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Preface

This report on ”Weight Entropy Fuzzy Clustering Algorithm for Face Recognition” is pre-

pared under the guidance of Dr Aruna Tiwari, Assistant Professor, Computer Science and

Engineering, IIT Indore.

Through this report, we have tried to provide a detailed description of our approach,

design and implementation to apply the Fuzzy Clustering algorithm Weighted Entropy

Fuzzy C-Means Clustering for face recognition. We have applied it on a real dataset

created by us for face recognition of some students of our college.
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Abstract

Clustering unlabelled dataset is one of the most crucial parts of unsupervised learning.

Many algorithms have been proposed for clustering till now. In this project, we are study-

ing one of the most effective clustering algorithm known as Weight Entropy Fuzzy C means

clustering and implementing it on a real dataset for face recognition. Also by exhaustive

testing, we tried to predict the constant values to get optimal results in terms of cluster

quality and accuracy of the various dataset. After implementing the algorithm we obtain

values of membership matrix, cluster centers and weight matrix stating the importance of

each feature while clustering the algorithm.

Using WEFCM we can cluster different images according to their features and when we

test with another image, according to belongingness of testing image in different clusters

we can recognize in which cluster that image belongs and thus face recognition can be

performed using WEFCM.

Apart from implementing WEFCM, to optimize the results, we have studied some fea-

ture reduction algorithm and implemented it for optimal results.

Also by exhaustive testing, we tried to estimate the different parameters value and their

combination to get optimal results concerning NMI, ARI, and Accuracy.
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Chapter 1

Introduction

1.1 Background

Clustering is an unsupervised learning technique aimed at grouping a set of objects into

subsets or clusters. The goal is to create clusters that are coherent internally, but substan-

tially different from each other. In plain words, objects in the same cluster should be as

similar as possible, whereas objects in one cluster should be as dissimilar as possible from

objects in the other clusters. Organizing data into clusters shows the internal structure of

the data. Techniques for clustering is useful in knowledge discovery in data.

The clustering algorithms can be divided into two categories: hard clustering where

each object belongs to only one cluster and fuzzy clustering where each object can belong

to every cluster to a certain degree [9]. The primary motivation for the introduction of

fuzzy clustering as a generalization of crisp or partitioning clustering was to represent partly

overlapping clusters better. Data points at the boundary between two clusters should be-

long partly to both clusters.

K-means algorithm is one of the simplest unsupervised learning algorithms that can

deal with most of the clustering problems [4], but this hard clustering algorithm is sen-

sitive to the initial centers. The Fuzzy C-Means clustering algorithm is an extension of

hard clustering, in which real membership degrees in unit interval [0,1] are obtained by the

1



2 CHAPTER 1. INTRODUCTION

Lagrangian multiplier method. Fuzzy clustering is more robust in the sense that the results

seem to be less dependent on the initialisation that is required for many hard clustering

algorithms like K-means[9].

The above classical clustering algorithms fail as they take the equal contribution of all

features while deciding cluster membership of objects. This is not an ideal condition as it

is possible having features which have a more dominating role while determining cluster

centres over other features and this fact should be taken into consideration while deciding

the cluster architecture. These drawbacks are resolved in Weight Entropy Fuzzy C-Means

Clustering [9]. The objective function of FCM is modified by using attribute weighted

dissimilarity measure and adding weight entropy regularization term.

1.2 Objective

The objective thus is the development and implementation of Weight Entropy Fuzzy C-

Means clustering algorithm. Also use this algorithm for face recognition. The above

objective has been divided into following goals:

• Implementation of Weight Entropy Fuzzy C-Means clustering algorithm.

• Creating a real dataset with pictures of students of our college to be used as input

for face recognition.

• Data preprocessing of facial images using Principal Component Analysis, Locally

Linear Embedding and Extra tree classifier.

• Implementation and testing of face recognition using Weight Entropy Fuzzy C-Mean

Clustering.



Chapter 2

Literature Review

2.1 Clustering

Clustering is the process of grouping similar entities together. Clustering is an unsupervised

machine learning trick in which a set of observations is divided into several groups based

on their similarities, in this way, observations in the same groups are as similar as possible

to one another, and different groups are as dissimilar as possible from one another. The

clustering algorithms can be divided into two categories: hard clustering where each object

belongs to only one cluster and fuzzy clustering where each object can belong to every

cluster to a certain degree. We will be primarily focusing on fuzzy clustering.

2.1.1 Fuzzy Clustering

Fuzzy clustering (also referred to as soft clustering) is a form of clustering in which each data

point can belong to several clusters with a certain degree of membership. Hard partitioning

methods fail if sampled data is not representative of whole data, then centroids overlap.

Hence we need soft partitioning methods, i.e., fuzzy clustering. The superiority of fuzzy

clustering lies on the fact that it allows a data object to belong to several clusters with

a certain degree of membership. The primary motivation for the introduction of fuzzy

clustering as a generalization of crisp or partitioning clustering was to represent partly

overlapping clusters better. Data points at the boundary between two clusters should

belong partly to both clusters.

3
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2.1.2 Fuzzy C-Means

The Fuzzy C-Means algorithm groups dataset into C clusters by minimizing the sum of

distances between the objects and the cluster centers [1]. So the objective function to be

optimized is:

JFCM =
N∑
i=1

C∑
j=1

uαij||xi − vj||2 (2.1)

Subject to
∑C

i=1 uij = 1 , 1 ≤ j ≤ n , 0 ≤ uij ≤ 1

Where, X = x1, x2, ..., xn denotes the dataset, where n is the number of objects, and

m is the dimensions of a object. U = [uij] is a c × n matrix, uij denotes the degree of

membership of the j-th object belonging to the i-th fuzzy cluster. V = v1, v2, ..., vc is a

c ×m matrix, vil denotes cluster center of i-th cluster defined by uij. α is a fuzzification

parameter which drastically affects the clustering results. α ≥ 1 controls the extent of

membership sharing between fuzzy cluster [1] [2] [9]. As α = 1, FCM converges in theory

to the traditional K-means solution. ε denotes the predefined constant.

Algorithm Fuzzy C-Means

Input: X, V, c, α

Output: U, V

Step 1: Randomly initialize cluster centers V0.

Step 2: Compute cluster membership

uic =
1∑C

j=1

(
||xi − vc||2

||xi − vj||2

) 1
α−1

,∀i, c

Step 3: Compute cluster centers

vc =

∑N
i=1(uic)

αxi∑N
i=1(uic)

α
,∀c

Step 4: If ||V ′ − V || < ε then stop, else go to Step 2.
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2.2 Face Recognition

A feature is a piece of information which is relevant for solving the computational task

related to a certain application. In this project, we have chosen every single pixel as a

feature, as a pixel is the simplest element that can be considered as a feature. One penalty

for this is that we will get a vast number of features and not every feature is necessary

for cluster formation. We need to reduce the features so that we get only the essential

features which will be beneficial for our clustering algorithm. And hence, we have used the

following feature reduction methods to reduce the features:

• Principal Components Analysis(PCA)

• Locally Linear Embedding(LLE)

• Extra Tree Classifier

2.2.1 Feature Reduction using Principal Components Analysis

PCA is used to reduce the dimensionality of data. PCA transforms the initial data into

a new small set of data that too without loosing the most important information in the

original data set. This new data corresponds to a linear combination of the original and

is called principal components. The dimension reduction is achieved by identifying the

principal directions in which the data varies. PCA assumes that the directions with the

largest variances are the most important (i.e, the most principal).

Steps to perform Principal Component Analysis:

1. Prepare the data :

(a) Center the data : subtract the mean from each variables. This produces a data

set whose mean is zero.
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(b) Scale the data : If the variances of the variables in your data are significantly

different, its a good idea to scale the data to unit variance. This is achieved by

dividing each variables by its standard deviation.

2. Calculate the covariance/correlation matrix

3. Calculate the eigenvectors and the eigenvalues of the covariance matrix

4. Reduce dimensionality and form feature vectors: Eigenvectors are found, now order

them in order of eigenvalues, highest to lowest. Now we have components in order of

significance. Choose first p eigenvectors, final data set has only p dimensions.

5. compute the new dataset :

(a) Row feature vector : is the matrix with eigenvector in columns transposed

(b) Row zero mean data : is the mean adjusted data transposed.

(c) new data = RowFeatureVector X RowZeroMeanData

2.2.2 Feature Reduction Using Locally Linear Embedding

Locally linear embedding is a technique for nonlinear dimensionality reduction. LLE is used

to map high dimensional data into a single global coordinate system of lower dimensionality.

The dimensionality reduction by LLE succeeds in identifying the underlying structure of

the manifold. The critical feature of LLE is that neighborhood information is maintained.

What we mean by it is that the neighbor of a data point in original space should also be

a neighbor in low dimensional space.

LLE algorithm psuedocode:

1. Find neighbours in X space [b,c].

for i=1:N
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Figure 2.1: Steps of Locally Linear Embedding

compute the distance from Xi to every other point Xj

find the K smallest distances

assign the corresponding points to be neighbours of Xi

end

2. Solve for reconstruction weights W.

for i=1:N

create matrix Z consisting of all neighbours of Xi[d]

subtract Xi from every column of Z

compute the local covariance C = Z ′ × Z [e]

solve linear system C × w = 1 for w [f]

set Wij = 0 if j is not a neighbor of i

set remaining elements in the ith row of W equal to w/sum(w)

end
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3. Compute embedding coordinates Y using weights W.

create sparse matrix M = (I −W )′ × (I −W )

find bottom d+1 eigenvectors of M

(corresponding to the d+1 smallest eigenvalues)

set the qth ROW of Y to be the q+1 smallest eigenvector

(discard the bottom eigenvector [1,1,1,1...] with eigenvalue zero)

2.2.3 Feature Reduction using Extra Tree Classifier

An extra trees classifier, otherwise known as an Extremely randomized trees classifier, is

a variant of a random forest. In it splits are selected on random instead of using some

criterions. Before explaining its working, few terms are explained:

Entropy: Entropy is the measure of randomness in a dataset.

HighEntropy → LowEntropy → ZeroEntropy

Information Gain: It represents the change in entropy of two levels.

Leaf node carries decision.

Our goal is to lower the entropy to minimum and to achieve this goal we classify data

using Decision tree classifier. Decision tree classifier can be explained through the following

points:

1. Entropy =
∑k

i=1 p(valuei)× log2[p(valuei)]

Where p(valuei) is the probability of (valuei)

2. Entropy of dataset will be calculated after every split to calculate gain.

3. We will try to choose condition that gives us highest gain ⇒ split data using each

condition and calculate gain that we get.

4. Condition that gives us highest gain ⇒ first split

5. Do it till we get single lable.

6. After this, to increase accuracy we will make forest of n such classifiers.

7. In the random forest that we will be forming there can be ’m’ number of random features

and any number of datapoints in every tree.
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8. After forming random forest,we will be extracting most important features(features

which cause more information gain) from each tree of random forest-making this algorithm

an ensemble algorithm.

9.Like this we can select most important features from dataset and thus reducing the

features to significant ones.

2.3 Image Fundamentals

Images are represented as matrix containing intensity value at each pixel of the image.

The resolution of an image tells us about the number of pixels in the image. There are

generally two kinds of images:

• Color Image(true color image) : A Color image has three intensity values for each

pixel. Generally a color image contains an intensity value for Red, Green and Blue

each(we consider by default the RGB mode of a picture) there are other formats

also like HSV. RGB image is stored as an m-by-n-by-3 data array that defines red,

green, and blue color components for each individual pixel. RGB images do not use

a palette. The color of each pixel is determined by the combination of the red, green,

and blue intensities stored in each color plane at the pixel’s location.

• Gray Scale Image: A Gray scale image contains only one type of color i.e. Shades

of gray. In digital representation of gray scale image, we assume that the intensity

value of each pixel lies within 0 to 255. Each value represents one shade of gray.

2.4 Performance Evaluation

For the evaluation of clusters formed by our algorithm, i.e. to measure the quality of cluster

formed we have calculated Normalized Mutual Information and Adjusted Random Index.

For the testing of face recognition, i.e. to check whether the face we are classified in the

correct cluster or not we have calculated accuracy.
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(a) Grey Scale Image (b) Color Image(RGB)

Figure 2.2: Example of both types of images

2.4.1 Accuracy

Accuracy is one metric for evaluating classification models. Informally, accuracy is the

fraction of predictions our model got right. Formally, accuracy has the following definition:

Accuracy =
Number of correct predictions

Total number of predictions

2.4.2 Normalized Mutual Information

NMI is used to evaluate the clustering results, which measure the agreement of the clus-

tering results produced by an algorithm and the ground truth. If we refer to class as the

ground truth and to cluster as the results of a clustering algorithm, the NMI is calculated

as follows

NMI =

∑k
c=1

∑m
p=1 n

p
c log

n.npc
nc.np√(∑k

c=1 nc log
(nc
c

))(∑m
p=1 np log

(np
n

))
where n is the total number of objects, nc and np are the numbers of objects in the cth

cluster and the pth class, respectively, and npc is the number of common objects in class p

and cluster c.
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2.4.3 Adjusted Rand Index

The adjusted Rand index is the corrected-for-chance version of the Rand index which is

a measure of the similarity between two clustering. To compute the ARI, we first harden

the fuzzy partitions by setting the maximum element in each column of U to 1, and all

else to 0. We use ARI to compare the clustering solutions with ground-truth labels (when

available)

ARI =

∑
i,j(

nij
2 )−

[∑
i(
ni
2 )
∑

j(
nj
2 )
]
/(n2 )

1

2

[∑
i(
ni
2 ) +

∑
j(
nj
2 )
]
−
[∑

i(
ni
2 )
∑

j(
nj
2 )
]
/(n2 )





Chapter 3

Problem Analysis And Design

For implementing face reduction algorithm firstly we need to pre-process our data. We

cannot apply our learning algorithm Weight Entropy Fuzzy C-Means Clustering algorithm

on raw data. The first step in data pre-processing will be feature extraction. After extract-

ing features, we will apply the feature reduction algorithm. Finally, the data obtained will

be fed to WEFCM to form clusters.

3.1 Feature Extraction

The data that we get for face reduction is face-images. In our data, we have coloured

images in RGB format. Before applying any machine learning algorithm on it, we have to

represent our face-images as a vector containing pixel values. We have done that in the

following steps:

1. We have face-images in the RGB format, in RGB image is stored as an n ×m × 3

data array that defines red, green, and blue colour components for each pixel where

n × m is the dimension of the image. Firstly, we will convert our colour image to

greyscale as in the greyscale image stores only one intensity per pixel, and that is the

intensity of grey colour. To convert coloured image to greyscale image the following

formula is used

Y = 0.299R + 0.587G+ 0.114B (3.1)

13
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where R is the intensity of red at a particular pixel, G is the intensity of green at a

particular pixel, B is the intensity of blue at the particular pixel and Y is the output

intensity we get for every pixel converted to greyscale.

2. In grayscale images, we have a single intensity value for each pixel. In holistic repre-

sentation, we take each pixel as a feature. We convert an image of dimension n×m
to a matrix of n×m, where each entry of the matrix is the intensity of the image at

that point.

3. Holistic representation is based on the lexicographic ordering of raw pixel values to

yield one vector per image. We convert the n × m matrix into a vector of length

(n.m). An image can now be seen as a point in a high dimensional feature space.

The dimensionality corresponds directly to the size of the image in terms of pixels.

Therefore, an image of size 100 × 100 pixels can be seen as a point in a 10,000

dimensional feature space.

4. The above steps can be used to convert all the images into a vector. The vectors are

concatenated together to form the dataset.

Using the steps as mentioned above, features are extracted from a dataset of images and

convert into a format so that feature reduction and other machine learning algorithms can

be applied to it.

3.2 Feature Reduction

In Holistic representation, the dimensionality corresponds directly to the size of the image

in terms of pixels as raw pixel values are used to yield vectors. Therefore, an image of size

250x250 pixels can be seen as a point in a 62,500-dimensional feature space. This large

dimensionality of the problem prohibits the use of any learning to be carried out in such

a high dimensional feature space. This is called the curse of dimensionality in the pattern

recognition literature [7]. A common way of dealing with it is to employ a dimensionality

reduction technique such as Principal Component Analysis PCA to pose the problem into

a low-dimensional feature space such that the major modes of variation of the data are
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still preserved. Like PCA other dimensionality reduction techniques like Locally Linear

Embedding and Extra Tree Classifier are also used.

We have used three different dimensionality reduction algorithms in this project, namely

Principal Component Analysis(PCA), Locally Linear Embedding(LLE) and Extra Tree

Classifier.

3.3 Weight Entropy Fuzzy C-Means Clustering Algo-

rithm

In this algorithm, we consider that the attribute weight in a cluster represents the proba-

bility of contribution of that attribute in forming the cluster. The entropy of the attribute

weight represents the certainty of dimensions in the identification of a cluster. Therefore,

the objective function of Fuzzy C-Means is modified by using attribute weighted dissimi-

larity measure and adding the attribute weight entropy term so that we can simultaneously

minimize the within-cluster dispersion and maximize the attribute weight entropy to stim-

ulate more important attributes to contribute to the identification of clusters[9]. The new

objective function of WEFCM is shown as follows:

JWEFCM =
N∑
k=1

C∑
i=1

(uik)
α

M∑
l=1

wil||Xkl − Vil||2 + γ
C∑
i=1

M∑
l=1

wil log(wil)

The first term is a distance-based objective function which controls the shape and size of

the clusters and encourages the agglomeration of clusters, while the second term uses the

negative attribute weight entropy which regularizes the attribute weights. γ is a regular-

izing and adjustable parameter. With a proper choice of γ, we can balance the two terms

to find a stable solution.

Algorithm: Weighted Entropy Fuzzy C-Means

Input: X, V, c, α, γ
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Output: U

Step 1: Randomly initialize cluster centers and weights.

Step 2: Compute cluster membership

uhj =
1

∑C
i=1

(
D

(1)
hj

D
(1)
ij

) 1

α− 1

If D
(1)
hj 6= 0 but D

(1)
ij = 0 for some i 6= h then uhj = 0

If D
(1)
hj = 0 and num = i : D

(1)
ij = 0 then uhj = 1

num

Where D
(1)
hj =

∑M
l=1whl||Xjl − Vhl||2, 1 ≤ h ≤ C, 1 ≤ j ≤ n

Step 3: Compute cluster centers

Vil =

∑N
j=1(uij)

αxjl∑N
j=1(uij)

α
, if wil 6= 0

Vil = 0, if wil = 0

Step 4: Update weights

wis =
e

−Dis
γ∑M

l=1 e
−Dis
γ

If
∑M

l=1 e
−Dis
γ = 0, Then wis = 1

m

Where Dis =
∑N

j=1(uij)
α(Xjs − Vis)2

Step 5: If ||V ′ − V || < ε then stop, else go to Step 2.
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3.4 Testing Algorithm

For the testing of our face recognition algorithm, we applied 10-Fold Cross-Validation. To

check the quality of clusters formed by our clustering algorithm we calculate Normalised

Mutual Information and Adjusted Random Index. To test whether the faces are getting

assigned the correct cluster we compute accuracy. For the computation of accuracy, we

need the number of accurate predictions. To get the number of correct predictions we need

to label our data, so we can check if the label assigned after clustering matches with the

pre-defined label(ground truth).

3.4.1 K-Fold Cross-Validation

In k-fold cross-validation, the original sample is randomly partitioned into k equal sized

subsamples. Of the k subsmples, a single subsample is retained as the validation data

for testing the model, and the remaining k 1 subsamples are used as training data. The

cross-validation process is then repeated k times, with each of the k subsamples used ex-

actly once as the validation data. The k results can then be averaged to produce a single

estimation. The advantage of this method over repeated random sub-sampling (see below)

is that all observations are used for both training and validation, and each observation is

used for validation exactly once. 10-fold cross-validation is commonly used, but in general

k remains an unfixed parameter.

We have used 10-fold cross-validation, so k = 10. In 10-fold cross-validation, we ran-

domly shuffle the dataset into ten sets, so that all of them are equal in size (this is usu-

ally implemented by shuffling the data array and then splitting it in ten). When k = n

(the number of observations), the k-fold cross-validation is exactly the leave-one-out cross-

validation. So we train on d0 − d8 and validate on d9, similarly we train and validate on

each of them.

3.4.2 Labeling Data

For the calculation of accuracy, we need to label our data. We get the membership matrix

and cluster centres from Weighted Entropy Fuzzy C-Means. We label cluster centres using
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K-Nearest Neighbours.

We have our cluster centres, to label them first we find its K nearest neighbours in term

of Euclidean distance. After getting k nearest neighbours, we check the labels of nearest

neighbours. The label having the highest frequency among them will be assigned as the

label of that cluster centre.

K Nearest Neighbours

For each test data point, we would be looking at the K nearest training data points and

take the most frequently occurring classes and assign that class to the cluster centres. K

represents the number of training data points lying in proximity to the test data point

which we are going to use to find the class.

Algorithm- KNN

1. Load the training data and cluster centers

2. Choose the value of K

3. For each point in Cluster Centers:

(a) find the Euclidean distance to all training data points

(b) store the Euclidean distances in a list and sort it

(c) choose the first k points

(d) assign a class to the cluster center based on the majority of classes present in

the chosen points

4. End

Now we have the labels for our predicted data too, so we can calculate accuracy of face

recognition algorithm.
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3.5 Setup and Implementation

3.5.1 Setup

The implementation of this project is done in Python2 on Ubuntu. Python2 can be easily

installed on Ubuntu by running following commands on the terminal one by one in given

order-

sudo apt update

sudo apt upgrade

sudo apt install python2.7 python-pip

The packages used are - os, cv2(openCV), numpy, pandas, matplotlib, sklearn, math,

timeit, skfuzz. To install all these packages use the following command for every package

separately.

pip2 install <package>

Here in place of ¡package¿ write the package to be installed.

3.5.2 Implementation

Implementation is done in python. The first step is data preprocessing. It could be

understood through the flowchart in the figure 3.1.

After preprocessing feature reduction is done using three different methods PCA, LLE

and extra tree classifier. Clustering is done on reduced data using WEFCM. And then

finally testing is done. These steps can be understood from the figure 3.2.

Code for WEFCM

We have implemented WEFCM in python. The packages we have used are Numpy, Mat-

plotlib, pandas, cv2(openCV), operator and math. Following is the implementation of

some important function needed for implementing WEFCM, and after that we have givin

WEFCM’s implementation.

## Function To update Clus te r Centers
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Figure 3.1: Data Preprocessing

de f c a l c u l a t e C l u s t e r C e n t e r (U, sx , k ) :

u=np . array (U)

um=u∗∗m
sx=np . array ( sx )

um=um.T

cente r = um. dot ( sx ) / np . a t l e a s t 2 d (um. sum( a x i s =1)) .T

return cente r

## Function To Update Membership Matrix

de f updateMembershipValue (D,U, k ) :

p = f l o a t (2/(m−1))

u=np . power (D, p)

u1=np . r e c i p r o c a l (D, dtype=f l o a t )

u2=np . power ( u1 , p)

u3=np . sum( u2 , a x i s =1)
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u=u .T

u4=np . mult ip ly (u , u3 )

u4=u4 .T

u4=np . r e c i p r o c a l ( u4 , dtype=f l o a t )

u4=u4 . t o l i s t ( )

r e turn u4

## Function To Ca lcu la te D1 Which i s used to c a l c u l a t e Membership Matrix

de f ca l cu l a t e D1 (W,C,X, k ) :

D=l i s t ( )

x=np . array (X)

w=np . array (W)

f o r i in range ( k ) :

c=C[ i ] ;

c=np . array ( c )

c1=np . subt rac t (x , c )

c2=np . square ( c1 )

c3=np . mult ip ly ( c2 ,w[ i ] )

c4=np . sum( c3 , a x i s =1)

c5=c4 . t o l i s t ( )

D. append ( c5 )

D=np . array (D)

D=D.T

D=D. t o l i s t ( )

r e turn D

## Function to c a l c u l a t e D2 which i s used to c a l c u a l t e Weights

de f c a l c u l a t e d 2 (W,C,U,X, k ,D) :

D2=l i s t ( )



22 CHAPTER 3. PROBLEM ANALYSIS AND DESIGN

x=np . array (X)

u=np . array (U)

u=np . power (u ,m)

f o r i in range ( k ) :

c1=np . subt rac t (x ,C[ i ] )

c2=np . square ( c1 )

c2=c2 .T

c22=np . array (u [ : , i ] )

c3=np . mult ip ly ( c2 , c22 )

c3=c3 .T

c4=np . sum( c3 , a x i s =0)

D2 . append ( c4 )

re turn D2

## Function To Update Weight

de f updateweight (W, k , D2 ,D) :

gamma1=f l o a t (−1/gamma)

D2=np . array (D2)

D2=np . mult ip ly (D2 , gamma1)

D2=np . exp (D2)

d3=np . sum(D2 , a x i s =1)

D2=D2 .T

W=np . d iv id e (D2 , d3 )

W=W.T

W=W. t o l i s t ( )

r e turn W

## Weight Entropy Fuzzy C−Means

de f WEFCM(Z , k ) :
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D=len (Z [ 0 ] )

n=len (Z)

W=i n i t i a l i z e W e i g h t (k ,D)

U=in i t i a l i z eMember sh ipMatr ix (n , k )

c en te r=c a l c u l a t e C l u s t e r C e n t e r (U, Z , k )

i=0

aphse lan=np . max( cent e r )

whi l e ( i<max iter ) :

D1=ca l cu l a t e D1 (W, center , Z , k )

U=updateMembershipValue (D1 ,U, k )

D2=c a l c u l a t e d 2 (W, center ,U, Z , k ,D)

W=updateweight (W, k , D2 ,D)

cente r1=c a l c u l a t e C l u s t e r C e n t e r (U, Z , k )

c d=np . subt rac t ( center1 , c en t e r )

c d=np . square ( c d )

c d1=np . sum( c d , a x i s =1)

c d1=np . s q r t ( c d1 )

aphse lan=np . max( c d1 )

c en te r=cente r1

i+=1

return U, cent e r
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Figure 3.2: Flowchart showing Steps of Implementation
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Experimentation

4.1 Data Description

For the testing of clustering algorithm Weight Entropy Fuzzy C-Means we have used IRIS

Dataset. ORL dataset and a real dataset are used for the testing of face recognition.

• ORL Database:

The ORL Database of Faces contains ten different images of each of 40 distinct

subjects. For some subjects, the images were taken at different times, varying the

lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial

details (glasses / no glasses). All the images were taken against a dark homogeneous

background with the subjects in an upright, frontal position (with tolerance for some

side movement). The files are in PGM format. The size of each image is 92x112

pixels, with 256 grey levels per pixel.

• Real Dataset:

We created a real dataset by taking pictures of some students of our college in different

angles. Each student has 8 distinct pictures. Each picture has dimenstions 4160-by-

3120 pixels.

• Iris Dataset:

25
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It is a benchmark dataset. The data set contains 3 classes of 50 instances each with

5 attributes, where each class refers to a type of iris plant. One class is linearly

separable from the other 2; the latter are NOT linearly separable from each other.

4.2 Results

4.2.1 WEFCM

We tested Weight Entropy Fuzzy C-Means against traditional clustering algorithms Fuzzy

C-Means and K-means. We compared the three algorithms by clustering them on Iris

dataset. Following was the accuracy recorded.

Mean Accuracy Max Accuracy Min Accuracy
K-means 0.82 0.89 0.54
FCM(Alpha = 1.8) .89 0.89 0.89
WEFCM(Alpha = 1.1) 0.97 0.97 0.98

Table 4.1: Performance Comparison of WEFCM with Traditional algorithm

The table shows the performance analysis of WEFCM. It is clear that WEFCM outper-

forms traditional clustering methods like FCM and K-means. Hard clustering algorithms

are more sensitive to the initial cluster centers, which we can see that for K-means clustering

performance fluctuated greatly. WEFCM can outperform FCM because of the introduction

of attribute weight factor.

4.2.2 ORL Dataset

After WEFCM outperformed traditionl clustering algorithm, we test WEFCM for face

recognition, using ORL Dataset. And also we will try to find optimal values for clustering

parameters.
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Locally linear Embedding

Following is the result obtained for different values of Alpha, Gamma, n-estimators and

Iterations, when Dimention reduction is done by locally linear embedding on ORL Dataset.

We have recorded the values of NMI, ARI and Accuracy.

Alpha Gamma Iteration n-comp- NMI ARI Max Min Mean
onents Accuracy Accuracy Accuracy

1.25 -100 160 50 0.88 0.6 0.82 0.76 0.74
1.17 5 100 50 0.88 0.67 0.82 0.64 0.74
1.17 5 100 32 0.88 0.65 0.79 0.76 0.71
1.7 5 100 32 0.89 0.69 0.79 0.74 0.72
1.5 -100 100 50 0.88 0.67 0.76 0.74 0.71

Table 4.2: Result of LLE for ORL

Here, n-components is the dimenstion for manifold for locally linear embedding. We

have recorded values for a large number of combinations of alpha, gamma, etc. But we

have shown here only the values which were giving optimal results. Here the variation in

accuracy is large because of the fact that we are randomly initialising weights.

Extra Tree Classifier

Following is the result obtained for different values of Alpha, Gamma, n-estimators and

Iterations, when Dimention reduction is done by Extra Tree Classifier on ORL Dataset.

We have recorded the values of NMI, ARI and Accuracy.

Here, n-estimator is the number of trees in the forest. We have recorded values for a

large number of combinations of alpha, gamma, etc. But we have shown here only the

values which were giving optimal results. Here the variation in accuracy is large because

of the fact that we are randomly initialising weights.
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Alpha Gamma Iteration n-esti- NMI ARI Max Min Mean
mator Accuracy Accuracy Accuracy

1.7 -100 130 50 0.87 0.6 0.77 0.66 0.74
1.5 -100 130 50 0.88 0.67 0.82 0.69 0.76
1.5 -100 140 50 0.87 0.64 0.74 0.61 0.71
1.5 -100 160 50 0.89 0.69 0.79 0.69 0.74
1.5 -100 200 50 0.88 0.67 0.76 0.64 0.71

Table 4.3: Result of Extra Tree Classifier for ORL

Principal Component Analysis

Following is the result obtained for different values of Alpha, Gamma, n-components and

Iterations, when Dimention reduction is done by Principal Component Analysis on ORL

Dataset. We have recorded the values of NMI, ARI and Accuracy.

Alpha Gamma Iteration n-comp- NMI ARI Max Min Mean
onent Accuracy Accuracy Accuracy

1.7 10 100 75 0.86 0.59 0.74 0.69 0.72
1.7 15 100 75 0.85 0.579 0.74 0.66 0.71
1.7 32 100 75 0.88 0.65 0.74 0.69 0.71
1.7 20 100 75 0.89 0.69 0.79 0.74 0.72
1.5 -100 100 50 0.88 0.67 0.76 0.74 0.71

Table 4.4: Result of PCA for ORL

Here, n-components is the number of components to keep after PCA. We have recorded

values for a large number of combinations of alpha, gamma, etc. But we have shown here

only the values which were giving optimal results. Here the variation in accuracy is large

because of the fact that we are randomly initialising weights.

When we compare the results of the three dimension reduction algorithm we find that

Locally linear embedding is the fastest of the three. Although the results of LLE and

extra tree classifier were comparable, the result of lle were better in terms of accuracy and

speed. But extra tree classifier was showing comparetively less fluctuation than LLE. The
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result of LLE were better because it preserves local properties, neighborhood information

is maintained.

4.2.3 Real Dataset

Following is the result obtained for different values of Alpha, Gamma, n-components and

Iterations, when Dimention reduction is done by Principal Component Analysis on Real

Dataset. We have recorded the values of NMI, ARI and Accuracy.

Alpha Gamma Iteration n-component NMI ARI Accuracy
1.7 32 100 25 0.745 0.549 0.894
1.5 1.4 100 25 0.747 0.557 0.894
1.5 5 100 25 0.779 0.5849 0.894
1.7 5 100 25 0.75 0.5411 0.841
1.5 5 30 25 0.758 0.526 0.789

Table 4.5: Result of PCA for Real Dataset

Here, n−component is the number of components to keep after PCA. We have recorded

values for a large number of combinations of alpha, gamma, etc. But we have shown here

only the values which were giving optimal results. The accuracy for real data set is better

as compared to ORL dataset.
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Conclusion and Future Work

In this project we implemented Weight Entropy Fuzzy C-Means and applied it for face

recognition. We used three different menthods for dimenstion reduction for this, Locally

linear embedding, Extra tree classifier and principal component analysis. Out of these

three dimensionality reduction methods, the best results in term of speed and accuracy

were given by locally linear embedding. The normalised mutual information for face recog-

nition using locally linear embedding dimension reduction method was coming around

88-89 percent.

In Future work we are planning to extend this project to implement WEFCM in parallel

environment. We are planning to implement a scalable version of WEFCM in Apache

Spark. And merge this scalable version with Random Fuzzy Clustering Algorithm, which

is applied on big data. So we are planning to implement a clustering algorithm for Big

data which will have huge number of data points with big number of features.
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