 V.[48] However, this 

observation is also reflected with our calculated voltage trends of BMP-

AlCl4 DGB, where the highest discharge voltage values is found to be 3.79 

V. Furthermore, our calculated relative energy and literature study have 

suggested that the formation of stage-4 is feasible in the case of both BMP 

and AlCl4 intercalation into the graphite at the initial state of charging.  

 

Table 5.4: Calculated theoretical voltage of different stages of BMP-AlCl4 

in DGB. 

            BMP 

AlCl4 
Stage-1 Stage-2 Stage-4 

Stage-1 0.13 1.25 1.75 

Stage-2 0.10 1.45 1.98 

Stage-4 1.94 3.29 3.79 

 

The average voltage of the stage-2 BMP−stage-4 AlCl4 is calculated to be 

3.29 V which lies in the range of experimental voltage window. However, 

the BMP stage-2 is less stable compared to the stage-4 of BMP cation 

intercalation into the graphite as discussed earlier. Thus, we have proposed 

that in the initial state of charging process in DGB, both BMP cations and 

AlCl4 anions prefer to follow the stage-4 intercalation process over other 

stages. In addition to this we have considered the fully charged states, 
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where all the BMP cations and AlCl4 anions are expected to follow the 

stage-1 type of intercalation into the graphite. However, the stage-1 

BMP−stage-1 AlCl4 results in an OCV of 3.05 V with the maximum 

intercalation (16 ion pairs) at both the electrodes in DGB, which follows 

the experimental reported range of voltage value. Similarly, applying the 

equation 5.8, we have calculated the discharge voltage (Table 5.5) for the 

four BMP cations intercalated into the coronene and four AlCl4 anions 

intercalated into graphite system to replicate the initial state of charging. 

From the Table 5.5, the stage-4 AlCl4 intercalation has shown the highest 

voltage of 3.14 V in GCDIB. Besides, the combination of stage-1 and 

stage-2 AlCl4 with coronene gives the less average voltages of 1.09 V and 

1.33 V, respectively, due to the activation of electrode at the initial state of 

charging. Our calculated highest voltage value of 3.14 V matches with the 

experimental voltage window of 3.0-3.9 V for the coronene-TFSI dual-ion 

battery.[48] To replicate the fully charged state, we have considered the 

maximum sixteen ion pairs intercalation, where BMP cations are 

intercalated into the 2×2×2 supercell of coronene, and stage-1 type 

intercalation is followed for AlCl4 anions intercalation into graphite. 

Consequently, the calculated OCV of 3.1 V falls in the experimental 

voltage range of 3.0-3.9 V.  

 

Table 5.5: Theoretical calculated voltage of GCDIB system with different 

stages of AlCl4 intercalated graphite cathode. 

AlCl4 Stage-1 Stage-2 Stage-4 

Coronene 1.09 1.33 3.14 

 

Moreover, we have measured the gravimetric capacity using equation 4.9 

(from chapter 4) for our considered DIBs. In the fully charged state, we 

have obtained the maximum capacity of 130 𝑚𝐴ℎ𝑔−1 for our BMP-AlCl4 

DGB system. Whereas in case of BMP-TFSI DGB the maximum capacity 

is reported to be 90-100 𝑚𝐴ℎ𝑔−1, which is less than BMP-AlCl4 DGB 
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system, due to high molar mass of TFSI anions than the AlCl4 anions. 

Cycle numbers of 200 only have been observed for the BMP-TFSI DGB, 

because of exfoliation in the electrodes during intercalation of large size 

cations and anions.[48] We believe that the cycle number will increase for 

the BMP-AlCl4 DGB due to the smaller volume of the intercalating AlCl4 

anions compared to the TFSI anions.  

Furthermore, our calculated gravimetric capacity of BMP-AlCl4 GCDIB 

upon maximum ion intercalation is 116 𝑚𝐴ℎ𝑔−1, which is much higher 

than experimental capacity range of 55-80 𝑚𝐴ℎ𝑔−1 reported for BMP-

TFSI GCDIB. The less volume expansion nature of BMP intercalated 

coronene results in the maximum cycle number of 450 for the BMP-TFSI 

graphite coronene dual-ion battery.[48] Hence, we predict that the cycle 

number may also increase for BMP-AlCl4 GCDIB, because of less 

exfoliation of graphite electrodes due to the smaller size of AlCl4 anion 

compared to TFSI anion. Thus, the use of AlCl4 anion is vastly superior 

over the TFSI anion because of higher capacity and longer cycle number 

of DIBs. Thus, in our GCDIB, the choice of coronene anode will lead to 

lower volume expansion than graphite anode. Also, the choice of smaller 

size AlCl4 anion can help in decreasing the exfoliation at cathodic part. 

Such informed choices can result in a higher cycle life for our considered 

GCDIB. 

 

5.3.4. Electronic Properties 

In this section, we have studied the electronic contribution of the BMP 

cations intercalated graphite as well as the coronene anode. It is important 

to understand the direction of charge transferred of less familiar organic 

(BMP) cation intercalated carbon-based anodes compared to more 

commonly anions intercalated layered like graphite cathode. In the 

charging process, the electrons flow from cathode to anode direction 

through the external circuit, which permit the intercalation/adsorption of 

cations and anions inside the anode and cathode, respectively. Equally, the 



190 
 

reverse phenomena happen in the discharge process where all ions revert 

to the electrolyte. Therefore, a constant electric conductivity of the 

electrode is essential to maintain the reversibility nature of the ions in 

battery. The electronic conductivity can be explained from the DOS 

(density of states) configuration in terms of the Fermi region. In Figure 4a 

and b has shown the total DOS and projected DOS for the BMP cation 

intercalated graphite and coronene anodes, respectively. It is well known 

that the graphite has a good in-plane electronic conductivity due to 

presence of pz electronic state at the Fermi level. In Figure 5.6a, the Fermi 

level of BMP cation intercalated graphite has shifted towards the 

conduction band with respect the pristine graphite, because of charge 

transfer from BMP cation to graphite. Due to unsymmetrical arrangement 

of the coronene, the p states of carbon in coronene are appeared irregularly 

as compared to the pristine graphite in the DOS structure as shown in 

Figure 5.6b. The Fermi level of BMP intercalated coronene has slightly 

moved to the conduction band with respect to the free coronene. This 

observation suggest that the amount of charge has transferred from BMP 

cation to coronene electrode resulting the reduction of coronene electrode.  

 

 

Figure 5.6: TDOS and PDOS of BMP cation intercalated (a) graphite 

anode, and (b) Coronene anode. Here the Fermi level is set to zero.   
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Furthermore, we have investigated the charge density difference (CDD) 

study to visualize the charge transfer mechanism with help of following 

equation. 

𝜌𝐶𝐷𝐷 = 𝜌𝑡𝑜𝑡𝑎𝑙 − ∑ 𝜌𝑖
𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠

𝑖      (5.12) 

 

Where, 𝜌𝑡𝑜𝑡𝑎𝑙  and 𝜌𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡𝑠 are the total charge density of the BMP 

cation intercalated host materials and the charge density of the individual 

fragments, respectively. The CDD plot of the BMP intercalated graphite 

anode and coronene anodes has shown in the Figure 5.7a and b, 

respectively. Where the yellow and blue colours represent the electron 

density accumulation and depletion, respectively. The mainly 𝜎 electrons 

are transferred from the C-H bond of the BMP cation to the aromatic ring 

(C-H ∙∙∙ 𝜋 interaction) of host materials of graphite and coronene. From the 

Figure 5.7a, it is indicating that the electron density accumulation is more 

(i.e., high portion of yellow colour on the graphene sheet) in BMP 

intercalated graphite compared to that in the coronene electrode. 

Furthermore, the Bader charge analysis is done to understand the process 

quantitatively. Quantitatively, +0.85 |e| and +0.80 |e| charge has 

transferred from the BMP cation to the graphite and coronene anodes, 

respectively. Overall, the higher charge transfer from the BMP cation to 

the graphite as interpreted from CDD plot and Bader charge analysis, is 

responsible for the higher binding energy of BMP-graphite (2.36 eV) 

compared to the BMP-coronene (1.71 eV). Therefore, based on our DOS 

and CDD study, we can conclude that both electrodes can be used as 

potential anode for the BMP cation intercalation due to presence of a 

constant electronic conductivity during charging/discharging process 

which is highly required in DIBs technology.[45,59] 
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Figure 5.7: The CDD plot of BMP intercalated (a) graphite with 

isosurface of 0.0008 |e| Å−3 and (b) coronene with isosurface of 0.0009 |e| 

Å−3 systems, where the yellow and cyan colours represent the electron 

density accumulation and depletion, respectively.   

 

5.3.5. Diffusion Pathway 

The fast charging/discharging rate can be explained based on the mobility 

of the BMP cations inside the anode material. The mobility can be 

implemented by calculating the diffusion barriers of the BMP cation 

intercalated graphite as well as coronene anodes. The trouble-free 

diffusion and high mobility are the prerequisite for the BMP cations to 

improve the overall performance of the considered DIBs. To calculate the 

diffusion barrier of the BMP cations inside the graphite layer using the CI-

NEB method, we have considered three minimum energy pathways 

(MEPs) for diffusion starting from most stable site (Bridge 2) of the BMP 

cation to second most stable sites of the AB stacked graphite layers as 

shown in Figure 5.8a. All the three possible MEPs have shown in Figure 

5.8b, where the path 1, path 2 and path 3 have shown diffusion barrier of 

0.1, 0.26 and 0.13 eV. Among these, path 1 shows the lowest diffusion 

barrier (0.1 eV) which is relatively less compared to the others metal 

cations such as Li or Na (0.2-0.4 eV) intercalated graphite layers.[62,63] 
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Figure 5.8: Schematic representation of BMP cation intercalated graphite 

representing (a) three diffusion pathways which are shown by brown, red 

and violet colour arrows, and (b) the energy profile diagram of the three 

diffusion pathways.  

 

Similarly, we have studied the diffusion energy barrier of BMP cations 

intercalated coronene anode. We have chosen the two MEPs starting from 

most stable site of b and c-direction of one unit cell to next unit cell, 

respectively as shown in Figure 5.9a. We have not considered the 

diffusion of BMP cation in the a-direction, due to presence of large 

aromatic ring of coronene, which creates the blockage for the free 

movement of BMP cation inside the coronene unit cell. Among of two 

MEPs, the c-direction diffusion barrier is less (1.16 eV) than the b-

direction diffusion barrier of 1.8 eV. Consequently, the BMP cations 

transport in c-direction is much easier compared to b-direction because of 

low diffusion barrier of 1.16 eV. Whereas the coronene BMP cation 

diffusion barrier is high compared to the diffusion barrier of BMP cation 

inside the graphite layers. This observation indicates that the ions 

intercalation/deintercalation rate can be easy upon the high charging 

voltage of the GCDIB system.[48] Overall, from the diffusion pathway 

study, we can conclude that the organic BMP cation intercalated graphite 

anode can be used for fast charging rate DIBs in future. 
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Figure 5.9: (a) Schematic representation of the diffusion energy barrier 

for BMP cation intercalated coronene, (b) and (c) are the diffusion 

pathways BMP cation in b and c-directions of coronene, respectively.  

 

5.4. Conclusion  

In this study, we have demonstrated the applicability of coronene, a 

polycyclic aromatic hydrocarbon (PAH), as a n-type redox active anode in 

DIB. To get the better comparison we have considered the layer like 

graphite anode along with coronene for BMP cation intercalation study. 

Based on our dispersion-corrected DFT calculations, we have investigated 

the staging mechanism of BMP cation intercalation inside the graphite 

anode, along with this charge transfer mechanism, diffusion barrier, 

electrochemical properties such as voltage and capacity for BMP cation 

intercalated coronene as well as graphite anodes. We have modelled three 

staging mechanisms (stage-1, stage-2 and stage-4) for the BMP cation 

intercalated graphite anode to investigate the electrochemical and 

thermodynamic properties. To verify the stability, we have calculated the 

binding energy of BMP cation intercalated graphite as well as coronene 

systems. Our calculated relative energy values of the different stages of 

the BMP cation intercalated graphite systems suggest the stability in the 

following order: stage-4 > stage-2 > stage-1. The BMP cations are 

strongly interacting with the graphite layer due to having higher binding 

energy of 2.36 eV compared to the coronene binding energy of 1.71 eV. 
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Upon intercalation of BMP cation into the graphite anode in charging 

process the interlayer distance has increased to 3.4 to 7.9 Å, which leads to 

increase of volume expansion of the electrode. In the fully charged state of 

DIB, the percent of volume expansion of graphite anode is higher of (148 

%) than coronene anode of (53 %), which indicates that the graphite anode 

is more prone to exfoliation in nature over the coronene. So, we can 

assume that the cycle number may increase in the GCDIB system than that 

in the DGB for the BMP-AlCl4 system. Our calculated average voltage of 

DGB is found to be 3.79 V when stage-4 mechanisms of both BMP 

cations and AlCl4 anions are considered, which is in good agreement with 

the experimental high discharge voltage of 3.7 V. The theoretical voltage 

of GCDIB is calculated to be 3.1 V which again very much in agreement 

with the experimental voltage range of 3.1-3.9 V. Moreover, our 

calculated gravimetric capacity of DGB and GCDIB are 130 and 116 

𝑚𝐴ℎ𝑔−1, respectively for the maximum ions intercalated system. From 

the DOS structure, the Fermi level of both BMP intercalated graphite and 

coronene systems are shifted towards the conduction bands, indicating the 

considered electrode can behaves as anode materials. The Bader charge 

analysis has also confirmed the electrochemical reduction of the electrode 

materials which is consistent with the experimental findings. Despite, the 

coronene having higher diffusion barrier, it can be a promising organic 

electrode for DIBs because of the less volume expansion and comparable 

voltage/capacity with respect to the graphite anode. The high diffusion 

barrier of coronene indicates the BMP cations is more restricted inside the 

coronene compared to graphite anode. So, from the perspective of state of 

charge, GCDIB might take a little more time compared to the DGB to get 

fully charged. On the other hand, the cycle life of GCDIB is expected to 

be almost twice to that of DGB. Hence, the little increase in charging time 

can be compensated by the higher cycle number, meaning high cycle 

stability of GCDIB. Overall, our findings provide the in-depth 

understanding of interaction between BMP cation and coronene anode, 
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which helps to explain the usage of nonaromatic organic cation of BMP. 

We propose that the polycyclic aromatic hydrocarbons can be used as an 

organic anode for various organic cations for the development of low-cost 

high performance-based DIBs.  
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6.1. Introduction 

The rapid growth in human population has resulted in increased reliance 

on non-renewable energy sources, such as coal and crude oil. As non-

renewable energy consumption escalates, it drives up living costs and 

exacerbates climate change vulnerabilities. Recognizing the urgency to 

transition from fossil fuels to renewable sources, significant efforts have 

been made in recent decades.[1,2] Renewable energy sources, while 

promising, present challenges due to their intermittent nature and 

geographical limitations. To address this, researchers have focused on 

energy storage solutions, particularly batteries, to ensure an uninterrupted 

electricity supply. Lithium-ion batteries (LIBs) have dominated the current 

energy market, serving a wide range of applications from portable 

electronic devices to grid storage and electric vehicles, owing to their high 

energy density.[3-5] However, LIBs have their own set of challenges, 

including the thermal runaway effect and the use of costly transition 

metal-based cathodes.[6,7] In light of the substantial costs and safety 

concerns associated with LIBs, there is a growing preference to seek 

alternative solutions for environmentally friendly energy storage devices. 

This pursuit has led to the exploration of novel materials, such as graphite, 

with the aim of developing more cost-effective, high-performance 

batteries. Owing to its redox-amphoteric properties and layered structure, 

graphite exhibits both reduction and oxidation through electrochemical 

reactions involving the uptake and release of cations and anions. This 

concept has given rise to dual graphite batteries, often referred to as dual-

ion batteries (DIBs), in which both the graphite anode and cathode play 

essential roles in the intercalation and deintercalation of cations and anions 

throughout the charge and discharge cycles of the battery.[8-10] Unlike 

the shuttle-style mechanism in LIBs, DIBs demonstrate distinct 

mechanistic behaviours, where both cations and anions are simultaneously 

intercalated into graphite cathode and anode in charging process.[11-13] 

DIBs offer several advantages, including a high working voltage of 4.5 V, 
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enhanced safety, and lower cost and ultra-fast charging capability 

compared to conventional LIBs.[14-16] As a result, DIBs are gaining as a 

significant energy storage system in the post-LIBs era, driven by their 

cost-effectiveness and environmentally friendly characteristics. 

The first reported use of graphite-based dual-ion batteries (DIBs) dates 

back to 1989 when McCullough and co-workers employed a nonaqueous 

electrolyte containing 𝐶𝑙𝑂4
−.[17] Since then, DIBs have typically relied on 

lithium salts like LiPF6, LiTFSI, and LiFSI, dissolved in organic 

carbonate-based solvents such as ethylene carbonate and ethyl methyl 

carbonate.[18,19] However, these traditional DIBs encounter significant 

challenges during cyclic processes. At high working voltages (>4.5 V), the 

electrolytes may decompose, leading to electrolyte degradation and 

performance issues. Additionally, solvent molecules may co-intercalate, 

resulting in the exfoliation of the graphite electrode.[15,20] To undertake 

these crucial challenges, Carlin and co-workers have introduced a 

promising alternative: room temperature ionic liquids (RTILs) as 

electrolytes.[21] In contrast to volatile carbonate-based electrolytes, 

RTILs offer enhanced stability and reduced decomposition, rendering 

them more suitable for DIB applications. 

Ionic liquids (ILs) are a remarkable class of low melting point salts, 

remaining in liquid state at room temperature, and possessing exceptional 

properties like low vapor pressure, good thermal and chemical stability, 

high ionic conductivity, and a wide electrochemical window.[22-25] Due 

to these unique attributes, ILs have emerged as potential alternatives to 

traditional carbonate-based electrolytes, finding applications in DIBs as 

well as in LIBs. IL-based electrolytes have been used in LIBs, however 

higher viscosity of ILs and lower lithium mobility reduces the overall 

performance of LIBs compared to the traditional electrolytes-based 

LIBs.[26,27] A high throughput ML screening of ionic liquids may be 

helpful towards the development of the LIBs. ILs are composed of 

different organic moieties of cations and their counter anions. These are 
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not only used as electrolytes in DIBs but also, they are revealed as active 

intercalant species. Recent studies have shown that the organic moieties of 

imidazolium and pyrrolidinium based cations and counter anions such as 

OTf (CF3SO3), AlCl4, PF6 and BF4 of ILs are intercalated into the graphite 

anode and cathode, respectively during charging process.[28-31] These 

DIBs show the higher cut-off changing voltage of 4.0-5.0 V, due to the 

broad electrochemical window of ILs. However, there is limited research 

on DIBs using organic moieties of imidazolium- (1-ethyl-3-methyl 

imidazolium and 2,3-dimethyl-1-propyl imidazolium) and pyrrolidinium-

based (N-butyl-N-methyl pyrrolidinium) cations in the graphite 

anode.[30,32] Exploring DIBs with other organic moieties-based cations, 

like morpholium, piperidinium, and thiazolium, is challenging both 

computationally and experimentally due to the complexities of the ion 

intercalation process and the sensitivity of ILs. The intercalation of ions 

into the graphite electrode follows a proper staging mechanism, making 

computational studies time-consuming and costly. Additionally, ILs are 

highly sensitive to both water and air, therefore difficult to handle in 

experiments.[33,34] 

To overcome these issues, we have considered a high throughput data 

driven machine learning (ML) approach in this work to predict the binding 

energies (BEs) of cations of different stages of graphite anode. For this, 

we have adopted 10 organic cation moieties and 9 anions as shown in 

Figure 6.1. The relevant input features have been considered to train the 

machine for the predictions of BEs of cations for the different stages. Our 

predicted BEs of cations are validated with DFT calculated values. To 

assess the generalization and stability of our ML model, we employed the 

cross-validation technique. Furthermore, we have calculated the anions 

BEs of different stages. Upon coupling of both cations and anions BEs, we 

have successfully designed and calculated voltages for dual graphite 

batteries (DGBs). Nevertheless, we have used interpretable ML library to 
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understand the features importance towards the prediction of BEs of 

cations. 

 

Figure 6.1: Various organic cation and anion-based structures were 

employed to represent the ionic liquids. The numbers in parenthesis 

represent the cations having different alkyl substitutions (R1 to R4) and 

the corresponding structure and substitutions details are given in Table 

6.1. 

Table 6.1: Different alkyl groups are presented for each cation. 

Organic 

Moieties 
Cations ID Alkyl Groups 

Pyrazolium 

0 R1=C4H9 (Butyl), R2=R3=CH3 (Methyl) 

1 R1=C4H9, R2=R3=H 

2 R1=C3H7 (Propyl), R2=R3=H 

3 R1=C2H5 (Ethyl), R2=R3=H 

Piperidinium 4 R1=C4H9 
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5 R1=C3H7 

6 R1=C2H5 

7 R1=CH2OCH3 

8 R1=C2H5OCH3 

9 R1=C2H5OC2H5 

Pyridinium 

10 R1=C4H9, R2=R3=R4=H 

11 R1=C3H7, R2=R3=R4=H 

12 R1=C2H5, R2=R3=R4=H 

13 R1=C4H9, R2=CH3, R3=R4=H 

14 R1=C4H9, R3=CH3, R2=R4=H 

15 R1=C4H9, R4=CH3, R2=R3=H 

Pyrrolidinium 

16 R1=C4H9 

17 R1=C3H7 

18 R1=C2H5 

Thiazolium 

19 R1=C4H9, R2= CH3 

20 R1=C2H5, R2= CH3 

21 R1=C4H9, R2=H 

22 R1=C2H5, R2= H 

Ammonium 

23 R1=CH3, R2=R3=C2H5, R4=C2H5OCH3 

24 R1=R2=R3=CH3, R4=C4H9 

25 R1=R2=R3=R4=C4H9 

26 R1=R2=R3=R4=C3H7 

27 R1=R2=R3=R4=C2H5 

28 R1=R2=R3=R4=CH3 

29 R1=R2=R3=CH3, R4=CH2CN 

30 R1=CH3, R2=R3=R4=C4H9 

Phosphonium 

31 R1=R2=R3=R4=C4H9 

32 R1=R2=R3=R4=C3H7 

33 R1=R2=R3=R4=C2H5 

34 R1=R2=R3=C2H5, R4=C4H9 
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35 R1=CH3, R2=R3=R4=C4H9 

36 R1=R2=R3=C2H5, R4=CH2OCH3 

37 R1=R2=R3=C2H5, R4=C2H5OCH3 

Sulfonium 

38 R1=R2=C2H5, R3=CH3 

39 R1=R2=R3=C2H5 

40 R1=R2=C2H5, R3=C3H7 

41 R1=R2=R3=C3H7 

42 R1=R2=C4H9, R3=CH3 

43 R1=R2=R3=C4H9 

Morpholium 

44 R1=C4H9 

45 R1=C3H7 

46 R1=C2H5OCH3 

47 R1=C2H5OC2H5 

48 R1=CH2OCH3 

Imidazolium 

49 R1=C2H5, R2=H 

50 R1=C3H7, R2=H 

51 R1=C3H7, R2=CH3 

52 R1=C4H9, R2=H 

53 R1=C6H13 (Hexyl), R2=H 

54 R1=C8H17 (Octyl), R2=H 

 

6.2. Methods 

6.2.1. DFT Details 

In machine learning studies, the quality of the data holds paramount 

importance. In the context of BEs of cations, the available data is quite 

limited. Therefore, it is essential to calculate BEs of some of these cations 

for the training. To achieve this, the first principles calculations have been 

employed using the Vienna Ab initio Simulation Package (VASP).[35,36] 

The calculations involve geometry optimizations and utilize the 

generalized gradient approximation of the Perdew-Burke-Ernzerhof 

(GGA-PBE) functional.[37] Additionally, the projected augmented wave 
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(PAW) method is employed to account for the interaction between valence 

and core electrons (further details in section 4.2, chapter 4).[38] The 

workflow related to the calculations of binding energies of cations and 

anions has been shown in scheme 6.1. The concept of BE stands as a 

pivotal criterion in comprehending the stability and feasibility of the 

intricate intercalation process. All the structures are optimized to calculate 

the BEs. Hence, binding energies of cations ((𝐸𝐵)𝐶𝑎𝑡𝑖𝑜𝑛) and anions 

((𝐸𝐵)𝐴𝑛𝑖𝑜𝑛) can be calculated using the following equations.  

(𝐸𝐵)𝐶𝑎𝑡𝑖𝑜𝑛 =
𝐸[𝐺(𝑐𝑎𝑡𝑖𝑜𝑛)𝑥]−𝐸𝐺−𝑥𝐸𝑐𝑎𝑡𝑖𝑜𝑛

𝑥
     (6.1) 

(𝐸𝐵)𝐴𝑛𝑖𝑜𝑛 =
𝐸[𝐺(𝑎𝑛𝑖𝑜𝑛)𝑦]−𝐸𝐺−𝑦𝐸𝑎𝑛𝑖𝑜𝑛

𝑦
     (6.2) 

Where, the 𝐸[𝐺(𝑐𝑎𝑡𝑖𝑜𝑛)𝑥] is the total energy of the x numbers of cation 

intercalated graphite anode and 𝐸[𝐺(𝑎𝑛𝑖𝑜𝑛)𝑦] is the total energy of the y 

numbers of anion intercalated graphite cathode. 𝐸𝑐𝑎𝑡𝑖𝑜𝑛 and 𝐸𝑎𝑛𝑖𝑜𝑛 are the 

total energies of the individual cation and anion, respectively, and 𝐸𝐺  is 

the total energies of the graphite electrode.  

 

 

Scheme 6.1: The workflow involves assessing the binding energies of 

cations and anions across various stages of graphite electrodes and 

subsequently utilizing these values for voltage calculations. 

 

6.2.2. ML Models 

The input binding energy (BE) values serve as pivotal markers for the 

training of our supervised machine learning (ML) model. As there are 

large numbers of cations, we calculated binding energies of some cations 

and predicted the binding energies of the remaining cations using the ML 
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model.  The comprehensive workflow, encompassing data set division to 

user comprehension, has been meticulously presented in Scheme 6.2. In 

our supervised ML framework, we partitioned the known BEs into an 

80:20 ratio, designating them as the training and test data sets.[39,40] The 

training data set was harnessed to train the model, while individual errors 

were assessed by contrasting them against the test data set. For this 

purpose, we explored eight diverse supervised regression algorithms, 

namely Kernel Ridge Regression (KRR), eXtreme Gradient Boosting 

Regression (XGBR), Extra Trees Regression (ETR), Random Forest 

Regression (RFR), Adaptive Boosting Regression (ABR), Decision Tree 

Regression (DTR), Gradient Boosting Regression (GBR), and Light 

Gradient Boosting Machine (LGBM) regression (more details in section 

1.6.6, chapter 1) employing the Scikit-learn package version 0.23.1 within 

Python 3.8.2.[41-43] 

 

 

Scheme 6.2: ML work flowcharts for the prediction of cation binding 

energy.  

These algorithms are conveniently accessible through open-source 

libraries, replete with default parameters that can be tailored to meet 

specific user requirements. To identify the most aptly suited ML model, 

we employed randomized search cross-validation (RandomizedSearchCV) 
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for hyperparameter tuning across the various algorithms. The predictive 

efficacy of each model was assessed using the mean absolute error (MAE) 

and root mean squared error (RMSE), quantified through the following 

equations. 

𝑀𝐴𝐸 =
1

𝑛
∑ (𝑌𝑖 − 𝑦𝑖)𝑛

𝑖=1       (6.3)  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖 − 𝑦𝑖)2𝑛

𝑖=1       (6.4) 

Where, n is the total data point, the 𝑌𝑖, and 𝑦𝑖 are the ML and DFT 

calculated BEs, respectively. Subsequently, we subjected our randomly 

partitioned dataset through various cross-validation methods to ascertain 

the stability and generalizability of our optimized model. Additionally, we 

harnessed the interpretative potential of SHapley Additive exPlanations 

(SHAP) library rooted in game theory. This enabled us to unravel the 

intricate interplay between features and the target output (binding energy), 

both on a global and local scale. The game theory based Shapely value 

aims to fairly distribute the player’s contribution when they achieve a 

certain prediction jointly.[44] Moreover, we have extracted the waterfall 

and force plots upon implementing the waterfall and force functions on the 

SHAP value in python library to understand the local interpretation for a 

certain prediction. In the realm of machine learning, SHAP values (𝜙(𝑖)) 

quantify the impact of each feature within the model, which collectively 

shapes the prediction.[45] The Shapley values are calculated for the 

feature 𝑖 in the model is: 

𝜙(𝑖) = ∑
𝑘!(𝑁−𝑘−1)!

𝑘!𝑘⊆𝑀{𝑖} [𝑓𝑥(𝑘 ∪ {𝑖}) − 𝑓𝑥(𝑘)]   (6.5) 

𝑓𝑥(𝑘) = 𝐸[𝑓(𝑥)|𝑥𝑘]       (6.6) 

Where, N is a subset of the features (inputs). M{i} is the set of all possible 

combinations of features other than 𝑖. 𝐸[𝑓(𝑥)|𝑥𝑘]  represents the expected 

value of the function on the subset k.  
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6.3. Results and Discussion 

6.3.1. Different Types of Cations and Staging Mechanisms 

We have examined various combinations of cations and anions, forming a 

range of ionic liquid-based electrolytes. Specifically, we have explored 

alkyl groups spanning from methyl to butyl as shown in Table 6.1. Some 

of these organic moieties are commonly utilized in battery technology. 

Notably, we have refrained from incorporating higher-order alkyl groups 

(higher than butyl) due to their larger volume, which might trigger the 

exfoliation of the graphite electrode considerably during the 

charge/discharge cycle. In investigating the binding behaviour of O-alkyl 

groups, we have included functional cations like methoxy (OMe) and 

ethoxy (OEt). Furthermore, we have incorporated acyclic structures of 

ammonium, phosphonium, and sulfonium cations which could 

accommodate long chain alkyl group without steric hindrance. 

Graphite intercalation compounds (GICs) typically consist of graphite 

layers and intercalant species, which can be cations or anions. The process 

of GIC formation adheres to a systematic staging mechanism, driven by 

interplay between attractive and repulsive forces between the intercalant 

molecules and the graphite. Graphene layers in graphite are held together 

by strong van der Waals forces, requiring the overcoming of these forces 

for intercalation to occur. Various experimental and computational studies 

have unveiled different stages of GICs during charge and discharge 

cycles.[46,47] Staging is quantified by the stage index, indicating the 

count of unintercalated graphene layers between intercalated ones. The 

stage-n system signifies the “n” number of graphene sheet present and “n-

1” empty host gallery presents between intercalated layers.  For example, 

stage-1 GICs involve intercalation after each graphene layer, while stage-2 

corresponds to every second empty layer, and stage-3 and stage-4 consist 

of two and three empty galleries, respectively. Thus, we explored four 

staging mechanisms for ion intercalation: stage-1, stage-2, stage-3, and 

stage-4. These mechanisms are applied to graphite models, such as a 6 × 6 
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× 2 supercell with 288 carbon atoms for stage-n (n = 1, 2, and 4), and a 6 × 

6 × 3 supercell with 432 carbon atoms for stage-3. Stoichiometry 

considerations allow a maximum of four ions per gallery, leading to 

variations in ion count among the models. Demonstrating this with BF4 

anions intercalation, the generalized formula unit [C288(BF4)m] represents 

stage-1 (m = 4, 8, 12, 16), stage-2 (m = 2, 4, 6, 8), and stage-4 (m = 1, 2, 

3, 4) as shown in Figure 6.2-6.4. For stage-3, it becomes C432(BF4)m with 

m = 2, 4, 6, 8 (Figure 6.5). These anions are stabilized through the anion-π 

interaction inside the graphite electrode.[48] Similar staging models have 

been considered for the cation’s intercalation into the graphite anode 

electrode as well. 

 

 

Figure 6.2: Pictorial representation of different BF4 anion intercalated 

stage-1 graphite system, (a) C288(BF4)4, (b) C288(BF4)8, (c) C288(BF4)12, 

and (d) C288(BF4)16. Where, the brown color carbon represents the graphite 

layers, green (B), and pink (F). 

 

 

Figure 6.3: Pictorial representation of different BF4 anion intercalated 

stage-2 graphite system, (a) C288(BF4)2, (b) C288(BF4)4, (c) C288(BF4)6, and 
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(d) C288(BF4)8. Where, the brown color carbon represents the graphite 

layers, green (B), and pink (F). 

 

 

Figure 6.4: Pictorial representation of different BF4 anion intercalated 

stage-4 graphite system, (a) C288(BF4)1, (b) C288(BF4)2, (c) C288(BF4)3, and 

(d) C288(BF4)4. Where, the brown color carbon represents the graphite 

layers, green (B), and pink (F). 

 

 

Figure 6.5: Pictorial representation of different BF4 anion intercalated 

stage-3 graphite system, (a) C432(BF4)2, (b) C432(BF4)4, (c) C432(BF4)6, and 

(d) C432(BF4)8. Where, the brown color carbon represents the graphite 

layers, green (B), and pink (F). 

 

6.3.2. Data Pre-Processing and Features Engineering 

Predicting binding energies (BEs) of different types of cations using a 

trained ML model presents a formidable challenge. To mitigate this 

complexity, we meticulously constructed a well-balanced and diverse 

dataset, ensuring uniformity in the training set. This approach promises 

that the ML predictions remain unbiased toward BEs of specific 

cation.[49,50] To achieve this, we introduced a combination of BEs from 
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different stages into the training dataset, deviating from a strictly 

monotonic dataset of a particular stage. For each cation we have sixteen 

BEs values for all the stages and we have considered 55 cations, hence we 

need to predict the 880 (55*16=880) BE values using ML algorithms. For 

that we have considered the training dataset of 169 DFT-calculated BE 

values. Approximately 20% of the DFT-derived dataset is used as training 

data points, allowing the machine to be effectively trained. Random 

division of our training dataset allocates 80% of the data to the train subset 

and the remaining 20% to the test subset.  

To achieve precise BE predictions, we have meticulously incorporated 

both intercalant (cation) and intercalate (graphite host material) features. 

Our approach encompasses both molecular and elemental characteristics 

of cations, as highlighted in Table 6.2, to tailor BEs by modulating 

cations. Elemental features were sourced from the Correlated Based 

Features Vector (CBFV) library.[51] This holistic comprehension of 

feature attributes greatly accelerates the ML process. Assessing feature 

correlations is a potent strategy to expedite BE predictions. Several strong 

correlations emerged (Figure 6.6) such as between the total energy of 

cation and molecular weight (PCC=0.99), molecular weight and number 

of cations (PCC=0.94), total energy of cation and number of cations 

(PCC=0.92), and average polarizability and average 1st ionization 

potentials (PCC=0.92). Therefore, features such as total energy of cation, 

molecular weight, and average polarizability of cations were excluded 

from the dataset, retaining number of cations and average 1st ionization 

potentials in the training dataset. These coefficients serve as a guide for us, 

aiding in the decision of retaining or discarding feature-to-feature and 

feature-to-target relationships.  
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Table 6.2: Features of the intercalant and intercalate systems. 

Intercalate features 

(Graphite) 

Intercalant features (Cation) 

Molecular features Elemental features 

a. Stages c.  Number of cations 
k. Avg. ionic radius 

(Å) 

b. Number of galleries 
d. Molecular weight 

(g/mol) 

l. Avg. Pauling 

electronegativity 

 e. HOMO energy (eV) 
m. Avg. polarizability 

(Å3) 

 f. LUMO energy (eV) 
n. Avg. 1st ionization 

potentials (kJ/mol) 

 g. Dipole moment (D) 
o. Avg. number of 

valence electrons 

 
h. Total energy of 

cation (eV) 
 

 
i. Number of hetero 

atoms 
 

 

j. Average (avg.) 

charge (|e|) on hetero 

atom 
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Figure 6.6: Pearson’s correlation matrix between all features (features are 

listed in Table 6.2) and target BE (p). 

 

The refined feature correlation plot, in Figure 6.7, depicts the post-

reduction scenario. While a PCC of 0.92 may not signal highly correlated 

features, our prediction performance distinctly improved after excluding 

features at this PCC value. Furthermore, positive and negative PCC values 

highlight linear and inverse correlations with the target variable (BE). In 

the correlation matrix, vivid blue and red colours represent strong positive 

and negative correlations, while grey denotes absence of correlation.  
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Figure 6.7: Reduced Pearson’s correlation matrix for features (features 

are listed in Table 6.2) and target BE (p). 

 

6.3.3. Machine Learning Algorithms 

We applied eight ML algorithms to our training dataset for model training. 

To optimize the performance of the ML model, we harnessed 

hyperparameter tuning techniques using the RandamizedSearchCV 

method from the scikit-learn package.[52] Hyperparameters are unique to 

each ML model and were tuned accordingly. Subsequently, the optimized 

models were tested on our separate test dataset, and their performance was 

evaluated through calculation of RMSE and MAE. Smaller RMSE and 

MAE values were indicative of superior algorithms. Figure 6.8 illustrates 

the RMSE and MAE for each ML algorithm, with blue and red bars 

representing RMSE and MAE values, respectively. Figures 6.8 depicts the 

train and test errors of all considered algorithms. Among these considered 
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algorithms, the XGBR and GBR algorithms showcased minimal RMSEs 

of 0.15 and 0.14 eV, coupled with low train RMSEs of 0.02 and 0.01 eV, 

respectively. Other algorithms are not able to perform well for the 

predications of BEs of cations. The LGBM regression model has been 

considered as it is a powerful ensemble learning algorithm. However, the 

test RMSE (0.35 eV) is higher (Figure 6.8) compared to the XGBR and 

GBR model (0.15 and 0.14 eV). Although the RFR model’s train and test 

RMSEs are closer at around 0.30 and 0.32 eV, indicating its potential for 

accurate BE prediction, however, its relatively high train RMSE may limit 

its overall performance. Considering all the ML models, both XGBR and 

GBR emerged as suitable algorithms for accurate prediction of BEs.  

 

 

Figure 6.8: The RMSEs and MAEs of eight considered ML models for 

the (a) train and (b) test data set. The scatter plots of ML predicted vs. 

DFT calculated binding energies for (c) XGBR and (d) GBR models. 
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The MAEs of all algorithms follow the same trend as the RMSEs. 

Notably, our observed RMSE values are very close with the range of the 

conventional DFT error (0.09 to 0.13 eV).[53,54] Interestingly, our 

predicted BEs are at the DFT accuracy level, validating the robustness of 

our results. 

In order to comprehensively assess the stability and generalizability of our 

model, we employed the leave-one-out cross-validation (LOOCV) 

technique (details provided in section 1.8.6.2, chapter 1). The computed 

average RMSEs (𝑅𝑀𝑆𝐸𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) for the XGBR and GBR models were found to 

be 0.19 and 0.20 eV, respectively. These average RMSEs align 

remarkably well with the RMSEs obtained from our randomly partitioned 

test dataset, which were 0.15 eV for XGBR and 0.14 eV for GBR. 

Consequently, our meticulously evaluated ML models (XGBR and GBR) 

exhibit impressive stability and generalizability. These models exhibit a 

consistent and dependable performance even when applied to unknown 

datasets for the prediction of BEs of cations.  

 

6.3.4. Prediction and Validation of Binding Energies of Cations 

In this section, we harnessed the optimized hyperparameters from both the 

XGBR and GBR ML algorithms to predict the BEs of the unknown 

cations. Our predictions closely aligned with twenty-four DFT-calculated 

values covering diverse organic moieties across different stages and a 

variety of cation counts, as tabulated in Table 6.3.  
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Table 6.3: XGBR and GBR predicted vs. DFT calculated cations BE of 

different organic moieties-based cations with their various stages. The 

structure corresponding to the ID of the cation is given in Table 6.1. 

Stages 
Organic 

Moieties 

Cations 

(ID) 

No. of 

Cations 

ML predicted 

BEs (eV) 

DFT 

calculated 

BEs (eV) 

| Error | (eV) 

GBR XGBR GBR XGBR 

1 

Pyrrolidinium Pyr14 (16) 
8 -1.47 -1.45 -1.68 0.21 0.23 

16 -2.20 -2.19 -2.01 0.19 0.18 

Pyridinium N-Et (12) 

4 1.19 1.20 1.34 0.15 0.14 

8 -0.06 -0.05 0.02 0.04 0.03 

16 -0.84 -0.93 -0.52 0.32 0.41 

Piperidinium 
N1(EtOEt) 

(9) 
4 -0.67 -0.59 -0.35 0.32 0.24 

Imidazolium DMPI (51) 8 -3.14 -3.17 -3.58 0.44 0.41 

2 

Pyridinium N-Et (12) 
2 1.52 1.44 1.47 0.05 0.03 

6 -0.59 -0.59 -0.56 0.03 0.03 

Piperidinium 
N1(EtOEt) 

(9) 

2 -0.51 -0.44 -0.31 0.20 0.13 

4 -2.18 -2.08 -1.97 0.21 0.12 

Imidazolium DMPI (51) 
2 -2.46 -2.41 -2.51 0.05 0.10 

6 -3.85 -3.81 -4.00 0.15 0.19 

Pyrrolidinium Pyr14 (16) 6 -2.28 -2.32 -2.36 0.08 0.04 

3 

Pyridinium N-Et (12) 
6 -0.60 -0.59 -0.52 0.08 0.07 

8 -0.80 -0.77 -0.76 0.04 0.01 

Imidazolium DMPI (51) 
4 -3.84 -3.88 -4.04 0.20 0.16 

6 -3.96 -3.92 -4.26 0.30 0.34 

4 

Pyridinium N-Et (12) 
2 -0.30 -0.26 -0.16 0.14 0.10 

4 -0.69 -0.59 -0.79 0.10 0.20 

Piperidinium 
N1(EtOEt) 

(9) 

2 -2.72 -2.16 -2.34 0.38 0.18 

3 -2.63 -2.56 -2.56 0.07 0.00 

Pyrrolidinium Pyr14 (16) 
1 -0.92 -0.65 -0.62 0.30 0.03 

2 -2.17 -2.11 -2.21 0.04 0.10 

 

The absolute error (difference between ML predicted and DFT calculated 

values) of each algorithm are quite acceptable. Upon scrutinizing the error 

analysis, it emerged that the XGBR model exhibited a higher number of 
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entities with lower errors compared to the GBR model. While the test 

RMSEs of both ML models (XGBR and GBR) were comparable, the 

XGBR model demonstrated superior performance with respect to the 

DFT-calculated values. This leads us to conclude that the XGBR model 

emerged as the most fitting choice for predicting the BEs of cations. Using 

the optimized parameters of the XGBR model, we achieved successful 

predictions of 880 unknown BEs of cations as shown in Figure 6.9. 

Positive BEs are observed when fewer cations are intercalated between 

graphite layers, signifying the expansion of galleries between graphene 

sheets requiring greater forces that the cation-graphite interaction fails to 

balance. With an increased numbers of cations for a given stage, the 

predicted BE values indicate of stable binding (negative binding energies). 

In certain cases, such as with an ammonium-based cation (cation ID=29) 

bearing the CH2CN functional group, the positive BE observed in Figure 

6.9 signifies that the forces of interaction between graphite and cation are 

insufficient to counteract the forces between two adjacent graphite layers. 

Overall, 880 BEs of cations are predicted using the XGBR model for 

further analyses and insights. 
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Figure 6.9: The ML predicted binding energies of (a) stage-1, (b) stage-2, 

(c) stage-3, and (d) stage-4 intercalated cations where the bar indicates the 

range of average binding energy of the cation as the number of cations 
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changes. The structure corresponding to the ID of the cation is given in 

Table 6.1. 

 

6.3.5. SHAP Analysis 

6.3.5.1. Global Features Importance 

In this study, we employed machine learning algorithms that fall within 

the category of black box models. This implies that understanding the 

inner workings and the relationships between features and output 

predictions can be quite intricate. To surmount this challenge, we 

embraced an interpretable model that facilitates insights into both local 

and global patterns for specific features. We harnessed the game theory-

based SHapley Additive exPlanations (SHAP) library, utilizing our best-

fitting XGBR algorithm. SHAP offers a window into the global feature 

contributions, presenting us a clear comprehension of the elements 

influencing the predictions made by our ML models. The global feature 

importance is portrayed through the blue bars in Figure 6.10a. Notably, the 

number of cations, staging number, and the energy of the LUMO of 

cations emerge as the top three most contributing features. As observed in 

the broader BEs prediction, the binding energy exhibits shifts with 

changes in the number of cations, implying a robust relationship between 

cation count and binding energy. Similarly, the stage of intercalation 

showcases a pronounced connection with BE. Altering the loading pattern 

of cations systematically influences the formation of various stages, which 

in turn affects the BEs upon cation intercalation. These organic cations 

achieve stabilization within the graphite structure through charge transfer 

between the graphitic layer and the cations. The energies of HOMO and 

LUMO play a pivotal role in enabling this charge transfer process. 

Particularly, LUMO emerges as a stronger contributor compared to 

HOMO, which could be attributed to the phenomenon of charge 

acceptance from the graphitic layer. Other features also contribute to the 

prediction of BEs of cations, albeit with mean SHAP values less than 0.1. 
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Figure 6.10: (a) Visualization plots of SHAP global features importance 

of each feature and (b) beeswarm plot, where every dot corresponds to an 

individual data point associated with a specific feature.  

 

Furthermore, we illustrate the beeswarm plot of the SHAP analysis in 

Figure 6.10b. The nature of global feature importance and the beeswarm 

plot of SHAP analysis align, while the individual feature values of each 

data point can be adjusted by the beeswarm plot. The vertical color-coded 

lines signify the dispersion of feature values, highlighting the similarity of 

attributed importance for a given feature. Blue and red dots indicate low 

and high feature values, respectively. The horizontal axis of the plot 

represents the positive and negative impact on model predictions. The 

SHAP values linked to the number of cations are influenced 

predominantly by a combination of lower and less median feature values. 

Meanwhile, SHAP values associated with stage and cation LUMO energy 

display broader dispersion, influenced by both low and high feature 

values. Overall, the insights from the global feature importance and 

beeswarm plot of SHAP analysis emphasize that the most influential 

factors affecting the BEs of cations are the number of cations, staging 

number, and the LUMO energy of cations. 
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6.3.5.2. Interpretation of Local Features  

 

 

Figure 6.11: (a) SHAP waterfall plot and (b) force plot for the most 

accurately predicted binding energy of the pyrazolium based cation of BM 

(1), where the cation ID referred to the Table 6.1. 

 

Similarly, we employed SHAP to explore the individual feature 

contributions for a specific cation. Figure 6.11 showcases SHAP 

visualization plots that highlight the precise prediction of binding energy 

(BE) for the pyrazolium cation-based BM (1), with minimal deviation 

(predicted BE: -1.067 eV vs. DFT calculated BE: -1.068 eV). In Figure 

6.11a and b, the SHAP waterfall and force plots respectively illustrate the 

instance of the pyrazolium-based BM cation. In the waterfall plot, positive 

contributions are represented by red bars, while negative contributions are 

depicted by blue bars. In this plot, the baseline (average expected value) is 

denoted as E[f(x)] = -1.09, and the final predicted value is f(x) = -1.067. 

Each row’s SHAP value signifies the outcome of the interaction between 

the individual feature value and the final prediction value. For instance, in 
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the context of this specific instance, stage 1 exhibits a positive effect on 

the target BE, leading to an increase of 0.85 in the prediction from the 

baseline. Conversely, having 8 cations exerts a negative effect on the 

target BE, resulting in a decrease of 0.69 in the prediction from the 

baseline. Moreover, the cation’s LUMO (eV) of -1.85 and dipole moment 

(D) of 5.54 influence the BE prediction positively and negatively, causing 

increases of 0.47 and decreases of 0.35 from the baseline, respectively. 

Furthermore, the significance of the stage as a feature is magnified for this 

instance, although it ranks as the second most impactful feature in the 

global feature importance plot. Quantitatively, the final predicted value 

f(x) can be computed as the sum of the average prediction of all 

observations (E[f(x)]) and the sum of all SHAP values (𝜙𝑖) according to 

equation 6.7. 

  𝑓(𝑥) = 𝐸[𝑓(𝑥)] + ∑ (𝜙𝑖)
𝑁
𝑖=1      (6.7) 

 

Where, N is the subset of the features and 𝜙𝑖  can be calculated from 

equation 6.5. Figure 6.11b illustrates the SHAP force plot, which 

qualitatively complements the information from the waterfall plot. In the 

force plot, blue-coloured features shift the model’s prediction from higher 

to lower (towards the left), while red-coloured features influence the 

model’s prediction from lower to higher (towards the right). In the case of 

this specific instance, both red and blue features contribute equally to 

predicting the model’s output prediction. Moreover, the explanations of 

our extracted waterfall and force plots from SHAP are well followed with 

the previous interpretable ML reports.[55,56] Likewise, similar SHAP 

waterfall and force plots are presented in Figure 6.12 for the thiazolium-

based cation N-Et (22). Notably, this cation exhibited the most significant 

deviation in prediction (ML predicted BE: -0.647 eV vs. DFT calculated 

BE: -1.047 eV). From the SHAP waterfall plot, staging number of 

graphitic layers provides the highest negative SHAP value of 0.65 

compared to others features. Whereas, in most accurately predicted system 
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of BM (1) cation, the staging number of graphite contributed most positive 

SHAP value. In the case of force plot, we observed that red colours 

features contributed (towards right) more compared to the blue colours 

(towards left) features. Overall, the SHAP waterfall and force plots 

provided the valuable insights of individual features for the prediction of 

BEs of pyrazolium and thiazolium based cations.  

 

 

Figure 6.12: (a) SHAP waterfall plot and (b) force plot for the most 

deviated binding energy prediction of thiazolium based cation of N-Et 

(22), cation ID represented to the Table 6.1.  

 

6.3.6. Voltage Calculations  

It is important to understand which pairs of cations/anions combinations 

are suitable for the providing of better electrochemical properties. For this, 

we considered calculating the voltage property of the battery upon 

coupling between cations intercalated graphite anode and anions 
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intercalated graphite cathode. The discharge voltage can be calculated 

using the following cathodic and anodic reactions. 

Cathodic reaction: 𝐺(𝐴𝑛𝑖𝑜𝑛)𝑦 + 𝑦𝑒− ↔ 𝑦𝐴𝑛𝑖𝑜𝑛 + 𝐺  (6.8) 

Anodic reaction: 𝐺(𝐶𝑎𝑡𝑖𝑜𝑛)𝑥 ↔ 𝑥𝐶𝑎𝑡𝑖𝑜𝑛 + 𝐺 + 𝑥𝑒−    (6.9) 

Where, the x and y are the number of cations and anions, respectively. G 

is the graphite electrode. In this case, equal numbers (x=y) of ions are 

intercalated into the graphite electrodes, the overall reaction would be as 

follows, 

Overall: 𝐺(𝐶𝑎𝑡𝑖𝑜𝑛)𝑥 + 𝐺(𝐴𝑛𝑖𝑜𝑛)𝑦 ↔  𝑥𝐶𝑎𝑡𝑖𝑜𝑛 +  𝑦𝐴𝑛𝑖𝑜𝑛 + 2𝐺  

(6.10) 

The cell voltage can be calculated from the Nernst equation using the 

Gibbs free energy change of the overall reaction (more details in section 

4.3.5.2, chapter 4). Thus, the average voltage (V) would be as follows,  

𝑉 =
{𝐸[𝐺(𝐴𝑛𝑖𝑜𝑛)𝑦]+𝐸[𝐺(𝐶𝑎𝑡𝑖𝑜𝑛)𝑥]}−{𝑥𝐸𝐶𝑎𝑡𝑖𝑜𝑛+𝑦𝐸𝐴𝑛𝑖𝑜𝑛+2𝐸𝐺} 

𝑧
   (6.11) 

However, this voltage equation 6.11, can be modified using the binding 

energies of both cations [(𝐸𝐵)𝐶𝑎𝑡𝑖𝑜𝑛)] and anions [(𝐸𝐵)𝐴𝑛𝑖𝑜𝑛)] from 

equation 1 and 2. Hence, the modified voltage equation would be as 

follows, 

𝑉 =
𝑥(𝐸𝐵)𝐶𝑎𝑡𝑖𝑜𝑛+𝑦(𝐸𝐵)𝐴𝑛𝑖𝑜𝑛 

𝑧
      (6.12) 

Where, z represents the number of electrons transfer. As the equal 

numbers of ions intercalated (x = y = z) then the final voltage equation can 

be changed as follows, 

𝑉 = [(𝐸𝐵)𝐶𝑎𝑡𝑖𝑜𝑛 + (𝐸𝐵)𝐴𝑛𝑖𝑜𝑛]     (6.13) 

To solve the equation 6.13, we also need BEs of anions as calculated using 

the DFT (Figure 6.13). On the other hand, the ML predicted BEs (Figure 

6.9) of cations are used to get the voltage. Based on these values, we have 

effectively computed a comprehensive set of 20,790 voltages [sum of 

7,920 self-stages voltages (total of 495 ILs and each IL provided 16 self-

stages voltages, hence total self-stages voltages would be (16*495=7,920) 

and 12,870 mixed stages voltages (each IL provide 26 mixed voltages 
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irrespective of stages with identical number, hence total mixed-stages 

voltages would be (26*495=12,870)], encompassing various combinations 

of stages with equal numbers of ions.  

 

 

Figure 6.13: DFT calculated anions binding energies of different stages 

such as (a) stage-1, (b) stage-2, (c) stage-3, (d) stage-4 with varying the 

number of ions. 

 

These ML+DFT calculated voltages have been categorized into three 

distinct ranges: high voltage (HV), moderate voltage (MV), and low 

voltage (LV). Different voltage ranges considered to distinct them: high 

voltage (4.0 < HV < 7.0), moderate voltage (2.5 < MV ≤ 4.0), and low 

voltage (0.001 < LV ≤ 2.5). Figure 6.14 illustrates a set of parallel plots, 

showcasing the fluctuation of voltages in relation to variations in ion 

numbers and stages for all self-stages. 
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Figure 6.14: The parallel set plots display the self-stages (identical stages 

for both cations and anions) voltages calculated using ML+DFT for (a) 

stage-1, (b) stage-2, (c) stage-3, and (d) stage-4 of the considered cations 

and anions-based ILs electrolytes in DGBs. The cations range from 0 to 54 

(refer to Table 6.1) and voltages below 2.0 V have been excluded for 

clarity. Moderate voltage (MV) and low voltage (LV) patterns observed in 

stage-1 are consistent across the other stages as well. 

 

During the fully charged state of the batteries, the ions predominantly 

adhere to a stage-1 type of intercalation, as this process can accommodate 

a maximum number of ions. The corresponding voltages for batteries in 

this fully charged state are depicted in Figure 6.15. Significantly, we have 

effectively devised 495 distinct DGBs, each associated with specific 

voltage values. Among these DGBs, 69 belong to the high voltage (HV) 

category, 230 to moderate voltage (MV), and 196 to low voltage (LV). 

Notably, the HV DGBs are predominantly based on the intercalation of 



236 
 

BF4 and PF6 anions with all possible types of cations considered 

(excluding pyridinium and thiazolium based cations). Imidazolium and 

piperidinium based cations offer moderate to high voltage when coupled 

with all the considered anions. In a similar vein, FSI, TFSI, FSI-CH3, and 

AlCl4 anions provide a range of low to moderate voltages when paired 

with diverse cations. The DCA, OTf, and sulfate anions mainly contribute 

to the low voltage spectrum when coupled with cations. Furthermore, 

mixed-stage voltages are depicted in Figure 6.16. This visualization aids 

experimental researchers in comprehending the precise staging 

intercalation mechanism adopted by individual ions, evident through their 

respective voltage values. From the prior reports, it has been observed that 

anions play a pivotal role in determining the comprehensive 

electrochemical properties of DIBs, a similar trend evident in our study as 

well.[46,47] Notably, interesting findings arise from the cationic 

perspective, wherein aromatic-based imidazolium cations exhibit 

enhanced voltage performance compared to their non-aromatic 

counterparts. The high voltage observed in the aromatic imidazolium 

cations-based system can be attributed to the presence of a robust π+-π 

interaction. Kim and coworkers have demonstrated that the π+-π 

interaction combines characteristics of both conventional π-π and cation-π 
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Figure 6.15: Voltages of different combination of cations and anions for 

the fully charged state of stage-1 intercalation process with maximum ions 

intercalation. Where the cations IDs are referred to Table 6.1. 
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interactions, although they have not explicitly represented their combined 

effect.[57,58] Importantly, π+-π interaction is significantly stronger than 

conventional π-π interaction and notably weaker than cation-π interaction. 

As a result, aromatic imidazolium cations exhibit an exceptionally strong 

π+-π interaction compared to their non-aromatic counterparts. Conversely, 

non-aromatic cations show limited interactions. While strong interactions 

can boost electrochemical properties, they can compromise battery 

reversibility and leading to reduce the cycle numbers for DIBs. Hence, 

selecting appropriate aromatic and non-aromatic cations is essential to 

balance elevated voltage and sustained cycle numbers. 

 

 

Figure 6.16: The parallel set plots for the mixed-stages (different stages 

for cations and anions) voltages calculated using ML+DFT method and 

voltages below 2.0 V have been excluded for clarity. Cations IDs are 

referred to Table 6.1.  

Additionally, we have conducted a comparative analysis between our 

ML+DFT calculated voltage data for various organic moieties-based 
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cations and anions and previous experimental findings (as summarized in 

Table 6.4). It’s worth noting that direct comparisons for larger voltage 

values were restricted due to the limited availability of experimental 

voltage data. Nonetheless, our calculated results fall well within the range 

of experimental voltage values, reaffirming the reliability and accuracy of 

our predictions. Overall, the extensive collection of computed voltages 

presented in our study serves as a valuable roadmap for experimental 

researchers aiming to identify and create optimal electrolytes using ILs to 

improve the fabrication of electrochemical devices. We believe that our 

results hold significant practical implications and can be readily applied to 

advance the development of more efficient and cost-effective energy 

storage devices. 

 

Table 6.4: ML+DFT calculated voltages vs. experimental voltages for the 

ILs electrolytes used in DGBs, where the cation’s IDs are referred to the 

Table 6.1. 

Organic 

Moieties 

Cations (ID)-

Anions (ILs) 

ML+DFT 

Voltage (V) 

Experimental 

Voltage (V) 

Pyrrolidinium Pyr14 (16)-TFSI 3.6 3.0-4.2[30] 

Imidazolium 
EMIM (49)-OTf 3.0 2.2-3.7[59] 

DMPI (51)-AlCl4 4.7 3.8-4.4[29] 

Piperidinium N14 (4)-TFSI 3.4 2.5-4.5[60] 

 

6.4. Conclusion 

In this study, we focused on a diverse set of organic cations-based ionic 

liquids (ILs), commonly employed as electrolytes in dual-ion battery 

(DIB) technology. The process of cation intercalation into graphite 

electrodes is intricate and characterized by distinct staging mechanisms 

and very few organic cations intercalation have been studied so far. 

Investigating broad scale organic cations intercalations are challenging 

due to computational complexity, time constraints, and the sensitivity of 
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ILs in experimental setups. To address these complexities, we harnessed a 

supervised machine learning (ML) approach to precisely predict the 

binding energies (BEs) of cations during their intercalation into graphite 

anodes. From a selection of eight ML algorithms, the XGBR algorithm 

emerged as the most suitable, as lowest RMSE of 0.15 eV for predicting 

BEs from an unfamiliar dataset. Our observed RMSE values are close to 

the conventional DFT error (0.09 to 0.13 eV). Interestingly, our predicted 

BEs are in good accuracy with the DFT level, indicating the robustness of 

our results. Using the optimized parameters of the XGBR model, we 

succeeded in predicting 880 BEs across a spectrum of cations, 

encompassing intercalation of varying stages of graphite. Our ML 

predictions concurred nicely with DFT-calculated outcomes for a range of 

organic moieties across different stages and varying cation numbers. To 

ensure model reliability and independent verification, we applied leave-

one-out cross-validation (LOOCV) techniques. Additionally, we harnessed 

the game theory based SHAP library to illuminate the intricate 

relationships between global and local features influencing the prediction 

of BE. With our ML-predicted BEs of cations and DFT-calculated BEs of 

anions, we calculated voltages by considering cation and anion 

intercalation into graphite anode and cathode. This effort yielded 495 new 

graphite-based DIBs, featuring a spectrum of voltage ranges. Among 

these, 69, 230, and 196 fell within the high voltage (HV) range of 4.0 < 

HV < 7.0, moderate voltage (MV) range of 2.5 < MV ≤ 4.0, and low 

voltage (LV) range of 0.001 < LV ≤ 2.5, respectively. Our computed 

ML+DFT voltages demonstrated strong agreement with experimental 

findings. Notably, ILs based on BF4 and PF6 anions exhibited high voltage 

behaviour when coupled with most cations (except pyridinium and 

thiazolium). Similarly, other anions, including FSI, TFSI, FSI-CH3, and 

AlCl4, demonstrated a range of low to moderate voltages when combined 

with diverse cations. Overall, our extensive dataset of computed voltages 

can serve as a valuable guidepost for experimental researchers seeking to 
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optimize electrolytes using ILs, thus enhancing the design of 

electrochemical devices. We believe that our outcomes carry substantial 

practical implications, readily applicable to advancing the development of 

more efficient and cost-effective dual-ion based energy storage devices. 
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7.1. Scope for Future Works 

The electrochemical window (ECW) is one of the most important 

parameters of ionic liquids (ILs) which determines the overall stability and 

voltage of the batteries. This doctoral thesis is about the development of 

computational techniques/methods to calculate the ECW of ILs based 

electrolytes important for dual-ion batteries (DIBs). For this, different 

computational techniques have been established to calculate the ECWs of 

ILs accurately. Among the various techniques, we report the classical MD 

followed by DFT (MD+DFT) is the most suitable one to calculate the ECW 

values accurately. We have demonstrated that the ECW can be calculated 

using the cathodic (VCL) and anodic (VAL) limiting potentials of the 

electrolytes. Therefore, the VCL and VAL are crucial parameters to 

understand the stability of the electrolytes. We have also shown that 

machine learnings (ML) based techniques can be highly useful to calculate 

the ECW properties of a large number of ILs based electrolytes. The high 

throughput screening of ILs is very much possible while combining DFT 

with ML. The calculation of the individual potentials of VCL and VAL for 

the electrolytes using the MD+DFT as well as ML technique can be very 

effective.  Such methods and techniques can also be used to calculate the 

important properties of ILs for Li-ion batteries among others. However, 

finding suitable forcefield is very difficult for the classical simulation for 

all the ILs. To overcome the challenges, the ML-based interatomic 

potentials can be very effective. Furthermore, AI and deep learning 

techniques have emerged to find the suitable non-aqueous electrolytes more 

rapidly, which can help to accelerate the development of high-performance 

energy storage devices for future energy demand.   
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