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Abstract 

   

Over the past decades, the usage of metal-organic frameworks (MOFs) in 

biomedical applications has increased significantly because these materials have high 

loading capacities, high surface areas, and precision tunability. Moreover, a wide range of 

drug delivery applications are being investigated for MOFs. Herein, we have synthesized 

copper-based MOFs (IITI-3) which were characterized by using PXRD, TGA, BET, IR, 

and UV techniques. In this study, we have analyzed the effective delivery of two drugs 

using IITI-3: Ibuprofen and Curcumin. Brunauer-Emmett-Teller (BET) analysis affirmed 

the IITI-3’s suitability as a carrier, demonstrating its ability to accommodate multiple drugs 

simultaneously. Interestingly, while simultaneous loading of both drugs was successful, 

individual drug loading experiments revealed selective encapsulation of only Curcumin 

within IITI-3. The pH-dependent release of the encapsulated drugs was validated by further 

release investigations employing UV spectroscopy at pH 7.4 and 5.8, which represent 

physiological and second intestine pH respectively. This pH-responsive behavior has 

potential use in targeted drug administration, especially in conditions similar to second 

intestine pH 
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Chapter 1  

Introduction 

Enhancing human health and elongating lifespan require the advancement of therapeutic 

solutions, encompassing chemical agents and bioactive compounds. Many of these compounds 

exhibit potential in addressing acute ailments like cancer, diabetes, cardiovascular issues[1-5], renal 

disorders, and microbial infections[1]. However, their widespread application in medicine faces 

substantial impediments, including poor solubility, inefficient absorption, limited bioavailability, 

and indiscriminate distribution in the body, often resulting in adverse effects on healthy tissues[2-4]. 

To surmount these challenges, the adoption of nano-based drug delivery systems (DDS) emerges 

as a promising strategy[6]. Nanostructures offer avenues for enhancing drug solubility and stability, 

controlled release of drug, increased bioavailability, minimized toxicity, and targeted delivery to 

specific anatomical sites. Consequently, interdisciplinary efforts spanning chemistry, biochemistry, 

medicine, and biomedical engineering persistently strive to innovate efficient DDS solutions[6-9]. 

Nanotechnology revolutionizes various domains, including biomedical, biological, environmental, 

and nutraceutical research[9-11], through the deployment of nanostructures like nanofibers, 

nanoparticles, nanotubes, and nanocomposites. These structures not only aid in disease diagnosis[12] 

and treatment[10,13,14] but also serve as carriers for drugs[15], proteins[16], vaccines[17], genes[18], and 

enzymes[19], heralding the dawn of nanomedicine[15,16]. This burgeoning field harnesses 

nanoscience to combat diseases, utilizing nanodimensional entities such as nanovehicles, 

nanosensors, and nanorobots for diagnostic and therapeutic purposes within living organisms[15-20]. 

Nanocarriers[3,28], colloidal systems comprising submicron particles or droplets, exhibit superior 

mobility within the human body owing to their diminutive size. Their distinctive chemical, 

structural, magnetic, and biological properties render them invaluable in drug delivery 

applications[20-27]. These carriers, whether organic, inorganic, or hybrid, encapsulate or conjugate 

therapeutic agents[28,29,30], facilitating their targeted delivery, prolonged circulation, and controlled 

release kinetics[30-38]. 

Moreover, advancements in nanotechnology have engendered diverse strategies for drug 

delivery[39-41], including passive and self-delivery mechanisms. Passive delivery involves chemical 

conjugation or physical encapsulation of drugs with nanostructures, while self-delivery relies on 



 

27 
 

drugs' inherent ability to self-assemble within nanostructures[42,43]. Each approach offers unique 

advantages in terms of controlled release and targeting precision, albeit with distinct mechanisms 

of action[38]. 

 

               Figure 1: Nanotechnology applications in the biomedical field[39][40][41]. 

 

In the realm of nanocarrier selection, the biomedical community grapples with the challenge of 

identifying the most suitable type for specific applications. Metal-organic framework (MOF) 

nanocarriers have garnered attention for their multifaceted utility in delivering biomolecules, yet 

comprehensive investigations into their potential as drug delivery vehicles and biosensors remain 

scarce. Thus, the recent advancements in MOFs as a favourable nanocarriers for diagnosis of 

various diseases and drug delivery needed to be elucidate. By delineating their synthesis, 

applications, and therapeutic potentials across various diseases, including cancer, diabetes (type I, 

II), and Alzheimer's disease. 

1.1. Metal-Organic Framework (MOFs) 

Metal-organic frameworks, affectionately referred as porous coordination polymers 

(PCPs)[44,45], represent a class of porous crystalline materials characterized by their tunable nature. 
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These structures arise from the self-assembly of organic ligands and inorganic metal clusters, 

resulting in extended network structures[46]. The dynamic combination of organic linkers and metal 

ions yields diverse MOF structures with highly porous frameworks, distinguishing them from other 

nanostructures[47-52]. 

MOFs have garnered significant interest due to their exceptional properties, driving 

research across various fields. These applications span gas storage and separation, bioimaging, 

water treatment, catalysis, chemical separation, and energy-related endeavours[52-59]. Notably, 

MOFs exhibit high surface area and porosity, enabling efficient loading of biomolecules and 

pharmaceuticals, alongside adjustable pore sizes conducive to selective molecular encapsulation. 

Their open architectures facilitate interactions with external environments, while their diverse 

compositions allow tailored designs to suit specific applications[59-61]. 

 

          Figure 2: Metal-Organic Frameworks 

Moreover, MOFs possess attributes such as biodegradability[47,62], owing to weak coordination 

bonds, and high crystallinity, providing insights into their morphological characteristics and 

network structures[60-63]. These properties position MOFs as promising candidates for biomedical 

applications, particularly diagnosis of disease and the drug delivery[64]. 

In biomedical contexts, mastering control over the size and morphology of MOF is crucial, as 

particles smaller than 100 nm can only effectively penetrate cells[64-66]. The emergence of nanoscale 

MOFs (NMOFs) bring forward enhanced functionalities, merging the structural diversity of bulk 

MOFs with benefits of nanomaterials[65]. The chemical and catalytic activities of NMOFs are 

influenced by factors such as size, shape, and surface characteristics. Synthesizing NMOFs 
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presents a burgeoning area of research, encompassing methods such as surface-assisted synthesis, 

sonochemical and microwave-assisted synthesis, coordination modulation and microemulsion 

synthesis. These endeavours aim to exploit the unique properties of NMOFs for diverse biomedical 

applications[65-72]. 

 

1.2 Synthesis of MOFs 

The synthesis of Metal-Organic Frameworks (MOFs) encompasses a myriad of 

experimental conditions that intricately influence their resulting crystallinity[67], porosity and 

morphology. Selecting an appropriate synthesis method becomes pivotal in tailoring the 

physicochemical properties of the acquired products to meet specific application requirements[71-

74]. Moreover, considerations must extend beyond mere scientific parameters to encompass 

economic feasibility and environmental sustainability, particularly concerning large-scale synthesis 

endeavours. Various synthetic techniques are available for the generation of MOFs, each offering 

its own set of advantages and challenges[75,78]. 

 

             Figure 3: MOF synthesis methods. 
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1.3. Solvothermal Method 

The solvothermal method, a cornerstone of MOF synthesis, continues to be widely adopted 

owing to its versatility and reproducibility. The method involves the reaction between organic 

ligands and metal salts in a solvent-based environment, conducted under elevated pressure and 

temperature within a sealed vessel. The selection of solvent significantly influences reaction 

kinetics and reagent solubility, with traditional electric heating serving as the primary energy 

source[67]. Noteworthy applications include the synthesis of diverse MOFs using organic solvents 

such as acetone, ethanol, and dimethylformamide, highlighting the versatility and scalability of this 

method[79,91]. 

In conclusion, the synthesis of MOFs encompasses a diverse array of techniques, each offering 

unique advantages and challenges. From diffusion-based methods to advanced microwave-assisted 

synthesis, the field of MOF synthesis continues to evolve, driven by a relentless pursuit of 

sustainability, efficiency, and versatility. As researchers continue to explore novel synthesis routes 

and optimize existing methodologies, the future of MOF synthesis holds boundless potential for 

addressing pressing societal and environmental challenges. 

1.4. Bio-medical Applications of MOFs 

MOFs have emerged as versatile platforms with profound implications in various 

biomedical applications owing to their remarkable properties. These include biodegradability, 

biocompatibility, high porosity, large pore size, nanometer-scale dimensions and extensive surface 

area[92-94]. Leveraging these attributes, MOFs have showcased immense potential in bioimaging, 

drug delivery, biocatalysis and biosensing, each delineating a unique pathway towards advancing 

healthcare paradigms[94,96]. 

In the realm of drug delivery, MOFs serve as proficient carriers capable of entrapping biomolecules 

within their cavernous structures or adsorbing them during synthesis. Their expansive surface area, 

spanning from 1000 to 10,000 m2/g[96,98], coupled with tunable pore sizes spanning from 

microporous to mesoporous, enables efficient encapsulation of diverse functional molecules. 

Notably, achieving a particle size below 200 nm facilitates unhindered circulation within the 

intricate network of capillaries, ensuring targeted delivery to specific anatomical sites[98-102]. One 
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notable approach involves de novo synthesis, where MOF substrate encapsulation and formation 

occur concomitantly, facilitating the immobilization of molecules surpassing the pore dimensions.  

 

 

 

 

 

 

Figure 4: (a) Insulin encapsulation IITI-3 and the (b) gelatin coating on insIITI-3; panels (c) and (d) show 
insulin release profiles from insIITI-3 and gel@insIITI-3 in stomach acid and SPC pH, respectively[137]. 
(Permission Granted). 

Beyond drug delivery, MOFs have garnered considerable attention in biosensing applications, 

capitalizing on their expansive specific surface areas and diverse pore geometries. Through various 

conjugation techniques, MOFs facilitate the design of biosensors capable of detecting small 

molecules, proteins, ions, cancer cells and nucleic acids with high specificity and sensitivity. 

Additionally, MOFs serve as promising nanozymes, mimicking the catalytic environments of 

natural enzymes and finding utility in enzymatic reactions critical for biosensing applications[101]. 

 

 

 

 

 

 

 

   

           Figure 5: Biomedical Application of MOF[103][104][105]. 
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In the domain of bioimaging, MOFs offer a multifaceted approach towards developing targeted 

platforms for various imaging modalities, including optical molecular imaging, magnetic 

resonance imaging (MRI) and X-ray computed tomography (CT) imaging[47]. By modulating 

imaging contrast agents, MOFs enable precise visualization of biological structures and processes, 

thereby enhancing diagnostic accuracy and therapeutic efficacy. 

In summary, the burgeoning field of MOF-based biomedical applications heralds a new era of 

innovation in healthcare delivery and disease management. With ongoing advancements in 

synthesis methodologies and material design, MOFs are poised to revolutionize drug delivery, 

biosensing, bioimaging, and biocatalysis[106].  

Chapter 2  

Past Work  

MOFs have garnered considerable attention as a promising platform for controlled drug 

delivery, disease diagnosis, and theranostic applications, which combine both diagnostic and 

therapeutic functionalities. This section delves into the diverse applications of MOFs across various 

diseases that pose significant threats to global health. 

2.1 Treatment of Cancer 

Cancer remains a paramount public health concern worldwide, accounting for millions of 

deaths annually[106]. It manifests as a genetic anomaly characterized by aberrant cell proliferation 

and metastasis, posing a substantial burden on healthcare systems globally. Consequently, 

extensive efforts across multidisciplinary research domains have been directed towards devising 

innovative and efficacious strategies for cancer treatment and diagnosis. In the realm of cancer 

diagnosis, MOFs have emerged as promising candidates. For instance, Kong et al.[107] explored the 

potential of a green-emission Zr(IV)-MOF (BUT-88) as a biosensing platform for breast cancer 

cells (MCF-7 cells), achieving enhanced detection precision for dual tumor biomarkers, MUC-1 

and miRNA-21. Their study exemplified the capability of MOF-based fluorescent nanoprobe 

technology to identify specific cancer biomarkers, facilitating early cancer detection with high 

sensitivity and specificity. 
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2.2. Treatment of Diabetes 

Diabetes, a multifaceted metabolic disorder, poses a formidable challenge to global public 

health. This chronic condition, characterized by inadequate insulin production or ineffective 

utilization of insulin[108-114], results in dysregulated blood glucose levels. The ramifications of 

diabetes extend far beyond glycemic control, encompassing a spectrum of complications that affect 

virtually every organ system in the body[111]. From microvascular complications like nephropathy 

and retinopathy to macrovascular complications like cardiovascular disease, diabetes exacts a 

heavy toll on individuals and healthcare systems worldwide. Recent research endeavours have 

explored innovative approaches to diabetes diagnosis, with a particular focus on non-invasive 

methods like breath analysis. Exhaled breath contains volatile organic compounds (VOCs), 

including acetone, which serve as potential biomarkers for diabetes[111,114]. MOFs have emerged as 

promising candidates for developing sensitive and selective sensors capable of detecting acetone 

in breath samples[115]. Effective management of diabetes hinges on precise monitoring of blood 

glucose levels, a task facilitated by advanced sensor technologies[118]. Electrochemical enzyme-

free sensors, empowered by MOFs, have emerged as front-runners in the quest for accurate and 

reliable glucose detection. In the realm of diabetes therapeutics, the quest for innovative drug 

delivery systems has led researchers to explore the untapped potential of MOFs. Recognizing the 

need for alternative insulin delivery methods, Chen et al.[119] embarked on a quest to harness the 

encapsulation capabilities of MOFs for oral insulin delivery. By ingeniously leveraging the unique 

physicochemical properties of MOFs, they engineered crystalline zirconium-based mesoporous 

frameworks capable of protecting insulin from gastric degradation while facilitating controlled 

release in the bloodstream[120-128,137]. 

2.3. Treatment of Alzheimer’s Disease 

Alzheimer’s disease (AD), the most common type of dementia globally, poses a significant 

public health challenge with profound socioeconomic implications[126]. Characterized by 

progressive cognitive decline, memory loss, and functional impairment, AD exacts a heavy toll on 

individuals and healthcare systems alike, particularly as life expectancy continues to rise. Mounting 

evidence suggests that dysregulation of metal ions such as Cu2+, Fe3+, Al3+, and Zn2+ may contribute 

to the pathogenesis of AD, underscoring the urgent need for innovative diagnostic and therapeutic 
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strategies [130-133]. MOF-based fluorescent biosensors have emerged as powerful tools for detecting 

aberrant metal ion levels implicated in AD pathophysiology [133,134]. These biosensors leverage the 

unique optical properties of MOFs to selectively bind and detect metal ions with high sensitivity 

and specificity, offering unprecedented insights into the molecular mechanisms underlying AD 

progression [135].  

2.4. Treatment of Ocular Diseases 

Ocular diseases represent a leading cause of vision impairment worldwide, posing 

significant challenges for both patients and clinicians. From glaucoma to macular degeneration, 

these conditions encompass a broad spectrum of disorders that can profoundly impact visual acuity 

and quality of life[136]. However, traditional ocular drug delivery methods are fraught with 

challenges, with only a fraction of administered drugs reaching their intended target tissues. 

MOFs have emerged as promising nanocarriers for drug delivery curing ocular diseases, offering 

enhanced biocompatibility, sustained release kinetics, and targeted delivery to intraocular tissues. 

By encapsulating therapeutic agents within the porous framework of MOFs, researchers have 

unlocked new possibilities for overcoming the limitations of conventional drug delivery systems 

and improving treatment outcomes for ocular diseases[136]. 

Overall, MOF-based sensing technologies hold great promise for the rapid and accurate detection 

of various diseases and infections, while MOF-based drug delivery systems offer innovative 

approaches to the treatment of these diseases and bacterial infections[136]. Continued research in 

this field is essential for the development of novel therapeutics and diagnostics to address the 

ongoing challenges posed by infectious and non-infectious diseases. 
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Chapter 3  

Experimental Section 

 

3.1. Materials 

All reagents were commercially available and were used without any further purification. 

5-hydroxyphthalic acid (98.00%) was bought from Alfa Aesar. Cu(NO3)2.3H2O (98.00%) and 

Curcumin (95.00%) were bought from Sisco Research Laboratories. Sodium hydroxide (NaOH) 

pellets were bought from Rankem. Potassium carbonate (K2CO3) (98.00%) was bought from 

Emplura. Ibuprofen (2-(4-Isobutylphenyl)propanoic acid) (99.92%) was bought from BLD 

Pharma. 2,6-Bis(bromomethyl)pyridine (>99.00%) was bought from TCI. Potassium hydroxide 

(KOH) pellets (85.00%) were bought from Aura. Ethanol (EtOH) (99.90%) was bought from CSS.  

 

3.2 Synthesis of MOF 

3.2.1 Synthesis of Diethyl 5-hydroxyphthalate 

 

 

              Scheme 1.1 

In a round bottom flask a solution of 5-hydroxyisophthalic acid (5 g) and conc. H2SO4 

(1.5 ml) was taken in anhydrous ethanol (35 ml) and stirred for 72 hours under refluxing. This 

solution was then allowed to cool at room temperature. After removal of the solvent under 

vacuum, the crude white product was dissolved in ice cold water and neutralized by sodium 
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carbonate. Acetonitrile was added to the product and heated to 80 ˚C for 5 more minutes. Product 

yield was found to be 4 g (80%) (scheme 1.1)[140].  

3.2.2 Synthesis of tetraethyl 5,5’-((pyridine-2,6 
diylbis(methylene))bis(oxy))diisophthalate 

 

      

 

 

 Scheme 1.2 

In a 250 ml round bottom flask 5-hydroxyisophthalic acid diethyl ester (0.377 g) and 

potassium carbonate (0.417 g) were taken in dry acetonitrile(40ml) and stirred for 30 minutes at 60 

˚C. This reaction was then treated with 2,6-bis(bromomethyl)pyridine (0.20 g) and the temperature 

was raised to 85 ˚C under inert atmosphere of nitrogen and was allowed to reflux for 24 hours. 

Whole mixture was then allowed to cool at room temperature and poured into ice cold water to 

obtain white solid which was then collected in filter paper and dried in open air. Product yield was 

found to be 0.41 g (68%) (scheme 1.2)[140].  

 

3.2.3 Synthesis of Linker (H4L) 

 

 

 

 

     Scheme 1.3 

The compound obtained as above (0.40 g) was hydrolysed by refluxing it with 6 N KOH 

solution (20 ml) for 24 hours. After cooling to 5 °C, the resulting solution was neutralized with 6 



 

37 
 

N HCl solution to obtain a white precipitate. It was collected and washed thoroughly with water 

and water dried. Product yield was found to be 320 mg (80%) (scheme 1.3)[140].  

3.2.4 Synthesis of IITI-3 

 

Scheme 1.4 

IITI-3 was synthesized by using a mixture of H4L (0.040 g), and Cu(NO3)2·3H2O (0.120 g) 

in a mixture of DMF (4 ml) and water(2 ml) and 0.2 ml of 1 M HCl solution. This solution was 

mixed in 25 ml round bottom flask and was stirred for 1 hour and the resulting solution was packed 

and heated under high pressure in a Teflon-lined autoclave to 90 °C for 48 hours and with 

subsequent cooling to room temperature at the rate of 1 °C/min. The blue crystals of IITI-3 were 

obtained. These crystals were continuously washed with water and acetone and air dried (yield = 

77%) (scheme 1.4)[140]. 

 

3.3 Drug Loading Experiments 

3.3.1 Activation of IITI-3 

IITI-3 was activated prior to the drug loading experiment to obtain more porous and 

solvent-free material. Solvent exchange experiment using acetone was performed daily two times 

a day for 5 days. Further, the solvent exchanged sample was heated at 130 °C under extremely high 

vacuum conditions for 9 hours. A change in colour of the MOF was seen from green to dark blue 

due to the production of more pores and solvent free MOF. Activated MOF IITI-3 has high pore 

diameter because of the metal bounded water molecules’ loss. (Figure 6). 
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    Figure 6: Activation of MOF 

3.3.2 Dual Drug Loading 

In a round bottom flask desired amount of drug that is 0.025 g of ibuprofen and 0.005 g of 

curcumin was taken in 20 ml of Methanol (30 wt% of IITI-3) and stirred for 30 minutes at room 

temperature. To this solution 0.1 g of IITI-3 was added and stirred at 450 rpm at room temperature 

for 24 hours. Solvent was evaporated after the completion of reaction and the sample of dual drug 

loaded IITI-3-D was washed 3 to 4 times with methanol. IITI-3-D (Figure 7) was analysed in IR, 

SEM and BET.  

 

 

 

 

         Figure 7: Dual drug (Ibuprofen and Curcumin) loaded MOF IITI-3-D 

 

3.3.3 Ibuprofen Loading (24 hours) 

In a test tube 0.01 g of IITI-3 was activated for 9 hours to which 3 ml of Ibuprofen solution 

(0.05 mg/ml) was poured and stirred at room temperature on 400 rpm. Samples have been taken 

after every 1 hour for 6 hours and then after 12 hours followed by the sample after 24 hours and 

were analysed using UV-Vis spectrometry. Linearity plots were plotted for the same. 
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3.3.4 Curcumin Loading (24 hours) 

In a test tube 0.01 g of IITI-3 was activated for 9 hours to which 3 ml of Curcumin solution 

(0.01 mg/ml) was poured and stirred at room temperature on 400 rpm. Samples have been taken 

after every 1 hour for 6 hours and then after 12 hours followed by the sample after 24 hours and 

were analysed using UV-Vis spectrometry. Linearity plots were plotted for the same. 

3.3.5 Ibuprofen Loading (72 hours) 

In a test tube 0.01 g of IITI-3 was activated for 9 hours to which 3 ml of Ibuprofen solution 

(0.05 mg/ml) was poured and stirred at room temperature on 400 rpm. Samples have been taken 

after every 24 hours for 3 days and then were analysed using UV-Vis spectrometry. Linearity plots 

were plotted for the same. 

3.3.6 Curcumin Loading (72 hours) 

In a test tube 0.01 g of IITI-3 was activated for 9 hours to which 3 ml of Curcumin solution 

(0.01 mg/ml) was poured and stirred at room temperature on 400 rpm. Samples have been taken 

after every 24 hours for 3 days and then were analysed using UV-Vis spectrometry. Linearity plots 

were plotted for the same. 

 

 

3.4 Drug Release Experiments 

3.4.1 Drug Release at 5.8 pH 

In a glass vial 10 mg drug loaded MOF was taken followed by the addition of 10 ml of a 

5.8 pH DI water solution. The solution was stirred at 200 rpm for 36 hours. 2 ml sample was taken 

at every 1 hour for 6 hours and then after 12 hours, 24 hours and 36 hours and simultaneously 2 ml 

of 5.8 pH DI water solution was poured to the existing solution.  

3.4.2 Drug Release at 7.4 pH 
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In a glass vial 10 mg drug loaded MOF was taken followed by the addition of 10 ml of a 

7.4 pH DI water solution. The solution was stirred at 200 rpm for 36 hours. 2 ml sample was taken 

at every 1 hour for 6 hours and then after 12 hours, 24 hours and 36 hours and simultaneously 2 ml 

of 7.4 pH DI water solution was poured to the existing solution.  
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Chapter 4  

Results and Discussion  

 

4.1 Characterization of Linker 

4.1.1 Mass Spectra of SM, LEA and LHA 

ESI-MS spectra characterized the synthesized compounds SM, LEA and LHA. SM shows 

a base peak at m/z = 239.0893 (in positive mode) (Figure 8), LEA shows a base peak at m/z = 

580.1878 (in positive mode) (Figure 9), and LHA shows a base peak at m/z = 466.0705 (in 

negative mode) (Figure 10). 

 

 

 

 

 

 

Figure 8: Mass spectrum of SM, ESI-MS (m/z) C12H14O5: Calculated for     [C12H14O5+H]: 239.0948; 

Found: 239.0893 

 

 

 

 

 

Figure 9: Mass spectrum of LEA, ESI-MS (m/z) C31H33NO10: Calculated for [C31H33NO10+H]: 580.2177; 

Found: 580.1878 
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Figure 10: Mass spectrum of LHA, ESI-MS (m/z) C23H13NO10: Calculated for    [C23H13NO10-H]: 

466.0769; Found: 466.0705 

 

4.1.2 NMR Spectra of LEA and LHA 

NMR data for SM, LEA, and LHA molecules matched well with their proposed 
structures. 1H NMR peaks in the δ 8.83-6.45 region correspond to the aromatic protons and a 
peak near 5.3ppm corresponds to the proton on secondary carbon next to O-atom. 13C NMR 
peaks in the δ 120-160 region corresponds to aromatic carbons, peak above 160 ppm corresponds 
to the carbonyl carbon and peaks below 77.16 ppm corresponds to secondary, primary and carbon 
next to O-atom. 

 

 

 

 

 

 

 

Figure 11: 1H NMR of LEA. 1H NMR (500 MHz, 298 K, CDCl3) δ 8.31 (t, J = 1.4 Hz, 2H), 7.87 (d, J = 
1.4 Hz, 4H), 7.79 (t, J = 7.8 Hz, 1H), 7.50 (d, J = 7.8Hz, 2H), 5.28 (s, 4H), 4.39 (q, J = 7.1 Hz, 8H), 1.40 (t, 
J = 7.1 Hz, 12H) ppm. 
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Figure 12: 13C NMR of LEA. 13C NMR (125 MHz, CDCl3) δ 165.6, 158.4, 156.1, 137.9, 132.4, 
123.6, 120.6, 120.1, 71.0, 61.57, 14.4 ppm 

 

 

 

 

 

 

 

 

 

 

Figure 13: 1H NMR of LHA. 1H NMR (500 MHz, 298 K, DMSO-d6) δ 8.10 (s, 2H), 7.91 (t, J = 

7.8 Hz, 1H), 7.75 (s, 4H), 7.52 (d, J = 7.7 Hz, 2H), 5.32 (s, 4H) ppm.  
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Figure 14: 13C NMR of LHA. 13C NMR (125 MHz, DMSO-d6) δ 166.5, 158.2, 155.9, 138.1, 133.2, 
122.7, 120.9, 11. 

 

 

 

 

4.2 Characterization of IITI-3 

To calculate the surface area and pore size distribution of IITI-3, the N2 sorption study is 

performed at 77 K. The BET surface area came out to be 730.902 m2/g and pore diameter as 

3.413 nm which confirms MOF to be both mesoporous and microporous. PXRD data confirms 

MOF to be crystalline in nature.  
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Figure 15: a) BET surface area analysis of IITI-3, b) BJH pore size distribution of IITI-3, c) PXRD data 
of IITI-3, d) Thermogravimetric analysis of IITI-3, e), f) SEM images of IITI-3. 

  

 

4.3 Drug Loading Experiments 

4.3.1 Data of Dual-drug Loading 

             To calculate the surface area and pore size distribution of IITI-3-D, the N2 sorption study 

is performed at 77 K. The BET surface area decreased from an area of 730.902 m2/g to 15.428 

m2/g and pore diameter from 3.413 nm to 3.392 nm confirms drugs are present on the surface as 

well as inside the pores. IR conforms the formation of new bonds and interactions. 
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Figure 16: a) BET surface area analysis of IITI-3-D, b) BJH pore size distribution of IITI-3-D, c) SEM 
images of IITI-3-D, d) IR spectra of IITI-3 and IITI-3-D. 
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4.3.2 Data of Ibuprofen Loading 

UV-Vis data confirms that the loading have not occurred.  

 

Figure 17: a) The relation between concentration and absorbance of ibuprofen, b) Concentration of 

ibuprofen loaded at 24 hours, 48 hours, and 72 hours, c) UV-Vis spectra of ibuprofen during drug 

loading, d) Linearity plot of ibuprofen drug loading for 48 hours, e) Linearity plot of ibuprofen drug 

loading for 72 hours. 

 



 

48 
 

4.3.3 Data of Curcumin Loading 

UV-Vis data confirms that the loading occurred between 24 hours and 48 hours. 

  

Figure 18: a) The relation between concentration and absorbance of curcumin, b) Concentration of 

curcumin loaded at 24 hours, 48 hours, and 72 hours, c) UV-Vis spectra of curcumin during drug loading, 

d) Linearity plot of curcumin drug loading for 48 hours, e) Linearity plot of curcumin drug loading for 

72 hours. 

4.4 Data of Drug Release Experiments 
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 Figure 19: Relation between % drug release and time in 5.8 and 7.4 pH DI water solution after Curcumin 
drug release experiment. 
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Chapter 5  

Conclusion and Future Scope  

Our study underscores the promising role of copper-based MOFs, particularly IITI-3, in 

biomedical applications, particularly drug delivery. Through a comprehensive characterization 

process involving PXRD, TGA, BET, IR, and UV techniques, we have demonstrated the efficacy 

of IITI-3 as a versatile carrier for drug molecules. Our findings highlight its high loading 

capacities, precision tunability, and ability to accommodate multiple drugs simultaneously. 

Moreover, our investigation into the delivery of Ibuprofen and Curcumin reveals intriguing 

insights. While both drugs could be loaded into IITI-3 concurrently, selective encapsulation was 

observed, with only Curcumin being individually encapsulated. This selectivity suggests the 

potential for targeted drug delivery strategies utilizing IITI-3, particularly in pH-responsive 

environments such as tumor microenvironments. 

Furthermore, our pH-dependent release studies, conducted under physiological and second 

intestine pH, further validate the suitability of IITI-3 for targeted drug administration. The pH-

responsive behavior exhibited by IITI-3 holds promise for applications where precise control over 

drug release is essential, particularly in conditions mimicking tumor microenvironments. 

In essence, the findings presented here contribute to the growing body of evidence supporting the 

utility of MOFs in biomedical applications, paving the way for future advancements in targeted 

drug, protein, gene delivery and therapeutic interventions.  
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