
 

B.TECH. PROJECT 
REPORT 

 

On 

Implementation of 0in Hash 
table using C++ STL 

 
 
 

BY 
Kailas N Sheregar 

150001031 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DISCIPLINE OF COMPUTER SCIENCE and ENGINEERING 
 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
 

 
December 2018 



 

 

 

Implementation of 0in Hash 
table using C++ STL 

 
 
 
 

A PROJECT REPORT 
Submitted in partial fulfillment of the 

requirements for the award of the degrees 
of 

BACHELOR OF TECHNOLOGY 
in 

COMPUTER SCIENCE AND ENGINEERING 
 

Submitted by: 
Kailas N. Sheregar 

 
 

Guided by: 
Dr. Bodhisatwa Mazumdar, 

Assistant Professor, 
Discipline of Computer Science and Engineering 

 
 
 
 
 
 
 
 
 
 
 
 
 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
 

December, 2018  



 
CANDIDATE’S DECLARATION 

 
 
 
 
I hereby declare that the project entitled “Implementation of 0in Hash table            

using C++ STL ” submitted in partial fulfillment for the award of the degree of               

Bachelor of Technology in ‘Computer Science and Engineering’ completed under          

the supervision of Dr. Bodhisatwa Mazumdar, Assistant Professor, Discipline         

of Computer Science and Engineering, IIT Indore and Mr. Chakra Agarwal,           

Lead Member Technical Staff, Mentor Graphics is an authentic work. 
 
Further, I declare that I have not submitted this work for the award of any other                

degree elsewhere. 

 
 
Kailas N Sheregar 
 
 
_________________________________________________________________ 

 
CERTIFICATE BY BTP GUIDE 

 
 
 
 

It is certified that the above statement made by the students is correct to the 

best of my knowledge. 
 
 
 
Dr. Bodhisatwa Mazumdar, 
Assistant Professor, 
Discipline of CSE, 
IIT Indore. 

 



Preface 
 
 
 
 

This report on “Implementation of 0in Hash table using C++ STL" is            
prepared under the guidance of my mentor at Mentor Graphics, Mr. Chakra            
Agarwal and BTP supervisor at IIT Indore, Dr. Bodhisatwa Mazumdar. 
 
Through this report I have tried to give a description of how the project was               
completed in the course of 6 months in the company and the various technologies              
used for the purpose. 
 
I have tried to the best of my abilities and knowledge to explain the content in a                 
lucid manner. 
 
 
 
 
 
 
Kailas N Sheregar 
 
B.Tech. IV Year 
Discipline of Computer Science and Engineering 
IIT Indore 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Acknowledgement 
 

 
 
 
 
 
I would like to express my deepest appreciation to all those who provided me the 
possibility to complete this report.  A special gratitude I give to my BTP 
project supervisor, Dr. Bodhisatwa Mazumdar, Assistant Professor ,Discipline of 
Computer Science and Engineering, IIT Indore. 
 
Furthermore I would also like to acknowledge with much appreciation the crucial 
role of Mentor Graphics , who gave me the opportunity to work for the company. 
Last but not least, many thanks go to the manager of the project, Mr. Sanjeev 
Aggarwal, and my mentor Mr. Chakra Agarwal who have invested their full effort 
in guiding me in achieving our goal. I have to appreciate the guidance given by 
other supervisors as well as the panels especially in our project presentation that 
has improved our presentation skills thanks to their comment and advices. 
 
 
 
 
 
 

Kailas N Sheregar 
 
B.Tech. IV Year, 
 
Discipline of Computer Science and Engineering, 
 
IIT Indore 
 
 
 
 
 
 
 
 
 

 



Contents 
 

 
 
Candidates Declaration………………………………………………. .2 
 
Supervisors Certificate………………………………………………... 2 
 
Preface………………………………………………………………… 3 
 
Acknowledgement…………………………………………………….. 4 
 
Contents………………………………………………………………...5 
 
Important terms…………………………………………………………7 
 
Motivation behind Project………………………………………………7 
 
Goals of Project………………………………………………………....8 
 
Major Challenges for project…………………………………………....8 
 
Original implementation………………………………………………...9 
 
New implementation…………………………………………………….10 
 
APIs which were modified……………………………………………....11 
 

1. Creation functions 
2. Retrieval functions 
3. Updation functions 
4. Deletion functions 

 
Macros used for iterating through hash table…………….……………...12 
 
Templates………………………………………………………………...13 
 
Removing redundancy…………………………………………………...13 
 
Support for VHDL strings……………………………………………….13 



 

 
Testing procedure………………………………………………………...14 
 
Performance analysis……………………………………………………..15 
 
Code Deployment………………………………………………………...17 
 
Bibliography……………………………………………………………...18 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Important terms :- 

1. 0in :- The company which originally implemented the old hash table for 
Mentor Graphics. 

2. Hash table :- Hash Table is a data structure which stores data in an 
associative manner. This makes data access and search very fast. 

3. C++ STL :- It is short for C++ Standard Template Library. It is a powerful 
library that implements many popular and commonly used algorithms and 
data structures like vectors, lists, queues, and stacks. 

Motivation behind project :  

The main purpose behind the project to make the hash table more in line with 
today’s needs. The original hash table was written in C back in the 1990s and was 
implemented from scratch. The idea was to reimplement the widely used hash table 
in such a manner that it now used C++ STL. The advantages are many: 

1. C++ STL implements low level optimization which improves operations like 
access time. 

2. In case there are any upgrades to STL internally, simply recompiling will 
exploit them, making them much easier to keep up to date and maintain. 

3. C is quite outdated, majorly due the absence of powerful features like OOPs 
and standard libraries. It was felt that the hash table should upgraded as well 
to make it easier to use for developers more familiar in C++. 

4. To check whether certain regressions could possibly run on STL hash table. 

 

 

 

 



Goals of the Project : 

As mentioned the main aim for the project was to port all the hash table APIs to 
ones using C++ STL internally. Other than that, the focus should should be on 
minimizing external changes to APIs, which would warrant developers and clients 
who have used these APIs to modify their code, and would turn out to be very 
cumbersome. Finally, even though the largest effort would be put into minimizing 
these said external changes, many functionalities inevitably require an external 
change. In such a case it would be necessary to preserve all original functionalities 
along with clear instructions and explanations as to how to use them in case they 
are needed. 

Major challenges for project : 

1. In the existing library, data types and related functions like hasher functions 
and comparison functions are decided at run time while in C++ STL these 
have to be specified at compile time . Basically the C++ STL hash table 
namely unordered_map takes parameters in its template regarding the data 
types of the key type, value type and other functions involved. However, 
templates are expanded at compile time. In the old hash table however, a 
hash creation function identifies these when it is called over a old hash table 
object. 

2. Iterating macros for traversing the old hash table have been written but they 
have not been written to handle data type mismatches. Hence this issue 
needed to be addressed. 

3. Unlike traditional hash tables this hash table also keeps track of insertion 
order of elements which needs to be implemented in the new hash table. 
Unordered_map does not provide such a facility because of which such a 
functionality had to implemented over it. 

 

 



Original Implementation : 

Original hash table was implemented through two structures :- 

1. Main structure for collection of bins corresponding to every hash value. 
2. Structure for each data element node. 
3. Each element consists of key value, data value and three pointers: 

a. For next element in bin. 
b. For next element inserted. 
c. For previous element inserted.  

Hasher functions, comparison functions, freeing functions and copying functions 
are passed to hash table at the time of creation. Each key corresponds to a bin 
where data elements corresponding to these its hash key are stored. Separate 
chaining method is used to address collisions. 

 

 



New Implementation :  

1. The hash table provided by C++ STL, unordered_map is generally 
implemented in the same manner as in the 0in hash table. However, it 
doesn’t provide the functionality of keeping track of the order of elements. 
Hence the new structure consists of unordered map along with list to store 
ordering. 

2. We shall also need a list to store the ordering of the elements along with an 
iterator to store a link to these. An additional list iterator is stored along with 
every element. 

3. Different types of hash table declared depending on type of values and hash 
function and copy function required. Mainly four data types will be handled: 

a. Void  * key, void * value 
b. Void * key, integer value 
c. Char * key, void * value 
d. Char * key, integer value 

4. Since the maintenance of a list results in extra overhead in terms of both 
time and memory, an option has been given to avoid the use of list in case 
any client doesn’t require the storing elements’ order.  

5. References to different declarations of hash table placed inside the main 
structure for new hash table. 

6. Extra variable stored to indicate whether the new table is being used or the 
old table. 

 

 

 

 

 



APIs which were modified : 

Hash creation functions 

There are many different hash creation functions which create different types of 
hash table when invoked with a object of our hash table structure. As mentioned, 
there are mainly four hash creation functions corresponding to each type 
mentioned above. Other than these there are also other variations which create hash 
functions with the same data types but with different accompanying hasher , 
comparison functions etc. 

To implement these functionalities in the new table we used the corresponding 
pointers to the different types of unordered_map and lists we had defined in the 
overall struct already. 

Other than creating entirely new hash tables, a duplication function also exists 
which takes a existing hash table object as argument, creates a new table and 
copies all elements into it using old copying function. 

Functions for retrieval of elements 

Various functions used to access values in the hash table were reimplemented. 

Two basic functions for querying include one to access integer values and one to 
access generic void * pointer values. 

Other variations of querying functions include a method to get the first element of 
a hash table, method to get the last element of a hash table, method to delete 
element after its value has been retrieved and one to get unsigned integer values. 
Separate functions for all of these had to be written as we didn’t wish to change the 
external interface. 

A final very important function which falls under the class of querying functions 
would be the print function.  



 Updation and insertion functions 

Functions capable of inserting elements into the hash table fall into two categories : 

1. Normal insertion of data : In this method the key is searched in the hash 
table, and if it is found, no changes are made to the table. Elements are 
inserted only if the key doesn’t exist previously in the table.  

2. Forceful insertion : In this method the key value pair is stored in the table 
regardless of whether the key is found or not. If the key exists previously, 
that value will be deleted. 

Copying a element is done by using the hash table’s copy function. There also 
exists a API to move the first element to the end position. 

Deletion functions 

The deletion functions which were rewritten include : 

1. Function to delete entries storing void pointers as values. 
2. Method to delete integer type values. 
3. Method to empty hash table. 
4. Method to completely delete table. 

Deletion APIs were required to use the free function. 

Macros used for iterating through hash table 

Various macro APIs had been written to traverse the old hash table including 
traversing APIs to traverse over all the keys of the table, values in the table and 
traversing in ordered or unordered manner. Separate APIs were also written for 
integer value type hash tables. 

The main problem with writing them using C++ was that there was a type 
mismatch which had to be resolved at compile time. To solve this problem, 



function templates for carrying out this type conversion was written.  

Templates 

To deal with the recurring problem of data type mismatch two types of templates 
functions were written : 

1. Templated functions which return an object of the type of unordered_map 
and list being used. 

2. A converting function which typecasts variables into the one passed to it as a 
template parameter. 

Miscellaneous APIs :  

Other minor APIs which we had to written, were for : 

1. Calculating number of elements of hash table. 
2. Creating a special hash table storing string keys but without any copying 

function. 
3. Sorting of hash table entries. 

Removing redundancy : 

Although every function had to implemented differently for different types, many 
required similar code which could be avoided if they could be replaced with 
generic macros. This could again be done with help of function templates we had 
already written. 

Support for VHDL strings 

In the later stages of the project a requirement for APIs involving hash tables 
storing vhdl strings as keys came up. These vhdl strings differ from normal strings 
only in their comparison function with key type and value type remaining the 
same. This warranted defining another type of hash table. To make all APIs work 
on this kind of hash table as well, all functions and macros had to be modified and 



additional templated functions had to be written. Additions were also made to the 
test program. 

 

Testing Procedure : 

1. Testing involved three components. 
2. First section called all necessary functions to check portability. 
3. Second section involved time analysis for the new implementation. 

a. Random data generated for each data type and dumped into large file. 
b. Hash table APIs then insert these values in hash table and then 

perform query operations generating time results for both. 
4. Third section generated time analysis results for old hash table for 

benchmarking. 

 

 

 

 

 

 

 

 

 



Performance analysis : 

Performance Table (10M entries) 

1. Insertion benchmarking 

 

 0in hash table STL hash 
table(ordered) 

STL hash table 
(unordered) 

 Time 
(s) 

Memory 
(kB) 

Time in sec 
( % 
improve 
ment) 

Memory 
(% 
improve
ment) 

Time in 
sec( % 
improve
ment) 

Memory 
(% 
improve
ment) 

Void * vs 
void * 

6.41 49220 6.19 
(3.43) 

1076708 
(-118.74) 

5.44 
(15.13) 

607876 
(-23.49) 

char * vs 
void * 

12.6 1586976 8.93 
(29.12) 

2171548 
(-36.83) 

8.24 
(34.60) 

1702852 
(-7.30) 

 

Note :- The larger memory requirement, even when list is not used, is possibly due 
to large block size allocation used by unordered_map to avoid frequent rehashing. 
This proves beneficial if querying operations are high as compared to insertion and 
deletion operations, which is generally the case. 

 

 

 

 

 



2. Query benchmarking 

 

 0in hash 
table 

STL hash table(ordered) STL hash table 
(unordered) 

 Time (s) Time 
(s) 

Time 
(% improvement) 

Time 
(s) 

Time 
(% improvement) 

Void * vs 
void * 

2.33 1.57 32.6 1.43 38.6 

char * vs 
void * 

5.9 3.95 33.05 3.9 33.9 

 

Performance Table (50M entries) 

1. Insertion benchmarking: 

 

 0in hash table STL hash table(ordered) STL hash table 
(unordered) 

 Time 
(s) 

Memory 
(kB) 

Time in sec 
(% 
improvement) 

Memory 
(% 
improve
ment) 

Time in 
sec( % 
improve
ment) 

Memory 
(% 
improve
ment) 

Void * vs 
void * 

37.34 2414872 33.47 
(10.36) 

5239016 
(-116.94) 

28.55 
(23.54) 

2895256 
(-19.89) 

char * vs 
void * 

70.99 7910764 48.33 
(31.91) 

10734860 
(-35.69) 

46.91 
(33.92) 

8391104 
(-6.07) 

 

 



     2. Query benchmarking: 

 

 0in hash 
table 

STL hash table(ordered) STL hash table 
(unordered) 

 Time (s) Time (s) Time  
(% improvement) 

Time 
(s) 

Time 
 (% improvement) 

Void * vs 
void * 

18.43 10.88 40.96 10.63 42.32 

char * vs 
void * 

40.28 28 30.48 25.66 36.29 

 

 

Code Deployment 

1. Code reviews and test for corrections were carried out. 
2. New hash table was deployed on a directory of code files. 
3. After managing a few minor bugs, code was successfully deployed. 
4. This was followed by pushing the new hash table library to main code body. 
5. Clients wanting to use the code can compile their code in C++ and include 

our header file. 

 

 

 

 

 



References 

Modern C++ Design - Andrei Alexandrescu. 

cppreference .com 

cplusplus.com 


