
 

B. TECH. PROJECT REPORT  

On  
An Ultra-Low Power AES 

               Architecture for IoT   

  

  

  

  

  
  
  

BY  

Mohammad Fayaz Ahmed  

 

  

  

  

  

  

  

  
  

  

  

 

  

DISCIPLINE OF ELECTRICAL ENGINEERING  

INDIAN INSTITUTE OF TECHNOLOGY INDORE  

December 2018 
 



 

  



I 
 

 

An Ultra-Low Power AES 

               Architecture for IoT   

  

  

A PROJECT REPORT  

  

Submitted in partial fulfillment of the 

requirements for the award of the degrees  

  

of  

BACHELOR OF TECHNOLOGY  

in  

ELECTRICAL ENGINEERING  
  

Submitted by:  

Mohammad Fayaz Ahmed  

  

Guided by:  

Dr. Santosh Kumar Vishvakarma,  

Assistant Professor,  

Electrical Engineering,  

Indian Institute of Technology Indore  
  

  
  

  

INDIAN INSTITUTE OF TECHNOLOGY INDORE  

December 2018  

    



II 
 

  CANDIDATE’S DECLARATION  

  

I hereby declare that the project entitled “An Ultra-Low Power AES Architecture for IoT ” submitted 

in partial fulfillment for the award of the degree of Bachelor of Technology in Electrical Engineering 

completed under the supervision of Dr. Santosh Kumar Vishvakarma, Assistant Professor, Electrical 

Engineering, IIT Indore is an authentic work.  

Further, I declare that I have not submitted this work for the award of any other degree elsewhere.  

  

  

Mohammad Fayaz Ahmed  

1500002021  

Discipline of Electrical Engineering  

Indian Institute of Technology Indore  

  

  

  

  

  

  

  
  

 

 

 

  

  



III 
 

CERTIFICATE by BTP Guide  

  

It is certified that the above statement made by the student is correct to the best of my knowledge 

and belief.   

  

  

  

Dr. Santosh Kumar Vishvakarma,  

Assistant Professor,  

Discipline of Electrical Engineering,  

Indian Institute of Technology Indore  

  

      

  

 

 

 

 

 

 

 

 

 

 

 

 

  



IV 
 

Preface  

  

This report on “ An Ultra-Low Power AES Architecture for IoT " is prepared under the guidance of Dr. 

Santosh Kumar Vishvakarma, Assistant Professor, Electrical Engineering, IIT Indore  

  

Throughout this report, detailed description of the technologies that have been used to design and 

implement the low power AES module is provided. The implemented low power AES module is tested for 

its different inputs and results are presented in a clear and concise manner. I have tried to the best of my 

ability and knowledge to explain the content in a lucid manner. I have also added figures to make it more 

illustrative.  

  

  

  

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



V 
 

  

Acknowledgements  

  

I would like to thank my B.Tech Project supervisor Dr. Santosh Kumar Vishvakarma for his constant 

support in structuring the project and for his valuable feedback throughout the course of this project. He 

gave me an opportunity to discover and work in such an interesting domain. His guidance proved really 

valuable in all the difficulties I faced in the course of this project.  

 I am really grateful to Mr. Sajid Khan who also provided valuable guidance and helped with the problems 

while working on various technologies. He provided initial pathway for starting the project in the right 

manner and provided useful directions to proceed along whenever necessary.  

I am also thankful to all my family members, friends and colleagues who were a constant source of 

motivation. I am really grateful to Dept. of Electrical Engineering, IIT Indore for providing with the 

necessary hardware utilities to complete the project. I offer sincere thanks to everyone who else knowingly 

or unknowingly helped me to complete this project.  

  

Mohammad Fayaz Ahmed  

1500002021  

Discipline of Electrical Engineering  

Indian Institute of Technology Indore  

 

 

 

 

 

 

 

    
  



VI 
 

Abstract  

Internet of Things (IoT) is now became a part of our life. Many devices are already connected and more 

are expected to be deployed in next coming years. To provide a practical solution for security, privacy and 

trust is the main concern for IoT. To provide security in IoT, cryptography is needed. AES algorithm is a 

well known, highly secure and symmetric key algorithm.   

    

 In this project we have presented an ultra-low power AES architecture for IoT applications. The proposed 

architecture has been implemented on SCL 180 nm technology. I have used 4-bit SerDes (serializer and 

deserializer) to send and receive 128-bit data. The designed AES architecture uses a 32-bit data path in 

SubByte transformation, it requires 44 clock cycles for encryption of 128-bit plaintext with 128 bit cipher 

key. To deserialize 128- bit plaintext and cipher key our architecture requires 32 clock cycles and same to 

serialize 128-bit cipher text and these 32 clock cycles are overlapped by 44 clock cycles required by AES 

module, hence once after the first 32 clock cycles, the use of SerDes does not affect the throughput of 

system.  

  

          The goal is to present an ultra-low power AES architecture for IoT applications.  

  

 

 

 

 

 

 

 

 

 

  

    

 



VII 
 

 

Table of contents 

  

 List of figures                                                                                                               ix    

 List of tables                                                                                                                  ix   

 Chapter 1: Introduction        

       1.1    Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1   

       1.2    Advantages and Disadvantages of IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2   

       1.3    Motivation of the work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3   

 Chapter 2: About AES Algorithm    

      2.1    Advanced Encryption Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4    

       2.2    Internal Structure of AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 

                    2.2.1    The SubBytes Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .  . 7  

                    2.2.2    The ShiftRows Step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . .7 

                    2.2.3    The MixColoumn Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 

                    2.2.4    The AddRoundKey Step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .9 

                    2.2.5    The Key Schedule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  

 Chapter 3: Design of Module and Tools used   

        3.1    Overview of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .13 

        3.2    Design of AES algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .13 

                    3.2.1    Serializer and Deserializer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  13 

                    3.2.2    SubByte Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .14 

                    3.2.3    ShiftRows Transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  

                    3.2.4    MixColumn transformation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 

                    3.2.5    Key Expansion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 

                    3.2.6    Xilinx Vivado Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 

        3.3    RC Tool for Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 

        3.4    Encounter Tool for Layout Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 

        3.5    Virtuoso Tool for Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  

 

 

 

 



VIII 
 

 

 

 

 

Chapter 4: Results  

        4.1    Result from Xilinx Vivado Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18   

        4.2    Result from RC Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  

        4.3    Result from Encounter Tool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

        4.4    Result from Virtuoso Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 

 Chapter 5: Conclusion and Future Work  

       5.1    Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . 23 

       5.2    Future Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 

  

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 

  

Appendix     A Implemented Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



IX 
 

List of Figures 

    

        Fig. 1.1 Internet of Things  

        Fig. 1.2 IoT’s growth from past, present and expected growth in the coming future  

  

        Fig. 2.1 Standard AES algorithm  

        Fig. 2.2 AES round function for rounds 1, 2, . . . , nr − 1  

        Fig. 2.3 AES S-Box: Substitution values in hexadecimal notation for input byte  

        Fig. 2.4 Before ShiftRows transformation  

        Fig. 2.5 After ShiftRows transformation  

        Fig. 2.6 AES key schedule for 128-bit key size  

  

        Fig. 3.1 Architecture of our AES implementation  

        Fig. 3.2 Project Overview  

        Fig. 3.3 SerDes wrapper for our AES architecture  

        Fig. 3.4 SubByte Transformations  

        Fig. 3.5 ShiftRows Transformations  

        Fig. 3.6 MixColumn Transformations  

        Fig. 3.7 Layout Generation using Encounter Tool  

  

        Fig. 4.1 Result from the Xilinx Vivado   

        Fig. 4.2 Layout of the Designed Architecture  

        Fig. 4.3 Simulation of the Designed Architecture using Virtuoso  

        Fig. 4.4 Simulation of the Designed Architecture using Virtuoso  
 

  

  
 

List of Tables 

      Table 5.1 Analyzing the Power consumption of our design with previous designs  

 

 



1 
 

Chapter 1: Introduction 

  

This chapter highlights the background and motivation for the project. The problem statement has been 

described of the project and the importance of the results is also clearly portrayed. Towards the end, the 

objectives are briefly outlined and the future scope is also discussed.  

  

  

1.1 Background  

Internet of things (IoT) refers to the ever-growing network and is expected to use in variety of emerging 

applications, such as, smart cities, wearable electronics, remote health care, agriculture, and many more.   

 

 

Fig. 1.1 Internet of Things 

 

This adds a level of intelligence to the devices, enabling them to communicate even without the 

involvement of a human being. It utilizes real-time analysis with machine learning method to process data 

and make decisions. Security failure of these devices can affect billions of lives as well as huge financial 

loss with privacy invasion. Thus, avoiding security failure is considered as a serious issue in the effective 

and meaningful deployment of IoT devices on a large scale. To secure the sensitive data, cryptography 

provides an efficient solution. However, the hardware cost and power budget of conventional cryptography 

implementations limits the use of conventional cryptography algorithm in IoT. 

In 2001, AES(Advanced Encryption Standard) was formally approved as a US federal standard. The Current 

issue on security of the IoT’s can be solved by using the available AES cipher algorithm. It is considered as a 

strong and secure cipher. But majority of the IoT devices are battery powered.   



2 
 

 

 

Fig. 1.2 IoT’s growth from past, present and expected growth in the coming future 

  Cryptography algorithms consume notable amount of computing resources, such as CPU time and 

memory, that makes battery power draining fast and that is the problem for mobile devices. Thus, we need 

a way to reduce power usage by cryptography algorithms.   

 

1.2    Advantages and disadvantages of using IoT  

Advantages  

Here are some advantages of IoT:  

  

1. Data: The more the information, the easier it is to make the right decision. Knowing what to get 

from the grocery while you are out, without having to check on your own, not only saves time but is 

convenient as well.  

  

2. Tracking: The computers keep a track both on the quality and the viability of things at home. 

Knowing the expiration date of products before one consumes them improves safety and quality of life. 

Also, you will never run out of anything when you need it at the last moment.  

  

3. Time: The amount of time saved in monitoring and the number of trips done otherwise would be 

tremendous.  

  



3 
 

4. Money: The financial aspect is the best advantage. This technology could replace humans who 

are in charge of monitoring and maintaining supplies.  

  

Disadvantages  

Here are some disadvantages of IoT:  

1. Compatibility: As of now, there is no standard for tagging and monitoring with sensors. A uniform 

concept like the USB or Bluetooth is required which should not be that difficult to do.  

  

2. Complexity: There are several opportunities for failure with complex systems. For example, both 

you and your spouse may receive messages that the milk is over and both of you may end up buying the 

same. That leaves you with double the quantity required. Or there is a software bug causing the printer to 

order ink multiple times when it requires a single cartridge.  

  

3. Privacy/Security: Privacy is a big issue with IoT. All the data must be encrypted so that data about 

your financial status or how much milk you consume isn’t common knowledge at the work place or with 

your friends.  

  

4. Safety: There is a chance that the software can be hacked and your personal information misused. 

The possibilities are endless. Your prescription being changed or your account details being hacked could 

put you at risk. Hence, all the safety risks become the consumer’s responsibility.  

  

1.3 Motivation of the work  

Every day, often without us even being aware of it, encryption keeps our personal data private and secure. 

Encryption is a vault that secures our personal information that is held by businesses and government 

agencies. But at the same time, encryption should not create any design and cost overheads. So trading off 

between these two and coming out with the optimized solution is the main motivation for this project.  

  

 



4 
 

Chapter 2: About AES Algorithm 

  

2.1 Advanced Encryption Standard  

  

The Advanced Encryption Standard (AES) is the most widely used symmetric cipher today. AES is a 

symmetric algorithm because it uses the same key for encryption and decryption both. Even though the 

term “Standard” in its name only refers to US government applications, the AES block cipher is also 

mandatory in several industry standards and is used in many commercial systems. Among the commercial 

standards that include AES are the Internet security standard IPsec, TLS, the Wi-Fi encryption standard 

IEEE 802.11i, the secure shell network protocol SSH (Secure Shell), the Internet phone Skype and 

numerous security products around the world. To date, there are no attacks better than brute-force known 

against AES.  

 

In this chapter, AES internal structure is discussed.  

The four stages of AES, namely: 

1. SubByte  

2. ShiftRows  

3. MixColumn  

4. AddRoundKey  

Each round contains this 4 steps. Before the first round, AddRoundKey is executed, and in the last round, 

MixColumn is dropped.  

 

Depending on the Key size the number of rounds for AES are classified into three :  

1. AES-128: 128 bit key, 10 rounds  

2. AES-192: 192 bit key, 12 rounds  

3. AES-256: 256 bit key, 14 rounds  

 

 

The transformation of plaintext to ciphertext is clearly shown in figure 2.1.  



5 
 

                          
 

                                          Fig. 2.1 Standard AES algorithm   

 

2.2 Internal Structure of AES  

In the following, we examine the internal structure of AES. Figure 2.2 shows the graph of a single AES 

round. The 16-byte input A0, . . ., A15 is fed byte-wise into the S-Box. The 16-byte output B0, . . .,B15 is 

permuted byte-wise in the ShiftRows layer and mixed by the MixColumn transformation c(x). Finally, the 

128-bit subkey ki is XORed with the intermediate result. We note that AES is a byte-oriented cipher.  

This is in contrast to DES, which makes heavy use of bit permutation and can thus be considered to have 

a bit-oriented structure. In order to understand how the data moves through AES, we first imagine that the 

state A (i.e., the 128-bit data path) consisting of 16 bytes A0, A1, . . ., A15 is arranged in a four-by-four byte 

matrix:  

 

 

 

  



6 
 

 

 

  

Fig. 2.2 AES round function for rounds 1, 2, . . ., n r − 1 

 

As we will see in the following, AES operates on elements, columns or rows of the current state matrix. 

Similarly, the key bytes are arranged into a matrix with four rows and four (128-bit key), six (192-bit key) 

or eight (256-bit key) columns. Here is, as an example, the state matrix of a 192-bit key:  

 

  
We discuss now what happens in each of the steps.  



7 
 

2.2.1 The SubByte Step  

As shown in Fig. 2.3, the first layer in each round is the Byte Substitution layer. The Byte Substitution 

layer can be viewed as a row of 16 parallel S-Boxes, each with 8 input and output bits. Note that all 16 S-

Boxes are identical, unlike DES where eight different S-Boxes are used. In the layer, each state byte Ai is 

replaced, i.e., substituted, by another byte Bi :  

                                                   S(Ai ) = Bi .  

The S-Box is the only nonlinear element of AES,  

            ByteSub(A) + ByteSub(B) ≠ ByteSub(A + B) for two states A and B.   

The S-Box substitution is a bijective mapping, i.e., each of the 28 = 256 possible input elements is one-to-

one mapped to one output element. This allows us to uniquely reverse the S-Box, which is needed for 

decryption. In software implementations the S-Box is usually realized as a 256-by-8 bit lookup table with 

fixed entries, as given in Table 2.3.  

 

Fig. 2.3 AES S-Box: Substitution values in hexadecimal notation for input byte 

 

2.2.2    The ShiftRows Step  

The ShiftRows transformation cyclically shifts the second row of the state matrix by three bytes to the 

right, the third row by two bytes to the right and the fourth row by one byte to the right. The first row is 

not changed by the ShiftRows transformation. The purpose of the ShiftRows transformation is to increase 



8 
 

the diffusion properties of AES. If the input of the ShiftRows sublayer is given as a state matrix B = (B0, 

B1, . . . , B15):  

 

Fig. 2.4 Before ShiftRows transformation 

  The output is the new state:  

 

Fig. 2.5 After ShiftRows transformation 

2.2.3    The MixColumn Step  

The MixColumn step is a linear transformation which mixes each column of the state matrix. Since every 

input byte influences four output bytes, the MixColumn operation is the major diffusion element in AES. 

The combination of the ShiftRows and MixColumn layer makes it possible that after only three rounds 

every byte of the state matrix depends on all 16 plaintext bytes. In the following, we denote the 16-byte 

input state by B and the 16-byte output state by C: MixColumn(B) = C, where B is the state after the 

ShiftRows operation as given in figure 2.5. Now, each 4-byte column is considered as a vector and 

multiplied by a fixed 4 × 4 matrix. The matrix contains constant entries. Multiplication and addition of the 

coefficients is done in GF(28 ). As an example, we show how the first four output bytes are computed:  

 



9 
 

The second column of output bytes (C4, C5, C6, C7) is computed by multiplying the four input bytes (B4, 

B9, B14, B3) by the same constant matrix, and so on. Figure 2.3 shows which input bytes are used in each 

of the four MixColumn operations. We discuss now the details of the vector–matrix multiplication which 

forms the MixColumn operations. We recall that each state byte Ci and Bi is an 8-bit value representing an 

element from GF(28). All arithmetic involving the coefficients is done in this Galois field. For the constants 

in the matrix a hexadecimal notation is used: “01” refers to the GF(28) polynomial with the coefficients 

(0000 0001), i.e., it is the element 1 of the Galois field; “02” refers to the polynomial with the bit vector 

(0000 0010), i.e., to the polynomial x; and “03” refers to the polynomial with the bit vector (0000 0011), 

i.e., the Galois field element x + 1.  

 The additions in the vector–matrix multiplication are GF(28) additions, that is simple bitwise XORs of the 

respective bytes. For the multiplication of the constants, we have to realize multiplications with the 

constants 01, 02 and 03. These are quite efficient, and in fact, the three constants were chosen such that 

software implementation is easy. Multiplication by 01 is multiplication by the identity and does not involve 

any explicit operation. Multiplication by 02 and 03 can be done through table look-up in two 256-by-8 

tables. As an alternative, multiplication by 02 can also be implemented as a multiplication by x, which is 

a left shift by one bit, and a modular reduction with P(x) = x8 + x4 + x3 + x + 1. Similarly, multiplication 

by 03, which represents the polynomial (x + 1), can be implemented by a left shift by one bit and addition 

of the original value followed by a modular reduction with P(x).  

2.2.4    The AddRoundKey Step  

The two inputs to the Key Addition layer are the current 16-byte state matrix and a subkey which also 

consists of 16 bytes (128 bits). The two inputs are combined through a bitwise XOR operation. Note that 

the XOR operation is equal to addition in the Galois field GF(2).  

  

2.2.5    The Key Schedule  

The key schedule takes the original input key (of length 128, 192 or 256 bit) and derives the subkeys used 

in AES. Note that an XOR addition of a subkey is used both at the input and output of AES. This process 

is sometimes referred to as key whitening. The number of subkeys is equal to the number of rounds plus 

one, due to the key needed for key whitening in the first key addition layer, cf. Fig. 2.1. Thus, for the key 

length of 128 bits, the number of rounds is nr = 10, and there are 11 subkeys, each of 128 bits. The AES 

with a 192-bit key requires 13 subkeys of length 128 bits, and AES with a 256-bit key has 15 subkeys. The 

AES subkeys are computed recursively, i.e., in order to derive subkey ki, subkey ki−1 must be known, etc.  



10 
 

The AES key schedule is word-oriented, where 1 word = 32 bits. Subkeys are stored in a key expansion 

array W that consists of words. There are different key schedules for the three different AES key sizes of 

128, 192 and 256 bit, which are all fairly similar. We introduce the 128-Bit  key schedules in the following.  

Key Schedule for 128-Bit Key AES  

The 11 subkeys are stored in a key expansion array with the elements W[0], . . . ,W[43]. The subkeys are 

computed as depicted in Fig. 2.6. The elements K0, . . . , K15 denote the bytes of the original AES key.  

First, we note that the first subkey k0 is the original AES key, i.e., the key is copied into the first four 

elements of the key array W. The other array elements are computed as follows. As can be seen in the 

figure, the leftmost word of a subkey W [4i], where i = 1, . . . , 10, is computed as:  

                               W [4i] = W [4(i − 1)] + g(W [4i − 1]).  

Here g( ) is a nonlinear function with a four-byte input and output. The remaining three words of a subkey 

are computed recursively as:  

                          W [4i + j] = W [4i + j − 1] +W [4(i − 1) + j],  

where i = 1, . . . , 10 and j = 1, 2, 3. The function g( ) rotates its four input bytes, performs a byte-wise S-

Box substitution, and adds a round coefficient RC to it. The round coefficient is an element of the Galois 

field GF(28 ), i.e, an 8-bit value. It is only added to the leftmost byte in the function g( ). The round 

coefficients vary from round to round according to the following rule:  

                     RC [1] = x0 = (0000 0001)2,  

                     RC [2] = x1 = (0000 0010)2,  

                     RC [3] = x2 = (0000 0100)2,  

                     .  

                     .  

                    RC [10] = x9 = (0011 0110)2 .  

The function g( ) has two purposes. First, it adds nonlinearity to the key schedule. Second, it removes 

symmetry in AES. Both properties are necessary to thwart certain block cipher attacks.  

  



11 
 

 

Fig. 2.6 AES key schedule for 128-bit key size 

  

  

  

  

 
 

 

 



12 
 

Chapter 3: Design of Module and Tools 

used 

  

Note:  The Results from each tool are discussed in the next Chapter. In this chapter how we used the tool 

are explained  

 

 In this chapter the design of AES IP for IoT constrained processor is explained clearly. In this the power 

consumption is a major issue, so for power optimization the hardware is reduced. For IoT high throughput 

is not required hence pipelined and unrolled architectures are not the suitable candidate for IoT 

applications. We have generated all the keys on-the-fly to prevent hardware redundancy. The architecture 

shares hardware for different rounds, this reduces the hardware as well as power overhead. As we all know 

memory is a power hungry circuit, the keys are generated on-the-fly. The AES runs for ten rounds using 

the same hardware for all the rounds instead of replicating the same hardware multiple times.  

 

Fig. 3.1 Architecture of our AES implementation. 

 In the designed AES architecture all the blocks are combinational except the SubByte, the SubByte block 

is sequential block. The SubByte block uses 32bit data path with four S-Boxes and takes four clock cycles 

to substitute 128 bit data. After four clock cycles all the 128 bits are passed to ShiftRows blocks. Since 

data is available after three clock cycles, all the other blocks are disabled for the three clock cycles to 

prevent unnecessary transitions and power reduction. For further reduction we have not used any circuit 

for ShiftRows block, ShiftRows block is implemented using wires only.  

  Since a new round key is required after four clock cycles, the key generation block only consists of 

a single S-Box instead of four hence the SubWord takes four clock cycles for substitution of a word which 



13 
 

results in a less area and power overhead. To keep the memory usage minimum, all the Round Constants 

are generated on-the-fly instead of storing them into an LUT.  

  

3.1    Overview of the project  

  

 
  

Fig. 3.2 Project Overview 

  

  

  

  

3.2    Design of AES Algorithm  

The AES algorithm is designed as explained below.  

3.2.1    Serializer and Deserializer  

128-Bit input to AES and 128-Bit output from AES at a time makes the chip size large so we used the 

deserializer for input and serializer for the output.  

In the project we used two 4-bit deserializer to receive 128-bit plaintext and cipher key. Here we have used 

two 128-bit temporary registers to store plaintext and cipher key. Once all the 128-bit received from 



14 
 

plaintext or cipher key serializer AES module start working. Fig. 3.3 shows the architecture of deserializer 

used for cipher key and plaintext. To overlap the clock cycles of serializer after 12 clock cycles, nextReady 

signal is asserted and wrapper module is ready to capture new plaintext and data. Similarly once the 

ciphertext is ready, cipherReady signal is asserted and 128-bit ciphertext is delivered in 32 clock cycles. 

Hence without affecting the throughput of system, our proposed architecture is able to perform encryption 

at very low power.  

In the design we have used two 4-bit Deserializer to deserialize 128-bit plaintext and cipher key and one 

serializer to again serialize the 128-bit ciphertext in 32 clock cycles as shown in Fig. 3.3.  

  

 

Fig. 3.3 SerDes wrapper for our AES architecture. 

3.2.2    SubByte Transformation  

 

SubByte transformation is the only nonlinear transformation in AES. It consists of Substitutions box (S-

Box) which maps an eight bit input to an eight bit output and has 256 combinations. These 256 values can 

either be generated on-the-fly or can be implemented using LUT.  

 

We can do the process using S-Box-on-the-fly approach instead of S-Box using LUT approach  

 We have implemented S-Box using LUT approach, which takes eight bit input and provide its 

corresponding eight bit S-Box value. The SubByte block uses 32 bit data path with four S-Boxes and takes 

four clock cycles to substitute 128 bit data. After four clock cycles all the 128 bits are passed to ShiftRows 

blocks. Since data is available after three clock cycles, all the other blocks are disabled for the three clock 

cycles to prevent unnecessary transitions and power reduction.  



15 
 

 

Fig. 3.4 SubByte Transformations 

 We have used four S-Boxes for SubByte transformation and it requires four clock cycles to substitute all 

the 128-bit.  

3.2.3    ShiftRows Transformation  

In ShiftRows transformation each row of state matrix is shifted to left with the offset of 0, 1, 2 and 3 for 

first, second, third and froth row respectively. In our implementation we have implemented ShiftRows 

without any circuit, we have used wires only. In this approach we have reduced the power and hardware 

overhead. 

 

Fig. 3.5 ShiftRows Transformations 

3.2.4    MixColumn transformation  

MixColumn transformation is linear transformation applied to the columns of state matrix. It is a 

multiplication of state matrix columns with a polynomial a(x) = 3x3 + x2 + 1x +2 using the modulo (x4 + 

1) in GF(28). To multiply input by 2 it has been left shifted by 1-bit and then XORed with ’1B’ (in 

hexadecimal) if shifting generates a carry. Similarly, to multiply by 3, first it is multiplied by 2 and then 

XORed with itself.  



16 
 

 

Fig. 3.6 MixColumn Transformations 

Since MixColumn transformation is required at the fourth clock cycle of every round, we disabled it for 

the rest three clock cycles to save power.  

  

3.2.5    Key Expansion  

  

Using Key Expansion all round keys are generated. Key Expansion includes four operations : RotWords, 

RoundConstant, SubWord and XORing. In SubWord 32-‘bit is substituted using S-Box. Since key is 

required after four clock cycles, in our architecture Key Expansion generates a new round key after four 

clock cycles. We have used a single S-Box for substitution of 32-bit in four clock cycles, which results 

low hardware overhead and low-power.  

3.2.6    Xilinx Vivado Tool  

AES (Advanced Encryption Standard) algorithm is coded in Verilog. I got few errors and i debugged the 

code. When we are finally satisfied with the functional description, the VERILOG code is Simulated in 

Xilinx Vivado and we got correct results in Behavioral Simulation and Post-Synthesis Functional 

Simulation and Post -Synthesis Timing Simulation.  

  

3.3    RC Tool for synthesis  

The Verilog code is simulated in Vivado. So, After implementing the code, it is the time to synthesis. So, 

for synthesis we used RC (Cadence tool) .   

                  As a result, a gate_level netlist of the circuit using the logic library of the circuit manufacture is 

generated. The gate_level netlist just tells how to connect different standard cells to realize the desired 

functionality, such that design constraints are met. Now it’s time to move to layout generation.  

             Before layout generation, we have to make sure that the result after synthesis matches with the 

original description using Formality (Synopsys tool)  



17 
 

3.4    Encounter Tool for Layout Generation  

Before layout generation the result after synthesis and the original description should be cross checked. We 

achieved correct output in all the above stages and now it’s time to generate the layout.   

    

For layout generation Encounter (Cadence tool) is used. 

  

 

Fig. 3.7 Layout Generation using Encounter Tool 

  

3.5    Virtuoso Tool for Simulation  

The layout generation is completed. Now it’s time for simulation. I used Virtuoso (Cadence Tool) for 

simulations. To simulate we created a testbench of the chip and connected the circuit with the input and 

obtained the output. The results which I achieved are correct.  

  

    

  

  

  

The results are discussed in the next chapter. 



18 
 

Chapter 4: Results 

  

4.1    Result from Xilinx Vivado Tool  

Once I am  done with the theoretical design it is time to write the Verilog code for AES algorithm. So I 

wrote the code and we simulated in Xilinx Vivado. I achieved correct results in Behavioral Simulation and 

Post-Synthesis Functional Simulation and Post -Synthesis Timing Simulation.  

  

 NOTE: The Verilog Code is Provided in the Appendix A.  

  

In the below given example the Plaintext and Key are Inputs and the Ciphertext is the Output  

  

Example:  

Plaintext in Hex (128 bits):  54 77 6F 20 4F 6E 65 20 4E 69 6E 65 20 54 77 6F  

Key in Hex (128 bits):          54 68 61 74 73 20 6D 79 20 4B 75 6E 67 20 46 75  

Ciphertext (128 bits):           29 C3 50 5F 57 14 20 F6 40 22 99 B3 1A 02 D7 3A  

  

NOTE: IN FIGURE BLOCK (PLAINTEXT) AND BLOCK_NEW (CIPHERTEXT)  

  

  

Fig. 4.1 Result from the Xilinx Vivado 

  

4.2    Result from RTL Compiler Tool  

After implementing the code, it is the time to synthesize. So, for synthesis we used RC (Cadence tool). 

As a result, a gate level netlist of the circuit using the standard cell library of the SCL PDK is generated. 

The gate level netlist just tells how different standard cells are connected to realize the desired 

functionality, such that design constraints are met. Now it’s time to proceed to layout generation.  

  



19 
 

4.3    Result from Encounter Tool  

I got correct output in all the above stages and now it’s time to generate the layout. For layout generation 

Encounter (Cadence tool)  is used.  

  

  

 

Fig. 4.2 Layout of the Designed Architecture 

4.4    Result from Virtuoso Tool   

The Virtuoso tool is used for post layout simulation. We created testbench and connected to the circuit.         

We gave inputs plaintext and key and observed the output.  

In the below given example the Plaintext and Key are Inputs and the Cipher text is the Output  

  

Example:  

Plaintext in Hex (128 bits):   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

Key in Hex (128 bits):            00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  

Ciphertext (128 bits):            66 e9 4b d4 ef 8a 2c 3b 88 4c fa 59 ca 34 2b 2e  

  

The Plaintext, Key and Ciphertext are in hexadecimal. So, each digit is of four bits. It means “2e” in 

Ciphertext are the first eight bits(7-0) and “ 66” in the Ciphertext are the last eight bits(127-120). The 

numbering of bits in the example starts from right to left.  

  



20 
 

So, in the figure 4.3 we get the output when the ready signal is 1(high).  The output of the Ciphertext is 

from bits 0-7 in the figure 4.3. In the example, the 7-0 bits is “2e”. In binary it is written as 0010 1110. 

Which is same as in the figure 4.3.  

The order of signals in the figure 4.3 is  

wave of 7th bit 

wave of 6th bit 

wave of 5th bit 

wave of 4th bit 

wave of 3rd bit 

wave of 2nd bit 

wave of 1st bit 

wave of 0th bit 

wave of the ready signal 

  

Fig 4.3 Simulation of the Designed Architecture using Virtuoso  



21 
 

So, in the figure 4.4 we get the output when the ready signal is 1(high).  The output of the Ciphertext is 

from bits 120-127 in the figure 4.4. In the example, the 127-0 bits is “66”. In binary it’s written as 0110 

0110. Which is same as in the figure 4.4.   

The order of signals in the figure is  

wave of 127th bit 

wave of 126th bit 

wave of 125th bit 

wave of 124th bit 

wave of 123rd bit 

wave of 122nd bit 

wave of 121st bit 

wave of 120th bit 

wave of the ready signal 

 

Fig 4.4 Simulation of the Designed Architecture using Virtuoso 

  



22 
 

  

  

  

  

  

 

 

 

Hence, the designed AES module is working perfectly. 

  

 

 

 

 

  

  

  

  

  

  

  

  

  

  

  

  

  



23 
 

Chapter 5: Conclusion and Future Work  

 

5.1    Conclusion  

In this project i have presented a low-power architecture of AES suitable for IoT applications implemented 

on SCL 180 nm technology. The proposed architecture provides moderate throughput, which is sufficient 

for all of the IoT nodes. The post layout simulation results show that the complete design consumes about 

194.7 μW but after applying voltage scaling the design consumes 52.2 μW at 1 V, 77.35 μW at 1.2 V, 

108.7μW at 1.4 V and 142.5 μW at 1.6 V. The future work direction of this work is to further reduce the 

power by investigating different low-power design techniques.  

 

  

                   Table 5.1 Analyzing the Power consumption of our design with previous designs   

 

5.2    Future Work  

It is about 20 years since AES has been proposed and there are several AES implementations existing for 

a variety of applications ranging from IoT to high-performance computing. The challenge is to implement 

AES designs which are not only low power and compact but also side-channel resistant.  

In computer security, a side-channel attack is any attack based on information gained from the 

implementation of a computer system, rather than weaknesses in the implemented algorithm itself (e.g. 

cryptanalysis and software bugs). Timing information, power consumption, electromagnetic leaks or even 

sound can provide an extra source of information, which can be exploited.  

 The future work direction of this work is to further reduce the power by investigating different low-power 

design techniques and also including the side-channel-resistant.  

 



24 
 

 

  

References and Image Sources 

 AES Datapath Optimization Strategies forLow-Power Low-Energy Multisecurity-Level Internet-of-

Things Applications by Duy-Hieu Bui, Student Member, IEEE, Diego Puschini, Simone Bacles-

Min,Edith Beigné, Senior Member, IEEE, and Xuan-Tu Tran, Senior Member, IEEE 

 Practical Implementation of Rijndael S-Box using combinational Logic by Edwin NC Mui, Custom 

R&D Engineer, Texco Enterprise Ptd.Ltd 

 A Low Cost DPA –Resistant 8-bit AES Core Based on Ring Oscillators by  Hsing-ping Fu, Ju-Hung 

Hsiao, Po-chun Liu, Hsie-chia Chang, and Chen-Yi-Lee 

 ELEC-E3540 Digital Microelectronics II L Implementation instructions by Enrico Roverato 

 Understanding Cryptography (A Textbook for Students and Practitioners) by Christof Paar . jan Pelzl 

 Ieeexplore.ieee.org 

 www.wikipedia.com 

 https://www.zcorum.com/the-hold-up-with-the-internet-of-things/ 

 https://www.newgenapps.com/blog/iot-statistics-internet-of-things-future-research-data 

 https://crypto.stackexchange.com/questions/2711/does-the-mixcolumns-step-come-before-or-after-

addroundkey-in-aes-decryption 

 https://en.wikipedia.org/wiki/Advanced_Encryption_Standard 

 https://captanu.wordpress.com/tag/aes/ 

 https://www.researchgate.net/figure/Mix-column-transformation2_fig4_304141002 

 

 

 

 

 

 

 

https://www.zcorum.com/the-hold-up-with-the-internet-of-things/
https://www.newgenapps.com/blog/iot-statistics-internet-of-things-future-research-data
https://crypto.stackexchange.com/questions/2711/does-the-mixcolumns-step-come-before-or-after-addroundkey-in-aes-decryption
https://crypto.stackexchange.com/questions/2711/does-the-mixcolumns-step-come-before-or-after-addroundkey-in-aes-decryption
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://captanu.wordpress.com/tag/aes/
https://www.researchgate.net/figure/Mix-column-transformation2_fig4_304141002


25 
 

Appendix A Implemented Code  

  

Three files are there  

 1.aes_encipher_block.v   

 2.aes_key_mem.v    

 3.aes_sbox.v    

  

1. 

module aes_encipher_block ( 

                                             input wire                clk, 

                                             input wire                reset_n, 

                                             input wire [127 : 0]  key, 

                                             input wire [127 : 0]  block, 

                                             output reg [127 : 0]  block_new, 

                                             output wire               ready 

                                            ); 

 

wire[127:0]  round_key; 

reg [1 : 0]     sword_ctr_reg; 

reg [1 : 0]     sword_ctr_new; 

  

wire[31:0] sboxw, new_sboxw; 

aes_sbox sbox_inst (.sboxw(sboxw), .new_sboxw(new_sboxw)); 

aes_key_mem keymem(.clk(clk),.reset_n(reset_n),.key(key),.key_sajid(round_key)); 

 

//---------------------------------------------------------------- 

// Round functions with sub functions. 

//---------------------------------------------------------------- 

function [7 : 0] gm2(input [7 : 0] op); 

 begin 

   gm2 = {op[6 : 0], 1'b0} ^ (8'h1b & {8{op[7]}}); 

 end 

endfunction // gm2 

 

function [7 : 0] gm3(input [7 : 0] op); 

 begin 

   gm3 = gm2(op) ^ op; 

 end 

endfunction // gm3 

 

function [31 : 0] mixw(input [31 : 0] w); 

 reg [7 : 0] b0, b1, b2, b3; 

 reg [7 : 0] mb0, mb1, mb2, mb3; 

 begin 

   b0 = w[31 : 24]; 

   b1 = w[23 : 16]; 

   b2 = w[15 : 08]; 



26 
 

   b3 = w[07 : 00]; 

   mb0 = gm2(b0) ^ gm3(b1) ^ b2   ^ b3; 

   mb1 = b0   ^ gm2(b1) ^ gm3(b2) ^ b3; 

   mb2 = b0   ^ b1   ^ gm2(b2) ^ gm3(b3); 

   mb3 = gm3(b0) ^ b1   ^ b2   ^ gm2(b3); 

   mixw = {mb0, mb1, mb2, mb3}; 

 end 

  endfunction // mixw 

 

  function [127 : 0] mixcolumns(input [127 : 0] data); 

 reg [31 : 0] w0, w1, w2, w3; 

 reg [31 : 0] ws0, ws1, ws2, ws3; 

 begin 

   w0 = data[127 : 096]; 

   w1 = data[095 : 064]; 

   w2 = data[063 : 032]; 

   w3 = data[031 : 000]; 

   ws0 = mixw(w0); 

   ws1 = mixw(w1); 

   ws2 = mixw(w2); 

   ws3 = mixw(w3); 

   mixcolumns = {ws0, ws1, ws2, ws3}; 

 end 

  endfunction // mixcolumns 

 

  function [127 : 0] shiftrows(input [127 : 0] data); 

 reg [31 : 0] w0, w1, w2, w3; 

 reg [31 : 0] ws0, ws1, ws2, ws3; 

 begin 

   w0 = data[127 : 096]; 

   w1 = data[095 : 064]; 

   w2 = data[063 : 032]; 

   w3 = data[031 : 000]; 

   ws0 = {w0[31 : 24], w1[23 : 16], w2[15 : 08], w3[07 : 00]}; 

   ws1 = {w1[31 : 24], w2[23 : 16], w3[15 : 08], w0[07 : 00]}; 

   ws2 = {w2[31 : 24], w3[23 : 16], w0[15 : 08], w1[07 : 00]}; 

   ws3 = {w3[31 : 24], w0[23 : 16], w1[15 : 08], w2[07 : 00]}; 

   shiftrows = {ws0, ws1, ws2, ws3}; 

 end 

  endfunction // shiftrows 

 

  function [127 : 0] addroundkey(input [127 : 0] data, input [127 : 0] rkey); 

 begin 

   addroundkey = data ^ rkey; 

 end 

  endfunction // addroundkey 

 

  //---------------------------------------------------------------- 

  // Registers including update variables and write enable. 

  //---------------------------------------------------------------- 

  reg        sword_ctr_we; 

  reg        sword_ctr_inc; 

  reg        sword_ctr_rst; 



27 
 

  reg [3 : 0]      round_ctr_reg; 

  reg [3 : 0]      round_ctr_new; 

  reg        round_ctr_we; 

  reg        round_ctr_rst; 

  reg        round_ctr_inc; 

  reg [31 : 0]    block_w0_reg; 

  reg [31 : 0]    block_w1_reg; 

  reg [31 : 0]    block_w2_reg; 

  reg [31 : 0]    block_w3_reg; 

  reg        block_w0_we; 

  reg        block_w1_we; 

  reg        block_w2_we; 

  reg        block_w3_we; 

  reg        ready_reg; 

  reg        ready_new; 

  reg        ready_we; 

  reg [2 : 0]      enc_ctrl_reg; 

  reg [2 : 0]      enc_ctrl_new; 

  reg        enc_ctrl_we; 

  //---------------------------------------------------------------- 

  // Wires. 

  //---------------------------------------------------------------- 

  reg [2 : 0]   update_type; 

  reg [31 : 0] muxed_sboxw; 

  //---------------------------------------------------------------- 

  // Concurrent connectivity for ports etc. 

  //---------------------------------------------------------------- 

 

  assign sboxw        =   muxed_sboxw; 

  assign new_block =  {block_w0_reg, block_w1_reg, block_w2_reg, block_w3_reg}; 

  assign ready          =   ready_reg; 

 

  always @ (posedge clk or negedge reset_n) 

 begin: reg_update 

   if (!reset_n) 

     begin 

       block_w0_reg  <= 32'h0; 

       block_w1_reg  <= 32'h0; 

       block_w2_reg  <= 32'h0; 

       block_w3_reg  <= 32'h0; 

       sword_ctr_reg  <= 2'h0; 

       round_ctr_reg   <= 4'h0; 

       ready_reg   <= 1'b1; 

       enc_ctrl_reg     <= 3'h0;   

     end 

   else 

     begin 

       if (block_w0_we) 

         block_w0_reg <= block_new[127 : 096]; 

       if (block_w1_we) 

         block_w1_reg <= block_new[095 : 064]; 

       if (block_w2_we) 

         block_w2_reg <= block_new[063 : 032]; 



28 
 

       if (block_w3_we) 

         block_w3_reg <= block_new[031 : 000]; 

       if (sword_ctr_we) 

         sword_ctr_reg <= sword_ctr_new; 

       if (round_ctr_we) 

         round_ctr_reg <= round_ctr_new; 

       if (ready_we) 

         ready_reg <= ready_new; 

       if (enc_ctrl_we) 

         enc_ctrl_reg <= enc_ctrl_new; 

     end 

 end 

 

  always @* 

 begin : round_logic 

   reg [127 : 0] old_block, shiftrows_block, mixcolumns_block; 

   reg [127 : 0] addkey_init_block, addkey_main_block, addkey_final_block; 

   block_new   = 128'h0; 

   muxed_sboxw = 32'h0; 

   block_w0_we = 1'b0; 

   block_w1_we = 1'b0; 

   block_w2_we = 1'b0; 

   block_w3_we = 1'b0; 

   old_block       = {block_w0_reg, block_w1_reg, block_w2_reg, block_w3_reg}; 

   shiftrows_block = shiftrows(old_block); 

   mixcolumns_block   = mixcolumns(shiftrows_block); 

   addkey_init_block  = addroundkey(block, round_key); 

   addkey_main_block  = addroundkey(mixcolumns_block, round_key); 

   addkey_final_block = addroundkey(shiftrows_block, round_key); 

 

   case (update_type) 

     3'h1: 

       begin 

         block_new = addkey_init_block; 

         block_w0_we  = 1'b1; 

         block_w1_we  = 1'b1; 

         block_w2_we  = 1'b1; 

         block_w3_we  = 1'b1; 

       end 

     3'h2: 

       begin 

         block_new = {new_sboxw, new_sboxw, new_sboxw, new_sboxw}; 

         case (sword_ctr_reg) 

           2'h0: 

             begin 

               muxed_sboxw = block_w0_reg; 

               block_w0_we = 1'b1; 

             end 

           2'h1: 

             begin 

               muxed_sboxw = block_w1_reg; 

               block_w1_we = 1'b1; 

             end 



29 
 

           2'h2: 

             begin 

               muxed_sboxw = block_w2_reg; 

               block_w2_we = 1'b1; 

             end 

           2'h3: 

             begin 

               muxed_sboxw = block_w3_reg; 

               block_w3_we = 1'b1; 

             end 

         endcase 

       end 

     3'h3: 

       begin 

         block_new = addkey_main_block; 

         block_w0_we  = 1'b1; 

         block_w1_we  = 1'b1; 

         block_w2_we  = 1'b1; 

         block_w3_we  = 1'b1; 

       end 

     3'h4: 

       begin 

         block_new = addkey_final_block; 

       end 

     default: 

       begin 

       end 

   endcase 

 end 

 

  always @* 

 begin : sword_ctr 

   sword_ctr_new = 2'h0; 

   sword_ctr_we  = 1'b0; 

   if (sword_ctr_rst) 

     begin 

       sword_ctr_new = 2'h0; 

       sword_ctr_we  = 1'b1; 

     end 

   else if (sword_ctr_inc) 

     begin 

       sword_ctr_new = sword_ctr_reg + 1'b1; 

       sword_ctr_we  = 1'b1; 

     end 

 end 

 

  always @* 

 begin : round_ctr 

   round_ctr_we  = 1'b0; 

 

   if (round_ctr_rst) 

     begin 

       round_ctr_new = 4'h0; 



30 
 

       round_ctr_we  = 1'b1; 

     end 

   else if (round_ctr_inc) 

     begin 

       round_ctr_new = round_ctr_reg + 1'b1; 

       round_ctr_we  = 1'b1; 

     end 

 end 

 

  always @* 

 begin: encipher_ctrl 

   reg [3 : 0]  num_rounds; 

   sword_ctr_inc = 1'b0; 

   sword_ctr_rst = 1'b0; 

   round_ctr_inc = 1'b0; 

   round_ctr_rst = 1'b0; 

   ready_new  = 1'b0; 

   ready_we   = 1'b0; 

   update_type   = 3'h0; 

   enc_ctrl_new  = 3'h0; 

   enc_ctrl_we   = 1'b0; 

   case(enc_ctrl_reg) 

    3'h0 : 

             begin 

                   ready_new  = 1'b0; 

                   ready_we   = 1'b1; 

                   enc_ctrl_new  = 3'h5; 

                   enc_ctrl_we   = 1'b1; 

             end 

     3'h5 : 

       begin 

             ready_new  = 1'b0; 

             ready_we   = 1'b1; 

             enc_ctrl_new  = 3'h6; 

             enc_ctrl_we   = 1'b1; 

       end 

         3'h6 : 

               begin 

                     ready_new  = 1'b0; 

                     ready_we   = 1'b1; 

                     enc_ctrl_new  = 3'h7; 

                     enc_ctrl_we   = 1'b1; 

               end 

                          3'h7 : 

                     begin 

                           ready_new  = 1'b0; 

                           ready_we   = 1'b1; 

                           enc_ctrl_new  = 4'h1; 

                           enc_ctrl_we   = 1'b1; 

                     end 

                 3'h1 : 

                       begin 

                             ready_new  = 1'b0; 



31 
 

                             ready_we   = 1'b1; 

                             enc_ctrl_new  = 3'h2; 

                             enc_ctrl_we   = 1'b1; 

                       end 

     3'h2 : 

       begin 

         round_ctr_inc = 1'b1; 

         sword_ctr_rst = 1'b1; 

         update_type   = 3'h1; 

         enc_ctrl_new  = 3'h3; 

         enc_ctrl_we   = 1'b1; 

       end 

     3'h3:   

       begin 

         sword_ctr_inc = 1'b1; 

         update_type   = 3'h2; 

         if (sword_ctr_reg == 2'h3) 

           begin 

             enc_ctrl_new  = 3'h4;   

             enc_ctrl_we   = 1'b1; 

           end 

       end 

     3'h4: 

       begin 

         sword_ctr_rst = 1'b1; 

         if (round_ctr_reg < 4'ha) // number of rouunds for aes 128 

           begin 

             round_ctr_inc = 1'b1; 

             update_type   = 3'h3; 

             enc_ctrl_new  = 3'h3; 

             enc_ctrl_we   = 1'b1; 

           end 

         else 

           begin 

             update_type  = 3'h4; 

             ready_new = 1'b1; 

             ready_we  = 1'b1; 

             enc_ctrl_new = 3'h4; 

             enc_ctrl_we  = 1'b1; 

             round_ctr_inc = 1'b0; 

           end 

       end 

     default: 

       begin 

         // Empty. Just here to make the synthesis tool happy. 

       end 

   endcase 

 end 

 

endmodule // aes_encipher_block 

 

 

 



32 
 

2. 

module aes_key_mem ( 

                              input wire         clk, 

                              input wire         reset_n, 

                              input wire [127 : 0]   key, 

                              output reg [127 : 0]   key_sajid 

               );             

  wire [31 : 0]  sbox_out, sbox_in; 

  aes_sbox sbox_inst_sw(.sboxw(sbox_out), .new_sboxw(sbox_in)); 

 

  reg [127 : 0]  key_mem_new; 

  reg        key_mem_we; 

  reg [127 : 0]  prev_key1_reg; 

  reg [127 : 0]  prev_key1_new; 

  reg        prev_key1_we; 

  reg [3 : 0]      round_ctr_reg; 

  reg [3 : 0]      round_ctr_new; 

  reg      round_ctr_rst; 

  reg      round_ctr_inc; 

  reg      round_ctr_we; 

  reg [2 : 0]      key_mem_ctrl_reg; 

  reg [2 : 0]      key_mem_ctrl_new; 

  reg      key_mem_ctrl_we; 

  reg [7 : 0]      rcon_reg; 

  reg [7 : 0]      rcon_new; 

  reg      rcon_we; 

  reg      rcon_set; 

  reg      rcon_next; 

  reg[2:0]         sbox_count_new,sbox_count; 

  reg [31 : 0]    tmp_sboxw; 

  reg        round_key_update; 

  reg [3 : 0]      num_rounds; 

  reg [127 : 0]  tmp_round_key; 

 

  assign sbox_out = tmp_sboxw; 

 

  always @ (posedge clk or negedge reset_n) 

 begin: reg_update 

   integer i; 

   if (!reset_n) 

     begin 

       key_sajid <=key; 

       rcon_reg      <= 8'h0; 

       round_ctr_reg <= 4'h0; 

       key_mem_ctrl_reg <= 3'h0; 

       rcon_reg<=8'h8d;    

     end 

   else 

     begin 

       if (round_ctr_we) 

         round_ctr_reg <= round_ctr_new; 

       sbox_count<= sbox_count_new; 



33 
 

      if (rcon_next) 

         rcon_reg <= rcon_new; 

       if (key_mem_we) 

         key_sajid <= key_mem_new; 

       if (prev_key1_we) 

         prev_key1_reg <= prev_key1_new; 

       if (key_mem_ctrl_we) 

         key_mem_ctrl_reg <= key_mem_ctrl_new; 

     end 

 end // reg_update 

 

  always @* 

 begin: round_key_gen 

   reg [31 : 0] w0, w1, w2, w3, w4, w5, w6, w7; 

   reg [31 : 0] k0, k1, k2, k3; 

   reg [31 : 0] rconw, rotstw, tw, trw; 

   // Default assignments. 

   key_mem_new   = 128'h0; 

   key_mem_we = 1'b0; 

   prev_key1_new = 128'h0; 

   prev_key1_we  = 1'b0; 

   k0 = 32'h0; 

   k1 = 32'h0; 

   k2 = 32'h0; 

   k3 = 32'h0; 

   rcon_next  = 1'b0; 

   w4 = prev_key1_reg[127 : 096]; 

   w5 = prev_key1_reg[095 : 064]; 

   w6 = prev_key1_reg[063 : 032]; 

   w7 = prev_key1_reg[031 : 000]; 

   rconw = {rcon_reg, 24'h0}; 

   tmp_sboxw = w7; 

   rotstw = {sbox_in[23 : 00], sbox_in[31 : 24]}; 

   trw = rotstw ^ rconw; 

   tw = sbox_in; 

   if (round_key_update) 

     begin 

       rcon_set   = 1'b0; 

       key_mem_we = 1'b1; 

       if (round_ctr_reg == 0) 

               begin 

                 key_mem_new   = key_sajid[127 : 0];   

                 prev_key1_new  = key_sajid[127 : 0]; 

                 prev_key1_we    = 1'b1; 

                 rcon_next      = 1'b1; 

               end 

             else 

               begin          

                  k0 = w4 ^ trw; 

                  k1 = w5 ^ w4 ^ trw; 

                  k2 = w6 ^ w5 ^ w4 ^ trw; 

                  k3 = w7 ^ w6 ^ w5 ^ w4 ^ trw; 

                  key_mem_new   = {k0, k1, k2, k3}; 



34 
 

                  prev_key1_new = {k0, k1, k2, k3}; 

                  prev_key1_we  = 1'b1; 

                  rcon_next  = 1'b1; 

               end 

           end 

 end // round_key_gen 

 

  always @* 

 begin : rcon_logic 

   reg [7 : 0] tmp_rcon; 

   rcon_new = {rcon_reg[6 : 0], 1'b0} ^ (8'h1b & {8{rcon_reg[7]}}); 

 end 

 

  always @* 

 begin : round_ctr 

   round_ctr_new = 4'h0; 

   round_ctr_we  = 1'b0; 

   if (round_ctr_rst) 

     begin 

       round_ctr_new = 4'h0; 

       round_ctr_we  = 1'b1; 

     end 

   else if (round_ctr_inc) 

     begin       round_ctr_new = round_ctr_reg + 1'b1; 

       round_ctr_we  = 1'b1; 

     end 

 end 

 

  always @* 

 begin: key_mem_ctrl 

   round_key_update = 1'b0; 

   round_ctr_rst = 1'b0; 

   round_ctr_inc = 1'b0; 

   key_mem_ctrl_new = 3'h0; 

   key_mem_ctrl_we  = 1'b0; 

   case(key_mem_ctrl_reg) 

     3'h0: 

       begin 

             key_mem_ctrl_new = 3'h1; 

             key_mem_ctrl_we  = 1'b1; 

             sbox_count_new=3'h5; 

       end 

     3'h1: 

       begin 

         round_ctr_rst = 1'b1; 

         key_mem_ctrl_new = 3'h2; 

         key_mem_ctrl_we  = 1'b1; 

         sbox_count_new=0; 

       end 

     3'h2: 

       begin 

         if(sbox_count==3'h0) begin 

             round_ctr_inc = 1'b1; 



35 
 

             round_key_update = 1'b1; 

             end     

         if (round_ctr_reg == 4'hb) // number for rounds for AES128 

           begin 

             key_mem_ctrl_new = 3'h3; 

             key_mem_ctrl_we  = 1'b1; 

           end 

         if(sbox_count==3'h4) 

             sbox_count_new=0; 

         else 

             sbox_count_new = sbox_count+1; 

       end 

     3'h3: 

       begin 

         key_mem_ctrl_new = 3'h3; 

         key_mem_ctrl_we  = 1'b1; 

         sbox_count_new=3'h6; 

       end 

     default: 

       begin 

       end 

   endcase 

 end 

 

endmodule // aes_key_mem 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

3. 

module aes_sbox ( 

                  input wire [31 : 0]  sboxw, 

                  output wire [31 : 0] new_sboxw 

                             ); 

  wire [7 : 0] sbox [0 : 255]; 

  assign new_sboxw[31 : 24] = sbox[sboxw[31 : 24]]; 

  assign new_sboxw[23 : 16] = sbox[sboxw[23 : 16]]; 

  assign new_sboxw[15 : 08] = sbox[sboxw[15 : 08]]; 

  assign new_sboxw[07 : 00] = sbox[sboxw[07 : 00]]; 

 

  assign sbox[8'h00] = 8'h63; 

  assign sbox[8'h01] = 8'h7c; 

  assign sbox[8'h02] = 8'h77; 

  assign sbox[8'h03] = 8'h7b; 

  assign sbox[8'h04] = 8'hf2; 

  assign sbox[8'h05] = 8'h6b; 

  assign sbox[8'h06] = 8'h6f; 

  assign sbox[8'h07] = 8'hc5; 

  assign sbox[8'h08] = 8'h30; 

  assign sbox[8'h09] = 8'h01; 

  assign sbox[8'h0a] = 8'h67; 

  assign sbox[8'h0b] = 8'h2b; 

  assign sbox[8'h0c] = 8'hfe; 

  assign sbox[8'h0d] = 8'hd7; 

  assign sbox[8'h0e] = 8'hab; 

  assign sbox[8'h0f] = 8'h76; 

  assign sbox[8'h10] = 8'hca; 

  assign sbox[8'h11] = 8'h82; 

  assign sbox[8'h12] = 8'hc9; 

  assign sbox[8'h13] = 8'h7d; 

  assign sbox[8'h14] = 8'hfa; 

  assign sbox[8'h15] = 8'h59; 

  assign sbox[8'h16] = 8'h47; 

  assign sbox[8'h17] = 8'hf0; 

  assign sbox[8'h18] = 8'had; 

  assign sbox[8'h19] = 8'hd4; 

  assign sbox[8'h1a] = 8'ha2; 

  assign sbox[8'h1b] = 8'haf; 

  assign sbox[8'h1c] = 8'h9c; 

  assign sbox[8'h1d] = 8'ha4; 

  assign sbox[8'h1e] = 8'h72; 

  assign sbox[8'h1f] = 8'hc0; 

  assign sbox[8'h20] = 8'hb7; 

  assign sbox[8'h21] = 8'hfd; 

  assign sbox[8'h22] = 8'h93; 

  assign sbox[8'h23] = 8'h26; 

  assign sbox[8'h24] = 8'h36; 

  assign sbox[8'h25] = 8'h3f; 



37 
 

  assign sbox[8'h26] = 8'hf7; 

  assign sbox[8'h27] = 8'hcc; 

  assign sbox[8'h28] = 8'h34; 

  assign sbox[8'h29] = 8'ha5; 

  assign sbox[8'h2a] = 8'he5; 

  assign sbox[8'h2b] = 8'hf1; 

  assign sbox[8'h2c] = 8'h71; 

  assign sbox[8'h2d] = 8'hd8; 

  assign sbox[8'h2e] = 8'h31; 

  assign sbox[8'h2f] = 8'h15; 

  assign sbox[8'h30] = 8'h04; 

  assign sbox[8'h31] = 8'hc7; 

  assign sbox[8'h32] = 8'h23; 

  assign sbox[8'h33] = 8'hc3; 

  assign sbox[8'h34] = 8'h18; 

  assign sbox[8'h35] = 8'h96; 

  assign sbox[8'h36] = 8'h05; 

  assign sbox[8'h37] = 8'h9a; 

  assign sbox[8'h38] = 8'h07; 

  assign sbox[8'h39] = 8'h12; 

  assign sbox[8'h3a] = 8'h80; 

  assign sbox[8'h3b] = 8'he2; 

  assign sbox[8'h3c] = 8'heb; 

  assign sbox[8'h3d] = 8'h27; 

  assign sbox[8'h3e] = 8'hb2; 

  assign sbox[8'h3f] = 8'h75; 

  assign sbox[8'h40] = 8'h09; 

  assign sbox[8'h41] = 8'h83; 

  assign sbox[8'h42] = 8'h2c; 

  assign sbox[8'h43] = 8'h1a; 

  assign sbox[8'h44] = 8'h1b; 

  assign sbox[8'h45] = 8'h6e; 

  assign sbox[8'h46] = 8'h5a; 

  assign sbox[8'h47] = 8'ha0; 

  assign sbox[8'h48] = 8'h52; 

  assign sbox[8'h49] = 8'h3b; 

  assign sbox[8'h4a] = 8'hd6; 

  assign sbox[8'h4b] = 8'hb3; 

  assign sbox[8'h4c] = 8'h29; 

  assign sbox[8'h4d] = 8'he3; 

  assign sbox[8'h4e] = 8'h2f; 

  assign sbox[8'h4f] = 8'h84; 

  assign sbox[8'h50] = 8'h53; 

  assign sbox[8'h51] = 8'hd1; 

  assign sbox[8'h52] = 8'h00; 

  assign sbox[8'h53] = 8'hed; 

  assign sbox[8'h54] = 8'h20; 

  assign sbox[8'h55] = 8'hfc; 

  assign sbox[8'h56] = 8'hb1; 



38 
 

  assign sbox[8'h57] = 8'h5b; 

  assign sbox[8'h58] = 8'h6a; 

  assign sbox[8'h59] = 8'hcb; 

  assign sbox[8'h5a] = 8'hbe; 

  assign sbox[8'h5b] = 8'h39; 

  assign sbox[8'h5c] = 8'h4a; 

  assign sbox[8'h5d] = 8'h4c; 

  assign sbox[8'h5e] = 8'h58; 

  assign sbox[8'h5f] = 8'hcf; 

  assign sbox[8'h60] = 8'hd0; 

  assign sbox[8'h61] = 8'hef; 

  assign sbox[8'h62] = 8'haa; 

  assign sbox[8'h63] = 8'hfb; 

  assign sbox[8'h64] = 8'h43; 

  assign sbox[8'h65] = 8'h4d; 

  assign sbox[8'h66] = 8'h33; 

  assign sbox[8'h67] = 8'h85; 

  assign sbox[8'h68] = 8'h45; 

  assign sbox[8'h69] = 8'hf9; 

  assign sbox[8'h6a] = 8'h02; 

  assign sbox[8'h6b] = 8'h7f; 

  assign sbox[8'h6c] = 8'h50; 

  assign sbox[8'h6d] = 8'h3c; 

  assign sbox[8'h6e] = 8'h9f; 

  assign sbox[8'h6f] = 8'ha8; 

  assign sbox[8'h70] = 8'h51; 

  assign sbox[8'h71] = 8'ha3; 

  assign sbox[8'h72] = 8'h40; 

  assign sbox[8'h73] = 8'h8f; 

  assign sbox[8'h74] = 8'h92; 

  assign sbox[8'h75] = 8'h9d; 

  assign sbox[8'h76] = 8'h38; 

  assign sbox[8'h77] = 8'hf5; 

  assign sbox[8'h78] = 8'hbc; 

  assign sbox[8'h79] = 8'hb6; 

  assign sbox[8'h7a] = 8'hda; 

  assign sbox[8'h7b] = 8'h21; 

  assign sbox[8'h7c] = 8'h10; 

  assign sbox[8'h7d] = 8'hff; 

  assign sbox[8'h7e] = 8'hf3; 

  assign sbox[8'h7f] = 8'hd2; 

  assign sbox[8'h80] = 8'hcd; 

  assign sbox[8'h81] = 8'h0c; 

  assign sbox[8'h82] = 8'h13; 

  assign sbox[8'h83] = 8'hec; 

  assign sbox[8'h84] = 8'h5f; 

  assign sbox[8'h85] = 8'h97; 

  assign sbox[8'h86] = 8'h44; 

  assign sbox[8'h87] = 8'h17; 



39 
 

  assign sbox[8'h88] = 8'hc4; 

  assign sbox[8'h89] = 8'ha7; 

  assign sbox[8'h8a] = 8'h7e; 

  assign sbox[8'h8b] = 8'h3d; 

  assign sbox[8'h8c] = 8'h64; 

  assign sbox[8'h8d] = 8'h5d; 

  assign sbox[8'h8e] = 8'h19; 

  assign sbox[8'h8f] = 8'h73; 

  assign sbox[8'h90] = 8'h60; 

  assign sbox[8'h91] = 8'h81; 

  assign sbox[8'h92] = 8'h4f; 

  assign sbox[8'h93] = 8'hdc; 

  assign sbox[8'h94] = 8'h22; 

  assign sbox[8'h95] = 8'h2a; 

  assign sbox[8'h96] = 8'h90; 

  assign sbox[8'h97] = 8'h88; 

  assign sbox[8'h98] = 8'h46; 

  assign sbox[8'h99] = 8'hee; 

  assign sbox[8'h9a] = 8'hb8; 

  assign sbox[8'h9b] = 8'h14; 

  assign sbox[8'h9c] = 8'hde; 

  assign sbox[8'h9d] = 8'h5e; 

  assign sbox[8'h9e] = 8'h0b; 

  assign sbox[8'h9f] = 8'hdb; 

  assign sbox[8'ha0] = 8'he0; 

  assign sbox[8'ha1] = 8'h32; 

  assign sbox[8'ha2] = 8'h3a; 

  assign sbox[8'ha3] = 8'h0a; 

  assign sbox[8'ha4] = 8'h49; 

  assign sbox[8'ha5] = 8'h06; 

  assign sbox[8'ha6] = 8'h24; 

  assign sbox[8'ha7] = 8'h5c; 

  assign sbox[8'ha8] = 8'hc2; 

  assign sbox[8'ha9] = 8'hd3; 

  assign sbox[8'haa] = 8'hac; 

  assign sbox[8'hab] = 8'h62; 

  assign sbox[8'hac] = 8'h91; 

  assign sbox[8'had] = 8'h95; 

  assign sbox[8'hae] = 8'he4; 

  assign sbox[8'haf] = 8'h79; 

  assign sbox[8'hb0] = 8'he7; 

  assign sbox[8'hb1] = 8'hc8; 

  assign sbox[8'hb2] = 8'h37; 

  assign sbox[8'hb3] = 8'h6d; 

  assign sbox[8'hb4] = 8'h8d; 

  assign sbox[8'hb5] = 8'hd5; 

  assign sbox[8'hb6] = 8'h4e; 

  assign sbox[8'hb7] = 8'ha9; 

  assign sbox[8'hb8] = 8'h6c; 



40 
 

  assign sbox[8'hb9] = 8'h56; 

  assign sbox[8'hba] = 8'hf4; 

  assign sbox[8'hbb] = 8'hea; 

  assign sbox[8'hbc] = 8'h65; 

  assign sbox[8'hbd] = 8'h7a; 

  assign sbox[8'hbe] = 8'hae; 

  assign sbox[8'hbf] = 8'h08; 

  assign sbox[8'hc0] = 8'hba; 

  assign sbox[8'hc1] = 8'h78; 

  assign sbox[8'hc2] = 8'h25; 

  assign sbox[8'hc3] = 8'h2e; 

  assign sbox[8'hc4] = 8'h1c; 

  assign sbox[8'hc5] = 8'ha6; 

  assign sbox[8'hc6] = 8'hb4; 

  assign sbox[8'hc7] = 8'hc6; 

  assign sbox[8'hc8] = 8'he8; 

  assign sbox[8'hc9] = 8'hdd; 

  assign sbox[8'hca] = 8'h74; 

  assign sbox[8'hcb] = 8'h1f; 

  assign sbox[8'hcc] = 8'h4b; 

  assign sbox[8'hcd] = 8'hbd; 

  assign sbox[8'hce] = 8'h8b; 

  assign sbox[8'hcf] = 8'h8a; 

  assign sbox[8'hd0] = 8'h70; 

  assign sbox[8'hd1] = 8'h3e; 

  assign sbox[8'hd2] = 8'hb5; 

  assign sbox[8'hd3] = 8'h66; 

  assign sbox[8'hd4] = 8'h48; 

  assign sbox[8'hd5] = 8'h03; 

  assign sbox[8'hd6] = 8'hf6; 

  assign sbox[8'hd7] = 8'h0e; 

  assign sbox[8'hd8] = 8'h61; 

  assign sbox[8'hd9] = 8'h35; 

  assign sbox[8'hda] = 8'h57; 

  assign sbox[8'hdb] = 8'hb9; 

  assign sbox[8'hdc] = 8'h86; 

  assign sbox[8'hdd] = 8'hc1; 

  assign sbox[8'hde] = 8'h1d; 

  assign sbox[8'hdf] = 8'h9e; 

  assign sbox[8'he0] = 8'he1; 

  assign sbox[8'he1] = 8'hf8; 

  assign sbox[8'he2] = 8'h98; 

  assign sbox[8'he3] = 8'h11; 

  assign sbox[8'he4] = 8'h69; 

  assign sbox[8'he5] = 8'hd9; 

  assign sbox[8'he6] = 8'h8e; 

  assign sbox[8'he7] = 8'h94; 

  assign sbox[8'he8] = 8'h9b; 

  assign sbox[8'he9] = 8'h1e; 



41 
 

  assign sbox[8'hea] = 8'h87; 

  assign sbox[8'heb] = 8'he9; 

  assign sbox[8'hec] = 8'hce; 

  assign sbox[8'hed] = 8'h55; 

  assign sbox[8'hee] = 8'h28; 

  assign sbox[8'hef] = 8'hdf; 

  assign sbox[8'hf0] = 8'h8c; 

  assign sbox[8'hf1] = 8'ha1; 

  assign sbox[8'hf2] = 8'h89; 

  assign sbox[8'hf3] = 8'h0d; 

  assign sbox[8'hf4] = 8'hbf; 

  assign sbox[8'hf5] = 8'he6; 

  assign sbox[8'hf6] = 8'h42; 

  assign sbox[8'hf7] = 8'h68; 

  assign sbox[8'hf8] = 8'h41; 

  assign sbox[8'hf9] = 8'h99; 

  assign sbox[8'hfa] = 8'h2d; 

  assign sbox[8'hfb] = 8'h0f; 

  assign sbox[8'hfc] = 8'hb0; 

  assign sbox[8'hfd] = 8'h54; 

  assign sbox[8'hfe] = 8'hbb; 

  assign sbox[8'hff] = 8'h16; 

 

endmodule // aes_sbox 

 

 



  assign   

     

 

  


