
Hardware-Efficient and Performace-Enhanced
MAC unit for DNN Applications: A

Quantization approach

MS (Research) Thesis

By
Ashar Neha Sunil Sonal

(2104102009)

DISCIPLINE OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

JULY 2023

Hardware-Efficient and Performace-Enhanced
MAC unit for DNN Applications: A

Quantization approach

A THESIS

Submitted in fulfillment of the
requirements for the award of the degree

of

Master of Science (Research)

by
Ashar Neha Sunil Sonal

DISCIPLINE OF ELECTRICAL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY INDORE

JULY 2023

ACKNOWLEDGEMENTS

I am immensely grateful to my MS research thesis supervisor and mentor, Prof.

Santosh Kumar Vishvakarma, for consistently encouraging and supporting me in

both my research and personal growth. His unwavering belief in my abilities and his

invaluable guidance have served as constant motivation, pushing me to exceed my

own limits. I owe him a debt of gratitude for granting me the freedom to explore my

research interests and allowing my novel ideas to flourish. I would like to extend my

gratitude to my manager and mentor Mr. Srinivas Jammula, Intel Technology India,

to guide me and teach me throughout my internship duration of twelve months.

I would also like to extend my sincere appreciation to the members of my PSPC,

Dr. Shaibal Mukherjee and Dr. Indrasen Singh, as well as the Thesis evaluation

committee. Their impartial evaluations and thought-provoking questions have

contributed significantly to expanding my research perspective. Further, my sincere

thanks go out to Dr. Srivathsan Vasudevan and Dr. Trapti Jain, the coordinating

faculties for the MS thesis, for their invaluable support.

My family has played a major role in supporting my research work throughout the

course of my master’s and my internship. They have always boosted my confidence

and always motivated me to push my limits. I will always be grateful to them for all

their guidance, love and sacrifices. Their faith in me has brought me this far, and it

will drive me further, as well, to achieve greater things.

I deeply appreciate the Nanoscale Devices, VLSI Circuit System Design Lab

(NSDCS) research group, especially Dr. Gopal Raut, Mr. Narendra Dhakad, Ms.

Sumiran Mehra, Ms. Vasundhara Trivedi, Mr. Varun Bhatnagar, and Mr. Sandeep

Chagara, for their continuous support and guidance. I am also grateful to my friends

and labmates, Ms. Khushbu Lalwani, Mr. Avikshit Khomane, Mr. Mukul Lokhande,

Mr. Ratnesh Tiwari, Mr. Arghya Singha Roy, Mr. Harshit Verma, Mr. Mradul

Maurya, and Mr. Digamber Gaitonde, whose camaraderie and encouragement made

my time at the institute truly memorable.

Neha Sunil Ashar

This Thesis is Dedicated

to

My Parents, My Sister, My Grandparents

and the Almighty God

ABSTRACT

Artificial Intelligence (AI) has witnessed remarkable growth, garnering significant

attention from various industries and researchers due to its extensive applications.

Researchers continuously explore different types of Deep Neural Networks (DNNs)

and their efficient implementations using diverse techniques and datasets for various

use cases, encompassing software-level applications to hardware-level systems. Edge-

AI Systems-on-Chip (SoCs) is a focal point for industries, tailored to specific customer

applications rather than generic CPU or GPU designs. As a result, these edge-AI

devices are optimized to perform particular functions, allowing customization of

hardware to focus on specific performance parameters. For instance, applications

that require low power, small area, and high accuracy. The MAC unit plays a crucial

role in the convolution operation, making its physical parameters vital for efficient

overall design implementation. Typically, the MAC unit consists of a multiplier

followed by an accumulator. The multiplier’s bit-width is twice that of its input,

and the accumulation stage further increases the bit-width. To ensure hardware

implementation efficiency, roundoff/quantization is necessary at the output port of

the MAC unit. However, this approximation process often requires an additional

computing block, leading to resource overhead.

In light of this challenge, this thesis addresses quantization within the computation

itself, eliminating the need for extra computational elements and offering a more

efficient solution. Furthermore, it focuses on image classification applications and

proposes an effective approach to reduce hardware requirements while maintaining

accuracy levels. The modification of the Multiply-Accumulate (MAC) unit within a

Deep Neural Network (DNN) neuron allows it to produce an approximate product

with the same data size as the input bit-width. The proposed approach employs

the right shift-and-add method and dynamic quantization for product generation

and weight elimination, while a pipelined architecture minimizes the delay of the

shift-and-add process. Moreover, the design is scalable to various bit-widths. The

software implementation using the LeNet-5 network model with signed fixed-point

i

data arithmetic shows promising results. The accuracy loss observed with an 8-

bit MAC implementation using MNIST and CIFAR-10 datasets is only 1.6% and

2.1%, respectively. On the hardware front, the design was evaluated on the Xilinx

Virtex-7 board, revealing a notable 37% reduction in area and a 3.6% reduction

in power consumption compared to conventional implementations. This research

demonstrates a practical and efficient approach to enhance hardware efficiency

without significant accuracy compromise in image classification tasks, opening new

avenues for optimization in AI hardware systems.

ii

Publications

• Journal Publications:

1. Neha Ashar, Gopal Raut, Vasundhara Trivedi, Santosh Kumar Vishvakarma

and Akash Kumar, “QuantMAC: Enhancing Hardware Performance in DNNs

with Quantize Enabled Multiply-Accumulate Unit”, IEEE Access (Accepted).

2. Vasundhara Trivedi, Khushbu Lalwani, Gopal Raut, Avikshit Khomane, Neha

Ashar, Santosh Kumar Vishvakarma, “Hybrid ADDer: A Viable Solution for

Efficient Design of MAC in DNNs”, Circuits, Systems and Signal Processing,

42(12), 7596-7614.

iii

Contents

Abstract ii

List of Figures viii

List of Tables xi

List of Abbreviations xiii

1 Introduction 1

1.1 Overview of Artificial Intelligence . 1

1.2 Introduction to Deep Learning and Deep Neural Networks 3

1.2.1 Artificial Neural Networks: Brain-Inspired Parallel Computing 5

1.2.2 Convolutional Neural Networks Advancements and Components 7

1.2.3 Recurrent Neural Networks for Sequence Recognition and Pre-

diction . 8

1.3 Training and Inference in Neural Networks 10

1.4 Application of Neural Networks: Edge-AI 11

1.5 Key Contribution and Organization of the Thesis 12

1.5.1 Key Research Contribution 12

1.5.2 Organization of Thesis . 13

2 Design MAC Unit for NNs: State-of-the-art Advancements, Limi-

tations, and Motivation 15

2.1 Insights into MAC Unit and AFs for Neural Network Optimization . 16

v

2.2 Challenges of hardware resources and computation complexity in NN

implementations . 20

2.3 State-of-the-Art techniques for optimizing Neural Network implemen-

tations and its limitations . 21

2.4 Motivation: Advancing Deep Neural Network Implementations 24

3 CORDIC Algorithm: An Introduction and Its Application in MAC

Solutions 27

4 QuantMAC: A Novel MAC Unit with Enhanced Features for DNNs 31

4.1 Features of the Proposed Design . 32

4.1.1 Multiplication-less Multiplier unit 32

4.1.2 Dynamic Quantization . 35

4.1.3 Pipeline Architecture . 36

4.1.4 Size Scalability . 37

4.2 Methodology of the Proposed Design 37

4.2.1 Design architecture and State Machine control 37

4.2.2 Empirical Calculations using an Example 39

5 Experimental Evaluation of the Novel MAC Unit in DNNs 41

5.1 Software implementation and validation 42

5.2 Hardware implementation and validation on Xilinx-FPGA board . . . 42

5.2.1 Hardware implementation and performance evaluation for

MAC unit . 43

5.2.2 Integration of Proposed MAC Unit in LeNet-5 CNN Model . . 44

6 Result and Discussion 49

6.1 Software Implementation Results and Accuracy Comparison 49

6.2 Hardware Implementation Results for the Proposed Quantized MAC . 51

6.3 Hardware Implementation Results and Performance Comparison . . . 53

7 Conclusion and Future scope of the proposed work 57

vi

References 61

vii

List of Figures

1.1 Fully connected five-layers (1-input, 3-hidden, and 1-output) artificial

neural network architecture used for experimental results evaluations. 6

1.2 Generic structure for hardware implementation design of single neuron 7

1.3 The convolution layer in deep neural networks (DNN) uses a MAC

computing element during feature extraction, performing 2D matrix

multiplication between the input feature map and kernel weights. . . 8

2.1 Architecture of a single neuron with MAC unit followed by a choice

of activation functions. 16

2.2 Fundamental MAC Elements across Different Networks: ANN and CNN 17

2.3 Architecture of MAC unit: (a) Parallel Summation inside a MAC

Unit: The input and weight values are multiplied in parallel and then

added together and (b) Serial Accumulation in a MAC Unit: The

input and weight values are multiplied sequentially and the products

are accumulated one after the other. 18

2.4 Various forms of nonlinear activation function 19

2.5 Increase in bit precision from one layer to another in the conventional

neural network . 21

2.6 Trade-offs while achieving higher accuracy in NNs 23

2.7 Quantized convolution operation using kernel in a CNN layer 24

2.8 Effect of quantizer block after the accumulator stage 25

2.9 Effect of quantizer block after the multiplier stage 26

4.1 Architectural overview of the novel quantized multiplier 33

ix

4.2 Flowchart showing two parallel subprocesses of the proposed MAC unit 35

4.3 Pipelining performed inside the multiplier unit between the ’n’ iterative

stages . 36

4.4 State machine to control the operations inside each neuron of a neural

network using the proposed MAC design 39

4.5 Example of product generation by providing input to a weighted

sample using the novel multiplier computation 40

5.1 Software Evaluation Flow of QuantMAC Design 43

5.2 Design Flow for FPGA based Implementation 45

5.3 RTL Schematic of Lenet-5 using the iterative CORDIC-based MAC

architecture . 46

5.4 Architectural representation of the RTL implemented of Lenet-5 . . . 47

7.1 Structural reuse in a repetitive process to save hardware resources . . 59

x

List of Tables

3.1 Generalized CORDIC Algorithm . 28

6.1 LeNet-5 model inference accuracy using Proposed Quantize-enabled

MAC architecture. 50

6.2 Hardware utilization and performance parameters at ‘fixed-point Q1.7’

for proposed MAC and other State-of-the-art MACs 53

6.3 Performance parameters comparison for Proposed QuantMAC and

State-of-the-art MAC architectures [1] 54

6.4 Hardware utilization results for LeNet-5 architectures using Proposed

MAC and other State-of-the-art MAC on FPGA 55

6.5 Bit-precision scalability report of Quantized MAC on LeNet-5 network

using HDL . 56

xi

List of Abbrevations

DL - Deep Learning

AI - Artificial Intelligence

DNN - Deep Neural Network

ANN - Artificial Neural Network

RNN - Recurrent Neural Network

CNN - Convolutional Neural Network

MAC - Multiply and Accumulate

MLP - Multi-Layer Perceptron

ReLU - Rectified Linear Unit

RTL - Register Transfer Level

FIFO - First In First Out

AF - Activation Function

MNIST - Modified National Institute of Standards and Technology

CIFAR - Center for International Financial Analysis and Research

FPGA - Field Programmable Gate Array

ASIC - Application Specific Integrated Circuit

GDSII - Graphic Data System II

IC - Integrated Circuit

STA - Static Time Analysis

SRAM - Static Random Access Memory

PE - Processing Element

SoC - System on Chip

GPU : Graphical Processing Unit

xiii

Chapter 1

Introduction

1.1 Overview of Artificial Intelligence

In recent years, AI has garnered immense popularity and has become a trans-

formative force in the modern world. The AI market is on the verge of significant

expansion, driven by its broad range of applications, thereby intensifying research

in machine learning and neural networks. Over the past two to three decades, this

field has made remarkable progress, finding applications in diverse industries, from

biomedical applications to speech recognition. The impressive growth of AI is facili-

tated by the abundance of processing power and data available, allowing machines to

learn and improve themselves through machine learning algorithms without the need

for explicit programming. These algorithms have the remarkable ability to predict

future outcomes.

Artificial Intelligence, or AI, involves the simulation of human intelligence in

machines to mimic human mental functions, such as learning and problem-solving.

Moreover, the concept of rationalizing and acting with the best chance of achieving

a specific goal is a desirable trait in AI. ‘Machine learning,’ a subset of AI, refers

to computer programs learning from and adapting to new data without human

intervention. Deep learning technology, a significant aspect of machine learning,

automates learning by processing vast amounts of unstructured data, such as text,

images, and videos. Contrary to the notion popularized by high-budget films and

1

novels, AI does not necessarily involve humanoid robots bent on destroying the

Earth. Instead, it aims to replicate human cognitive skills, with researchers and

developers making rapid strides in emulating learning, reasoning, and cognition. The

ultimate goal is to achieve a level of specification where machines can perform tasks

comparable to human capabilities. While some envision the creation of systems

surpassing human capabilities in learning and reasoning, others remain skeptical,

pointing out that all cognitive activity is rooted in human experience. As technology

advances, the boundaries of artificial intelligence continue to evolve, with tasks like

basic calculations and optical character recognition no longer considered exclusive to

AI.

The field of AI embraces a multidisciplinary approach, integrating knowledge from

mathematics, computer science, linguistics, psychology, and other disciplines. Within

AI, deep learning stands as a pivotal technology, empowering systems to self-learn

and develop autonomously without explicit programming. The process involves

training DNNs over data, enabling them to identify patterns and make informed

decisions based on examples for future tasks. The ultimate objective is for DNNs

to learn independently, adapt their behaviour, and make decisions without human

intervention. Deep neural networks consist of N layers that facilitate progressive data

transformation through sequential information flow. Neural network architectures

typically involve a substantial number of Multiply-Accumulate (MAC) operations.

For example, LeNet, AlexNet, ResNet-50, and VGG-16 each require 0.34 million,

3.9 billion, 3.9 billion, and 15.5 billion MACs, respectively. Notably, deep neural

networks depends on MAC computations and large activations.

This thesis delves into the realm of AI and machine learning, focusing on the

efficient hardware implementation of DNNs and exploring their applications, ad-

vancements, and potential implications across various sectors. By comprehending

the intricate interplay between human intelligence and AI, researchers aim to unlock

new possibilities and equip machines with learning capabilities beyond our current

comprehension. The continued evolution of AI and machine learning offers exciting

prospects for enhancing efficiency and problem-solving capabilities across industries,

2

further transforming the modern world.

1.2 Introduction to Deep Learning and Deep Neu-

ral Networks

Deep learning, an influential subset of neural networks, stands out for its distinc-

tive architecture, comprising three or more layers, including multiple hidden layers.

The number of network layers employed in deep learning today spans a vast range,

from 5 to well over 1,000. In this article, the focal point revolves around the term

”Deep Neural Network” and its efficient hardware implementation. DNNs specifically

refer to the neural networks extensively utilized in deep learning. Notably, DNNs

possess the remarkable capacity to learn intricate and abstract higher-level functions,

far exceeding the capabilities of their smaller counterparts. Based on the training of

the network, DNNs adeptly recognize specific objects or scenarios, demonstrating

remarkable performance across diverse applications. The DNN has more parallel

MAC units, demanding more hardware resources for implementation. At the same

time, FPGA hardware has limited resources for logic implementations. This problem

will be more dominant when the network processes the high-resolution images that

need higher precision computational elements. In previous works, multi-bit precision

(8,16,32 and 64-bit) data representation is used for MAC unit implementation consid-

ering the trade-off between accuracy and physical performance parameters. Moreover,

when some degree of error is tolerated, it is preferred to use fixed-point computation

than floating-point computation due to its resources efficient architecture.

Crucially, DNNs are essentially variants of fundamental neural network archi-

tectures, including feed-forward neural networks and recurrent networks. These

encompass Artificial Neural Networks (ANNs), Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Long Short-Term Memory Networks

(LSTMs), Transformer Networks, and Gated Recurrent Unit Networks (GRUs).

DNNs consist of a higher number of hidden layers arranged in diverse configurations

3

to create distinctive models. While DNNs have gained industry fame due to their

significant contributions to deep learning, it is important to underscore that their

foundation lies in the broader domain of neural networks, encompassing various

architectures like ANN, CNN, RNN, LSTM, Transformer, and GRU Networks. How-

ever, this thesis has specifically focused on feed-forward DNNs, namely ANN and

CNN, to explore their efficient hardware implementation and applications in deep

learning.

Neural networks are a class of machine learning models inspired by the structure

and function of the human brain. They are designed to process complex data and

learn patterns from it. Neural networks have gained tremendous popularity and

success in various fields, including computer vision, natural language processing,

speech recognition, and more. Thanks to neural networks and machine learning, the

standard of living has been significantly elevated. Consequently, AI has proven to

be a revolutionary technology that progressively matches human capabilities. Its

versatility allows it to fit into a wide range of applications. Neural networks consist

of the following components: an input layer, multiple hidden layers, and an output

layer. Whereas each layer consists of multiple processing elements involving MAC

units and AFs.

Neural networks are recognized as a replication of the intricate neuron mesh found

inside the human brain. The brain performs a series of computations to achieve

various tasks such as decision-making, comparison, prediction, classification, and

detection. Similarly, artificial neurons are organized to construct a network that

executes a similar series of mathematical operations, emulating the human brain in

an artificial system. These neurons are arranged in layers, each operating in parallel.

During training, each neuron is assigned weights, enabling the system to perform

human-like actions, including classification. The concept of weighted inputs in neuron

computations forms the basis of neural networks, where weighted sums correspond

to synaptic scaling values that are accumulated by neurons. While the cascade of

neurons involves simple linear algebraic operations, the neurons themselves apply

functional operations to their combined inputs, resulting in a non-linear function.

4

Neurons generate output only when the input exceeds a fraction of the threshold,

and the neural network employs a non-linear function representing the weighted sum

of input values. Ultimately, as the weighted quantities are transferred from one or

more hidden layers to the outgoing layer, the user obtains the final network output,

termed activation or pressure, combining the brain-inspired analogy with the neural

network. Computation entails assembling fundamental building blocks as follows.

1. Neurons and Layers: The foundation of a neural network comprises artificial

neurons, also referred to as nodes or units, which are organized into layers. The

neural network structure typically includes an input layer, one or more hidden

layers, and an output layer. The connections between neurons in different

layers are assigned weights that are adjusted during the training process to

optimize the network’s performance.

2. Activation Function: Each neuron in the neural network applies an activation

function to the weighted sum of its inputs, generating an output that is then

transmitted to the subsequent layer. Common activation functions used in

neural networks include the sigmoid, tanh, ReLU (Rectified Linear Unit), and

softmax (used in the output layer for classification tasks).

1.2.1 Artificial Neural Networks: Brain-Inspired Parallel

Computing

An ANN is a parallel computing model inspired by the human brain’s functionality.

Like the interconnected neurons in the brain, the ANN consists of numerous small

processors connected through weighted connections. Figure 1.1 illustrates the fully

connected neural network with a network size of 784:256:128:128:10. The basic

structure of an ANN consists of an input layer, several hidden layers, and an output

layer, with interconnected artificial neurons within each layer. The network is

designed to classify input images from the MNIST dataset to the corresponding

output layer. In the ANN model, the processing nodes can be compared to the

neurons in the human brain.

5

hidden layers

784 256 128 128

output layer

10

N1nN1nNnNn N2nN2n N3nN3n NnNn

N2N2

N1N1 N11N11

N12N12 N22N22

N21N21 N31N31

N2N2

N1N1

N32N32

input layer

Figure 1.1: Fully connected five-layers (1-input, 3-hidden, and 1-output) artificial

neural network architecture used for experimental results evaluations.

The basis of the ANN is the concept that a neuron’s computation involves a

weighted sum of its input values. These weighted sums are obtained after the network

is trained, and they are combined within the neuron. The calculations involving

a cascade of neurons can be represented as a linear algebraic process. However,

neurons do not merely output the weighted total; instead, they apply a non-linear

activation function to the combined inputs. This non-linear process causes neurons to

produce an output only when the input surpasses a certain threshold. Consequently,

artificial neurons employ non-linear functions on the sum of inputs and synaptic

weights. Figure 1.2 depicts a single neuron, which serves as the fundamental building

block of the ANN. The hardware implementation design of a single neuron involves a

MAC unit, followed by an activation function. The figure illustrates multiple inputs,

corresponding weights, and the bias associated with the neuron. Here, A1, A2, A3

represent the inputs, C1, C2, C3 are the weights, B denotes the bias, and Y represents

the output of the neuron. Each layer in the ANN is independent and can have varying

numbers of nodes or neurons, also known as bias nodes, which are consistently set to a

value of 1. These bias nodes play a crucial role by providing the nodes with a constant

value that can be adjusted during training. The inclusion of bias nodes is essential

as they allow the activation function to be shifted to the right or left, contributing

6

Multiply -
Accumulate
= ∑AiCi + B

Activation
function (ReLU)
= B (if B ≥ 0)
= 0 (if B < 0)

A1

A2

A3

C1

C2

C3

B Bias

Y

Inputs Weights

Figure 1.2: Generic structure for hardware implementation design of single neuron

significantly to the success of ANN training. The ANN’s configuration may vary

depending on its application. When used as a classifier, the input and output nodes

correspond to input features and output classes, respectively. Conversely, for function

approximation tasks, the ANN typically has both input and output nodes.

1.2.2 Convolutional Neural Networks Advancements and

Components

The development of CNNs has significantly propelled the field of artificial intelli-

gence, serving as a pivotal model for deep learning. CNNs find diverse applications in

computer vision, ranging from voice recognition to self-service supermarkets, intelli-

gent medical treatment, image categorization, and facial recognition. These networks

are built upon the foundation of ANNs and are adept at simplifying parameters

and addressing complex problems. CNNs can be described as 2-D network models,

distinct from ANN and RNN, which operate in 1-D [2]. In CNNs, input features

and filters (kernels) are utilized in both fully connected layers (1D) and convolution

layers (2D) to create filter banks for feature extraction, as depicted in Figure 1.3.

The fundamental components of Deep Neural Networks (DNNs) encompass Process-

7

* =Conv:

Input Feature Kernels Convoluted Feature

(n X n) (k X k)

*

Figure 1.3: The convolution layer in deep neural networks (DNN) uses a MAC

computing element during feature extraction, performing 2D matrix multiplication

between the input feature map and kernel weights.

ing Engines (PEs), often including MAC units and AFs. The MAC units execute

multiplication and accumulation operations, while the output undergoes non-linear

transformations using different types of AFs.

Despite the capabilities of fully connected multilayer feedforward networks trained

by error backpropagation algorithms, several challenges remain. To overcome these,

CNNs introduce convolution for feature extraction, convolution kernels, strides, and

pooling, which together form the traditional four components of a CNN model [3].

The convolution procedure yields feature maps with multiple features, often leading

to overfitting. To mitigate this, pooling (such as maximum pooling and average

pooling) is recommended for eliminating redundancy. Research and implementations

of CNNs have explored the use of different hardware accelerators, such as FPGA,

ASIC, and in-memory computing architectures [4, 5].

1.2.3 Recurrent Neural Networks for Sequence Recognition

and Prediction

The RNNs are a specialized type of artificial neural network designed explicitly for

handling sequential data, including time-series data and natural language sequences.

What sets RNNs apart from other neural network architectures is their incorporation

of feedback connections, enabling them to retain internal state information and

process inputs in a temporal context. This characteristic makes RNNs exceptionally

8

well-suited for tasks that involve time dependencies and sequential patterns. RNNs

find particular significance in natural language processing tasks, such as language

translation and sentiment analysis, where context and word order are crucial for

accurate understanding. In speech recognition, RNNs excel at effectively recogniz-

ing spoken words by analyzing audio signals over time. Furthermore, RNNs have

demonstrated remarkable potential in time-series analysis, forecasting, and detecting

anomalies in dynamic data streams. The ability of RNNs to capture temporal dy-

namics makes them valuable tools in various real-world applications where sequential

data analysis is essential.

RNNs distinguish themselves from conventional feedforward neural networks by

their capability to handle variable-length sequences, presenting a significant advantage.

However, this flexibility comes at the cost of increased complexity and computational

burden when processing sequential data step-by-step. A notable challenge in training

RNNs is the vanishing gradient problem, which hinders the network’s ability to learn

long-range relationships within the data. To overcome this issue, modified RNN

architectures like LSTM and GRU were introduced, effectively improving gradient

flow and memory retention and thereby enhancing the performance of RNNs.

Efficient implementation and deployment of RNNs rely on sufficient computational

resources, especially when dealing with lengthy sequences or large datasets. Utilizing

hardware accelerators such as GPUs or specialized neural network circuits can

significantly enhance the speed of RNN computations. Moreover, optimizing model

design and employing techniques like batch processing and sequence truncation can

help manage computational overhead [6]. In brief, RNNs have emerged as a crucial

tool in various technical domains where sequential data analysis is fundamental.

Their ability to recognize temporal patterns and handle variable-length sequences

makes them indispensable in diverse applications. However, to fully harness the

potential of RNNs, developers and researchers must consider the computing demands

and tailor their implementations accordingly.

9

1.3 Training and Inference in Neural Networks

Neural networks involve two primary processes - Training and Inference - each

relying on feed forward and backpropagation techniques. Forward propagation refers

to passing input data through the network to generate an output, achieved by

multiplying input data by weights and applying activation functions until predictions

are obtained at the output layer. Backpropagation, on the other hand, calculates

gradients of the loss function with respect to network weights, enabling weight

updates during training and facilitating learning from errors to enhance predictions.

For both training and inference, frameworks follow a similar procedure. During

training, a known dataset is fed into an untrained neural network, and outcomes

are compared to the known dataset results. Based on the error evaluation, the

framework adjusts neural network weights to improve performance on the given task.

This re-evaluation and weight adjustment are essential in training to enhance the

network’s abilities. Retraining is also utilized to further improve inference accuracy in

the model. In contrast, inference does not involve re-evaluation or weight alteration

in neural network layers. Instead, it utilizes a trained model’s knowledge to infer

results. When new, unknown data is fed into the trained neural network, it provides

predictions based on the model’s predictive accuracy. Inference follows training, as

it necessitates a trained neural network model to generate accurate predictions.

Continuing with the flow:

The focus of researchers has been to target both training architectures as well as

inference ones, as each type of technique serves a different purpose. For achieving

an accurate training model, an appropriate architecture is required that fulfills the

following criteria:

• Provides meaningful feedback to facilitate weight adjustments.

• Reduces the necessity for retraining or extensive training datasets, ensuring

precise inference capabilities.

• Ensures efficient training within a stipulated time frame, minimizing delays.

10

On the other hand, inference-specific architectures are not concerned with the

intricacies of the training process. Instead, they aim to possess the following

attributes:

• Deliver accurate inference specifically for the task they are trained for.

• Offer rapid response times during inference operations.

By catering to the unique requirements of both training and inference scenarios,

researchers aim to optimize neural network architectures for better performance and

efficiency in a wide range of applications.

1.4 Application of Neural Networks: Edge-AI

Deep neural networks (DNNs) have emerged as the cornerstone of numerous AI

applications, from image classification to speech recognition, leading to a proliferation

of their use. These powerful networks find applications in diverse fields, including

self-driving cars and cancer detection, where they can even outperform human

performance. The exceptional performance of DNNs stems from their ability to

extract high-level features from raw sensory data after being statistically trained on

vast datasets, effectively representing the input space. This contrasts with traditional

approaches that relied on predefined rules or characteristics. However, as DNN

accuracy increases, so does the computational complexity. While general-purpose

computers, especially graphics processing units (GPUs), have been the backbone of

DNN processing, there is a growing interest in providing DNN-specific acceleration,

tailored to the unique demands of these networks.

In the pursuit of constructing intelligent machines that can achieve human-like

goals, edge devices have come into play. These compact and application-specific neural

network models are deployed on edge-AI devices, providing direct plug-and-play

solutions for real-time environments. Among various applications, image classification

stands out as an error-resilient use case, making it feasible to explore various

techniques for its implementation. Additionally, the availability of a substantial

11

amount of training data further supports the application of image classification using

a mix of optimization techniques. Therefore, neural networks, particularly deep

learning-based DNNs, play a pivotal role in the realm of AI applications, empowering

cutting-edge technologies and enabling tasks that surpass human capabilities. As the

importance of edge-AI devices grows, the deployment of specialized neural network

models becomes crucial for real-time and efficient solutions in diverse domains.

1.5 Key Contribution and Organization of the

Thesis

1.5.1 Key Research Contribution

The key research contribution of this study revolves around exploring various

hardware optimization techniques to enhance Edge AI performance while ensuring

optimum or low consumption of area. Both computational level and structural level

modifications were considered as part of the optimization strategies. The thesis

introduces a novel technique aimed at reducing power consumption and time delay

by scaling down resource consumption. This methodology involves the utilization

of a multiplication-less multiplier utilizing the CORDIC algorithm, combined with

dynamic bit quantization. The multiplier’s iterative stages introduce latency, resulting

in reduced throughput. To address this concern, a pipelining architecture is employed

for the iterative stages.

The proposed architecture is thoroughly evaluated for both software performance

metrics, such as classification accuracy, and hardware performance metrics, including

area, power, and delay. The hardware implementation is carried out on the Xilinx-

Virtex V7000 board. The key contributions of this work are summarized as follows:

• Hardware Performance Enhancement: Adapting the approximation tech-

nique of quantization, which takes care of the precision scaling. The increase

of bit-width is restricted by this approximation methodology.

12

• Novel Multiplication Technique: Using CORDIC as the basis of

multiplication-less product generation. The input is right-shifted and added to

generate a product in an iterative manner.

• Pipeline Adaptation: Increasing the throughput of the MAC unit by using

the concept of pipelining, as the proposed technique is iterative. Such serial-

based operations can increase the path delay, but the pipeline helps to reduce

this delay.

• Focus on Accuracy: The hardware utilization reduction and other hardware

performance parameters enhancement is the goal of this work. However,

inference accuracy is of utmost importance and is not to be handled leniently.

1.5.2 Organization of Thesis

The remaining sections of the thesis are structured as follows:

Chapter 2: This chapter covers the hardware architecture of conventional neurons

and the structure of internal compute elements. It discusses the challenges faced

by these structures, which have prompted global research efforts. Additionally, it

highlights the motivation derived from the literature survey.

Chapter 3: The concept of CORDIC is thoroughly described in this section, along

with its applications in various optimization techniques.

Chapter 4: This chapter presents a comprehensive solution for the MAC structure,

explaining its distinctive features and implementation methodology through a nu-

merical example.

Chapter 5: Experimental implementations are detailed in this chapter, showcasing

the verification of the proposed MAC unit’s design and functionality both individually

and within a network model.

Chapter 6: The results obtained are discussed in this chapter, highlighting the main

takeaways and demonstrating the superior performance of the proposed solution at

both hardware and software levels.

Chapter 7: This section draws conclusions from the proposed iterative and quan-

13

tized CORDIC-based MAC unit and outlines the future scope of the work while

acknowledging its limitations.

14

Chapter 2

Design MAC Unit for NNs:

State-of-the-art Advancements,

Limitations, and Motivation

The MAC unit is a fundamental building block in neural networks, responsible for

making decisions and classifications based on weighted inputs and biases. Just like the

biological neural networks in the human brain, where feedback and training improve

decision-making, man-made neural networks utilize artificial neuron structures to

perform similar tasks. An artificial neuron comprises two main components: the MAC

and the AF units as depicted in Figure 2.1. These components serve as the basic units

inside a neuron structure for various types of neural networks. The human brain’s

ability to learn and adapt through the years has inspired the development of artificial

neural networks. By using different weights for classification and detection, biological

neural networks achieve faster and more accurate decision-making. Following a

similar principle, man-made neural networks leverage artificial neurons and their

constituent blocks to classify and make decisions based on the knowledge gained

from training.

In this chapter, we will delve into the design and implementation aspects of the

MAC unit within neural networks. We will explore the state-of-the-art advancements

that have contributed to the efficiency and performance of the MAC unit. Addi-

15

Figure 2.1: Architecture of a single neuron with MAC unit followed by a choice of

activation functions.

tionally, we will address the limitations and challenges faced during its hardware

implementation. Understanding the inner workings of the MAC unit is crucial for

optimizing neural network architectures and unlocking their full potential in various

applications.

2.1 Insights into MAC Unit and AFs for Neural

Network Optimization

In this section, we delve into the internal design of the MAC unit, which serves

as a fundamental building block of neural networks. The MAC unit consists of two

essential sub-blocks: the Multiplier and the Accumulator. The Multiplier block plays

a crucial role in the neural network’s decision-making process by multiplying the input

received at the input layer with the corresponding weights. These weighted inputs,

acquired through the training of neurons, enable the network to make well-informed

decisions based on the input signals [4, 7]. The design and optimization of the MAC

unit are pivotal in unlocking the full potential of neural network architectures across

various applications. It empowers neural networks to conduct complex computations

and arrive at accurate decisions, making it a critical component of modern deep

learning systems. In any type of neural network, whether it is an ANN or a CNN,

the fundamental computational unit remains the same: the MAC unit. Its primary

16

 × +

Accumulator

Register

Weight

Input

compute_init.

Output, Y

(2k+a:0)

compute_done

ACK

EN

AF

Kernel

(n x n)

Input feature map

 (m x m)

Output feature

map (p x p)
Hidden layer

Stride = 1

Product a = log2(N)

N = no. of accumulations

Input layer Output layer

W(k:0)

M

A

C

A

F

X(k:0)

P(2k:0)

Figure 2.2: Fundamental MAC Elements across Different Networks: ANN and CNN

function is to take inputs and perform a signed product with the pre-loaded weights

in each neuron. This characteristic is evident in the Figure 2.2.

The Multiplier block operates by multiplying the input signal with the corre-

sponding weight, and the size of the output is determined by the sum of the sizes of

the input and weight. The multiplications can be performed either sequentially or in

parallel, depending on the specific implementation, as depicted in Figure 2.3. After

the multiplication, the weighted inputs are directed to the Accumulator stage. In the

Accumulator stage, the weighted inputs are summed together to generate the final

output of the MAC unit. The size of the accumulator output is influenced by the

number of accumulations performed. Similar to the Multiplier, the Accumulator can

also operate in either serial or parallel mode, depending on the design requirements [7].

To ensure efficient data processing and prevent data loss, it is crucial to increase the

accumulator size proportionally to the logarithm to the base 2 value of the number

of accumulations. Neglecting to appropriately increase the accumulator size can

17

.

.

.

Multiplier

Parallel Adder
Multiplier Serial Adder

(A) (B)

Figure 2.3: Architecture of MAC unit: (a) Parallel Summation inside a MAC Unit:

The input and weight values are multiplied in parallel and then added together and

(b) Serial Accumulation in a MAC Unit: The input and weight values are multiplied

sequentially and the products are accumulated one after the other.

result in data loss, as the Most Significant Bit (MSB) may not be captured [4].

The AF of a neuron receives its input from the MAC unit. The MAC unit

carries out the computation by multiplying the input with the corresponding weights

and summing them together. The AF plays a critical role in enabling the neural

network to learn and represent complex patterns and relationships in the input

data by introducing non-linearity. The MAC unit’s linear combination of inputs is

transformed into a non-linear output using activation functions. This non-linearity

allows neural networks to learn and capture more intricate and nuanced relation-

ships in the data, enhancing their ability to handle challenging tasks such as image

recognition and natural language processing. Various forms of non-linear activation

functions are depicted in Figure 2.4. However, implementing these activation func-

tions poses challenges due to their non-linear nature, and achieving accurate design

and implementation often requires a substantial number of hardware resources.

The Sigmoid, ReLU (Rectified Linear Unit), Tanh (Hyperbolic Tangent), and

Softmax functions are examples of frequently used conventional AFs. Each AF has

18

Figure 2.4: Various forms of nonlinear activation function

distinct qualities, advantages, and disadvantages that make them suited for certain

neural network components and specific tasks. While Sigmoid and Tanh have found

applications in specific contexts, ReLU is still widely employed due to its simplicity

and ability to mitigate the vanishing gradient problem. Recent research has explored

unconventional AFs to enhance network performance and address specific issues.

Examples include Swish, PReLU (Parametric ReLU), and different versions of the

Leaky ReLU. These non-conventional AFs aim to mitigate problems like gradient

saturation and vanishing gradients while striking a balance between non-linearity

and computational efficiency. The activation function selected can strongly impact

the effectiveness of training, the rate of convergence, and the overall performance

of the network. Designing effective deep learning models necessitates a thorough

understanding of the characteristics of various AFs and their influence on neural

network designs.

19

2.2 Challenges of hardware resources and compu-

tation complexity in NN implementations

A conventional neuron serves as the central computational unit within each layer

of a neural network. In a DNN, the architecture typically comprises an input layer,

an output layer, and numerous hidden layers consisting of interconnected neurons.

Focusing on the input layer of a CNN, each neuron is assigned a weight of a specific

bit width, for instance, ‘k’ bits. In this setup, all neurons in the input layer receive

inputs of the same size - ‘k’ bits. Within each neuron, the input data is multiplied

with the corresponding weight, resulting in a product of ‘2k’ bits. This product is

then passed on to the adder block, where ‘N’ accumulations take place.

Consequently, we now require an adder with a data capacity exceeding ‘2k’ due

to the multiple accumulations. The accumulator’s capacity increases significantly to

‘2k+log2pNq’. This highlights the increased hardware demand for bit-wise addition

operations, which more than doubles the input data size. The data then progresses

to the next layer, one of the many hidden layers to follow in the neural network. The

input data size for the subsequent layer becomes ‘2k+log2pNq’. Subsequently, the

output data size undergoes further amplification to approximately ‘4k+log2pNq’ +

log2pNq. Consequently, the data size grows substantially, exceeding twice the data size

present at the previous layer’s neuron. This accumulation of hardware requirements at

each layer can make the implementation of deeper neural networks almost infeasible,

as the increased complexity and resource demands hinder the network’s practicality

and performance. The availability of enormous datasets for training and classification

tasks has resulted in a significant demand for resources during neural network

implementation. Notably, the multiplier block is known for its resource-intensive

nature. Consequently, optimizing the multiplier block to reduce resource requirements

and computational complexity becomes of paramount importance. A high number

of bit-wise operations contributes to increased power consumption and introduces

considerable latency in the path to the output. Addressing these challenges is

20

MAC AF

MAC AF

MAC AF

8

8

8

8

>16

>16

>32
MAC AF

8

8

>16

Figure 2.5: Increase in bit precision from one layer to another in the conventional

neural network

crucial for achieving an efficient and accurate implementation of neural networks.

To tackle these issues, researchers have explored various techniques and approaches.

The following sections will discuss some of the methods proposed by researchers

to mitigate the resource demands and computation complexity in neural network

implementations.

2.3 State-of-the-Art techniques for optimizing

Neural Network implementations and its limi-

tations

Among neural network implementations, the MAC unit takes the spotlight as the

most computationally intensive element. With focused determination, researchers

are paving the way for novel architectures, addressing the complexities of both

conventional and state-of-the-art neuron structures. To achieve more accurate neural

network designs, diverse performance-enhancing techniques come into play. Since the

performance requirements vary across different applications, a significant focus has

been on exploring application-specific edge devices. A pivotal resource in this context

is the article by Sze et al. [8], shedding light on neural networks’ hardware-level

operations and suitable accelerators for specific applications. The study delves into

techniques such as precision reduction, operation minimization, model size reduction,

and near-data processing, all integral to hardware-software co-design for neural

21

networks. State-of-the-art architectures for multipliers and adders within the MAC

unit have emerged, refining the neural network’s performance. Innovations have been

made to traditional architectures, including Booth encoding, Wallace tree method,

and Vedic method [9–11], with hybrid designs that employ efficient techniques for

specific operations [12]. While these modifications have been extensively explored,

researchers continue their quest for further MAC optimization for DNNs.

This quest for optimization is broadly categorized into logarithmic and non-

logarithmic architectures, with a focus on computational efficiency. The hardware

aspect of optimization is comprehensively discussed in the work by Armeniakos et

al. [13], which presents various strategies such as computation reduction, approxi-

mation, and precision scaling. One technique, post-training quantization, emerges

as a crucial precision-scaling method, central to this article’s focus. Additionally,

the study outlines other subcategories of hardware approximation, unveiling new

possibilities for efficient neural network implementations. The optimization achieved

through the use of logarithmic multipliers significantly impacts neural network per-

formance. Researchers employ various methods in iterative logarithmic multipliers to

overcome the limitations of single-stage logarithmic multipliers [14]. For instance, the

two-stage operand trimming approach in iterative logarithmic multipliers improves

image processing results [15]. Additionally, a hybrid multiplier with radix-4 booth

encoding and logarithmic encoding applied to the MSB and LSB, respectively, has

demonstrated promising results [16]. These advancements in multipliers contribute

to enhanced hardware performance for neural network systems.

Non-logarithmic optimization encompasses a diverse range of techniques, including

both coarse-grained and fine-grained approaches [17]. In the coarse-grained technique,

modifications are made at the architecture level, treating the blocks as black boxes.

On the other hand, fine-grained methodology focuses on gate-level alterations,

particularly for bit-wise operations. One way to manipulate bit-precision is by

changing the data format representation. The Ristretto approach simplifies data

arithmetic and reduces the bit width [18]. Precision scaling is predominantly achieved

through quantization [19]. For instance, the Quantized Neural Network (QNN)

22

Precision AreaNumber of resources

Figure 2.6: Trade-offs while achieving higher accuracy in NNs

explores quantization on a mixed precision neural network [20]. However, lower

data bit-widths (e.g., 4 bits, 2 bits, and 1 bit) in architectures lead to reduced

accuracy, particularly for larger datasets [21]. To address potential bit overflow issues,

overflow-aware quantization scales the data down to avoid data loss [22]. Moreover,

error compensation and recovery techniques have been devised for state-of-the-art

approximate adders and multipliers to improve quantization accuracy. Implementing

neural networks on ASIC with a mesh of resources enhances bandwidth and data

reuse, optimizing computation resource utilization [23]. Figure 2.7 depicts a graphical

representation of the trade-offs associated with achieving higher accuracy in neural

network implementations.

Another efficient computation technique involves normalizing weights and approx-

imating them to powers of two, leading to a 50% improvement in power and energy

performance [7]. However, this design comes with a compromise on critical delay.

These diverse approaches reflect researchers’ focus on optimizing neural network

implementations to achieve greater efficiency and accuracy in various applications. A

similar technique was introduced in [24], where negative powers of two were utilized

to approximate hyperbolic tangent computation for multiplication. This technique,

known as CORDIC, has been applied in configurable architectures of MAC units and

AFs. CORDIC is based on the Virtual Scaling Free technique [25], and its iterative

nature has been deployed within MAC units [21] and AFs [26]. The CORDIC

technique has emerged as a fundamental component of the proposed method, provid-

ing efficient approximations and contributing to the overall optimization of neural

network implementations.

23

N bit

N bit

convolve

Input image

Kernel
Output feature

map

N bit Restricted (Quantized)
data size

Figure 2.7: Quantized convolution operation using kernel in a CNN layer

2.4 Motivation: Advancing Deep Neural Network

Implementations

The previous section (Section 2.3) demonstrates how researchers have shaped their

studies and implementations to optimize neural network techniques. The success

of DNN in current applications has prompted exploration in diverse domains for

improved outcomes. Ongoing advancements in technology, neural network models,

and data arithmetic are contributing to the increasing significance of DNNs. The

challenges faced in device performance become the foundation for future research

endeavours. Implementable solutions hold the potential to meet market demands and

cater to a wide range of applications. The abundance of data for various applications

continues to grow, and its quality is constantly improving, leading to denser data

with higher bit-precision. Although higher bit precision operations offer greater

accuracy, they require more resources for implementation, leading to undesirable

chip area consumption (refer to Figure 2.7).

In this research, we are driven by the motivation to address the challenges high-

lighted in Section 2.2. The primary focus is on reducing the hardware requirements

of the system by applying approximation techniques, with a specific emphasis on

quantization. This technique involves truncating bits or data to maintain data size

while ensuring that the CNN computation produces the same output bit precision as

the input, as depicted in Figure 2.8. Quantization provides several benefits for neural

24

× +
Weight

W(k:0)

Input

X(k:0)

Product

P(2k:0)

Sum

S(>2k:0)

Quantized

output

YQ(k:0)

>2k bit

Quantization

Block

Figure 2.8: Effect of quantizer block after the accumulator stage

network implementations, as summarized in the points below. These advantages

inspire us to explore quantization as a promising solution to enhance neural network

implementations.

• Optimization of hardware requirements at both the MAC level and the overall

network level.

• Easier implementation due to uniformity in the bit precision.

• Inference accuracy is not significantly compromised, ensuring reliable results.

The motivation behind this work lies in addressing the challenges posed by

quantization in a MAC unit. Quantization can occur either after the accumulator

block or after the multiplier block, and before the adder/accumulator block. In the

first case, the multiplier generates a product that is twice the size of the input data

size ‘k’. Subsequently, the adder performs addition with 2k bits. To downsize the

output to approximately that of the input, a quantizer block is connected after the

accumulator block, as depicted in Figure 2.8. However, this solution presents two

problems. Firstly, it requires twice the resources for the addition operation after

the multiplier block, i.e., a 2k number of additions. Secondly, an external quantizer

block necessitates 2k resources at the input to operate and compute an approximate

output. Whereas, the second case involves connecting the multiplier directly to the

quantizer block before passing the product to the adder block, providing a solution to

the problem faced in the previous case. The quantizer block reduces the data size to

the original k bits, making it compatible with the adder block, which then performs

25

× +
Weight

 W(k:0)

Input

X(k:0)

Product

P(2k:0)

Output

YQ (>k:0)

2k-bit

Quantization

Block

Quantized product

PQ(k:0)

Figure 2.9: Effect of quantizer block after the multiplier stage

the operation on the original number of bits. This results in a reduction of hardware

requirements for the bitwise adders to half, making it a feasible solution in terms

of hardware saving. However, the challenge with this solution lies in the external

quantizer block, which requires 2k bit operators due to 2k inputs, as illustrated

in Figure 2.9. Additionally, an external block may increase the delay of the system

and escalate the hardware requirement of the overall neuron for smaller data sizes.

In our work, we are adopting a similar technique where quantization occurs at

the multiplier stage instead of the accumulator stage. This approach allows us to

overcome the need for an external quantization block after the multiplier. Instead,

we incorporate a dynamic quantization step within the product generation process to

limit the bit-width of the product. As a result, the requirement for extra hardware

to handle data size reduction, timing delay, and power consumption related to the

external block is eliminated. This enables us to achieve hardware optimization and

improve the overall efficiency of the system.

26

Chapter 3

CORDIC Algorithm: An

Introduction and Its Application in

MAC Solutions

CORDIC stands for COordinate Rotation DIgital Computation, which is used

to realize trigonometric functions using rotations of a vector. The recursive behaviour

of the proposed work comes from the pseudo rotation of the vector in steps. Different

CORDIC modes address a variety of mathematical computational modifications.

Each of these modes - Vectoring and Rotational - operate using three types of

coordinate systems, that is, Linear, Circular and Hyperbolic. This work uses the

hyperbolic mode of operation. The rotational mode for all three coordinate systems

is described in (Table). The scalar in the circular (Kc) and hyperbolic (Kh) forms of

operation have different constant values. These values converge after a number of

iterations as the value decreases monotonously with each recursion. The variables X

and Y are the coordinates and Z is used to know the angle of the rotation of the

vector.

We consider that K is the scaling factor for the circular and hyperbolic functions,

which can be taken as a common factor. The trigonometric tan or tanh are used

in the further computational approximation as the negative powers of 2. T his is

the exponential approximation of the CORDIC function. In a generic form, the

27

Table 3.1: Generalized CORDIC Algorithm

m Rotational

Circular

1

An “ KcpA0cosθ0 ´ B0sinθ0q

Bn “ KcpB0cosθ0 ` A0sinθ0q

θn “ 0

Linear

0

An “ A0

Bn “ B0 ` A0¨D0

θn “ 0

Hyperbolic

-1

An “ KhpA0coshθ0 ´ B0sinhθ0q

Bn “ KhpB0coshθ0 ` A0sinhθ0q

θn “ 0

CORDIC equations can be formulated as, for all modes of trajectories:

Ai`1 “ Ai ´ Bi¨ di¨ tan αi (3.1a)

Bi`1 “ Bi ` Ai¨ di¨ tan αi (3.1b)

θi`1 “ θi ´ di¨αi (3.1c)

Here, Ai, Bi and θi are the variables and αi is the angle of rotation (in radians) for

the ith iteration, where i “ 1, 2, 3, ...n. The angle αi varies for the linear, circular and

hyperbolic forms as 2´i, tan´1p2´iq and tanh´1p2´iq, respectively. the variable di

shows the direction of rotation of the vector, so the value of d is either 1 or ´1. The

CORDIC equations can be re-written in the linear form for hardware implementation

as:

Ai`1 “ Ai ´ m¨ di¨Bi¨ 2
´i (3.2a)

Bi`1 “ Bi ` di¨Ai¨ 2
´i (3.2b)

θi`1 “ θi ´ di¨αi (3.2c)

In the above equations, mode m belongs to the set 0, 1,´1 indicates the linear,

circular and hyperbolic modes. The rotational or trigonometric mode operating

28

for hyperbolic form generates equations using hyperbolic tangent or tanh function.

These tanh values, represented in negative powers of 2, can be implemented on

the hardware using barrel shifters and stored in memory elements. The direction

of rotation can be decided using the multiplexer blocks. The addition/subtraction

operations can be implemented using simple adder blocks. Hence the reformulated

equations show the implementation feasibility of CORDIC equations. This article

uses the hyperbolic form of CORDIC equations for calculating the multiplier-less

product using the basic shift-and-add method.

The single-stage CORDIC is implemented using the input X, the weight Z and

output Y . Here we show how the CORDIC concept acts to generate the product.

The register Y is used to store the gradual product generated in the first iteration.

Y “ X ´ X¨ 2´i
“ X ´ pX ąą 1q (3.3a)

Xout “ pX ąą 1q (3.3b)

Zout “ Z ´ 2´i
“ Z ´ p1 ąą 1q (3.3c)

s “ signpZoutq (3.3d)

With the right shift performed to half the value of the input, the bit width of the

output Y , the output value of X, Xout and Z, Zout increases. The value of Y that

is produced can be called a raw product. We obtain almost the exact product with

this technique when performed in recursions. This increases the need for resources,

leading to area consumption rise. The rise in hardware requirements will ultimately

increase power consumption and reduce the feasibility of the network. The sign of

the operation performed for obtaining Y depends on the variable s when we move

from one iteration to another. The use of a barrel shifter for shifting operations

and performing iterations of the same sub-process can take up more clock cycles,

hence increasing the latency of the system. We extend this solution to merge it

with dynamic quantization to obtain an approximately accurate product using the

right shift-and-add method on the input. The delay can be reduced by using the

pipelined architecture. This will lead to an increase in the throughput of the overall

solution. The solution is also focused on establishing uniformity in the data bit-width

29

throughout the network. It also enables flexibility in terms of the data size to be

implemented in the network. The multi-stage proposed solution is discussed in the

next chapter.

30

Chapter 4

QuantMAC: A Novel MAC Unit

with Enhanced Features for DNNs

A multiplier in any MAC structure is a computationally intensive block. It

is the block that increases the requirement of the resources, to store its output.

Multiplication is an important block, it must be tended to and manipulated carefully.

Since the multiplier is the first block of any layer, the error occurring at its output

should be as minimum as possible, followed by a data accumulator block with

restrictive data increase flexibility. The error might magnify at further stages like

the activation function block, as it is a non-linear function. The concept of CORDIC

is a versatile computational technique, which can be adapted with manipulation or

approximation. The mathematical alteration of CORDIC equations is used for the

implementation of a basic operation of multiplication. The error created is minimal,

and performance is enhanced. The proposed multiplier is based on the concept

of CORDIC along with quantization for keeping a check on the data size of the

output. The strategy applied here is to generate a multiplication-less product, by

simply using the shift-and-add technique. Shift-and-add techniques usually have

a bit-wise shift operation and thus need to be performed in many iterations. The

maximum number of iterations depends on the data size of the operands involved.

Hence, it becomes mandatory for the recurring operations of shift and adds to be

performed sequentially. The sequential process usually uses lesser resources or reuses

31

resources, as against parallel architectures. Parallel architectures usually use more

resources but generate faster outputs. Since the iterations increase the path delay,

the pipelining architecture is adapted to the proposed solution. The proposed MAC

has an enhanced architecture with multiple unique features making it a novel strategy

for better performance of a neuron structure in a neural network. The features of

the proposed multiplier can be listed as below:

• Right Shift-and-Add method of Multiplication: The state-of-the-art

works usually involve left shift-and-add method. Our MAC unit uses a right

shift-and-add method of multiplication based on the manipulations using the

CORDIC concept.

• Dynamic Quantization: Dynamic quantization during the process of product

generation, eliminates the need of an external quantizer block.

• Pipeline architecture: The iterative process needs to have a higher through-

put, which can be achieved by a pipelined architecture, adapted for all the

iterations

• Size Scalability: The size of the system is scalable to higher or lower bits, by

adjusting the number of iterations in the architecture.

These will be discussed in detail, on how each feature contributes to improving the

performance of the multiplier.

4.1 Features of the Proposed Design

4.1.1 Multiplication-less Multiplier unit

The arithmetic representation used here is signed fixed point arithmetic which

has an integer part and a fractional part. The representation will be signed bit plus

the number of bits of the value. This work has used only 1 bit of integer and other

bits will be used as fractional bits. So, for example of an 8-bit value, 1-bit is an

32

reg

re
g Quant

mult
add acc

reg MACout

valid_out

valid_in

weight#

input# to next PE

N

N

N

clk

input#

to ReLU AF

acc_out weight#
 to next PE

accumulation

Truncation after
 accumulation

B
it

s
tr

u
n

ca
te

to

 N
 b

it

⌈N+q⌉

⌈N+q⌉⌈N⌉

Bias_reg
Bias pre-bias loading

XIN

YIN

ZIN

Figure 4.1: Architectural overview of the novel quantized multiplier

integer and the remaining 7 bits are the fractional part, occurring after the decimal

point. The basic multiplication operation that is performed is,

Xproduct “ Xinput ˚ Winput (4.1)

The multiplication operation can also be implemented with simple addition operations.

The computations are manipulated in a manner such that bitwise shifting and adding

or subtracting up the shifted version to the original value. The method adopted in

our technique is a ”right” shift-and-add method. The right shift means that the value

of the operand is reduced to half of the existing value. The reduction of the value to

half in each iteration can also be depicted as the multiplication of the original value

with the negative powers of 2. Using the approximation of the CORDIC algorithm,

we implement the following equation -

Xp “ Xi ˚

p
ÿ

j“1

aj ˚ 2´j

“

p
ÿ

j“1

aj ˚
`

Xi ˚ 2´j
˘

(4.2)

This equation summarizes the product generated iteratively. The ’p’ here is

decided by the number of bits in the fractional part. The term Xp is the generated

product term at the end of iterations, whereas Xi is the input to the MAC unit. The

coefficient aj is a dependent coefficient. It is driven by the Winput when it is reduced

to zero. The coefficient manages the sign of the summation operation.

33

There are two subprocesses carried out in parallel in the process of multiplica-

tion. One subprocess is that of product generation and the second subprocess is

weight reduction. Both sub-processes are repeated for p times along with dynamic

quantization. The first subprocess is weight reduction to zero, with each iteration.

The weight in this technique is considered to be maximum normalised. The weight

is reduced by negative powers of 2 in each repetition, till the weight is reduced to

zero ideally. This means that 2´1 used for reducing the weight is right-shifted in

each iteration. The right-shifted factor will increase the bit-width of the data, hence

the last bit of the factor is dropped off. This truncated factor will have the same

bit-width as that of the weight. As the weight approaches zero, the accuracy goes

on increasing. The equation that justifies the operation is,

Wj`1 “ maxnorm
`

Wj

˘

˘ 2´pj`1q (4.3)

The second subprocess is that of product generation. The input is

added/subtracted with its right-shifted version in the first step. We consider Yj as

the output from the previous step/iteration. This Yj`1 is the output from the current

step, which is the addition/subtraction operation of the Yj with the right-shifted

version of the Xj value from the previous stage. The dropping off of the LSB of the

right-shifted Xj is also performed in each iteration. By losing the trivial LSB, we

restrict the bit-width of the product as well as not harming the accuracy much.

Yj`1 “ Yj ˘ trunc
`

Xj ˆ 2´j
˘

“ Yj ˘ trunc
`

Xj ąą j
˘

(4.4)

The sign of operation of X depends on the sign of W obtained in the previous

step. With each step, as the value of W approaches zero, the product generated

approaches a more accurate value. The value of the Y will be lesser than or equal

to Xi as the value of W is always lesser than or equal to one, since the weight is

maximum normalized. Thus, the bit-width of Y is also restricted to that of the

input. This is because of dynamic quantization which is carried out in the process of

multiplication. Thus two parallel processes are carried out, where the accuracy of

34

Input Feature,
Weight and BiasSTART

Input Feature Weight
Right-shift Input

by one bit
Increase negative

power of 2

Truncate LSB bit Truncate LSB bit

Preloaded bias/ stores
previous output

Add/Subtract the
normalised weight

Add to/Subtract from
previous value

If
Weight == 0

status == 0 or
iteration == 5

Final Generated Product

Set status = 1

Pr
od

uc
t G

en
er

at
io

n W
eight Elim

ination

Yes

Yes

No

No

Figure 4.2: Flowchart showing two parallel subprocesses of the proposed MAC unit

the product depends on the number of iterations it goes through or the number of

iterations it takes for the weight to reach absolute zero.

4.1.2 Dynamic Quantization

Multiplication generally produces output that is twice the size of the input to

the multiplier. The proposed multiplier must restrict the bit-width for smoother

propagation to further layers. Quantization can limit the size of the product generated.

Quantization basically truncates data and checks the data size. Hence, quantization

must be applied to the multiplier product to restore it to its original size.

The proposed design uses an iterative multiplier, each iteration taking a step towards

product generation. In each such iteration, the bit size increases by 1 bit, which is

35

+/-

Right Shift Right Shift

Right Shift Right Shift

sfxpt Input, X0

sfxpt Bias, Y0

sfxpt Weight, W0

(Normalised)

2-1

X1 = X0 >>1

Y1 = Y0 + X0

W1 = W0 - 2
-n

2-2

.

.

.

.

+/-

+/-

+/-

sign bit sign bit

bit-
truncated

bit-
truncated

bit-
truncated

bit-
truncated

Figure 4.3: Pipelining performed inside the multiplier unit between the ’n’ iterative

stages

shredded. The need for an external quantization block is eliminated here. As the

multiplier itself is a quantizer plus multiplier, we are saving on the external resources

needed for the quantizer block and those saved in the multiplier block. This is called

dynamic quantization, which keeps up with the accuracy of the multiplier but at the

same time, trims down data size to original.

4.1.3 Pipeline Architecture

The repetitive behaviour of the parallel subprocesses in the algorithm leads to a

delay due to a serial process. With the increase in the number of bits or number of

iterations, more is the delay for producing a single product. The delay propagates to

other layers in the network, making product generation a delayed process. Delays in

terms of clock cycles can be reduced by pipelining the process instead of a streamlined

process. With each step, the clock cycles are saved.

36

4.1.4 Size Scalability

The proposed multiplier restricts the size of the product in each iteration, and

hence, the propagated data size will remain almost the same throughout the network.

The proposed multiplier has flexibility in the bit width. It can be scaled up to a

higher data size or down to a lower bit width. The system is said to be scalable

when the change in the data size does not affect the architecture arrangement or

the circuitry. Our proposed multiplier can be called scalable, as the architecture

organization is not disturbed; only the size of the barrel shifter and the adder circuitry

need to be altered, depending on the size of the data coming into the multiplier.

Thus, the proposed design can be scaled to any desired data length.

4.2 Methodology of the Proposed Design

The features discussed in the previous section are the main contributing factors

to the successful optimization technique that is proposed in this work. The technique

incorporates a blend of empirical and structural modifications. While coming up

with the proposed design, we keep in mind the accuracy of the MAC unit of a single

neuron, as it will be the prominent contributing factor to the classification accuracy.

The accuracy can be slightly compromised when dealing with large data, such as

pixels of an image. The classification of images with the proposed quantized MAC

unit is very slightly affected, as this application is very error-resilient.

4.2.1 Design architecture and State Machine control

The architecture of the proposed technique can be seen from Figure 4.3. The

design is applicable for different bit-widths of data, but some prerequisites must be

kept in mind before using this technique. The prerequisites of the proposed design

are listed below:

1. Arithmetic representation involved in this solution is signed fixed point arith-

metic

37

2. Inputs and weights are considered of the same bit-width - same integer and

fractional parts

3. Weights are maximum normalised, which makes their values lesser than or

equal to 1

These requirements will operate ideally with the given design. The neuron is loaded

with weights that are obtained from training, and an input enters the neuron to

meet the multiplier. The input to the multiplier is actually an input to the first

iteration of the many required. This input can be denoted as XN , and the weight

as operated in each iteration can be denoted as ZN , where N “ 0, 1, 2, 3...n. The

output of each iteration will be saved in YN , where N “ 0, 1, 2, 3...n So the final

Yn will be equal to the product Xn ˚ Zn. As we already discussed, there are two

subprocesses that happen in each iteration in parallel. The subprocesses mainly

include shift, dynamic truncation, and add/subtract. The product generation and

weight elimination will be repeated in each layer on the signed fixed-point arithmetic.

The finite state machine coordinates the data and control signals.

The state machine, as shown in Figure 4.4, exhibits the flow of the process. The

signal init is set to 1 and will start the multiplication process using the proposed

multiplier design and the input data received. The multiplicative iterations will be

carried out till the status signal is zero. When the product is ready, the status

signal is set to 1. After the signal is set, the signal is sent to the next stage of the

MAC unit, which is the adder circuitry. The product is passed as data to the adder

(or accumulator) unit. The accumulator will send back a signal to the multiplier to

continue with multiplications in order to calculate the total of all products. This

is the index signal which will facilitate multiplications when it is low. After each

product is generated, the low status signal will switch to high, while the index

signal remains low. The index is again reset when the next multiplication iterations

start due to the low index. When the accumulation process is completed, the index

is set to high. This triggers the activation function (AF) block, which starts its

non-linear operations. The activation function block can be removed in the case

38

Initial
Quant

mult.

Accum.AF

init = 0
init = 1

status = 0

status = 1compute_done = 0rst = 1

rst = 1

compute_done = 1

bias_value or 0

Figure 4.4: State machine to control the operations inside each neuron of a neural

network using the proposed MAC design

of CNN hidden layers without AF. After the final operation, the rst signal is set

to high and sent back to the Input, Multiplier and Accumulator blocks, where the

registers are reset to 0. A compute done signal is sent as a ”Done” signal to the

next layer for further computations. So the compute done signal acts like an output

signal of the Finite State Machine.

4.2.2 Empirical Calculations using an Example

The empirical realization of the solution can be seen in the following example.

The example has considered a weighted sample obtained from a trained model. The

data size is considered a signed 5-bit input, and the weight data is normalised to the

maximum. The data is uniformly represented; that is, the data is divided into one

sign bit, one integer bit, and the remaining three bits as fractional bits. The input

data value is considered as `1.5, on which the operations are performed, represented

in bits as {01.100}. The weight of the sample is `0.87, which can be written in bits

as {00.111}. In the first iteration, the shifted version of the input value X0 ąą 1 is

truncated by losing the LSB bit and then stored in X1. The truncated right-shifted

39

Iteration
Weight, Z = (0.875)10 = (00.11100)2 Input, X = (1.59375)10 = (01.10011)2

Weight Output, Zn+1 = Zn ± 2-n Product Output, Yn+1 = Yn ± Xn * 2-n

Iter. 1
00.11100 01.10011

- 00.10000 - 00.11001 1

Iter. 2
+ 00.01100 00.11010
- 00.01000 + 00.01101 0

Iter. 3
+ 00.00100 01.00111
- 00.00100 + 00.00110 1

Output 00.00000 01.01101

truncated bits

w
ei

gh
t

re
du

ce
d

 to
 0

Figure 4.5: Example of product generation by providing input to a weighted sample

using the novel multiplier computation

value of the input X1 is subtracted from the original input X0. This difference is

stored in the register Y1. The second parallel process of weight reduction also occurs

simultaneously. The original value of weight Z0 is subtracted by 2´1 and then stored

in the Z1. This is the result of the first iteration. After this, the process goes on till

the weight is reduced to zero, which leads to the computation of the final multiplier

product.

40

Chapter 5

Experimental Evaluation of the

Novel MAC Unit in DNNs

We have investigated the parameters to enhance the performance and increase

the hardware efficiency by utilizing the novel architecture of the MAC unit in DNN

accelerators. The experimental evaluation has been conducted with both software

and hardware-based implementations. Firstly, the proposed MAC has been validated

using the Python-based QKeras library for the signed 8-bit fixed-point arithmetic at

the network level. Secondly, the novel multiplier has been individually implemented to

assess its performance and implementation feasibility on hardware using Verilog-HDL

language. Lastly, the proposed design has been scripted in Verilog-HDL language

and simulated at the RTL level using the Xilinx Vivado tool. Additionally, FPGA

synthesis and implementation using the Xilinx ´ V ivado tool have been performed.

The following evaluations have been carried out:

1. We conducted an evaluation of the inference accuracy of the Lenet-5 CNN

model [27] trained separately using the MNIST database and CIFAR-10

databases. The accuracy of the architecture in Python was obtained us-

ing standard TensorFlow libraries [28]. Additionally, the CORDIC-based

bit-precise design was replicated in Python to determine the exact accuracy of

this implementation.

41

2. The CORDIC-based proposed MAC unit was initially tested for simulation

and behavior within a simple neuron structure. For hardware performance

evaluation, a Verilog code was created and emulated on the FPGA Xilinx

Virtex-7 board.

3. Building upon the previous evaluations of the MAC unit, we integrated each

such unit into the Lenet-5 neural network model. Post-implementation per-

formance parameters for the proposed CORDIC-based architecture on the

Virtex-7 board were achieved and compared with previous works.

5.1 Software implementation and validation

The software implementation and validation of the proposed iterative MAC

architecture have been performed in the Python platform. A pipelined CORDIC-

based MAC architecture with eight pipeline stages, each performing right shift-

and-add and dynamic bit truncation, was tested using the Lenet-5 model. The

implemented pipelined CORDIC-based architecture was first verified in a Tensorflow-

CNN model [27]. The model was initially trained using the conventional MAC unit

with the MNIST dataset, at the classifier stage. Subsequently, the inference accuracy

was observed using the proposed SF in the classification layer. The inference process

deployed the proposed MAC unit, which is controlled using a finite-state machine,

as explained in the flow shown in Figure5.1.

5.2 Hardware implementation and validation on

Xilinx-FPGA board

The MAC unit was implemented on the Xilinx-FPGA board using the

V erilog Hardware Description Language in the Xilinx Vivado Design suite. The

Integrated Design Environment (IDE) of the tool provides various tools from the

system level to the Integrated Circuit (IC) level. The key feature of the tool is to

42

TensorFlow MAC-based Python code for LeNet-5
architecture

DNN Training using conventional non-approximated MAC
unit with MNIST and CIFAR datasets

Incorporation of novel iterative and dynamic quantized
CORDIC-based MAC architecture

Inference accuracy evaluation with the proposed technique

Figure 5.1: Software Evaluation Flow of QuantMAC Design

simulate, synthesize, and implement the HDL design. This implementation was

carried out using the Vivado 2018.3 version. The multiplier architecture has been

functionally verified (simulated), synthesized, and implemented on the Xilinx Virtex-7

FPGA.

5.2.1 Hardware implementation and performance evaluation

for MAC unit

The FPGA flow initiates with the RTL coding of the MAC unit, followed by design

synthesis to validate its functionality. Once the design is error-free, a behavioral

simulation is conducted using a test bench to verify if the design operates as intended.

Subsequently, the design implementation phase assesses the hardware performance

of the design, providing crucial performance parameters such as power consumption,

critical time delay, and hardware resource utilization. This comprehensive evaluation

allows us to ensure that the proposed MAC unit meets the desired criteria and

performs optimally in real-world scenarios. The FPGA implementation provides

valuable insights into the hardware behavior of the MAC unit, enabling fine-tuning

43

and optimization for enhanced efficiency and effectiveness. By carefully following the

FPGA flow, as shown in Figure 5.2, and evaluating key performance metrics, we can

successfully integrate the MAC unit into neural network accelerators, significantly

advancing the field of hardware optimization for deep learning.

5.2.2 Integration of Proposed MAC Unit in LeNet-5 CNN

Model

The LeNet-5 CNN model is composed of Convolution, Pooling, and Fully con-

nected layers, with memory elements to store the weights obtained from software-

based training. To assess the performance of the model using the new design

technique, the proposed MAC unit is integrated into the neurons of the LeNet-5

model. This integration follows a similar process as that of the individual proposed

MAC unit. Subsequently, the performance parameters of the modified model are

compared with those of the conventional MAC unit in the same CNN model. This

evaluation aims to determine the impact of the novel MAC architecture on the

overall performance of the LeNet-5 CNN model. By analyzing the results, we can

gain insights into the efficiency and effectiveness of the proposed design technique in

enhancing the neural network’s performance.

44

RTL Design and Testbench using Verilog
coding

Design Synthesis

Design Implementation (using on-FPGA
LUTs, FFs, BRAMS)

FPGA Bit-Stream generation

Behavioral Simulation

Performance parameters
extraction

Figure 5.2: Design Flow for FPGA based Implementation

Figure 5.3: RTL Schematic of Lenet-5 using the iterative CORDIC-based MAC

architecture

C1_rom C2_rom FC1_rom FC2_rom FC3_rom

F1_RAM
(Input Feature

Map)
F2_RAM F3_RAM F4_RAM F5_RAM

SHARED MAC BANK (Array of 214 MAC)

SoftMax

CONV1

C1_ctrl

POOL 1

P1_ctrl

CONV2

C2_ctrl

POOL2

P2_ctrl

FC1

FC1_ctrl

FC2

FC2_ctrl

FC3

FC3_ctrl

waddr
wdata
wr_ena

compute_start

sys_clk

rst_n

class_index

class_value
compute_done

Weight Memory

Figure 5.4: Architectural representation of the RTL implemented of Lenet-5

Chapter 6

Result and Discussion

This section provides a detailed analysis of the outcomes obtained from different

implementations of the proposed quantized MAC unit. It includes the software

implementation results for the CNN model accuracy, hardware implementation results

for the proposed quantized MAC, and the combined assessment of the CNN model’s

hardware implementation using the proposed quantized MAC. These subsections offer

valuable insights into the accuracy, hardware performance, and resource consumption

aspects of the proposed quantized MAC, facilitating a comprehensive evaluation of

its impact on the CNN model. Our novel design of the quantized MAC unit has

been named ‘QuantMAC ’, facilitating easier reference to our proposed architecture.

6.1 Software Implementation Results and Accu-

racy Comparison

This section presents the emulator results obtained from the Python scripting

of the LeNet model of CNN for image classification using fixed-point arithmetic

representation. The model was trained separately for MNIST and CIFAR-10 datasets,

and the accuracy was computed for various bit precisions (i.e., 8, 12, 16 bits) during

the inference process using the improved quantized MAC unit. For the MNIST

dataset, the accuracy of our QuantMAC architecture experiences a negligible loss

49

Table 6.1: LeNet-5 model inference accuracy using Proposed Quantize-enabled MAC

architecture.

Bit-Precision Inference Accuracy@LeNet (%)

Dynamic MNIST CIFAR-10

Fixed-Point TensorFlow QuantMAC TensorFlow QuantMAC

8-bit 98.8 97.2 80.7 78.6

12-bit 98.9 97.6 80.8 79.3

16-bit 98.9 97.8 81.2 79.8

(ă1.8%) when moving from 16-bit to 8-bit precision. The 8-bit precision offers

approximately a 5ˆ reduction in computing costs and a 4ˆ reduction in memory

bandwidth requirements compared to 16-bit precision, making it a suitable fit for

smaller datasets. Thus, we developed the newer MAC design for Fully Connected and

Convolutional Neural Networks with 8-bit precision. Additionally, 8-bit fixed-point

approaches are known to save a significant amount of hardware while maintaining

reasonable accuracy [19]. This implies that 16-bit neural network implementations

can better handle complex datasets. The inference accuracy comparison between the

proposed MAC and conventional MAC architectures is presented in Table 6.1. The

proposed design performs similarly in terms of accuracy for the digital computation

technique. With 8-bit precision, the proposed MAC architecture exhibits a 1.6%

higher accuracy loss than the accurate MAC computation produced by TensorFlow.

However, as detailed in the next section, the design shows improvements in physical

parameters, including area utilization, throughput, and power consumption.

Furthermore, the table illustrates that with increased bit precision, the deviation in

accuracy between the proposed MAC and the standard MAC becomes less significant.

This finding further enhances the effectiveness of the suggested MAC architecture for

the hardware implementation of deep neural networks. The implementation results

50

and the evaluated accuracy collectively strengthen the credibility and applicability

of the proposed QuantMAC architecture in real-world edge-AI devices.

6.2 Hardware Implementation Results for the Pro-

posed Quantized MAC

The MAC hardware implementation results were conducted on the Virtex-7

FPGA VC707 Evaluation Kit using Vivado-Xilinx with HDL flow. In addition to

the proposed architecture, recent and widely used multipliers were also analyzed

with 8 ˆ 8 bit precision for comparison. Performance parameters for various state-of-

the-art architectures and the proposed architecture were extracted and compared.

Specifically, we compared the MAC performance utilizing the Wallace tree multiplier,

the Vedic multiplier, the Booth multiplier, the MAC with shift-and-add, and CORDIC.

The extracted performance parameters are presented in Table 6.2. The results show

that the state-of-the-art designs have higher utilization and higher power-delay

products compared to the proposed architecture. Among them, the modern shift-

and-add algorithm-based MAC architecture stands out as one of the most resource

and power-efficient architectures, although it has a lower throughput.

The table provides a comprehensive comparison of various hardware utilization

and performance parameters for the proposed MAC unit and several other state-

of-the-art MAC architectures, all operating at a fixed-point precision of Q1.7. The

hardware utilization is quantified in terms of Look-Up Tables (LUTs) and Flip-Flops

(FFs), while the critical path delay is measured in nanoseconds (ns), indicating

the longest delay from inputs to outputs. Additionally, the power-delay product,

measured in picojoules (pJ), represents the product of power consumption and critical

path delay, offering insights into the overall energy efficiency of each architecture.

Examining the results in the Table 6.2, we can observe the following details for

each MAC architecture. The Vedic MAC utilizes 159 LUTs and 245 FFs, with a

critical path delay of 4.48 ns and a power-delay product of 6.11 pJ. The Wallace

51

MAC employs 105 LUTs and 112 FFs, featuring a critical path delay of 2.59 ns

and a power-delay product of 3.29 pJ. The Booth MAC uses 83 LUTs and 61 FFs,

displaying a critical path delay of 3.08 ns and a power-delay product of 3.07 pJ. The

Shift-add MAC utilizes 75 LUTs and 58 FFs, featuring a critical path delay of 5.44 ns

and a power-delay product of 4.17 pJ. Lastly, the CORDIC MAC employs 23 LUTs

and 22 FFs, with a critical path delay of 9.06 ns and a power-delay product of 1.90

pJ. Notably, the proposed MAC architecture stands out, highlighted in green, with

its utilization of 52 LUTs and 88 FFs. It boasts an impressively low critical path

delay of 1.53 ns, combined with a remarkably efficient power-delay product of 1.01 pJ.

These results illustrate the superior hardware efficiency and energy-saving potential

of the proposed MAC unit, making it a promising candidate for implementation in

deep neural networks.

The proposed implemented solution showcases significant advantages over the

traditional shift-and-add algorithm concerning hardware utilization, path delay,

and power-delay product. Despite having a higher utilization rate compared to

the CORDIC design, the proposed method is still based on the CORDIC concept.

However, its data pipeline-enabled architecture enables our suggested system to

surpass the CORDIC design’s limitation in providing high throughput. Further, in

order to assess the precision scalability of performance metrics, we designed both

the conventional and novel architecture of the MAC unit for multiple precisions,

namely 8-, 12-, and 16-bit. The comparison of outcomes for various fixed-point

arithmetic bit-precisions is presented in Table 6.3. It is evident that the proposed

method achieves space and power savings for all-bit precisions, around 37% and

3.6% less, respectively than the exact MAC for 8-bit precision. Furthermore, the

observed delay for this architecture is below that of the actual MAC. Additionally,

the performance metrics of the proposed design exhibit more observable outcomes

for higher precisions, demonstrating its adaptability and efficiency across different

precision levels.

The conventional MAC architecture shows a 5-fold increase in utilization when

doubling the precision. In contrast, the proposed architecture exhibits a resource

52

Table 6.2: Hardware utilization and performance parameters at ‘fixed-point Q1.7’ for

proposed MAC and other State-of-the-art MACs

Resources

Utilization

LUT

p17600q

FF

p35200q

Critical Path

Delay pnsq

Power-delay

Product (pJ)

Vedic [11] 159 245 4.48 6.11

Wallace [9] 105 112 2.59 3.29

Booth [12] 83 61 3.08 3.07

Shift-add [29] 75 58 5.44 4.17

CORDIC [21] 23 22 9.06 1.90

Proposed 52 88 1.53 1.01

usage reduction of less than 2 times while achieving increased accuracy from 8 to

16 bits, as evident from Table 6.3. This demonstrates that the proposed method is

hardware-efficient for all bit precisions with fixed-point representation.

6.3 Hardware Implementation Results and Per-

formance Comparison

The QuantMAC-based LeNet-5 architecture was implemented using HDL on

the Virtex-7 FPGA VC707 Evaluation kit. Hardware parameters such as through-

put, power usage, and resource utilization are obtained and analyzed. A detailed

comparison was made between the performance of the proposed QuantMAC, the

conventional combinational logic-based MAC, and the MAC utilizing the shift-and-

add algorithm in the LeNet implementation. The Table 6.4 presents the hardware

utilization results for different LeNet-5 architectures implemented on FPGA, in-

cluding the proposed QuantMAC architecture and other two state-of-the-art MAC

designs. The hardware utilization for Look-Up Tables (LUTs), Flip-Flops (FFs),

53

Table 6.3: Performance parameters comparison for Proposed QuantMAC and State-

of-the-art MAC architectures [1]

Bit Precision
LUT

p17600q

FF

p35200q

Critical Path

Delay pnsq

Total Dynamic

Power (mW)

8-bit Acc. [1] 86 16 2.361 6.6

8-bit Proposed 52 88 1.53 6.36

12-bit Acc. [1] 187 24 2.587 10.26

12-bit Proposed 75 126 1.81 8.48

16-bit Acc. [1] 325 32 2.8917 14.95

16-bit Proposed 95 168 2.16 11.77

Block Random Access Memory (BRAM), and total power consumption (in Watts)

are reported. The implementation of the MAC architecture with combinational

logic, using the shift-and-add algorithm, is reported and compared with the proposed

design. The results for the proposed QuantMAC architecture show nearly the same

hardware resources but come with enhanced throughput since it has a shorter critical

path delay, as discussed in Section 6.2. For each architecture, the corresponding

LUT, FF, BRAM utilization, and total power consumption values are presented.

These hardware utilization metrics provide valuable insights into the efficiency and

resource consumption of the different MAC designs on the FPGA platform. The

results revealed that for an 8-bit precision architecture, the proposed QuantMAC

consumed 64% fewer resources and experienced a minor accuracy loss of less than

1.8% compared to the conventional combinational logic-based design. However, the

throughput was significantly improved, showing a 3.56x increase when compared to

the shift-and-add approach. This enhancement came at a cost of 13.8% resource

overhead, as indicated in Table 6.4. Furthermore, an investigation into parallel

processing in the MAC computation demonstrated minimal area overhead and led

54

Table 6.4: Hardware utilization results for LeNet-5 architectures using Proposed

MAC and other State-of-the-art MAC on FPGA

LeNet-5 Implementation
LUT

p303600q

FF

p607200q

BRAM

(135)

Total

Power (W)

MAC with

Comb. Logic [1]
35399 19459 40 0.185

MAC with

Shift-and-Add [29]
10964 19790 15.5 0.180

Proposed QuantMAC 12480 19770 39 0.181

to achieving the least critical delay for the proposed design.

The Table 6.5 presents a bit-precision scalability report of the Quantized MAC on

the LeNet-5 network using HDL. The table includes three different bit precisions: 8-

bit, 12-bit, and 16-bit. For each precision, the corresponding LUT and FF utilization

values are provided, along with the critical path delay in nanoseconds (ns). For the

8-bit precision QuantMAC, it was observed that it utilized 12,480 LUTs and 19,770

FFs, with a critical path delay of 7.349 ns. Moving to higher precision, the 12-bit

QuantMAC required 19,985 LUTs and 26,470 FFs, resulting in a slightly increased

critical path delay of 8.049 ns. For the highest precision, the 16-bit QuantMAC

utilized 29,838 LUTs and 38,678 FFs, with a critical path delay of 8.964 ns.

Comparing the results, we can see that as the bit precision increases, there is

an increment in resource utilization, as reflected in the increase in LUTs and FFs.

These calculations show that, when transitioning from 8-bit to 16-bit precision in

the Quantized MAC, there is approximately a 138.27% increase in LUT utilization

(i.e 2.5ˆ) which means the proposed MAC-based model shows a much more efficient

scaling in hardware requirements, with only a 2.5ˆ increase when doubling the bit

precision, compared to the 4ˆ to 5ˆ increase observed in the model with conventional

MAC [21]. Further 95.70% increase in FF utilization, and a 21.95% increase in critical

55

Table 6.5: Bit-precision scalability report of Quantized MAC on LeNet-5 network

using HDL

Bit Precision
LUT

p303600q

FF

p607200q

Critical Path

Delay pnsq

8-bit QuantMAC 12480 19770 7.349

12-bit QuantMAC 19985 26470 8.049

16-bit QuantMAC 29838 38678 8.964

path delay. This information is valuable in understanding the trade-offs between

precision and resource usage in the design of the MAC unit. However, the critical

path delay also increases, indicating a slight reduction in the performance speed.

The table highlights the trade-off between precision and resource usage, enabling us

to choose the appropriate bit precision that best suits the specific requirements of

the LeNet-5 network in terms of hardware resources and performance. The proposed

QuantMAC design exhibits minimal resource impact and critical delay when scaling

bit precision. It proves to be effective for DNN acceleration applications, offering

efficient scaling solutions.

56

Chapter 7

Conclusion and Future scope of the

proposed work

The bit-truncation or approximation approach adopted in this study showcases a

noteworthy reduction in hardware resources and power consumption, with only a

negligible loss in accuracy due to the inherent error resilience of neural networks. For

achieving an efficient MAC design, the bit-truncated architecture was implemented,

incorporating data quantization, reduced area, and power overhead, as well as a

right shift and accumulation architecture. By exploring the pipeline architecture,

throughput was significantly improved, employing the shift-and-add iterative process

in a pipelined structure without compromising accuracy. The resulting suggested

architecture proved highly efficient, as the 8-bit and higher precision MAC unit

demonstrated impressive results in inference accuracy for picture categorization. A

comparison of the proposed QuantMAC with conventional combinational logic-based

MAC and the MAC using the shift-and-add algorithm in LeNet implementation

yielded compelling insights. For an 8-bit precision architecture, QuantMAC exhibited

64% fewer resource consumption and less than 1.8% accuracy loss compared to

conventional combinational logic-based design. Moreover, throughput was boosted

by 3.56ˆ compared to the shift-and-add approach, albeit at a cost of 13.8% resource

overhead, as indicated in Table 6.4. By exploring parallel processing in the MAC

computation with minimal area overhead, we achieved the least critical delay. While

57

the proposed work presents notable achievements, it also has certain limitations

at both the implementation and design levels. Nevertheless, these shortcomings

provide opportunities for future scope and extensions of this project. Overall, the

hardware-efficient quantize-enabled MAC unit holds great potential in benefiting

edge computing solutions.

The future scope of this project entails the development of a solution that encom-

passes several key features. Firstly, it aims to implement data-type-generic hardware,

facilitating easier adaptation to different data types and increasing versatility. Sec-

ondly, the solution will incorporate a dynamic error compensation process to enhance

accuracy in its operations. Lastly, the design will be engineered with the potential

for reuse in adder circuitry, optimizing resource utilization and promoting overall

efficiency. By encompassing these attributes, the future solution aspires to offer

a powerful and adaptable hardware solution with broad applicability. Key future

shortcomings that could be explored are as follows:

• ASIC aspect exploration: Future work includes training the neural network

with a standard image dataset and implementing the proposed MAC unit

for image classification on an FPGA hardware accelerator. Exploring an

ASIC-level implementation will offer valuable insights into system performance.

Efforts can focus on deducing CMOS-level performance parameters for better

feasibility on an FPGA. Comparing ASIC and FPGA implementations will

aid in selecting the optimal hardware accelerator solution. Extending the

design for ASIC flexibility with data size and DNN models will enhance overall

performance. These endeavors will advance hardware optimization and broaden

the application potential of the neural network.

• Hardware Reusability and Hardware Optimization: Addressing hard-

ware consumption concerns for implementing larger neural networks on smaller

edge-AI devices can be achieved through various techniques like data multi-

plexing, resource sharing, data reuse, and hardware reuse [30,31]. Reusability

of hardware, either at the small unit or sub-architecture level, can significantly

58

Stage
#2p+1

Stage
#2p

Stage
1

Stage
2

Stage
3

Data

Control

Figure 7.1: Structural reuse in a repetitive process to save hardware resources

reduce resource consumption. The iteration stage in the pipeline of a neural

network is repetitive across all neurons and layers. Leveraging this iterative

process, hardware reusability can be optimized by sharing the same blocks

for multiple computations or merging with network pruning. Though the

implementation algorithm may become more complex, substantial on-chip

area savings can be achieved. However, it’s essential to consider the trade-offs

between hardware consumption, computation complexity, latency, and accuracy

to develop an efficient hardware-reusable architecture. This can be seen from

the Figure 7.1. Here p “ 0, 1, 2, 3..., which is half the number of pipeline stages

inside the MAC unit. This can be seen to reduce the number of resources for

various stages at greater bit-width.

• Extended Design in Feasibility for Industry: An important avenue to

explore is the integration of newer data arithmetic types to replace conventional

fixed and floating-point representations. Efficient arithmetic representations

such as Brain float, POSIT, and TensorFloat, which are gaining traction in

various industries, could be incorporated into the proposed design to enhance

their applicability for current industry-standard designs. Generalizing the data

arithmetic used in the design would enable its feasibility for a wide range of

applications and diverse databases used in neural network training. However,

59

researchers should carefully consider the potential increase in computation

complexity when accommodating different data types. Alternatively, investi-

gating the implementation of the novel methodology for a single newer data

arithmetic type, and validating its accuracy, would demonstrate the design’s

flexibility in terms of data type arithmetic. This future exploration promises

to open up new possibilities for more versatile and efficient neural network

designs, catering to the evolving demands of practical applications.

60

Bibliography

[1] Xilinx LogiCORE IP v12.0 https://www.xilinx.com/support/ documentation/ip

documentation/mult gen/v12 0/pg108-mult-gen.pdf.

[2] Q. Zhang, M. Zhang, T. Chen, Z. Sun, Y. Ma, and B. Yu, “Recent advances

in convolutional neural network acceleration,” Neurocomputing, vol. 323, pp.

37–51, 2019.

[3] N. I. Chervyakov, P. A. Lyakhov, M. A. Deryabin, N. Nagornov, M. V. Valueva,

and G. V. Valuev, “Residue number system-based solution for reducing the

hardware cost of a convolutional neural network,” Neurocomputing, vol. 407, pp.

439–453, 2020.

[4] H. Chhajed, G. Raut, N. Dhakad, S. Vishwakarma, and S. K. Vishvakarma,

“Bitmac: Bit-serial computation-based efficient multiply-accumulate unit for

DNN accelerator,” Circuits, Systems, and Signal Processing, pp. 1–16, 2022.

[5] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient sram

with in-memory dot-product computation for low-power convolutional neural

networks,” IEEE Journal of Solid-State Circuits, vol. 54, no. 1, pp. 217–230,

2018.

[6] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur, “Recurrent

neural network based language model.” in Interspeech, vol. 2, no. 3. Makuhari,

2010, pp. 1045–1048.

61

[7] M. Masadeh, O. Hasan, and S. Tahar, “Input-conscious approximate multiply-

accumulate (MAC) unit for energy-efficiency,” IEEE Access, vol. 7, pp. 147 129–

147 142, 2019.

[8] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep

neural networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105,

no. 12, pp. 2295–2329, 2017.

[9] R. B. S. Kesava, B. L. Rao, K. B. Sindhuri, and N. U. Kumar, “Low power

and area efficient wallace tree multiplier using carry select adder with binary

to excess-1 converter,” in 2016 Conference on Advances in Signal Processing

(CASP). IEEE, 2016, pp. 248–253.

[10] V. Kunchigi, L. Kulkarni, and S. Kulkarni, “High speed and area efficient vedic

multiplier,” in 2012 International Conference on Devices, Circuits and Systems

(ICDCS). IEEE, 2012, pp. 360–364.

[11] A. S. K. Vamsi and S. Ramesh, “An efficient design of 16 bit mac unit using

vedic mathematics,” in 2019 International Conference on Communication and

Signal Processing (ICCSP). IEEE, 2019, pp. 0319–0322.

[12] F. U. D. Farrukh, C. Zhang, Y. Jiang, Z. Zhang, Z. Wang, Z. Wang, and

H. Jiang, “Power efficient tiny yolo cnn using reduced hardware resources based

on booth multiplier and wallace tree adders,” IEEE Open Journal of Circuits

and Systems, vol. 1, pp. 76–87, 2020.

[13] G. Armeniakos, G. Zervakis, D. Soudris, and J. Henkel, “Hardware approximate

techniques for deep neural network accelerators: A survey,” ACM Computing

Surveys, vol. 55, no. 4, pp. 1–36, 2022.

[14] Z. Babić, A. Avramović, and P. Bulić, “An iterative logarithmic multiplier,”

Microprocessors and Microsystems, vol. 35, no. 1, pp. 23–33, 2011.

62

[15] R. Pilipović, P. Bulić, and U. Lotrič, “A two-stage operand trimming approxi-

mate logarithmic multiplier,” IEEE Transactions on Circuits and Systems I:

Regular Papers, vol. 68, no. 6, pp. 2535–2545, 2021.

[16] R. Pilipović and P. Bulić, “On the design of logarithmic multiplier using radix-4

booth encoding,” IEEE access, vol. 8, pp. 64 578–64 590, 2020.

[17] M. P. Véstias, “A survey of convolutional neural networks on edge with recon-

figurable computing,” Algorithms, vol. 12, no. 8, p. 154, 2019.

[18] P. Gysel, J. Pimentel, M. Motamedi, and S. Ghiasi, “Ristretto: A framework for

empirical study of resource-efficient inference in convolutional neural networks,”

IEEE transactions on neural networks and learning systems, vol. 29, no. 11, pp.

5784–5789, 2018.

[19] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien, Y. Umuroglu,

M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-learning framework

for fast exploration of quantized neural networks,” ACM Transactions on Re-

configurable Technology and Systems (TRETS), vol. 11, no. 3, pp. 1–23, 2018.

[20] N. Bruschi, A. Garofalo, F. Conti, G. Tagliavini, and D. Rossi, “Enabling mixed-

precision quantized neural networks in extreme-edge devices,” in Proceedings

of the 17th ACM International Conference on Computing Frontiers, 2020, pp.

217–220.

[21] G. Raut, S. Rai, S. K. Vishvakarma, and A. Kumar, “RECON: resource-

efficient CORDIC-based neuron architecture,” IEEE Open Journal of Circuits

and Systems, vol. 2, pp. 170–181, 2021.

[22] H. Xie, Y. Song, L. Cai, and M. Li, “Overflow aware quantization: Accelerating

neural network inference by low-bit multiply-accumulate operations,” in Pro-

ceedings of the Twenty-Ninth International Conference on International Joint

Conferences on Artificial Intelligence, 2021, pp. 868–875.

63

[23] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible accelera-

tor for emerging deep neural networks on mobile devices,” IEEE Journal on

Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 2, pp. 292–308,

2019.

[24] G. Raut, S. Rai, S. K. Vishvakarma, and A. Kumar, “A CORDIC based

configurable activation function for ann applications,” in 2020 IEEE Computer

Society Annual Symposium on VLSI (ISVLSI). IEEE, 2020, pp. 78–83.

[25] Y. Xue and Z. Ma, “Design and implementation of an efficient modified cordic

algorithm,” in 2019 IEEE 4th International Conference on Signal and Image

Processing (ICSIP). IEEE, 2019, pp. 480–484.

[26] S. Mehra, G. Raut, R. Das, S. K. Vishvakarma, and A. Biasizzo, “An empirical

evaluation of enhanced performance softmax function in deep learning,” IEEE

Access, 2023.

[27] Kaggle, “https://www.kaggle.com/kedarsai/cifar-10-88-accuracy-using-keras,”

2022.

[28] F. Ertam and G. Aydın, “Data classification with deep learning using tensorflow,”

in 2017 international conference on computer science and engineering (UBMK).

IEEE, 2017, pp. 755–758.

[29] D. A. Gudovskiy and L. Rigazio, “Shiftcnn: Generalized low-precision ar-

chitecture for inference of convolutional neural networks,” arXiv preprint

arXiv:1706.02393, 2017.

[30] G. Raut, A. Biasizzo, N. Dhakad, N. Gupta, G. Papa, and S. K. Vishvakarma,

“Data multiplexed and hardware reused architecture for deep neural network

accelerator,” Neurocomputing, 2021.

[31] A. M. Zyarah and D. Kudithipudi, “Resource sharing in feed forward neu-

ral networks for energy efficiency,” in 2017 IEEE 60th International Midwest

Symposium on Circuits and Systems (MWSCAS). IEEE, 2017, pp. 543–546.

64

