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Abstract  

Electrical DNA sequencing using solid-state nanopores has emerged as 

a promising technology due to its potential to achieve high-precision 

single-base resolution. However, uncontrollable nucleotide 

translocation, low signal-to-noise ratios, and electrical signal 

overlapping from nucleotide stochastic motion have been major 

limitations. Recent fabrication of in-plane hybrid heterostructures of 2D 

materials has triggered active research in sequencing applications due to 

their interesting electrical properties. Herein, our study explores both 

machine learning (ML) regression and classification framework for 

single DNA nucleotide identification with hybrid graphene/hexagonal 

boron nitride (G/h-BN) nanopore using a quantum transport approach. 

The optimized ML model predicted each nucleotide at their most stable 

configurations with the lowest root-mean-squared error of 0.07. We 

have also examined the impact of three locally polarised hybrid 

nanopore environments (C𝛿− − H𝛿+, N𝛿− − H𝛿+, and B𝛿+ − H𝛿−) on 

ML prediction of transmission functions utilizing structural, chemical, 

and electrical environmental descriptors. The random forest algorithm 

demonstrates notable classification accuracy across quaternary (~86%), 

ternary (~95%), and binary (~98%) combinations of four nucleotides. 

Further, we checked the applicability of the hybrid nanopore device with 

conductance sensitivity and frontier molecular orbitals analysis. Our 

study showcases the potential of a hybrid nanopore with ML combined 

quantum transport method as a promising sequencing platform that 

paves the way for advancements in solid-state nanopore sequencing 

technologies. 
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Chapter 1  

Introduction 

 

1.1 Deoxyribonucleic Acid (DNA) 

Deoxyribonucleic acid (DNA) is the primary genetic material that stores 

and transmits hereditary information in nearly all living organisms. DNA is 

a polymer that consists of two antiparallel polynucleotide strands coiled into 

a double-helix structure. Each strand is composed of a sugar-phosphate 

backbone with attached nucleobases. In DNA, the sugar moiety is 2-

deoxyribose, and the phosphate groups form the phosphodiester linkages 

that connect the nucleotides. The four nitrogen-containing nucleobases are 

adenine (A), thymine (T), cytosine (C), and guanine (G). Adenine and 

guanine are purine derivatives, while cytosine and thymine are pyrimidine 

derivatives. Based on the structural characteristics, each nucleobase can 

form multiple H-bonding with its complementary base pair. The adenine 

(A) nucleobase pairs with thymine (T) with two H-bonding interactions 

(A=T) whereas cytosine (C) pairs up with guanine(G) with three H-bonding 

interactions (C≡G). The complementary base pairing and the helical 

structure of DNA are critical for its ability to self-replicate during cell 

division. The sequence of these nucleotides encodes the genetic information 

required for the development and function of all known living organisms. 

The structure of double-stranded (ds DNA) has been elucidated in detail, as 

shown in Figure 1.1. The specific sequence of these nucleobases in DNA 

can carry a broad range of biological and genetic information for protein 

expression at the molecular level. This DNA sequence provides the 

blueprint for life. Decoding these DNA sequences, known as DNA 

sequencing, is pivotal for understanding gene and protein expression by 

associating genomic and proteomic data[1].     
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Figure 1.1: Illustration of the Watson and Crick model of dsDNA with their 

complementary base pair units (adenine (A), thymine (T), cytosine (C), and 

guanine (G)). This helical structure is stabilized by the H-bonding 

interaction between purine and pyrimidines (A = T and 𝐺 ≡ 𝐶). 

DNA sequencing can help to identify genetic disorders, cancer, viral 

mechanisms, and antibiotic resistance. Early diagnosis, personalized 

treatment, and the prevention of genetic disorders become possible through 

the insights gained from DNA sequencing[2]. Ultimately, unraveling the 

genetic information stored in DNA sequences can lead to significant 

advancements in healthcare, and medicine. The mapping of the complete 

human genetic blueprint, achieved by the National Human Genome 

Research Institute (NHGRI) under the National Institutes of Health (NIH) 

in 2004, marked a groundbreaking accomplishment, after which the USA 

initiated the "$1000 Genome" project. Over the past decades, a huge number 

of DNA sequencing methodologies have evolved to achieve sub-$1000 

genome sequencing costs. The reported DNA sequencing methods are 

classified into four distinct generations. In this chapter, we briefly discuss 

DNA sequencing using 2D solid-state nanoscale devices. 

Nanopore sequencing, also known as fourth-generation DNA sequencing, 

is a technique that utilizes nanopores to sequence DNA nucleotides. The 
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concept of nanopore sequencing was first proposed in the 1990s by 

researchers like Deamer, Church, Kasianowicz, and Branton[3]. In 1996, 

Deamer et al. demonstrated the translocation of DNA through a biological 

(α-hemolysin) nanopore/nanochannel[4]. When DNA or RNA oligomers 

are threaded through the nanopore, they produce distinct ionic current 

blockade signals that vary with respect to the translocation time. 

Researchers have been able to distinguish between purines and pyrimidines, 

as well as the four individual nucleobases, by analyzing these ionic current 

signals. In 2012, Gundlach and co-workers demonstrated DNA sequencing 

with single-nucleotide resolution using this approach[5]. In the same year, 

the first commercial nanopore sequencing device, the MiniIon from Oxford 

Nanopore Technologies, was developed and released at a price of $900. 

This technique has shown great potential for single DNA nucleotide 

sequencing and has rapidly advanced in the past decade. 

In the early stages, the primary focus was on monitoring the ionic current 

through biological nanopores. This approach continues to be actively 

investigated for its advantages in nanopore sequencing. However, the ionic 

blockade current signals measured at any given point originate from DNA 

strands simultaneously residing in the nanopores/nanochannels. This 

requires the use of complex post-data processing algorithms to resolve the 

sequence information accurately. Consequently, techniques based on ionic 

blockade current have yet to achieve the same level of accuracy as Sanger 

sequencing[6]. A key limitation of ionic blockade current sequencing is that 

it requires the integration of a DNA polymerase to slow down the 

translocating DNA strands. This results in limited read lengths, making the 

technique sensitive to the nature of the translocating DNA nucleotides over 

the nanopores/nanochannels. In other words, the ionic blockade current 

sequencing approach suffers from the drawback of restricted read lengths, 

which can impact the overall sequencing performance and accuracy. 
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However, Lagerqvist et al. proposed measuring transverse electrical current 

perpendicular to the translocating DNA backbone for the identification of 

single nucleotides[7]. In quantum transport study, electrodes are embedded 

at the two ends of the nanopore device, and electronic current is measured 

for individual identification of DNA nucleotides. In 2010, a graphene-based 

nanogap was proposed by Postma and co-workers for DNA sequencing by 

measuring transverse tunneling current[8]. Apart from graphene, a wide 

range of solid-state nanopore devices have been designed and employed for 

DNA sequencing applications. For fabricating two-dimensional (2D) 

nanopore-based sequencing devices, materials like graphene, molybdenum 

disulfide, and boron nitride have been significantly investigated. 

1.2 DNA Sequencing Using Solid-State Nanodevices  

Recent years have witnessed remarkable progress in nanoscale DNA 

sequencing technologies, driving down the cost of genome sequencing. 

Figure 1.2 depicts the schematic representation of different available solid-

state nanoscale devices. Four new concepts have been developed using 

solid-state nanostructure for the sequencing of DNA and protein molecules. 

Figure 1.2a shows the ionic current method that can be directly measured 

when a ssDNA passes through the nanometer-sized solid-state nanopore. 

The DNA sequence is then decoded by measuring the relative changes of 

ion-current with time. An alternative technique is to determine the changes 

in transverse tunneling conductance of electrons when a ssDNA/dsDNA 

translocate through a solid-state nanopore or nanogap. In 2010, several 

independent research groups reported that the dsDNA can be translocated 

through atomically thin graphene nanopores [9,10]. However, a low signal-

to-noise ratio and rapid translocation speed of the nucleotide molecules are 

limitations of such next-generation sequencing methodologies. Besides, in 

graphene-based nanopores, rapid clogging of nucleotides is observed due to 

strong π-π interaction that may result in nanopore blockage and irreversible 

nanopore-closure. 
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Figure 1.2: Schematics of solid-state nanostructure-based (a) nanopore to 

measure ionic current, (b) nanopore to measure transverse tunneling 

current, (c) nanogap to measure transverse tunneling current, (d) a graphene 

nanochannel film to measure the current due to the physical sorption of 

DNA bases. 

Apart from the ionic current method, the quantum transport approach for 

DNA sequencing is well investigated technique that utilizes the principles 

of quantum tunneling of electrons to detect and identify individual 

nucleotides within a DNA molecule. Apart from the ionic current method, 

the quantum transport approach for DNA sequencing is a well-investigated 

technique that utilizes the principles of quantum tunneling of electrons to 

detect and identify individual nucleotides within a DNA molecule. Figure 

1.2b describes a nanopore device that utilizes quantum transport, where the 

in-plane electron tunneling current is monitored as DNA strands transverse 

through the nanopore. Figure 1.2c describes a nanogap device that utilizes 

quantum transport, with the in-plane current, and transmission is monitored 

as DNA strands transverse through the nanogap. Additionally, Figure 1.2d 

also describes a nanochannel device that utilizes quantum transport. In this 

technique, the electronic properties of the solid-state nanostructure 

(nanopore, nanogap, or nanochannel) are used as direct parameters to 

facilitate DNA sequencing. Experimentally, the electronic conductance 
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through these narrow solid-state nanostructures is determined when a DNA 

nucleobases translocate through them. Through multiple theoretical studies, 

Kim and co-workers proposed methodologies for identifying individual 

nucleotides utilizing a graphene nanoribbon-based nanochannel device[11–

15]. This device exploits the π-π interactions and highly sensitive Fano 

resonance-driven conductance characteristics unique to each nucleobase, 

enabling the detection of single nucleotides.  Moreover, reports indicate the 

feasibility of detecting individual nucleobases through conductance 

measurements utilizing narrow semiconducting nanoribbons (graphene, 

MoS2, silicene, and hexagonal BN), which experience dips in the 

conductance curve in the presence of the nucleobases [15]. Similarly, 

Amorim et al. computationally proposed a 2D silicene-based device as an 

electrical biosensor[16].  

1.3 Conclusions 

In summary, the quantum transport approach for DNA sequencing presents 

a promising methodology for single nucleotide identification. By 

harnessing the principles of quantum tunneling and exploiting the unique 

electronic properties of nanoscale structures, such as nanopores, nanogaps, 

and nanochannels, this technique offers the potential for highly sensitive 

and accurate DNA sequencing. In this study, we investigate a hybrid 

graphene/hexagonal boron nitride (G/h-BN) nanopore using quantum 

transport approach for single DNA nucleotide identification. Besides, we 

will also implement machine learning (ML) regression to predict the 

fingerprint transmission function and employ classification algorithms to 

distinguish single nucleotides based on their transmission characteristics. 
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Chapter 2  

Review of Past Work and Problem Formulation 

 

Solid-state nanopore-based next-generation sequencing (NGS) technique 

has garnered significant interest over the past few decades for various 

applications, including personalized medicine[17,18]. The electrical 

identification of nucleotides with the quantum transport approach has 

opened up a new horizon in genomics by rendering it an economical and 

resilient substitute to traditional alternatives for fast and high-precision 

DNA sequencing[19,20]. The identification of DNA nucleotides is already 

demonstrated at the single-molecular level by monitoring transverse 

conductance readouts in graphene nanogap[8]. Owing to its single atomic 

thickness and superior electronic properties, graphene nanopores have been 

extensively investigated both experimentally[9,10,21] and 

theoretically[22–24] for their potential use as electrodes compared to other 

two-dimensional materials. However, experimental challenges associated 

with fast translocation and low signal-to-noise ratios have prompted 

researchers to explore other nanopore devices[25,26]. The designing of 

axisymmetric nanopores and precise control of their size and geometry can 

be an effective way to manipulate the interaction of nucleotides with the 

nanopore edges[27]. To control the dimension of the nanopore in the sub-

10 nm range, experimental techniques such as the electrochemical reaction 

and dielectric breakdown approach have proven to be handy tools for 

regulating the extent of interaction between nucleotides and nanopore 

edges[28,29]. Unlike graphene nanopores, experimental reports on boron 

nitride (BN) nanopore exhibited improved coupling interactions with 

dsDNA resulting in prolonged translocation time that can resolve sensitivity 

issues[30]. 

Thanks to the minor (∼1.8%) difference in graphene and h-BN lattice 

parameters, the search for better nanoscale devices has led to in-plane 
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hybrid graphene/hexagonal boron nitride (G/h-BN) 

heterostructures[31,32]. The hybrid G/h-BN material is a combination of 

two interesting 2D materials with impressive structural and electronic 

properties[33]. These in-plane heterostructures can address the limitations 

associated with graphene nanopores by exhibiting enhanced sensitivity and 

selectivity towards the target molecule due to the electronic confinement of 

local current[34–36]. These G/h-BN nanopores are also capable of 

providing distinguishable currents at lower applied voltages for each 

nucleotide as compared to previously reported G/h-BN nanogaps [37,38]. 

Moreover, hybrid G/h-BN devices are also reported to be experimentally 

synthesized using the chemical vapor deposition technique and topological 

substitution reactions with full control over the specificity, size, and 

composition of h-BN in heterostructures[32,39–42]. The oppositely 

polarised nanopore edges due to the presence of B𝛿+ − H𝛿−, N𝛿− −

H𝛿+and C𝛿− − H𝛿+ functionalized groups can significantly affect the 

conductance readouts by modulating coupling strength with the polar 

nucleotide molecules located inside the G/h-BN pore. Besides, the temporal 

hydrogen bonding interactions accompanied with dipolar coupling can also 

impart a combined effect resulting in a sharp change of transmission signals 

that offer both better sensitivity and selectivity towards nucleotides[38]. 

Recent advancements in machine learning (ML) and neural networks have 

rapidly transformed the identification of biomolecules in nanopore 

sequencing by identifying peak positions and reducing noise in the 

calculated fingerprint transmission function [43–46]. Taniguchi et al. have 

reported an ML-aided artificially intelligent solid-state nanopore for the 

detection of single nanoparticles [47]. In addition, several other studies 

have thoroughly examined the application of ML algorithms on electric 

signals for signal identification and biomolecule detection [48–51]. 

Accurate prediction of fingerprint transmission readouts has also 

emphasized the relevance of using ML in the identification of single 
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nucleotides and amino acids via the transverse quantum transport approach 

[52–55]. 

Driven by the remarkable progress in ML techniques for single molecule-

based DNA sequencing, we aim to investigate the meticulously crafted G/h-

BN nanopore and the role of different electronic environments (C-H, B-H, 

and N-H) on the nucleotide transmission functions with ML integrated 

quantum transport approach. We have also emphasized on understanding 

the role of those local termination environments as descriptors in predicting 

the signature transmission function of the energetically favorable 

configuration of individual nucleotides. Precise prediction of the 

transmission data for the most stable rotational orientation and SHAP 

interpretability of ML models can provide valuable insights into the 

correlations between transmission function and the local electronic 

environment of the hybrid nanopore. The categorization of DNA 

nucleotides with multiclass ML classification from their overlapped 

transmission readouts is also investigated. The combined application of ML 

regression and classification on quantum transport results of hybrid G/h-BN 

nanopore can be interesting for the efficient identification of nucleotides. 
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Chapter 3  

Theoretical Background 

Computational modeling and calculations have wide applications in the 

fields of chemistry, physics, and material science. These calculations utilize 

first-principles density functional theory (DFT) to accomplish structure 

optimization and further calculation. Owing to the accuracy and 

computational efficiency of DFT calculations, this methodology comes 

with more reliable and practical choice while working with many body 

complex systems. In this chapter, we present an overview of the main 

theoretical frameworks utilized throughout this thesis. Furthermore, we will 

briefly discuss the key aspects of DFT as applied to atomic-scale 

simulations and calculations, particularly focused on electronic structure (or 

nuclear structure) and the determination of ground state properties. This 

comprehensive coverage of the underlying theoretical foundations sets the 

stage for the subsequent discussions. 

3.1 The Many-Body Problem 

The time-independent Schördinger equation is exactly solvable for one 

electron containing H-atom or H-like atoms (i.e., He+, Li2+, and Be2+) which 

are two body problems. But practically, the materials that constitute our 

physical world from tiny molecules to solids, liquids, or gases are 

fundamentally composed of multiple electrons and atomic nuclei. To 

describe the ground state electronic structure of a material, we must 

understand the principles of quantum mechanics and comprehend the 

complex interactions between electrons and atomic nuclei in many-body 

problems. The time-independent Schördinger equation for many-body 

problem can be written as follows- 

𝐻̂Ψ(𝑟1, 𝑟2, … , 𝑟𝑖, 𝑅1, 𝑅2, … , 𝑅𝐼) = 𝐸Ψ(𝑟1, 𝑟2, … , 𝑟𝑖, 𝑅1, 𝑅2, … , 𝑅𝐼)          (3.1) 
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WhereΨ(𝑟1, 𝑟2 , 𝑟3, … , 𝑟𝑖, 𝑅1, 𝑅2, 𝑅3, … , 𝑅𝐼) is the many-electron wave 

function. The 𝑟𝑖 represents the position vector of  𝑖𝑡ℎ electron and 𝑅𝐼  

represents the position vector of 𝐼𝑡ℎ nuclei. E is the total energy eigenvalue 

of the whole system, and H is the total Hamiltonian of the system consisting 

of kinetic and potential energy operators (in atomic units) 

𝐻̂ = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2
𝑖⏟      

𝑇̂𝑒

−
ℏ2

2
∑

∇𝐼
2

𝑀𝐼
𝐼⏟    

𝑇̂𝑛

+
1

2
∑

𝑒2

4𝜋𝜀0𝑟𝑖𝑗
𝑖≠𝑗⏟        
𝑉𝑒𝑒

− ∑
𝑒2𝑍𝑖

4𝜋𝜀0𝑅𝑖𝐼
𝑖,𝐼⏟      
𝑉𝑒𝑛

+
1

2
∑

𝑒2𝑍𝐼𝑍𝐽

4𝜋𝜀0𝑅𝐼𝐽
𝐼≠𝐽⏟        
𝑉𝑛𝑛⏟                          

𝑉

               (3.2) 

The 𝑍𝐼 represents the number of protons in the 𝐼𝑡ℎ atom. The 𝑚𝑒 and 𝑀𝐼 are 

the mass of the 𝑖𝑡ℎ electron and 𝐼𝑡ℎ nuclei, respectively. In Equation 3.2, 

the first two terms (𝑇̂𝑒 and 𝑇̂𝑛) are the kinetic energy of the electron and 

nuclei, and the later three terms (𝑉̂𝑒𝑒, 𝑉̂𝑒𝑛, 𝑉̂𝑛𝑛) express the potential energy 

due to the Columb interaction between electrons and nuclei. Whereas, 𝑉̂𝑒𝑒 

and  𝑉̂𝑛𝑛 represents the interelectronic and the internuclear repulsion 

respectively. 

The solution of Schördinger (Equation 3.2) is complicated and can only be 

solved accurately for small systems like H-like atoms as mentioned 

previously. Hence to deal with such complicated many-body systems like 

solids consisting of huge numbers of atoms, we need to come up with some 

valid approximations. 

The mass of one proton is approximately 1836 times higher than the mass 

of a single electron. Consequently, the motion of nuclei is extremely slow 

compared to the movement of electrons. This significant disparity in mass 

allows us to consider the nuclei as effectively static relative to the dynamics 

of electrons. This fundamental principle forms the basis of the Born-

Oppenheimer approximation, which permits the multiplicative separation 

of degrees of freedom for the electronic and nuclei. Therefore, the total 

wavefunction (Ψ) in Equation 3.1 can be expressed as a product of 

wavefunctions for electrons and nuclei, as given in Equation 3.3. 
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 Ψ(𝑟1, 𝑟2, … , 𝑟𝑖, 𝑅1, 𝑅2, … , 𝑅𝐼) = Ψ(𝑟1, 𝑟2, … , 𝑟𝑖)Ψ(𝑅1, 𝑅2, … , 𝑅𝐼)      (3.3) 

After simplification (Equation 3.3), the initial many-body problem 

completely reduces to an electronic problem where the coordinates of nuclei 

are entered only as a parameter. Considering the motion of nuclei 

independent of electronic motion, the last term of Equation 3.2 can be 

regarded as constants. The kinetic energy of nuclei (𝑇̂𝑛) and potential energy 

for internuclear repulsion (𝑉̂𝑛𝑛) terms can be removed from Equation 3.2 

to get the relatively simplified form of energy Hamiltonian (Equation 3.4). 

𝐻̂ = −
ℏ2

2𝑚𝑒
∑ ∇𝑖

2
𝑖⏟      

𝑇̂𝑒

+
1

2
∑

𝑒2

4𝜋𝜀0𝑟𝑖𝑗
𝑖≠𝑗⏟        
𝑉𝑒𝑒

− ∑
𝑒2𝑍𝑖

4𝜋𝜀0𝑅𝑖𝐼
𝑖,𝐼⏟      
𝑉𝑒𝑛⏟                

𝑉

       (3.4) 

Here kinetic energy of the nuclei is considered to be negligible. However, 

the potential energy due to inter-nuclear repulsion between nuclei 

contributes to the total energy. After considering the Born-Oppenheimer 

approximation, the overall number of degrees of freedom of the system can 

be reduced to only an electronic problem. However, the solution of 

Schördinger equation is still very difficult as the electronic repulsion term 

is hard to handle for a system with a huge number of electrons. As a more 

practical approach, it is convenient to consider the electron density instead 

of individual electron coordinates. In the following section, we describe the 

Density Functional Theory (DFT) approach, which involves the many-body 

energy Hamiltonian as a function of electron density, rather than the many-

body wavefunctions. 

3.2 Density Functional Theory 

The fundamental idea behind density functional theory (DFT) is founded on 

the premise that the properties of interacting electron systems can be 

described as a functional of the ground state electron density, rather than 

relying on the complex many-body wavefunctions. The origins of DFT can 

be traced back to the early work of Thomas and Fermi, who proposed a 
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quantum mechanical theory for illustrating the electronic structure of many-

body systems based on the non-interacting homogeneous electron density, 

known as the Thomas-Fermi model. However, this approximation is unable 

to accurately describe the electrons in the many-body system due to its 

inherent limitations. The DFT formalism as we know it today was later 

developed by Kohn and Hohenberg, who established the framework of the 

two Hohenberg-Kohn (H-K) theorems. The H-K theorems introduced an 

exact theory for interacting many-body systems, providing a solid 

foundation for the use of electron density as the central quantity, rather than 

the many-body wavefunction. This revolutionary approach significantly 

simplified the treatment of complex quantum systems, as the electron 

density contains all the necessary information to determine the ground state 

properties of the system. 

 

3.2.1 Hohenberg-Kohn Theorem 

The Hohenberg-Kohn founded the fundamental basis of DFT showing that 

the properties of interacting systems can be calculated using the ground-

state electron density. 

Theorem I “For any system of interacting particles in an external 

potential 𝑉𝑒𝑥𝑡(r), the potential 𝑉𝑒𝑥𝑡(r) is determined uniquely, up to a 

constant, by ground-state electron density, 𝑛0(r).” [𝒏𝟎(r) → 𝑽𝒆𝒙𝒕(r)] 

Theorem II “In any quantum state the external potential, 𝑉𝑒𝑥𝑡(r), 

determine uniquely the many-body electronic wavefunction.” 

[ 𝑽𝒆𝒙𝒕(r) → 𝜳(r)] 

Theorem III “In any quantum state of total energy, E, is a functional of 

many body wavefunction.”[𝜳(r) → 𝑬] 

 

From the above-mentioned theorems, the energy can be expressed as the 

functional of electronic density as shown in Equation 3.5 

𝐸𝐻𝐾[𝑛] = 𝐹𝐻𝐾[𝑛] + ∫𝑑𝑟𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)        (3.5) 
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where the internal energies consisting of  kinetic and potential energies, are 

expressed in terms of 𝐹𝐻𝐾. The total internal energy functional can be 

written as follows (Equation 3.6). 

𝐸𝐻𝐾[𝑛] = 𝑇[𝑛] + 𝐸𝑖𝑛𝑡[𝑛]          (3.6) 

Interestingly, Equation 3.6 is independent of the external potential (𝑉𝑒𝑥𝑡) 

and solely depends upon the density of electron. The total internal energy is 

the sum of the kinetic energy functional (𝑇[𝑛]) and the internal energy 

functional (𝐸𝑖𝑛𝑡[𝑛]).  

While the theorem establishes the existence of a functional form, its exact 

nature remains unknown. Therefore, we need relevant approximations to 

solve the problems. The global minima of the functional form (Equation 

3.6) expresses the precise ground-state total energy of the system, with the 

corresponding electron density representing the exact ground-state electron 

density (𝑛0(r)). The variational principle, as depicted in Equation 3.7, can 

be employed to determine the ground-state electron density (𝑛0(r)). 

However, in the theorem, there is no way out to determine the exact 

functional form. Therefore, it has to be approximated to apply to practical 

problems. The global minima of the functional form (Equation 3.6) is 𝐸0 

which describes the exact ground-state total energy of the system and the 

corresponding electron density would be the exact ground-state electron 

density 𝑛0(r). The variational principle can be used to acquire electron 

density(𝑛0(r)) for the ground-state as shown below in Equation 3.7. 

𝛿

𝛿𝑛
𝐸𝐻𝐾[𝑛(𝑟)]|𝑛=𝑛0 = 0          (3.7) 

The H-K theorems have proved to be the foundational pillars of modern 

DFT formalism, describing the relation between the ground-state electron 

density and the ground-state energy of a many-body system. Further, Kohn-

Sham (K-S) came up with the idea of a non-interacting reference system 

constructed from a series of orbitals. This reference system enables the 
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calculation of a significant portion of the kinetic energy with a high degree 

of accuracy. 

3.2.2 Kohn-Sham Formalism 

The Hohenberg-Kohn (H-K) theorems offer a foundational framework for 

addressing the many-body problem by utilizing the particle density function 

and the variational principle. However, for practical applications involving 

particles, the Density Functional Theory as realized through the Kohn-Sham 

(K-S) approach is more commonly used. The central concept supporting the 

H-K theorems is to substitute the interacting electron system with an 

auxiliary system of non-interacting particles that possess an identical 

electron density distribution. This allows the total energy functional to be 

expressed as shown in Equation 3.8. 

𝐸𝐾𝑆[𝑛] = 𝑇𝑆[𝑛] + ∫𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟) +
1

2
∫𝑑𝑟 𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
+ 𝐸𝑥𝑐[𝑛]  

                        (3.8) 

In Equation 3.8, the kinetic energy functional of a non-interacting electron 

gas system is represented by 𝑇𝑆[𝑛] . The external potential is expressed as 

a contribution due to nuclei and another external potential 

( ∫ 𝑑𝑟 𝑉𝑒𝑥𝑡(𝑟)𝑛(𝑟)), and the classical Coulomb potential  for the 

interelectronic interaction is expressed as  (
1

2
∫𝑑𝑟 𝑑𝑟′

𝑛(𝑟)𝑛(𝑟′)

|𝑟−𝑟′|
) which is 

called the Hartree potential. The final term, 𝐸𝑥𝑐[𝑛] ,in the expression 

captures all the many-body effects arising from exchange and correlation 

interactions, which is known as the exchange-correlation functional. The 

exact analytical expression of these exchange-correlation functionals 

(𝐸𝑥𝑐[𝑛]) is yet to be determined. In Equation 3.8, the Coulomb repulsion 

term due to internuclear repulsion is contributed directly as a constant term 

in the final energy expression. 

According to the second H-K theorem, the solution for the Kohn-Sham (K-

S) auxiliary systems can be obtained by minimizing the K-S energy 
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functional with respect to the electron density [n(r)]. This minimization of 

the total energy is achieved by employing a Schrödinger-like equation, as 

presented in Equation 3.9. 

𝐻̂𝐾𝑆Ψ𝑖(𝑟) = [−
ℏ2

2𝑚𝑒
∇2 + 𝑉𝐾𝑆(𝑟)]Ψ𝑖(𝑟) = 𝜀𝑖Ψ𝑖(𝑟)                             (3.9) 

where Ψ𝑖(𝑟) corresponds to the Kohn-Sham orbital, 𝜀𝑖 are the eigenvalues 

corresponding to the energy Hamiltonian, and 𝑉𝐾𝑆 is the effective potential 

of the system as defined in Equation 3.10. 

𝑉𝐾𝑆(𝑟) = 𝑉𝑒𝑥𝑡 + ∫𝑑𝑟
′ 𝑛(𝑟)

|𝑟−𝑟′|
+ 𝑉𝑥𝑐       (3.10) 

Here, 𝑉𝑥𝑐 defines the exchange-correlation potential as shown in Equation 

3.11. 

𝑉𝑥𝑐 =
𝛿𝐸𝑥𝑐[𝑛]

𝛿𝑛(𝑟)
          (3.11) 

The Ψ𝑖(𝑟) and Kohn-Sham orbitals do not represent the wave functions of 

electrons. These orbitals lack any direct physical significance about the 

system. The auxiliary functions are used to compute the electron density, as 

defined in Equation 3.12. 

𝑛(𝑟) = ∑ |Ψ𝑖(𝑟)|
2

𝑖          (3.12) 

The Kohn-Sham formalism can accurately determine the ground state of a 

system with many interacting particles, as long as the right expression for 

the exchange-correlation energy (𝐸𝑥𝑐[𝑛]) is known. It should be noted that 

the effective potential of the system depends on the electron density 

(Equation 3.10). Hence, it is necessary to solve the K-S equations in a self-

consistent manner using an iterative approach. Ultimately, the self-

consistent solution guarantees the attainment of the accurate ground-state 

density (Figure 3).  
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Figure 3: The schematic representation of the self-consistency loop method 

for the calculation of total energy. 

 

3.3 Exchange-Correlation Functionals 

As previously mentioned, the Kohn-Sham (K-S) formulation of Density 

Functional Theory (DFT) substitutes the original interacting many-electron 

system with an auxiliary non-interacting system that shares the same 

ground-state electron density. Consequently, the accuracy of DFT 

calculations heavily relies on the quality of the approximation employed for 

the exchange-correlation functional. Researchers are actively engaged in 

developing enhanced approximations that can more precisely account for 

the exchange and correlation effects, thereby improving the overall 

performance and reliability of DFT calculations. In essence, the 

approximations for the exchange-correlation functional (𝐸𝑥𝑐[𝑛])) should be 



18 
 

formulated with the goal of minimizing the discrepancy between the 

calculated total energy and the true ground-state energy. In the subsequent 

section, we will explore some widely adopted approximations for the 

exchange-correlation functional in DFT calculations, including the Local 

Density Approximation (LDA), Generalized Gradient Approximation 

(GGA), and van der Waals Density Functional (vdW-DF) approaches. 

These methods are designed to systematically enhance the accuracy of the 

exchange-correlation functionals by accounting different level of quantum 

mechanical interactions. 

 

3.3.1 The Local Density Approximation (LDA) 

Introduced as the pioneering approximation within the Kohn-Sham (K-S) 

formalism during its initial development, the Local Density Approximation 

(LDA) laid the foundation for subsequent refinements[56]. In this 

approach, the exchange-correlation energy density has been considered as 

a homogeneous electron gas. The uniform electron gas model is employed 

due to its incorporation of the most fundamental form of the exchange-

correlation functional, which has proven to be remarkably effective for 

various metallic systems. The Local Density Approximation can be 

mathematically represented as shown in Equation 3.13. 

𝐸𝑥𝑐
𝐿𝐷𝐴 = ∫𝑛 (𝒓)𝜀𝑥𝑐

𝑢𝑛𝑖[𝑛(𝒓)]𝑑𝒓        (3.13) 

where 𝜀𝑥𝑐
𝑢𝑛𝑖 represents the exchange-correlation energy functional for a 

uniform electron density n(r) calculated at a distance r. This 𝜀𝑥𝑐
𝑢𝑛𝑖 can further 

be sliced into two counterparts which are exchange (𝜀𝑥) and correlation (𝜀𝑐) 

terms respectively. The exchange (𝜀𝑥) part is obtained from an analytical 

methodology, but exact part of the correlation (𝜀𝑐) part is yet to be 

discovered. The LDA formalism reported working quite well in several 

model systems with slowly changing densities such as the free electrons in 

metallic systems[57]. There are some limitations associated with the LDA 

formalism: 
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(i) The calculated cohesive and binding energy values are 

overestimated using this correlation functional.  

(ii) LDA is not suitable while working with diffused d and f 

orbitals, unlike s and p orbitals which are relatively 

localized. 

(iii) The long-range interactions (i.e., van der Waals 

interactions) cannot be addressed due to the local nature of 

the LDA formalism. 

 

3.3.2 The Generalized-Gradient Approximation (GGA) 

LDA exchange-correlation formalism is not helpful for most of the systems 

where the electronic distribution is not uniform. Thus, GGA formalism was 

proposed by the H-K [56], where the exchange-correlation (𝜀𝑥𝑐) energy per 

atom is expressed not only as a function of the electron density but also the 

gradient of the local electronic density (∇𝑛(𝒓)). The GGA can be 

mathematically represented as shown in Equation 3.14 

 

𝐸𝑥𝑐
𝐺𝐺𝐴 = ∫𝜀𝑥

𝑢𝑛𝑖 𝑛(𝒓)𝐹𝑥𝑐[𝑛(𝒓), ∇𝑛(𝒓)]𝑛(𝒓)𝑑𝒓      (3.14) 

In Equation 3.14, 𝜀𝑥
𝑢𝑛𝑖 expresses the exchange-energy density functional 

for a homogeneous electron gas system of electron density equal to n(r). 

The 𝐹𝑥𝑐 represents a function of both electron density (𝑛(𝒓)) and the 

gradient of electron density (∇𝑛(𝒓)) which is a dimensional quantity. The 

𝐹𝑥𝑐 term can further be split exchange and correlation part respectively. The 

exchange term in the exchange-correlation functional has been 

approximated in various forms, with widely used examples including the 

Becke (B88)[58], LYP[59], and Perdew-Burke-Ernzerhof (PBE)[56] 

functionals. The Generalized Gradient Approximation (GGA) formalism, 

which incorporates the gradient of the electron density, generally provides 

a smaller exchange-correlation energy compared to the Local Density 

Approximation (LDA). This reduction in binding energy values often 
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improves the agreement with experimental findings, though it can also lead 

to under-binding in some cases. The GGA approach has therefore been 

successful in overcoming the shortcomings of the LDA formalism. 

However, the GGA formalism faces challenges in accurately capturing 

long-range interactions. 

 

3.3.3 The van der Waals Density Functional (vdW-DF) Method 

The accurate calculation of electronic structure and other key properties of 

low-dimensional or nanoscale systems presents a significant challenge. 

These systems are characterized by two competing types of interatomic 

interactions: (i) strong, localized chemical bonds between neighboring 

atoms, and (ii) weak, long-range van der Waals (vdW) forces between 

atoms separated by space. Conventional density functional theory (DFT) 

methods relying on the local density approximation (LDA) or generalized 

gradient approximation (GGA) frequently encounter challenges in 

accurately describing the crucial van der Waals (vdW) interactions. This 

limitation can result in errors in the predicted electronic structure, binding 

energies, and other relevant properties of the system under investigation. To 

address this limitation, more advanced DFT approaches have been 

developed that incorporate non-local vdW functionals. These so-called 

vdW-inclusive DFT methods aim to seamlessly account for both the short-

range chemical bonds and the long-range dispersive forces, enabling a more 

comprehensive and accurate description of the electronic structure and 

physical properties of nanoscale systems[60].  

In this thesis, the focus is on employing the vdW-DF method to calculate 

the electronic structure and other vital properties of these challenging low-

dimensional or nanostructured systems. The main difference between vdW-

DF functional and LDA/GGA is that in vdW-DF, the energy correlation has 

a non-local dependence on the electron density. The full expression for the 

exchange and correlation energy in the vdW-DF framework is given by 

Equation 3.15 
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𝐸𝑥𝑐
𝑣𝑑𝑊−𝐷𝐹 = 𝐸𝑥

𝐺𝐺𝐴 + 𝐸𝐶
𝐿𝐷𝐴 + 𝐸𝑐

𝑛𝑙       (3.15) 

In this approach, 𝐸𝑥
𝐺𝐺𝐴 represents the GGA exchange energy, 𝐸𝐶

𝐿𝐷𝐴 denotes 

the correlation energy within the local density approximation, and 𝐸𝑐
𝑛𝑙 

accounts for a non-local correlation term derived from LDA. Equation 3.15 

combines the exchange component of a GGA functional with the correlation 

component from LDA, further represented by a non-local correlation term. 

Moreover, the non-local correlation term in the vdW-DF functional takes 

the form of a six-dimensional integral, as expressed in Equation 3.16. This 

integral formulation captures the long-range van der Waals interactions, 

which are crucial for accurately describing various physical and chemical 

phenomena. 

𝐸𝐶
𝑛𝑙[𝑛] =

1

2
∫ ∫ 𝑛(𝑟)

𝑟′
Φ(𝑟, 𝑟′)

𝑟
𝑛(𝑟′)       (3.16) 

where Φ(𝑟, 𝑟′) is an interaction kernel function. In the asymptotic limit, this 

kernel has well-known 1 𝑟6⁄  behaviour characteristics for vdW interaction.  

3.4 Pseudopotentials 

As the dimensions of nanoscale devices grow, the computing cost of doing 

calculations using atomic electrons also rises, mostly because of the 

presence of atomic core electrons. However, these core electrons do not 

significantly contribute to the determination of the chemical bonding or 

other crucial chemical and physical characteristics of the system. These 

features are mostly attributed to the valence electrons. In order to address 

this computational difficulty, the concept of pseudopotential is proposed. 

The pseudopotential considers the core electrons to be chemically inert, 

while directly addressing the valence states that play a crucial role in 

chemical bonding. The consideration of pseudopotential simplifies the 

computing process by substituting the Coulomb potential of the nucleus and 

the tightly bound core electrons with an effective ionic potential. This 

allows the emphasis to be on the valence electrons of the device, decreasing 

the computational cost. 
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The fundamental way to lower the number of basis functions needed in 

electrical structure computations is to apply the PP technique. This 

technique comprises two practical steps: (i) Atomic core electrons are 

omitted from the equation, and the ionic potential is substituted with the 

pseudopotential. This phase efficiently minimizes the computing load by 

concentrating the calculation on the valence electrons, which are principally 

responsible for the chemical and physical characteristics of the system. (ii) 

The complete ionic potential, including the orthogonality of the valence 

WFs to the atomic core states, is substituted with a softer pseudopotential. 

This softer representation allows for the employment of a lesser number of 

basis functions since the quickly varying properties associated with the 

atomic core are no longer explicitly addressed. 

The development of norm-conserving pseudopotentials (PPs) has been a 

significant advancement in the field of electronic structure calculations for 

nanoscale devices. In 1979, Hamann and co-workers pioneered the theory 

behind these energy-independent PPs, which possess several desirable 

properties: 

(1) The eigenvalues of the all-electron wave functions correspond with 

those of the pseudo wave functions for the specified atomic 

reference configuration. 

(2) Real and pseudo atomic wave functions agree beyond a chosen core 

radius, 𝑟 ≥ 𝑟𝑐. 

(3) The pseudo wave functions are constrained to have the same norm 

as the all-electron valence wave functions within the cutoff radius, 

𝑟 < 𝑟𝑐. (norm-conserving) 

(4) The logarithmic derivatives of the real and pseudo wave functions 

agree at the limit for 𝑟 ≥ 𝑟𝑐. 

The generation of first-principles PPs has been an active area of research, 

with various approaches proposed to address the specific needs of electronic 

structure calculations. These different methods vary in terms of the 
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functional form of the potential and the conditions used for smoothing the 

pseudo-wavefunctions (WFs). In the widely-used SIESTA (Spanish 

Initiative for Electronic Simulations with Thousands of Atoms) package, 

the norm-conserving PPs are typically generated according to the 

parameterization developed by Troullier and Martins that we have 

employed for our calculations. 

3.5 Geometry Optimization and Force Theorem 

In all the works in this thesis, geometrical optimizations have been done to 

search the equilibrium configuration (atoms are arranged in the ground 

state) before calculating the electronic and quantum transport properties. 

Employing the Hellman-Feynman theorem, we calculate the force acting on 

nuclei with ionic position (𝑅𝐼) as given below in Equation 3.17 

  𝐹𝐼 =
𝜕𝜀

𝜕𝑅𝐼
          (3.17) 

here, 𝜀 corresponds to the total energy of the system which can be described 

as given below in Equation 3.18 

𝜀 =
<Ψ|Η̂|Ψ>

<Ψ|Ψ>
          (3.18) 

where Ψ is the Kohn-Sham WFs. As considered wave functions are  

normalized, we can write < Ψ|Ψ >= 1. The change in the Kohn-Sham 

WFs due to the variation in ionic coordinates is directly responsible for the 

forces acting on the ions, which is a fundamental aspect of electronic 

structure calculations and a key driver in the optimization of atomic 

structures and materials properties. By using Equation 3.17 and 3.18, we 

can write Equation 3.19. 

𝐹𝐼 = −< Ψ |
𝜕𝐻̂

𝜕𝑅𝐼
| Ψ > − <

𝜕Ψ

𝜕𝑅𝐼
|𝐻̂|Ψ > − < Ψ|𝐻̂|

𝜕Ψ

𝜕𝑅𝐼
>     (3.19) 

The second and third terms represent the change in the wave function Ψ 

with respect to the nuclear positions, acting with the Hamiltonian 𝐻̂, and 
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then taking the inner product Ψ. This term captures the effect of changing 

the nuclear positions on the electronic structure of the system. However, it 

is often assumed that this effect is small compared to the direct change in 

the Hamiltonian due to the nuclear motion. This assumption is particularly 

valid in systems where the electronic structure changes relatively slowly 

compared to the nuclear motion (Equation 3.19). Hence, the explicit form 

of the force can be written as shown in Equation 3.20. 

𝐹𝐼 = −< Ψ |
𝜕𝐻̂

𝜕𝑅𝐼
| Ψ >         (3.20) 

The calculation of forces on the ions is a crucial aspect of electronic 

structure methods, and it can be derived from the total energy of the system. 

Considering the system at its ground state, the partial derivative of the total 

energy with respect to the ionic positions can be used to describe the forces 

acting on the ions. The force theorem provides a framework for performing 

geometry optimization based on these calculated forces.  

3.6 Conclusions 

In this study, we have considered a hybrid graphene/h-BN nanopore that 

comprises two electrodes (left/right) and a central scattering region. The 

nanopore is sculpted in the central scattering region with diameters of 12.16 

Å (y-axis) and 12.96 Å (z-axis). Out of the fully optimized unit cell of 

graphene and boron nitride, we have made a hybrid supercell with a size of 

1 × 24.32 × 43.36 Å3, and further structure optimization was done by 

employing SIESTA (Spanish Initiative for Electronic Simulations with 

Thousands of Atoms) [61,62]. Using 6-31+G* basis sets and the B3LYP 

correlation functional as available in Gaussian 09 code has been 

implemented to optimize the isolated nucleotide molecules [63]. The 

nucleotides are positioned inside the pristine nanopore in a way that ensures 

that the aromatic rings (purines and pyrimidines) are aligned in the same yz 

plane, with the phosphate group extending outward from the nanopore. This 

spatial configuration will ensure that the nucleotides are interacting strongly 
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with the nanopore edges leading to enhanced interaction energy, charge 

transfer values, and conductance sensitivity. During structure optimization, 

the van der Waals density (vdW-DF) exchange-correlation functional has 

been employed to describe weak interactions [16,64]. The interaction 

between the inner core and the valence electrons is described using double 

zeta polarized (DZP) basis sets in all computations [65,66]. A mesh cut-off 

of 200 Ry is considered for integration in real space, and (1 × 3 × 2) k-point 

sampling has been used in the Brillouin zone for all the calculations using 

SIESTA. The convergence requirements for the density matrix in all 

optimization processes utilizing the self-consistent field (SCF) approach are 

established at 0.0001 eV. All four nucleotides are optimized inside the 

nanopore at an angle between 0o to 180o on an interval of 30o, and this 

rotation is done around the x-axis perpendicular to the plane of the 

nanopore. 
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Chapter 4  

Quantum Transport Theory 

 

4.1 Quantum Transport Regimes 

The understanding of electronic transport across nanoscale systems is a 

major focus of this thesis. The behavior of electron transport in these 

nanoscale devices can be categorized into different transport regimes, 

depending on the relative magnitudes of two characteristic lengths - the 

momentum relaxation length (𝐿𝑚) and the phase relaxation length (𝐿∅)[67]. 

The momentum relaxation length (𝐿𝑚) is the mean free path of an electron, 

representing the average distance it travels before its initial momentum is 

lost. Similarly, the phase relaxation length (𝐿∅) is the average distance it 

travels before its initial phase is lost. If the length of the nanoscale device 

(L) is much longer than 𝐿𝑚 and 𝐿∅, the conductance of the nanoscale device 

depends on the length of the wire, as per the classical Ohm’s law.  

(1) Ballistic Transport Regime (𝑳 < < 𝑳𝒎, 𝑳∅):   

In this regime, the length of the nanoscale device (L) is much shorter 

than both the momentum relaxation length (Lm) and the phase 

relaxation length (Lϕ). This means that electrons can propagate from 

one electrode to the other without experiencing any scattering events 

that would cause a loss of their original momentum or phase. The 

electron transport is essentially ballistic - the electrons travel 

through the device without any significant interactions. The only 

resistance that arises is due to backscattering at the contacts between 

the device and the electrodes. This ballistic transport leads to a 

quantum conductance that is independent of the device length, as 

seen in materials like carbon nanotubes and graphene. 
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(2) Elastic and Coherent Transport Regime (𝑳 < 𝑳𝒎, 𝑳∅): 

When the device length L is less than the momentum and phase 

relaxation lengths, the electron transport can still be considered 

coherent. In this regime, electrons can undergo elastic scattering 

events within the device, where their energy and phase are 

preserved, but their momentum may change. This elastic scattering 

reduces the transmission function compared to the ballistic case, but 

the electron wavefunction remains coherent throughout the transport 

process. The device length is short enough that the electrons 

maintain their quantum phase as they traverse the system. 

 

(3) Inelastic and Incoherent Transport Regime (𝑳 > 𝑳𝒎, 𝑳∅):): 

In this regime, the device length L exceeds both the momentum and 

phase relaxation lengths. This means that the electrons experience 

significant inelastic scattering events, such as interactions with other 

electrons or phonons, as they travel through the nanoscale system. 

These inelastic processes lead to a change in both the electron 

momentum and phase. The long device length compared to the 

relaxation lengths results in a loss of the electron's phase coherence, 

leading to incoherent transport. The inelastic scattering and phase 

breaking events constitute an important part of the transport 

characteristics in this regime. 

The transport problem has been extensively studied using two frequently 

used formalisms: the Landauer formalism and the Non-Equilibrium Green's 

Function (NEGF) formalism. The Landauer formalism enables the 

definition of non-interacting electronic transport in the ballistic or coherent 

transport regimes. In contrast, the NEGF formalism is a more 

comprehensive method that may be employed in all three transport regimes. 

In the following sections, we will provide a concise explanation of the 

Landauer and NEGF formalism used to study the transport issues in this 

thesis. 
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4.2 The Landauer Formalism 

The Landauer formalism provides a way to understand electrical 

conductance in nanoscale systems by treating them as scattering problems 

[68,69]. It considers the system as a central scattering region connected to 

semi-infinite left and right electrodes, which act as electron reservoirs. The 

key principle is that the electrical current flowing through the system is 

proportional to the probability that electrons can transmit from one 

electrode to the other.  

 

 

 

Figure 4.1: Diagram of a graphene/h-BN nanopore device connected with 

two electrodes described in the Landauer formalism. The 𝜇𝐿 and 𝜇𝑅 are the 

chemical potential at equilibrium of source and drain respectively. Both 

electrodes are connected to a central scattering region (CSR). 
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This probability is encapsulated in the transmission function T(E, 𝑉𝑏), 

defined as a sum over the transmission function of electrons flowing from 

source to drain at a given energy E and bias voltage (𝑉𝑏). In Figure 4.1, 𝑉𝑏 

is considered to be the externally applied bias voltage on the left and right 

electrodes. Then, the chemical potentials (μL/R) on the L/R electrodes can 

be expressed as 𝜇𝐿/𝑅 = 𝐸𝐹 ± 𝑒𝑉𝑏 2⁄ . Here, 𝐸𝐹 represents the Fermi energy. 

It is evident that the electric current would be zero if 𝑓𝐿(𝐸) = 𝑓𝑅(𝐸), 

according to the Landauer formula. The net electric current is dependent on 

the difference between the Fermi distributions of electrons in the source and 

drain respectively. At a finitely applied bias voltage (𝑉𝑏), the electric current 

simplifies to the following  Equation 4.1 at absolute temperature (T) = 0. 

𝐼(𝑉𝑏) =
2𝑒

ℎ
∫ 𝑇(𝐸)
𝜇𝐿
𝜇𝑅

𝑑𝐸                                                                         (4.1)                                   

If the difference between the Fermi distribution functions is significant for 

the two electrodes, the famous Landauer formula can expressed as the 

integral of transmission function (𝑇(𝐸, 𝑉𝑏)) as shown in Equation 4.2. 

𝐼(𝑉𝑏) =
2𝑒

ℎ
∫𝑇(𝐸, 𝑉𝑏) (𝑓𝐿(𝐸) − 𝑓𝑅(𝐸))𝑑𝐸        (4.2) 

The quantum conductance can be derived by averaging the transmission 

over an energy window with a width centered around the Fermi level of the 

electrodes. Conversely, if the Fermi function exhibits minimal variation 

across an energy range, it can be approximated through a Taylor series 

expansion evaluated at the Fermi energy, as illustrated in Equation 4.3. 

If the transmission function T(E) does not vary appreciably over the energy 

window corresponding to the applied bias 𝑒𝑉𝑏 = 𝜇𝐿 − 𝜇𝑅, an alternative 

approach can be used. In this scenario, the Fermi function can be Taylor 

expanded around the Fermi energy 𝜇𝐿 = 𝐸𝐹 of the electrodes. Performing 

this expansion and utilizing the properties of the delta function, one arrives 

at an expression for the quantum conductance G by averaging the 
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transmission over an energy range weighted by the derivative of the Fermi 

distribution: 

𝐼(𝑉𝑏) =
2𝑒

ℎ
∫𝑑𝐸 𝑇(𝐸) (−

𝜕𝑓(𝐸)

𝜕𝐸
)(𝜇𝐿 − 𝜇𝑅)        (4.3) 

Then the quantum conductance  (𝐺) = 𝐼 𝑉𝑏⁄  can be written as below in 

Equation 4.4 

𝐺 =
2𝑒2

ℎ
∫  𝑇(𝐸) (−

𝜕𝑓(𝐸)

𝜕𝐸
)𝑑𝐸          (4.4) 

At 𝑇 = 0 K, −
𝜕𝑓(𝐸−𝜇)

𝜕𝐸
= 𝛿(𝜇), where 𝛿(𝜇) represents a Kronecker delta. 

Further, for an ideal periodic chain, where 𝑇(𝐸) = 1 at 𝑇 = 0 K, the 

Landauer conductance becomes as below (Equation 4.5). 

𝐺0 =
2𝑒2

ℎ
=

1

12.9
(𝑘Ω)−1 or 𝐺0 = (12.9 𝑘Ω)

−1      (4.5) 

This 𝐺0 is known as the quantum conductance. 

Electron scattering in nanoscale devices often deviates from ideal behavior. 

Consequently, the conductance of such nanoscale devices can be more 

accurately represented by the expression given in the upcoming Equation 

4.6. 

𝐺 = 𝐺0𝑇(𝐸𝐹) =
2𝑒2

ℎ
𝑇(𝐸𝐹)          (4.6) 

The Equation 4.6 is used for two-electrode systems. Nevertheless, for 

devices with a gate electrode or more than two electrodes that are carrying 

electrons, the Landauer formula can be generalized as given below in 

Equation 4.7. 

𝐺 = 𝐺0∑ 𝑇𝑖𝑗(𝐸𝐹)𝑖,𝑗            (4.7) 
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where 𝑇𝑖𝑗 is the probability of electron passing from 𝑖𝑡ℎ conducting mode 

at the L electrode of the nanoscale device to the 𝑗𝑡ℎ conducting mode at the 

R electrode of the nanoscale device.  

4.3 Non-Equilibrium Green’s Function (NEGF) Formalism 

The study of electronic transport is simulated on the atomic level; thus, 

combining the NEGF formalism with DFT has a significant advantage over 

the other formalism. A detailed discussion of the NEGF formalism can be 

found in many articles and books[70,71].  In this section, we aim to provide 

a general explanation of the NEGF formalism to evaluate the 

current−voltage (I−V) characteristics curves of nanoscale devices. The 

schematic of a graphene/h-BN nanopore device, separated into three parts, 

is shown in Figure 4.1. It consists of a central scattering region (CSR) and 

semi-infinite left (L) and right (R) electrodes, then the Hamiltonian (𝐻) of 

the device can be written as below in Equation 4.8. 

𝐻 = (

𝐻𝐿 𝜏𝐿 0

𝜏𝐿
† 𝐻𝐶𝑆𝑅 𝜏𝑅

†

0 𝜏𝑅 𝐻𝑅

)          (4.8) 

here, 𝐻𝐶𝑆𝑅, 𝐻𝐿/𝑅 indicates the Hamiltonian matrices of the CSR and L/R 

electrodes, respectively. 𝜏𝐿/𝑅 represents the matrix elements involving the 

interaction between the L/R electrodes and the CSR. We assume that there 

is no direct interaction (tunneling) between the L/R electrodes. Therefore, 

after writing the Hamiltonian of the nanoscale device, we aim to solve the 

Schrödinger equation. In this approach, the Non-Equilibrium Green's 

Function (NEGF) formalism is employed to solve the quantum transport 

equation, where the retarded Green's function (𝐺) corresponding to the 

Hamiltonian matrix (𝐻) is formulated as presented in Equation 4.9. 

[𝐸+𝑆 − 𝐻] = 𝐼           (4.9) 
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here, 𝑆 corresponds to an overlap matrix,  𝐸+ = 𝑙𝑖𝑚𝜂→0+𝐸 + 𝑖𝜂, and 𝐼 

represents an ∞-dimensional matrix and 𝐺 can be written as below in 

Equation 4.10. 

𝐺 = (
𝐺𝐿 𝐺𝐶𝑆𝑅𝐿 0
𝐺𝐿𝐶𝑆𝑅 𝐺𝐶𝑆𝑅 𝐺𝑅𝐶𝑆𝑅
0 𝐺𝐶𝑆𝑅𝑅 𝐺𝑅

)       (4.10) 

For our convenience, the whole system can be divided into different regions 

and evaluate the matrix (𝐺) as we are not interested in electrodes. Therefore, 

both ends of the CSR are in surface contact with the electrode. Thus, we 

consider that the interaction term (𝜏𝐿/𝑅) would be negligibly smaller in size 

as compared to the Hamiltonian (𝐻). Therefore, after solving Equations 4.9 

and 4.10, we can obtain the following Equation 4.11. 

(

𝐸+𝑆𝐿 − 𝐻𝐿 −𝜏𝐿 0

−𝜏𝐿
† 𝐸+𝑆𝐶𝑆𝑅 − 𝐻𝐶𝑆𝑅 −𝜏𝑅

†

0 −𝜏𝑅 𝐸+𝑆𝑅 − 𝐻𝑅

)(
𝐺𝐿 𝐺𝐶𝑆𝑅𝐿 0
𝐺𝐿𝐶𝑆𝑅 𝐺𝐶𝑆𝑅 𝐺𝑅𝐶𝑆𝑅
0 𝐺𝐶𝑆𝑅𝑅 𝐺𝑅

) =

(
𝐼 0 0
0 𝐼 0
0 0 𝐼

) = 𝐼         (4.11) 

After solving the Equation 4.11, the 𝐺 written earlier in Equation 4.10 

becomes as given below in Equation 4.12 

𝐺 = (

𝑔𝐿(1 + 𝜏𝐿𝐺𝐿𝐶𝑆𝑅) 𝑔𝐿𝜏𝐿𝐺𝐶𝑆𝑅 0
𝐺𝐿𝐶𝑆𝑅 𝐺𝐶𝑆𝑅 𝐺𝑅𝐶𝑆𝑅
0 𝑔𝑅𝜏𝑅𝐺𝐶𝑆𝑅 𝑔𝑅(1 + 𝜏𝑅𝐺𝑅𝐶𝑆𝑅)

)    (4.12) 

here,  𝑔𝐿/𝑅 =
1

(𝐸+𝑆𝐿−𝐻𝐶𝑆𝑅)
= (𝐸+𝑆𝐿 − 𝐻𝐶𝑆𝑅)

−1 is the “surface 𝐺” of the L/R 

electrode uncoupled to the CSR. 

Then, the final expression for retarded 𝐺 of the CSR can be obtained by 

solving the equations as mentioned earlier and can be written as below in 

Equation 4.13 

𝐺𝐶𝑆𝑅 = [𝐸
+𝑆𝐶𝑆𝑅 − 𝐻𝐶𝑆𝑅 − ∑ (𝐸)𝐿 − ∑ (𝐸)𝑅 ]−1     (4.13) 
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where ∑ (𝐸)𝐿 = 𝜏𝐿
†𝑔𝐿𝜏𝐿 and ∑ (𝐸)𝑅 = 𝜏𝑅

†𝑔𝑅𝜏𝑅 are called the “self-

energies”. The self-energy is associated with the energy-level shift (∆) and 

the energy-level broadening (Γ), as presented in Figure 4.2. The ∆ and Γ 

can be described from the real and imaginary part of the self-energy as 

below in Equation 4.14 and 4.15 

∆𝐿/𝑅(𝐸) = 𝑅𝑒 ∑ (𝐸)𝐿/𝑅         (4.14) 

𝛤𝐿/𝑅(𝐸) = 𝑖[∑ (𝐸)𝐿/𝑅 − ∑ (𝐸)†
𝐿/𝑅 ]                                        (4.15) 

Furthermore, the broadening of molecular energy levels correlates with the 

residence time of electrons on the molecules. When a molecule couples to 

electrodes, electrons can transition from the molecular states localized at the 

conductor-superconductor interface into either the left or right electrode. 

The lifetime of a given molecular state is inversely proportional to the 

degree of state broadening: 𝜏𝐿/𝑅𝛤 = ℏ. 

 

Figure 4.2: Schematic illustration of device-molecule junction. When the 

single molecule is in contact with semi-infinite electrodes, its energy levels 

are shifted (∆). The energy level broadening due to the coupling to the 

contact is given by Γ. 
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From Equation 4.13, the infinite-dimensional Hamiltonian is reduced to the 

dimension of the CSR, where the self-energies, ∑ (𝐸)𝐿/𝑅 , include all 

information on the semi-infinite properties of the electrodes. The CSR only 

interacts with the surface region of the L/R electrodes. As a result, we can 

solely focus on the 𝐺 matrix of the CSR and effective Hamiltonian (𝐻𝑒𝑓𝑓) 

can be described as given below in Equation 4.16. 

𝐻𝑒𝑓𝑓 = 𝐻𝐶𝑆𝑅 + ∑ (𝐸)𝐿 + ∑ (𝐸)𝑅        (4.16) 

The effective Hamiltonian can be used to construct the scattering matrix, 

which describes how electron waves are scattered as they propagate through 

the system. Analyzing the scattering matrix provides insights into the 

scattering processes occurring at interfaces and within the central scattering 

region. 

4.4 Conclusions 

In this study, NEGF formalism has been utilized in combination with the 

DFT in the TranSIESTA code for electronic transport calculations [62,72]. 

The TranSIESTA calculations have been done with (1 × 11 × 11) k-point 

sampling in the Brillouin zone. For transmission function calculation using 

TBtrans code, we have used higher values of k- points of (1 × 45 × 45) to 

get more accurate results. The electronic transmission function and current 

can be calculated using advanced Green’s function. Using this method, 

zero-bias (V=0) transmission spectra have been calculated for the pristine 

hybrid G/h-BN device. The transmission probability of the electron from 

the left electrode to the right electrode can be calculated from the zero-bias 

transmission function as per the Landauer−Büttiker formula.  
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Chapter 5  

Machine Learning Details 

Within this study, we applied both machine learning (ML) regression and 

classification techniques to identify single nucleotides from the electric 

readouts of the G/h-BN nanopore. Linear regression (LR), adaptive 

boosting regression (AdaBoost), and extreme gradient boosting regression 

(XGBoost) are utilized for regression tasks, while for classification 

purposes, K-nearest neighbor (KNN), support vector machine (SVM), 

decision tree classifier (DTC), and random forest classifier (RFC) are 

employed. These algorithms are implemented in the scikit-learn open-

source library (version 1.2.2) and executed using Python code 3.10 within 

the Google Colab environment [73]. In order to assess the effectiveness of 

these ML algorithms, several statistical measures have been used. For 

regression models, parameters such as root mean square error (RMSE) and 

determination coefficient (R2) have been calculated, and for classification 

models, the evaluation has been done based on the confusion matrix, as well 

as parameters like precision, recall, F1-score, and the area under the receiver 

operating characteristic (ROC) curve. 

5.1 ML Regression 

In this study, we employed XGBoost to develop a regression model for 

transmission function prediction of single DNA nucleotides using G/h-BN 

nanopore. Feature engineering was done to extract valuable information as 

descriptors from the raw transmission data. After preprocessing, the dataset 

was split into training and testing sets to effectively evaluate the 

performance of the XGBoost regressor. XGBoost algorithm utilizes an 

iterative nature that constructs an ensemble of decision trees sequentially, 

minimizing a predefined loss function. Crucial hyperparameters like the 

number of trees, tree depth, and learning rate were tuned to optimize the 

model mitigating over or underfitting. Standard evaluation metrics, such as 
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mean squared error (MSE), root mean squared error (RMSE), and R-

squared, were used to assess the predictive performance of the ML model. 

Finally, hyperparameter tuning improves XGBR model performance by 

finding the best set of parameters for the prediction.  

5.1.1 Correlation Matrices 

A correlation matrix is a table that shows the correlation coefficients 

between each pair of chosen descriptors. It provides a simple way to 

visualize the patterns of relationships among the considered features. The 

correlation coefficient is a statistical measure that quantifies the strength 

and direction of the linear relationship between two variables. 

5.1.1.1 Pearson correlation coefficient 

 The Pearson correlation coefficient (PCC) is a statistical metric that 

assesses the magnitude and direction of linear connections. The coefficient 

varies between -1 and +1, with a value of +1 indicating a perfect positive 

linear correlation, -1 representing a perfect negative linear correlation, and 

0 suggesting no linear correlation. The Pearson correlation coefficient 

(PCC) has been widely utilized to precisely measure the linear correlation 

between distances in the original space and the reduced space, as 

determined by the equation: 

𝑃𝐶𝐶 =  
∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)
𝑛
𝑖=1

√∑ (𝑥𝑖 − 𝑥̅)
𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)

𝑛
𝑖=1

 

Where 𝑥𝑖 and 𝑦𝑖  represent the corresponding values of x and y.  𝑥̅ and 𝑦̅ 

represent the average values of x and y, respectively. 

5.1.1.2 Spearman’s rank-order correlation coefficient 

Spearman's rank-order coefficient of correlation (ρ) is a reliable statistical 

metric used to determine the magnitude and direction of the monotonic 

connection between two variables. Spearman's coefficient is more 
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effective than linear-focused PCC in determining the degree of correlation 

between the ranks of variables. The range of the values is from -1 to +1. A 

value of +1 indicates a perfect positive monotonic connection, -1 indicates 

a perfect negative monotonic relationship, and 0 indicates no monotonic 

relationship. The calculation is done as follows: 

𝜌 = 1 − 
6∑𝑑𝑖

2

𝑛(𝑛2 − 1)
 

The variable 𝑑𝑖 represents the difference in rank assigned to the two 

variables, while n represents the total number of samples. 

5.1.2 Root Mean Squared Error (RMSE) 

RMSE is a widely used metric to evaluate the accuracy of predictive 

models, particularly in regression problems involving continuous data. It 

measures the average magnitude of errors between predicted and actual 

values, considering the square of individual errors. This characteristic 

penalizes larger deviations more heavily, providing a comprehensive 

assessment of model performance. A lower RMSE value indicates better 

prediction accuracy, making it a reliable criterion for model selection and 

continuous data prediction. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
 

Where n represents the total number of data points, 𝑦𝑖 represents the actual 

observed values, and 𝑦̂𝑖 represents actual predicted values. 

5.1.3 Coefficient of Determination (𝑹𝟐): 

Coefficient of Determination (𝑅2) is a statistical measure that evaluates how 

well a regression model fits the data. It quantifies the extent to which the 

independent variables capture the variation present in the values of the 

dependent variable. A higher 𝑅2 value, ranging from 0 to 1, indicates a 



38 
 

better fit and more predictive power of the model. 𝑅2 provides a 

standardized way to assess goodness-of-fit across different regression 

models, making it an essential tool for model evaluation and selection 

𝑅2 = 1 −
𝑠𝑢𝑚 𝑠𝑞𝑢𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 (𝑆𝑆𝑅)

𝑡𝑜𝑡𝑎𝑙 𝑠𝑢𝑚 𝑜𝑓 𝑠𝑞𝑢𝑎𝑟𝑒𝑠 (𝑆𝑆𝑇)
= 1 −

∑(𝑦𝑖 − 𝑦̂𝑖)
2

∑(𝑦𝑖 − 𝑦̅)2
 

where 𝑦𝑖  represents the actual observed values, 𝑦̂𝑖 represents actual 

predicted values, and 𝑦̅ represents the mean value of the sample. 

5.2 ML Classification  

5.2.1 Classification Algorithms 

5.2.1.1 K-Nearest Neighbor (KNN) 

The KNN algorithm utilizes the principle of similarity based on the 

calculated Euclidean distance between the new point and each set of points 

in a class while classifying a new point in feature space.74 The parameter 

‘K’ which decides the closest data points, is declared by the user and based 

on the number of nearest neighbors and the new data point is assigned to a 

new class. The user-defined value of ‘K’ significantly impacts the overall 

accuracy of the model. Small values of closest points may lead to flexibility 

in the decision boundary that is prone to noise, while large values can lead 

to oversimplification of results with a smooth decision boundary. The KNN 

algorithm is useful for small datasets as the computational complexity 

increases while working with larger datasets. 

5.2.1.2 Decision Tree Classifier (DTC) 

This classification algorithm consists of a tree-like structure based on a 

series of decisions to classify new data points.75 This decision tree is 

constructed based on some internal nodes that represent a feature or 

attribute, each branching is interpreted as a decision-making based on that 

feature, and finally, each leaf node represents a particular class of outcome. 
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As the new data comes in, it glides from the root to the leaf of the decision 

tree and is finally assigned to a particular class based on a series of 

decisions. The DTC algorithm functions recursively to partition the dataset 

into smaller subsets according to the features that are chosen, continuing 

this process until it reaches a halting criterion. The depth of the tree, 

minimum number of samples in a node, and other parameters can be 

declared by the user. DTC algorithm tends to overfit on training data set if 

it is allowed to grow too deep. Controlling the depth of the tree, pruning and 

some ensemble methods can be convenient to extenuate such problems. 

5.2.1.3 Random Forest Classifier (RFC) 

The Random Forest Classifier algorithm is a type of ensemble learning 

method that is built upon the principles of decision trees. The system 

functions by creating numerous decision trees and using their results to 

produce predictions, thus enhancing accuracy by mitigating overfitting. 

Every tree within the forest is separately trained using random subsets of 

the training data and features. For classification problems, Random Forest 

Classifier (RFC) combines the predictions of each tree by employing either 

a majority voting method or averaging the probabilities assigned by separate 

trees. The Random Forests are often resilient and exhibit strong 

performance across many complex datasets. They efficiently manage high-

dimensional data, big datasets, and categorical variables. Moreover, 

ensemble methods have a superior ability to generalize compared to 

individual decision trees, resulting in reduced susceptibility to overfitting. 

The confusion matrix is often regarded as the most effective and 

fundamental evaluation matrix in machine learning classification. The table 

displays various combinations of predicted and actual values. 
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5.2.2 Machine Learning Classification Metrics 

 

Figure 5: Illustration of confusion matrix for the evaluation of classification 

algorithms 

A confusion matrix (Figure 5) is a table that allows you to visualize the 

performance of the ML classification model. It shows the number of correct 

and incorrect predictions made by the model, broken down by each class. 

The rows in a confusion matrix represent the actual classes, while the 

columns represent the predicted classes. The diagonal elements of the 

matrix represent the correct predictions, where the actual class matches the 

predicted class. The off-diagonal elements represent the incorrect 

predictions, where the model confused one class for another. Confusion 

matrices are particularly useful when you have an imbalanced dataset, 

where some classes have many more instances than others. In such cases, 

accuracy alone may not be a reliable metric to evaluate the performance of 

the model, as it can be skewed by the majority class. The confusion matrix 

provides more detailed information about the model's performance on each 

class, including the following predictions- 

True positive (TP) = Total number of correct positive predictions made by 

the ML model 

True negative (TN) = Total number of correct negative predictions made 

by the ML model 
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False positive (FP) = Total number of incorrect positive predictions made 

by the ML model 

False negative (FN) = Total number of incorrect negative predictions made 

by the ML model 

From the confusion matrix, various performance metrics can be calculated, 

such as precision, recall, and F1-score for each class, as shown in Table 5. 

These metrics can help you understand the strengths and weaknesses of the 

model and help us to evaluate and improve its performance. 

Table 5: Tabular Representation of Accuracy, Precision, Recall, and F1 

Score for the Evaluation of Classification Algorithms 

 

 

5.2.3 ROC Curve  

A Receiver Operating Characteristic (ROC) curve is a visual depiction of 

how well a model performs at various classification criteria.  

The graph illustrates the relationship between the true positive rate (TPR) 

and the false positive rate (FPR) across different threshold values. 

The AUC-ROC measures the whole area under the ROC curve, spanning 

from point (0,0) to (1,1). It provides a concise evaluation of the model's 

𝑇𝑃𝑅(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
   and    𝐹𝑃𝑅 = (1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) = 𝐹𝑃

𝐹𝑃+𝑇𝑁
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capacity to differentiate across distinct classes. A classifier with a perfect 

performance has an Area Under the Curve (AUC) value of 1, whereas a 

random classifier has an AUC value of 0.5. It facilitates the comparison 

between multiple classification models. A model with a higher AUC-ROC 

typically exhibits superior discrimination capabilities. 

5.3 Machine Learning Model Explainability 

SHapley Additive exPlanations (SHAPs) have been used to elucidate the 

lack of interpretability in the decision-making process of trained "black 

box" models by extrapolating the impact of input feature information on 

transmission prediction. Shapley's value employs cooperative game theory 

to break down the overall prediction into the aggregate of individual 

contributions from local features. This technique improves the 

understanding of how these input properties impact the transmission. The 

SHAP values may be represented by the following generic equation: 

∅𝑚(𝑝) = ∑
|𝑆|! (𝑛 − |𝑆| − 1)!

𝑛!
(𝑝(𝑆 ∪ 𝑚) − 𝑝(𝑆))

𝑠⊆𝑁/𝑚

 

The equation defines ∅𝑚(𝑝) as the SHAP value corresponding to feature 

‘m’ in instance ‘𝑝’. N denotes the collection of all features. The summation 

was conducted over all subsets ‘𝑆’ that do not include feature m. The 

expression 𝑝(𝑆 ∪ 𝑚) denotes the prediction made by the model when 

feature m is brought into the subset ‘𝑆’, which already includes certain 

characteristics. The model's prediction, denoted as 𝑝(𝑆), is based only on 

the characteristics included in the subset ‘𝑆’. The disparity between these 

two predictions represents the influence of feature ‘𝑚’ on the output. 
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5.4 Conclusions 

After extracting suitable features from our DFT-calculated transmission 

datasets, we have implemented ML regression to predict signature 

transmission for nucleotides and utilized different classification algorithms 

for the identification of single nucleotides. The different evaluation matrices 

have been used to assess the performance of ML classification and 

regression algorithms. Further SHAP analysis has been used to evaluate the 

underlying hierarchical order of feature importance in regression and 

classification studies. 
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Chapter 6  

Results and Discussion 

 

Figure 6.1: (a) Schematics of hybrid graphene/hexagonal boron nitride 

(G/h-BN) nanopore for single DNA nucleotides (dAMP, dCMP, dGMP, 

and dTMP) identification with quantum transport approach, (b) a step-by-

step illustration machine learning workflow for regression and classification 

analysis with transmission function readouts collected from G/h-BN 

nanopore, and (c) machine learning interpretable analysis with SHAP to 

understand the descriptor-target relationships. 

Figure 6.1 describes the G/h-BN nanopore that can integrate the quantum 

transport approach with ML algorithms for the prediction of fingerprint 

transmission function and classification of unlabelled DNA nucleotides. 

Initially, the pristine G/h-BN nanopore and isolated nucleotides are 

optimized using first principle DFT calculations as implemented in 

SIESTA[61,62] and Gaussian 09 code[63], respectively (Figure 6.2). 
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Figure 6.2: (a) Optimized structures of four single DNA nucleotide (dAMP, 

dGMP, dTMP, and dCMP), (b) hybrid G/h-BN pristine nanopore device. 

The proposed hybrid nanopore device consists of left (L) and right (R) leads 

and a central scattering region (device region) where the N and B atoms are 

depicted in blue and green spheres, respectively. 

After that, G/h-BN nanopore + nucleotide geometries are relaxed by placing 

each nucleotide inside the hybrid nanopore by using SIESTA code [61,62]. 

In experimental conditions, the DNA strand encounters various orientation 

fluctuations and structural variations while moving through the nanopore. 

To mimic the situation, rotational dynamics are considered for nucleotides 

with seven different orientations (from 0º to 180º in the step of 30º) while 

located inside the nanopore and fully relaxed for our further calculations. 
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Figure 6.3: Relative energy (eV) plot of all four nucleotides at different in-

plane rotational configurations inside G/h-BN nanopore with respect to the 

most stable configuration. 

 The configurations with the lowest relative energy are selected as the most 

favorable configuration of nucleotide inside the G/h-BN nanopore, as 

shown in Figure 6.3. By examining the relative energy plot, the 0º, 180º, 

30º, and 180º orientations are identified as the energetically most stable 

configurations for dAMP, dTMP, dGMP, and dCMP, respectively as 

represented in Figure 6.4.  
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Figure 6.4: Top and side views of the fully relaxed most stable 

configurations of all four nucleotides inside the hybrid G/h-BN nanopore. 

The transmission functions of all the structures are calculated with the 

quantum transport (DFT+NEGF) method as implemented in the 

TranSIESTA code [62]. The calculated signature transmission readouts for 

seven distinct rotational configurations of each nucleotide have been shown 

in Figure 6.5. 
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Figure 6.5: Effect of rotation on transmission function for all four 

nucleotides at different rotational configurations varying from 0º to 180º in 

an interval of 30º while located inside the G/h-BN nanopore. 

For the ML study, we have first prepared four transmission databases, 

considering their seven rotated configuration with individual nucleotides. 

Each database consists of 3500 (7 × 500 data in the energy window of −2.5 

to +2.5 𝑒𝑉) transmission function data points. Selecting relevant, concise, 

and easily accessible descriptors that can characterize these transmission 

datasets is crucial for better results of ML applications. The coupling 

strength of nucleotides with the nanopore edges has a significant impact on 

transmission readouts of a particular device as reported by some previously 

published theoretical and experimental studies [76,77]. Thus, the input 

features are carefully extracted based on the chemical composition of 

individual nucleotides and their different environment present in the 

vicinity of C-H, B-H, and N-H substituted nanopore edges, as shown in 

Table 6.1.  

Table 6.1:  The Detailed Overview of Selected Features along with their 

Description for Machine Learning Regression 
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Serial 

No. 

Type of 

Features 
Feature Name Description of Feature 

1 

E
le

ct
ro

n
ic

 P
ro

p
er

ti
es

 

Mean 

electronegativity 

(EN) 

Mean electronegativity of 

interacting atoms in 

nucleotides 

2 
Mean electron 

affinity (EA) 

Mean electron affinity of 

interacting atoms in 

nucleotides 

3 
Mean ionization 

energy (IE) 

Mean ionization energy of 

interacting atoms in 

nucleotides 

4 
Mean dipole 

polarizability 

Mean dipole polarizability 

of interacting atoms in 

nucleotides 

5 Mean Z effective 

Mean effective nuclear 

charge of interacting atoms 

in nucleotides 

6 Energy 
Total energy range of 

calculated transmission 

7 

A
to

m
ic

 P
ro

p
er

ti
es

 

Mean valence 

electrons 

Mean number of valence 

electrons of interacting 

atoms in nucleotides 

8 
Mean molecular 

weight (MW) 

Mean molecular weight of 

interacting atoms in 

nucleotides 

9 
Mean covalent 

radius 

Mean covalent radius of 

interacting atoms in 

nucleotides 

10 Mean VdW radius 

Mean Van der Waals radius 

of interacting atoms in 

nucleotides 

11 

S
tr u
c

tu
r

al
 

P
r

o
p

er
t

ie
s dmin(C-H & H) C-H environment 
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12 dmin(C-H & N) 

13 dmin(C-H & O) 

14 dmin(N-H & H) 

N-H environment 15 dmin(N-H & N) 

16 dmin(N-H & O) 

17 dmin(B-H & H) 

B-H environment 18 dmin(B-H & N) 

19 dmin(B-H & O) 

 

The considered descriptors can be grouped into two distinct categories: 

electronic and chemical properties: (a) related to the target nucleotide and 

(b) those describing the local electronic environment within the hybrid G/h-

BN nanopore. It includes electronic (mean EN, mean EA, mean IE, mean 

dipole polarizability, mean Z effective, and energy) and atomic (mean 

valence electron, mean MW, mean covalent radius and mean VdW radius) 

properties of respective nucleotides. However, the different electronic 

environments (B𝛿+ − H𝛿−, C𝛿− − H𝛿+, and N𝛿− − H𝛿+) created inside the 

G/h-BN nanopore manifests unusual polarity differences. These three 

groups of descriptors determine the extent of distance-dependent dipolar 

coupling and H-bonding interactions of nanopore edges with the 

neighbouring atoms of nucleotides. These electronic, atomic, and structural 

descriptors can play a pivotal role in explaining the signature transmission 

function of nucleotides. It can be noted that the minimum interactive 

distances (dmin) between the O, N, and H atoms of nucleotides and 

functionalized hybrid nanopore edge atoms (H) are considered at ≤ 3.0 Å, 

which is reported to be well within the range of H-bonding and non-covalent 

interactions [78,79].  
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After feature engineering, ML regression analysis is followed through using 

the transmission databases of four DNA nucleotides (dAMP, dCMP, 

dGMP, and dTMP). The databases are randomly rearranged and divided 

into two independent training and test datasets in a ratio of 80:20. These 

datasets are applied to several considered regression models (LR, RFR, 

KRR, GPR, AdaBoost, ETR, and XGBR) as available in open-sourced 

scikit-learn package[73] and assessed their performance based on the least 

test RMSE scores. The XGBR model has exhibited superior performance 

by obtaining the lowest test RMSE scores for all four nucleotides. In order 

to provide an impartial assessment of the XGBR model efficiency, a 9-fold 

cross-validation technique was utilized followed by calculation of mean test 

RMSE score, as summarized in Table 6.2.  

Table 6.2: RMSE Score for Each Fold (1−9) of the 9-fold Cross-Validation 

along with Mean and Test RMSE Scores for the XGBR Model for All Four 

Nucleotides 

 

 

The mean cross-validation test RMSE scores closely match the test RMSE 

score throughout all four datasets confirming model stability. The repeated 

process of cross-validation evaluates performance and helps to find out the 

most effective hyper-parameters for the XGBR model across all four 

datasets. Figure 6.6 shows the parity plot of train-test predictive 

performance that compares the ML-predicted transmission with the DFT-

calculated transmission function. It confirms that XGBR models are 
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adequately trained and capable of capturing the underlying relations 

between the attributes and nucleotide transmission.  

Figure 6.6: Parity plots of ML predicted versus DFT calculated 

transmission function along with test RMSE scores obtained from 

optimized XGBR model for dAMP, dCMP, dGMP, and dTMP nucleotides. 

The plausible test results of these four models may be ascribed to the high 

quality of the datasets and also imply their robust correlation with the 

considered features with a lower percentage of outliers. The XGBR model 

operates on a gradient boosting framework which is often categorized as a 

black box model because of its complexity and a large number of hyper-

parameters [80]. Therefore, it may be possible to deduce the complicated 

correlation between the structural, chemical, and local electrical 

environment-based descriptors and transmission function by incorporating 

decision trees driven ensemble learning method. Furthermore, we have also 
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predicted the signature transmission of the three nucleotides with the 

optimized XGBR model that was trained with other single nucleotide 

datasets, as shown in Figure 6.6. 

 

Figure 6.7: Parity plots of ML predicted versus DFT calculated 

transmission function along with test RMSE scores obtained from 

optimized XGBR model after training upon (a) dAMP, (b) dCMP, (c) 

dGMP, and (d) dTMP datasets. 
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Figure 6.8: XGBR model predicted and DFT calculated transmission 

function for the most stable rotational configuration of nucleotides after 

training upon (a) dAMP, (b) dCMP, (c) dGMP, and (d) dTMP datasets. 

From the parity plots of ML prediction, the ML-predicted versus the DFT-

calculated transmission function can be visualized across all four nucleotide 

dataset pools. From the low test RMSE scores, it is evident that the 

optimized XGBR model can precisely predict the fingerprint transmission 

function of other nucleotides. Among the four nucleotides, the dGMP 

dataset helps to provide a more generalized prediction for dAMP, dCMP, 

and dTMP with excellent accuracy with test RMSE ≤ 0.1, as depicted in 

the parity plot in Figure 6.7c. The predicted transmission exhibits precise 

recognition of the peak locations as reported in the DFT 

calculated transmission readouts (Figure 6.8a-d). The intrinsic electronic 

property of nanopore and the interaction of adjacent atoms on nucleotide 
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and (C-H, B-H, and N-H) substituted nanopore edges are the significant 

contributing factors behind sharp changes in height, width, and position of 

the peaks in transmission function. The results highlight that the optimized 

XGBR algorithms, employed in this investigation, exhibit adequate 

competency in predicting other nucleotides. Therefore, by gathering the 

transmission readouts of a single nucleotide, one may accurately predict the 

distinctive molecular conductance shown by the remaining three 

nucleotides. 

The XGBR model comprehends complex relations in datasets learned by an 

ensemble of decision trees making it difficult to understand underlying 

design principles, thereby impeding transparency and interpretability. 

Hence, we have considered a method called SHapley Additive exPlanation 

(SHAP) analysis, which is based on cooperative game theory, to gain 

insight into prediction framework the of the XGBR models, which are 

essentially black boxes. 
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Figure 6.9: Representation of global feature importance and SHAP 

beeswarm (summary) plot for optimized XGBR model (a) dAMP, (b) 

dCMP, (c) dGMP, and (d) dTMP datasets. In the bee-swarm plot, the y-axis 

color gradient indicates the magnitude of the feature, with values ranging 

from (blue) for lower impact, whereas the red color stands for the higher 

impact of relevant features in output prediction, and the x-axis consists of 

positive and negative SHAP values. 

The global feature importance and bee-swarm (summary) plots display the 

hierarchical ranking of the global relevance of the most important 

descriptors, listed in descending order of the XGBR model trained upon 

dAMP, dCMP, dGMP, and dTMP datasets respectively (Figure 6.9a-d). 

The summary plot provides a concise and informative overview of how the 

key features impact (negative/positive) the prediction of the transmission 

data. The ‘energy’ feature is identified as the top-performing feature in all 
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four cases since the transmission function is calculated as a function of a 

specific energy range [11]. After that, the atomic descriptor (mean valence 

electrons) is the second top contributing feature in predicting the signature 

transmission with the XGBR models trained with each nucleotide dataset 

(Figure 6.9). Interestingly, Figure 6.9a shows that along with mean IE, the 

C-H and B-H environment descriptors have relatively higher contributions 

compared to N-H environment descriptors, for the dAMP nucleotide 

dataset. This observation could be ascribed to dipolar coupling interactions 

between pore edges (C-H/B-H) with their nearest electronegative 

heteroatoms (N and O). For the dCMP dataset, the mean covalent radius 

and valence electrons are observed to be more promising than structural 

descriptors in fingerprint transmission prediction (Figure 6.9b). For dGMP 

dataset, the stronger contribution of the N-H environment descriptor is 

noted, which could be due to the hydrogen bonding interaction between the 

N-H terminal and aromatic ring containing N atoms on dGMP (Figure 

6.9c). Structural descriptors (C-H and N-H environments) are noted as 

dominant features in ML prediction with dTMP dataset, as shown in Figure 

6.9d. The presence of distance-dependent structural features describing the 

local electronic environment is found to have a crucial role in the prediction 

of transmission function. Moreover, the contribution has a substantial 

impact when the distance between the pore edge and nucleotide atoms is 

consistently low across the considered rotational configurations.  

Furthermore, we have also employed the ML classification to transmission 

dataset pools in order to distinguish four nucleotides from their widely 

scattered and significantly overlapped fingerprint signals. ML classification 

has already been observed to be effective in accurately categorizing 

nucleotides from quaternary, ternary, and binary combinations of 

nucleotides from their experimental electric measurements.81 Before 

employing classification algorithms, we have extracted four distinct 

features (TF, Min, Max, and Mean) by normalizing the calculated original 

transmission data as summarized in Table 6.3. 
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Table 6.3:  The Detailed Overview of Selected Features along with their 

Description for ML Classification     

Serial 

No. 
Feature Name Description of Feature 

1 TF 
The DFT-NEGF calculated transmission 

dataset 

2 Min 

Each transmission dataset is normalized 

by dividing with the minimum 

transmission value (TF/TFmin) 

3 Max 

Each transmission dataset is normalized 

by dividing with the maximum 

transmission value (TF/TFmax) 

4 Mean 

Each transmission dataset is normalized 

by dividing with the mean transmission 

value (TF/TFmean) 

 

 Among the considered ML classifiers, the random forest classifier (RFC) 

algorithm has exhibited better performance than KNN[74], DTC[75], GPR, 

and SVM[82] algorithms after comparing train-test accuracy scores as 

elucidated in Figure 6.10a.  
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Figure 6.10: (a) Train-test accuracy histograms for the employed ML 

classification algorithms, (b) RFC model predicted confusion matrix for 

quaternary classification along with test accuracy score, (c) histogram plots 

of precision, recall, and F1-score, and (d) SHAP analysis of each feature 

contributing to quaternary classification. The considered features are 

defined as TF = DFT calculated transmission data, Min = TF/TFmin, Mean 

= TF/TFmean, and Max = TF/TFmax. 

The RFC is an ensemble learning algorithm that incorporates multiple 

decision trees throughout the training process, with each tree being trained 

on a randomly selected part of the training data and a randomly selected 

subset of the features. The use of randomization serves the purpose of 

mitigation of overfitting. The comparison study of true nucleotide and 
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predicted nucleotide for quaternary classification is presented in the form of 

a confusion matrix in Figure 6.10b with an overall test accuracy score of 

86%.  In order to evaluate the reliability of the RFC algorithm in quaternary 

classification, a 7-fold cross-validation technique was utilized followed by 

the calculation of mean test accuracy score, as summarized in Table 6.4. 

Table 6.4: Summary of k-Fold Cross-Validation for Quaternary 

Classification using RFC Model along with Mean and Test Accuracy Scores 

for ATGC datasets below Fermi (BF) and Above Fermi (AF) Level 

Data Sets S1 S2 S3 S4 S5 S6 S7 Mean Test 

ATGC 80 84 88 86 84 78 86 84 86 

ATGC-

BF 
83 82 79 69 77 75 77 77 76 

ATGC-

AF 
71 76 70 67 68 74 74 71 69 

 

The quaternary classification performance using the RFC algorithm has 

been assessed by analyzing the histogram plots of precision, recall, and F1 

score as displayed in Figure 6.10c. From the SHAP analysis, it is 

interesting to observe that the normalized ‘Min’ (TF/Tmin) and ‘Mean’ 

(TF/Tmean) features are found to be more effective for quaternary 

classification than their pure transmission data ‘TF’ of nucleotides (Figure 

6.10d [83]. The quaternary classification is also performed using the 

collected transmission data of below and above the Fermi level, that showed 

a drop in the overall test accuracy score for both instances. However, the 

calculated transmission data at the below Fermi level classifies the 

nucleotides more accurately with a test accuracy of 76% as compared to 

‘TF’ at the above Fermi level.  
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Figure 6.11: Confusion matrix for ternary classification for four possible 

combinations (ACG, ACT, AGT, and CGT). 

Within ternary categorization, the AGT and ACT nucleotide combination 

achieves a higher accuracy score of 95%, while the ACG and TCG 

combination yields a lesser test accuracy of 84% as shown in Figure 6.11. 

The prediction performance of the optimized RFC model is visualized in 

the form of confusion matrices for binary classification as shown in Figure 

6.12.  
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Figure 6.12: Confusion matrix and accuracy scores for binary classification 

of six possible combinations (AC, AG AT, CG, GT, and CT). 

The test accuracy of binary classification was achieved as high as 98% for 

six possible combinations (AC, AG, AT, CG, CT, and GT), as shown in 

Figure 6.13a.  The high classification accuracy is also evident from their 

precision, recall, and F1 scores (Figure 6.13b-c). To assess the robustness 

of the RFC algorithm, 7-fold cross-validation is implemented in smaller 

subsets of the nucleotide data pool for ternary and binary classification 

(Tables 6.5 and 6.6). 

Table 6.5:  Summary of k-Fold Cross-Validation for Ternary Classification 

using RFC Model along with Mean and Test Accuracy Score for Each Fold 

(S1−S7) 

Data 

Sets 
S1 S2 S3 S4 S5 S6 S7 Mean Test 

ACT 94 96 95 91 93 94 94 94 95 

AGT 94 92 96 92 90 89 94 92 95 

ACG 84 84 77 78 77 84 78 80 84 

CGT 84 84 84 80 80 84 81 82 84 



64 
 

Table 6.6: Summary of k-Fold Cross-Validation for Binary Classification 

using RFC Model along with Mean and Test Accuracy Score for Each Fold 

(S1−S7) 

 

 

Figure 6.13: (a) Train-test accuracy histograms for ternary and binary 

classification, (b) ternary, and (c) binary classification report including 

precision, recall, and F1-score in tabular format after implementing RFC 

algorithm. 

 

Data 

Sets 
S1 S2 S3 S4 S5 S6 S7 Mean Test 

AC 90 96 98 92 97 96 92 94 98 

AG 89 96 92 90 96 96 91 93 92 

AT 92 96 94 92 96 94 96 94 96 

CG 64 76 75 68 74 80 76 73 74 

CT 96 96 100 95 96 97 100 97 98 

GT 96 96 97 96 95 97 97 96 98 
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Interestingly, the overall test accuracy drops for the datasets including 

dGMP and dCMP for both ternary and binary classification. The probable 

reason behind the sudden drop in test accuracy scores could be the 

consequence of significant overlapping of fingerprint transmission function. 

However, the trained model revives its performance after being trained with 

the ‘TF’ data of all four nucleotides in quaternary classification. By 

comparing the test accuracy scores for quaternary, ternary, and binary 

classification, it can be anticipated that the larger training dataset can 

minimize the classification error for dGMP and dCMP as implemented 

using RFC algorithm. 

 Figures 6.14 and 6.15 illustrate the relationship between the true positive 

rate (TPR) and the false positive rate (FPR) for each set of ternary and 

binary combinations, respectively.  

 

Figure 6.14: Visual representation of area under ROC curve for ternary 

classification utilizing RFC model. 
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Figure 6.15: Visual representation of area under ROC curve for binary 

classification utilizing RFC model. 

The higher value of the area under the ROC curve suggests that our RFC 

model emphasizes the true positive prediction of nucleotides rather than the 

false positive prediction. Further to understand the underlying contribution 

of calculated transmission data and the other three normalized features in 

classification, SHAP analysis was done for each set of ternary and binary 

combinations. Figure 6.16 describes global feature importance as well as 

the hierarchical order of contribution in each class in all ternary 

combinations. It is worth noticing that the normalized feature ‘Min’ has a 

higher contribution as compared to the calculated transmission data for the 

combinations ACG and AGT. In the case of ACT and CGT combinations, 

all three normalized features impact ternary classification more than 

calculated TF. 
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Figure 6.16: Visualization of feature importance and SHAP analysis of 

features contributing to ternary classification of each nucleotide by 

implementing RFC model. 

In the case of binary combinations (Figure 6.17), all three normalized 

features are observed to contribute more as compared to our calculated TF 

data for AC and CG. However, the classification of dAMP and dGMP is 

significantly impacted by the ‘Min’ feature as compared to other three 

descriptors. For the remaining three binary combinations (CT, AT, and GT), 

the two normalized features ‘Min’ and ‘Mean’ secure position among the 

top two contributing features. The higher contribution of normalized 

features can be explained in the spotlight of the different scales of data after 

the mathematical operation on our calculated transmission data. These 
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different scales help the RFC classifier to find patterns in data and ease the 

identification of single nucleotides. 
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Figure 6.17: Visualization of feature importance and SHAP analysis of 

features contributing to binary classification of each nucleotide by 

implementing RFC model. 

 

 

Figure 6.18: (a) Zero bias transmission function of four nucleotides 

(dAMP, dTMP, dGMP, and dCMP) while present inside G/h-BN nanopore, 

(b) conductance sensitivity (%) histogram plots with respect to the pristine 

nanopore, and (c) wave function analysis of G/h-BN nanopore + nucleotides 

at  gate voltage (𝑉𝑔)  =  0.735 𝑒𝑉. 

 

Furthermore, we have also analyzed the zero bias transmission function of 

all four nucleotides at their most stable configurations as shown in Figure 

6.18a. The sharp variation in the transmission signal of nucleotides below 
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the Fermi level can be attributed to the coupling of nucleotide molecular 

orbitals (MOs) and (C-H, N-H, and B-H) passivated nanopore edges 

through non-covalent interactions as discussed earlier. Further, we have 

calculated conductance sensitivity (%) which is an essential property of 

DNA sequencing to evaluate the identification capability of the considered 

G/h-BN nanopore device by using the following equation: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%)  =  |
𝐺0 − 𝐺𝑥
𝐺𝑥

| × 100 

Where, 𝐺0 is the conductance of the pristine G/h-BN nanopore and 𝐺𝑥 is the 

conductance of each nucleotide (dAMP, dGMP, dCMP, and dTMP) inside 

the nanopore. The histogram plot for conductance sensitivity is depicted in 

Figure 6.18b. In experimental conditions, the conductance sensitivity (%) 

can be measured by applying an external gate voltage (𝑉
𝑔
)  = 0.735V) for 

the G/h-BN nanopore device. From this study, the conductance sensitivity 

values are observed to be higher for purine and lower for pyrimidine type 

of nucleotide device. The conductance sensitivity analysis is found to be in 

the following order: dGMP > dAMP > dCMP > dTMP. Here, we deduced 

that the hybrid G/h-BN nanopore has enhanced the high-resolution 

conductance sensitivity of four nucleotides for single nucleobase 

identification.  

Finally, to provide a better insight into the coupling interaction between 

nucleotide and the substituted nanopore edges the wave function analysis is 

performed at the same energy of 𝐸 − 𝐸𝐹  =  0.735 𝑒𝑉 where the highest 

conductance sensitivity is observed as shown in Figure 6.18c. The wave 

function analysis provides insight into the probability of flowing electrons 

from the source to the drain corresponding to a specific energy value. At the 

energy (𝐸 − 𝐸𝐹  =  0.735 𝑒𝑉) for dAMP and dTMP, there is only a minute 

change in transmission compared to pristine G/h-BN pore, Whereas, there 

is a drop in the transmission of electrons through one of the nanopore edges 

which can be attributed to the current modulation effect for dGMP and 
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dCMP [84,85]. The ring (O) atom in dGMP present close to the pore could 

be resulting in an imposition of negative potential on the nanopore edge due 

to excess partial negative charge on it. This negative potential blocks one of 

the transmission channels and compels the electrons to flow from the other 

alternative direction. As dCMP is in slightly skewed conformation inside 

the pore, the closely spaced oxygen (O) atom of the phosphate group exerts 

the same influence resulting in current modulation.  
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Chapter 7  

Conclusions and Scope for Future Work 

 

In a nutshell, we have studied a hybrid G/h-BN nanopore for single 

nucleotide-based DNA sequencing using both machine learning regression 

and classification framework combined with quantum transport approach. 

Initially, we prepared four databases by calculating the transmission 

function of all four nucleotides at their energetically favorable and six other 

dynamic configurations inside the nanopore with the DFT-NEGF approach. 

The optimized XGBR models, trained using one nucleotide database, can 

accurately predict the other three nucleotides with an RMSE score as low 

as 0.07. The ML explainability with SHAP analysis revealed that electronic 

descriptors (mean IE) and atomic descriptors (mean valence electrons and 

mean covalent radius) along with energy have a strong influence on the 

prediction of the transmission function. Among structural descriptors, the 

C-H and B-H environments are observed to have a significant impact on the 

prediction of dAMP and dCMP nucleotides, while N-H and C-H 

environment descriptors have more contribution towards the prediction of 

dGMP and dTMP nucleotides. The relatively lower impact of the B-H 

environment could be attributed to its opposite polarity (B𝛿+ − H𝛿−). RFC 

classification of quaternary, ternary, and binary combinations of nucleotides 

has achieved maximum accuracy of 86%, 95%, and 98%, respectively. 

However, dGMP and dCMP nucleotides displayed lower accuracies across 

all three types of combinations, possibly due to significantly overlapped 

transmission readouts. Additionally, the conductance sensitivity analysis 

demonstrated that purine nucleotides have considerably higher sensitivity 

than pyrimidine nucleotides. Frontier molecular orbitals with 

wavefunctions analysis are also conducted to elucidate the impact of 

electronic coupling interactions between the nucleotides and nanopore 
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edges on their transmission functions. This proof-of-concept ML study with 

hybrid nanoscale devices demonstrates a potential platform for single 

nucleotide-based DNA sequencing that can garner interest among 

researchers for further investigations. 
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