
Message-Level Security In

Restful Web Service

Compositions

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Bhor Verma, Kunal Gupta

150001005, 150001015

Guided by:

Dr. Abhishek Srivastava

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2018

iii

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Message-Level Security

In Restful Web Service Compositions” submitted in partial fulfillment

for the award of the degree of Bachelor of Technology in Computer

Science and Engineering completed under the supervision of Dr.

Abhishek Srivastava, Associate Professor, Computer Science and

Engineering, IIT Indore is an authentic work.

Further, we declare that we have not submitted this work for the

award of any other degree elsewhere.

Bhor Verma, Kunal Gupta

Date: 1 December 2018

v

CERTIFICATE by BTP Guide

It is certified that the above statement made by the students is correct

to the best of my/our knowledge.

Dr. Abhishek Srivastava

Associate Professor

Discipline of Computer Science and Engineering

IIT Indore

vii

Preface

This report on “Message-Level Security In Restful Web Service

Compositions” is prepared under the guidance of Dr. Abhishek

Srivastava, Associate Professor, Discipline of Computer Science and

Engineering, IIT Indore.

Through this report, we have tried to give a detailed design on the

architecture and implementation technique of a secure web composition.

In this project, we have emphasized our focus on message-level security

on RESTful architectural designs.

 We have put our best efforts to explain the proposed design in a

lucid manner. We have also added the figures and screenshots to make

the setup, implementation and usage of the design more illustrative.

Bhor Verma, Kunal Gupta

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

ix

ACKNOWLEDGEMENTS

We wish to thank Dr. Abhishek Srivastava for his kind support and

valuable guidance. He was always available for the discussion, to answer

our doubts and guide us through the different parts of the project. He

provided an environment, where we were encouraged to discuss the new

ideas and our problems.

Moreover, we would like to thank Mr. Gyan Prakash Tiwari for the

help he provided related to research and ideas for the project. We are also

thankful to our family members, friends and colleagues who were a

constant source of motivation. We offer sincere thanks to everyone who

else who knowingly or unknowingly helped me complete this project.

Without their support, this report would not have been possible.

Bhor Verma, Kunal Gupta

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

xi

Abstract

As technology progresses, the use of IOT devices is growing at a breathtaking

pace and secure communication of these devices amongst themselves or with other

web service is a severe security concern. There are mainly two types of web

services technologies, SOAP-based web services and RESTful web services and

there exists a large number of researches for web services composition techniques

for these web services technologies. In a web services composition the use of

standard security practices (SSL/TLS) may fail to achieve the required protection

in several cases, and hence instead of encrypting the whole communication, we

need security at the message level. Few standards exist covering secure

composition of SOAP-based web service but the same does not exist for the

composition of RESTful web services. Although few pieces of research exist

covering message-level security in RESTful web services, they do not cover

applicability of such techniques in web services mashup. Unlike SOAP, RESTful

web services do not require following a fixed format of communication and are

much lightweight to use because of which the world is rapidly adopting RESTful

web services for most of its tasks. The once popular SOAP-based web services are

fast losing ground owing to this. In this report, we are proposing a method to

create a secure dynamic group of RESTful web services providing various

services and the combination of those services. All the members of a group will

work towards the same goal. Service providers can join or leave this group

dynamically. We are assuming that there can be a finite number of services

provided by a group of RESTful web services and a group may contain an infinite

number of service providers within it. A client can see the group as a single

service provider, which provides a different combination of services and it can

request for any combination of services from any service provider. We have

implemented message-level security in web service composition so that messages

under circulation amongst various service providers in the group is authenticated

and encrypted.

Contents

CANDIDATE’S DECLARATION .. iii
CERTIFICATE by BTP Guide ...v
Preface .. vii
ACKNOWLEDGEMENTS .. ix
Abstract ... xi
Chapter 1 Introduction ... 1

1.1 Overview .. 1
1.2 Objective .. 2

Chapter 2 Background .. 3
2.1 Example Scenario .. 3
2.2 Problems Faced .. 5

2.2.1 Bouncing and Loops ... 5
2.2.2 Selection of Service Provider ... 6
2.2.3 Selection of Data Path ... 7

Chapter 3 Previous Work .. 9
3.1 XML-Enc ... 9
3.2 WS-Security .. 9

Chapter 4 Problem Definition and Solution ... 11
4.1 Problem Definition ... 11
4.2 Solution ... 11

4.2.1 Routing of Requests .. 12
4.2.2 Addition of SPNs and Key-Exchange .. 13
4.2.3 Message-Level Security ... 14

4.3 Implementation ... 14
4.3.1 SPN Registration .. 15

4.3.1.1 CSR and Private Key Generation .. 15
4.3.1.2 Certificate Request .. 16

4.3.2 Symmetric Key Exchange ... 17
4.3.3 Data Exchange .. 18

Chapter 5 Conclusion and Future Scope .. 19
Bibliography ... 21
Appendix A Implementation of SPN Registration .. 23

A.1 CSR Generation .. 23
A.2 Certificate issuing ... 24

List of Figures

Figure 2.1: Real Life Example of Web Service Composition 3

Figure 2.2: A Typical Web Service Composition .. 5

Figure 2.3: The Looping Problem .. 6

Figure 2.4: SPN Selection problem.. 6

Figure 2.5: Selection of Data Path ... 7

Figure 4.1: Routing via LCA ... 13

Figure 4.2: CSR and Private Key Generation. ... 15

Figure 4.3: CSR POST Payload ... 15

Figure 4.4: CSR Response ... 16

Figure 4.5: PSP responding with the certificate after receiving CSR 16

Figure 4.6: CA-issued Certificate .. 16

Figure 4.7: Exchange of Encrypted Symmetric Keys 17

Figure 4.8: Client Request for Symmetric Key Exchange 17

Figure 4.9: Response with Encrypted Symmetric Keys 18

Introduction 1

Chapter 1

Introduction

1.1 Overview

Web services are meant for machine-to-machine consumption, mostly

without human intervention, and should follow specific formats. A typical web

service can return data in various formats such as XML, JSON or plaintext. A user

generally interacts with a website, which may communicate with multiple web

services to aggregate content retrieved from each of them and displays them back

to the user.

Web service can be broadly divided into two categories: SOAP-based web

services and RESTful web services. SOAP (Simple Object Access Protocol),

designed in 1998 for Microsoft, is a messaging protocol specification, which deals

with properly structured data in XML-based formats. In SOAP, a WSDL (Web

Service Description Language) file provides the client with the necessary

information, which can be used to understand what services the web service can

offer [1]. Each SOAP message must contain some specific tags to maintain the

defined formal structure. This results in increased message size and thus uses more

bandwidth.

REST (REpresentational State Transfer) is an architectural style and not a

protocol specification like SOAP. It defines a set of constraints for the creation of

web services. It is now being widely used mainly because of its simplicity and

uniform interface. It does not require strict formal formats like SOAP, which

contributes to its lightweight nature, and thus data may be transferred in various

formats including JSON and XML [2] [3]. Due to its flexibility, even newer

upcoming formats, like ProtoBuf, can be easily utilized in such services. REST

2

Introduction

requests consist of the HTTP verbs CRUD (Create, Read, Update and Delete) as

operations to be executed on web resources [4].

Security is an important requirement in every web service composition and is

crucial for the following purposes: confidentiality, integrity and authenticity. TLS

(Transport Level Security) already has mechanisms for the encryption of the total

data in a request, but not inside the request itself. It is good if data in a given

request needs to reach a single destination, but not if it needs to be retrieved by

intermediate nodes [5]. Now, message-level security is required to maintain

security inside the request such that the data intended for a given node can be

decrypted and read by that node only. There are existing methodologies in place

for message-level security in SOAP but the same not defined for RESTful

architectures.

1.2 Objective

To propose and implement a mechanism for message-level security in

RESTful web service composition.

Background 3

Chapter 2

Background

2.1 Example Scenario

Let us take a real-life example to show the necessity of a secure web service

composition (Figure 2.1).

Figure 2.1: Real Life Example of Web Service Composition

There is a patient with a wristband (resembling an IOT client), and it is

paired with a healthcare company. Under, the healthcare company, there are

further hospitals connected to it, which have further connections to pharmacies.

The patient’s bank is also a part of this composition. The network works in the

following way:

4

Background

1) The wristband is constantly sending updates about the patient’s health to

the healthcare company.

2) The healthcare company then forwards the health data obtained from the

wristband to the appropriate hospital upon detecting a health issue.

3) The hospital checks the health report submitted to it and after diagnosing

the issue, it prescribes the required medicines. This prescription is then

forwarded to one of the connected pharmacies with a request to deliver

the same to the patient.

4) The pharmacy then contacts the patient’s bank for the payment request of

the prescription on behalf of the patient.

5) The bank then checks the patients credentials (which come from the

wristband and after proper verification, it authorizes the payment request.

6) After the payment authorization, the pharmacy delivers the prescribed

medication to the patient.

In this scenario, we wish to reduce the URL redirection as much as possible

as it is not feasible for the low-computation-power wristband. A similar problem

will arise on other IoT models as well, since most of the IoT device are have low

computation-power, just like the wristband. In the security perspective, we cannot

provide the bank account details of the patient to the healthcare company or the

hospital or the pharmacy as it can lead to its misuse. Therefore, the wristband

instead sends the bank account details along with the other health details. Now the

challenge is to hide the personal details (bank account details) from the other

nodes (healthcare company, hospital, and pharmacy) such that it is only readable

by the intended node (bank).

Background 5

2.2 Problems Faced

Let us consider the following web composition (Figure 2.2):

Figure 2.2: A Typical Web Service Composition

Here, the nodes (referred to as Service Provider Nodes or SPNs) and the

provided services are defined as:

● Node 𝐴1 provides service A

● Node 𝐵1, 𝐵2 provide service B

● Node 𝐶1, 𝐶2 provide service C

● Node 𝐷1 provides service D

We will use a similar nomenclature for the further sections.

In the next subsections, we analyze the problems that can occur in creating

such a composition.

2.2.1 Bouncing and Loops

Consider the previous composition (Figure 2.3):

6

Background

Figure 2.3: The Looping Problem

Let the client request the service AD from 𝐴1. 𝐴1 can provide service A, and

it forwards this request is to 𝐵1 to look for SPN of D which forwards it to 𝐷1. Now

𝐷1 oblivious to the fact that 𝐴1has provided service A, and may forward the

request back to 𝐵1to look for SPN of A. Now if 𝐵1send it back to 𝐴1, it causes a

loop and infinite bouncing of the request.

2.2.2 Selection of Service Provider

Figure 2.4: SPN Selection problem

If a client requests a service AB (Figure 2.4), the question comes up whether

𝐵1 or 𝐵2 should be selected to satisfy B out of the AB requested. Also when one of

Background 7

them is initially chosen, can the other SPN be used for future requests? The

answer to this indifference depends on the actual application of the composition.

2.2.3 Selection of Data Path

Client requests for service AC from 𝐴1.

Figure 2.5: Selection of Data Path

There is a need to select pathing to provide C out of AC: 𝐴1𝐵2𝐶2 or

𝐴1𝐵1𝐷1𝐶1?

The answer again depends on the actual application and implementation of

the composition to be used and may depend on multiple criteria such as:

● Load balancing

● Latency

● Congestion

● Registration of new service providers

Previous Work 9

Chapter 3

Previous Work

As previously discussed in Chapter 1, web services may be divided into

SOAP and RESTful. This chapter discusses the existing methodologies and works

pertaining to message-level security in SOAP.

3.1 XML-Enc

XML-Enc (XML Encryption) defines the specification to encrypt the

contents of XML elements [6]. It is governed by a W3C recommendation. It uses

the CBC (Cipher Block Chaining) mode of encryption. CBC works in the

following way:

1. An initialization vector 𝑖𝑣 is chosen at random.

2. Let 𝑚1 be the first message, then the first ciphertext 𝑐1is obtained as:

𝑐1 = 𝑚1 ⊕ 𝑖𝑣

3. The subsequent cipher texts, 𝑐𝑖is obtained for message 𝑚𝑖 using:

𝑐𝑖 = 𝑐𝑖−1 ⊕ 𝑚𝑖

Thus, the current message is encrypted using the previous cipher text.

XML-Enc is known to have severe security concerns [7] due to the way CBC

works, as CBC has already been shown to be malleable and breakable.

3.2 WS-Security

WS-Security (Web Services Security) [8] was published by OASIS

(Organization for the Advancement of Structured Information Standards) and is an

extension to SOAP. It describes three main mechanisms:

● Signing of messages to assure integrity

10

Previous Work

● Encryption of messages to assure confidentiality

● Attachment of tokens to confirm sender identity

While discussing WS-Security, technical details are kept out of scope and it

is only used as a specification. It is up to how one implements the framework so

that the result is not vulnerable.

WS-Security uses the XML SIG and XML ENC for signing and encryption

of the XML messages. This causes a significant overhead in data transfer if

message exchange is frequent. In addition, since this specification has no technical

details involved, CBC mode may be used and it may lead to issues described in

XML-Enc above.

Problem Definition and Solution 11

Chapter 4

Problem Definition and Solution

4.1 Problem Definition

We need to define a secure dynamic web service composition, so that:

● Any other node within the network cannot read the information intended

for a given recipient.

● Separate data intended for separate nodes can be sent in the same request

with readability available to the intended node.

A secure web service composition should comprise of:

● Correct Message Structure

● Mechanisms to ensure the authenticity of the source of messages

● Decryption possible only at receiving (intended) end

● Fairly good encryption algorithms

4.2 Solution

In our work, we are creating a group of RESTful web services with a

dynamic number of service providers working towards the same goal with the

following goals:

 The number of services provided by this group is limited.

 A client can be connected to any service provider of the group as if it is

connected to the whole group and using all its services.

 A client will see the group as a single service provider providing all the

services.

The group formation starts with only one service provider. This first member

of the group will be the most privileged and trusted member of the group and is

12

Problem Definition and Solution

termed as Privileged Service Provider (PSP) and can be seen as the Certification

Authority (CA) of the group.

Administrators are specially privileged SPN of the group and are added by

the PSP. Administrators can accept new administrators with trust level greater than

a threshold. An administrator can also accept other non-administrator SPN

requests (i.e., not having administrative capabilities), but there is a maximum limit

to the SPNs under any administrator.

Thus, the whole group is like a tree where nodes represent SPNs, parent

nodes representing administrator SPNs, their children representing the SPNs

respectively accepted by them and the PSP as the root node.

4.2.1 Routing of Requests

Each SPN’s registry contains information about all the SPNs directly or

indirectly registered under it.

Whenever a client needs a service S, it contacts one of the SPN, say SPNi.

SPNi now looks for the SPNs required for S:

● SPNi, if a non-administrator and cannot provide S, forwards the request to

the parent SPNp. If SPNi is an administrator, it looks for SPNs as explained

in the next point (like SPNp).

● The parent SPNp looks for SPNs in its registry, if not found the request is

forwarded to parent. If found, the request is forwarded to SPNp’s child

having SPNs in its registry.

● This process continues until SPNs is found.

The complete routing process (Figure 4.1) can be summarized as finding the

Lowest Common Ancestor (LCA) of the SPNi and SPNs and then going up from

SPNi to LCA and down to SPNs as the whole network is like a tree.

Problem Definition and Solution 13

Figure 4.1: Routing via LCA

This actually solves the problems previously discussed in Chapter 2.

4.2.2 Addition of SPNs and Key-Exchange

The addition of an SPN (administrator or non-administrator) goes through the

following process:

● When a new SPN tries to register in the network it sends a CSR (certificate

signing request) to either one of the administrators or the PSP.

● The PSP either directly or indirectly (via the requested administrator) then

validates the SPN using the trust level and then issues a certificate for the

new SPN.

● Likes wise every SPN in the network will have a certificate issued by the

PSP.

When a client requests a particular service S, suppose from SPNi following

steps takes place:

● The client sends a request to SPNi for service S along with its public key

● SPNi forwards the request to the appropriate service provider SPNs by

routing the request in the group (explained in the routing section). SPNs

14

Problem Definition and Solution

generates a new symmetric key (Ks) and encrypts it using client’s public

key [9] and sends back its PSP validated certificate along with the

encrypted Ks.

● The client checks whether the received certificate is valid and upon

successful validation, considers the symmetric key Ks sent by SPNs via

SPNi.

● If the certificate is valid the symmetric key is successfully exchanged and

now they both can start communication securely.

4.2.3 Message-Level Security

The client and SPNs now have a common symmetric key Ks for service S.

Now, for each message requesting a set of services(𝑆1, 𝑆2, . . . 𝑆𝑖), the data

corresponding to each of the service will be encrypted by their respective keys

𝐾1, 𝐾2, . . . 𝐾𝑖. This way each the message can only be read by the intended SPN

only, thus providing an end-to-end encryption between each pair of

communicating nodes.

4.3 Implementation

We implemented the project using Django [10] for REST API and Python’s

cryptography module [11].

The workflow is explained in the following sub-sections.

Problem Definition and Solution 15

4.3.1 SPN Registration

4.3.1.1 CSR and Private Key Generation

Figure 4.2: CSR and Private Key Generation.

Each new service provider looking to join the service composition visits its

endpoint /csr where it generates its Certificate Signing Request by generating its

private key (Figure 4.3).

Figure 4.3: CSR POST Payload

The response is the CSR request and the generated private key (Figure 4.4).

16

Problem Definition and Solution

Figure 4.4: CSR Response

4.3.1.2 Certificate Request

Figure 4.5: PSP responding with the certificate after receiving CSR

The CSR generated in the previous section is now used for Certificate

Request to the CA via the /ca endpoint, which validates the CSR and issues a

valid certificate (Figure 4.6) as well as the unique identification of the certificate.

Figure 4.6: CA-issued Certificate

Problem Definition and Solution 17

4.3.2 Symmetric Key Exchange

Figure 4.7: Exchange of Encrypted Symmetric Keys

The client sends its public key and the required services via the /verify

endpoint using POST data (Figure 4.7 and Figure 4.8).

Figure 4.8: Client Request for Symmetric Key Exchange

18

Problem Definition and Solution

The response (Figure 4.9) contains encrypted symmetric keys of SPNa and

SPNb and PSP provides certificates Certa and Certb after their certificate

verification (at the backend of the /verify endpoint).

Figure 4.9: Response with Encrypted Symmetric Keys

The client verifies the authenticity of the SPNa and SPNb by validating it and

can then decrypt the symmetric keys Ka and Kb using its private key.

4.3.3 Data Exchange

Now using the provided symmetric keys, the client can easily encrypt the

data for SPNi using the Key Ki, which can only be decrypted by SPNi.

This data exchange can be done using a standard structure for data exchange

so that parts of data meant for different SPNs can be easily distinguished (but not

read) by the intermediate nodes.

The standard structure and its rules can vary greatly based on the application

of the composition and hence we have avoided the specification of the same.

Conclusion and Future Scope 19

Chapter 5

Conclusion and Future Scope

Message level security is an important aspect of the currently evolving web

services compositions as they become more and more complex. We analyzed the

problems that can occur in RESTful web service compositions and studied

previously existing solutions for SOAP and their tradeoffs. We also attempted to

design and implement a real-life solution that caters to those problems as well as

provides a secure environment in the composition such that message-level-security

is insured.

This solution can be easily implemented in most use case scenarios with the

flexibility of having application-focused data-exchange structure.

A more standardised approach is needed for looking into the message-level

security across different types of web service composition to have set norms and

implementations in place for the better security of the same.

Bibliography 21

Bibliography

[1] O. Zimmermann, M. Tomlinson and S. Peuser, "Perspectives on web

services: applying SOAP, WSDL and UDDI to real-world projects,"

Springer Science & Business Media, 2012.

[2] C. Pautasso, O. Zimmermann and F. Leymann, "Restful web services vs.

"big"' web services: making the right architectural decision," in 17th

international conference on World Wide Web, Beijing, China, 2008.

[3] M. Lanthaler and C. G. ̈utl, "Towards a restful service ecosystem," in 4th

IEEE International Conference on Digital Ecosystems and Technologies,

2010.

[4] R. T. Fielding and R. N. Taylor, "Architectural styles and the design of

network-based software architectures," University of California, Irvine

Doctoral dissertation, vol. 7, 2000.

[5] M. P. Singh, "XML and web services security standards," in IEEE

Communications Surveys & Tutorials 11.

[6] T. Imamura, B. Dillaway and E. Simon, "XML Encryption Syntax and

Processing," in W3C Recommendation, 11 April 2013.

[7] Association for Computing Machinery, "How To Break XML Encryption,"

19 October 2011. [Online]. Available: https://www.nds.ruhr-uni-

bochum.de/media/nds/veroeffentlichungen/2011/10/22/HowToBreakXMLe

nc.pdf. [Accessed 7 October 2018].

[8] B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J.

Klein, B. LaMacchia, P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin,

N. Nagaratnam, H. Prafullchandra and J. Shewchuk, Web Services Security

(WS-Security).

22 Bibliography

[9] W. Polk, R. Housley and L. Bassham, "Algorithms and Identifiers for the

Internet X.509 Public Key Infrastructure Certificate and Certificate

Revocation List (CRL) Profile," April 2002. [Online].

[10] "Django," [Online]. Available: https://www.djangoproject.com/.

[11] "Python Cryptography," [Online]. Available: https://cryptography.io/.

Implementation of SPN Registration 23

Appendix A

Implementation of SPN

Registration

In this section, we explain the python code used in the implementation in

Section 4.3.1.

A.1 CSR Generation

The code in this section is executed on the requesting SPN’s end.

Firstly, we generate the private key:

Generate Private key

spn_private_key = rsa.generate_spn_private_key(

 public_exponent=65537, key_size=2048, backend=default_backend())

Next, we set up a builder object to generate the CSR request:

Build a CertificateSigningRequest

builder = x509.CertificateSigningRequestBuilder()

builder = builder.subject_name(x509.Name([

 x509.NameAttribute(NameOID.COMMON_NAME, CommonName),

 x509.NameAttribute(NameOID.COUNTRY_NAME, CountryName),

 x509.NameAttribute(NameOID.STATE_OR_PROVINCE_NAME,

StateProvince),

 x509.NameAttribute(NameOID.LOCALITY_NAME, Locality)

]))

builder = builder.add_extension(x509.BasicConstraints(

 ca=False, path_length=None), critical=True,)

Finally, we generate the CSR Request using the builder object:

Sign CSR with SPN’s_private_key using the builder object

CSRrequest = builder.sign(spn_private_key, hashes.SHA256(),

default_backend())

24

Implementation of SPN Registration

spn_csr = CSRrequest.public_bytes(Encoding.PEM).decode('utf-8')

A.2 Certificate issuing

The code in this section is executed on the CA’s end.

The CA firstly loads the CSR from the request on the Django server:

open the CertificateSigningRequest

pem_csr = str.encode(request.POST.get('csr'))

csr = x509.load_pem_x509_csr(pem_csr, default_backend())

CA’s certificate and private key is loaded:

load CA's certificate and Private key

cert_file = open(CA_CERT_PATH, 'rb').read()

ca_cert = x509.load_pem_x509_certificate(cert_file,

default_backend())

key_file = open(CA_PRIVATE_KEY_PATH, 'rb').read()

ca_key = serialization.load_pem_private_key(

 key_file, password=None, backend=default_backend())

We then initiate the builder object and generate a new certificate:

Building Certificate

builder = x509.CertificateBuilder()

builder = builder.subject_name(csr.subject)

builder = builder.issuer_name(ca_cert.subject)

builder = builder.not_valid_before(datetime.datetime.now())

builder = builder.not_valid_after(

 datetime.datetime.now()+datetime.timedelta(100))

builder = builder.public_key(csr.public_key())

serial = uuid.uuid4() # Random unique serial for each certificate

builder = builder.serial_number(int(serial))

for ext in csr.extensions:

 builder = builder.add_extension(ext.value, ext.critical)

Finally, the certificate for the SPN is signed by the CA:

sign the certificate

certificate = builder.sign(

 private_key=ca_key, algorithm=hashes.SHA256(),

backend=default_backend())

spn_certificate = certificate.public_bytes(

 serialization.Encoding.PEM).decode('utf-8')

