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Abstract

Graphene, a 2D material with exceptional electronic, mechanical, and thermal

properties, has garnered significant interest for various applications. Flexoelectricity,

a coupling between mechanical strain and electrical polarization, is a unique property

of dielectric materials. This property can potentially revolutionize various fields,

including energy harvesting, nanodevices, and sensors. However, understanding the

flexoelectric behavior of graphene-based structures at the nano- and microscales is

crucial for optimal utilization. Graphene is centrosymmetric, so it is not piezoelectric.

To make graphene flexoelectric, bending or strain engineering can be applied. This

study used the strain engineering method with different defects for polarization

properties. GPAW, a Python-based software for Density functional theory (DFT), is

used. Berry phase formulation is implemented to determine dipoles and polarization.

The flexural rigidity of graphene is studied at the microscale level. In first-principles

calculations, various electro-mechanical properties were determined. Polarization

properties were evaluated using various defect geometries such as Stone-Wales and

triangular defects in monolayer and multilayer cases. In the heterostructure case, the

various combinations of Boron nitride nanosheets (BNNSs) and graphene layering

patterns were studied for their polarization properties. The investigation delves

into the intricate interactions at the nanoscale and microscale level, analyzing how

flexoelectric properties manifest in graphene-based structures. The study aims to

enhance our understanding of flexoelectric phenomena in graphene-based structures

and their potential applications in advanced materials and devices by scrutinizing the

electro-mechanical behavior at both nano and micro levels.

Keywords: Graphene, Graphene nanoribbon, Boron nitride nanosheet, dipole,

Berry phase, Polarization, Piezoelectricity, Flexoelectricity, Density functional the-

ory, grid-based projector-augmented wave, Heterostructure, bandstructure, van der

Waals forces, Quantum electrostatic heterostructure, Stone–Wales defects, graphene-

reinforced nanocomposite, Mechanics of materials.
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Chapter 1

Introduction

1.1 Nanotechnology

Nanoscience is the exploration of material properties at the nanoscale, typically

within the range of 1 to 100 nanometers with one nanometer (nm) being equivalent

to one billionth of a meter (1/109). This field is undergoing rapid expansion, with

scientists from various disciplines collaborating to understand the characteristics

of matter on the nanoscale and explore innovative applications for materials at

this level. The fundamental properties of nanomaterials, including mechanical,

electrical, optical, and thermal features, are intricately linked to the arrangement of

molecules and atoms into larger structures at the nanoscale. Moreover, nanomaterials

often exhibit altered atomic-level properties compared to the macroscale due to

the influence of quantum mechanical effects (Cohen, 2001). A notable aspect of

nanomaterials is their larger surface area in relation to their parent materials on

the microscale, considering a specific volume (Roco, Mirkin, & Hersam, 2011). This

increased surface area enhances the reactivity of nanomaterials, making them efficient

for various applications.

Nanotechnology applies principles from nanoscience to create innovative materials,

devices, and systems, potentially revolutionizing various industries such as healthcare,

electronics, energy, and manufacturing. It involves manipulating matter with at least
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one dimension between 1 and 100 nm. Figure 1.1 illustrates the relationship of this size

scale to more common, everyday scales. The ability to control matter at the nanometer

scale has already yielded substantial advancements in various disciplines, including

engineering, physics, materials science, chemistry, medicine, and biology. The term

“nanotechnology” damping was coined by Richard Feynman in 1959. Research at

the nanoscale level accelerated after the discovery of Scanning Tunneling Microscope

(STM) (Binnig, Rohrer, Gerber, & Weibel, 1982), and Atomic force microscopy (AFM)

(Binnig, Quate, & Gerber, 1986). The discovery of STM and AFM allowed researchers

to study and manipulate individual atoms. Manipulating materials at the nanoscale

empowers us to craft custom-made materials and products with improved properties,

leading to advancements in nanoelectronics, intelligent pharmaceuticals, sensors, and

customized interfaces connecting electronics with biological systems.

Figure 1.1: The comparison of size of nanoscale objects.

The widespread advancement of nanotechnology and nanoscience has resulted in

the discovery of several exciting nanomaterials. As an example, Iijima’s groundbreak-

ing research on carbon nanotubes (Carbon nanotubes (CNTs)) in 1991, along with
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subsequent studies on their remarkable mechanical, thermal, and electrical properties,

has spurred further investigations into various types of nanotubes. Boron nitride (BN)

has similar lattice structures to carbon-based nanostructures. The BN nanostructures,

including Boron nitride nanotubes (BNNTs), Boron nitride nanoribbons (BNNRs),

and BNNSs are based on the hexagonal phase BN, with B–N bonds. The B–N bonds

are isoelectronic, with C–C bonds in carbon-based nanostructures. Therefore, the

structures of BNNS, BNNR and BNNT are similar to graphene, Graphene nanorib-

bons (GNRs), and CNTs, respectively, as shown in Fig. 1.2

Figure 1.2: Different BN- and carbon-based nanostructures; BNNS, graphene,
BNNT, and CNT.

1.2 Graphene nanoribbons

Geim and Novoselov (Geim & Novoselov, 2007) first created a two-dimensional

single-layer graphene sheet, which consists of carbon atoms with covalent bonds and

is the basis for both 3D graphite and 1D CNTs.

It has unique scale-dependent electronic (metal and semiconductor behavior depending

on orientation), mechanical (elastic modulus 1TPa), and thermal (thermal conduc-

tivity 5300 W/mK at room temperature) properties (Zhang, Tan, Stormer, & Kim,

2005; C. Lee, Wei, Kysar, & Hone, 2008; Balandin et al., 2008). Graphene, one of
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the strongest materials, can be strained up to 25 % (G.-D. Lee et al., 2005), and its

behavior varies from metallic to semiconducting based on its deformation and defects

pattern (Son, Cohen, & Louie, 2006; Novoselov et al., 2005; Sanderson, 2007). The

structure of Graphene nanosheets (GNSs) relies on the atomic configuration of carbon

atoms within a two-dimensional hexagonal lattice. In graphene, each carbon atom es-

tablishes three robust covalent bonds with its three closest neighboring carbon atoms,

creating a distinctive honeycomb-like pattern. This specific arrangement is called a

“sp2 hybridized” carbon lattice.

Carbon Atoms: GNSs consist entirely of carbon atoms. Each carbon atom possesses

four valence electrons. In graphene, three of these electrons participate in sigma (σ)

bonds with three adjacent carbon atoms, while the fourth electron is mobile within

the lattice, contributing to the remarkable electrical conductivity of graphene.

Hexagonal Lattice: The carbon atoms arrange themselves in a hexagonal pattern,

forming six-membered rings. Each hexagon in the lattice represents a single carbon-

carbon bond.

sp2 Hybridization: The carbon-carbon bonds in GNSs are formed through sp2

hybridization of carbon orbitals. Each carbon atom’s three valence electrons form

three sigma (σ) bonds arranged in a trigonal planar configuration. This bonding

arrangement results in a flat, two-dimensional structure.

Atomic Thickness: GNSs are incredibly thin, with a thickness of just one atom.

Each layer comprises a single hexagonal lattice of carbon atoms, forming a single

GNS. It is noteworthy that GNSs can also consist of a few-layer graphene, and the

number of layers may vary based on the specific preparation method.

Carbon-Carbon Bond Length: The C-C bond length in graphene is approximately

0.142 nm, relatively short compared to other carbon-based materials.

High Surface Area: GNSs exhibit an exceptionally high surface area per unit mass

due to their two-dimensional structure. This characteristic makes them appealing for

diverse applications, including energy storage, catalysis, and gas sensing.

GNSs can be produced using various methods, including CVD, epitaxial growth,

or exfoliation from bulk graphite. The synthesis process allows for control over the
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size and shape of GNSs, resulting in diverse morphologies.

Overall, the distinctive structure of GNSs, characterized by a unique hexagonal lat-

tice and atomic thickness, underlies their exceptional properties. Consequently, they

have become highly desirable materials for various applications in nanotechnology,

electronics, energy, and beyond.

1.3 Boron nitride nanosheets

Boron nitride nanosheets (BNNSs) are two-dimensional nanomaterials typically

composed of single, bi-, or multilayer (ML) hexagonal boron nitride (hBN) on the

order of nm scale. Widely recognized in academia and industry, BNNS has gar-

nered significant attention due to its multifunctional properties among all other boron

nitride-based nanostructures. Analogous to graphene, ML-BNNSs were initially syn-

thesized by (Pacilé, Meyer, Girit, & Zettl, 2008), and both single- and ML-BNNSs were

produced by (Han, Wu, Zhu, Watanabe, & Taniguchi, 2008). Consisting of boron (B)

and nitrogen (N) atoms arranged alternately in a honeycomb pattern, similar to the

arrangement of carbon atoms in a graphene sheet (Lehtinen et al., 2011), BNNSs have

garnered significant attention as a material of great interest.

Over the past few years, BNNSs have garnered attention for their highly sta-

ble structures (Topsakal, Aktürk, & Ciraci, 2009), superior mechanical properties

(Topsakal et al., 2009; Bosak et al., 2006; S. I. Kundalwal & Choyal, 2018),

and functionalization capabilities, enabling tailored engineering for applications in

nanoelectromechanical system (NEMS) (Boldrin, Scarpa, Chowdhury, & Adhikari,

2011; Chaurasia & Parashar, 2021). With a large band gap of approximately 5 to 6 eV,

BNNSs exhibit insulating properties (Watanabe, Taniguchi, & Kanda, 2004; Topsakal

et al., 2009), coupled with excellent physical characteristics, high chemical and ther-

mal stabilities, and robust resistance to oxidation at elevated temperatures (exceeding

900 ℃) (Golberg et al., 2010). Furthermore, BNNSs possess a non-centrosymmetric

structure and partly demonstrate the ionic characteristic of B–N bonds due to the

electronegativity differences between B and N atoms, showcasing piezoelectricity.

1.3. BORON NITRIDE NANOSHEETS 5



CHAPTER 1. INTRODUCTION

The work by (Mele & Král, 2002), which gained significant attention in the field

of actuators and sensors (Eichler & Lesniak, 2008), composite materials (Zhi, Bando,

Tang, Kuwahara, & Golberg, 2009), hydrogen storage (xiang Zhao & hong Ding,

2009), gas sensors, optoelectronics, optical devices, transistors, and biological probes

(X. Song, Hu, & Zeng, 2013), has positioned hexagonal boron nitride nanosheets

(BNNSs) as versatile materials. Although most applications are similar to graphene

sheets, the BNNS possess additional multifunctional features like piezoelectricity and

white color. Moreover, the BNNSs display comparable mechanical properties to

graphene sheets, while the failure resistance may surpass the latter’s. The electrome-

chanical coupling in BNNSs is also better than the polymer-based piezoelectric ma-

terials (Sai & Mele, 2003). Several unique techniques are being employed to synthe-

size BNNSs: chemically derived route technique (Han et al., 2008), micromechanical

cleavage technique (Pacilé et al., 2008), electron beam irradiation (EBR) (Jin, Lin,

Suenaga, & Iijima, 2009; Cho et al., 2011), Chemical vapor deposition (CVD) (Shi et

al., 2010), and thermal decomposition of borazine on the surface of a transition metal

(Lin & Connell, 2012). After the discovery of BNNSs, extensive efforts have been

made to refine the synthesis process to obtain pristine BNNSs (Ci et al., 2010). By

controlling the parameter of synthesis, an individual BN layer is called a “single-layer

BNNS”; a thin BN crystal with several atomic layers is called a “multilayered BNNS”

(see Fig. 1.3). Within each ML-BNNS, strong covalent bonds bind B and N atoms,

whereas weak vdW forces hold the layers together at a distance of 0.335 nm (L. Song

et al., 2010). Therefore, ML-BNNS films could be peeled off from bulk BN crystal by

micromechanical cleavage and used as a dielectric layer. Multilayer-BNNS has also

been made by ultrasonication and high-energy electron beam irradiation of BN par-

ticles. BN nanostructures are generally considered advanced nanomaterials with an

outstanding electromechanical response.
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Figure 1.3: Structural basics of 2D BN nanostructures.

1.4 Structure of Boron nitride nanosheet

A monolayer molecule of hexagonal boron nitride nanosheets (BNNSs) comprises

a hexagonal array of alternatively arranged boron (B) and nitrogen (N) atoms. The

structural feature of the BNNS corresponds to a hexagonal pattern that repeats pe-

riodically in space. This periodicity makes each B and N atom bonded to three

neighboring atoms. The structure primarily arises from sp2 hybridization, forming

three in-plane σ bonds and an out-of-plane π bond. The σ bond, characterized by

a length of 1.446 Å, is a robust covalent bond crucial for the remarkable mechanical

and piezoelectric properties of BNNSs. Conversely, the π bond is relatively weak and

contributes to the interactions between the monolayer BNNSs (Falin et al., 2017; Han

et al., 2008).

Boron nitride nanosheets exhibit a regular arrangement with a hexagonal array

of B and N atoms. The identification of different types of BNNSs, such as armchair,

zigzag, and chiral, is commonly based on the - Chiral vector (Ch). This vector is

expressed as a linear combination of lattice bases (a1 and a2). Mathematically, the

sheet chirality can be defined in terms of the roll-up vector as follows:

Ch = na1 +ma2 (1.1)
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Here, the integers (n, m) represent the Miller indices of the hexagonal lattice

(indicating the number of steps along the zigzag bonds of the hexagonal lattice), and

a1 and a2 are unit basis vectors, as illustrated in Fig. 1.4. The angle between the

chiral vector (Ch) and lattice base vector (a1) is called the - Chiral angle (ϕ) and is

given by:

ϕ = arctan

√
3m

2n+ 1
(1.2)

The zigzag axis of BNNS corresponds to ϕ = 0◦. If the rolling chiral vector

aligns with this axis, a zigzag (n, 0 ) BNNS is formed. Conversely, the armchair

axis of the sheet is defined by Φ = 30◦. When the rolling chiral vector aligns with

this axis, an armchair (n, m) BNNS is formed. The monolayer BNNS generated for

other values ϕ (i.e., 0◦ < ϕ < 30◦) is called chiral BNNS. Figure 1.4 illustrates

the schematic representations of two types of BNNSs. The chirality of BNNSs has

significant implications for their properties.

Figure 1.4: Schematic representation of 2D armchair and zigzag BNNS.
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1.5 Size-dependent properties of BNNS

1.5.1 Piezoelectricity

Piezoelectricity was initially discovered by French physicists Pierre and Jacques

Curie in 1880. Subsequently, Gabriel Lippmann deduced mathematical relations for

the converse piezoelectric effect from the fundamental principles of thermodynamics

in 1881, which the Curie brothers did not predict. Piezoelectricity, involving electrical

polarization induced by a constant strain (or vice versa), is the most widely known and

exploited form of electromechanical coupling in non-centrosymmetric crystals. In such

crystals, the absence of a center of inversion results in the presence of polarization. In

contrast, the flexoelectricity phenomenon is observed in nanomaterials with inversion

symmetry, and even centrosymmetric crystals can be polarized by breaking their in-

version symmetry and applying a non-uniform strain gradient. Unlike piezoelectricity,

which is found only in 20 non-centrosymmetric point groups, flexoelectricity exists

in all-dielectric and insulating materials with 32 crystallographic point groups, en-

abling electromechanical coupling in non-piezoelectric materials (Maranganti, Sharma,

& Sharma, 2006; Sharma, Maranganti, & Sharma, 2007).

There are both direct and converse piezoelectric effects. In the direct piezoelec-

tric effect, applied stress creates polarization within the crystal. Conversely, in the

converse piezoelectric effect, an applied electric field creates stress and strain in the

crystal. In the equations presented, P,E, ϵ, σ, µ, and x represent polarization, electric

field, strain, stress, flexoelectric coefficient, and spatial direction, respectively. The

subscripts i, j, k, l denote different Cartesian directions as 1, 2, and 3, or x, y, and z.

The origin of the piezoelectric effect lies in the fundamental asymmetry of a crys-

tal’s lattice structure. Not all crystal structures possess piezoelectric properties; only

non-centrosymmetric crystals exhibit piezoelectricity, while crystal structures of higher

symmetry do not. Centrosymmetry exists if a crystal can be transformed from every

point (x, y, z) to (−x,−y,−z) while retaining the same geometric structure. Piezo-

electric materials must be non-centrosymmetric to separate the centers of mass of

positively and negatively charged ions when subjected to strain. This limitation on
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crystal structure confines the materials used to generate the piezoelectric effect.

1.5.2 Flexoelectricity

The flexoelectric effect represents an electromechanical coupling phenomenon in

which dielectric polarization exhibits a linear response to a mechanical strain gradient.

The term is derived from the Latin word “flexus”, signifying “bend”, and is associ-

ated with the occurrence of a strain gradient in bent structures (Yudin & Tagantsev,

2013). Flexoelectricity shares similarities with piezoelectricity but introduces spatial

gradients, introducing additional complexity to analysis and comprehension. Simi-

lar to piezoelectricity, flexoelectricity encompasses both direct and converse effects:

the direct effect produces polarization in reaction to an applied strain gradient, while

the converse effect involves generating a strain in response to an applied electric field

gradient. Some reports also indicate instances where a uniform electric field induces

curvature in the material (Yudin & Tagantsev, 2013).

In contrast to piezoelectricity, flexoelectricity is inherent in every crystal structure

and does not depend on asymmetry in the crystal lattice. The inclusion of spatial

gradient terms in the constitutive equations allows for varying amounts of strain at

different locations within the crystal, creating the necessary asymmetry to separate

the centers of mass of positive and negative charges, leading to the induction of polar-

ization. This characteristic expands the scope of materials suitable for NEMS devices.

Moreover, as numerous high-performance piezoelectric materials incorporate lead, flex-

oelectricity offers the prospect of utilizing more biocompatible materials or enhancing

the piezoelectric effect in sensors, actuators, and energy harvesters.

Like piezoelectricity, flexoelectricity exhibits two discrete strain and electric field

gradient-dependent electromechanical couplings: direct and converse flexoelectric ef-

fects. As a size-dependent phenomenon, flexoelectricity is a preferred electromechan-

ical coupling in microelectromechanical system (MEMS)/NEMS applications.

The constitutive relation (Eq. 1.3) for the total - Polarization vector, accounting

for both piezoelectric and flexoelectric effects (Yudin & Tagantsev, 2013; S. Kundalwal,

Meguid, & Weng, 2017), can be rewritten as :
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Pi = eijkϵjk + fijkl
dϵjk
dxl

(1.3)

where, the terms are - Strain (ϵjk), - Strain gradient (
dϵjk
dxl

), - Piezoelectric coefficient

(eijk), and - Flexoelectric coefficient (fijkl) respectively.

1.5.3 Polarization in graphene structure

In the initial work by Kogan (Kogan, 1964), a theoretical foundation for flexoelec-

tricity was established. It was elucidated that a homogeneous mechanical deformation

does not induce polarization in the graphene lattice due to its intrinsic symmetry.

However, a strain gradient in centrosymmetric graphene can lead to a flexoelectric

effect. This strain gradient induces ionic position alterations, causing electron density

redistribution. While uniform strain does not generate polarization in centrosymmet-

ric graphene, a strain gradient breaks this centrosymmetry, generating polarization.

Tagantsev (Tagantsev, 1986) developed a theoretical model to study the flexoelec-

tric response in solid, dielectric crystals and stated that the flexoelectric effect differs

from the piezoelectric effect. In 2007, Sharma et al.(Sharma et al., 2007) theoretically

studied the effect of the inclusion of centrosymmetric and non-centrosymmetric shapes

in the matrix of InAs-GaAs, and they observed that the proper arrangement of such

centrosymmetric and non-centrosymmetric shapes in the matrix is required to get a

nonzero average polarization.

The Berry phase (Berry, 1984) calculations are performed in metals, graphene

bilayer, and bulk graphite by considering the spin–orbit interaction. Flexoelectricity,

a weak observable effect at the macroscale, is hardly detectable in bulk materials. The

strain gradient is inversely proportional to the sample size; thus, at the nanoscale level,

flexoelectricity can be very large (Zubko, Catalan, & Tagantsev, 2013). Mohammadi

et al. (Mohammadi, Liu, & Sharma, 2013) developed the flexoelectric theory for thin

membranes in 2014.

Experimentally, it has been found that the synthesis of graphitic carbon nitride

(g−C3N4) has natural triangular pores, which shows piezoelectric behavior with a coef-
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ficient of 0.758 C/m2, verified by DFT calculations. Large strain gradients are created

by bending 2D nanosheets with non-centrosymmetric triangular and trapezoidal pores,

resulting in strong electromechanical coupling. Javvaji et al.(Javvaji, He, & Zhuang,

2018) studied graphene’s piezo- and flexo-electric properties with triangle-shaped de-

fects using molecular dynamics simulation (MDS). Enhanced and advanced avenues

for investigating materials with diverse doping and electrical properties, particularly at

the sub-nanometer scale, have been facilitated through artificially engineered stacked

2D layer heterostructures with interlayer van der Waals (vdW) forces. VdW is charac-

terized as non-bonded interactions with a distance range of a few nanometers. These

interactions are weaker than bonded and Coulomb interactions.

Additionally, employing atomically thick hBN nanosheets to encapsulate active 2D

layers of other materials is a prevalent strategy to enhance their electrical properties

(Xia, Weng, Xiao, & Wen, 2020). The interactions between layers or the substrate have

become a crucial element in the computational modeling of two dimensional (2D) ma-

terials for virtually all applications. The Quantum electrostatic heterostructure (QEH)

model (Andersen, Latini, & Thygesen, 2015) offers a rapid and precise calculation of

the dielectric function for generic vdW structures, encompassing large interface super-

cells and hundreds of layers. The fundamental assumptions of the QEH scheme are

centered on the additive nature of polarizabilities across different layers.

Ma and Cross (Ma & Cross, 2003) conducted experimental investigations on strain

gradient-induced polarization in lead zirconate titanate (PZT) ceramic, revealing a

higher flexoelectric coefficient on the order of µC/m. Their study employed a can-

tilevered beam approach to explore the flexoelectric effect in PZT, and based on their

findings, they observed an increase in flexoelectric polarization with temperature. Hu

and Shen (Hu & Shen, 2010) delved into the piezoelectric and flexoelectric effects in

nano dielectrics using the variational principle. They applied a bending model incor-

porating the Bernoulli–Euler beam model and the flexoelectric dielectrics theory to

an electro-elastic bilayer nanobeam.

This model accounts for both the strain gradient elastic and flexoelectric effects.

Jiang et al. (X. Jiang, Huang, & Zhang, 2013) explored the potential applications
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of flexoelectric sensors and actuators in bio-mechanical systems. Yan and Jiang

(Yan & Jiang, 2013) studied the influence of the flexoelectric effect on the elec-

tromechanical behavior of nanobeams under various support types, emphasizing its

prominence in nanobeams with smaller thicknesses. Liang et al. (Liang, Hu, & Shen,

2014) investigated the electromechanical behavior of piezoelectric nanobeams using the

Bernoulli–Euler beam model. Their study revealed that flexoelectricity and surface

effects are size-dependent, with a more pronounced effect at the nanoscale. Liang et al.

(Liang, Hu, & Shen, 2015) developed an analytical model based on the Euler–Bernoulli

beam hypothesis to study the effect of flexoelectricity in nanowires. They reported

that due to flexoelectricity, Young’s modulus and bending rigidity of nanowires exhibit

significant improvement. Ray et al. (Ray, 2016) provided an exact solution for the

static bending response of a nanobeam embedded with a flexoelectric layer acting as

an actuator. Wang et al. (X. Wang, Zhang, & Jiang, 2017) employed a finite differ-

ence method to investigate the effect of flexoelectricity on the static bending response

of piezoelectric nanoplates. Wang and Li (B. Wang & Li, 2021) studied the effect of

flexoelectricity on the natural frequency of piezoelectric nanoplates based on Kirchhoff

plate theory. Su and Zhou (Su & Zhou, 2020) utilized the non-local effects of flexo-

electricity nanosensors to study the electromechanical response of nanobeams. With

recent advancements, graphene has been extensively used as structural reinforcement

in polymer composites. Zhao et al. (Zhao, Zhang, Chen, & Lu, 2010) developed

graphene-based polymer composites and observed a 150 % improvement in tensile

strength at low loading, with Young’s modulus increasing by approximately ten times.

Due to its strong polarization, graphene-based piezoelectric composites find multifar-

ious NEMS/MEMS applications. Justino et al. (Justino, Gomes, Freitas, Duarte, &

Rocha-Santos, 2017) utilized graphene to fabricate sensors and biosensors owing to its

electromechanical properties. Kundalwal et al. (S. Kundalwal, Shingare, & Gupta,

2020) developed an analytical model to investigate the electromechanical response

of graphene/polymer composite nanowires, considering the effects of flexoelectricity.

They noted that on the nanoscale, the impact of flexoelectricity on the electrome-

chanical response of nanowires was significant. Using the Euler–Bernoulli (EB) beam
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model, Chen et al. (S. Kundalwal et al., 2020; Q. Chen, Zheng, Li, & Zeng, 2021)

explored the dynamic response of graphene-reinforced porous nanocomposite beams,

taking into account the flexoelectric effects.

1.6 Motivation

This study is motivated by several factors that highlight the potential impact and

importance of this research:

Understanding Fundamental Phenomena : Flexoelectricity is a relatively novel

electromechanical phenomenon that occurs at small length scales and strain gradients.

Studying flexoelectricity in graphene-based heterostructures allows researchers to gain

a deeper understanding of this fundamental phenomenon and its implications for the

mechanical behavior of nanomaterials.

Tailoring Material Properties: Graphene-based heterostructures offer many pos-

sibilities for tailoring material properties. By studying the flexoelectric effect in these

heterostructures, researchers can explore how the coupling between mechanical strain

and electric polarization can be engineered to achieve desired functionalities and prop-

erties at the nanoscale.

Designing Novel Nanodevices : Flexoelectricity opens up new avenues for the

design of nanoscale electromechanical devices. Understanding and controlling the

flexoelectric effect in graphene-based heterostructures can lead to the development

of innovative nanoscale sensors, actuators, energy harvesters, and other nanodevices

with enhanced performance and functionalities.

Enhancing Nanomaterial Performance : Flexoelectricity can significantly im-

pact the mechanical properties of graphene-based heterostructures. By analyzing the

flexoelectric effect at the nano- and micro-scale, researchers can identify strategies to

enhance these materials’ mechanical performance and durability, leading to improved

nanocomposites and nanoelectronic devices.

Nanoscale Energy Harvesting : Flexoelectricity can provide an additional mech-

anism for energy harvesting at the nanoscale. Understanding the interplay between
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mechanical strain and electric polarization in graphene-based heterostructures can

guide the development of nanoscale energy harvesting technologies that convert me-

chanical energy into electrical energy efficiently.

Advancing NEMS: The study of flexoelectricity in graphene-based heterostructures

is particularly relevant for NEMS, where small-scale mechanical devices interact with

electrical signals. A better understanding of flexoelectricity in these systems can enable

the design of more sensitive and energy-efficient NEMS devices.

Materials Design and Optimization : Nano- and micro-mechanical analysis of

flexoelectricity in graphene-based heterostructures can guide materials design and op-

timization. By studying the mechanical response under different conditions and with

various heterostructure configurations, researchers can identify materials with specific

flexoelectric properties suitable for targeted applications.

Enabling Nanoelectronics and Quantum Technologies : Flexoelectricity can

be crucial in nanoelectronics and quantum technologies. Understanding the flexo-

electric effect in graphene-based heterostructures can contribute to developing next-

generation quantum devices and information-processing technologies.

Overall, the motivation for nano- and micro-mechanical analysis of flexoelectricity

in graphene-based heterostructures lies in its potential to advance our fundamental

understanding of electromechanical phenomena at the nanoscale and its practical ap-

plications in designing innovative nanodevices and nanomaterials for various techno-

logical fields.

1.7 Outline of the dissertation

This section provides a glimpse of the research work carried out for this dissertation.

The problem statement, brief description of the work done, and the salient results and

discussions are sub-categorized under each chapter.
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Chapter [1]: Introduction to flexoelectricity and graphene het-

erostructures

The first chapter introduces 2D materials, consisting of a single layer or a few

layers of atoms arranged in a two-dimensional lattice. Graphene is a single layer of

carbon atoms arranged in a hexagonal lattice resembling a honeycomb pattern. Flex-

oelectricity is a fascinating electromechanical phenomenon in certain materials where

an electric polarization is induced in response to a strain gradient, i.e., a variation in

strain across the material.

Chapter [2]: Density functional theory

This Chapter will briefly summarize the fundamentals of DFT, the basic method-

ologies employed in this work. DFT is a powerful computational quantum mechanical

method used to study the electronic structure and properties of materials, molecules,

and solids.

Chapter [3]: Micro-mechanics modeling

This chapter discusses micro-mechanics modeling, a computational approach used

to study and predict the mechanical behavior of materials at the microstructural

level. It involves simulating the interactions between individual constituents, such as

grains, phases, fibers, or particles, and the surrounding matrix to understand how

these interactions influence the overall mechanical properties of the material.

Chapter [4]: Polarization in defective graphene using DFT

In this Chapter, we study the polarization in defective graphene using DFT,

which is a fascinating and challenging task. Defects in graphene can arise from

various sources, such as vacancies (missing carbon atoms), substitutional impurities

(e.g., replacing a carbon atom with a different element), grain boundaries, or even
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ripples in the lattice. These defects can significantly influence the electronic and

polar properties of graphene.

Chapter [5]: Polarization in graphene heterostructure using

DFT

Studying polarization in graphene heterostructures using DFT is an important

area of research, especially in the context of 2D materials and van der Waals

heterostructures. Graphene heterostructures comprise multiple layers of different 2D

materials stacked on each other, forming unique electronic and polar properties at

their interfaces.

Chapter [6]: The flexoelectric effect on a graphene nanorod’s

bending rigidity

The flexoelectric effect can indeed influence the bending rigidity of a Timoshenko

graphene-reinforced nanorod. The Timoshenko beam theory is an extension of

the classical EB beam theory that considers the effects of shear deformation and

rotational inertia. It provides a more accurate description of the bending behavior

of slender structures like nanorods, especially when the rod’s aspect ratio (length to

thickness) is relatively small.

Chapter [7]: Summary and Future scope

Chapter 7 summarizes the major conclusions from the research work presented

in the thesis and the further scope of research on graphene heterostructures. The

references are alphabetically listed at the end of the thesis.
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Chapter 2

Density functional theory

2.1 Introduction

In this chapter, we aim to provide a concise overview of the foundational principles

of DFT, which serve as the fundamental methodologies employed in this research.

It is worth noting that the literature includes several outstanding reviews on these

subjects (Baroni, de Gironcoli, Corso, & Giannozzi, 2001; Payne, Teter, Allan, Arias,

& Joannopoulos, 1992). Specifically, our objectives are as follows:

[1] Review the conceptual underpinnings of DFT.

[2] Outline the key equations essential for practical implementation.

Point [2] assumes particular importance for obtaining a comprehensive understand-

ing of the primary challenges associated with the development of a coherent theory of

flexoelectricity based on first principles.

We embark on a reexamination of the Kohn and Sham formulation. Our explo-

ration will encompass its conceptual foundations, accompanied by the presentation of

explicit expressions specifically tailored for a plane wave basis set.

2.2 Polarisation and Dielectric function

When a material interacts with an electric field, E, the electrons within the material

are displaced from their equilibrium position. The Dipole moment (p) is the product
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of a particle’s Charge (q) and its Displacement (r) from equilibrium, i.e.

p = qr (2.1)

The polarization (or polarization density), P , is the average dipole moment per unit

volume,

P = Nap (2.2)

where Na represents the number of particles per unit volume. In the linear regime,

characterized by small average displacements (e.g., for a low-intensity external field),

the polarization is connected to the field through the electric susceptibility, χ1
e,

P (ω) = χe(ω)E(ω) (2.3)

where ω is the angular frequency, assuming a uniform electric field and an isotropic,

homogeneous material. Similarly, the dipole moment is related to the electric field by

the polarizability, α,

p(ω) = α(ω)E(ω) (2.4)

The electric susceptibility is related to the macroscopic dielectric function, ϵM , by

ϵM = 1 + 4πχe (2.5)

The susceptibility, χe (and consequently ϵM), is typically complex and dependent on

frequency. A material is considered isotropic if the polarization aligns with the external

field, making χe a scalar. However, in cases where the direction of polarization differs

from that of the external field, the material is termed anisotropic, and the susceptibility

becomes a rank-2 tensor.
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χe =


χxx χxy χxz

χyx χyy χyz

χzx χzy χzz

 (2.6)

If the polarization and external field are written in Cartesian coordinates (P = Pxi+

Pyj + Pzk and E = Exi + Eyj + Ezk), then the ith component (i = x; y; z) of the

polarization is given by

Pi = χixEx + χiyEy + χizEz (2.7)

2.3 Electronic Structure Calculations

To ascertain the polarization of a system, understanding its electronic configura-

tion in the ground state is essential. Solid-state matter can be conceptualized as an

assembly of nuclei and electrons engaged in interactions influenced by particle posi-

tions and external forces, ultimately defining the material’s electrical and mechanical

characteristics. In this context, we employ DFT to explore how electronic energies

and wavefunctions can be derived from the Schrödinger equation.

2.3.1 Time-Independent Schrodinger Equation

Consider a system comprising N electrons and M nuclei, each characterized by spatial

coordinates r1, . . . , rN and R1, . . . , RM , respectively. Neglecting electronic spin, the

system can be fully described by the Quantum-mechanical wavefunction (Ψtot), i.e.,

Ψtot(r1, . . . , rN , R1, . . . , RM). From this, all observable properties of the system can be

determined. In electronic structure calculations, the goal is to find the wavefunction

that yields the lowest possible (ground-state) energy. In principle, this is found by

solving the Time-Independent Schrodinger Equation (TISE),

ĤtotΨtot(r1, . . . , rN) = EtotΨtot(r1, . . . , rN , R1, . . . , RM) (2.8)
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where, Hamiltonian operator (Ĥ tot) contains contributions from the kinetic energy of

the electrons and nuclei, along with electron-electron, electron-nuclei, and nuclei-nuclei

interactions, i.e.

Ĥtot = T̂n + T̂e + V̂ee + V̂nn + V̂ne (2.9)

where, the terms are kinetic contribution of the nuclei (T̂ n), kinetic contribution of

the electrons (T̂ e), electron-electron interactions (V̂ ee), nucleus-nucleus interactions

(V̂ nn), and nucleus-electron interactions (V̂ ne), respectively. Equation 2.9 represents

an eigenvalue problem with infinite solutions. The configuration corresponding to the

ground state is the solution that minimizes the value of Etot. Solving Eq. (2.9)

is typically highly complicated, with an analytical solution existing only for a small

subset of problems. There are several approximations and methodologies to simplify

the task. The first approximation is to separate the electronic and nuclear motions

of the system. This is known as the Born-Oppenheimer approximation and allows

us to express the total wavefunction as a product of an electronic wavefunction and

nuclear wavefunction (and the total energy as a sum of the electronic and nuclear

contributions). It is valid, provided the electrons move on a much smaller time scale

than the nuclei. Hence, the original problem simplifies to the task of finding the

electronic wavefunction, Ψ(r1, . . . , rN), which satisfies

ĤΨtot(r1, . . . , rN) = EΨ(r1, . . . , rN) (2.10)

Ĥ is the electronic Hamiltonian given by

Ĥtot = T̂e + V̂ee + V̂ne (2.11)

The explicit nuclear contributions can subsequently be obtained independently and

incorporated as needed. In Eq. (2.11),

T̂e =
∑
i

−1

2
∇2

i (2.12)
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is the operator defining the total kinetic energy of the electrons,

V̂ee =
1

2

∑
i ̸=j

1

|ri − rj| (2.13)

gives the total Coulomb repulsion between the electrons, and

V̂ne =
∑
i

vext(ri) (2.14)

where vext(r) is the potential representing the total nuclear attraction of the electrons

in addition to any other external potential.

−e = me = ℏ =
1

4πϵ0
= 1 (2.15)

where, the terms are electronic charge (-e), mass of an electron (me), reduced Planck’s

constant (ℏ), and ϵ0 is the permittivity of free space. The observable, A, of any

operator, Â, is given by its expectation value,

A ≡
〈

Ψ
∣∣∣Â∣∣∣Ψ〉 (2.16a)

A =

∫
Ψ∗(r1, . . . , rN)ÂΨ(r1, . . . , rN) dr1 . . . drN (2.16b)

and it follows from Eq. (2.10) that the total (electronic) energy of the system is

A ≡
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 (2.17)

Now, Eq. (2.8) is computationally demanding, especially for systems with a few

electrons. To address this challenge, several methods, such as Hartree-Fock and per-

turbation theory, have been developed to simplify the problem by reducing the dimen-

sionality of the wavefunction. Alternatively, the wavefunction can be transformed into

a density functional, a more accurate and scalable approach than Hartree-Fock and

more efficient than perturbative methods. This method is known as density functional

theory.
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2.3.2 DFT

Hartree-Fock (HF) theory offers an approach to approximate the ground state en-

ergy of an interacting N-electron system. It does so by representing the associated

wavefunction as a linear combination of products of orthonormal one-electron atomic

orbitals, {ψk(r)}, in the form of a single Slater determinant, expressed as:

Ψ(r1, . . . , rN) ≈ 1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) . . . ψN(r1)

ψ1(r2) ψ2(r2) . . . ψN(r2)
...

...
. . .

...

ψ1(rN) ψ2(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣∣∣∣
(2.18)

The Pauli exclusion principle imposes the antisymmetry requirement on the wave

function. HF achieves this by minimizing the energy (E) in Eq. (2.8). This mini-

mization process identifies the “best’ orbitals, ensuring that the Slater determinant

wavefunction yields the lowest possible energy. In essence, HF provides the best ap-

proximation to the ground state energy within the framework of the Slater form of the

wavefunction. HF is an independent-particle model, with electron-electron interaction

only accounted for by an average Coulomb potential and a non-local exchange poten-

tial arising from the anti-symmetry property of the Slater determinant. However, this

approximation lacks explicit treatment of electron correlation (except in an average

sense), leading to notable errors in properties like band gaps in semiconductors and

bond lengths in molecules. Correlation can be further included in post-Hartree-Fock

methods such as configuration interaction (CI) in which the wavefunction is expanded

in a linear combination of Slater determinants, and Mϕller-Plesset (MP) perturbation

theory where the correlation potential is modeled through a perturbation to the Fock

Hamiltonian.

More recently, novel approaches have been developed that can yield results similar

to full-CI but with much less computational demand, making for viable alternatives

for treating real systems (e.g., the full configuration-interaction quantum Monte Carlo

method, which employs a stochastic approach (Booth, Thom, & Alavi, 2009; Booth,

Grüneis, Kresse, & Alavi, 2012). While these methods enhance HF results and can ap-
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proach exact solutions systematically, their computational cost limits their application

to small systems. For instance, MP2, MP3, and MP4 methods have scaling factors

of O(N5), O(N6), and O(N7) with the number of electrons, respectively. In contrast,

DFT provides a more computationally efficient approach to approximate ground state

observables. DFT methods exhibit scaling from O(N4) to linear scaling at O(N),

enabling the modeling of systems with tens of thousands to millions of atoms, albeit

with varying levels of accuracy. Unlike HF, which minimizes the energy of an approx-

imate Hamiltonian concerning an approximate wavefunction, DFT models energy as

a functional of the electron density, aiming to find the exact ground state energy by

minimizing the energy of the exact Hamiltonian concerning the electron density. The

one-electron density function (ρ(r)) for an N-electron wavefunction is defined as:

ρ(r) = N

∫
|Ψ(r1, r2, . . . , rN)|2 dr2 . . . drN (2.19)

In Eqs. (2.11) - (2.14), it becomes evident that the Hamiltonian is distinctly

defined by the number of electrons, denoted as N , and the system-specific external

potential, vext(r). The positions and charges of the nuclei determine this external

potential. From Eq. (2.11) and Eq. (2.17), the total energy of an N-electron system

can be expressed as:

E =
〈
ψ
∣∣∣Ĥ∣∣∣ψ〉

=
〈
ψ
∣∣∣T̂e∣∣∣ψ〉+

〈
ψ
∣∣∣V̂ee∣∣∣ψ〉+

〈
ψ
∣∣∣V̂ne∣∣∣ψ〉

= Te + Vee + Vne

(2.20)

The formulation of DFT begins with the first Hohenberg-Kohn (HK) theorem,

which implies that the electron density, ρ(r), uniquely determines the external po-

tential, vext(r), and thus uniquely determines the Hamiltonian. Therefore, the energy

is inherently a functional of electron density function (E[ρ]), expressed as E ≡ E[ρ],

as illustrated in Eq. (2.20).
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E[ρ] = Te[ρ] + Vee[ρ] + Vne[ρ] (2.21)

Using Eqs. (2.14, 2.17 and 2.19), it can be demonstrated that

Vne[ρ] =

∫
vext(r)ρ(r) dr (2.22)

So that Eq. (2.21) can be rewritten as

E[ρ] = Te[ρ] + Vee[ρ] +

∫
vext(r)ρ(r) dr

= F [ρ] +

∫
vext(r)ρ(r) dr

(2.23)

where F [ρ] is a universal potential independent of the system. Now, the second

HK theorem asserts that the ground state energy can be acquired by minimizing E[ρ]

in Eq. (2.23) with respect to ρ, subject to the constraint that the density is derived

from a normalized wavefunction, which is equivalent to requiring

∫
ρ(r) dr = N (2.24)

Given that Eq. (2.23) represents the exact energy of the original Hamiltonian, the

density that minimizes E is the ground state density, ρGS, and the exact ground state

energy is expressed as:

EGS = E[ρGS] (2.25)

Hence, DFT provides a way to find the ground state energy of an N-electron sys-

tem by considering the density, which depends only on the three spatial variables.

Conversely, the solution of the original TISE depends on 3N variables, so the com-

putational cost is drastically reduced. Unfortunately, however, it is not possible to

explicitly and precisely express F [ρ] in terms of the electron density, ρ(r), as done for

the external potential in Eq. (2.19). If feasible, it would offer a means to accurately de-
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termine all (ground state) observables in a quantum-mechanical system by iteratively

solving Eq. (2.20) by changing the density(which depends on only the three spatial

variables). This avoids the challenge of attempting to solve the Time-Independent

Schrodinger Equation using a wavefunction approach (which, in principle, depends on

3N variables).

Moreover, during the process of obtaining the ground state energy by minimizing the

density, it is challenging to confirm whether this density corresponds to an actual

physical wavefunction. The wavefunction must adhere to anti-symmetry requirements

established by the Pauli exclusion principle. Kohn-Sham DFT provides a solution to

this and expresses the universal potential in Eq. (2.20) in a more explicit form to

realize the calculation of the majority of the total energy.

2.3.3 Kohn-Sham DFT

In the Kohn-Sham (KS) scheme, similarly to HF, we derive the density from a

fictitious system of N independent electrons, with a wavefunction expressed by a single

Slater determinant (Eq. 2.18) composed of one-electron atomic orbitals, φ(r), thus

ensuring the anti-symmetry property is obeyed. In KS DFT, we require the density,

which, due to the determinant nature of the wavefunction, is (from Eqs. 2.18 and

2.19)

ρ(r) =
∑
i

φ∗
i (r)φi(r) (2.26)

to be the same as that of the exact ground state wavefunction, even though it is

derived from the approximate Slater determinant wavefunction describing the non-

interacting system. By making use of the properties of the Slater determinant, we can

rewrite the total energy as

E[ρ] = −1

2

∑
i

〈
φi

∣∣∇2
∣∣φi

〉
+

1

2

∫∫
ρ(r

′
)ρ(r)

|r − r′ |
dr

′
dr +

∫
vext(r)ρ(r) dr + Exc[ρ]

(2.27)
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The initial two terms in Eq. (2.27) are the non-interacting contributions to the

kinetic energy and average Coulomb repulsion, respectively. The first three terms

describe most of the system’s total energy, and all other correlation and exchange

energy not accounted for in the independent particle approximation are collected in

the abstract exchange-correlation energy, Exc[ρ]. Upon minimizing E[ρ] in Eq. (2.27)

with respect to ρ with the normalization constraint Eq. (2.24), it can be shown that

the required KS orbitals satisfy the following equation,

ĤKSφi(r) = ϵφi(r) (2.28)

where, the term is one-electron KS Hamiltonian (ĤKS),

ĤKSφi(r) = −1

2
∇2 +

∫
ρ(r

′
)

|r − r′ |
dr

′
+ vext(r) + vxc[ρ](r) (2.29)

with vxc[ρ](r) being the local multiplicative exchange-correlation potential defined as

the functional derivative of the exchange-correlation energy w.r.t. the density, i.e.

vxc[ρ](r) =
δExc[ρ]

δρ(r)
(2.30)

Since ĤKS depends on the density, we start with a trial density as a first approx-

imation and solve Eq. (2.28) self consistently until the total energy in Eq. (2.27) has

converged. Suppose Exc is the exact functional corresponding to the true system. In

that case, the total energy will converge to the exact ground-state, yielding the exact

ground-state density, which can be used to find all other ground-state observables.

Certainly, Exc cannot be precisely expressed, necessitating reliance on approximations

to the true exchange-correlation energy. Many such approximate functionals exist,

and though Exc is, in theory, a universal functional, the approximations used are often

chosen to describe a given system of interest best. The two most popular exchange-

correlation potentials (at least for periodic structure calculations) are the local density

approximation (LDA) and the generalized gradient approximation (GGA). The LDAis

the simplest approximation, derived from a model of the homogeneous electron gas,
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and depends locally on the spatial value of the density. The GGA is an improvement

over the LDA as it depends on the local density and gradient. Many other functionals

exist based on semi-empirical formulations tailored towards specific systems. For an

extensive list of existing functionals, see, e.g., Ref. (Marques, Oliveira, & Burnus,

2012). Many exchange-correlation approximations available (with certain approxima-

tions involving parameters taken directly from the experiment) mean that KS DFT

becomes a somewhat semi-empirical method and not a true ab initio theory, unlike

HF. Moreover, while there may be methods of systematically improving the function-

als (such as orbital-dependent functionals and the optimized effective potential method

(Krieger, Li, & Iafrate, 1992), they often come with the same computational effort as

post-HF and other wavefunction-based approaches. The widespread use of DFT in

modern quantum-chemical calculations reflects its efficiency and accuracy compared

to alternative methods.

2.3.4 Periodic Systems

Typically, the solid is considered an infinite array, presenting practical challenges

for conducting a DFT calculation on an infinite number of atoms. In this section,

we reframe the Kohn-Sham wavefunctions and Time-Independent density functional

theory (TDDFT) equations in reciprocal space, leveraging the system’s periodicity to

streamline computational efforts. The direct lattice vectors indicate the positions of

the atoms within the structure.

R = n1a1 + n2a2 + n3a3 (2.31)

where the ni are integers and ai are called the primitive vectors which span the

real space. The set of all such lattice vectors forms the Bravais lattice. The unit cell

is the region of space enclosed by the parallelepiped formed by the primitive vectors

and contains atoms lying on its sides, corners, or center. The crystal structure can

then be formed by translating the unit cell by integer amounts in the primitive vector

directions. Since the atoms are positioned periodically via the direct lattice vectors
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R, the external potential generated by the nuclei, vext(r), must also share the same

periodicity, i.e.

vext(r +R) = vext(r) (2.32)

The reciprocal lattice is the set of all wave vectors, G, corresponding to plane waves

with the same periodicity as the Bravais lattice. The reciprocal lattice vectors are

defined as

G = m1b1 +m2b2 +m3b3 (2.33)

where mi are integers and bi are the reciprocal lattice basis vectors that span the whole

reciprocal space:

b1 = 2π
a2 × a3

Ωcell
(2.34a)

b2 = 2π
a3 × a1

Ωcell
(2.34b)

b3 = 2π
a1 × a2

Ωcell
(2.34c)

where Ωcell is the volume of the unit cell in direct space. The equivalent of the unit

cell in reciprocal space is called the Brillouin zone (BZ). By Bloch’s theorem, we can

express the energy eigenstates of an electron of momentum, |k|, in the periodic field

(Eq. 2.32) by an expansion of plane waves,

ψnk(r) =
1√
Ωcell

∑
G

cn,k +Gei(k+G).r

(2.35)

where the cn,k + G are the expansion coefficients, to be determined. For given k, the

energy of the Bloch wave in state n is ϵnk: by considering the energy as a function of

k, ϵn(k), we can build up an energy profile of the crystal structure, which is normally

depicted in band diagrams.

Since the orbitals in Eq. (2.35) now depend on the wave vectors, k, any observables

are given by integrating over all reciprocal space in the BZ. For example, the density
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in Eq. (2.26) becomes

ρ(r) =
∑
n

∫
BZ

|φnk(r)|2 dk (2.36)

and the total energy will be

E =
∑
n

∫
BZ

εnk dk (2.37)

In practice, these integrals are calculated numerically, involving a sum over a chosen

subset of wave vectors (also called k-points) in the BZ. This is known as k-point

sampling. The total energy is usually converged by using more vectors in the sum.

Several methods exist to reduce the number of vectors required while maintaining

accuracy by “intelligently” sampling the reciprocal space based on the symmetry of

the BZ. The simplest is the Monkhorst-Pack method, which samples over an equally

spaced grid in the BZ. We also note that in calculating the orbitals in Eq. (2.35), we

need to sum over an infinite number of reciprocal lattice vectors, G. To truncate the

summation, we sum over all plane waves with kinetic energy less than Ecut, i.e., those

satisfying

1

2
|k +G|2 < Ecut (2.38)

which results in a finite number, Nbasis, of plane wave basis functions in calculat-

ing the orbitals and the total energy. The energy is then converged by increasing the

number of base functions (i.e., by increasing Ecut). Since an electronic wavefunction

in a given state must be orthonormal to the wavefunctions in all other states, there

appear a large number of oscillations in the wavefunction form, especially for atoms

with many electrons, which, in turn, requires a large number of plane waves in the

expansion.

To minimize Nbasis, we neglect inner electrons and incorporate a modified nuclear

potential known as a pseudopotential, which matches the true potential after some

cut-off radius, rcut but is made softer for r < rcut while retaining the effective Coulomb

potential of the neglected electrons. As well as reducing the total number of electrons
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treated in the system, introducing pseudopotentials reduces Nbasis and significantly

reduces the computation time of periodic BZ calculations. The response functions de-

pend on two spatial coordinates and time in the time-dependent framework. Similarly

to Eq. (2.35), χ(r, r
′
, t− t

′
) can be expanded in plane waves as

χ(r, r
′
, ω) =

1√
Ωcell

∫
BZ

∑
GG′

ei(q+G).rχGG′ (q, ω)e−i(q+G
′
).r

′

dq (2.39)

where, q is a vector in the BZ (the Bloch vector) and χGG′ (q, ω) are the Fourier

coefficients given by

χ
′

GG(q, ω) ≡ χ(q +G, q +G
′
, ω)

=

∫∫∫
e−i(q+G).rχ(r, r

′
, t− t

′
)ei(q+G

′
).r

′

e−iω(t−t
′
) dr dr

′
dt

(2.40)

A non-periodic system is characterized by the absence of periodicity in one or more

directions. Examples of a non-periodic system include a molecule, a nanotube/wire, or

a two-dimensional monolayer. In practice, the unit cells must have sufficient “vacuum

distance” in the non-periodic directions to avoid spurious interactions with neighboring

cells. However, as the unit cell fills with a vacuum, the imaginary part of the dielectric

function will tend to zero. The polarizability is defined as

α(ω) =
Ωnon−per

4π
(ϵM(ω) − 1) (2.41)

where, Ωnon−per is the unit cell “volume” in the non-periodic direction, for, in the case

of a molecule (0D system), this will be a volume, an area in the case of a nanowire

(1D system), and a length in the case of a monolayer (2D system). In this way, a

constant proportionality is assured so that α is independent of the amount of vacuum

distance.
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2.4 Theory of flexoelectricity

2.4.1 Flexoelectric tensor

The flexoelectric effect is the polarization response, P, induced by a strain gradient

deformation. It is linear with respect to the displacement vector field, u(r, t). Con-

sequently, the theory of flexoelectricity can be established within the scope of linear

response theory, where a general transformation of the unperturbed coordinates, r, is

expressed as follows:

r
′
(r, t) = r + u(r, t) (2.42)

Here, r′ represents the perturbed coordinates. Commencing with the displacement

field, u(r), one can introduce the “deformation gradient”:

ε̃αβ =
∂uα(r)

∂rβ
(2.43)

The Greek letters denote Cartesian coordinates. The tensor ε̃αβ encompasses both an

asymmetric and an antisymmetric component. The antisymmetric part is related to

the rotations of the sample, while the symmetric strain tensor constitutes the former.

εαβ =
1

2
(ε̃αβ + ε̃βα) (2.44)

Two different strain gradient tensors emerge, depending on whether one utilizes ε̃αβ

or εαβ in its formulation. It can be expressed as a second gradient of the displacement

field (type-I),

ηα,βγ =
∂ε̃αβ
∂rγ

=
∂2uα
∂rβ∂rγ

(2.45)

symmetric in β ↔ γ, or as a gradient of the symmetric strain (type-II),

εαβ,γ =
∂εαβ
∂rγ

(2.46)
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which exhibits symmetry under α ↔ β. Both strain gradient tensors possess an iden-

tical number of independent components, and their relationship is defined as follows

(Baroni, Giannozzi, & Testa, 1987):

ηα,βγ = εαβ,γ + εγα,β − εβγ,α (2.47)

Since two different strain gradient tensors exist, the flexoelectric tensor has two pos-

sible definitions.

µI
αβ,γδ =

∂Pα

∂ηβ,γδ

µII
αδ,βγ =

∂Pα

∂εβγ,δ

(2.48)

Both are symmetric in the last two indices, but the significance of the indices

is not identical for the two tensors. As a result, their components typically differ.

Nevertheless, both flexoelectric tensors exhibit 54 independent components for the

lowest crystal symmetry. Notably, there exists a one-to-one correspondence between

the two definitions.

µII
αδ,βγ = µI

αβ,γδ + µI
αγ,δβ − µI

αδ,βγ
(2.49)

The examination of flexoelectric effects is most straightforward in cubic crystals, where

the flexoelectric tensor has only three independent components. These components

are commonly recognized as the longitudinal (µ11), transverse (µ12), and the

shear, µ44, which are connected to the type-II definition of Eq. (2.48) as follows:

µ11 = µII
xx,xx

µ12 = µII
xx,yy

µ44 = µII
xy,xy = µII

yx,xy

(2.50)

Fig. 2.1 presents a schematic illustration of the associated strain gradient deforma-

tions. As per Eq. (2.48), it is apparent that in cubic crystals, the tensors demonstrate

symmetry when the first two indices are interchanged. Therefore, the flexoelectric
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η1,11
ε11,1

η2,11
ε12,1 = ε21,1

η1,12 = η1,21 ε11,2

Figure 2.1: The independent strain gradient deformations for a cubic crystal,
for the type-I and type-II strain gradient definition(Stengel, 2013).
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tensor in cubic crystals possesses the same symmetry as the elastic tensor.

2.5 Theory of Polarization

It is widely recognized that the electric dipole moment quantifies the separation

between two oppositely charged particles. In electromagnetic theory, polarization is

defined based on the density of the dipole moment of a system, assuming point charges.

For a finite linear chain of charges represented by qi where i = 1, 2, . . . , L, and a

separation distance of a, the definition of polarization can be expressed as follows,

P =
1

La

L∑
i=1

qixi (2.51)

Here, xi represents the positions of the charge qi. While this approach is well-

established for finite structures without periodicity, materials commonly exhibit a

periodic lattice structure defined by a unit cell. The challenge in defining polarization

in materials arises when considering the periodic lattice. Observing the linear chain

of anions and cations within a periodic lattice (Fig. 2.2), in such a scenario, defining

polarization becomes problematic with different choices of unit cells.

Figure 2.2: Primitive cells of one-dimensional anion cation chain.

The two primitive unit cells of the system yield different signs of dipole moments.

For instance, if the coordinate system is established at the left edge of the unit cell,

polarization can be calculated as follows in the first unit cell,

P =
1

La

[
−qa

2
+ q

3a

2

]
= q (2.52)

In the second unit cell,
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P =
1

La

[
q
a

2
− q

3a

2

]
= −q (2.53)

Here, q represents the magnitude of the charge for both anions and cations. The vari-

ation in results based on the choice of the unit cell highlights the lack of a well-defined

polarization for periodic structures. However, this system presents not only that chal-

lenge but also the issue of obtaining non-zero polarization values in a non-polar system.

These two fundamental problems in this basic periodic system underscore the neces-

sity for a modern approach to polarization theory. When we shift the cations by a

distance d (Fig. 2.3), the shift can be seen as an effect of an external electric field.

However, the real significance of this step lies in experimenting with a polar material.

Figure 2.3: Linear chain of anions and cations shifted concerning the initial
system.

Following similar steps, one could obtain the following results for the same choices of

unit cells as before. In the first unit cell,

P =
1

2a

[
−qa

2
+ q

3a

2
+ qd

]
= q + q

d

2a
(2.54)

In the second unit cell,

P =
1

2a

[
q
a

2
− q

3a

2
+ qd

]
= −q + q

d

2a
(2.55)

The polarization is shifted by the same value in both unit cells. This shift can be

interpreted as a transition from the initial non-polar system, providing a single-valued

quantity, unlike the polarization itself. This observation leads to the conclusion that
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while polarization itself is not a well-defined quantity in periodic systems, the change

of polarization is well-defined (Spaldin, 2012).

Typically, polarization is measured through its derivative rather than its absolute

value. For instance, one can gauge the variation in polarization concerning the applied

field, as it is directly proportional to the susceptibility (Resta & Vanderbilt, 2007).

Even in ferromagnetic materials, where absolute polarization is crucial, experimental

methods rely on inducing a change in polarization by applying an electric field in a

way that alters its direction. An accessible experimental approach to measure the

change in polarization involves examining current density. This current density is

related through the Maxwell equation:

j(t) =
dP (t)

dt
(2.56)

Here, j represents the macroscopic current density. This current can be understood

as generated by a perturbative electric field. Focusing on the change of polarization,

Equation 2.56 can be reformulated as:

∆P = P (∆t) − P (0) =

∫ ∆t

0

j(t) dt (2.57)

It can be observed that this integral remains finite in the adiabatic limit, allowing to

define a formulation through adiabatic evolution. By defining a dimensionless adia-

batic time λ, one could write the change of polarization through (Resta & Vanderbilt,

2007),

∆P =

∫ 1

0

dP

dλ
dλ (2.58)

As the change of polarization with respect to time is well-defined, the integrand is

also well-defined. The capability to measure and compute the adiabatic alteration

in polarization, which is inherently a bulk property insensitive to edges and reliant

on its change rather than initial and final states, presents a modern solution to the

polarization problem.
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2.6 Berry Phase

Implementing the adiabatic approach to a periodic crystalline system implies that

the wavefunction should not undergo a significant transformation. In this system,

we adiabatically turn on the vector potential. From this definition, the wavefunction

would be a function of this adiabatic time constant λ. Then, wavefunction can be

written as a function of its instantaneous eigenstates,

|Ψ(λ)⟩ =
∑
n

Cn(λ)|ψn(λ)⟩ (2.59)

Using the chain rule, the Schrödinger equation takes a form,

iℏ|λ̇∂λψ(λ)⟩ = Ĥ(λ)|ψ(λ)⟩ (2.60)

Inserting the initial wavefunction to the Schrödinger equation,

iℏλ̇(
∑
n

∂λCn(λ)|ψn(λ)⟩) +
∑
n

Cn(λ)∂λ|ψn(λ)⟩ = Ĥ(λ)Cn(λ)|ψn(λ)⟩ (2.61)

By projecting this equation onto another instantaneous wave function, it is feasible to

simplify the equation as,

C
′

n(λ) + Cn(λ)⟨ψn(λ)|∂λ|ψn(λ)⟩ − 1

iℏλ̇
Cn(λ)En(λ) +

∑
n̸=m

Cn(λ)⟨ψm(λ)|∂λ|ψn(λ)⟩ = 0

(2.62)

Here, the adiabatic approximation is implemented. It is possible to ignore the last

term, where the instantaneous state changes under the adiabatic evolution. This gives

an easy integration regime.

Cn(λ) = Cn(0) exp

(
i

∫
i⟨ψn(λ)|∂λ|ψn(λ)⟩ dλ

)
exp

(
1

iℏ

∫
En(λ)

λ̇
dλ

)
= Cn(0)eiγeiθ

(2.63)
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Then, the wavefunction has a form,

|ψ(λ)⟩ ≈
∑
n

Cn(0)eiγeiθ|ψn(λ)⟩ (2.64)

where,

γ =

∫
i⟨ψn(λ)|∂λ|ψn(λ)⟩ dλ, and θ = −1

ℏ

∫
En(λ)

λ̇
dλ (2.65)

This equation illustrates that the wavefunction acquires two phases after an adiabatic

evolution. These phases, denoted as λ and β, encompass geometrical and dynamical

aspects. The integrand of this equation is also recognized as Berry’s connection.

Using the continuity equation,

∇.j =
∂ρ(r)

∂t
=
∂|Ψ|2

∂t
(2.66)

Taking the time derivative of the density,

ρ̇(r) = ⟨r|Ψ̇⟩⟨Ψ|r⟩ + ⟨r|Ψ⟩⟨Ψ̇|r⟩ (2.67)

Combining equation 2.67 and Schröndinger equation,

ρ̇(r) =
1

iℏ
⟨r|Ĥ|Ψ⟩⟨Ψ|r⟩ − 1

iℏ
⟨r|Ψ⟩⟨Ψ|Ĥ|r⟩ (2.68)

In this context, the potential term of the Hamiltonian cancels out, leaving only the

momentum operator. By expressing the momentum operator as −iℏ∇, one obtains

ρ̇(r) =
iℏ
2m

⟨r|∇2|Ψ⟩⟨Ψ|r⟩ − iℏ
2m

⟨r|Ψ⟩⟨Ψ|∇2|r⟩ (2.69)

Comparing this equation with the continuity equation, it is possible to conclude that

the current density is,

j(r) =
iℏ
2m

(
⟨r|∇|Ψ⟩⟨Ψ|r⟩ − ⟨r|Ψ⟩⟨Ψ|∇|r⟩

)
(2.70)

This results in an operator, taking into account the perturbation, as described in
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(Dreyer, Stengel, & Vanderbilt, 2018),

ĵ(λ) =
iℏ
2m

∑
n

(
∇|ψnk⟩⟨ψnk| + ∇|δψnk⟩⟨ψnk − |ψnk⟩∇| − |ψnk⟩∇⟨δψnk|

)
(2.71)

Taking the expectation value, the current density is,

⟨ψnk|ĵ(λ)|ψnk⟩ =
iℏ
2m

(
⟨ψnk|∇|ψnk⟩ − ⟨ψnk|∇|δψnk⟩

)
(2.72)

Combining this with the equation 2.56, the following expression for the polarization

derivative is obtained,

jn =
dP (n)

dt
=

iℏλ̇
(2π)3

∫
dk
∑
m ̸=n

⟨ψmk(λ)∂λ|ψmk(λ)⟩⟨ψnk(λ)|p̂|ψmk(λ)⟩
Emk(λ) − Enk(λ)

+ c.c. (2.73)

Applying the chain rule, the adiabatic evolution and application of perturbation the-

ory to the Hamiltonian Hk with respect to the variable k is described as (Resta &

Vanderbilt, 2007)

dPn

dλ
=

i

(2π)3

∫
dk⟨∇kunk|∂λunk⟩ + c.c. (2.74)

and integrating both sides with respect to λ yields,

∆P =
i

(2π)3

∑
n

∫
dk⟨unk|∇k∂λunk⟩ + c.c. (2.75)

This establishes a notable connection between the Berry phase and polarization. A

modern approach has been used for defining polarization in periodic systems.
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Micro-mechanics modeling

3.1 Preliminaries

The expression for Hooke’s law in an elastic material is given by:

{σr} =
[
Cr

]
{ϵr} (3.1)

Here, terms are stress vector of the rth phase ({σr}), strain vector of the rth phase

({ϵr}), and stiffness matrix of the rth phase (
[
Cr

]
) of the composite, respectively.

The inverse relation of Eq. (3.1) is given as:

{ϵr} =
[
Sr

]
{σr} (3.2)

in which, the term is compliance matrix of the rth phase (
[
Sr

]
) of the composite.

3.1.1 Average Stress and Strain

During the loading of composite material, the stress field ({σ(x)}) and the

corresponding strain field ({ϵ(x)}) becomes non-uniform on the micro-scale. Ad-

dressing these non-uniform fields poses a challenging problem. However, valuable

insights can be gained regarding the average stress and strain (Hill, 1963, 1964) by

assuming a sufficiently large representative volume element (RVE) that encompasses

multiple fibers but is small compared to any length scale over which the average
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loading or deformation of the composite varies. The average stress ({σ̄}) and average

strain ({ϵ̄}) are defined as the averages of the point-wise stress {σ(x)} and strain

{ϵ(x)} over the volume (Ω) as follows:

{σ̄} =
1

Ω

∫
Ω

{σ(x)} dΩ and {ϵ̄} =
1

Ω

∫
Ω

{ϵ(x)} dΩ (3.3)

Defining the volume-averaged stresses and strains for the fiber and matrix phases is

also relevant. To determine these, the volume (Ω) is initially partitioned into the

volumes occupied by the volume of fibers (Ωf ) and volume of matrix (Ωm) in the case

of a two-phase composite:

vf + vm = 1 (3.4)

in which, terms are volume fraction of fibers (vf ) and volume fraction of matrix (vm)

respectively. The average fiber and matrix stresses are the averages over the respective

volumes and can be written as:

{σ̄f} =
1

Ωf

∫
Ωf

{σ(x)} dΩ and {ϵ̄m} =
1

Ωm

∫
Ωm

{ϵ(x)} dΩ (3.5)

Similarly, the average strains for the fiber and matrix can be obtained.

The relationships between the fiber and matrix averages and the overall averages

can be derived from the earlier definitions, and these are as follows:

{σ̄} = vf{σ̄f} + vm{σ̄m} (3.6a)

{ϵ̄} = vf{ϵ̄f} + vm{ϵ̄m} (3.6b)

The average strain theorem is an important related outcome. If the average volume

(Ω) is subjected to the surface displacement ({u0(x)}) consistent with the uniform

strain ({ϵ0}), then the average strain within the region is:

{ϵ̄} = {ϵ0} (3.7)

3.1. PRELIMINARIES 44



CHAPTER 3. MICRO-MECHANICS MODELING

Hill (Hill, 1963) proved this theorem by replacing the definition of the strain tensor

({ϵ}) in terms of the displacement vector ({u}) into the definition of average strain

({ϵ̄}), and applying Gauss’s theorem, the result is:

{ϵ̄ij} =
1

Ω

∫
S

({u0i }{nj} + {ni}{u0j}) dS (3.8)

Here, S denotes the surface of volume (Ω), and {n} is a unit vector normal to dS.

The average strain within the volume Ω is determined by the displacements on the

surface of the volume. Thus, displacements that yield a uniform strain must result in

the same average strain value. As a consequence of this assumption, one can derive a

perturbation strain ({ϵper(x)}) by subtracting the local strain from the average strain,

expressed as follows:

{ϵper(x)} = {ϵ(x)} − {ϵ̄} (3.9)

then the volume average of {ϵper(x)} must equal to zero

{ϵ̄per} =
1

Ω

∫
Ω

{ϵper(x)} dΩ = 0 (3.10)

The corresponding theorem for average stress also applies. Therefore, if the surface

tractions align with uniform stress ({σ0}) applied on surface (S), the average stress

can be formulated as:

{σ̄} = {σ0} (3.11)

3.1.2 Average Properties and Strain Concentration

The micro-mechanics models aim to determine the averaged effective properties of the

composite, although these require proper definitions. At this point, we employ the

direct method proposed by Hashin (Hashin, 1983), where the RVE undergoes con-

stant surface displacements with {ϵ0}. The average stiffness matrix (
[
C
]
), measuring

uniform strain to the average stress, from Eq. (3.7), we get,
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{σ̄} =
[
C
]
{ϵ̄} (3.12)

The average compliance matrix (
[
S
]
) is similarly defined by applying tractions con-

sistent with the uniform stress {σ0} on the surface of the average volume. Utilizing

Eq. (3.11), the outcome is:

{ϵ̄} =
[
S
]
{σ̄} (3.13)

Hill (Hill, 1963) presented an important concept related to the strain 4th-order concen-

tration tensor (
[
M
]
) and stress 4th-order concentration tensor (

[
N
]
). These are the

ratios of average fiber stress (or strain) and the respective average strain (or stress) in

the composite and can be expressed as:

{ϵ̄f} =
[
M
]
{ϵ̄} and (3.14a)

{σ̄f} =
[
N
]
{σ̄} (3.14b)

where
[
M
]

and
[
N
]

are the fourth-order tensors, and, typically, they need to be

determined through a solution of the microscopic strain and stress fields, respectively.

Different micro-mechanics models provide various approaches to approximate
[
M
]

and
[
N
]
. Both

[
M
]

and
[
N
]

display minor symmetries in the stiffness or compliance

matrix but lack major symmetry.

Mijkl = Mjikl = Mijlk (3.15)

But in general,

Mijkl ̸= Mklij (3.16)

For later use, an alternate strain concentration tensor [M̂ ] is introduced, which relates

the average fiber strain to the average matrix strain, as follows:
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{ϵ̄f} =
[
M̂
]
{ϵm} (3.17)

This is related to
[
M
]

by

[
M
]

=
[
M̂
] [

(1 − f)
[
I
]

+ vf

[
M̂
]]−1

(3.18)

where [I] denotes the fourth-order unit tensor. These equations can now be utilized to

articulate the average composite stiffness in relation to the strain concentration tensor[
M
]

and the elastic properties of the fiber and matrix (Hashin, 1983).

To determine these stress and strain concentration tensors, a solution for the micro-

scopic stress or strain fields is required. By equating Eqs. (3.1, 3.2, 3.6, 3.12, and

3.14a) we get,

[
C
]

=
[
Cm

]
+ vf

([
Cf

]
−
[
Cm

]) [
M
]

(3.19)

The equation for the compliance is

[
S
]

=
[
Sm

]
+ vf

([
Sf

]
−
[
Sm

])[
N
]

(3.20)

Note that Eqs. (3.19 and 3.20) are not independent, [S] = [C]−1. Consequently, the

strain concentration tensor
[
M
]

and the stress concentration tensor
[
N
]

are inter-

related. Choosing which one to use in a particular instance depends on convenience.

To understand the utility of stress and strain concentration tensors, we observe that

the Voigt average corresponds to the assumption that the fiber and matrix experience

equal uniform strain, i.e., iso-strain conditions. In this scenario, ϵ̄ = ϵ̄f and [M ] = [I].

From Eq. (3.19), the stiffness of the composite can be expressed as:

[
CV oigt

]
= vf

[
Cf

]
+ vm

[
Cm

]
(3.21)

Since the Voigt average represents the upper bound on the stiffness of the composite,

the Reuss average assumes that the fiber and matrix experience equal uniform stress,

i.e., iso-stress conditions. This implies that [N ] = [I], and based on Eq. (3.20), the
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compliance of the composite can be expressed as:

[
SReuss

]
= vf

[
Sf

]
+ vm

[
Sm

]
(3.22)

3.2 Elastic Properties of Graphene Sheets

The piezoelectric properties of graphene sheets containing non-centrosymmetric

pores are already reported in the literature, but their elastic properties are unavail-

able. Understanding the elastic behavior of non-centrosymmetric graphene pores is

crucial before predicting the effective properties of graphene-reinforced nanocompos-

ite (GRNC). Continuum models, while convenient for large-scale simulations, often

struggle to accurately capture graphene’s intricate atomic-level behavior. This limi-

tation makes them unreliable in predicting the elastic properties of graphene sheets,

which are heavily influenced by their unique atomic structure. Therefore, turning

to atomistic simulations like Molecular dynamics (MD) becomes crucial for precisely

understanding graphene’s elasticity.

MD stands out as the predominant modeling technique for simulating nanostruc-

tured materials due to its capability to make precise predictions about atomic and

molecular interactions at the nanoscale. Initially introduced by theoretical physicists

in the 1950s, the method plays a crucial role in two main steps. Firstly, it involves

determining the interacting forces within a system of atoms using molecular mechanics

potential fields. Subsequently, the second step entails tracking the atom movements

by applying Newton’s equations of motion. In force field methods, molecules are

portrayed using a “ball and spring” model, wherein atoms exhibit distinct sizes and

“softness”, and bonds vary in lengths and stiffness. These force field methods are

known as molecular mechanics (MM) methods.

Classical mechanics (CM) deals with the motion of bodies following Newtonian

mechanics, encompassing scenarios where bodies are either in motion or at rest. Clas-

sical mechanics generally describes equations that accurately represent phenomena at

scales where quantum and relativistic effects can be disregarded. The notable advan-
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tage of MD over classical models lies in its ability to reveal the dynamic properties of

a system, such as transport coefficients, time-dependent responses to perturbations,

rheological properties, vibrational infrared (IR) spectra, thermo-mechanical proper-

ties, and various other exceptional characteristics. Consequently, MD simulations

have been conducted to ascertain the elastic properties of both pristine and defective

graphene sheets. MD simulations were performed to analyze the elastic properties of

(i) pristine graphene sheets and (ii) defective graphene sheets featuring a 4.5 % va-

cancy in the form of non-centrosymmetric pores. Diagrams illustrating these graphene

layers are presented in Fig. 3.1. All MD simulations were executed using large-scale

atomic/molecular massively parallel simulator (LAMMPS) (Plimpton, 1995). The

molecular interactions within the graphene structures were characterized by Adaptive

Intermolecular Reactive Empirical Bond Order (AIREBO) force fields (Stuart, Tutein,

& Harrison, 2000). In the process of uniaxial deformation of the graphene, stresses

were assessed on the atomistic scale utilizing the virial stress tensor defined by Eq.

3.24 (Allen & Tildesley, 2017), as outlined below:

σ̄ =
1

Ω

N∑
i=1

(
mi

2
v2i + Firi) (3.23)

In this context, Ω represents the volume of atoms, and vi, mi, ri, and Fi denote the

velocity, mass, position, and force of the ith atom, respectively. Subsequently, stress-

strain curves during tensile loading were generated, and the values of E and µ for both

pristine and defective graphene sheets were determined. The determination of E and

µ were accomplished using simple strain energy density elastic constant relations. The

equivalent continuum graphene sheet was assumed to be a flat plate considering its

wall thickness of 3.4 Å (S. Kundalwal et al., 2017). The transformation to continuum

properties was achieved by equating the potential energy density of discrete atomic

interactions of neighboring atoms to the strain energy density of the continuous sub-

stance occupying a graphene volume. The atomic volume was determined from the

relaxed graphene sheet with a thickness (t) of 3.4 Å (Huang & Yu, 2006; Pei, Zhang,

& Shenoy, 2010).
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(a) Pristine (b) Triangular 4.5 % vacancy

Figure 3.1: Armchair graphene sheets subjected to axial stress

3.3 Effective Properties of graphene-reinforced

nanocomposite

Enhancing GRNC through the integration of 2D graphene sheets into the polymer

matrix appears to be the most viable approach for leveraging the structural advan-

tages arising from their remarkably high electro-thermo-mechanical properties. Con-

sequently, the focus shifted towards quantifying the effective elastic, piezoelectric, and

dielectric properties of GRNC to evaluate its potential as a superior material for struc-

tural and NEMS applications. Analytical models are assessed to predict the effective

properties of an innovative GRNC. The effective properties of GRNC were determined

by varying the volume fraction of graphene. Several studies used different homogeniza-

tion techniques and micromechanical models like shear-lag, Halpin-Tsai, couple-stress,

self-consistent, Mori–Tanaka, Hashin–Shtrikman, composite cylinder/sphere assem-

blage (CCA and CSA), rules-of-mixture (ROM) and multi-level model for studying

the mechanical behavior of composites (Z. Chen, Yang, & Meguid, 2014; Chatzigeor-

giou, Javili, & Meraghni, 2019; F. Yang & Meguid, 2013; Bouyge, Jasiuk, Boccara, &

Ostoja-Starzewski, 2002) and the predictions were validated with the experimental es-

timates (Gong et al., 2012; Iqbal, Sakib, Iqbal, & Nuruzzaman, 2020; Young, Kinloch,

Gong, & Novoselov, 2012). The ROM model is employed to ascertain the effective

elastic properties of GRNC, taking into account geometric factors related to embed-
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ded graphene, including orientation, length, and agglomeration. Krenchel orientation

factor (η0), critical length efficiency factor (η1), and agglomeration factor (ηa) were

taken into consideration as follows (Papageorgiou, Kinloch, & Young, 2017):

Ec = η0η1Efηavf + Emvm (3.24)

Here, Ef and Em represent the elastic modulus of graphene and the matrix, respec-

tively. The factors η0, η1, and ηa assume a value of unity when dealing with aligned

and non-agglomerated graphene layers that are perfectly bonded with the surrounding

matrix, as noted in (Papageorgiou, Li, Liu, Kinloch, & Young, 2020).

3.3.1 MOM Approach

Assuming a graphene sheet as a piezoelectric continuum and polyimide/alumina as

the matrix, properties were determined using analytical and numerical models based

on the theory of continuum elasticity (S. S. Gupta & Batra, 2010; Gradinar, Mucha-

Kruczyński, Schomerus, & Fal’ko, 2013; Verma, Gupta, & Batra, 2014; Bahamon, Qi,

Park, Pereira, & Campbell, 2015; Y. Cui, Kundalwal, & Kumar, 2016). The GRNC

is composed of rectangular RVEs with multilayers of piezoelectric graphene sheets

and a polyimide/alumina matrix. The micromechanical model is limited to a single

RVE, assuming continuous, parallel, and aligned reinforcements, no slippage, void-free

matrix, linear elasticity, and homogeneity (Gao & Li, 2005; Y. S. Song & Youn, 2006;

B. Jiang, Liu, Zhang, Liang, & Wang, 2009; S. I. Kundalwal & Ray, 2011; S. Kundalwal

& Ray, 2014). The upper and lower surfaces serve as electrodes, maintaining constant

potentials and inducing the inverse piezoelectric effect, resembling a parallel plate

capacitor with graphene and the matrix as the dielectric medium.

The effective properties of GRNC were determined by adapting the existing MOM

model (S. I. Kundalwal & Ray, 2011). Figure 3.2(b) illustrates a representative volume

element (RVE) of GRNC lamina with graphene layers integrated along its thickness.

In a similar vein, Smith and Auld (Smith & Auld, 1991) employed the Strength of

materials (SOM) approach to predict effective elastic and piezoelectric properties for
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(a) GRNC lamina

(b) Cross-sections of an RVE of GRNC

Figure 3.2: Schematic representation

a 1–3 piezoelectric composite, featuring an epoxy matrix surrounding PZT fibers of

square cross-section. It’s noteworthy that the predictions by Smith and Auld (Smith

& Auld, 1991) are particularly suitable for controlling thickness mode oscillations in

thin composite plates. The micromechanical analysis is limited to the RVE of GRNC

(refer to Fig. 3.2) to determine the effective properties of bulk GRNC.

The thickness of the GRNC lamina is considered extremely small, and normal

stresses may arise from the applied electric field (E3) along the 3-axis of GRNC. The

constitutive equations for the components of GRNC are expressed as follows:

{σg} =
[
Cg

]
{ϵg} − {eg}E3 and {σm} =

[
Cm

]
{ϵm} (3.25a)
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{σr} =



σr
1

σr
2

σr
3

σr
23

σr
13

σr
12


{ϵr} =



ϵr1

ϵr2

ϵr3

ϵr23

ϵr13

ϵr12


{eg} =



eg31

eg32

eg33

0

0

0


r = g and m (3.25b)

[
Cr

]
=



Cr
11 Cr

12 Cr
13 0 0 0

Cr
12 Cr

22 Cr
23 0 0 0

Cr
13 Cr

23 Cr
33 0 0 0

0 0 0 Cr
44 0 0

0 0 0 0 Cr
55 0

0 0 0 0 0 Cr
66


(3.25c)

In the equations above, the superscripts g and m denote the graphene and poly-

imide/alumina matrix, respectively. The superscript r indicates the respective con-

stituent phase, where σr
1, σ

r
2, and σr

3 represent the normal stresses in directions 1, 2,

and 3, respectively. Similarly, ϵr1, ϵ
r
2, and ϵr3 denote the corresponding normal strains,

while σr
12, σ

r
13, and σr

23 represent the shear stresses. The shear strains are denoted by

ϵr12, ϵ
r
13, and ϵr23. The elastic coefficients of the rth phase are represented by Cr

ij (where

i, j = 1, 2, and 6), and eg31, e
g
32, and eg33 are the piezoelectric coefficients of graphene.

It is assumed that the GRNC lamina is homogeneous due to the linear elasticity of

graphene and the matrix (Gao & Li, 2005; Y. S. Song & Youn, 2006; B. Jiang et al.,

2009; S. I. Kundalwal & Ray, 2011; S. Kundalwal & Ray, 2014). The conditions of

ROM and iso-field (iso-stress and iso-strain) are employed to model perfect bonding

between the reinforcement and the surrounding matrix (Smith & Auld, 1991; Ben-

veniste & Dvorak, 1992; Ray & Pradhan, 2006; S. I. Kundalwal & Ray, 2011). The

iso-strain condition allows us to consider normal strains in a homogenized composite,

with the constituents being identical along the reinforcement direction. On the other
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hand, the iso-stress condition indicates that transverse stresses in the respective con-

stituents are the same along the transverse direction of the reinforcement. The ROM

enables the definition of normal stress and transverse and shear strains of the phases

in relation to their volume fractions.

By employing iso-strain and -stress conditions (Smith & Auld, 1991; Benveniste &

Dvorak, 1992; Ray & Pradhan, 2006), perfect bonding between a graphene layer and

the matrix can be modeled by satisfying the following:



σg
1

σg
2

ϵg3

σg
23

σg
13

σg
12


=



σm
1

σm
2

ϵm3

σm
23

σm
13

σm
12


=



σNC
1

σNC
2

ϵNC
3

σNC
23

σNC
13

σNC
12


(3.26)

Consequently, the ROM was employed to assess the effective elastic properties of

GRNC, considering the graphene reinforcement as continuum layers embedded within

the matrix. Thus, utilizing the ROM, we express

Vg



ϵg1

ϵg2

σg
3

ϵg23

ϵg13

ϵg12


+ Vm



ϵm1

ϵm2

σm
3

ϵm23

ϵm13

ϵm12


=



ϵNC
1

ϵNC
2

σNC
3

ϵNC
23

ϵNC
13

ϵNC
12


(3.27)

where the superscript NC denotes the quantities of RVE and GRNC, and volume

fraction of graphene layer (V g) and volume fraction of matrix (V m) respectively.

Utilizing Eqs. (3.25 - 3.27), the stress and strain vectors of the homogenized GRNC

can be expressed in terms of the respective stress and strain vectors of the constituent

phases as follows:
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{
σNC

}
=
[
C1

]{
ϵg
}

+
[
C2

]{
ϵm
}
−
{
e1

}
E3 (3.28a)[

C3

]{
ϵg
}
−
[
C4

]{
ϵm
}

=
{
e2

}
E3 (3.28b){

ϵm
}

=
[
V1

]{
ϵg
}

+
[
V2

]{
ϵm
}

(3.28c)

The matrices appeared in Eqs. (3.28) are given as follows:

[
C1

]
=



Cg
11 Cg

12 Cg
13 0 0 0

Cg
12 Cg

22 Cg
23 0 0 0

vgC
g
13 vgC

g
23 vgC

g
33 0 0 0

0 0 0 Cp
44 0 0

0 0 0 0 Cp
55 0

0 0 0 0 0 Cp
66


(3.29a)

[
C2

]
=



0 0 0 0 0 0

0 0 0 0 0 0

vmC
m
13 vmC

m
23 vmC

m
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.29b)

{e1} =



eg31

eg32

vge
g
33

0

0

0


(3.29c)
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{e2} =



−eg31
−eg32

0

0

0

0


(3.29d)

[
C3

]
=



Cg
11 Cg

12 Cg
13 0 0 0

Cg
12 Cg

22 Cg
23 0 0 0

0 0 1 0 0 0

0 0 0 Cg
44 0 0

0 0 0 0 Cg
55 0

0 0 0 0 0 Cg
66


(3.29e)

[
C4

]
=



Cm
11 Cm

12 Cm
13 0 0 0

Cm
12 Cm

22 Cm
23 0 0 0

0 0 1 0 0 0

0 0 0 Cm
44 0 0

0 0 0 0 Cm
55 0

0 0 0 0 0 Cm
66


(3.29f)

[
V1

]
=



vg 0 0 0 0 0

0 vg 0 0 0 0

0 0 1 0 0 0

0 0 0 vg 0 0

0 0 0 0 vg 0

0 0 0 0 0 vg


(3.29g)
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[
V2

]
=



vm 0 0 0 0 0

0 vm 0 0 0 0

0 0 0 0 0 0

0 0 0 vm 0 0

0 0 0 0 vm 0

0 0 0 0 0 vm


(3.29h)

Making the use of Eq. (3.26) into Eq. (3.28), a constitutive relation for the GRNC

can be written as:

{
σNC

}
=
[
CNC

]{
ϵNC

}
−
{
eNC

}
E3 (3.30)

in which, terms are matrix for the effective elastic properties ([CNC]) and matrix for

the piezoelectric properties ({eNC}) of GRNC, respectively, and can be obtained as

follows:

[
CNC

]
=
[
C1

] [
V3

]−1

+
[
C2

] [
V4

]−1
(3.31a)[

V3

]
=
[
V1

]
+
[
V2

] [
C4

]−1 [
C3

]
(3.31b)[

V4

]
=
[
V2

]
+
[
V1

] [
C3

]−1 [
C4

]
(3.31c){

eNC

}
=
{
e1

}
+
[
C1

] [
V3

]−1 [
V2

] [
C4

]−1 {
e2

}
−
[
C2

] [
V4

]−1 [
V1

] [
C3

]−1 {
e2

}
(3.31d)

From Eq. (3.31), the effective piezoelectric coefficients of GRNC can be identified as

e31 = eNC(1), e32 = eNC(2), and e33 = eNC(3).

In this context, the effective piezoelectric constant e31 for GRNC characterizes

the normal stress induced in the transverse 1-direction when a unit electric field is

applied in the longitudinal 3-direction (Smith & Auld, 1991; Kumar & Chakraborty,

2009). Similarly, the effective piezoelectric constants e32 and e33 describe the normal

stresses induced in the 2- and 3-directions, respectively. Meanwhile, the piezoelectric

constant e15 quantifies the induced shear stress about the 2-direction per unit electric
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field applied in the 1-direction. It is noteworthy that the MOM model does not offer

a solution for determining the effective piezoelectric constant (e15). Hence, the closed-

form expressions for the effective piezoelectric constants of GRNC from Ref. (Kumar

& Chakraborty, 2009) are provided below:

e15 = eg15

(
1 − vmC

g
55

vgCm
55 + vmC

g
55

)
(3.32a)

e24 = eg24

(
1 − vmC

g
44

vgCm
44 + vmC

g
44

)
(3.32b)

Note that GRNC is a transversely isotropic material with the 3–axis as the axis of

symmetry; hence, e31 = e33 and e24 = e15. Consequently, only the three independent

piezoelectric constants (e31,e33, and e15) are necessary to investigate the piezoelectric

behavior of GRNC.

Therefore, the effective dielectric constant (εNC
33 ) of GRNC is determined utilizing the

following relation (Ray & Pradhan, 2006):

εNC
33 = vgε

g
33 + vmε

m
33 + eg31vgvm/(vmC

g
11 + vgC

g
11) (3.33)

3.3.1.1 SOM Model

The SOM model has been adapted and enhanced using the MOM and Hill’s aver-

age concentration factor for a point-wise analysis of GRNC to ascertain its effective

properties. Figure 3.3(a) illustrates a constructive representation of an RVE selected

from the continuum of GRNC, with the graphene reinforcement positioned in the 1–3

plane. The problem coordinates, and principal material coordinate systems are de-

noted by 1-2-3 and x-y-z, respectively. Additionally, Fig. 3.3(b) showcases the RVE

of GRNC. No transformations have been applied, ensuring that the principal material

coordinates in Fig. 3.3(b) precisely match the problem coordinate system depicted in

Fig. 3.3(a).

Taking graphene as a continuum plate, the SOM model developed by Kundalwal

and Ray (S. I. Kundalwal & Ray, 2011) was modified by integrating Hill’s average con-
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Figure 3.3: (a) Schematic of a GRNC lamina, (b) FE mesh of RVE of GRNC,
and (c) longitudinal and transverse cross-sections of RVE of GRNC

centration factor for point-wise analysis of the local structure of GRNC to determine

its effective elastic, piezoelectric, and dielectric properties. The constitutive relations

for the different phases of a GRNC concerning the principal coordinate system (1–2–3)

of material can be written as follows:

{
σr

}
=
[
Cr

]{
ϵr
}

r = g,m, and NC (3.34)

The thickness of the GRNC lamina is assumed to be very small, leading to the action

of E3 across its thickness. Consequently, the constitutive equations for the electric

displacement components of the graphene can be obtained as:

Dg
3 =

{
eg
}′ {

ϵg
}

+
{
εg33

}
Eg

3
(3.35a)

Dm
3 =

{
εm33

}
Em

3 (3.35b)

where, terms are electric displacement of graphene phase (Dg
3), electric displacement
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of matrix phase (Dm
3 ), electric field of graphene phase (Eg

3), and electric field of matrix

phase (Em
3 ) respectively. Note that the GRNC is considered a transversely isotropic

material with the 3-axis as the symmetry axis, and accordingly, the above relations

are written. Making use of Eqs. (3.25 – 3.26 and 3.33 – 3.34) and the stress, as well

as strain vectors of constituent phases, the stress and strain vectors of GRNC can be

expressed as:

{
σNC

}
=
[
C1

]{
ϵg
}

+
[
C2

]{
ϵm
}
−
{
e1

}
E3 (3.36)

in which,

{
σNC

}
=



σNC
1

σNC
2

σNC
3

σNC
23

σNC
13

σNC
12


(3.37a)

[
C1

]
=



Cg
11 Cg

12 Cg
13 0 0 0

Cg
12 Cg

22 Cg
23 0 0 0

vgC
g
13 vgC

g
23 vgC

g
33 0 0 0

0 0 0 Cg
44 0 0

0 0 0 0 Cg
55 0

0 0 0 0 0 Cg
66


(3.37b)

[
C2

]
= vm



0 0 0 0 0 0

0 0 0 0 0 0

Cm
13 Cm

23 Cm
33 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(3.37c)
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{
e1

}
=



eg31

eg32

vge
g
33

0

0

0


(3.37d)

The aim is to establish the relationship between the average electric field in the homog-

enized GRNC and that in the individual phases. As stated earlier, the reinforcements

are coated with electrodes; thus, the reinforcement–matrix interface acts as a very thin

metal conductor. Although the electric field within the metallic conductor is zero, the

metallic conductor between two dielectrics separates its generated charges. It can be

possible to develop the constant electric field in both the graphene and matrix phases

to properly distribute spatially constant electric field/voltage on the electrodes at the

graphene-matrix interface. Therefore, using the ROM and considering the equal elec-

tric fields in the constituent phases (Eg
3 = Em

3 ), the relation for electric displacement

along lamina thickness (D3) in the homogenized GRNC lamina along its thickness)

can be expressed as (Ray & Pradhan, 2006):

D3 = vgD
g
3 + vmD

m
3

(3.38)

It is necessary to relate the average strain vector ({ϵ}) and the average electric

field (E3) in the 3-direction with the average stress vector ({σ}). This correlation

can be achieved in terms of the average strains in GRNC and the electric fields in the

constituents by determining the local strain fields in the constituent phases of GRNC,

namely graphene and the matrix. Following Hill’s average concentration approach

(Hill, 1964), the average strain fields in the constituent phases can be outlined as in

(Ray & Pradhan, 2006):

{
ϵg
}

=
[
Xg

]{
ϵNC

}
+
{
Y g

}
E3 and

{
ϵm
}

=
[
Xm

]{
ϵNC

}
+
{
Y m

}
E3 (3.39)
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Therefore, 42 concentration factors for each phase (graphene reinforcement and ma-

trix) need to be determined to ascertain the effective properties of GRNC. According

to the iso-strain conditions (Eq. 3.35b), applied electric field E3, and composite strain

ϵ3, the factor Xr
33 becomes unity, and some of them vanish as outlined below:

Xr
33 = 1, Xr

3i = 0, i = 1, 2, 4, .., 6 and Y r
33 = 0, r = g and m (3.40)

According to the ROM (Eq. 3.35a), E3 and composite strain ϵ3, the following relations

can be obtained:

vgX
g
ij + vmX

m
ij = δij, i = 1, 2, 4, 5, 6 and j = 1, 2, 4, .., 6 (3.41a)

vgY
g
i1 + vmY

m
i1 = 0, i = 1, 2, 4, 5, 6 (3.41b)

In Eq. (3.41a), δij is the Kronecker delta:

δij =

{
0 if i ̸= j

1 if i = j
(3.42)

Finally, using the iso-stress condition given by Eq. (3.35b), we can obtain the following

relations:

3∑
i=1

(Cg
kiX

g
ij − Cm

kiX
m
ij ) = 0, j = 1, 2, 3, ..., 6 k = 1 and 2 (3.43a)

3∑
i=1

(Cg
kiY

g
i1 − Cm

kiY
m
i1 ) = eg3k, k = 1 and 2 (3.43b)

Cg
iiX

g
ik − Cm

ii X
m
ik = 0, i = 4, 5, 6 k = 1, 2, 3, ..., 6 (3.43c)

Cg
iiY

g
i1 − Cm

ii Y
m
i1 = 0, i = 4, 5, 6 (3.43d)

It is worth noting from Eqs. (3.35) and (3.43) that 48 concentration factors can be

derived from straightforward solutions of 48 homogeneous equations. For instance,

utilizing Eqs. (3.41a) and (3.43a), the following expressions can be obtained:
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(Cg
11 +

vg
vm
Cm

11)X
g
14 + (Cg

12 +
vg
vm
Cm

12)X
g
24 = 0 (3.44a)

(Cg
12 +

vg
vm
Cm

12)X
g
14 + (Cg

22 +
vg
vm
Cm

22)X
g
24 = 0 (3.44b)

The matrix determinant derived from the coefficients in Eqs. (3.44a) and (3.44b)

is non-singular. Therefore, it can be inferred that only straightforward solutions for

these factors are feasible, i.e.,

Xg
14 = Xg

24 = 0 (3.45)

Similarly, the remaining concentration factors will become zero, and the concentration

matrix with all nonzero elements can be obtained as:

[
Xr

]
=



Xg
11 Xg

12 Xg
13 0 0 0

Xg
12 Xg

22 Xg
23 0 0 0

0 0 1 0 0 0

0 0 0 Xg
44 0 0

0 0 0 0 Xg
55 0

0 0 0 0 0 Xg
66


(3.46a)

{
Y r

}
=



Y g
11

Y g
21

0

0

0

0


, r = g and m (3.46b)

Subsequently, the non-zero concentration factors of the graphene and matrix phases,

as presented in Eq. (3.46), can be exclusively computed for a specific graphene volume

fraction using the remaining 11 non-homogeneous relations [Eqs. (3.35) and (3.43)].

Finally, the non-zero concentration factors related to the graphene phase {A} can be

obtained as follows:
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{
A
}

=
[
Q
]−1 {

B
}

(3.47)

where, {
A
}

=
[
Xg

23 Xg
13 Xg

22 Xg
12 Xg

21 Xg
11 Y g

11 Y g
21

]′
(3.48a)

{
B
}

=
[
−vm(Cg

23 − Cm
23) −vm(Cg

13 − Cm
13) Cm

22 Cm
12 Cm

12 Cm
11 vme

g
31 vme

g
32

]′
(3.48b)

[
Q
]

=



q11 q12 0 0 0 0 0 0

q12 q22 0 0 0 0 0 0

0 0 q11 q12 0 0 0 0

0 0 q12 q22 0 0 0 0

0 0 0 0 q11 q12 0 0

0 0 0 0 q12 q22 0 0

0 0 0 0 0 0 q11 q12

0 0 0 0 0 0 q12 q22



(3.48c)

q11 = vmC
g
22 + vgC

m
22, q12 = vmC

g
12 + vgC

m
12 and q22 = vmC

g
11 + vgC

m
11

(3.48d)

Utilizing the following relation, the remaining three factors of the graphene layer(s)

can be determined:

Xg
ii =

Cm
ii

vgCm
ii + vmC

g
ii

, i = 4, 5, and 6 (3.49)

Finally, by substituting Eqs. (3.39) and (3.47) into Eqs. (3.36) and (3.38), the con-

stitutive expression for the GRNC lamina is obtained as:

{
eNC

}
=
[
CNC

]{
ϵNC

}
−
{
eNC

}
E3 (3.50a)

D3 =
{
eNC

}′ {
ϵNC

}
+ ε33E3 (3.50b)

where the effective elastic and piezoelectric tensors of the GRNC are denoted by [CNC ]

and eNC , respectively, and they can be expressed as:
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[
CNC

]
=
[
C1

] [
Xg

]
+
[
C2

] [
Xm

]
and

{
eNC

}
=
{
e1

}
−
[
C1

]{
Y g

}
−
[
C2

]{
Y m

}
(3.51)

in which,

{
ϵNC

}
=
{
eNC
31 eNC

32 eNC
33 0 0 0

}′

(3.52)

where,

eNC
31 = eg31 − (Cg

11Y
g
11 + Cg

12Y
g
21),

enc32 = eg32 − (Cg
12Y

g
11 − Cg

22Y
g
21)

(3.53a)

eNC
33 = (vge

g
33) − vg(C

g
13Y

g
11 + Cg

23Y
g
21) − vm(Cm

13Y
m
11 + Cm

23Y
m
21 ) (3.53b)

The effective dielectric coefficient (εNC
33 ) of the GRNC can be determined using Eq.

(3.32) similar to the MOM model.
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Chapter 4

Polarization in defective graphene using

DFT

4.1 Introduction

Using first-principles calculations, this chapter demonstrates the mechanism of

strain-induced polarization in a defective armchair graphene nanoribbon (AGNR).

We estimate the piezoelectric coefficients of AGNR systems with line, divacancy,

and Stone–Wales (SW) defects. At first, we compare the results of AGNRs having

non-centrosymmetric pores subjected to an axial load with the existing results of

graphene as well as graphitic carbon nitrides, and we confirm that the flexoelectric

effect indeed comes into the picture mechanistically when the symmetry of 2D systems

breaks. The calculations were performed via the simulation software, real-space

grid-based projector-augmented wave (GPAW), and a Python code based on the

projector-augmented wave method for DFT.

Two-dimensional graphene, one of the strongest materials, can be strained up to

25 % (G.-D. Lee et al., 2005), and its behavior varies from metallic to semiconducting

based on its deformation and defects pattern (Son et al., 2006; Novoselov et al., 2005;

Sanderson, 2007). An unbounded pristine graphene sheet displays a unique zero

bandgap and semi-metallic behavior. Graphene sheets/nanoribbons with armchair or

zigzag edges exhibit energy gaps that are inversely proportional to the nanoribbons’
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widths (Son et al., 2006). The band gaps of graphene nanoribbons can be engineered

by applying a uniaxial tensile strain. Qi et al. (Qi et al., 2012) found that wider

nanoribbons with localized edge states cause a smaller band gap when subjected to

the same strain conditions.

Piezoelectricity is the linear induction of electric polarization in response to an applied

uniform strain, whereas flexoelectricity is the linear induction of electric polarization

in response to an applied strain gradient; the converse of both phenomena is also

true. At the surfaces and interfaces of nonpolar materials, symmetry breaking

causes electromechanical coupling like surface piezo- and flexoelectricity, while no

such phenomenon occurs in bulk materials. The phenomena of breaking the bond

symmetry resulting from the nanotube’s inherent curvature is evident in the many

electronic properties of CNTs. A homogeneous mechanical deformation cannot

induce polarization because of the symmetry of the graphene lattice. However, a

strain gradient can cause a flexoelectric effect in centrosymmetric graphene. The

strain gradient alters the ionic positions, leading to electron density redistribution.

Graphene’s centrosymmetric nature cancels out the polarization affected by uniform

strain, whereas a strain gradient eliminates the centrosymmetry and produces

polarization, also termed flexoelectricity. In 2007, Sharma et al. (Sharma et

al., 2007) theoretically studied the effect of the inclusion of centrosymmetric and

non-centrosymmetric shapes in the matrix of InAs-GaAs, and they observed that

the proper arrangement of such centrosymmetric and non-centrosymmetric shapes in

the matrix is required to get a nonzero average polarization. The flexoelectricity, a

weak observable effect at the macroscale, is hardly detectable in bulk materials. The

induced polarization depends on the strain gradient and flexoelectric coefficient; so,

to generate polarization, a large strain gradient is required. The strain gradient is

inversely proportional to the sample size; thus, at the nanoscale level, flexoelectricity

can be very large (Zubko et al., 2013). Mohammadi et al. (Mohammadi et al., 2013)

developed the flexoelectric theory for thin membranes in 2014. Experimentally, it

has been found that the synthesis of graphitic carbon nitride (g − C3N4) has natural

triangular pores, which show piezoelectric behavior with a coefficient of 0.758 C/m2,
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verified by DFT calculations. Bending 2D nanosheets with non-centrosymmetric

triangular and trapezoidal pores create large strain gradients, resulting in strong

electromechanical coupling. Javvaji et al. (Javvaji et al., 2018) studied graphene’s

piezo- and flexoelectric properties with triangle-shaped defects using MDS. They

reported piezo- and flexoelectric coefficients of 0.02826 C/m2 and 0.04554 C/m,

respectively. Kundalwal and Choyal (S. Kundalwal & Choyal, 2021) observed an

enhancement in a boron nitride nanotube’s piezoelectric coefficient with 2B and 2N

vacancies using MDS. The flexoelectric properties of heterostructures like triangular

graphene embedded in boron nitride nanosheets with the application of bending force

by MDS were also reported in the literature (S. I. Kundalwal, Choyal, & Choyal,

2021). The first-principles DFT calculations predict the behavior of material based

on quantum mechanics without needing higher-order parameters like fundamental

material properties. Dat et al. (Dat, Quan, Tran, Lam, & Duc, 2020) studied 3D

penta-graphene plates with the Bees Algorithm using the first principles (DFT). The

flexoelectric properties of four groups of 2D materials such as graphene allotropes,

nitrides (BN, AlN, and GaN), group IV elements (Si, Sn, and Ge), and monolayers of

MoS2, WS2, and CrS2 were found using MDS with the application of bending force

(Zhuang, He, Javvaji, & Park, 2019). There are also attempts to apply hierarchical

and homogenization schemes for studying the other properties of graphene-based

composites. For instance, Xia et al. (Xia, Xu, Xiao, & Weng, 2020) developed a ho-

mogenization scheme to connect the microstructural parameters of constituent phases

and the AC frequency to the graphite composite’s dielectric breakdown strength

and energy storage density. The results indicate that the dielectric breakdown

strength of the graphite-polymer composite decreases concerning the graphite volume

concentration while the energy storage density increases with it. Recently, the elastic

properties of graphene nanofiller and metal matrix were evaluated via the DFT (Xia,

Du, Zhang, Li, & Weng, 2021).

Bending is another way to induce a flexoelectric effect in 2D nanosheets. Due

to bending, the Coulombic repulsion increases with the angle of curvature inside

a cavity, which causes the π-orbitals’ redistribution in graphene and results in a
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transfer of electronic charge from the concave to the convex portion, consequently

resulting in the formation of dipoles at the atomic positions (Dumitrică, Landis, &

Yakobson, 2002). Yang et al. (W. Yang, Liang, & Shen, 2015) explored the effect of

flexoelectricity on electromechanical coupling for the bending of a nanoplate using the

Kirchhoff plate theory. Qu et al. (Qu, Jin, & Yang, 2021) observed that buckling load

increases flexoelectric coupling in semiconductor beams. Banhart et al. (Banhart,

Kotakoski, & Krasheninnikov, 2010) reviewed various structural defects such as point,

line, monovacancy, and multiple vacancy defects, and they emphasized the peculiar

ability of graphene to readjust its lattice around intrinsic defects, which leads to its

tailored properties and possible applications. Baimova (Baimova, 2017) showed that

various mechanical and physical properties of graphene could be controlled by strain

engineering. Thermal and mechanical properties of CNTs were also reviewed for

studying the influence of vacancy defects via MDS (S. I. Kundalwal & Choyal, 2018;

Kothari, Kundalwal, & Sahu, 2018). Meyer et al. (Meyer et al., 2008) investigated the

effect of SW defects on the strength of graphene sheets using MDS. The Transmission

electron microscopy (TEM) images of graphene with various types of defects are

depicted in Fig. 4.1.

(a) TEM image of divacancy (b) SW defect (55–77) formed by C–C
bond with 90° rotation

Figure 4.1: TEM images Reprinted with permission from (Banhart et al.).
Copyright (2011) American Chemical Society
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Graphene acts as fermions with negligible mass and follows the Dirac equation

(Novoselov et al., 2005). Moreover, graphene’s band structure can be modified by

breaking its hexagonal symmetry (Yao, Xiao, & Niu, 2008), thus inducing an elec-

tromechanical response. Son et al. (Son et al., 2006) demonstrated that zigzag

graphene nanoribbon (ZGNR) and AGNR have energy gaps that decrease when their

ribbon width is increased by using the Tight-Binding (TB) approach. Note that

AGNRs shows the properties of semiconductors. In its pristine form, a GNR is

centrosymmetric, but nothing is perfect! So, GNRs are also not defect-free due to

the inherent limitations of their fabrication processes, and they are inherently non-

centrosymmetric. A recent study by Apte et al.(Apte et al., 2020) experimentally

investigated the apparent piezoelectricity of MoO2 nanoflakes that form the electret

state developing due to having defects and voids in the structure during its formation

in the chemical vapor deposition process. Using a novel flexoelectric concept, there is

always an opportunity to obtain polarization from non-piezoelectric GNRs. To the au-

thors’ knowledge, no existing study reports the flexoelectricity in GNRs with inherent

defects using the first-principles calculations. This was the motivation for the current

study. This work studies the strain-gradient–induced polarization in AGNRs with de-

fects (triangle-shaped pore, divacancy, line, and SW defects) using DFT simulations.

Using the quantum mechanics’ approach, the band structures of AGNRs with defects

are examined. The strain-induced polarization is calculated for AGNR systems having

inherent defects. Due to piezo- or flexo-electricity, 2D materials display the coupled

electromechanical behavior, paving the way for attractive applications in actuators,

sensors, biomedical devices, and energy harvesting.

4.2 Computational modelling

We used AGNRs in our study because dipole moments are generated only in insula-

tors or semiconductors, and as AGNRs possess a centrosymmetric structure; thus, they

lack the intrinsic piezoelectric phenomenon, so, we can induce polarization in them by

introducing defects via the flexoelectric concept. The average polarization obtained
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by DFT simulations includes the pre-existing polarization due to surface effects. This

pre-existing polarization, present before applying any strain, is subtracted from the

obtained average polarization. Non-linear effects are avoided by applying small strain

values. We used the DFT for quantum calculations. Firstly, the dangling bonds of the

nanoribbon and pore edges were passivated with hydrogen atoms. AGNR structures

were geometrically relaxed to minimum energy. Then, the electronic band structures

were evaluated to determine the nature of AGNRs with defects. Whether semicon-

ducting or metallic, the strain-gradient–induced polarization in AGNRs was evaluated

afterward. The electromechanical activity in the pristine/defected AGNR was studied

using DFT by applying the GPAW code (Blöchl, 1994; Mortensen, Hansen, & Jacob-

sen, 2005) and the atomic simulation environment (ASE) (Larsen et al., 2017), with

exchange–correlation interactions, considering the Perdew–Burke–Ernzerhof (PBE)

functional. The calculations were performed with the GGA. A supercell consisting

of a slab of AGNR with a vacuum region of 10.0 Å on its top and bottom sides

and a 5.0 Å vacuum from all other sides was used to avoid any interaction with the

next defect site atoms or layers. Atomic geometry optimization was done using the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm till the maximum force was

less than or equal to 0.05 eV/Å. Further, convergence was obtained by applying a

Fermi–Dirac smearing width of 0.05 eV . Davidson Eigensolver is used to compute

eigenvalues. The default density mixing method, carbon potential (C.LDA.gz), and

hydrogen potential (H.LDA.gz) of GPAW were also applied. Moreover, the plane

wave energy cut-off (650 eV ) ratio for convergence was employed. An LDA ex-

change–correlation functional was used for spin-paired calculations. The dipole layer

correction along the GNR plane was also carried out. A grid spacing of 0.18 Å and a

periodic boundary condition along the X and Y axes direction was chosen.

First, we created a required pore/defect in the AGNR by removing carbon atoms

in the ASE and nano-engineer package for modeling. Note that we can use the laser

irradiation method to introduce controlled nanomaterial vacancies to tailor their prop-

erties. The dangling bonds of the AGNR were passivated with hydrogen atoms. Then,

the system was fully relaxed using the BFGS algorithm to minimize potential energy
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to get a stabilized state. The calculations for the electronic band structure were per-

formed to determine the nature of the AGNR using the GPAW package. The induced

polarization in the defective AGNR with axial force was calculated using the Berry

phase formulation present in the GPAW quantum package, while a Berry phase is a

quantity (i.e., phase angle having range 0 to 2π) that describes how a global phase

evolves as some complex vector is carried around a closed loop in a complex vector

space (Berry, 1984). The global phase evolution or angle of rotation is a geometric

phase analogous to the Berry phase. The polarization can be expressed in a quantum

phase, a Berry phase (King-Smith & Vanderbilt, 1993). The constitutive relation for

the - Polarization vector (Pi) induced due to the flexoelectricity effect may be written

as

Pi = eijkϵjk + fijkl
∂ϵjk
∂xl

(4.1)

where eijk and fijkl are respectively the piezoelectric and flexoelectric tensors; ϵjk and

dϵjk
dxl

are the elastic strain and strain gradient respectively. Note that the well-known

piezoelectric effect is the first term on the right-hand side of Eq. (4.1). The value of

the first term, eijk ϵjk, is zero for non-piezoelectric materials. After differentiating

Eq. (4.1), we get the piezoelectric constant eijk,

eijk =
∂Pjk

∂xl
(4.2)

The occupied electronic states accumulate the Berry phase in potential with the adi-

abatic connection of the system’s polarized and unpolarized state (Berry, 1984). The

Berry phase polarization (King-Smith & Vanderbilt, 1993) was controlled by the pe-

riodic boundary conditions of the electronic wave functions. The average induced

polarization (pi) of graphene with strain gradient was obtained by the Berry phase

formulation as follows:

pi = p0 + eijkϵjk +O(ϵ3jk) (4.3)

Here, p0 is the pre-existing polarization arising from the surface effects without apply-

ing any strain, which is determined with no applied force and with the help of Berry
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phase formulation. The term O(ϵ3jk) with non-linear effects is neglected if applied

strain values are smaller.

4.3 Results and discussion

The band structure of the AGNR was studied using the GPAW, a DFT package.

To get induced polarization in graphene, it should be in a semiconducting or insulating

state (Chandratre & Sharma, 2012). The band structures of the pristine and defective

AGNRs are shown in Figs. 4.2(a) and 4.2(b), respectively. Fig. 4.2(a) depicts the

pristine AGNR’s band structure, which shows zero bandgap for a graphene unit cell,

making it a zero-gap semiconductor. The pristine graphene has a Dirac cone near the

Fermi level at the K high-symmetry point and no further bands near the Fermi level.

This cone does not affect most physical properties of graphene. However, it plays an

important role in the low-energy dielectric properties of graphene. In Fig. 4.2(b), the

electronic band structure of the AGNR with non-centrosymmetric pores is shown with

a small indirect band gap.

(a) Pristine AGNR (b) AGNR with triangular pore

Figure 4.2: Band structure

In Fig. 4.3(a), the optical microscope image shows the presence of graphene on a

copper substrate. Its honeycomb structure is also evident from the STM image shown

in Fig. 4.3(b). The Raman spectroscopy image, in Fig. 4.4(a), illustrates single-layer

graphene as a 2D band in the single-layer is more intense and sharper than the 2D

band in multi-layer graphene. A 2D band is a second-order two-phonon process that
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shows a strong peak (2500-2800 cm−1) in the Raman spectra for all kinds of sp2 carbon

materials.

(a) Optical microscope image (b) STM image of graphene

Figure 4.3: Optical microscope and STM image of graphene

Fig. 4.4(b) and 4.5(a) show the density of state (DOS) and the projected density

of state (PDOS) images of graphene. As revealed in Fig. 4.4(b), the DOS at the

Fermi level is above zero, indicating that the system is metallic. There are two DOS

peaks around the Fermi level, which form a pseudo-gap for the graphene system. The

pseudo-gap linearly decreases as the lattice constant increases (Gui, Li, & Zhong,

2008). Considering this fact, we used such a supercell dimension so that the system

would be in a semiconducting or insulating state.

(a) Raman spectrum (b) DOS

Figure 4.4: Raman spectrum and the density of states (DOS)

In the case of the pristine AGNR, there is no induction of polarization response to

deformation due to its centrosymmetric structure. Therefore, we used a supercell of
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AGNR of 19.88 Å length and 16.0 Å width having 160 carbon atoms. The periodic

boundary conditions were only applied along the X and Y axes. Around the 1.7 %

strain condition application, the monovacancy structure reorientation occurs due to

the John-Teller effect (Andreasen, Hao, Hatoum, & Hossain, 2021). So, to avoid re-

construction of vacancy defect, all calculations were performed for a strain range from

0–1 % along the X axis for all defect geometries of GNRs considered here. After ap-

plying strain to the system of a supercell of AGNR, the system again relaxed, until

0.05 eV/Å force on each atom, using the BFGS algorithm to reposition its atoms at

the minimum energy level. While relaxing the system each time, the extreme ends

of AGNR were fixed so that the applied strain would remain within the system and

the system would be at the minimum energy level condition. The bond length of

carbon after relaxation was found to be 1.4202 Å for the unstrained condition. The

fixing of extreme ends in the AGNR is pictorially shown by the dotted regions on

both the extreme ends of the AGNR in Fig. 4.5(b). Subsequently, the polarization

was calculated using the Berry-phase method. The piezoelectric constant, eii, was

calculated per unit volume basis, and as 2D graphene is very thin, so we used GNR

thickness as 2.997 Å for calculating the volume. As polarization is an effect of to-

tal dipole moments per unit volume, the assumption of GNR thickness substantially

influences the obtained polarization values. The calculations were performed for the

pristine AGNR and AGNR with circular defects, as depicted in Fig.4.5(b). With

centrosymmetric pores or defects, no polarization was found after applying an axial

strain since the net-induced dipole moments are zero. In the AGNR with circular

defect, dipoles induced due to flexoelectricity are canceled out because of the sym-

metric nature of the defect region (Zubko et al., 2013). So, no net polarization occurs

in the AGNR with circular defects. Also, dipoles are not induced in the case of the

centrosymmetric honeycomb structure of the pristine AGNR. Graphene nanoribbons

introduced with defects having no centrosymmetry can induce the electric response

with strain gradient (Chandratre & Sharma, 2012). Due to this flexoelectric effect, the

nanostructure behaves like a piezoelectric material under uniform stress. An extensive

strain gradient can be generated at the nanoscale. The effect of various defects and
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non-centrosymmetric pores in AGNRs was studied to observe their piezoelectricity

activity.

(a) PDOS (b) Circular defect

Figure 4.5: Projected DOS (PDOS) and Circular defect of graphene (the large,
dark gray atoms are carbon atoms, while the small, light gray atoms are hydrogen
atoms.)

For the non-centrosymmetric case, we considered triangular pores in AGNRs to

compare and validate the present results with that of available results (Javvaji et al.,

2018; Chandratre & Sharma, 2012; S. Kundalwal et al., 2017; Zelisko et al., 2014). The

applied force induces a strain gradient due to varying resisting cross-sectional areas

for the non-centrosymmetric structure. Such a strain gradient induces asymmetric

dipole moments resulting in polarization, which is nothing but the flexoelectricity

phenomenon (Dumitrică et al., 2002; S. Kundalwal et al., 2017).

Fig. 4.6(a) shows the AGNR with triangular defects without passivation by hy-

drogen atoms. While modeling the AGNR with triangular pores, dangling bonds are

formed at the edges and defect sites. These can be passivated using hydrogen atoms.

Fig. 4.6(a) depicts an AGNR with a non-centrosymmetric triangular pore without

hydrogen passivation, in which the dangling bonds are present at the triangular pore

section. At the corner of the pore, large repulsions are induced by hydrogen atoms,

which causes strain, termed the corner strain effect (S. Kundalwal et al., 2017). Fig.

4.6(a) illustrates the TEM image of graphene with a triangular-defect-like structure.

Both structures demonstrate different electrical responses with the application of me-

chanical deformation.
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(a) Non-passivated AGNR with triangular defects
(6.43 %)

(b) TEM images of triangular defects

Figure 4.6: Non-passivated AGNR with triangular defects (6.43 %) b TEM
images of triangular defects. Reprinted with permission from Kotakoski et al.
Copyright (2010) American Chemical Society.

(a) Passivated AGNR with triangular defect
(6.43 %)

(b) Strain-induced polarization in AGNR
with triangular defect

Figure 4.7: Passivated AGNR with triangular defect (6.43 %) subjected to an
axial force. Strain-induced polarization in AGNR with triangular defect
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The graph is plotted with the polarization versus the applied strain for passivated

AGNRs, as shown in Fig. 4.7(b). The resistance area to the uniform force is different

in the presence of non-centrosymmetric triangular pores, and due to the different re-

sisting areas along the triangular pore, strain increases from its apex to its base. This

differential strain along the triangular pore can be termed a strain gradient. The strain

gradient causes dipole realignment along the applied force’s direction, which induces

polarization due to the flexoelectric effect. The AGNR with non-centrosymmetric

triangular vacancy subjected to strain shows polarization. The axial piezoelectric co-

efficient of passivated AGNR is 0.051 C/m2 for 6.43 % atom vacancy. The passivation

of hydrogen increases polarization by eliminating the corner strain effect; therefore,

we used hydrogen-passivated AGNRs for all simulations. It was observed that the

strain-induced polarization in ZGNRs was much less than in AGNRs, as described in

the literature, since the tensile loading along the zigzag direction of GNRs influences

the H–H repulsion along the armchair edges of a defected graphene (S. Kundalwal et

al., 2017). It is also noted from Fig. 4.7(b) and 4.8(b) that the defect size influences

strain-induced polarization.

(a) Passivated AGNR with triangular defect
(11.43 %)

(b) Strain-induced polarization in AGNR
with triangular defect

Figure 4.8: Strain-induced polarization in AGNRs containing non-
centrosymmetric triangular defects (11.43 %) with hydrogen passivation.

Defects also influence the strength of GNRs. A trade-off is thus required between

the strength and the induced polarization to obtain optimum electromechanical re-
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sponse while choosing the defect size. When the defect size is increased up to 11.43 %,

the piezoelectric coefficient increases to 0.108 C/m2. This indicates that as the defect

size increases, the strain gradient also increases along the triangular pore, and more

dipoles realign over a larger area, causing an increase in polarization.

(a) Single vacancy (b) Divacancy (c) The polarization graph

Figure 4.9: Passivated AGNR with Single vacancy and Divacancy, subjected
to an axial force, and The polarization graph for AGNR having divacancy (DV)
defect.

Next, we performed simulations on usually occurring defect geometries in the

AGNR that break its symmetry. We considered single vacancy, divacancy, line, and

SW defects in AGNRs, as shown in Fig. 4.8 and 4.10. These defect geometries were

modeled using the ASE software package, and the passivation of the dangling bonds at

the defects and edges was performed using hydrogen atoms. No polarization was found

for the single vacancy defect shown in Fig. 4.9(a), as a single vacancy defect is like a

centrosymmetric structure. Fig. 4.9(b) shows an AGNR having divacany defect with

160 carbon atoms with 2 vacant positions passivated by 4 hydrogen atoms. Applying

an axial load on the AGNR induces polarization along the x-direction, resulting in a

piezoelectric coefficient of 0.004 C/m2, as demonstrated in Fig. 4.9(c). A significantly

low polarization occurs in the divacancy case as it can be observed that the divacancy

structure resembles the shape of a circular pore, which leads to centrosymmetricity of

the AGNR.

Subsequently, an inclined single line defect was considered in the AGNR to obtain

its non-centrosymmetric structure along the x-axis, as depicted in Fig. 4.10(a). A sig-

nificantly low polarization change was observed in this case, i.e., a small piezoelectric
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(a) A single line defect (b) Strain-induced polarization in AGNR
with a single line defect

Figure 4.10: Strain induced polarization in AGNR containing single line defect
with hydrogen passivation.

coefficient of 0.013 C/m2, as shown in Fig. 4.10(b). The negligible polarization values

in AGNRs with single-line defects are attributed to the inclination angles, which alter

the arrangement of dipole moments, thereby affecting the piezoelectric behavior of

AGNRs.

Further, SW defects were introduced in the AGNR to study its strain-induced polar-

ization. The SW defect is described as the 900 rotation of a bond that converts 4

hexagons into 2 heptagons and 2 pentagons. AGNRs with a single SW defect show a

low significant piezoelectric coefficient of 0.081 C/m2 along the x-direction (see Fig.

4.12(b)).

The TEM images (Fig. 4.11) of the SW defect depicts slightly disturbed centrosym-

metry of the hexagonal structure of the graphene. Thus, it results in the piezoelectric

effect in AGNRs, as displayed in Fig. 4.12(b). Further, due to the SW defects, the

AGNR deforms in an out-of-plane direction, increasing the net dipole moments.

The structural arrangement of the double SW defect shown in Fig. 4.13(a) was

used for the DFT calculation purpose. The induced polarization in AGNRs with

double SW defect is plotted in Fig. 4.13(b). It may be observed from Fig. 4.13(b)

that the polarization value is decreased in the case of AGNR with a double SW defect

compared to that with a single SW defect. It may be due to the orientation and
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(a) Single SW defect (b) Schematic view of a
single SW defect

(c) Double SW defects

Figure 4.11: TEM images of a single SW defect b) Schematic view of a single
SW defect. Reprinted with permission from Banhart et al. Copyright (2011)
American Chemical Society. c) TEM images of double SW defects. Reprinted
with permission from Zettl et al. Copyright (2008) American Chemical Society

(a) A single SW defect (b) Strain-induced polarization in AGNR
with a single SW defect

Figure 4.12: Strain-induced polarization in passivated AGNR containing a
single SW defect.
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position of two SW defects, as some of the produced dipole moments cancel each

other. A polarization value of 0.005 C/m2 along the x-direction was obtained.

(a) A double SW defect (b) Strain-induced polarization in AGNR
with a double SW defect

Figure 4.13: Strain-induced polarization in passivated AGNR containing a
double SW defect.

Fig. 4.14 depicts the results concerning graphene with different shapes of pores

from the literature and the present work. From the results presented herein, graphene

with different defects is thought to be a non-centrosymmetric solid, and thus we can

induce strain-gradient polarization in it.

4.4 Conclusions

In this chapter, we explored the induced piezoelectricity in AGNR systems with

non-centrosymmetric pores and defects such as divacancy, line, and SW defects us-

ing first-principles calculations. We also calculated the electronic band structure of

graphene nanoribbons using DFT calculations. The presence of defects in GNRs

introduces band gaps that change their electronic structure and break the centrosym-

metricity of GNR systems. Applying axial force leads to the opening of band gaps

at the Fermi level in defective GNRs and induces strain-gradient polarization due to

the flexoelectric effect. Our results showed that AGNRs with divacancy and line de-

fects show a very small electromechanical response due to the centrosymmetricity and
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Figure 4.14: Comparisons of piezoelectric coefficients of graphene with different
shapes and size percentage of defects.

low net dipole moments. AGNRs with non-centrosymmetric triangle-shaped vacan-

cies show a more substantial piezoelectric effect due to the symmetry breaking and

higher dielectric gap. Also, increasing the defect concentration in AGNRs increases

the piezoelectric effect due to the increasing alignment of dipole moments. Changing

the size and type of the defects, the AGNR shows the polarization effect by applying

a strain gradient. Thus, non-centrosymmetric defects and their size in a dielectric

material influence the piezoelectricity due to the flexoelectric effect.
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Chapter 5

Polarization in graphene heterostructure

using DFT

In this chapter, we explore the influence of strain gradient on polarization in graphene

and hBN nanosheet heterostructures featuring non-centrosymmetric triangular pores.

Utilizing DFT, we focus on the vertical stacking of two-dimensional nanosheets, such

as hexagonal boron nitride and graphene, to form vdW heterostructures. These

heterostructures have distinctive and highly controllable electrical characteristics. We

analyze the change in the piezoelectric coefficient by introducing non-centrosymmetric

triangular holes in bilayer graphene under axial load using DFT. Subsequently, we

investigate the variation in polarization with an increase in graphene layers and its

heterostructure with hBN nanosheets, employing the QEH model to streamline com-

putational efforts while ensuring reliability. Additionally, the polarisation properties

of different heterostructure configurations have been evaluated. It was found that

strain-induced polarization in graphene heterostructure with noncentrosymmetric

defects is a nanoscale phenomenon that converts non-piezoelectric graphene into

piezoelectric graphene. The calculations employ the real-space, GPAW DFT method

and the QEH model.
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5.1 Introduction

The zero bandgap and inversion symmetry make graphene unsuitable for piezoelec-

tricity. Graphene, a fermion without mass, satisfies the Dirac equation, and applying

asymmetrical in-plane strain opens the band gap at the Fermi level. Using the Tight

Binding approach, Son et al. (Son et al., 2006) demonstrated that increasing the

width of armchair/zigzag graphene nanoribbon decreases the energy gap. A pristine

graphene nanosheet displays zero bandgap and semi-metallic behavior. Furthermore,

as the strain on the graphene nanosheet increases to 12.2 %, the energy band gap

widens to a width of 0.486 eV (Gui et al., 2008). Armchair or zigzag graphene sheets

have energy gaps inversely related to their widths (Gui et al., 2008).

A more significant strain gradient is achieved by a strain difference over a small dis-

tance, which implies a reduction in the dimensions of electromechanical devices. The

impacts of flexoelectricity in nanotechnology will be of tremendous consequence be-

cause, at the nanoscale level, it will gain a competitive advantage over piezoelectricity.

The strain gradients can effectively act as an equivalent electric field in flexoelectricity.

This can be used to activate the spontaneous polarization of a ferroelectric material.

Flexoelectricity is a substitute for piezoelectricity at the nanoscale level and enhances

electromechanical functionalities (Zubko et al., 2013). Due to the centrosymmetry of

the graphene lattice, a constant strain cannot induce dipole polarisation. Centrosym-

metry means 180◦ rotation, which gives the same structure but in an inverted form.

Centrosymmetry of the structure can be broken when a strain gradient is applied to

the material, which also results in polarization of the material. The strain gradient

disturbs ionic positions, resulting in asymmetric electron density redistribution. When

a uniform strain is applied to a centrosymmetric structure, the produced dipoles nul-

lify each other, and no polarization occurs. However, in a strain gradient case, the

produced dipoles do not nullify each other; thus, polarization appears in the material.

Thus, flexoelectricity results from a linear relationship between the strain gradient

and the polarization. The strain gradient and the material’s flexoelectric coefficient

determine the induced polarization. The sample size is inverse to the strain gradient;
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therefore, flexoelectricity is prominent at the nanoscale level (Zubko et al., 2013). Ex-

perimentally and by DFT calculations, graphitic C3N4 with triangular defects show

piezoelectricity with a 0.758 C/m2 coefficient. Through DFT calculations, Kundal-

wal et al. (S. Kundalwal et al., 2017) have demonstrated that non-centrosymmetric

triangular-shaped defected graphene strain gradients show strong polarization. With

the bending of graphene, Coulomb repulsion varies with curvature, resulting in the

π-orbital redistribution of carbon atoms. This causes an electronic charge transfer

from the concave to the convex region and the formation of dipoles at the atomic sites

(Dumitrică et al., 2002). Hydrogen and fluorine functionalization can improve the

flexoelectric properties of graphene sheets. Banhart et al. (Banhart et al., 2010) in-

vestigated various structural defects in graphene, thereby discovering its unique ability

to reconfigure its lattice around intrinsic defects, culminating in customized properties

and applications. Xia et al. (Xia et al., 2021) developed a hierarchical scheme from

nano to macro scale to study the dependence of mechanical properties of graphene

on the grain size and volume concentration. Kundalwal et al. (S. I. Kundalwal et

al., 2021) evaluated the flexoelectric effect in the heterostructure of boron nitride and

graphene with the help of MDS.

The electronic and mechanical properties of multi-layer graphene are affected by

the number of layers and their orientation. For example, near the K point, the elec-

tronic dispersion of bilayer graphene changes from linear to parabolic (Neto, Guinea,

Peres, Novoselov, & Geim, 2009). Strain engineering can be applied to change the

lattice structure of crystalline materials and modulate their electronic, magnetic, and

optoelectronic properties. A variety of captivating functionalities not found in bulk

materials can be realized in strained, thin film heterostructures. Furthermore, a strain

gradient breaks inversion symmetry in centrosymmetric materials, resulting in an elec-

tric polarization, providing new avenues to manipulate their physical properties (Zubko

et al., 2013). Using soft electret materials, Deng et al. (Deng, Liu, & Sharma, 2014)

presented an interesting nonlinear interplay between the Maxwell stress effect and

flexoelectricity. They showed that the electret-Maxwell stress-based mechanism could

be combined with flexoelectricity to achieve unprecedentedly high values of electrome-
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chanical coupling. An attempt was made to study PN heterojunctions associated with

bending coupling in flexoelectric semiconductor composites considering the effects of

size-dependent and symmetry-breaking (H. Li, Chu, Li, Dui, & Deng, 2022).

Better and newer alternatives for exploring materials with various doping and

electrical properties, especially on a sub-nanometer length scale, have been made pos-

sible by artificially created stacked 2D layer heterostructures with interlayer vdW

forces. VdW interactions are non-bonded interactions with a range of distance of a

few nanometers. These interactions are weaker than bonded and Coulomb interactions.

Numerous innovative materials, technologies, and physical phenomena have been thor-

oughly researched using the vdW heterostructures concept. Primarily, these include

light-emitting diodes in graphene/hBN/MoS2 structures (Withers et al., 2015), high-

speed photodetectors made of few layers of WSe2 stack (Massicotte et al., 2015), nano

solar cells of MoS2/WSe2 hetero-bilayers (Furchi, Pospischil, Libisch, Burgdörfer, &

Mueller, 2014), etc.

Additionally, encapsulating active 2D layers of other materials in atomically thick

hBN nanosheets is a common way to improve their electrical properties (X. Cui et al.,

2015). Interactions between layers or the substrate have become a crucial component

of the computational modeling of 2D materials for practically all applications (Xi & Su,

2021). The QEH model (Andersen et al., 2015) can quickly and accurately calculate

the dielectric function of generic vdW structures with large interface supercells and

hundreds of layers. The separate polarizabilities of various layers’ additivity are the

core assumptions of the QEH scheme. If there is no hybridization between the layers,

this approximation is accurate. Recent work (Andersen et al., 2015) has also shown

that the approximation is accurate for interlayer hybridization. This enhances the

credibility of the QEH model.

This study aims to assess graphene heterostructure polarization properties using

the QEH model (Andersen et al., 2015). QEH model is computationally more efficient

in multi-layers with vdW forces. DFT calculations were used for each layer while

inter-layer interactions (i.e., vdW forces) among multi-layers were evaluated with the

QEH model. Computational time decreased, and accuracy increased by using this
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scheme. This chapter explores strain-induced electric polarization in defected graphene

heterostructures.

5.2 Quantum electrostatic heterostructure model

Figure 5.1: The schematic QEH model: Dielectric building blocks of each layer
are used to calculate the density response function and dielectric function of the
heterostructure. Monopole and dipole-induced densities (blue) and associated
potentials (red) for graphene.

2D materials are the basis for vertically stacked layers bonded with weak vdW

forces. These vdW heterostructures can be stacked without lattice-matching condi-

tions. Conventional heterostructures require various epitaxial growth techniques of

single-crystalline layers. From the weak interlayer binding forces, it is inferred that

each layer of a vdW heterostructure mostly retains all its original 2D properties. Only

the long-range Coulomb interaction with the adjacent layers impacts these properties.

Thus, the overall properties of vdW heterostructures can be predicted with the help of

the individual layer’s properties. This semiclassical model, which evaluates dipole mo-

ments of each separate layer, was computed fully per the first principles calculations

and modeled into the most straightforward possible representation. These layers have

been coupled via Coulomb interaction (Figure 5.1). Even though interlayer hybridiza-
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tion is neglected completely, the model gives good results for vdW heterostructures.

The overall picture of vdW heterostructures can be shown by modeling the dielectric

function of all individual 2D crystals. This approach is computationally more efficient.

The dielectric function is a material response function that determines the effective

interaction among charged particles. The relation between the dielectric function E

and the response function of electron density, X, is given by:

E−1(r, r
′
, ω) = δ(r − r

′
) +

∫
1

|r − r′′|
X(r, r

′
, ω)dr

′′
(5.1)

The calculation is split into two components in QEH. In the first component, the

inplane density response function X(z, z
′
, q, ω) of each layer is evaluated with DFT

calculations. The following is a possible representation of the constitutive relation for

the polarisation vector for each layer caused by the flexoelectric effect:

Pi = eijkϵjk + fijkl
∂ϵjk
∂xl

(5.2)

Where eijk is a piezoelectric tensor, fijkl denotes flexoelectric tensors, ϵjk denotes

elastic strain, and
∂ϵjk
∂xl

represents strain gradient. The value of eijkϵjk is zero for

non-piezoelectric materials. By differentiating Eq. 5.2:

eijk =
∂Pjk

∂xl
(5.3)

With the adiabatic connection of the system’s polarized and unpolarized state,

the Berry phase accumulates in the potential due to the occupied electronic states.

The periodic boundary conditions of the electronic wave functions regulate the Berry

phase. The average induced polarization, pi, of graphene with strain gradient was

calculated using Berry phase formulation.

pi = p0 + eijkϵjk +O(ϵ3jk) (5.4)

The existing polarization, pe, resulting from surface effects without any axial force,

was determined with the help of the Berry phase method. The term O(ϵ3jk) with
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nonlinear effects was ignored due to smaller strain values. The in-plane momentum

transfer, q, was considered to have only magnitude due to the isotropic nature of 2D

materials within the plane. The magnitude of the multiple of the monopole or dipole

component of density was calculated from Xi, which is induced by a constant or linear

potential change across the layer,

χ̃iα(q, ω) =

∫
zαXi(z, z

′
, q, ω)z

′αdzdz
′

(5.5)

Here α = 0 for monopole and α = 1 for dipole components. ρiα(z, q) is an induced

density spatial form. By normalization of ρiα ,

∫
Xi(z, z

′
, q, ω)z

′αdz
′

= χ̃iα(q, ω)ρiα(z, q) (5.6)

χ̃iα depends on frequency. As depicted in Figure 5.1, the dielectric building block

of layer i is formed with the data set (χ̃iα, ρiα) with α = 0, 1. The density of layer i

can be calculated from the dielectric building blocks. The dielectric building blocks

can account for higher order moments (α > 1), but in all the cases considered, dipole

approximation is sufficient. Further, the Dyson equation, which couples the dielectric

building blocks via the Coulomb interaction, was used to evaluate the density response

function of the vdW heterostructures, i.e., the second component of the QEH model.

The Dyson equation for the total density response function with monopole or dipole

density on layer j:

Xiα,jβ = χ̃iαδiα,jβ + χ̃iα

∑
k ̸=i,γ

Vkα,kγXkγ,jβ (5.7)

The Coulomb matrices:

Vkα,kγ(q) =

∫
ρiα(z, q)Φkγ(z, q)dz (5.8)

Φkγ is the potential associated with the induced density, ρkγ, which can be calcu-

lated by solving a 1D Poisson equation using a uniform grid. The monopole or dipole

basis dielectric function of Eq. 5.1:
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E−1
iα,jβ(q, ω) = δiα,jβ +

∑
kγ

Viα,kγ(q)Xkγ,jβ(q, ω) (5.9)

This QEH formulation and the Berry phase method determine polarization properties

in graphene and hBN heterostructures using strain gradient and non-centrosymmetric

pores.

5.3 Computational Modelling

The calculations were performed in two parts. In the first part, bilayer graphene

was studied for polarization properties. The first part of the calculations was per-

formed using the DFT approach, which was used in conjunction with the GPAW

(Blöchl, 1994; Mortensen et al., 2005) package and the ASE (Larsen et al., 2017). Us-

ing the ASE atomistic modeling package, a required pore/defect in a heterostructure

was created by removing atoms. Laser irradiation can be used to introduce controlled

vacancies in nanomaterials. The dangling bonds of heterostructure defects were passi-

vated with hydrogen atoms to prevent re-bonding, which could collapse the defective

structure.

To account for exchange-correlation interactions, GGA in the PBE (Perdew, Burke,

& Ernzerhof, 1996) functional with spin-orbit corrections were used. Since LDA is a

local functional and GGA is a semi-local one, vdW interactions, which depend on

correlation across large distances, cannot be sufficiently characterized through these

approximations. Such interactions are crucial for 2D materials. Next, the empirical

dispersion-corrected density functional theory (DFT-D4) correction was added to the

total energy to get the vdW adjustments. The PAW method (Blöchl, 1994) considers

electron-ion interaction, and the DFT-D4 method considers vdW interaction. The

electron wave function was then calculated using a plane-wave basis and a cut-off

energy of 700 eV . A 6× 6× 1 Γ-centered Monkhorst-Pack grid was used for Brillouin-

zone integration. A 20 Å vacuum gap was kept along the z-direction to avoid spurious

interaction between recurring slabs. In all three dimensions, periodic boundary con-

ditions were used. The BFGS algorithm was implemented for structural relaxation
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until the total energy converged to 10−4 eV and the Hellmann-Feynman force on each

atom was less than 0.05 eV/Å, respectively. Convergence was obtained with 0.1 eV

Fermi-Dirac smearing.

In the second part of the calculation, bilayer graphene and its heterostructure with

hBN were used. The heterostructure was modeled with a supercell technique using

ASE. The structures were optimized using local LDA and BFGS algorithms. The

electron wave function was calculated using a plane-wave basis and a cut-off energy

of 750 eV . The dielectric matrix was evaluated with an 8 × 8 × 1 k-points grid. All

calculations were performed with the GPAW package of DFT. The QEH method was

employed in Python to determine the effective properties of the heterostructure. A

graphene supercell and its heterostructure with a vacuum region of 20.0 Å on its top

and bottom surfaces were used. Some common parameters were used here, as in the

first part of the calculation. The dielectric building blocks for separated layers were

calculated in the QEH method. The blocks are the monopole and dipole components

of the density response function caused by the potential/strain gradient.

Berry phase formulation included in the GPAW quantum package was applied to

evaluate the induced polarization in the pristine/defective heterostructure with axial

load. Because of surface effects, the obtained polarization values may contain pre-

existing polarization. Nonlinear effects caused by higher strain were avoided by using

lower strain values. To investigate the influence of defects on heterostructures, dielec-

tric loss function, and plasmon modes were also determined. Polarization properties

were verified in the pristine/defected heterostructures with DFT. Table 5.1 presents

the parameters used in our simulations.

5.4 Results and discussion

The graphene bilayer and its heterostructure with hBN using the DFT package

GPAW were investigated in this study with the help of the QEH method. Various

properties, such as polarization due to strain gradient, graphene plasmon modes, and

its loss function, etc., were evaluated. Dielectric loss function and plasmon modes
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Table 5.1: Summary of parameters used in numerical simulations

Structure Density Monkhorst Plane- Convergence Optimization Vacuum QEH Berry DFT
functional K grid wave Fermi-Dirac Algorithm Between method phase software
mode, cutoff Smearing (BFGS) layers used used tools
XC energy (eV) (Å) used
functional, (eV)
vdW
Corrections

Bilayer PW, 6× 6× 1 700 0.1 Energy: 20 No Yes GPAW
graphene PBE, (10−4 eV) ASE

DFT-D4 Force:
(0.05
eV/Å)

Bilayer PW, 8× 8× 1 750 0.1 Energy: 20 Yes Yes GPAW
graphene LDA, (10−4 eV) ASE
with hBN DFT-D4 Force:

(0.05
eV/Å)

were evaluated with the help of the QEH package in GPAW Python. Plasmons are

cumulative excitations of the electron fluid corresponding to the poles of polarization.

Plasmons are the overall valence or the conduction electron oscillations in a material.

Surface plasmons occur at the material interface, and their positive real part shows

their dielectric constant. Recently, graphene has been shown to have surface plasmon

occurrence, observed by near-field infrared optical microscopy techniques (J. Chen

et al., 2012). The dielectric function is a complex function whose real part is wave

propagation through a medium. Graphene’s loss function is a function of frequency

and wave vector. The loss function depicts the decrease in bulk plasmons. We used

each layer of 19.88 Å length and 16.0 Å width having 140 carbon atoms with 11.43 %

triangular defect vacancy for graphene and hBN structure in the supercell. Figure

5.2 shows the dielectric loss function (left side) and plasmon modes (right side) of the

single defected graphene layer. We used predetermined library functions of the GPAW

(Blöchl, 1994; Mortensen et al., 2005) software package.

The dielectric loss remains stable and marginal, as depicted in the graph. Pore

effects on the plasmon mode and the loss function of bilayer graphene for several in-

terlayer separations were investigated. Figure 5.3 depicts graphene with the dielectric

loss function (left side) and plasmon modes (right side) of graphene and hBN bilayer

heterostructure. Both layers were used again with the dimensions mentioned earlier

for comparison purposes. It also demonstrates stable marginal loss with an increase

in interlayer distance.
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Figure 5.2: Plasmon dispersion relation for defective graphene

Figure 5.3: Plasmon dispersion relation for defective graphene with hBN
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After evaluating the effect of multi-layers and heterostructure on dielectric proper-

ties, their effect on polarization in heterostructures was studied. In pristine graphene,

there is no polarization induced by virtue of the centrosymmetric nature of graphene.

By breaking centrosymmetry, polarization is induced in graphene using a strain gra-

dient. Graphene with non-centrosymmetric defects behaves like a dielectric material,

producing an electric response with the axial load application. The different material

properties at the interfaces and the non-centrosymmetricity of the defect structure

result in strain gradients in graphene, which causes dipole moment realignment. Due

to this effect, the defected nanostructure behaves like a piezoelectric material under

uniform load. This effect is more prominent at the nanoscale level since a consider-

able effective strain can be generated easily at this level. There are various studies

in graphene with respect to single layers, but no prominent study has been found on

bilayer or multi-layer graphene regarding flexoelectricity. Consequently, an attempt

has been made to evaluate the impact of multi-layer and vdW forces on polarization

through this study.

An earlier study (Xia et al., 2021) demonstrated that pristine graphene is not piezo-

electric. However, polarization can be produced by creating a non-centrosymmetric

defect with axial load. The results obtained in the prior study of the triangular pore in

a single graphene nanosheet with axial loading have been reproduced here to compare

with the current findings of multi-layer graphene and its heterostructure. Due to the

variable resistive cross-sectional area in non-centrosymmetric structures, the applied

force caused a strain gradient. Furthermore, asymmetric dipole moments caused by a

strain gradient lead to polarization.

Figure 5.4 depicts graphene with a non-centrosymmetric triangular defect. The

authors (Xia et al., 2021) showed that creating a non-centrosymmetric defect in single-

layer graphene caused polarization along the x direction. A 0.108 C/m2 polarization

was reported in monolayer graphene with a triangular vacancy defect of 11.43 % (Xia

et al., 2021). The vdW forces play a significant role in multi-layer graphene. Con-

sequently, our efforts focused on gathering insights about multi-layer graphene with

vdW forces. Thus, bilayer graphene with vdW forces became our first consideration.
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Figure 5.4: Strain-induced polarization in single-layer graphene containing
non-centrosymmetric triangular pore (Nevhal & Kundalwal, 2022) with the DFT
method.

Polarization properties were evaluated with the first principles method by considering

both cases of bilayer graphene, i.e., with and without triangular defect. The inter-

layer distance, d, of 3.345 Å was maintained throughout the computational procedure.

The bilayer structure was relaxed with a cut-off value for an optimum bond length

of 1.4199 Å. The lattice parameters obtained from these DFT calculations matched

the experimental values very well. The structure was stepwise strained along the

x-axis. The strain varied from 0 to 0.004 with a smaller step of 0.001. The non-

centrosymmetric triangular pore got deformed along with the graphene bilayer. This

caused a strain gradient along the triangular edges, while uniform strain occurred at

all other locations. Furthermore, this strain gradient caused dipole polarization along

the x direction.

Figure 5.5 shows single-layer graphene with a triangular defect. This was used to

form multi-layer graphene with an interlayer distance of d. The DFT-D4 correction

was implemented in GPAW Python and was used to simulate vdW forces between the

layers. The vdW interactions have some general properties (Parsegian, 2005). Long-

range interactions range from 0.2 to 10 nm, so they attract molecules and tend to

align them. An axial load along zigzag faces was applied, which resulted in varying

strain along the triangular edges due to gradually increasing areas of the triangular

defect. This varying strain or strain gradient induced dipole moments along a non-
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Figure 5.5: Strain-induced polarization in bilayer graphene with non-
centrosymmetric triangular defect (11.43 %) using the DFT method

centrosymmetric defective area and resulted in the polarization of dipoles along the

direction of applied force. A polarization versus strain graph plotted in Figure 5.5

(right side). Bilayer graphene with an 11.43 % atomic vacancy defect is shown with a

piezoelectric coefficient of 0.176 C/m2. The piezoelectric coefficient of 0.005 C/m2 is

noticed for the bilayer graphene without triangular defect. The first principles method

with DFT packages such as GPAW and visualization software ASE has been used.

These methods are computationally expensive as they take almost O(n3) asymptotic

time of CPU/GPU. As system size increases, i.e., the number of electrons and atoms,

its evaluation becomes highly time-consuming.

Figure 5.6: Strain-induced polarization in bilayer graphene containing non-
centrosymmetric triangular pore with QEH method
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As layers in multi-layer graphene increase, the computational task becomes more

and more difficult. At this juncture, the QEH method proves to be handy and gives

some respite for complex evaluation by saving time. As explained in the earlier section,

the QEH model evaluates each layer’s dielectric building blocks, consisting of monopole

and dipole parts of the density response function and dielectric function. Furthermore,

the polarization of vdW heterostructures was calculated assuming complete electro-

static interaction and using Berry phase formulation. These multi-layers with vdW

forces require no matching of lattices, as the results’ accuracy is still achieved using

the QEH model.

Furthermore, a defect percentage of 11.43 % per layer of the defective heterostruc-

ture was used for the QEH model for the purposes of evaluation. The desired het-

erostructure was formed using the QEH model’s heterostructure method and was

implemented using the Python library in GPAW. Then, Berry phase formulation was

used to evaluate polarization. As depicted in Figure 5.6 (right side), a piezoelectric

coefficient of 0.171 C/m2 was obtained using this approach. A piezoelectric coeffi-

cient of 0.005 C/m2 was found for pristine bilayer graphene. This approach gives a

piezoelectric coefficient quite accurately even though the band structures of multi-

layer graphene vary significantly from single-layer graphene. Earlier results of bilayer

graphene using DFT sufficiently matched the result obtained using the QEH method.

Therefore, it follows that the QEH method is quite reliable and accurate in predicting

results in accordance with the first principles. And computational time is also roughly

reduced asymptotically from O(n3) to O(n2.5).

Further, to investigate the influence of heterostructure on the polarization, bilayer

graphene was embedded between 2D hBN nanosheets, and the consequence of the

same was studied. This particular arrangement is shown in Figure 5.7. Again, the

interlayer distance between layers was kept at 3.345 Å. The interlayer weak vdW

forces were considered using forces simulated by the DFT-D4 method.

The heterostructure formed by the layers of two graphene sheets embedded between

two hBN sheets rendered marginal improvement in polarization. 2D hBN is a vdW

nanosheet with remarkable properties (Cai et al., 2019; L. H. Li, Cervenka, Watanabe,
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Figure 5.7: Strain-induced polarization in bilayer graphene embedded in be-
tween hBN nanosheets with a non-centrosymmetric triangular defect with the
QEH method

Taniguchi, & Chen, 2014). Recently, monolayer hBN was theoretically determined as

a piezoelectric because of its broken inversion symmetry (Duerloo, Ong, & Reed, 2012;

Rostami, Guinea, Polini, & Roldán, 2018). The honeycomb-like hBN lattice structure

behaves like a non-centrosymmetric structure due to the presence of different boron

and nitrogen atoms in the sub-lattices of its unit cell. Here, the piezoelectric coefficient

was found to be 0.181 C/m2 for the triangular defect. For the defect-free case, it was

observed to be 0.012 C/m2. The piezoelectric coefficient increased slightly compared

to the graphene bilayer as the hBN nanosheet enhanced the polarization effect in the

results. Because two hBN layers were separated by two consecutive layers of graphene,

hence hBN layers contributed to the polarization effect. The effect of bilayer hBN

embedded in between graphene nanosheets and the consequence of the same has been

further explored. The arrangement is shown in Figure 5.8.

However, as two consecutive hBN layers were added one over the other, hBN’s

inversion symmetry was restored, which diminished the piezoelectric effect. Hence,

no improvement in the polarization effect was obtained. A piezoelectric coefficient of

0.168 C/m2 was observed with this heterostructure arrangement, and a piezoelectric

coefficient of 0.008 C/m2 was found for the defect-free case. As polarization due to

strain gradient was the sole major contributor in the results, and inversion symme-
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Figure 5.8: Strain-induced polarization in bilayer hBN embedded between
graphene nanosheets with a non-centrosymmetric triangular defect with the
QEH method

try may have somewhat been restored in the case of two consecutive hBN layers, the

polarization value was slightly decreased compared to bilayer graphene. Next, alter-

nate layers of graphene and hBN sheets were used to form a heterostructure. The

heterostructure is shown in Figure 5.9.

Figure 5.9: Strain-induced polarization in a heterostructure with alternate
graphene and hBN sheets having non-centrosymmetric triangular pores with
the QEH method

The heterostructure formed by alternate layers gave a significant improvement in

polarization value. The non-centrosymmetric nature of hBN was retained as each

layer was separated by a graphene layer which, in turn, contributed to enhanced po-

larization in the hetero system. Along with the non-centrosymmetry of hBN layers
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and strain gradient at the triangular pore, the piezoelectric coefficient measured here

was 0.189 C/m2. A piezoelectric coefficient of 0.014 C/m2 was calculated without

triangular defect in the heterostructure. Alternate layers of graphene and hBN with

non-centrosymmetric triangular defect and axial loading, depicted in Figure 5.9, ex-

hibited note-worthy polarization results compared to other combinations of graphene

and hBN layers to form heterostructures.

Finally, we present the overview of polarization values in graphene and its het-

erostructures for different sizes of pores in table 5.2. It is evident from the summa-

rized results in the table that the polarization values increase as triangular pore size

increases. At the same time, the mechanical strength of the structure goes down dras-

tically (S. Kundalwal et al., 2017). As induced polarization is a non-centrosymmetric

pore size-dependent and strain gradient-dependent phenomenon, uniform triangular

pore size was used to compare the results of graphene and its heterostructures. For

all the cases presented in table 5.2, polarization values in the y-direction were found

to be almost negligible compared to the polarization values in the x-direction due to

the defect geometry orientation and the applied strain gradient in the particular direc-

tion. It may also be observed that the dipole polarization increases with an increase

in alternate layers of heterostructures.

Table 5.2: Overview of polarization values in the graphene and its heterostruc-
tures

Structure

Without QEH method With QEH method

Defect

%

x-directions
polarization (C/m2)

x-directions
polarization (C/m2)

Monolayer
graphene

Bilayer
graphene

Bilayer
graphene

Bilayer
graphene
embedded
in hBN

Bilayer hBN
embedded
in graphene

Alternate
layers of
graphene
and hBN

Pristine 0 0 0.005 0.005 0.012 0.008 0.014

With
∆ pore

6.43 0.051 [20] - - - - -
11.43 0.108 [20] 0.176 0.171 0.181 0.168 0.189
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5.5 Conclusions

Induced piezoelectricity in graphene heterostructure systems with non-

centrosymmetric triangular defects has been studied with the application of strain,

using first-principles calculations and the QEH method. Furthermore, the dielectric

loss function and plasmon modes have been studied with the help of quantum mechan-

ics calculations. Graphene is centrosymmetric, and hBN regains its centrosymmetric

nature as hBN layers are increased. Centrosymmetric structures are not piezoelectric.

However, to make them piezoelectric, non-centrosymmetric triangular pores can be

introduced to obtain a strain gradient that can induce dipole polarization. Further-

more, heterostructures of graphene and hBN with triangular defects were studied, and

the piezoelectric effect produced in them by the strain gradient method was observed.

DFT and QEH methods were utilized to carry out the same. The QEH method was

noted to be fast and efficient. Bilayer graphene polarization results of both the DFT

and QEH methods were compared, and it was found that the QEH method was almost

as accurate as the DFT method. Additionally, interlayer vdW forces were considered

while evaluating multi-layer heterostructures. It was observed that polarization in-

creased from monolayer to bilayer in the case of graphene with strain gradient. In the

hetero system of graphene and hBN with strain gradient, bilayer graphene embedded

in hBN showed more polarization than bilayer hBN embedded in graphene. Addition-

ally, alternate graphene and hBN layer heterostructures were found to show an even

higher dipole polarization. In summation, centrosymmetric and non-centrosymmetric

defects in graphene and hBN hetero systems were studied for their piezoelectric prop-

erties with strain gradient application using the first principles and the QEH method.
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Chapter 6

The flexoelectric effect on a graphene

nanorod’s bending rigidity

6.1 Introduction

This chapter aims to investigate the impact of the flexoelectric phenomenon

on the electromechanical response in the graphene-reinforced nanocomposite (GNC)

nanorods. An analytical model is developed using the Timoshenko beam theory and

the principle of variational work, incorporating flexoelectric effects. The GNC nanorod

is subjected to a concentrated downward load under clamped-free and simply sup-

ported support types. The GNC is reinforced with a defective graphene sheet known

for enhanced polarization, and the elastic properties of defective graphene sheets are

determined through MDSs. The results emphasize the importance of considering the

flexoelectric effect for accurate nanostructure modeling. The flexoelectric effect en-

hances the nanorod’s stiffness. This will add a new perspective for developing high-

performance graphene-based nanoactuators/sensors. Piezoelectricity is the inherent

property of certain dielectric materials to electrically polarize in response to mechani-

cal stimuli. It is well known that piezoelectric crystals are noncentrosymmetric, due to

the absence of inversion symmetry. However, the breaking of inversion symmetry in-

duces polarization in noncentrosymmetric dielectrics. This electromechanical coupling

is termed the flexoelectric effect, which was identified for the first time by Mashkevich

and Tolpygo (Mashkevich & Tolpygo, 1957). Unlike the piezoelectric effect, the flexo-
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electric effect exists in all dielectric materials, and it reflects the relationship between

strain gradient and polarization (Askar, Lee, & Cakmak, 1970). One of the most im-

portant and unique properties of the flexoelectric effect is size dependency. The effect

of flexoelectricity is more pronounced and prominent at a nano-scale. Owing to its

unique properties, flexoelectricity has attracted significant attention from the scien-

tific community and has been broadly applied in MEMS/NEMS. Ma and Cross (Ma

& Cross, 2005) investigated the flexoelectric effect in PZT using a cantilevered beam

approach. Based on their experimental investigation, they observed that flexoelectric

polarization increases with temperature. Hu and Shen (Hu & Shen, 2010) studied the

piezoelectric and flexoelectric effects in nano dielectrics using the variational principle.

Jiang et al. Yan and Jiang (Yan & Jiang, 2013) studied the influence of the flexoelectric

effect on the electromechanical behavior of nanobeams under various support types.

Their work reported that the flexoelectric effect is more pronounced in nanobeams with

smaller thicknesses. Utilizing the Bernoulli–Euler beam model, Liang et al. (Liang et

al., 2014) studied the electromechanical behavior of piezoelectric nanobeams. They

observed that the flexoelectricity and surface effects are size-dependent properties,

and their influence is prominent at the nanoscale. Wang et al. (X. Wang et al., 2017)

developed a finite difference method to study the effect of flexoelectricity on the static

bending response of piezoelectric nanoplates. Zeng et al. Yurkov et al. (Yurkov,

Dejneka, & Yudin, 2019) derived a theoretical model using variational principles to

study the polarization induced due to flexoelectricity in non-homogeneously heated

nanoplates. Su and Zhou (Su & Zhou, 2020) utilized the non-local effects of flexo-

electricity nanosensors to study the electromechanical response of nanobeam. Beni

(Beni, 2022a, 2022b) utilized a modified non-classical flexoelectric theory to study

the effect of size-dependent properties on the static and free vibration analysis of

micro/nanotubes. Most recently, Gupta et al. (M. Gupta, Meguid, & Kundalwal,

2022) investigated the flexoelectric response in Boron-Nitride-based nanocomposite

beams for various support types. They observed that bulk flexoelectricity stiffens the

nanobeam for all support types.

With recent advancements, graphene has been extensively used as structural re-

6.1. INTRODUCTION 106



CHAPTER 6. THE FLEXOELECTRIC EFFECT ON A GRAPHENE NANOROD’S BENDING RIGIDITY

inforcement in polymer composites. Incorporating graphene as reinforcement was

observed to result in a superior composite structure. Tang et al. (Tang et al., 2013)

studied the effect of graphene dispersion on the mechanical properties of graphene

reinforcement composites. Their outcomes revealed that high dispersion of graphene

results in a significant enhancement in the composite’s electrical conductivity and

fracture toughness. Due to strong polarization, graphene-based piezoelectric compos-

ites have multifarious NEMS/MEMS applications. Making use of first-order shear

deformation theory (FSDT), Song et al. (M. Song, Kitipornchai, & Yang, 2017) per-

formed a dynamic analysis on functionally graded multilayer graphene nanoplatelet

(GPL)/polymer composite plates for forced and free vibrations. Kundalwal et al.

(S. Kundalwal et al., 2020; Shingare, Gupta, & Kundalwal, 2020) developed an ana-

lytical model to investigate the electromechanical response of graphene/polymer com-

posite nanowires accounting for the effects of flexoelectricity. Using EB beam model,

Chen et al. (Q. Chen et al., 2021) studied the dynamic response of graphene-reinforced

porous nanocomposite beams considering the flexoelectric effects. Their outcomes re-

veal that porosity and flexoelectricity can significantly affect the vibrational behavior

of nanobeams. The existing work on graphene-based composite structures shows that

graphene has a potential application as a structural reinforcement due to its excep-

tional elastic and electrical properties. However, a few studies in the literature focus

on the size-dependent response of GNC.

6.2 Electromechanical behavior of GNC nanorod

A Timoshenko beam model is utilized to derive the governing equations for the GNC

nanorod by considering the effects of flexoelectricity for clamped-free (CF) and simply

supported (SS) support types. For the bulk piezoelectric nanostructure, the electric

Gibbs free energy density function Ub can be written as (Shu, Wei, Pang, Yao, &

Wang, 2011):
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Ub = −1

2
aklEkEl +

1

2
cijklεijεkl − eijkεijEi − fijklEiηjkl

+rijklmεijηklm +
1

2
gijklmnηijkηlmn

(6.1)

For the sake of simplicity, the last two terms appearing in Eq. 6.1 are neglected,

which are of fifth order tensor. In their work, such an assumption was made by

Majdoub et al. (Majdoub, Sharma, & Cagin, 2008) and was validated by molecu-

lar dynamics simulations. The benefit of such consideration is that the continuum

piezoelectricity model considering the flexoelectricity can be employed to study the

nanoscale piezoelectricity in a computationally expedient manner rather than using

atomistic calculations which have clear computational limits in terms of system size

and computational expense. Here, a, c, e, f, r, and g are the material property tensors.

Specifically, the dielectric constant, elastic constants, classical piezoelectric constant,

and flexoelectricity constant are represented by a, c, e, and f, respectively. It should be

noted that tensors e and f represent the electromechanical coupling and will be equal

to zero if the electromechanical coupling is not considered. The strain and strain

gradient components are given as (Shen & Kuang, 1999):

εij =
1

2
(µi,j + µj,i) (6.2)

ηjkl = εjk,l =
1

2
(µj,kl + µk,jl) (6.3)

The electric field can be written as:

Ei = −φi (6.4)

The constitutive equations for bulk piezoelectric material derived from the internal

energy density can be expressed as: The electric field can be written as:

σij =
∂Ub

∂εij
= cijklεkl − ekijEk (6.5a)
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τjkl =
∂Ub

∂ηjkl
= −fijklEi (6.5b)

Dk = − ∂Ub

∂Ek

= aklEl + ekijεij + fklijηijl (6.5c)

where σij, Dk, and τjkl represent the Cauchy stress tensor, electric displacement

vector, and higher-order stress, respectively. It is noted that σij = σji, τijm = τjim. A

Cartesian coordinate system (x, y, z) is employed to describe the nanorod, as shown

in Fig. 6.1. The neutral axis of the nanorod is taken along the x-axis, whereas the

thickness of the rod is taken along the z-axis. As shown in Fig. 6.1, a point load

F is applied at the free end of the CF nanorod (x = l) and at the center of the SS

nanorod (x = l/2), respectively. As per the classical Timoshenko beam theory, the

displacement field equations can be expressed as (Ashrafi & Hubert, 2006):

ux(x, y, z) = −zϕ(x) (6.6a)

uy(x, y, z) = 0 (6.6b)

uz(x, y, z) = w(x) (6.6c)

Figure 6.1: Schematics of nanorod under concentrated point load (a) CF and
(b) SS boundary condition.

where transverse displacement is shown by w(x) and cross-section rotation is given

by ϕ(x). The non-zero strains and strain gradients can then be obtained from Eqs.

6.2 and 6.6 as follows:

ε11 = −zdϕ
dx
, ε13 = ε31 =

1

2
(−ϕ+

dw

dx
), (6.7)
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η111 =
∂ε11
∂x

= −zd
2ϕ

dx2
(6.8a)

η113 =
∂ε11
∂z

= −zdϕ
dx

(6.8b)

η131 = η311 =
1

2
(−dϕ
dx

+
d2w

dx2
) (6.8c)

The material property matrices are given below:

Cijkl =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


(6.9a)

akl =


a11 0 0

0 a22 0

0 0 a33

 (6.9b)

ekij =


0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0

 (6.9c)

where the Voigt notation are considered as 11 → 1, 22 → 2, 33 → 3, 23 → 4, 13 →

5, 12 → 6 . For the flexoelectric coefficients, Le Quang and He (Quang & He, 2011)

provide the various rotational symmetries for flexoelectric tensors. For the crystalline

medium, the possible symmetry of the flexoelectric coefficient is discussed by Shu et

al. (Shu et al., 2011). Here, we considered the flexoelectric coefficients as follows (Liu,

Hu, & Shen, 2012; Shu et al., 2011):

f1111 = f2222 = f3333 = f11 (6.10a)
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f1313 = f2323 = f1212 = f2112 = f3223 = f3113 = f111 (6.10b)

f1122 = f1133 = f2211 = f2233 = f3322 = f3311 = f14 (6.10c)

In the case of rods, the thickness of the rod is smaller than its length. Thus,

it can be assumed that the electric field exists only in the thickness direction, i.e.,

E1 = E2 = 0, E3 ̸= 0. In the case of open circuit conditions, the electric displacement

on the surface should be zero D3|s = 0. In the absence of free electric charge, electric

displacement satisfies Gauss’s law and is given by ∂D3

∂z
= 0. Thus, the internal electric

field can be given as follows:

E3 = −e31
e33

ε11 −
f111
a33

η113 −
2f14
a33

η131 (6.11)

From Eqs. 6.5, 6.7, 6.8, and 6.11 the non-zeros stresses and non-zeros moment

stresses can be given as:

σ11 =
(
c11 +

e231
a33

)
ε11 +

e31f111
a33

η113 +
2e31f14
a33

η131 (6.12a)

σ13 = 2kc44ε13 (6.12b)

tau113 =
e31f14
a33

ε11 +
f111f14
a33

η113 +
2f 2

14

a33
η131 (6.12c)

τ131 = τ311 =
e31f111
a33

ε11 +
2f 2

111

a33
η113 +

2f111f14
a33

η131 (6.12d)

Here, k is the shear correction factor. For the present work, we consider k = 1. The

electric Gibbs free energy can be expressed as:

δ

∫
V

Ub dV =

∫
V

(∂Ub

∂εij
δεij +

∂Ub

∂ηjkl
δηjkl −

∂Ub

∂Ek

δεij

)
dV

=

∫
V

(
σijδεij + τjklδηjkl −Dkδεij

)
dV

=

∫
V

(
σ11δε11 + 2σ13δε13 + τ113δη113 + 2τ131δη131

)
dV

(6.13a)
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δ

∫
V

Ub dV =

∫ l

0

[
−(M + P )

dδϕ
dx

+Q
(
−δϕ+

dδw
dx

)
+R

(
−dδϕ
dx

+
d2δw

dx2

)]
dx

(6.13b)

δ

∫
V

Ub dV =

∫ l

0

[−d(M + P )

dx
−
(
Q− dR

dx

)]
δϕdx+

∫ l

0

d

dx

(
Q− dR

dx

)
δwdx

−
[
(M + P ) +R

]
δϕ
∣∣l
0

+R
dδw

dx

∣∣∣l
0
−
(
Q− dR

dx

)
δdw

∣∣∣l
0

(6.13c)

where the resultant shear force and the resultant bending moment are given by:

Q =

∫
A

σ13 dA = c44A
(
−ϕ+

dw

dx

)
(6.14a)

M =

∫
A

σ11z dA = −
(
c11 +

e231
a33

)
I
dϕ

dx
(6.14b)

P =

∫
A

τ113 dA = −f14f111
a33

A
dϕ

dx
+
f 2
14

a33
A
(
−dϕ
dx

+
d2w

dx2

)
(6.14c)

R =

∫
A

τ131 dA = −f
2
111

a33
A
dϕ

dx
+
f14f111
a33

A
(
−dϕ
dx

+
d2w

dx2

)
(6.14d)

The total energy of the overall system is given by Π =
∫
V

(σijεij + τijkηijk) dV −∫
a
(p̄iui + r̄i∆ui) da in which W =

∫
a
(p̄iui + r̄i∆ui) da is the work done by the external

force. For the CF support condition, the work is given by W = Fw|x=l, and for the SS

support condition, the work is given by W = Fw|x=l/2. Making use of the variational

principle, δΠ = 0, the governing equations can be expressed as:

d

dx
(M + P ) =

(
Q− dR

dx

)
d

dx

(
Q− dR

dx

)
= 0

(6.15)

and the corresponding boundary conditions prescribed at the end of the nanorod

(x = 0 and x = l) are:

M + P +R or ϕ (6.16a)

Q− dR

dx
or w (6.16b)

R or
dw

dx
(6.16c)
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The boundary conditions for CF nanorod can be given by:

ϕ|x=0, (M + P +R)|x=l = 0 (6.17a)

w|x=0 = 0, Q− dR

dx

∣∣∣
x=l

= −F (6.17b)

dw

dx

∣∣∣
x=0

= 0, R|x=l = 0 (6.17c)

For SS nanorod, the necessary boundary conditions are given by:

ϕ|x=0, (M + P +R)|x=l/2 = 0 (6.18a)

w|x=0 = 0, Q− dR

dx

∣∣∣
x=l/2

= −F (6.18b)

dw

dx

∣∣∣
x=0

= 0, R|x=l/2 = 0 (6.18c)

Substituting Eq. 6.14 into Eq. 6.15, the governing equations accounting for the

flexoelectric effect can be expressed as:

[(
c11 +

e231
a33

)
I +

(f14 + f111)
2

a33
A
]d2ϕ
dx2

− f14(f14 + f111)

a33
A
d3w

dx3
+ c44A

(
−ϕ+

dw

dx

)
= 0

(6.19a)

c44A
(
−dϕ
dx

+
d2w

dx2

)
+
f111
a33

A
d3ϕ

dx3
− f14f111

a33
A
(
−d

3ϕ

dx3
+
d4w

dx4

)
= 0 (6.19b)

For the cross-section rotation, the solutions for Eq. 6.19 can be obtained by considering

(Asghari, Rahaeifard, Kahrobaiyan, & Ahmadian, 2011):

θ(x) = −ϕ(x) +
dw(x)

dx
(6.20)

where θ(x) indicates twice the rigid body rotation of the beam element. Substituting

the derivation of Eq. 6.20 in Eq. 6.19 one can obtain the following relation:

[(
c11 +

e231
a33

)
I +

f14f111
a33

A
]d3ϕ
dx3

+
f 2
14

a33
A
d3θ

dx3
= 0 (6.21)
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Substituting, Eq. 6.21 into Eq. 6.19 yields to:

B
d3θ

dx3
− C

dθ

dx
= 0 (6.22)

Where, B =
f14f111
a33

(
1 − f14f111A

(c11a33 + e231)I + f14f111A

)

and C = c44A. It is noted that B > 0 for 0 < f14f111A < (c11a33 + e231)I + f14f111A

and C > 0 for c44 > 0 The general solution for Eq. 6.22 can be derived as follows:

θ(x) = C4 cosh(kx) + C5 sinh(kx) − t2t3
t1
C1 (6.23)

The terms appearing in Eq. 6.23 are given by:

k2 =
c44At2
t1

, t1 =
(
c11 +

e231
a33

)
I
f14f111A

a33
, t2 =

(
c11 +

e231
a33

)
I +

f14f111A

a33

and t3 =
(
c11 +

e231
a33

)
I +

f 2
14A

a33t2

C4, C5 and C1 are undetermined parameters. Substituting Eq. 6.23 into 6.21, the

cross-section rotation of nanorod can be expressed as:

ϕ = −f
2
14A

a33t2

[
C4 cosh(kx) + C5 sinh(kx) − t2t3

t1
C1

]
+

1

2
C1x

2 + C2x+ C3 (6.24)

where Ci (i = 1−5) are unknown parameters that can be predicted using the boundary

conditions. Substituting Eqs. 6.23 and 6.24 into Eq. 6.20. The analytical solution for

the transverse deflection can be given by:

w(x) = −t3
t2

[1

k
C4 cosh(kx) +

1

k
C5 sinh(kx) − t2t3

t1k2

]
+

1

6
C1x

3 +
1

2
C2x

2x+ C3x+ C6

(6.25)

Invoking the boundary conditions given by Eqs. 6.17 and 6.18, the unknown constants

Ci (i = 1 − 5) can be calculated. For CF nanorod, the unknown constants are given

by:
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C1 = − F(
t3 + f14f111A

a33

)
(6.26a)

C2 = −C1l, C3 = 0 (6.26b)

C4 =
F

c44A
(

f14f111
a33t3

− 1
)

(6.26c)

C5 = − sinh (kl)

cosh (kl)
C4, C6 =

t3
t2k

C5 (6.26d)

Unknown constants for SS nanorod are given by:

C1 = − F

2t2
, C3 = −C1

l2

8
(6.27a)

C4 = − t2t3C1

t1k2 cosh (kl
2

)
(6.27b)

C2 = C5 = C6 = 0 (6.27c)

The governing Eq. 6.19 can be reformulated as follows when the flexoelectric effect is

ignored: (
c11 +

e231
a33

)
I
d2ϕ

dx2
+ kc44A

(
−ϕ+

dw

dx

)
= 0 (6.28a)

kc44

(
−dϕ
dx

+
d2w

dx2

)
= 0 (6.28b)

The classical Timoshenko beam theory’s governing equation can be obtained by ig-

noring the piezoelectric effect (MA, GAO, & REDDY, 2008).

6.3 Mechanical properties of defective graphene

The literature suggests that polarization of defective graphene sheets increases

due to the breaking of inversion symmetry and because of the presence of strain

gradients (S. Kundalwal et al., 2017; Nevhal & Kundalwal, 2022). However, the

elastic properties of such defective graphene sheets are not available in the literature.

Consequently, they need to be predicted for further studies. Therefore, we estimated
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the elastic properties of defective graphene sheets with 6.43 % triangular defect using

MD simulations. Figure 6.2 shows the schematics of such a defective graphene sheet.

For this study, we employed LAMMPS (Plimpton, 1995) to conduct MDSs. The

molecular interactions between the carbon-carbon (C-C) atoms of the graphene sheet

are described with the AIREBO force fields (Stuart et al., 2000). The atomic volume

of the relaxed defective graphene sheet is calculated with a thickness of 3.4Å (Huang

& Yu, 2006; Pei et al., 2010). Overall stress developed in the defective graphene sheet

was evaluated by averaging the stress developed on each carbon atom. Later, tensile

loading is applied to predict E and µ by plotting stress-strain curves. The detailed

procedure of MD simulations is provided by Ref. (S. I. Kundalwal & Choyal, 2018).

The material properties of the defective graphene sheet are shown in Table 6.1.

Figure 6.2: Armchair graphene sheet with trapezoidal pore subjected to axial
stress with 6.43 % vacancies.

The results obtained for the pristine graphene sheet are validated and agree with

the literature regarding various modeling techniques and experimental investigations

(Dewapriya, Rajapakse, & Nigam, 2015; Jing et al., 2012; C. Lee et al., 2008). The

results of the defective graphene sheets with 4.5 % vacancies are validated with those

reported by Jing et al. (Jing et al., 2012) and agree with the literature. It can be

observed from Table 6.1 that Young’s modulus of the graphene sheet was not much

affected because of the defects. This is attributed to the hydrogenation and saturation

of the dangling bonds at the edges and the porosity of the graphene sheet.
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6.4 Results and discussion

This section uses the Timoshenko piezoelectric beam model to investigate the ef-

fects of flexoelectricity on the electromechanical behavior of GNC nanorods. The

piezoelectric coefficient of the defective armchair graphene sheet was taken from Ref.

Nevhal and Kundalwal (Nevhal & Kundalwal, 2022; Nevhal, Gupta, & Kundalwal,

2023), had 160 atoms, while the length and width of the graphene sheet were 19.88 Å

and 16.0Å, respectively. The material properties of graphene and polyimide matrix

are presented in Table 6.1. The modeling parameters of the nanowire are taken as;

h = 50 nm, b = 2h nm, and l = 8h nm, where b, h, and l are the width, thickness,

and length of the GNC nanowire, respectively. The point load F = 1 nN is applied

at x = l for the CF boundary condition and at x = l/2 for SS boundary condition.

We considered a graphene sheet with 6.43 % vacancy defect to study the influ-

ence of flexoelectric effect on the electromechanical behavior of the nanorod of GNC

nanorod. GNC is composed of the graphene sheet and the polyimide matrix, with

graphene fiber reinforced along the 3-axis. Such piezoelectric composite can be termed

as 1-3 GNC. To simplify the work, graphene can be considered a continuum plate to

calculate its bulk properties (Park et al., 2010; Roberts et al., 2010). Many exist-

ing studies on the straining of nanomaterials are based on analytical and numerical

modeling based on continuum elasticity. The displacement of each atom is given by

the deformation of the continuum medium, in which the atom is embedded, for a

uniformly deformed GNC. Thus, for the present analysis, the GNC can be used as

a continuum medium (S. S. Gupta & Batra, 2010; Gradinar et al., 2013; Bahamon

et al., 2015). The piezoelectric composites (PZCs) have better out-of-plane actuation

because of the improved piezoelectric coefficient, e33, attributed to the alignment of

fibers in the 3-direction. Such 1-3 PZCs have been extensively studied by Gupta et al.

(M. Gupta, Ray, Patil, & Kundalwal, 2021, 2022). A micromechanical model based

on the Mori-Tanka approach presented in Refs (M. Gupta, Meguid, & Kundalwal,

2022; S. Kundalwal & Gupta, 2022) evaluates the effective elastic, piezoelectric, and

dielectric properties of GNC and tabulated in 6.2.
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Table 6.1: Material properties of graphene and polyimide matrix.

Material E (GPa) µ
e31 e33 a33
(C/m2) (C/m2) (F/m)

Pristine 985 0.265 -0.221 0.221 1.106 × 10−10

Graphene (present) (present) [30] [30] [63]

Graphene
with 4.5 % 969 0.265 -0.027 0.027 1.106 × 10−10

vacancy (present) (present) [30] [30] [63]

Graphene
with 6.43 % 960 0.265 -0.051 0.051 1.106 × 10−10

vacancy (present) (present) [31] [31] [63]

Polyimide
4.2 0.4 - - 3.009 × 10−10

[64] [64] [65]

Table 6.2: Effective properties of GNC (vg = 0.3).

Material
C11

(GPa)
C12

(GPa)
C44

(GPa)
e31
(C/m2)

e33
(C/m2)

a33
(F/m)

Graphene
with 6.43 % 13.8876 8.705 4.014 -0.00182 0.175 6.921 × 10−11

vacancy
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To verify the accuracy of the present model, the normalized deflections of the

nanobeam are verified with the available results of the EB beam model presented in

Ref. (M. Gupta, Meguid, & Kundalwal, 2022) for the identical nanobeam. Table 6.3

compares normalized deflections by considering the effects of flexoelectricity. Table

6.3 shows good agreement between the present Timoshenko beam theory and EB

beam theory. It can be seen from Table 6.3 that the EB beam model underpredicts

the deformation of nanobeam. This is because the EB beam theory considers that the

beam’s cross-section is always perpendicular to the neutral axis after deformation. The

Timoshenko beam theory is the superior version of the EB beam theory as it accounts

for the deformation due to shear by considering the shear lag correction factor.

The results demonstrate that the deflection predicted by the current model (Tim-

oshenko beam theory considering the effect of flexoelectricity) is smaller than that

of the classical Timoshenko beam theory. This disparity highlights flexoelectricity’s

influence on the nanobeam’s effective bending rigidity. With the inclusion of the flex-

oelectric effect, the beam exhibits a significantly higher bending rigidity compared to

conventional beams, leading to a stiffer bending behavior under purely mechanical

loads. Additionally, the rotational displacement of the current Timoshenko beam’s

cross-section was also smaller than the prediction of the classical Timoshenko beam

theory.

Figure 6.3(a) illustrates the deflection of the cantilevered nanorod with the ratio

x
l
. The maximum deflection for the CF nanorod is noted at its free end, i.e., x = l. It

can be observed from the figure that the GNC nanorod with flexoelectric effect shows

smaller deflections as compared to the classical Timoshenko nanorod. The maximum

deflection of nanorod (x = l) is reduced by 50 % due to the consideration of flexoelec-

tric effects. This is mainly because flexoelectric effects improve the effective bending

rigidity of the GNC nanorod. Thus, owing to flexoelectric effects, the GNC nanorod

shows stiffer behavior under mechanical loading than the classical nanorod. Figure

6.3(b) demonstrates the cross-section rotation of the nanorod with respect to the ratio

x
l
. The figure depicts that the nanorod’s flexural rigidity improves due to flexoelectric

effects, resulting in smaller cross-section rotation compared to the classical nanorod.

6.4. RESULTS AND DISCUSSION 119



CHAPTER 6. THE FLEXOELECTRIC EFFECT ON A GRAPHENE NANOROD’S BENDING RIGIDITY

Table 6.3: Normalized deflection of nanobeam with various boundary condi-
tions.

(M. Gupta, Meguid, & Kundalwal, 2022)

Thickness
Boundary
condition

x/L Model
Normalized
deflection

20 mm CF 0.2 Present -2.84

EB -2.72

0.6 Present -19.36

EB -18.53

1.0 Present -40.62

EB -38.98

20 mm SS 0.1 Present -1.20

EB -1.15

0.3 Present -3.01

EB -2.99

0.5 Present -3.82

EB -3.68
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The maximum cross-section rotation is observed at the free end of the nanorod. Based

on our observation, flexoelectricity can control the displacement profile of a piezoelec-

tric nanorod at the nanoscale, which is useful for designing piezoelectric nanorod-based

actuators.

(a) Deflection vs. Ratio x
l . (b) Cross-sectional rotation vs. Ratio x

l .

Figure 6.3: CF piezoelectric nanorod

Figures 6.3 show the deflection and rotation of the SS nanorod with its ratio

a
h
. For the SS boundary condition, the deflection and rotation of the nanorod are

shown for one-half of its length by taking advantage of symmetry. A concentrated

load of 1 nN is applied at the center x = l/2 of the nanorod. As expected, the

deflection of the nanorod decreases due to the incorporation of flexoelectric effects.

Compared to the classical GNC nanorod, the nanorod with flexoelectric effects shows

44 % decrement in the maximum static deflections. For the nanorod, the maximum

deflection is observed at its center, and it becomes zero at its supports, i.e., at x = 0

and x = l, as shown in Fig. 6.4(a). The cross-section rotation of GNC nanorod with

or without considering flexoelectric effects for the SS boundary condition is shown

in Fig. 6.4(b). The symmetry of this figure lies in the fourth quadrant. As can be

seen, the rotation of the GNC nanorod, considering the effects of flexoelectric effects,

is less compared to the classical nanorod. For the case of SS boundary condition, the

maximum rotation is observed at the supports, while the cross-section of the nanorod

remains unchanged at the center.

From Figs. 6.4, it can be observed that flexoelectricity greatly influences the
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(a) Deflection vs. Ratio a
h . (b) Cross-sectional rotation vs. Ratio a

h .

Figure 6.4: SS piezoelectric nanorod

flexural rigidity of the structure. The flexoelectric effect stiffens the nanorod for both

CF and SS support conditions. However, for the same loading condition, the CF

nanorod shows softer behavior, while the SS nanorod shows stiffer behavior. This

is attributed to the fact that the curvature of the CF nanorod is concave downward

with a negative slope. Hence, when mechanical load is applied, the CF nanorod shows

larger deflections. In contrast, the curvature of the SS nanorod is concave upward

with a positive slope that opposes the applied load. Thus, the SS nanorod shows

smaller deflection and stiffer behavior than the CF nanorod. Hence, it can be inferred

from the above discussion that flexoelectricity is crucial, and we cannot ignore the

flexoelectric effect at the nanoscale level, which may lead to inaccurate results. This

size-dependent phenomenon can be utilized in designing and fabricating pressure and

force-based nano sensors/actuators.

6.5 Conclusion

This chapter explores an analytical model using the Timoshenko beam theory and

the principle of variational work. The effect of flexoelectricity on the deflection and

cross-section rotation of GNC nanorods is investigated by considering the CF and SS

support types. The size-dependent properties like flexoelectricity greatly influence the

flexural rigidity of the GNC nanorod. For both the support conditions, the flexoelectric

6.5. CONCLUSION 122



CHAPTER 6. THE FLEXOELECTRIC EFFECT ON A GRAPHENE NANOROD’S BENDING RIGIDITY

effect is found to enhance the nanorod’s stiffness, resulting in smaller deflections and

cross-sectional rotations of the nanorod than that of the classical nanorod. It was also

observed that for the same mechanical loading, the SS GNC nanorod showed stiffer

behavior, while the CF GNC nanorod showed softer behavior due to curvature effects.

Thus, the flexoelectric effect ought to be considered at the nanoscale for accurate

modeling of nanostructures subject to mechanical loading.
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Chapter 7

Summary and Future scope

7.1 Summary

The thesis explores the flexoelectric effect in graphene-based heterostructures using

nano- and micro-mechanical analysis. The flexoelectric effect is a fundamental elec-

tromechanical phenomenon, and its understanding of nanomaterials has significant

implications for device design and material optimization.

The study aims to deepen the understanding of flexoelectricity in the context of

graphene-based heterostructures by employing advanced computational techniques,

such as DFT, MD, and Micro-Mechanical Analysis. The main conclusion of this work

can be summarized in the following points:

7.2 Important conclusions

[1] Investigating flexoelectric response : The thesis analyzes the flexoelectric

response in graphene-based heterostructures when subjected to various mechan-

ical strain gradients. The coupling between mechanical strain and electric po-

larization is studied, considering different heterostructure configurations and

boundary conditions.

[2] Tailoring material properties: The research explores strategies to tailor

material properties by engineering the flexoelectric effect. By controlling the
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graphene reinforcement and heterostructure design, the thesis aims to enhance

specific mechanical properties to achieve targeted functionalities.

[3] Materials optimization : By performing nano- and micro-mechanical analy-

sis, the research identifies optimal materials with specific flexoelectric properties

suitable for targeted applications in nanoelectronics, quantum technologies, and

other fields.

[4] Designing novel nanodevices: The study explores the potential of the flexo-

electric effect in designing innovative NEMS devices, such as sensors, actuators,

and energy harvesters. It gives insights into the feasibility of using flexoelectric-

ity to convert mechanical energy into electrical energy at the nanoscale.

7.3 Major findings

• Some electro-mechanical properties of graphene such as bandstructure,

DOS and PDOS, Plasmon dispersion relation, Young’s modulus (E), and

Poisson’s ratio (µ) are evaluated concerning pristine and defective graphene

using MD and DFT.

– Young’s modulus (E) of

∗ Pristine graphene = 985 GPa.

∗ Graphene with 4.5 % triangular vacancy defect = 969 GPa.

∗ Graphene with 6.43 % triangular vacancy defect = 960 GPa.

– Poisson’s ratio (µ) of graphene = 0.265

• Polarization in graphene nanoribbons with inherent defects using

DFT calculations.

– In each scenario, polarization was assessed through the application of the

Berry phase formulation.
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– The applied force generates a strain gradient, causing variations in resisting

cross-sectional areas for the non-centrosymmetric structure. This strain

gradient, in turn, induces dipole moments, resulting in polarization.

– For pristine AGNR, there is no induction of polarization response to axial

strain due to its centrosymmetric structure.

– In the presence of a centrosymmetric circular defect in AGNR, no polariza-

tion was observed under axial strain. The symmetric nature of the defect

region nullifies the induced dipole moments, resulting in no net polarization

in AGNR with circular defects.

– Similarly, there is no polarization in a single vacancy defect, and in the case

of a divacancy defect, polarization is significantly low.

– While modeling AGNR with triangular pores, the formation of dangling

bonds takes place at the edges and defect sites, and these bonds can be

passivated by using hydrogen atoms.

– When subjected to strain, the AGNR with a non-centrosymmetric triangu-

lar vacancy exhibits polarization. The axial piezoelectric coefficient of the

passivated AGNR is 0.051 C/m2 for a 6.43 % atom vacancy. Hydrogen pas-

sivation enhances polarization by eliminating the corner strain effect. With

a further increase in defect size to 11.43 %, the piezoelectric coefficient rises

to 0.108 C/m2. This suggests that as the defect size increases, the strain

gradient along the triangular pore also increases, leading to the realign-

ment of more dipoles over a larger area and, consequently, an increase in

polarization.

– AGNRs with a single SW defect demonstrate a low piezoelectric coefficient

of 0.081 C/m2 under axial loading along the x-direction.

– In AGNRs with a double SW defect, the observed polarization value is

decreased compared to that with a single SW defect. This reduction may

be attributed to the orientation and position of the two SW defects, causing
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some of the produced dipole moments to cancel each other. A polarization

value of 0.005 C/m2 along the x-direction was obtained.

• Polarization in the van der Waals–bonded graphene/hBN het-

erostructures with triangular pores.

– The study of induced piezoelectricity in graphene heterostructure systems

with non-centrosymmetric triangular defects has been conducted by apply-

ing strain, employing DFT and the QEH method.

– The interlayer distance between layers was kept at 3.345 Å. The interlayer

weak vdW forces were considered using forces simulated by the DFT-D4

method.

– By employing DFT, a piezoelectric coefficient of 0.176 C/m2 was deter-

mined in bilayer graphene with an 11.43 % triangular atomic vacancy de-

fect. While bilayer graphene without a triangular defect exhibited a lower

piezoelectric coefficient of 0.005 C/m2.

– The QEH model assesses the dielectric components of each layer, encom-

passing the monopole and dipole segments of the density response function

and dielectric function. Using the Berry phase formulation, the polarization

of vdW bonded graphene heterostructures was computed under complete

electrostatic interaction. This approach yielded a piezoelectric coefficient

of 0.171 C/m2. The QEH method is computationally faster than the DFT

method.

– A piezoelectric coefficient of 0.005 C/m2 was found for pristine bilayer

graphene. This approach gives a piezoelectric coefficient quite accurately

even though the band structures of multi-layer graphene vary significantly

from single-layer graphene. Earlier results of bilayer graphene using DFT

sufficiently matched the result obtained using the QEH method. Therefore,

it follows that the QEH method is quite reliable and accurate in predicting

results in accordance with the first principles.
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– The heterostructure created by sandwiching two graphene sheets be-

tween two hBN sheets showed modest enhancement in polarization. The

honeycomb-like lattice structure of hBN, characterized by distinct boron

and nitrogen atoms in its unit cell sub-lattices, behaves as a non-

centrosymmetric structure. In this configuration, the piezoelectric coef-

ficient was 0.181 C/m2 for the triangular defect, while in the defect-free

scenario, it was observed to be 0.012 C/m2. The slight increase in the

piezoelectric coefficient compared to the graphene bilayer suggests that the

hBN nanosheet amplified the polarization effect. This enhancement is at-

tributed to the contribution of hBN layers to the polarization effect between

two consecutive graphene layers.

– In the case of bilayer hBN sandwiched between graphene nanosheets having

a non-centrosymmetric triangular defect with the QEH method, a piezo-

electric coefficient of 0.168 C/m2 was observed with this heterostructure

arrangement, and a piezoelectric coefficient of 0.008 C/m2 was found for

the defect-free case. As two consecutive hBN layers were added one over

the other, hBN’s inversion symmetry was restored, which diminished the

piezoelectric effect. Hence, no improvement in the polarization effect was

obtained. As polarization due to strain gradient was the sole major con-

tributor in the results, and inversion symmetry may have been restored in

the case of two consecutive hBN layers, the polarization value was slightly

decreased compared to bilayer graphene.

– The heterostructure, comprising alternating layers of hBN and graphene,

exhibited a significant improvement in polarization. The non-

centrosymmetric nature of hBN was retained as each layer was separated

by a graphene layer which, in turn, contributed to enhanced polarization in

the hetero system. Combining the non-centrosymmetry of hBN layers with

the strain gradient at the triangular pore, the piezoelectric coefficient was

determined to be 0.189 C/m2. A piezoelectric coefficient of 0.014 C/m2

was calculated without a triangular defect in the heterostructure.
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• Influence of flexoelectric effect on the bending rigidity of a graphene

reinforced nanorod.

– A Timoshenko beam model is utilized to derive the governing equations for

the GNC nanorod by considering the effects of flexoelectricity for CF and

SS support types.

– The Timoshenko beam theory is the superior version of the EB beam theory

as it accounts for the deformation due to shear by considering the shear lag

correction factor.

– The maximum deflection for the CF nanorod is noted at its free end. The

maximum deflection of nanorod (x = l) is reduced by 50 % due to the

consideration of flexoelectric effects. This is mainly because flexoelectric

effects improve the effective bending rigidity of the GNC nanorod. Thus,

owing to flexoelectric effects, the GNC nanorod shows stiffer behavior under

mechanical loading than the classical nanorod.

– Flexoelectric effects enhance the flexural rigidity of the CF nanorod, lead-

ing to reduced cross-section rotation compared to the classical nanorod.

The maximum cross-section rotation occurs at the free end of the nanorod.

The influence of flexoelectricity on the displacement profile of piezoelec-

tric nanorods at the nanoscale has potential applications in the design of

piezoelectric nanorod-based actuators.

– Under the SS boundary condition, the application of a concentrated load of

1 nN at the center (x = l/2) of the nanorod results in decreased deflection

due to the flexoelectric effect. The nanorod with flexoelectric effects ex-

periences an approximately 44 % reduction in maximum static deflections

compared to the classical GNC nanorod, with the maximum deflection oc-

curring at its center.

– Under the SS boundary condition, and considering the effects of flexoelec-

tricity, the rotation of the GNC nanorod is reduced compared to the clas-

sical nanorod. The maximum rotation occurs at the supports, while the
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cross-section of the nanorod remains unchanged at the center.

– The flexoelectric effect increases the stiffness of the nanorod for both CF

and SS support conditions. However, under the same loading condition,

the CF nanorod exhibits softer behavior, while the SS nanorod shows stiffer

behavior. This behavior is attributed to the curvature of the CF nanorod,

concave downward with a negative slope. Consequently, the CF nanorod

experiences larger deflections when a mechanical load is applied. On the

other hand, the curvature of the SS nanorod is concave upward with a

positive slope, opposing the applied load and resulting in smaller deflections

and stiffer behavior compared to the CF nanorod.

7.4 Limitations of the study

While this study holds great potential and can contribute valuable insights to the

field, it also comes with limitations. Some of the limitations are:

Complexity of computational modeling : Studying flexoelectricity in graphene-

based heterostructures using advanced computational techniques like DFT and MD

can be computationally demanding and time-consuming. Large supercells may be

required, leading to significant computational resources.

Sensitivity to parameters : The accuracy of the results obtained from computa-

tional simulations depends on various parameters and approximations used in the

models. Small changes in these parameters could lead to variations in the results, and

accurately determining the optimal set of parameters can be challenging.

Material models and assumptions: The accuracy of nano- and micro-mechanical

analysis relies on the material models and assumptions made in the simulations. It

may be difficult to account for all the intricacies of the graphene-based heterostructure

in the model, potentially leading to simplifications that could affect the accuracy of

the predictions.

Limited experimental validation : In some cases, experimental data to validate

the computational results may be scarce or challenging to obtain, especially when
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dealing with nanoscale systems. This limitation might make it challenging to fully

verify the accuracy of the models and the predictions made in the thesis.

Computational complexity : The computational cost of DFT and MD scales with

the size of the system. Calculations for large systems, such as heterostructures or

extended materials, can become computationally expensive and may require significant

resources, which requires a huge computational power.

Band gaps and band structures : DFT can underestimate band gaps, particularly

for insulating systems. Additionally, it might incorrectly predict metallic behavior for

systems that should be insulating.

Practical implementation and applications : The practical implementation and

application of flexoelectricity in real-world devices and technologies might be limited

by scalability, manufacturing challenges, and the feasibility of engineering the desired

flexoelectric properties.

Limitations of DFT and other theoretical approaches : Despite being power-

ful computational tools, DFT and other theoretical approaches have inherent approx-

imations and limitations that may affect the accuracy of the results, especially when

dealing with complex systems.

Generalization to different heterostructures: The thesis findings may be spe-

cific to the studied graphene-based heterostructure. Generalizing the results to other

heterostructures with different materials and configurations may require additional

investigations and validations.

Despite these limitations, a well-constructed thesis on the nano- and micro-

mechanical analysis of flexoelectricity in graphene-based heterostructures can still

provide valuable insights and contribute to advancing the field.

7.5 Future scope

The research scope encompasses a comprehensive further investigation into the

flexoelectric effect in graphene-based heterostructures:

Multiscale modeling : Investigate the coupling between the atomic scale and the
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continuum level to develop more accurate multiscale models that can capture the

flexoelectric response at different length scales. This could involve combining DFT,

MDs with continuum mechanics or incorporating higher-order effects into the models.

Experimental validation : Conduct experimental studies to validate the computa-

tional predictions. This could include measuring the flexoelectric response of graphene-

based heterostructures under controlled mechanical deformations and comparing the

results with the computational models.

Defect engineering : Study the influence of defects on the flexoelectric response in

graphene-based heterostructures. Investigate how defects, such as grain boundaries

or inherent defects, affect the heterostructures’ flexoelectric effect and mechanical

properties.

Hybrid systems : Investigate the flexoelectric effect in hybrid graphene-based het-

erostructures, combining graphene with other 2D or conventional materials. Under-

stand how the presence of different materials affects the flexoelectric response and

potential synergistic effects.

Temperature and environmental effects : Study the influence of temperature

and environmental conditions on the flexoelectric response of graphene-based het-

erostructures. Incorporate these factors into the models to evaluate the materials’

performance under realistic operating conditions.

Device applications : Explore potential device applications based on the flexoelec-

tric effect in graphene-based heterostructures. Design and analyze novel nanoscale

devices, sensors, or energy harvesters that leverage flexoelectricity for enhanced per-

formance.

Emerging 2D materials : Extend the study to include other emerging 2D materials

beyond graphene, such as transition metal dichalcogenides (TMDs), to investigate

their flexoelectric properties and potential applications in heterostructures.

Time-dependent analysis: Investigate the time-dependent behavior of flexoelec-

tricity in graphene-based heterostructures under dynamic loading conditions. Under-

stand how the flexoelectric effect may influence the material response to mechanical

vibrations or other time-varying forces.
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Machine learning and data-driven approaches : Explore the application of

machine learning and data-driven approaches to predict flexoelectric properties and

behaviors in graphene-based heterostructures. Develop predictive models based on

available data from simulations and experiments.

Exploring these research scopes can contribute to a deeper understanding of the

flexoelectric effect in graphene-based heterostructures and pave the way for developing

new materials, devices, and technologies with tailored electromechanical properties

and functionalities. Collaborating with experimentalists and other researchers from

related fields is essential to tackle these challenging research directions effectively.
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Chen, J., Badioli, M., Alonso-González, P., Thongrattanasiri, S., Huth, F., Osmond,

J., . . . Koppens, F. H. L. (2012, jun). Optical nano-imaging of gate-tunable

graphene plasmons. Nature, 487 (7405), 77–81. Retrieved from https://doi

.org/10.1038%2Fnature11254 doi: 10.1038/nature11254

Chen, Q., Zheng, S., Li, Z., & Zeng, C. (2021, feb). Size-dependent free vibration

analysis of functionally graded porous piezoelectric sandwich nanobeam rein-

forced with graphene platelets with consideration of flexoelectric effect. Smart

Materials and Structures , 30 (3), 035008. Retrieved from https://doi.org/

10.1088%2F1361-665x%2Fabd963 doi: 10.1088/1361-665x/abd963

Chen, Z., Yang, F., & Meguid, S. (2014, oct). Multi-level modeling of woven

glass/epoxy composite for multilayer printed circuit board applications. In-

ternational Journal of Solids and Structures , 51 (21-22), 3679–3688. Retrieved

from https://doi.org/10.1016%2Fj.ijsolstr.2014.06.030 doi: 10.1016/

j.ijsolstr.2014.06.030

Cho, H.-B., Nakayama, T., Suzuki, T., Tanaka, S., Jiang, W., Suematsu, H., & Ni-

ihara, K. (2011, jan). Formation and structural characteristic of perpendicularly

aligned boron nitride nanosheet bridges in polymer/boron nitride composite film

and its thermal conductivity. Japanese Journal of Applied Physics , 50 (1S2),

01BJ05. Retrieved from https://doi.org/10.1143%2Fjjap.50.01bj05 doi:

10.1143/jjap.50.01bj05

Ci, L., Song, L., Jin, C., Jariwala, D., Wu, D., Li, Y., . . . Ajayan, P. M. (2010, feb).

Atomic layers of hybridized boron nitride and graphene domains. Nature Ma-

terials , 9 (5), 430–435. Retrieved from https://doi.org/10.1038%2Fnmat2711

doi: 10.1038/nmat2711

Cohen, M. L. (2001, aug). Nanotubes, nanoscience, and nanotechnology. Materials

Science and Engineering: C , 15 (1-2), 1–11. Retrieved from https://doi.org/

References 138

https://doi.org/10.1063%2F1.3676084
https://doi.org/10.1063%2F1.3676084
https://doi.org/10.1063%2F1.3676084
https://doi.org/10.1016%2Fj.ijsolstr.2018.09.018
https://doi.org/10.1016%2Fj.ijheatmasstransfer.2021.121039
https://doi.org/10.1038%2Fnature11254
https://doi.org/10.1038%2Fnature11254
https://doi.org/10.1088%2F1361-665x%2Fabd963
https://doi.org/10.1088%2F1361-665x%2Fabd963
https://doi.org/10.1016%2Fj.ijsolstr.2014.06.030
https://doi.org/10.1143%2Fjjap.50.01bj05
https://doi.org/10.1038%2Fnmat2711
https://doi.org/10.1016%2Fs0928-4931%2801%2900221-1
https://doi.org/10.1016%2Fs0928-4931%2801%2900221-1


References

10.1016%2Fs0928-4931%2801%2900221-1 doi: 10.1016/s0928-4931(01)00221

-1

Cui, X., Lee, G.-H., Kim, Y. D., Arefe, G., Huang, P. Y., Lee, C.-H., . . . Hone, J.

(2015, apr). Multi-terminal transport measurements of MoS2 using a van der

waals heterostructure device platform. Nature Nanotechnology , 10 (6), 534–540.

Retrieved from https://doi.org/10.1038%2Fnnano.2015.70 doi: 10.1038/

nnano.2015.70

Cui, Y., Kundalwal, S., & Kumar, S. (2016, mar). Gas barrier performance of

graphene/polymer nanocomposites. Carbon, 98 , 313–333. Retrieved from

https://doi.org/10.1016%2Fj.carbon.2015.11.018 doi: 10.1016/j.carbon

.2015.11.018

Dat, N. D., Quan, T. Q., Tran, P., Lam, P. T., & Duc, N. D. (2020, jun). A first-

principle study of nonlinear large amplitude vibration and global optimization of

3d penta-graphene plates based on the bees algorithm. Acta Mechanica, 231 (9),

3799–3823. Retrieved from https://doi.org/10.1007%2Fs00707-020-02706

-7 doi: 10.1007/s00707-020-02706-7

Deng, Q., Liu, L., & Sharma, P. (2014, jan). Flexoelectricity in soft materials and

biological membranes. Journal of the Mechanics and Physics of Solids , 62 , 209–

227. Retrieved from https://doi.org/10.1016%2Fj.jmps.2013.09.021 doi:

10.1016/j.jmps.2013.09.021

Dewapriya, M., Rajapakse, R., & Nigam, N. (2015, nov). Influence of hydro-

gen functionalization on the fracture strength of graphene and the interfa-

cial properties of graphene–polymer nanocomposite. Carbon, 93 , 830–842.

Retrieved from https://doi.org/10.1016%2Fj.carbon.2015.05.101 doi:

10.1016/j.carbon.2015.05.101

Dreyer, C. E., Stengel, M., & Vanderbilt, D. (2018, aug). Current-density imple-

mentation for calculating flexoelectric coefficients. Physical Review B , 98 (7).

Retrieved from https://doi.org/10.1103%2Fphysrevb.98.075153 doi: 10

.1103/physrevb.98.075153

Duerloo, K.-A. N., Ong, M. T., & Reed, E. J. (2012, sep). Intrinsic piezoelectricity in

two-dimensional materials. The Journal of Physical Chemistry Letters , 3 (19),

2871–2876. Retrieved from https://doi.org/10.1021%2Fjz3012436 doi: 10

.1021/jz3012436

Dumitrică, T., Landis, C. M., & Yakobson, B. I. (2002, jul). Curvature-induced

polarization in carbon nanoshells. Chemical Physics Letters , 360 (1-2), 182–

188. Retrieved from https://doi.org/10.1016%2Fs0009-2614%2802%2900820

-5 doi: 10.1016/s0009-2614(02)00820-5

References 139

https://doi.org/10.1016%2Fs0928-4931%2801%2900221-1
https://doi.org/10.1016%2Fs0928-4931%2801%2900221-1
https://doi.org/10.1016%2Fs0928-4931%2801%2900221-1
https://doi.org/10.1038%2Fnnano.2015.70
https://doi.org/10.1016%2Fj.carbon.2015.11.018
https://doi.org/10.1007%2Fs00707-020-02706-7
https://doi.org/10.1007%2Fs00707-020-02706-7
https://doi.org/10.1016%2Fj.jmps.2013.09.021
https://doi.org/10.1016%2Fj.carbon.2015.05.101
https://doi.org/10.1103%2Fphysrevb.98.075153
https://doi.org/10.1021%2Fjz3012436
https://doi.org/10.1016%2Fs0009-2614%2802%2900820-5
https://doi.org/10.1016%2Fs0009-2614%2802%2900820-5


References

Eichler, J., & Lesniak, C. (2008, jan). Boron nitride (BN) and BN composites for

high-temperature applications. Journal of the European Ceramic Society , 28 (5),

1105–1109. Retrieved from https://doi.org/10.1016%2Fj.jeurceramsoc

.2007.09.005 doi: 10.1016/j.jeurceramsoc.2007.09.005

Falin, A., Cai, Q., Santos, E. J., Scullion, D., Qian, D., Zhang, R., . . . Li, L. H.

(2017, jun). Mechanical properties of atomically thin boron nitride and the

role of interlayer interactions. Nature Communications , 8 (1). Retrieved from

https://doi.org/10.1038%2Fncomms15815 doi: 10.1038/ncomms15815

Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J., & Mueller, T. (2014,

jul). Photovoltaic effect in an electrically tunable van der waals heterojunc-

tion. Nano Letters , 14 (8), 4785–4791. Retrieved from https://doi.org/

10.1021%2Fnl501962c doi: 10.1021/nl501962c

Gao, X.-L., & Li, K. (2005, mar). A shear-lag model for carbon nanotube-reinforced

polymer composites. International Journal of Solids and Structures , 42 (5-6),

1649–1667. Retrieved from https://doi.org/10.1016%2Fj.ijsolstr.2004

.08.020 doi: 10.1016/j.ijsolstr.2004.08.020

Geim, A. K., & Novoselov, K. S. (2007, mar). The rise of graphene. Nature Materials ,

6 (3), 183–191. Retrieved from https://doi.org/10.1038%2Fnmat1849 doi:

10.1038/nmat1849

Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., & Zhi, C.

(2010, may). Boron nitride nanotubes and nanosheets. ACS Nano, 4 (6), 2979–

2993. Retrieved from https://doi.org/10.1021%2Fnn1006495 doi: 10.1021/

nn1006495

Gong, L., Young, R. J., Kinloch, I. A., Riaz, I., Jalil, R., & Novoselov, K. S.

(2012, mar). Optimizing the reinforcement of polymer-based nanocomposites

by graphene. ACS Nano, 6 (3), 2086–2095. Retrieved from https://doi.org/

10.1021%2Fnn203917d doi: 10.1021/nn203917d
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