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Preface

This report on “Automated Identification of Human Emotions based on

Non-stationary EEG Signal Processing” is prepared under the guidance of

Dr. Ram Bilas Pachori, Professor, Electrical Engineering, IIT Indore.

Through this report, I have tried to present an automated identification of hu-

man emotions using flexible analytic wavelet transform (FAWT) based on electroen-

cephalogram (EEG) signals. The main motivation behind this work is to provide a

better automated classification system for human emotions. The proposed method-

ology can be helpful to identify emotions in persons unable to express the emotions

facially. The methodology designed by us is a novel method for the computer-aided

identification of human emotion which provides higher accuracy as compared to the

existing method. The proposed method also provides channel specific emotion clas-

sification which can give an insight to the emotional sensitivity of different persons

across brain regions when the similar stimuli are present. Thus, brain sensitivity of

different persons can be compared using the proposed method.

I have tried my best to explain the proposed concepts, techniques, results, and

conclusion in detail along with the comparison of our method with the already ex-

isting method.

Mayur Dahyabhai Chopda

B.Tech. IV Year

Discipline of Electrical Engineering

IIT Indore
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Abstract

Human emotion is a physical or psychological process which is triggered either con-

sciously or unconsciously due to perception of any object or situation. The electroen-

cephalogram (EEG) signals can be used to record ongoing neuronal activities in the

brain to get the information about the human emotional state. These complicated

neuronal activities in the brain cause non-stationary behavior of the EEG signals.

Thus, emotion recognition using EEG signals is a challenging study and it requires

advanced signal processing techniques to extract the hidden information of emotions

from EEG signals. Due to poor generalizability of features from EEG signals across

subjects, recognizing cross-subject emotion has been difficult. Thus, our aim is to

comprehensively investigate the channel specific nature of EEG signals and to pro-

vide an effective method based on flexible analytic wavelet transform (FAWT) for

recognition of emotion. FAWT decomposes the EEG signal into different sub-band

signals. Further, we applied information potential (IP) to extract the features from

the decomposed sub-band signals of EEG signal. The extracted feature values were

smoothed and fed to the random forest and support vector machine (SVM) classi-

fiers that classified the emotions. The proposed method is applied to two different

publicly available databases which are SJTU emotion EEG dataset (SEED) and

database for emotion analysis using physiological signal (DEAP). The average clas-

sification accuracies on SEED dataset for positive, neutral, and negative emotions

obtained using 12 level decomposition of FAWT on 6 effective channels are 91.53%

(FT7), 90.63% (FT8), 93.46% (T7), 92.84% (T8), 91.06% (C5), and 91.22% (TP7).

On DEAP database, the average classification accuracies obtained using 11 level de-

composition on 2 effective channels are 80.53% (T7), 80.42% (T8) for high arousal

(HA)/low arousal (LA), 80.64% (T7), 80.15% (T8) for the high valence (HV)/low va-

lence (LV), and 72.07% (T7), 71.70% (T8) for HVHA/HVLA/LVLA/LVHA. Thus,

the proposed method has shown better performance for human emotion classifica-

tion as compared to the existing method. Moreover, it yields channel specific subject

classification of emotion EEG signals when exposed to same stimuli.
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Chapter 1

Introduction

1.1 Human emotion

Emotion is psycho-physiological process triggered consciously or unconsciously per-

ception of any object or situation [1]. Emotions play a vital role in human life and

are one of the crucial features of humans [2]. The everyday activities like communi-

cation, decision-making, etc., get highly affected by emotional behavior.

1.2 Electroencephalogram (EEG) signals

The EEG signals measure the electrical activity in the brain generated by the neu-

rons. The EEG signals can help us diagnose focal epileptic seizure [3], sleep disorders

[4], etc.

1.3 Literature survey

For decades, brain-computer interfaces (BCI) [5] have been one of the emerging and

interesting bio-medical engineering research field that allows human being to control

the external devices using their brain waves. To achieve precise and natural inter-

action, computers and robots must possess the ability of emotion processing [6, 7].

The study of emotions has drawn attention of researchers from various disciplines

like psychology, bio-medical science, neuroscience, etc. In the field of computer

science, emotion study is inclined towards the development of applications such as

task workload assessment and vigilance of operator [8, 9]. An automated emotion

recognition system enriches the computer interface more user-friendly, effective, and

enjoyable. The approaches to recognize human emotions vary from facial images,

gesture, speech signals, to other physiological signals [10]. An inherent ambiguity
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exists in recognition of emotions using facial images, gesture, or speech signals be-

cause it might be a pretended emotion not the real ones. To resolve this ambiguity,

emotion recognition using EEG signals gained significant attention of researchers

due to its accurate assessment of the emotions and objective evaluation in compar-

ison with facial expressions and gestures based techniques [11]. It has been proven

that EEG signals can be helpful in effectively identifying the different emotions

[12, 13, 14, 15]. For effective medical care, the consideration of emotional state is

important [16, 17]. The process of recognition of emotion requires suitable signal

processing techniques, feature extraction, and machine learning based classifiers for

automated classification.

Several techniques for automated classification of human emotion using EEG sig-

nals are proposed in the literature [18, 19, 20, 21, 22, 23, 24, 25]. The technique

based on discrete wavelet transform (DWT) is used in [18] to extract features from

the EEG signals for emotion recognition. The features like energy and entropy are

computed from the wavelet coefficients of the emotion EEG signals and the fuzzy

c-mean and fuzzy k-mean clustering algorithms are used for classification purpose.

In [19], the authors presented a method for user-independent emotion recognition

based on EEG signals, gaze distance, and pupillary response. The reported classifi-

cation accuracy is 68.5% for three valence labels and 76.4% for three arousal labels

using modality fusion strategy, and support vector machine (SVM). The EEG signals

pertaining to emotions of happiness and sadness are classified using common special

patterns (CSP) and linear-SVM classifier. They also presented a strategy to choose

an optimal frequency band and gamma band which is found suitable for EEG-based

emotion classification [21]. The three time-frequency distributions namely, Hilbert-

Huang, Zhao-Atlas-Marks, and spectrogram are used to compute the features based

on time-windowing approach for discrimination between music appraisal responses

[22]. The fast Fourier transform (FFT) based features are extracted and classifica-

tion is performed by employing a classifier depending on Bayes theorem and percep-

tron convergence algorithm [23]. Differential entropy based features are computed

from the EEG signals for emotion recognition. These features are found appropriate

for recognition of emotion categories namely, positive, neutral, and negative [24].

In another work, the differential entropy computed in different frequency bands is

related to EEG rhythms. The beta and gamma rhythms are found most effective
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for emotion recognition [25]. Recently, the authors investigated 18 different kinds of

linear and non-linear features out of which nine are time-frequency domain features

and others are dynamical system features from EEG measurements and studied the

different aspects which are important for cross-subject emotion recognition e.g., dif-

ferent EEG channels and achieved average classification accuracies of 59.06% and

83.33% on the database for emotion analysis using physiological signals (DEAP)

and SJTU emotion EEG dataset (SEED) databases, respectively [26].

1.4 Objectives

The objective of this dissertation is to design a computer-aided identification method

for human emotions from EEG signals using non-stationary signal processing tech-

nique.

1.5 Contributions

The contributions of this work is that a computer-aided identification method for

human emotion from EEG signals using a non-stationary signal processing method

namely, flexible analytic wavelet transform (FAWT) has been developed. FAWT

is applied to extract the sub-band signals from EEG signals. Further, information

potential (IP) have been computed from the sub-band signals followed by classifier.

The performance of the proposed method is better than the existing method.

1.6 Organization of the report

The remaining portion of this report is organized as follows: In chapter 2, the de-

scription about the datasets is given. The explanation about the designed method-

ology for classification of human emotions is given in chapter 3. It also provides

description about the FAWT, IP, and studied classifiers. In the chapter 4, results

and discussions have been provided. Finally, the whole work is concluded in chap-

ter 5. The direction of future research work is also provided in chapter 5.
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Chapter 2

Datasets description

The two publicly available datasets namely, SEED and DEAP are used in this work

to validate the proposed methodology. The description of these datasets are as

follows:

2.1 SJTU emotional EEG dataset (SEED)

The SEED dataset is available online for the research purpose [25, 27]. It consists

EEG signals recorded from 15 subjects (7 males and 8 females). Each participant

contributed to the experiment thrice at an interval of one week or longer. The

emotion EEG signals were collected by showing fifteen Chinese film clips for positive,

neutral, and negative emotions. These films contain both scene and audio to elicit

strong emotion in subject. Every emotion contains five film clips with each 4 minutes

long in one experiment. The subject’s emotion reactions were recorded through a

questionnaire after watching each emotion film clip. The 62-channel electrode cap

was used for recording the EEG signals according to the international 10-20 system

at 1000 Hz sampling rate. The recorded EEG signals were preprocessed with down-

sampling rate of 200 Hz followed by a band pass filter between 0.5 Hz to 70 Hz to

remove the noise and artifacts. The detailed information related to the dataset can

be found in [27].

In [25], the authors presented the appropriate number of channels for emotion

EEG signals classification and it was observed that 12 channels were most effective

for classification of emotions. These channels are as follows: C5, C6, CP5, CP6, FT7,

FT8, P7, P8, T7, T8, TP7, and TP8. We have considered each channel separately,

and extracted one second epochs from the last 30 seconds of the recorded EEG

signals. The authors in [1], have suggested the use of last 30 seconds of each trial
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(video) for emotions identification from EEG signals. On the other hand, the human

emotions normally fall in the duration of 0.5-4 seconds [28]. It should be noted that

the suitable selection of the duration is an important factor in the identification of

human emotions from EEG signals. The selection of too long or too short duration

may lead to misclassification of human emotions. For these reasons, the optimal

duration of one second has been suggested in [29, 30] for identification of human

emotions.
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Figure 2.1: Plots of emotion EEG signals from SEED database: (a) positive, (b) neutral, and (c)
negative. Plots of last 1 second epoch corresponding to (d) positive, (e) neutral, and (f) negative
emotion EEG signals.

The SEED database contains recordings from 62 channels but we considered only

those mentioned in [25]. Fig. 2.1(a)- 2.1(c) shows emotion EEG signals of positive,

negative, and neutral whereas Fig. 2.1(d)- 2.1(f) shows the epoch of corresponding

last one second extracted from positive, negative, and neutral emotion EEG signals

from FT7 channel (first session of first subject), respectively.

2.2 Database for emotion analysis using physiological signal

(DEAP)

We have also studied the DEAP emotion database available online for the research

purpose [1]. It consists recording of 32 subjects and the recording from each subject

contains 32 EEG and 8 peripheral signals corresponding to 40 channels. These EEG

signals were recorded by showing 40 pre-selected music video each with duration of

60 seconds and baseline recording of 3 seconds duration. The sampling frequency

of these recorded EEG signals is 128 Hz. The detailed information about database
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can be found in [1].
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Figure 2.2: Plots of emotion EEG signals from DEAP database: (a) HVHA, (b) HVLA, (c) LVLA,
and (d) LVHA. Plots of last 1 second epoch corresponding to (e) HVHA, (f) HVLA, (g) LVLA,
and (h) LVHA emotion EEG signals.

In DEAP dataset, the channels T7, T8, CP5, CP6, P7, and P8 are considered

in this work because these channels are more suitable for recognition of emotions as

suggested in [25]. Fig. 2.2(a)- 2.2(d) shows the high valence high arousal (HVHA),

high valence low arousal (HVLA), low valence low arousal (LVLA), and low valence

high arousal (LVHA) EEG signals recorded from T7 channel, respectively. The

epoch of last one second corresponding to HVHA, HVLA, LVLA, and LVHA EEG

signals are shown in Fig. 2.2(e)- 2.2(h), respectively.

In this presented work, the methodology framework has been designed based on

the SEED database. In order to show the effectiveness of the designed framework,

we have considered DEAP database in addition to SEED database. It can be seen

from Fig. 2.1(a)- 2.1(c) and Fig. 2.2(a)- 2.2(d) for SEED and DEAP databases

that these signals are complicated in nature, respectively. Moreover, it is not easy

to discriminate them based on the visual inspection. Due to this reason, we have

proposed a technique based on the signal processing and machine learning algorithms

for automated classification of the emotion EEG signals. In our proposed method,

we have studied one second duration EEG signals, due to this reason the emotion

EEG signals for SEED and DEAP databases corresponding to last one second are

shown in Fig. 2.1(d)- 2.1(f) and Fig. 2.2(e)- 2.2(h), respectively.
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Chapter 3

Methodology

In this work, the emotion EEG signals are first decomposed using FAWT method.

The FAWT based decomposition of EEG signal results in sub-band signals. The

FAWT method has many advantages over the conventional DWT method such as

flexibility in the selection of parameters (fractional sampling, quality factor, dilation,

and redundancy). Moreover, the FAWT provides a platform for analysis of transient

and oscillatory nature of the signal. It should be noted that with these above

mentioned specific features, the FAWT can also be implemented using iterative filter

bank approach like DWT. The IP estimator is used to extract the feature values from

different sub-band signals. These feature values are smoothen and fed to the random

forest and SVM classifiers separately that classify the emotion EEG signals. The

block diagram for the proposed automated emotion classification system is shown

in Fig. 3.1.

Emotion
EEG

signals

FAWT de-
composition

Feature
extraction
using IP

Feature
smooth-

ing
Classifier

Classified
emotion

Figure 3.1: Block diagram representation of the proposed methodology for the automated classifi-
cation of the emotion EEG signals.

3.1 Flexible analytic wavelet transform (FAWT)

FAWT [31, 32] is an advanced form of DWT that serves as an effective method

for analyzing bio-medical signals [33, 34]. The time-frequency covering is one of the

salient features of FAWT. The FAWT contains Hilbert transform pairs of atoms that

make it suitable for analysis of signals which contain oscillations. The Q-factor (QF),
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number of decomposition level (J), and redundancy (r) are the input parameters for

FAWT. The QF for an oscillatory pulse can be expressed as [31]:

QF =
ω0

∆ω
. (3.1)

where ω0 is central frequency and ∆ω is the bandwidth of the signal.

Thus, QF is the controlling parameter of the number of oscillations in the mother

wavelet. The redundancy controls the time localization of the wavelet. FAWT

provides the facility to specify the dilation factor, QF, and redundancy through

adjusting parameters namely, e, f, g, h, and β. We have e and f for up and down

sampling of high pass channel while g and h are used for up and down sampling of

low pass channel, respectively. The β is a positive constant which gives a measure

for QF and it can be expressed as [31]:

β =
2

QF + 1
(3.2)

As per the definition of FAWT, the parameters e, f, g, h, and β control the number

of oscillation in the wavelet. For a specific QF, the generated wavelet for different

decomposition levels will have same number of oscillations. The shape of these

wavelets will change with the variation of FAWT parameters [31]. The fractional

sampling can also be done using these FAWT parameters in low and high pass

channels. Implementation of J level decomposition using FAWT is done by iterative

filter bank comprising of high pass and low pass channels at every iteration level.

The high pass and low pass channels of the filter bank separate the positive and

negative frequencies, respectively. The frequency response corresponding to high

pass filter is expressed as [31]:

H(ω) =



(ef)1/2, |ω| < ωp

(ef)1/2θ
(
ω−ωp

ωs−ωp

)
, ωp ≤ ω ≤ ωs

(ef)1/2θ
(
π−(ω−ωp)

ωs−ωp

)
, −ωs ≤ ω ≤ −ωp

0, |ω| ≥ ωs

(3.3)
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and the low pass filter frequency response is expressed as [31]:

G(ω) =



(gh)1/2θ
(
π−ω−ω0

ω1−ω0

)
, ω0 ≤ ω < ω1

(gh)1/2 ω1 < ω < ω2

(gh)1/2θ
(
ω−ω2

ω3−ω2

)
, ω2 ≤ ω ≤ ω3

0, ω ∈ [0, ω0) ∩ (ω3, 2π)

(3.4)

where ωp = (1−β)π+ε
e

; ωs = π
f
;ω0 = (1−β)π+ε

g
; ω1 = eπ

fg
;

ω2 = π−ε
g

; ω3 = π+ε
g

; ε ≤ e−f+βf
e+f

π.

The θ(ω) can be given by [31]:

θ(ω) =
[1 + cos(ω)][2− cos(ω)]1/2

2
, for ω ∈ [0, π] (3.5)

For perfect reconstruction, following condition must be satisfied [31]:

|θ(π − ω)|2 + |θ(ω)|2 = 1 (3.6)

The constraint for selecting the QF parameter is expressed as:

1− e

f
≤ β ≤ g

h
(3.7)

The redundancy parameter r can be expressed as:

r ≈ (g/h)
1

1− e/f
(3.8)

Thus, the selection of parameter r is subjected to following constraint:

r > β/(1− e

f
) (3.9)

Figs. 3.2, 3.3, and 3.4 show the plots of the epochs and its corresponding

reconstructed sub-band signals (SS1-SS13) obtained from FAWT decomposition for

positive, neutral, and negative emotion EEG signals, respectively. These epochs are

corresponding to last one second extracted from FT7 channel (first session of first

subject) obtained with SEED database. It should be noted that SS1 to SS13 denote

the first to thirteenth reconstructed sub-band signals (SS) in their decreasing order
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Figure 3.2: Plots of (a) an epoch from positive emotion EEG signal and (b)-(n) its corresponding
reconstructed sub-bands (SS1 − SS13) obtained using FAWT decomposition.
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Figure 3.3: Plots of (a) an epoch from neutral emotion EEG signal and (b)-(n) its corresponding
reconstructed sub-bands (SS1 − SS13) obtained using FAWT decomposition.

of frequency. These components are well behaved and suitable for features extraction

for the classification of human emotion EEG signals. These obtained SS show the

outcome of FAWT based analysis.

In this work, we have used a fixed value of dilation factor ( e
f

= 3
4
) as suggested in

[3] for EEG signals classification. On the basis of this fixed dilation factor, we have

chosen the values of parameters (QF and r) for the FAWT decomposition subjected

to constraints which are expressed in equations (3.8) and (3.9), respectively. The

selected range of values for QF parameter are (3, 4, 5, and 6) and r parameter are

(3, 4, 5, 6, 7, and 8). The value of J is selected from the range of (5, 6, 7, 8, 9,

10, 11, and 12) because J=12 is the maximum possible decomposition level using
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Figure 3.4: Plots of (a) an epoch from negative emotion EEG signal and (b)-(n) its corresponding
reconstructed sub-bands (SS1 − SS13) obtained using FAWT decomposition.

FAWT on these parameters values for EEG signals of length 200 samples [31].

The FAWT is successfully applied for identification of atrial fibrillation electrocar-

diogram (ECG) signals [35], myocardial infarction ECG signals [33], coronary artery

disease [36, 37], and focal EEG signals [3]. For the FAWT decomposition method,

matlab toolbox is available at (http://web.itu.edu.tr/ibayram/AnDWT/).

3.2 Information potential (IP)

The IP is a kernel based non-parametric estimator to evaluate Renyi’s quadratic

entropy. For a random variable X, the IP of X is expressed as [36, 38]:

Î(X) =
1

N2

N∑
i=1

N∑
j=1

kσ(xj, xi) (3.10)

where {xi}Ni=1 are the data samples of random variable X and N is the total number

of observations, kσ represents the Gaussian kernel with bandwidth parameter σ.

In this work, computation of IP [38] feature from the SS obtained from FAWT

decomposition of each epoch is done. Information theoretic learning (ITL) toolbox

(http://www.sohanseth.com/Home/codes) is used for the faster implementation of

IP that makes the use of incomplete Cholesky decomposition with parameter σ fixed

to 1 [36].

13

http://web.itu.edu.tr/ibayram/AnDWT/
http://www.sohanseth.com/Home/codes


3.3 Feature smoothing

As the human emotion changes gradually, the rapid fluctuations in raw feature val-

ues need to be removed. The feature smoothing process is useful for human emotion

classification from EEG signals [24], due to this reason, we have used feature smooth-

ing process in our proposed method. In this process, raw feature values obtained

from IP of epochs have been smoothen using a moving average filter corresponding

to window-length of 5 samples [24]. Fig. 3.5 shows the effect of moving average filter

on the raw feature values obtained from positive emotion using FT7 channel of the

first subject during the first session.
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Figure 3.5: Plots of (a) raw feature values (b) smooth feature values using moving average filter.

3.4 Classification

In this work, random forest [39] and SVM [40] classifiers have been used for the

classification purpose. The ten-fold cross validation is used for the effective calcu-

lation of the classification accuracy [41]. The Waikato environment for knowledge

analysis (WEKA) [42] is used for the implementation of the random forest and

SVM classifiers. These classifiers have been used with default parameters present in

WEKA.

3.4.1 Random forest classifier

The working principle of random forest classifier is based on the aggregate decisions

taken from different trees and each decision tree individually with assigned weight

makes a decision about the class for the final decision. For building a tree, random

tree method is employed [43]. The class decision from every tree determines overall

classification output. The random forest classifier has been successfully utilized for

the classification of ECG signals [44] and EEG signals [4, 45].

14



3.4.2 Support vector machine (SVM) classifier

In SVM classifier, the data is mapped to a higher dimensional space and an optimal

hyperplane for separation of data is constructed in this space. This classifier basically

solves a quadratic programming problem [40]. The SVM classifier is used in [46, 47],

for classification of epileptic seizure EEG signals. In this work, the polynomial and

radial basis function (RBF) kernels have been used with SVM classifier for evaluating

the classification performance [48].

15





Chapter 4

Results and discussions

In this work, continuous epochs of 1 second duration are extracted from the last

30 seconds [1] of all the emotion EEG signals namely, positive, negative, and neu-

tral from SEED database. Then, we have applied FAWT decomposition on each

extracted 1s epoch of emotion EEG signal for 12 selected channels separately. The

FAWT parameters J, QF, and r are selected from the range of 5 to 12, 3 to 6, and

3 to 8, respectively. IP is computed from each of the SS and the dimension of the

feature set is dependent on J level of FAWT decomposition for an epoch and thirty

such epochs are considered from the last 30 second duration of the emotion EEG

signal. The size of total feature set is product of the number of SS used to extract

features with number of epochs. For a channel, total feature set is 30×J+1 for an

emotion EEG signal. Extracted feature values were classified by the random forest

and SVM classifiers.

Fig. 4.1 shows the variation of average classification accuracies for different chan-

nels with respect to J parameter on SEED database. It can be seen from the Fig. 4.1

that the classification accuracies increase with the increase in J parameter for all the

channels. Therefore, we have selected J=12 which is maximum available decompo-

sition level for selected FAWT parameters with signal length of 200 samples in order

to select the QF and r parameters. The variation of average classification accura-

cies for different channels with respect to QF parameter on SEED database can be

seen in Fig. 4.2. The selected value of QF parameter is 5 with the help of Fig. 4.2,

because most of the channels have higher average classification accuracies at this

QF parameter value. However, the variation of third parameter r shows no impact

on the average classification accuracies at J=12 and QF =5 and this variation can
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Figure 4.1: Plot of average classification accuracies on SEED database for different channels with
respect to J values at QF=3 and r=3 using random forest classifier.

be seen in Fig. 4.3. Therefore, we have selected r=3 for FAWT decomposition in

order to developed our methodology. Tables 4.1, 4.2, and 4.3 show achieved average

classification accuracies on selected FAWT parameters on every channel for different

subjects obtained with random forest and SVM classifiers on SEED. Table 4.4 shows

the achieved average classification accuracies on selected FAWT parameters across

channels obtained with random forest and SVM classifiers on SEED database. It can

be observed from Table 4.4, that the highest average classification accuracies across

channels are obtained with random forest classifier in comparison to SVM classi-

fier for SEED database. It can also be observed from Table 4.4, that channels FT7,

FT8, T7, T8, C5, and TP7 have shown higher average classification accuracies across

channels obtained with SEED database using random forest classifier in comparison

to other channels. Thus, we can clearly say that these channels are most efficient for

cross-subject recognition of emotion with FAWT decomposition using EEG signals.

The proposed methodology with selected FAWT parameters along with random for-

est classifier has been also tested on DEAP database to check the effectiveness of

the proposed method. The selection of random forest classifier for DEAP database

is based on the good performance of classification accuracies obtained on SEED
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Figure 4.2: Plot of average classification accuracies on SEED database for different channels with
respect to QF values at J=12 and r=3 using random forest classifier.

database as compared to SVM classifier. In this DEAP database, J=11 is the maxi-

mum possible decomposition level due to signal length of 128 samples. Table 4.4 also

shows the results of average classification accuracies across channels obtained with

DEAP database using random forest classifier. Similarly, Table 4.4 shows the higher

average classification accuracies across channels for T7 and T8 common channels on

DEAP database. The proposed methodology obtained the average classification ac-

curacies of 90.48% for positive/neutral/negative, 79.95% for high arousal (HA)/low

arousal (LA), 79.99% for the high valence (HV)/low valence (LV), and 71.43% for

HVHA/HVLA/LVLA/LVHA emotions classification using EEG signals. Our pro-

posed methodology outperforms in comparison to methodology proposed in [26],

which gives an average classification accuracies of 83.33% on SEED database and

59.06% on DEAP database.
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Figure 4.3: Plot of average classification accuracies on SEED database for different channels with
respect to r values at J=12 and QF=5 using random forest classifier.

Table 4.1: Average classification accuracies (%) on SEED database of different subject across
channels for J=12, QF=5, and r=3 with random forest classifier.

Subject
Channel name

FT7 FT8 T7 T8 C5 C6 TP7 TP8 CP5 CP6 P7 P8
1 87.10 90.07 94.83 91.70 88.13 86.23 90.00 88.87 85.77 88.20 89.67 86.30
2 88.83 87.93 90.43 90.30 86.90 85.87 92.13 85.40 87.17 83.57 88.50 85.57
3 92.77 89.53 92.60 94.23 90.07 90.73 91.50 89.63 87.13 87.63 88.67 88.90
4 88.33 90.07 90.37 90.47 89.57 84.43 87.33 84.23 87.63 82.07 86.97 84.53
5 95.70 92.10 95.17 93.97 95.27 93.93 93.97 93.83 91.93 92.23 93.27 93.40
6 96.77 97.23 93.77 95.90 92.97 91.33 93.20 92.50 93.27 90.23 93.10 89.87
7 92.10 87.27 94.87 90.43 92.67 90.03 88.30 88.97 87.40 89.83 87.83 88.63
8 89.47 82.77 92.83 89.27 89.50 81.77 91.07 86.43 86.13 80.23 90.67 88.63
9 90.83 93.17 94.97 93.77 92.17 88.87 92.17 89.47 93.83 88.27 89.80 88.47
10 91.33 90.83 91.17 91.33 90.23 90.77 89.97 85.93 89.13 86.40 89.10 88.23
11 94.60 94.17 92.60 94.93 90.90 92.83 90.27 94.67 91.40 88.77 89.20 91.10
12 88.47 89.37 91.27 92.13 89.40 89.20 88.67 88.97 87.17 89.00 88.20 89.83
13 90.77 90.20 95.27 93.90 93.03 91.47 92.97 91.20 89.97 91.20 86.67 91.53
14 90.97 91.10 94.67 94.00 91.70 88.57 93.20 91.03 92.10 88.47 91.63 93.27
15 94.97 93.70 97.13 96.23 93.47 93.83 93.60 90.90 92.07 91.23 91.13 91.63
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Table 4.2: Average classification accuracies (%) on SEED database of different subject across
channels for J=12, QF=5, and r=3 with SVM classifier along with polynomial kernel.

Subject
Channel name

FT7 FT8 T7 T8 C5 C6 TP7 TP8 CP5 CP6 P7 P8
1 77.57 77.60 83.70 81.03 75.40 74.37 78.50 76.27 71.77 71.87 75.10 72.30
2 66.60 65.87 68.47 71.50 61.40 60.97 62.40 62.23 63.53 59.53 56.67 57.63
3 74.60 75.57 81.63 88.17 74.37 79.40 83.30 78.00 70.13 71.37 74.93 73.43
4 68.73 72.43 73.13 80.87 72.77 63.90 70.73 68.90 70.77 62.43 70.50 58.97
5 74.47 66.00 82.37 66.40 81.47 68.00 75.03 68.43 67.40 70.03 65.87 70.93
6 84.03 88.97 84.30 83.20 75.50 73.40 79.03 72.37 74.30 67.33 74.53 70.53
7 83.57 76.23 88.60 85.87 82.53 83.87 80.63 75.13 78.30 74.53 74.97 72.00
8 74.13 69.10 86.97 78.53 82.80 69.17 78.47 74.80 72.27 63.77 78.53 70.50
9 80.57 82.30 88.63 83.47 82.60 74.23 82.43 68.97 81.83 73.83 66.00 65.50
10 74.43 72.53 77.27 75.83 74.00 75.03 75.17 71.63 70.43 68.37 63.50 67.57
11 87.40 83.63 82.47 88.80 83.03 84.23 81.73 89.00 80.83 72.23 76.57 81.57
12 67.20 73.90 74.00 81.10 71.40 73.67 73.53 72.60 63.20 66.17 66.93 73.10
13 79.80 78.90 84.73 83.87 81.17 78.60 80.43 83.77 76.43 78.67 68.30 78.57
14 79.83 80.63 80.90 80.90 79.63 76.83 79.67 81.07 79.10 77.63 72.80 80.37
15 91.70 84.67 90.00 85.50 85.33 87.67 84.13 76.17 84.30 80.37 81.23 81.83

Table 4.3: Average classification accuracies (%) on SEED database of different subject across
channels for J=12, QF=5, and r=3 with SVM classifier along with RBF kernel.

Subject
Channel name

FT7 FT8 T7 T8 C5 C6 TP7 TP8 CP5 CP6 P7 P8
1 68.23 71.83 72.97 75.03 66.43 60.20 68.97 62.70 55.83 50.37 63.80 57.20
2 57.33 55.03 58.87 57.70 52.13 46.07 51.47 48.87 43.77 46.07 49.43 46.23
3 55.87 61.87 71.93 81.53 59.83 62.07 67.57 60.17 47.77 46.93 57.23 53.27
4 55.93 59.33 64.23 74.90 61.10 46.47 60.67 55.30 49.67 48.60 52.77 44.43
5 54.07 55.13 58.40 52.97 57.60 55.07 64.50 58.87 53.03 55.07 55.90 58.63
6 73.40 81.40 75.37 72.17 65.53 57.90 65.03 59.77 55.27 49.47 64.53 59.47
7 70.77 61.40 81.20 79.43 70.60 64.77 66.43 58.00 62.60 59.40 55.10 51.63
8 61.70 46.73 78.00 70.07 74.23 54.97 70.90 65.80 61.90 52.17 63.33 60.23
9 68.80 75.57 79.73 74.00 74.07 61.87 76.77 53.77 69.00 60.63 50.30 56.07
10 67.63 69.70 68.23 62.37 63.03 67.00 61.87 56.37 58.67 54.97 53.63 56.07
11 80.10 76.00 75.83 71.77 71.27 70.00 70.97 76.63 62.20 50.93 62.83 62.23
12 54.67 61.80 59.57 71.83 54.03 64.00 58.03 57.37 55.77 54.50 57.40 60.07
13 69.57 68.17 75.00 75.90 70.17 69.27 70.47 68.30 64.60 59.87 56.00 61.57
14 71.17 71.77 66.30 71.23 63.77 68.43 61.63 70.17 67.93 59.87 58.67 69.67
15 82.43 78.43 77.13 75.10 77.57 77.83 78.87 67.83 70.17 62.17 76.40 74.07

Table 4.4: Average classification accuracies (%) across channels for J=12 and 11, QF=5, and r=3
on SEED and DEAP databases, respectively.

Database Classification problem Classifier
Channel name

FT7 FT8 T7 T8 C5 C6 TP7 TP8 CP5 CP6 P7 P8

SEED Positve/negative/neutral

Random forest 91.53 90.63 93.46 92.84 91.06 89.32 91.22 89.47 89.47 87.82 89.63 89.33
SVM

79.56 77.78 83.50 81.21 79.75 76.63 78.99 75.71 75.17 71.96 71.69 73.68
(polynomial kernel)

SVM
66.11 66.28 70.85 71.07 65.42 61.73 66.28 61.33 58.55 54.07 58.49 58.06

(RBF kernel)

DEAP
HA/LA

Random forest
- - 80.53 80.42 - - - - 79.66 79.39 80.21 79.49

HV/LV - - 80.64 80.15 - - - - 79.64 79.85 79.73 79.95
HVHA/HVLA/LVLA/LVHA - - 72.07 71.70 - - - - 70.99 70.92 71.77 71.11
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Chapter 5

Conclusion and future work

Emotions play a significant role in human life and are one of the important features

of humans. In this work, we have presented a new method for the cross-subject clas-

sification of the emotion EEG signals. The proposed method explores the FAWT

for identification of human emotions. The effect of variation in FAWT parameters

have been studied in this work. The IP feature values of SS obtained using FAWT

decomposition have been found useful for classification of the emotion EEG signals.

On increasing the decomposition level (J) and QF parameter, the average classifi-

cation accuracies are increased. The average classification accuracies achieved with

random forest classifier are higher than SVM classifier. It has been shown that our

method achieves higher classification accuracies in comparison to existing method for

cross-subject channel specific classification of emotion EEG signals. Cross-subject

classification using channel specific nature can provide an insight to the emotional

sensitivity of different persons across brain regions when the similar stimuli are

given.

In future work, many other publicly available datasets can be studied and even the

data can be recorded using acquisition system and this method can be applied to get

the classification of human emotion. Several new features can be studied and may

be utilized with the extracted features in the present work so that the classification

accuracy may be further improved. Also, some new kernel functions may be defined

and used with SVM classifier to analyse the variation in classification accuracy.

The proposed methodology can also be applied to other physiological signals like

phonocardiogram (PCG), electromyogram (EMG), ECG etc., and the classification

performance can be analysed. Emotions classification using channel specific nature
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can provide an insight to the emotional sensitivity of different persons across brain

regions when the similar stimuli are provided. Thus, brain sensitivity of different

persons can be compared using the proposed method.
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