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Abstract

Deep structure neural networks have been applied in many fields of artificial
intelligence particularly in large scale data processing. Among them the most pop-
ular deep networks are the Deep Beliefs Network(DBN), the Deep Boltzmann Ma-
chines(DBM) and the Convolutional Neural Networks(CNN). Although the deep
structure has been so powerful, most of the networks suffer from the time consum-
ing training process because of more parameters involved. This complication makes
it difficult to analyze the network theoretically and we keep on stacking more layers
to achieve more accuracy. To achieve this we need more and more powerful com-
putation power and resources.

Our motivation behind this project is to propose a multi-label classification model
which can be trained faster and requires less computational power than deep learing
networks. In this project, a Single Layer Feedforward Neural Network(SLFNN) is
proposed as they have been widely applied to solve problems such as classification
and regression because of their universal approximation capability. Conventional
methods to train SLFNN are gradient-descent based learning algorithms but they
usually suffer from slow convergence and trap in local minimum. The proposed
SLFNNs with our enhancements, Random Vector Functional Link(RVFL) and Broad
Learning System(BLS) eliminate the drawbacks of existing multi-label classification
models.
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Chapter 1

Introduction

Classification methodology have become very important tools in the field of ma-
chine learning and are widely used in pattern recognition and other fields. Tradi-
tionally classification problems comprised of assigning a single class or label to the
instance from two(binary classification) or more than two(multi-class classification)
labels. But in a real world scenario, a single instance can be assigned multiple la-
bels. For example, in a movie classification problem a single movie can be assigned
multiple labels such as drama, romantic and comedy. Multi-label(ML) classifica-
tion problems are more universal and generalized version of the multi-class clas-
sification problems. But this generalization brings more challenges and difficulties
to the problem as the size of the output spaces increases exponetially. Therefore,
multi-label classification is a great field of research and developement to design an
accurate and efficient multi-label classification algorithm in machine learning field.

Previous works on multi-label classification include ML-Backpropagation[1], ML-
Support Vector Machine(ML-SVM)[2] and ML-K-Nearest Neighbours(ML-KNN)[3].
In this project, we propose two Single Layer Feedforward Neural Networks(SLFNNs)
to tackle the problem of multi-label classification. The proposed SLFNN with our
enhancements, Random Vector Functional Link(RVFL) neural network and Broad
Learning System(BLS) neural network are non-iterative and thus eliminate the draw-
backs of long training phase and trapping at local minima.

The effectiveness of proposed RVFL and BLS neural networks are evaluated
by comparing the multi-label classification metrics like Hamming Loss, One-error,
Coverage, Ranking Loss and Average Precision with other algorithms like Back-
propagation, KNN and SVM. Our work justifies that the proposed neural networks
can perform multi-label classification that is not reported for such an approach till
date.
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Chapter 2

Literature Survey

The following chapter discusses about the multi-class and multi-label classification.
We will discuss about the approaches that have been proposed to solve the multi-
label classification. We will discuss about different SLFNNs that we have used to
solve the multi-label classification problems.

2.1 Multi-Class Classification

Multi-Class classification[4] is the problem of classifying one instance into one of the
two or more classes. It is a generalized version of binary classification in which an
instance has to classified between two classes. Formally a multi-class classification
problem can be defined as:

• Let χ = Rn denotes a n-dimensional instance space of numerical or categorical
features.

• Y = {1, 2, ..., Q} be a finite set of labels, where Q is the total number of labels.

The task of multi-class classifier is to get a classifier h : χ → Y by training
samples which can map an unseen instance to any single label.

2.2 Multi-Label Classification

Multi-Label Classification[5] problems are a generalized version of multi-class clas-
sification problems. In multi-label classification, one instance can be assigned mul-
tiple labels at once. Formally the multi-label classification can be defined as :

• Let χ = Rn denotes a n-dimensional instance space of numerical or categorical
features.

• Y = {1, 2, ..., Q} be a finite set of labels, where Q is the total number of labels.
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• D = {(Xi, Yi)|i = 1, 2, ..., N}(Xi ∈ χ, Yi ⊆ Y) denotes a training set with N
instances. Each element of the label set is either 1 if the label is relevant and
−1 for irrelevant labels.

The task of multi-label classifier is to get a classifier h : χ → 2Y by training sam-
ples, which can map an unseen instance to a label set.

Multiple methods and approaches have been proposed to solve the multi-label clas-
sification problems effectively and more accurately. Mainly multi-label problems
are solved using two approaches:

• Problem Transformation

• Algorithm Adaptation

2.2.1 Problem Transformation

Multi-label Classification problems are transformed to multi-class or multiple bi-
nary class classification problems using below techniques.

• Binary Relevance

• Label Power Set

• Classifier Chain

Binary Relevance(BR)

Binary Relevance[6] method extents to independently training one binary classifier
for each label. In this method, a multi-label problem is converted into |Y| number
of binary single-label classification problems where Y is a set of labels. Each of the
binary classifiers votes separately to get the final result. This method of dividing the
task into multiple binary tasks has something in common with the one-vs.-all (OvA,
or one-vs.-rest, OvR) method for multi-class classification.

Label Power Set(LP)

Label Power Set[7] method generates a new class for every combination of labels
and then solves the problem using multi-class classification approaches. The main
drawback of this approach is the exponential growth in the number of classes, lead-
ing to several generated classes having very few labeled instances leading to over-
fitting. BR does not consider relationship between labels. This drawback of BR is
overcome by LP, also called as LC (Label Cardinality).
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Classifier Chain(CC)

Classifier chain[8] method, which is based on the BR method, overcomes the disad-
vantages of BR and achieves higher predictive performance, but still retains impor-
tant advantages of BR, most importantly low time complexity. CC offers a general
problem transformation method that inherits the efficiency of BR and competes with
the high accuracy of more computationally complex methods. The Classifier Chain
approach like LP, also try to overcome the drawback of BR. Similar to BR, a multi-
label problem is transformed into |Y| number of single-label problems where Y de-
notes a set of labels and for each label Yj(j = 1, 2, ..., Q), a separate binary classifier
Cj is designed. But the input for each classifier Cj is different. Like LP classifier, CC
also needs selection of base classifier, uses J48 as base classifier by default.

2.2.2 Algorithmic Adaptation

Many algorithms have been proposed to solve a multi-class or binary classification
problems. Algorithmic adaptation method is updating those algorithms to adapt
the features of multi-label classifier and directly solve the multi-label classification
problem without transforming it into subset of sub-problems.
Some algorithms which have been used to solve multi-label classification problem
are:

• Support Vector Machine(SVM)

• K-Nearest Neighbour(KNN)

• Backpropagation algorithm(BP)

The approach proposed by us to solve the multi-label classification problem falls
under algorithmic adaptation category. We have updated the RVFL and BLS neural
networks to accomodate the multi-label classifier features.

2.3 Random Vector Functional Link Neural Network

Random Vector Functional Link(RVFL)[9] neural network is a SLFNN with random
projection. The weight and the bias values between the input layer nodes and the
enhancement nodes are chosen randomly at the beginning of the training and is
fixed for that value. The output weight values (i.e. the connection with the output
layer neurons) are calculated using Moore-Penrose pseudo inverse method(4.2). The
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direct connection between the input layer and the output layer is an effective and
simple regularization technique preventing RVFL neural network from overfitting.

2.4 Broad Learning System Neural Network

Broad Learning System(BLS)[10] neural network is an effective and efficient way of
incremental learning system without the need for deep architecture. Deep architec-
ture suffers from large time in training process due to the multiple levels present in
the network. BLS neural network is a flat neural network, where the original inputs
are transferred and placed as “mapped features” in feature nodes and the structure
is expanded in wide sense in the “enhancement nodes". BLS neural network can be
remodeled in an incremental way without the entire retraining from the beginning.

2.5 Multi-label Classification Metrics

The multi-label classification problem cannot be judged on the same parameters as
that of the multi-class problems such as accuracy. The metrics[11] defined for the
measurement of the correctness of multi-label classification model are as follows:

Let the total number of labels be Q , N to be the number of instances and Y
be the set of labels present in a particular instance. The dataset D = {(Xi, Yi)|i =
1, 2, ..., N}(Xi ∈ χ, Yi ⊆ Y).

2.5.1 Hamming Loss

Hamming loss is defined as the hamming distance between the predicted value and
the actual result i.e. it counts for the number of instances where the predicted values
is not equal to the actual result.

hlossS(h) =
1
p

p

∑
i=1

1
Q
|h(xi)∆Yi|

where h(xi) is the predicted value for the instance xi and ∆ corresponds to the sym-
metric difference.
The smaller the value of the hamming loss, the better the performance of the model.
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2.5.2 One Error

One error is defined as the number of times the top-ranked label is not present in
the set of proper labels of the instance.

one− errorS( f ) =
1
p

p

∑
i=1

[[arg maxy∈Y f (xi, y)] 6∈ Yi]]

The smaller the value of the one error, the better the performance of the model.

2.5.3 Coverage

Coverage is defined as the summation of the rank of the most insignificant label
which belongs to the instance. In other words it says how many labels we have to
check in order to cover all the proper labels of that instance.

coverageS( f ) =
1
p

p

∑
i=1

max
y∈Yi

rank f (xi, y)− 1.

The smaller the value of the coverage, the better the performance of the model.
rank f () is derived from the real-valued function f (), which maps the outputs of
f (xi, y) for any y ∈ Y to 1, 2, . . . , Q such that if f (xi, y1) > f (xi, y2), then rank f (xi, y1) <

rank f (xi, y2).

2.5.4 Ranking Loss

Ranking Loss is defined as the average fraction of label pairs that are reversely or-
dered for the instance.

rlossS( f ) =
1
p

p

∑
i=1

1
|Yi‖Ȳi|

|{(y1, y2)| f (xi, y1) ≤ f (xi, y2), (y1)y2) ∈ Yi × Ȳi}|

The smaller the value of the ranking loss , the better the performance of the model.
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2.5.5 Average Precision

Average Precision is defined as the average fraction of labels ranked above a partic-
ular label y ∈ Y which actually are in Y.

avgprecS( f ) =
1
p

p

∑
i=1

1
|Yi| ∑

y∈Yi

|{y′|rank f (xi, y′) ≤ rank f (xi, y), y′ ∈ Yi}|
rank f (xi, y)

The bigger the value of the average precision , the better the performance of the
model.
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Chapter 3

Analysis and Objectives

3.1 Analysis

Multi-label classification problem have been a field of research and development
because of its wide range of application in real world. Many approaches have
been proposed to solve the multi-label classification problem. Deep learning al-
gorithms like Backpropagation and other algorithms based on Support Vector Ma-
chine(SVM) and K-Nearest Neighbour(KNN) are used to solve the multi-label clas-
sification problem. Deep learning networks suffer with the problem of very large
training time as they comprises of multiple layers and lots of computation. The
method proposed by us utilizes SLFNNs. Training process of SLFNNs is non-iterative
process which reduces the training time drastically.

3.2 Objectives

The objectives of this project are:

• Understanding the concept of multi-label classification and its difference from
multi-class classification using the present algorithms like backpropagation al-
gorithm.

• Understanding the working of Random Vector Functional Link(RVFL) neural
network and implementing it for multi-label classification.

• Understanding the working of Broad Learning System(BLS) neural network
and implementing it for multi-label classification problem.

• Comparing the results of BLS and RVFL neural networks with other multi-
label classification algorithms such as ML-Backpropagation, ML-KNN and
ML-SVM.
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Chapter 4

Single Layer Feedforward Neural
Network

SLFNN have been widely applied to solve problems such as classification and re-
gression because of their universal approximation capability. Conventional meth-
ods for training SLFNN are gradient-descent-based learning algorithms. The gen-
eralization performance of them is more sensitive to the parameter settings such as
learning rate. Similarly, they usually suffer from slow convergence and trap in a
local minimum.

4.1 Random Vector Functional Link Neural Network

Random Vector Functional Link(RVFL) neural network is the bridge between the
neural networks and the Learning Using Privileged Information(LUPI) paradigm.
The randomization of the parameters of the hidden layers with nonconstant piece-
wise continuous activation function can separate arbitrary regions of any shapes.
The direct connection between the input layer and the output layer prevents the
RVFL neural network from overfitting.

FIGURE 4.1: RVFL neural network

Given a set of labeled data D = {(Xi, Yi)|i = 1, 2, ..., N}(Xi ∈ χ, Yi ⊆ Y), RVFL
neural network with P enhancement nodes can be formulated as :
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HW = Y (4.1)

where W is an output weight vector , H is the concatenated output matrix com-
bining input data and the output from the enhancement nodes and Y is a label ma-
trix of dimensions N ×Q, where Q is the number of labels.

Algorithm for Random Vector Functional Link Neural Network

Input : training samples X
Output: W

1. H1 matrix is the input vector matrix

H1 ≡ X =


x11 . . . x1n

... . . . ...
xN1 . . . xNn


2. Generate weight matrix A and bias B values between the enhancement layer

and input layer. All the weight and the bias values are randomly selected from
the range [−u, u] and [0, u] respectively where u is a positive user defined
parameter.

3. The output of the enhancement layer is calculated using A, B and H1

H2 =


G(a1 · x1 + b1) . . . G(aP · x1 + bP)

... . . . ...
G(a1 · xN + b1) . . . G(aP · xN + bP)


4. The input to the output layer is calculated by concatenating the input matrix

H1 and the output from enhancement layer H2

H ≡ [H1H2]

5. The weight matrix between the output layer and the input and enhancement
layer is calculated using the Moore-Penrose Pseudo inverse(4.2)

W = H†Y

Weight matrix W,
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W =


wT

1
...

wT
(n+P)


where wT

i is a vector of dimension Q.

4.2 Moore-Penrose Pseudo Inverse

The weight matrix is calculated by taking the pseudo inverse of the concatenated
matrix and multiplying it with output matrix. We define error, S in the network as
a function of W. The goal is to minimise the difference between Y and HW and also
to reduce the weight values.

S(W) =
1
2
||Y− HW||22 +

1
2C
||W||22 (4.2)

where C is a user defined parameter.

S(W) =
1
2
(Y− HW)T(Y− HW) +

1
2C

WTW

=
1
2
(YT −WT HT)(Y− HW) +

1
2C

WTW

=
1
2
(YTY−YT HW −WT HTY + WT HT HW) +

1
2C

WTW

(4.3)

Differentiating (4.3) w.r.t. W, we get;

dS(W)

dW
=

1
2
(−HTY− HTY + 2HT HW) +

1
C
(W)

= −HTY + HT HW +
1
C
(W)

(4.4)

At minima dS(W)
dW = 0, substituting in (4.4), we get;

−HTY + (HT H +
I
C
)W = 0

(HT H +
I
C
)W = HTY

(4.5)

Assuming (HT H + I
C ) is invertible, multiplying (4.5) by (HT H + I

C )
−1, we get;

W = (HT H +
I
C
)−1HTY

W = H†Y
(4.6)
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Thus, we have Moore-Penrose Pseudo Inverse from (4.6).

H† = (HT H +
I
C
)−1HT (4.7)

4.3 Broad Learning System Neural Network

Deep structure learning suffers from a time consuming training process because of a
large number of connecting parameters in filters and layers. Moreover, it encounters
a complete retraining process if the structure is not sufficient to model the system.
BLS neural network is established in the form of a flat neutal network, where the
original inputs are transferred and placed as “mapped features” in feature nodes
and the structure is expanded in wide sense in the “enhancement nodes”. The in-
cremental learning algorithms are developed for fast remodeling in broad expansion
without a retraining process if the network deems to be expanded.

FIGURE 4.2: BLS neural network

The BLS neural network is constructed based on the above RVFL neural network.
However, unlike the RVFL neural network that takes the input directly and estab-
lishes the enhancement nodes, BLS neural network first maps the inputs to construct
a set of mapped features and then create the enhancement nodes from the mapped
features. In addition, the randomly assigned weight values between the mapped
nodes and the enhancement nodes are fine tuned using the sparse autoencoder for
obtaining better features. We also develop incremental learning algorithms that can
update the system dynamically.

4.3.1 Dynamically Updating the BLS neural network

In deep networks, we need to find out the efficient number of hidden neurons. We
find that by varying the number of neurons and then re-training the network. BLS
network provides us a advantage of not re-training the whole network on updation
of the network.
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Let us consider the expanded input matrix An = [X|∑(XWh + βh)] of dimension
n ∗m which contains all the input vectors combined with the enhancement compo-
nents. If we want to update the network by adding one new enhancement node, the
An matrix will be updated by adding one extra column to the matrix.

Let us say the new column to be added is a. Then, matrix An+1 , [An|a]. Then
the psuedo inverse of the new matrix:

A†
n+1 =

[
A†

n − dbT

bT

]
where d = A†

na and

bT =

(c)+ if c 6= 0

(1 + dTd)−1dT A+
n if c = 0

and c = a− And (If An is a full rank matrix then c = 0)
The updated weight matrix of the network will be:

Wn+1 =

[
Wn − dbTYn

bTYn

]
where Wn+1 and Wn is the weight matrix before and after adding new node respec-
tively.

4.3.2 Sparse Autoencoder for tuning the Weight Values

The weight values between the input layer and the enhancement layer are randomly
initialized at the begining of the training process. However, randomness suffers
from the unpredictability and so to overcome the randomness nature, the Sparse
Autoencoder is used which slightly fine-tunes the random features to a set of sparse
and compact features.

The problem of extracting the sparse features from the training data X can be
considered as the following optimization problem:

arg min
Ŵ

: ‖ZŴ − X‖2
2 + λ‖Ŵ‖1 (4.8)

where Ŵ is the sparse autoencoder solution and Z is the desired output of the
linear equation XW = Z.
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4.3.3 BLS Model

Assume that we present the input data X and project the data, using φi(XWei + βei),
to become the i-th mapped features, Zi, where Wei is the random weights with the
proper dimensions. Denote Zi ≡ [Z1, ..., Zi], which is the concatenation of all the
first i groups of mapping features. Similarly, the j-th group of enhancement nodes,
ξ j(ZiWhj + βhj) is denoted as Hj , and the concatenation of all the first j groups of
enhancement nodes are denoted as H j ≡ [H1, ..., Hj].

In BLS neural network, we fine tune the intial Wei to obtain the better features by
applying the sparse autoencoder characterstics.

Assume the input data set X, which equips with N samples, each with m dimen-
sions, and Y is the output matrix which belongs to RNxC. For n feature mappings,
each mapping generates k nodes, can be represented as the equation of the form:

Zi = φi(XWei + βei), i = 1, ..., n (4.9)

where Wei and βei are randomly generated. Denote all the feature nodes as Zn =

[Z1, ..., Zn], and denote the mth group of enhancement nodes as :

Hm ≡ ξ(ZnWHm + βHm) (4.10)

Hence, the broad model can be represented as the equation of the form:

Y = [Z1, ..., Zn|ξ(ZnWh1 + βh1), ...ξ(ZnWhm + βhm)]Wm

= [Z1, ..., Zn|H1, ..., Hm]Wm

= [Zn|Hm]Wm

(4.11)

where Wm = [Zn|Hm]†Y , Wm are the connecting weights from the broad struc-
ture which can be easily calculated using the Moore-Penrose pseudo inverse method(4.2).
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Chapter 5

Design Proposal

The above discussed SLFNNs have been used to solve the binary as well as multi-
class classification problems. We propose an updation to the networks for solving
the multi-label classification problems using threshold function.

After the training phase of the neural network is completed on the given dataset,
we will calculate the threshold value for each data instance and classify each pre-
dicted label on the basis of threshold value.

5.1 Loopholes in Naive Approaches

Generally, in binary and multi-class classification models, maximum of predicted
values of all the labels is considered as the output or the relevant label. But, in
multi-label classification, the output is not a single label but a label set. Also, many
times labels in multi-label dataset are co-related with each other.

A constant threshold function can classify multiple associated labels but will lack
co-relation between labels. Thus a non-constant threshold function is required for
solving multi-label classification problems effectively.

5.2 Proposed Method for Threshold Calculation

The associated label set for X is determined by a threshold function t(x), i.e. Y =

{j|cj > t(x), j ∈ Y} where cj (j = 1, 2, ..., Q) are the actual outputs and Q is number
of distinct labels. Threshold value t for an instance is modelled by a linear function
t(x) = αTc(x) + β, where c(x) = (c1(x), c2(x), ..., cQ(x)) is the Q-dimensional vector
whose j-th component corresponds to the actual output of the trained network on x
on the j-th class. α is a Q-dimensional vector and β is a scalar. For each multi-label
training example (Xi, Yi) (i = 1, 2, . . . , N) , let c(Xi) = (ci

1, ci
2, ..., ci

Q) and set the target
values t(Xi) as:

t(Xi) = arg mint(|{k|k ∈ Yi, ci
k < t}|+ |{l|l ∈ Ȳi, ci

l ≥ t}|) (5.1)
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FIGURE 5.1: Proposed Design

Algorithm for determining threshold value, t for each data instance, X is discussed
below.

Algorithm for Determining Threshold Value

Input : Predicted output vector on sample x, c and actual label vector for sample
x, y
Output: Threshold value t

1. Sort c in increasing order and accordingly permute y;

2. p← [c1 − 0.2|c|cQ + 0.2];

3. count1 ← 0;

4. count−1 ← count of -1 in y;

5. E ← ∞;

6. for i← 1; i ≤ Q + 1 do

7. if E > count1 + count−1 then

8. E ← count1 + count−1;

9. t← (pi+pi+1)
2 ;
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10. end if

11. if i ≤ Q then

12. if yi = 1 then

13. count1 ← count1 + 1;

14. else

15. count−1 ← count−1 − 1;

16. end if

17. end if

18. end for

After obtaining the threshold value t, the parameters of the threshold function
can be learned through solving the following matrix equation:

Φγ = t (5.2)

Here matrix Φ has dimensions N × (Q + 1) whose i-th row is (ci
1, ci

2, . . ., ci
Q,

1), γ is the (Q + 1) dimensional vector (α, β) and t is the N-dimensional vector
(t(x1), t(x2), ...,
t(xN)). Moore-Penrose pseudo inverse(4.2) is then applied to find the solution of
(5.2).

γ = Φ†t (5.3)

When a test instance x is given, it is firstly fed to the trained network to get the
output vector c(x). After that, the threshold value for x is computed via t(x) =

αTc(x) + β.
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Chapter 6

Experiments

6.1 Datasets

In this section, the performance of the algorithms are tested on 4 different multi-label
datasets, which covers text, image, genetic and sound fields.

TABLE 6.1: Multilabel Datasets

Dataset Domain Instances Attributes Labels
Yeast Biology 2417 103 14

Emotions Music 593 72 6
Scenery Image 2407 294 6
Reuters Text 2000 243 7

6.2 Parameter Values

RVFL neural network consists of three user defined input parameters C(the trade-off
parameter), P(number of enhancement nodes) and µ(used as a range for the assign-
ment of random weight and bias values). Optimal results on Yeast dataset were
observed when C = 0.1, P = 50 and µ = 1.
BLS neural network consists of five user defined input parameters N1(number of
feature nodes per window), N2(number of windows of feature nodes), N3(number
of enhancement nodes), S(shrinkage parameter for enhancement nodes), C(regularization
parameter for sparse regularization). Optimal results on Yeast dataset were ob-
served when S = 0.1 , C = 0.1 , N1 = 10, N2 = 10 and N3 = 50.
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6.3 Experimental Setup

All the experiments1 have been conducted on MATLAB 2016a in Windows 7 (64 bit)
environment with 64 GB RAM, 3.00 GHz Intel Xeon processor. Z-score normaliza-
tion has been performed on each dataset before training and testing.

6.4 Results and Discussion

The above described perfomance metrices were calculated using the 4 datasets to
evalute RVFL and BLS neural networks. We compared the outputs of RVFL and BLS
neural networks with the results obtained from ML-Backpropagation, ML-KNN
and ML-SVM model on the Yeast dataset. We have used K-fold cross validation
method(K=10)[12] on the datasets for calculating the results.

6.4.1 Comparison between different models on the Yeast dataset

TABLE 6.2: Multi-label Models on Yeast Dataset

Evaluation Metrics ML-BLS ML-RVFL ML-BP ML-KNN ML-SVM
Training Time(sec) 0.375 0.342 1.013x104 0.209 2.780x104

Hamming Loss 0.199 0.197 0.206 0.197 0.207
One-Error 0.222 0.223 0.233 0.239 0.243
Coverage 6.462 6.365 6.421 6.302 7.090

Ranking Loss 0.171 0.167 0.171 0.168 0.195
Average Precision 0.762 0.762 0.756 0.761 0.750

The training time of RVFL and BLS neural networks are very small as compared
to the backpropagation and the SVM models as RVFL and BLS neural networks are
non-iterative. The other parameters output from our models are also comparable
to the previous used algorithms. The training time of the KNN model is slightly
smaller than our models because the Yeast dataset is a smaller dataset with only 2000
entries. For bigger dataset, the training time of KNN model is expected to increase
quadratically while our models’ training time is expected to increase linearly.
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TABLE 6.3: RVFL neural network on different Multi-label datasets

Evaluation Metrics Yeast Emotion Reuters Scenery
Training Time(sec) 0.342 0.089 0.328 0.350

Hamming Loss 0.197 0.202 0.086 0.193
One-Error 0.223 0.283 0.232 0.373
Coverage 6.365 1.792 0.847 1.088

Ranking Loss 0.167 0.166 0.110 0.202
Average Precision 0.762 0.797 0.841 0.756

6.4.2 Result obtained by the RVFL neural network on different

datasets

The results obtained by RVFL neural network on different datasets are also compa-
rable to the other state-of-art algorithms. The precision score of RVFL neural net-
work suffers a little compared to backpropagation model but the training time gives
a great advantage for fast learning.

6.4.3 Result obtained by the BLS neural network on different datasets

TABLE 6.4: BLS neural network on different Multi-label datasets

Evaluation Metrics Yeast Emotion Reuters Scenery
Training Time(sec) 0.375 0.261 0.437 0.421

Hamming Loss 0.199 0.232 0.075 0.199
One-Error 0.222 0.344 0.219 0.375
Coverage 6.462 2.014 0.783 1.105

Ranking Loss 0.171 0.208 0.100 0.206
Average Precision 0.762 0.755 0.851 0.751

The results obtained by the BLS neural network on different dataset is nearly
same as the results obtained by the RVFL neural network. The main advantage of
the BLS neural network over RVFL neural network can be seen when using a large
dataset and also where the model needs to be dynamically updated such as adding
extra enhancement nodes. BLS neural network is more applicable in the real life
scenarios where we need a online learning algorithm which can easily learn on the
new dataset without retraining from begining.

1All presented results in this report are reproducible. Codes with datasets can be produced on
request.
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Chapter 7

Conclusion and Future Work

The objectives of this project were to

• Introduce a new and novel algorithmic approach for multi-label classification
problems.

• Prove its correctness.

• Evaluate the performance of the proposed algorithmic approach against exist-
ing approaches(ML-SVM, ML-KNN and ML-Backpropagation).

In this project, we have proposed a new approach of multi-label classification by
extending RVFL and BLS neural networks by applying the threshold function, com-
puted during the training phase, on the results obtained by the network on the test
instance. The results obtained were satisfactory and were ahead from most of the
other approaches used for solving the problem.

Multi-label classification is a active field of research and developement. Many new
models are proposed for tackling this problem. Future work and further advance-
ment in our model can be done by incorporating the dynamic updation of the BLS
model when a new instance is brought in the training phase and also increasing the
enhancement nodes.
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