

Study of Simulation Based Software
for Electrical Circuits

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of
BACHELOR OF TECHNOLOGY

in
ELECTRICAL ENGINEERING

Submitted by:

RUPANK PAHUJA

Guided by:
Dr. Santosh Kumar Vishwakarma, Associate Professor

Nanoscale Devices, VLSI Circuit and System Design Research Group
Discipline of Electrical Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December 2018

i

Declaration of Authorship
I hereby declare that the project entitled “Study of Simulation Based Software for Elec-
trical Circuits” submitted in partial fulfilment for the award of the degree of Bachelor
of Technology in ‘Electrical Engineering’ completed under the supervision of Dr. San-
tosh Kumar Vishwakarma, Associate Professor, Electrical Engineering, IIT Indore is an
authentic work.

Further, I declare that I have not submitted this work for the award of any other de-
gree elsewhere.

Signed:

Rupank Pahuja

iii

Certificate
This is to certify that the B.Tech Project entitled, “Study of Simulation based Software for
Electrical Circuits ” and submitted by Rupank Pahuja in partial fulfillment of the require-
ments of B.Tech Project embodies the work done by them under my supervision.

Supervisor

Dr. SANTOSH KUMAR VISHWAKARMA

Associate Professor,

Indian Institute of Technology Indore

v

Acknowledgements
It is my privilege to express my gratitude to several persons who helped me directly
or indirectly to conduct this project work. I express my heart full indebtedness to my
BTP guide Dr. Santosh Kumar Vishwarkma for his sincere guidance and inspiration in
completing this Project.

I also thank my friends who have more or less contributed to the making of this project.

This study has indeed helped me to explore more knowledgeable avenues related to
this topic and I am sure it will help me in future.

vii

INDIAN INSTITUTE OF TECHNOLOGY INDORE

Abstract
Department of Electrical Engineering

Bachelor of Technology

Study of Simulation based Software for Electrical Circuits

This project studies the fundamentals of SPICE based simulation software for electrical
circuits. It was done as a part of six months internship at Mentor Graphics, an EDA
Tool Design Comapany. A detailed study of core algorithm involved in SPICE based
software such as one on which I worked AFS(Analog FastSPICE Simulator) is included
in the report. Description of other tasks such as Testing, Verification and Automation
which are an important part of delivering products to client is also included in the re-
port.

HTTP://IITI.AC.IN/
http://cse.iiti.ac.in/

ix

Contents

Declaration of Authorship i

Certificate iii

Acknowledgements v

Abstract vii

Table of Contents vii

1 Introduction 1
1.1 Electronic Circuit Simulation . 1
1.2 About types of Simulation Based Software 1
1.3 About the company and Product . 2

2 SPICE and Netlists 3
2.1 Understanding SPICE . 4
2.2 Trade off Between Speed and Accuracy . 5

3 DC Analysis 7
3.1 Modified Nodal Analysis . 7

3.1.1 Producing the MNA matrix . 8
3.1.2 The A Matrix . 9
3.1.3 The x matrix . 11
3.1.4 The Z matrix . 13
3.1.5 Putting it together . 14

3.2 Verification of Modified Nodal Analysis . 15

4 Flow of SPICE based software 17
4.1 Overall solution algorithm for DC Analysis 17

5 Other Contribution 19
5.1 Some other software related work . 19

x

6 Future Work 21

xi

List of Tables

List of Figures

2.1 Voltage divider circuit . 5
2.2 Speed Accuracy Comparison) . 6

3.1 Example 1 of making a G Matrix . 10
3.2 Example 2 of making a G Matrix . 11
3.3 Example 1 making a x Matrix . 12
3.4 Example 2 making a x Matrix . 13
3.5 Example 1 making a complete Matrix . 14
3.6 Example 2 making a complete Matrix . 15

4.1 DC solution Algorithm flow chart . 17

1

Chapter 1

Introduction

1.1 Electronic Circuit Simulation

Electronic circuit simulation uses mathematical models to replicate the behavior of an
actual electronic device or circuit. Simulation software allows for modeling of circuit op-
eration and is an invaluable analysis tool. Due to its highly accurate modeling capability,
many colleges and universities use this type of software for the teaching of electronics
technician and electronics engineering programs. Simulating a circuit’s behavior be-
fore actually building it can greatly improve design efficiency by making faulty designs
known as such, and providing insight into the behavior of electronics circuit designs. In
particular, for integrated circuits, the tooling is expensive, breadboards are impractical,
and probing the behavior of internal signals is extremely difficult. Therefore, almost all
IC design relies heavily on simulation.

The most well known analog simulator is SPICE. Probably the best known digital sim-
ulators are those based on Verilog and VHDL. Some electronics simulators integrate
a schematic editor, a simulation engine, and on-screen waveform display, allowing de-
signers to rapidly modify a simulated circuit and see what effect the changes have on the
output. They also typically contain extensive model and device libraries. These mod-
els typically include IC specific transistor models such as BSIM, generic components
such as resistors, capacitors, inductors and transformers, user defined models (such as
controlled current and voltage sources, or models in Verilog-A or VHDL-AMS). Printed
circuit board (PCB) design requires specific models as well, such as transmission lines
for the traces and IBIS models for driving and receiving electronics.

1.2 About types of Simulation Based Software

While there are strictly analog electronics circuit simulators, popular simulators often
include both analog and event-driven digital simulation capabilities, and are known as

2 Chapter 1. Introduction

mixed-mode simulators. This means that any simulation may contain components that
are analog, event driven (digital or sampled-data), or a combination of both. An entire
mixed signal analysis can be driven from one integrated schematic. All the digital mod-
els in mixed-mode simulators provide accurate specification of propagation time and
rise/fall time delays.

Mixed-mode simulation is handled on three levels:

• With primitive digital elements that use timing models and the built-in 12 or 16
state digital logic simulator.

• With sub-circuit models that use the actual transistor topology of the integrated
circuit.

• With In-line Boolean logic expressions.

1.3 About the company and Product

• My internship started at Mentor Graphics on 15th May 2018 and was a six months
long internship. Mentor Graphics is EDA (Electronic Design Automation) multi-
national corporation for Electrical Engineering and Electronics. Calibre is the
flagship tool by mentor well-known for its accuracy among the industry giants
in the same field Apart from Calibre, simulation tools like, AFS(Analog Fast-
SPICE), Questa-Sim, Model-Sim are reputed tools and widely used by Industry
and Academia as well. Mentor Graphics acquired many different EDA companies
with applications in different field which diversified its market and customer-base.
Finally Mentor Graphics was itself acquired in April 2017 by Siemens and styled
it as "Mentor, a Siemens Business".

• “Mentor, a Siemens Business” then “Mentor Graphics” acquired BDA (Berkeley
Design Automation) an EDA company with expertise in nanometer analog, mixed-
signal, and RF circuit verification in 2014. With that accusation also came in
AFS(Analog FastSPICE) which is a world’s fastest nanometer circuit verification
platform for analog, RF, mixed-signal, and custom digital circuits. One of the
biggest competitors in AMS(Analog/Mixed Signal) automation is Spectre by Ca-
dence.

3

Chapter 2

SPICE and Netlists

SPICE (Simulation Program with Integrated Circuit Emphasis) is an open source cir-
cuit simulation software tool that was developed in the early 1970’s at the University
of California, Berkeley. SPICE is intended to simulate the behavior of signal genera-
tors, measurement equipment (e.g. multimeters, oscilloscopes, etc.), passive elements
(e.g. resistors, capacitors, inductors), and active devices (e.g. diodes, transistors, etc.)
in a circuit to give designers a cost-effective means of confirming a circuit’s intended
operation before investing time and money into physically fabricating the circuit. Al-
though there are other computer-aided circuit simulators in the market, SPICE is the
most widely used and has become the industry standard on which most commercial
circuit simulators are based.

When it was first developed, SPICE was limited to mainframe computers due to its pro-
cessor intensive calculations. However, with the advancement of personal computer
systems in the 1980’s, many versions of SPICE became available that allow for SPICE
circuit simulations on an average desktop computer. In this research, a commercial
version of SPICE from Synopsys R©, called HSpice, was used for all circuit simulations
because of its high reputation for accurate simulations and ability to incorporate cus-
tom models of power devices though the Verilog-A modeling interface. SPICE reads
in circuit descriptions, analysis descriptions, and output requests from a text file called
a netlist. The netlist describes a circuit by listing each component with its respective
value, connection nodes, and any additional required parameters. For example:

V1 0001 0 10V

R1 0001 2 10kOhm

C1 0002 0 50uF

4 Chapter 2. SPICE and Netlists

describes a 10 V DC source connected across a 10 kOhm resistor in series with a 50 uF
capacitor where 0001 and 0002 are connection nodes and 0 is the circuit ground node

2.1 Understanding SPICE

SPICE has the ability to simulate components ranging from the most basic passive ele-
ments such as resistors and capacitors to sophisticated semiconductor devices such as
MESFETs and MOSFETs. Using these intrinsic components as the basic building blocks
for larger models, designers and chip manufacturers have been able to define a truly
vast and diverse number of SPICE models. Most commercially available simulators
include more than 15,000 different components.

The quality of SPICE models can vary, and not all SPICE models are applicable to
every application. It is important to consider this when using the models supplied
with a SPICE simulation package. Using a SPICE model inappropriately can lead to
inaccurate results, or even generate an error in some circumstances. One of the most
common errors made by even seasoned engineers is confusing a SPICE model with
a PSPICE model. PSPICE is a commercially available program that uses proprietary
languages to define components and models.

A circuit must be presented to SPICE in the form of a netlist. The netlist is a text de-
scription of all circuit elements such as transistors and capacitors, and their correspond-
ing connections. Modern schematic capture and simulation tools such as Multisim al-
low users to draw circuit schematics in a user-friendly environment, and automatically
translate the circuit diagrams into netlists. Consider as an example the simple voltage
divider circuit below. We include both netlist and corresponding circuit schematic.

Voltage Divider Netlist

* Any text after the asterisk ’*’ is ignored by SPICE

* Voltage Divider

V1 1 0 12

R1 1 2 1000

R2 2 0 2000

.OP * perform a DC operating point analysis

2.2. Trade off Between Speed and Accuracy 5

.END

Voltage Divider Schematic

FIGURE 2.1: Voltage divider circuit

2.2 Trade off Between Speed and Accuracy

Although the SPICE models used in a SPICE simulation can greatly affect the accuracy
of the results, simulation settings also contribute to varying degrees of accuracy. SPICE
simulation options generally allow the user to gain more accuracy in the results at the
cost of the speed of the simulation.

To understand the trade off between speed and accuracy in SPICE simulation one must
consider a number of factors. SPICE simulation was created over 30 years go and
around that time a typical computer had less power than the average microwave oven
did thirty years later. Computing power was very expensive. The simulation of a cir-
cuit to the highest degree of accuracy could have taken longer and cost more money
than building the actual circuit to see the results. Also, consider that the broad purpose
of circuit simulation is to augment basic hand calculations and predict general circuit
behavior. With these considerations in mind, the designers of SPICE created a program

6 Chapter 2. SPICE and Netlists

that could produce reasonably accurate results in a cost-effective manner. They also in-
cluded many options to allow engineers to customize the accuracy of a simulation.

As computing power has increased exponentially over the years, so have the complex-
ity of circuit designs being simulated. Speed and accuracy are still important factors to
consider when simulating circuits.

FIGURE 2.2: Speed Accuracy Comparison)

7

Chapter 3

DC Analysis

3.1 Modified Nodal Analysis

Many different kinds of network element are encountered in network analysis. For
circuit analysis it is necessary to formulate equations for circuits containing as many
different types of network elements as possible. There are various methods for equation
formulation for a circuit. These are based on three types of equations found in circuit
theory.

• equations based on Kirchhoff’s voltage law (KVL)

• equations based on Kirchhoff’s current law (KCL)

• branch constitutive equations

The equations have to be formulated (represented in a computer program) automati-
cally in a simple, comprehensive manner. Once formulated, the system of equations
has to be solved. There are two main aspects to be considered when choosing algo-
rithms for this purpose: accuracy and speed. The MNA, briefly for Modified Nodal
Analysis, has been proved to accomplish these tasks. MNA applied to a circuit with
passive elements, independent current and voltage sources and active elements results
in a matrix equation of the form: [

A
]

.
[

x
]
=

[
z
]

For a circuit with N nodes and M independent voltage sources:

• The A matrix

– is (N+M)(N+M) in size, and consists only of known quantities

– the NN part of the matrix in the upper left:

8 Chapter 3. DC Analysis

∗ has only passive elements

∗ elements connected to ground appear only on the diagonal

∗ elements not connected to ground are both on the diagonal and off-diagonal
terms

– the rest of the A matrix (not included in the NN upper left part) contains
only 1, -1 and 0 (other values are possible if there are dependent current and
voltage sources)

• The x matrix

– is an (N+M)1 vector that holds the unknown quantities (node voltages and
the currents through the independent voltage sources)

– the top N elements are the n node voltages

– the bottom M elements represent the currents through the M independent
voltage sources in the circuit

• The z matrix

– is an (N+M)1 vector that holds only known quantities

– the top N elements are either zero or the sum and difference of independent
current sources in the circuit

– the bottom M elements represent the M independent voltage sources in the
circuit

The circuit is solved by a simple matrix manipulation:

[
x
]
=

[
A
]−1

.
[

z
]

3.1.1 Producing the MNA matrix

This describes the algorithmic approach to the Modified Nodal Analysis. The three
matrix that we need to generate are the A matrix, the x matrix and the z matrix. They
will be created by combining various different matrices.

3.1. Modified Nodal Analysis 9

3.1.2 The A Matrix

The A matrix will be developed as the combination of 4 smaller matrices, G, B, C, and
D.

[
A

]
=

[
G B
C D

]

The A matrix is (M+N)(M+N) (N is the number of nodes, and M is the number of inde-
pendent voltage sources) and:

• the G matrix is NN and is determined by the interconnections between the circuit
elements

• the B matrix is NM and is determined by the connection of the voltage sources

• the C matrix is MN and is determined by the connection of the voltage sources (B
and C are closely related, particularly when only independent sources are consid-
ered)

• the D matrix is MM and is zero if only independent sources are considered

Rules for making the G matrix

The G matrix is an NxN matrix formed in two steps.

1. Elements in diagonal matrix equals to the sum of the conductance of each element
connected to corresponding node.

2. The off diagonal elements are the negative conductance of the element connected
to the pair of corresponding node.

If an element is grounded, it will only have contribute to one entry in the G matrix – at
the appropriate location on the diagonal. If it is not grounded it will contribute to four
entries in the matrix – two diagonal entries (corresponding to the two nodes) and two
off-diagonal entries.

[
G

]
=


1

R1 0 0
0 1

R2 +
1

R3 −
1

R2

0 − 1
R2

1
R2



[
G

]
=

[
1

R1 +
1

R2 − 1
R2

− 1
R2

1
R2 +

1
R3

]

10 Chapter 3. DC Analysis

FIGURE 3.1: Example 1 of making a G Matrix

Rules for making the B matrix

The B matrix is an NM matrix with only 0, 1 and -1 elements. Each location in the
matrix corresponds to a particular voltage source (first dimension) or a node (second
dimension). If the positive terminal of the ith voltage source is connected to node k,
then the element (k,i) in the B matrix is a 1. If the negative terminal of the ith voltage
source is connected to node k, then the element (k,i) in the B matrix is a -1. Otherwise,
elements of the B matrix are zero.

If a voltage source is ungrounded, it will have two elements in the B matrix (a 1 and
a -1 in the same column). If it is grounded it will only have one element in the matrix.

Case 1:

[
B

]
=

−1 0
1 0
0 1


Case 2:

[
B

]
=

[
1
−1

]

Rules for making C matrix The C matrix is an MN matrix with only 0, 1 and -1
elements. Each location in the matrix corresponds to a particular node (first dimension)
or voltage source (second dimension). If the positive terminal of the ith voltage source is

3.1. Modified Nodal Analysis 11

FIGURE 3.2: Example 2 of making a G Matrix

connected to node k, then the element (i,k) in the C matrix is a 1. If the negative terminal
of the ith voltage source is connected to node k, then the element (i,k) in the C matrix is
a -1. Otherwise, elements of the C matrix are zero. In other words, the C matrix is the
transpose of the B matrix. This is not the case when dependent sources are present.

Rules for making the D matrix The D matrix is an MM matrix that is composed
entirely of zeros. It can be non-zero if dependent sources are considered.

3.1.3 The x matrix

The x matrix holds our unknown quantities and will be developed as the combination
of 2 smaller matrices v and j. It is considerably easier to define than the A matrix.

[
x
]
=

[
v
j

]

The x matrix is (NxM)x1 (N is the number of nodes, and M is the number of inde-
pendent voltage sources) and:

• the v matrix is Nx1 and hold the unknown voltages

• the j matrix is Mx1 and holds the unknown currents through the voltage sources

Rules for making the v matrix The v matrix is an 1N matrix formed of the node
voltages. Each element in v corresponds to the voltage at the equivalent node in the

12 Chapter 3. DC Analysis

circuit (there is no entry for ground – node 0). For a circuit with N nodes we get:

[
v
]
=


v1

v2

· · ·
vN


Rules for making the j matrix The j matrix is an 1M matrix, with one entry for the

current through each voltage source. So if there are M voltage sources V1, V2 through
VM, the j matrix will be:

[
j
]
=


iv1

iv2

· · ·
ivM


Case1:

FIGURE 3.3: Example 1 making a x Matrix

[
v
]
=

v1

v2

v3

 ,
[

j
]
=

[
iv1

iv2

]
,
[

x
]
=

[
v
j

]
=


v1

v2

v3

iv1
iv2



3.1. Modified Nodal Analysis 13

Case2:

FIGURE 3.4: Example 2 making a x Matrix

[
v
]
=

[
v1

v2

]
,
[

j
]
=

[
iv1

]
,
[

x
]
=

[
v
j

]
=

 v1

v2

iv1


3.1.4 The Z matrix

The z matrix holds our independent voltage and current sources and will be developed
as a combination of 2 smaller matrices i and e. It is quite easy to formulate.

[
z
]
=

[
i
e

]

The z matrix is 1(M+N) (N is the number of nodes, and M is the number of independent
voltage sources) and:

• the i matrix is 1N and contains the sum of the currents through the passive ele-
ments into the corresponding node (either zero, or the sum of independent current
sources)

• the e matrix is 1M and holds the values of the independent voltage sources

14 Chapter 3. DC Analysis

Rules for making i matrix
The i matrix is an Nx1 matrix with each element of the matrix corresponding to a par-
ticular node. The value of each element of i is determined by the sum of current sources
into the corresponding node. If there are no current sources connected to the node, the
value is zero.
Rules for making e matrix
The e matrix is Mx1 matrix with each element of the matrix equal in value to the corre-
sponding independent voltage source.

Case 1:

[
i
]
=

0
0
0

 ,
[
e
]
=

[
V1

V2

]
,
[
z
]
=


0
0
0
v1

v2


Case 2:

[
i
]
=

[
Is1
0

]
,
[
e
]
=

[
Vs1

]
,
[
z
]
=

 Is1
0

Vs1


3.1.5 Putting it together

We can write out the full matrix solution for both cases that we will be developing.

FIGURE 3.5: Example 1 making a complete Matrix

3.2. Verification of Modified Nodal Analysis 15



1
R1

0 0 −1 0

0 1
R2

+ 1
R3
− 1

R2
1 0

0 − 1
R2

1
R2

0 1

−1 1 0 0 0
0 0 1 0 0


.


v1

v2

v3

iV1
iV2

 =


0
0
0

V1
V2



FIGURE 3.6: Example 2 making a complete Matrix


1

R1
+ 1

R2
− 1

R2
1

− 1
R2

1
R2

+ 1
R3
−1

1 −1 0

 .

 v1

v2

iVs1

 =

 Is1
0

Vs1



3.2 Verification of Modified Nodal Analysis

Expanding the matrix representation above to a set of equations denotes the following
equation system consisting of 3 of them.

Case 1:
v1.

1
R1
− iv1 = 0

(
1

R2
+

1
R3

).v2 + (− 1
R2

).v3 + iv1 = 0

16 Chapter 3. DC Analysis

(− 1
R2

).v2 +
1

R2
.v3 + iv2 = 0

The above three equations are KVL equations on the case 1 and the rest two equa-
tions will just affirm

0 = 0

which has infinite solutions. We will get the solution to variables from above equation.

Case 2:
(

1
R1

+
1

R2
).v1(− 1

R2
).v2 + ivs1 = Is1

(− 1
R2

).v1 + (
1

R2
+

1
R3

).v2 + ivs1 = 0

v1− v2 = Vs1

The first two equations are KVL and the last equation is a equation which affirms
the situation present in the circuit. Hence MNA is verified.

17

Chapter 4

Flow of SPICE based software

4.1 Overall solution algorithm for DC Analysis

In this section an overall solution algorithm for a DC analysis for linear as well as
non-linear networks is given. With non-linear network elements at hand the Newton-
Raphson (NR) algorithm is applied.

FIGURE 4.1: DC solution Algorithm flow chart

The algorithm shown in fig. 4.1 has been proved to be able to find DC solutions
for a large variety of networks. It must be said that the application of any of the fall-
back convergence helpers indicates a nearly or definitely singular equation system (e.g.

18 Chapter 4. Flow of SPICE based software

floating nodes or over determining sources). The convergence problems are either due
to an apparently “wrong” network topology or to the model implementation of nonlin-
ear components.

In some cases it may even occur that tiny numerical inaccuracies lead to non-convergences
whereas the choice of a more accurate (but probably slower) equation system solver can
help. With network topologies having more than a single stable solution (e.g. bi-stable
flip-flops) it is recommended to apply node sets, i.e. forcing the Newton-Raphson iter-
ation into a certain direction by initial values.

When having problems to get a circuit have its DC solution the following actions can be
taken to solve these problems.

• check circuit topology (e.g. floating nodes or over determining sources)

• check model parameters of non-linear components

• apply nodesets

• choose a more accurate equation system solver

• relax the convergence tolerances if possible

• increase the maximum iteration count

• choose the prefered fallback algorithm

19

Chapter 5

Other Contribution

5.1 Some other software related work

There were other enabling tasks which I performed there at my time in the company.The
first part included me getting acquainted with the software and how its managed here.
I learned the basic code of conduct for contributing you code in the main repositories.
In the second part I built upon the knowledge gained by me in first part and I tried to
find runtime-errors and memory leaks in various patches which were contributing to
the master branch and degrading the performance. The other part of internship was a
completely independent project which aimed to compress a regressoion repository.

• This was my first introduction to a variant of SPICE simulation software. We had
the experience to use Spectre by Cadence which is also a simulation software dur-
ing the 6th semester to design 8-bit multiplier. The fact that I had already used the
software as a designer, it gave me a great perspective of what I was getting into
while working on it as a developer.

• After gaining the enough and required knowledge to start working, I was assigned
the task to automate the process of finding patches which had runtime-errors and
memory leaks in them. Some background- The soft wares to which developers
commit code from different time zones all the time it’s were hard to check any
commit is affecting a different commit before checking in the code. During the
maintenance of such large code-base it’s necessary that code is run every day and
all the the test-cases are run to identify if some developer’s code is causing some
problem. With every commit, GIT generates a hash which helps identify every
change done by developer to the code-base. I was given a set of test-cases and the
date they started failing, my task was to point to a particular patch which might
have caused the problem, additionally the task entailed me to make a bash script
which automates the given process and optimize it.

To find the particular patch I first tried to nail down the date around which the

20 Chapter 5. Other Contribution

patch might exist for which I used the daily-builds which were already present on
the servers. The script takes test-case file, start date, end-date as input and collects
the data of all the runs which gives the approximate idea of where the faulty patch
might be hiding. This task that I performed was very critical for the development
as well Q/A testing team.

After figuring out the dates, next step is to checkout the patches between those
dates and find the one which takes the most time.

• Some background Regression testing is re-running functional and non-functional
tests to ensure that previously developed and tested software still performs after
a change. Changes that may require regression testing include bug fixes, software
enhancements, configuration changes, and even substitution of electronic compo-
nent.As regression test suites tend to grow with each found defect, test automation
is frequently involved. Sometimes a change impact analysis is performed to de-
termine an appropriate subset of tests. Now considering the fact that for each
bug-fixed there is test-case which has to be added to regression testing reposi-
tory to check if that fail is not happening again the size of regression repository
takes up huge space. One of the reason contributing to this increased size is the
duplicate include library files for various test cases. The library files are the files
provided by foundry companies which specifies how the electrical circuit compo-
nents behave(the ones which we simulating) under different conditions referred
as different corners in industry language. The task at my hand was to parse all the
test-cases and find the include files, see if any of them are duplicates and keep the
single copy of unique file and remove the other files. With this I also had to soft-
link all the test-cases to the library files, now present in the new location. Other
than these three important works I also helped configure code-review environ-
ment which potentially could make the process a lot efficient.

21

Chapter 6

Future Work

I can definitely expand on the two parts of the internship to make the work more versa-
tile and add more features for developers to use it. The second part of the project which
includes finding the guilty patch, the steps which I follow is first find out the probable
days between which the faulty patch might exist and then checkout and compile all the
patches between those dates. Instead of doing the task manually I aim to automate the
script to find the probable dates between which the failure might have occur ed auto-
matically without human intervention.

The third part of the project is coded very specifically to alter particular type of test files
which includes particular type of lib files. The project can be extended to include all the
test cases and all the different types of library files included in them. One modification
which can be done easily is to take all these information about the test files and library
files as inputs by the user user to make the project more dynamic and well-equipped.

	Declaration of Authorship
	Certificate
	Acknowledgements
	Abstract
	Table of Contents
	Introduction
	Electronic Circuit Simulation
	About types of Simulation Based Software
	About the company and Product

	SPICE and Netlists
	Understanding SPICE
	Trade off Between Speed and Accuracy

	DC Analysis
	Modified Nodal Analysis
	Producing the MNA matrix
	The A Matrix
	The x matrix
	The Z matrix
	Putting it together

	Verification of Modified Nodal Analysis

	Flow of SPICE based software
	Overall solution algorithm for DC Analysis

	Other Contribution
	Some other software related work

	Future Work

