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Abstract

The shallow learning nature of hyperplane-based classifiers and randomized

neural networks has played a crucial role in e↵ectively tackling classification

problems. These approaches have made significant strides in addressing the

challenges associated with classifying data by utilizing simple decision bound-

aries and randomization techniques. Researchers have introduced various vari-

ants of hyperplane-based classifiers and randomized neural networks (RNNs)

to improve classification performance by employing diverse machine-learning

algorithms.

The least-square twin support vector machine (LSTSVM) is a hyperplane-

based classifier that stands out as one of the state-of-the-art models. However,

LSTSVM encounters several challenges, including sensitivity to noise and out-

liers, overlooking the SRM principle, and instability in resampling. Moreover,

its computational complexity and reliance on matrix inversions hinder the

e�cient processing of large datasets. As a remedy to the aforementioned chal-

lenges of LSTSVM, we incorporate the concept of granular computing into

LSTSVM, and in Chapter 3, we propose the novel granular ball least square

twin support vector machine (GBLSTSVM). GBLSTSVM is trained using

granular balls instead of original training data points. The granular balls are

defined by their center and radius. The core of a granular ball is found at its

center, where it encapsulates all the pertinent information of the data points

that lie within the ball of a specified radius. GBLSTSVM has improved robust-

ness against the e↵ects of resampling and reduced vulnerability to noise and

outliers. Further, we propose the novel large-scale granular ball least square

twin support vector machine (LS-GBLSTSVM) to incorporate the SRM prin-

ciple in GBLSTSVM through the inclusion of regularization terms. The pro-

posed LS-GBLSTSVM model demonstrates exceptional e�ciency, scalability

for large datasets, and resilience against label noise and outliers.
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The random vector functional link (RVFL) is a randomized neural net-

work that has been extensively studied in recent times. However, due to

its shallow learning nature, RVFL often fails to consider all the relevant in-

formation available in a dataset. Additionally, it overlooks the geometrical

properties of the dataset. To address the limitations of RVFL, in Chapter 4,

we propose a novel graph random vector functional link based on two-view

learning (GRVFL-2V) model. The proposed GRVFL-2V model is trained on

multiple views, incorporating the concept of multiview learning (MVL), and

it also incorporates the geometrical properties of all the views using the graph

embedding (GE) framework. The synergy between RVFL networks, MVL,

and GE framework enables our proposed model to achieve the following: i) ef-

ficient learning: by leveraging the topology of RVFL, our proposed model can

e�ciently capture complex nonlinear relationships within the multi-view data,

facilitating e�cient and accurate predictions; ii) comprehensive representation:

combining features from diverse perspectives enhances the proposed model’s

ability to capture complex patterns and relationships within the data, thereby

improving the model’s overall generalization performance; and iii) structural

awareness: by employing the GE framework, our proposed model leverages the

original data distribution of the dataset by naturally exploiting both intrinsic

and penalty subspace learning criteria.
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Chapter 1

Introduction

The continuous advancements in technology and the availability of powerful

computing resources has played a significant role in the development of ad-

vanced classification algorithms. This has enabled researchers to experiment

with complex models and techniques, leading to the emergence of new models

that o↵er improved performance and scalability in handling diverse data types

and structures. The classification problems lie at the core of various applica-

tions across diverse domains, including image recognition [1], spam detection

[2], medical diagnosis [3], sentiment analysis [4], and more.

At its essence, classification involves building models that can learn from

labeled training data to accurately predict the class labels of unseen or new

data instances. The goal is to develop algorithms that can generalize well,

meaning they can make accurate predictions on unseen data beyond the train-

ing set. Mathematically, the classification problem can be expressed as:

y = f(x, w) 2 Y, (1.1)

where the learning algorithm f assigns a label y to a new observation x and

w is the parameter of the learning algorithm. Y signifies the set of categories

or class labels. Depending on the cardinality of Y, the classification problem

can be categorized as either binary or multiclass. In binary class problems,

there are two distinct categories, whereas in multiclass problems, more than

two categories are present.

In this thesis, we discuss two state-of-the-art classification models: sup-

port vector machine (SVM) [5], which is a hyperplane-based classifier, and

random vector functional link (RVFL) [6, 7] network, which is a randomized

neural network (RNN) [8]. In the following section, we provide a concise

overview of these models. We also outline the motivations and objectives that
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drive this thesis. Additionally, we highlight the contributions made within this

research and conclude with a structured outline of the thesis content.

1.1 Background

Shallow machine learning models have become indispensable tools for clas-

sification tasks due to their simple architecture, e↵ectiveness, and computa-

tional e�ciency. In contrast to deep learning models with complex archi-

tectures and numerous hidden layers, shallow algorithms o↵er a more e�cient

learning paradigm for pattern recognition and classification. Shallow machine-

learning models that have been extensively studied and proven e↵ective include

hyperplane-based classifiers like SVM, twin support vector machine (TSVM)

[9], and least square twin support vector machine (LSTSVM) [10]. Addition-

ally, randomized neural networks such as RVFL, extreme learning machine

(ELM) [11], and broad learning systems (BLS) [12], and their variants are also

widely recognized as successful shallow machine learning models.

SVM is a powerful model in machine learning that uses kernels to de-

termine the best hyperplane between classes in classification tasks precisely.

SVM provides a deterministic classification result. Hence, its application

can be found in various domains such as health care [13], anomaly detection

[14], web mining [15], electroencephalogram (EEG) signal classification [16],

Alzheimer’s disease diagnosis [17], and so on. SVM implements the structural

risk minimization (SRM) principle and, hence, shows better generalization

performance. SVM solves a convex quadratic programming problem (QPP)

to find the optimal separating hyperplane.

However, the e↵ectiveness and e�ciency of SVM are limited when dealing

with large datasets due to the increase in computational complexity. Further,

SVM is sensitive to noise, especially along the decision boundary, and is un-

stable to resampling. To mitigate the e↵ects of noise and outliers in data

points, fuzzy SVM (FSVM) [18] was proposed. The incorporation of pinball

loss in SVM [19] led to a better classifier that has the same computational

complexity as SVM but is insensitive to noise and stable to resampling. Fur-

thermore, in [20], the authors proposed a novel general TSVM with pinball

loss (Pin-GTSVM) for solving classification problems. To overcome the issue

of the computational complexity of SVM, some non-parallel hyperplane-based

classifiers have been proposed, such as generalized eigenvalue proximal SVM

(GEPSVM) [21] and twin SVM (TSVM) [9].
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The GEPSVM and TSVM generate non-parallel hyperplanes that po-

sition themselves closer to the samples of one class while maximizing their

distance from samples belonging to the other class. GEPSVM solves two gen-

eralized eigenvalue problems, and its solutions are determined by selecting the

eigenvectors corresponding to the smallest eigenvalue. However, TSVM solves

two smaller QPPs, which makes its learning process approximately four times

faster than SVM [9]. Also, TSVM shows better generalization performance

than GEPSVM [9]. The e↵ectiveness of TSVM may decrease due to its vul-

nerability to noise and outliers, potentially leading to unsatisfactory results.

Moreover, its substantially high computational complexity and reliance on ma-

trix inversions pose significant challenges, especially when dealing with large

datasets, thereby impeding its real-time applications. Also, TSVM does not

adhere to the SRM principle, making the model susceptible to overfitting.

Kumar and Gopal [10] proposed least squares TSVM (LSTSVM). Unlike

TSVM, LSTSVM incorporates an equality constraint in the primal formulation

instead of an inequality constraint. This modification allows LSTSVM to train

much faster than TSVM, as it solves a system of linear equations to determine

the optimal nonparallel separating hyperplanes. However, despite its success in

reducing training time, the methodology of LSTSVM involves the computation

of matrix inverses, which limits its applicability to large datasets. Additionally,

the LSTSVM’s ability to learn decision boundaries can be significantly a↵ected

by the presence of noisy data and outliers.

Some recent advancements in TSVM and LSTSVM include capped l2,p-

norm metric-based robust LSTSVM for pattern classification [22], the Lapla-

cian lp norm LSTSVM [23], sparse solution of least- squares twin multi-class

support vector machine using l0 and lp-norm for classification and feature se-

lection [24], the inverse free reduced universum TSVM for imbalanced data

classification [25], symmetric LINEX loss TSVM for robust classification and

its fast iterative algorithm [26], and intuitionistic fuzzy weighted least squares

TSVM (IFW-LSTSVM) [27]. Recent advancements in loss function theory for

SVM and TSVM include the integration of a novel RoBoSS loss function in

[28] and the incorporation of an asymmetric wave loss function in [29]. These

improvements aim to enhance the robustness, sparsity, and smoothness of the

loss functions used in SVM and TSVM models. These advancements con-

tribute to the ongoing progress in SVM, TSVM, and LSTSVM techniques. A

comprehensive overview of the various versions of TSVM can be found in [30].

Furthermore, in [31], the authors have conducted a thorough assessment of
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twin SVM-based classifiers on UCI datasets. They have examined the e↵ec-

tiveness of 8 di↵erent variants of TSVM-based classifiers, evaluating a total of

187 classifiers across 90 UCI benchmark datasets.

The artificial neural networks (ANNs) belong to the class of non-parametric

learning methods that are used for estimating or approximating functions that

may depend on a large number of inputs and outputs [32]. Inspired by the

topology of biological neural networks, ANNs have found applications in di-

verse domains, such as image recognition [33], Alzheimer’s disease diagnosis

[34], stock price prediction [35], brain age prediction [36], and so on. The e�-

cacy of ANNs depends upon several factors, including the quality and quantity

of data, computational resources, and the e↵ectiveness of underlying algo-

rithms [37]. The ANNs are trained by optimizing a cost function, which quan-

tifies the disparity between model predictions and actual observations. The

adjustment of the network’s weights and biases is facilitated through back-

propagation, employing an iterative technique known as the gradient descent

(GD) method. To enhance the agreement between predicted outcomes and ac-

tual observations, the optimization process requires fine-tuning the network’s

weights and biases. Nevertheless, GD-based algorithms come with inherent

limitations, including slow convergence [38], di�culty in achieving global min-

ima [39] and heightened sensitivity to the selection of learning rate and the

point of initialization.

Randomized neural networks (RNNs) [40] have emerged as a unique solu-

tion to overcome the di�culties faced in training ANNs using gradient descent

(GD) methods. Unlike conventional ANNs, RNNs adopt a distinct approach

where the network’s weights and biases are randomly selected from a specified

range and remain constant throughout the training process. The determina-

tion of output layer parameters in RNNs is achieved through a closed-form

solution [41], as opposed to iterative-based optimization techniques commonly

employed in traditional ANNs. The prominent examples of RNNs include the

random vector functional link (RVFL) network [6, 42] and the extreme learn-

ing machines (ELM) [11]. RVFL has garnered significant attention within the

realm of RNNs due to its distinctive features, including direct connections

between input and output layers that improve generalization performance, a

straightforward architecture aligned with Occam’s Razor principle and PAC

learning theory [43], a reduced number of parameters, and the universal ap-

proximation capability [44]. Furthermore, the direct connections help to reg-
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ulate the randomness in RVFL [32, 45], while the output parameters are com-

puted analytically through methods like pseudo-inverse or least-square tech-

niques.

Various enhancements have been done to optimize the learning capa-

bilities of RVFL, with notable advancements such as the sparse pre-trained

random vector functional link (SP-RVFL) network [46] and the discriminative

manifold RVFL neural network (DM-RVFLNN) [47]. The SP-RVFL network

utilizes diverse weight initialization methods to improve the generalization

performance of standard RVFL models, while the DM-RVFLNN integrates

manifold learning with a soft label matrix to enhance the model’s discrimina-

tive capacity by increasing the margin between samples from di↵erent classes.

In addition, techniques such as manifold learning based on an in-class similar-

ity graph have been employed to enhance the compactness and similarity of

samples within the same class. To address noise and outliers, Cui et al. [48]

proposed an RVFL-based approach that incorporates a novel feature selection

(FS) technique, enhancing the e�ciency and robustness of RVFL through the

augmented Lagrangian method. Furthermore, the integration of a kernel func-

tion into RVFL has led to the development of the kernel exponentially extended

RVFL network (KERVFLN) [49], demonstrating the adaptability and poten-

tial of RVFL in various machine learning applications. Recent advancements

in RVFL theory include RVFL+, kernel RVFL+ (KRVFL+) [50], incremen-

tal learning paradigm with privileged information for RVFL (IRVFL+), and

improved fuzziness-based RVFL [51, 52, 53, 54], showcasing the ongoing evo-

lution and versatility of RVFL models in addressing diverse machine-learning

challenges, including multilabel classification tasks using RNNs. Some recent

advancements in RVFL theory include neuro-fuzzy RVFL for classification and

regression problems [45], kernel ridge regression-based randomized network for

brain age classification and estimation [55], etc.

1.2 Motivation

The concept of “large-scale priority” aligns with the natural information-

processing mechanism of the human brain [56]. Granulation, or breaking down

information into smaller, more manageable parts, is a fundamental aspect of

the learning process. Our brains are wired to absorb and process information

in layers, starting with a broader concept and then delving into the specifics

as needed. This approach allows us to grasp the big picture first and then
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gradually fill in the details, leading to a more comprehensive understanding.

Drawing inspiration from the brain’s functioning, granular computing explores

problems at various levels of detail. Coarser granularity emphasizes important

components, thereby enhancing the e↵ectiveness of learning and resistance to

noise. Conversely, finer granularity o↵ers intricate insights that deepen knowl-

edge.

In contrast, a majority of machine learning models rely on pixels or data

points for training at the lowest possible resolution. Consequently, they are

often more susceptible to outliers and noise. This approach lacks the e�-

ciency and scalability of the brain’s adaptable granulating capabilities. The

novel classifier based on granular computing and SVM [57] was developed to

incorporate the concept of granular balls. This classifier utilizes hyper-balls to

partition datasets into di↵erent sizes of granular balls [58]. As highlighted in

[59], this approach, which imitates cognitive processes observed in the human

brain, o↵ers a scalable, dependable, and e�cient solution within the realm

of granular computing by introducing larger granularity sizes. However, this

transition may compromise the accuracy of fine details. Conversely, finer gran-

ularity enhances the focus on specific features, potentially improving precision

but also introducing challenges in terms of robustness and e�ciency in noisy

scenarios. Consequently, striking the right balance between granularity and

size becomes imperative. Researchers persistently explore novel applications,

refine existing methodologies [60, 61, 62], and bridge interdisciplinary gaps to

harness the potential of granular computing across diverse domains.

Recently, the granular ball SVM (GBSVM) [63] has been proposed, which

integrates the concepts of SVM and granular computing. GBSVM exhibits

good performance in e↵ectively managing datasets that are contaminated with

noise and outliers. Motivated by the robustness and e�ciency demonstrated

by the GBSVM, in Chapter 3, we incorporate the concept of granular comput-

ing into the LSTSVM and propose a novel model called the granular ball least

square twin support vector machine (GBLSTSVM). This integration aims to

address the inherent drawbacks and complexities associated with LSTSVM.

GBLSTSVM uses granular balls as input to construct non-parallel separat-

ing hyperplanes by solving a system of linear equations like in the case of

LSTSVM. The granular balls are characterized by their center and radius.

The essence of a granular ball lies in its center, which encapsulates all the rele-

vant information of the data points that lie within the ball. In comparision to

LSTSVM, GBLSTSVM provides enhanced e�ciency, a heightened resistance
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to noise and outliers, robustness to resampling, and is trained using a sub-

stantially reduced number of training instances, thereby significantly reducing

the training time. However, GBLSTSVM lacks the SRM principle, which can

lead to the potential risk of overfitting. To address this, we further propose

the novel large-scale GBLSTSVM (LS-GBLSTSVM) model. LS-GBLSTSVM

incorporates the regularization terms in its primal form of the optimization

problem which eliminates the need for matrix inversions and also helps to

mitigate the risk of overfitting.

In various real-world applications, a multitude of characteristics is often

observed, requiring representation through multiple feature sets. This leads to

the prevalence of multiview data, where information from various measurement

methods is collected to comprehensively capture the nuances of each example

rather than relying solely on a single feature set. For instance, a picture can be

described by color or texture features, and a person can be identified by face or

fingerprints [64]. Web pages serve as a quintessential example of multimodal

data, where one feature vector encapsulates the words within the webpage text,

while another feature vector captures the words present in the links pointing to

the webpage from other pages. While individual views may su�ce for specific

learning tasks, there is potential for enhancement by amalgamating insights

from multiple data representations [65]. Multiview learning (MVL), a well-

established collection of techniques, holds significant potential as multi-modal

datasets become increasingly accessible [66]. MVL models are often developed

under the supervision of the consensus or complimentary principles [67] to en-

sure the e↵ectiveness of an algorithm. The consensus principle aims to enhance

the performance of classifiers for each view by maximizing consistency across

multiple viewpoints. Conversely, the complementarity principle emphasizes

the importance of providing complementary data from diverse perspectives to

o↵er a comprehensive and accurate description of the object.

The integration of the graph embedding (GE) [68] framework into the

RVFL model has played a crucial role in enhancing the learning process of

RVFL [53, 54]. By incorporating the GE framework, the RVFL model is able

to capture the geometric relationships present within the dataset, which were

previously overlooked [42]. To incorporate the geometrical relationships within

a dataset, Malik et al. [53] introduced the graph-embedded intuitionistic fuzzy

weighted RVFL (GE-IFWRVFL) model. This model not only integrates the

intuitionistic fuzzy (IF) membership scheme to handle noisy data and outliers

but also preserves the geometric characteristics through the GE framework.
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The incorporation of IF and GE has proven to enhance the resilience and

performance of the RVFL model significantly. Recent advancements in RVFL

have seen the utilization of GE framework in extended graph-embedded RVFL

(EGERVFL) and graph-embedded intuitionistic fuzzy RVFL network for class

imbalance learning (GE-IFRVFL-CIL) as proposed in [54] and [69] respectively.

The experimental results from [53, 54, 69], along with studies in [42], strongly

support the notion that the performance of RVFL is greatly improved through

the integration of the GE framework. This emphasizes the importance of

considering the geometric attributes of a dataset in the learning process to

enhance the overall performance of RVFL.

RVFL is categorized as a shallow learning algorithm due to its single

hidden layer, which may potentially hinder its ability to fully grasp complex

patterns and subtle nuances in a dataset. While RVFL may excel in specific

classification tasks, its shallow architecture could limit its capability to accu-

rately interpret intricate patterns or extract detailed features from the dataset.

The simplicity of RVFL’s architecture o↵ers advantages in terms of compu-

tational e�ciency and ease of implementation. However, when confronted

with datasets containing intricate patterns or nuanced relationships among

variables, more sophisticated learning frameworks are necessary to e↵ectively

capture the underlying complexities inherent in the dataset. To mitigate the

limitations imposed by the shallow learning nature of RVFL, presenting the

same information from multiple perspectives can o↵er a solution. By training

RVFL on multiple views of the data, it becomes possible to compensate for its

inherent shallow learning structure and enhance its ability to comprehend in-

tricate patterns and subtle nuances within the dataset. Hence, leveraging the

multiview learning (MVL) framework can significantly enhance the learning

e�ciency of RVFL.

Recognizing the importance of a dataset’s inherent geometrical charac-

teristics and MVL, in Chapter 4, we propose the novel graph random vec-

tor functional link based on two-view learning (GRVFL-2V). The GRVFL-2V

method incorporates the intrinsic and penalty graphical representations of mul-

tiview datasets within the GE framework, thereby capturing the geometrical

properties of the multiview data. By integrating the MVL and GE framework

in RVFL, the learning capabilities of RVFL are greatly enhanced, allowing

it to e↵ectively tackle classification challenges. In order to ensure simplicity

and e↵ectiveness, the proposed GRVFL-2V model incorporates two views at

a time. This strategy allows for a balance between complexity and perfor-
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mance, as it utilizes the complementary information from these two views to

enhance e↵ectiveness while still maintaining simplicity. By leveraging informa-

tion from multiple views, GRVFL-2V significantly improves the classification

performance of RVFL by integrating both geometric and discriminative infor-

mation from both views using intrinsic and penalty-based subspace learning

criteria within the GE framework.

1.3 Objectives

The following are the objectives of this Thesis:

[1] To present a literature review on granular computing and multiview learn-

ing and to provide a brief theory of LSTSVM, GBSVM, RVFL, and the

graph embedding framework.

[2] To develop a novel classification model incorporating granular computing

in LSTSVM and a novel RVFL model for classification based on multiview

learning with a graph embedding framework.

[3] To evaluate the computational complexity and statistical significance of

the proposed models.

1.4 Contributions of the Thesis

Here, we give a summary of the contribution of the thesis. The main contri-

butions of the thesis are as follows:

[1] We propose the novel GBLSTSVM by incorporating granular computing

in LSTSVM. The GBLSTSVM is trained by feeding granular balls as in-

put instead of data points for constructing optimal non-parallel separating

hyperplanes. The use of granular balls reduces the training time by a

substantial amount, amplifies the model’s performance, and elevates the

robustness against noise and outliers.

[2] We propose the novel LS-GBLSTSVM by implementing the SRM principle

through the inclusion of regularization terms in the primal formulation of

GBLSTSVM. LS-GBLSTSVM does not require matrix inversion, making

it suitable for large-scale problems. In addition, LS-GBLSTSVM o↵ers

robust overfitting control, noise and outlier resilience, and improved gen-

eralization performance.
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[3] We present the meticulous mathematical frameworks for both GBLSTSVM

and LS-GBLSTSVM on linear and Gaussian kernel spaces. The formula-

tion integrates the centers and radii of all granular balls used in train-

ing into the LSTSVM model. These models excel in capturing complex

data patterns and relationships through sophisticated nonlinear transfor-

mations.

[4] We conducted the experiments of our proposed GBLSTSVM and LS-

GBLSTSVM models using 34 UCI [70] and KEEL [71] datasets with and

without label noise. Our comprehensive statistical analyses demonstrate

the significantly superior generalization abilities of our proposed models

compared to LSTSVM and the other baseline models. Further, we per-

formed experiments on NDC [72] datasets of sample sizes ranging from

10,000 to 5 million to determine scalability. The results demonstrated that

our proposed models surpass the baseline models in terms of accuracy,

e�ciency, robustness, and scalability.

[5] Furthermore, we present a generic framework that integrates random vector

functional link (RVFL) with multiview learning (MVL) and graph embed-

ding (GE) [73] framework. This novel model is called the graph random

vector functional neural network based on two-view learning (GRVFL-2V).

[6] The proposed GRVFL-2V model is developed upon the foundation of the

RVFL architecture, which is known for its simplicity and e�ciency. How-

ever, it goes beyond the limitations of shallow learning of RVFL by inte-

grating the concept of multiview learning (MVL). By leveraging multiple

views, the model aims to enhance classification performance using multiple

perspectives of the dataset.

[7] The proposed GRVFL-2V model integrates geometrical information from

multiview data by embedding intrinsic and penalty subspace learning (SL)

criteria within the GE framework. It employs local Fisher discriminant

analysis (LFDA) [74] and graph regularization parameters to e↵ectively

utilize the GE framework.

[8] To trade o↵ the information from multiple views, our proposed mathemat-

ical formulation of GRVFL-2V includes a coupling term. This coupling

term helps to mitigate errors between the views, resulting in improved

generalization performance.
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[9] Our experiments for the proposed GRVFL-2V encompassed 27 UCI [70]

and KEEL [71] datasets, 50 datasets from Corel5k1, and 45 datasets from

AwA2. Through comprehensive statistical analyses, we demonstrate the

superior generalization performance of our proposed model when compared

to baseline models.

1.5 Organization of the Thesis

The work in this thesis has been divided into five main chapters. The brief

description of each chapter is given below:

[1] In Chapter 2, we provide a comprehensive literature review on granular

computing and multiview learning. Additionally, we delve into the math-

ematical formulations of several key models: the least squares twin sup-

port vector machine (LSTSVM), the granular ball support vector machine

(GBSVM), the random vector functional (RVFL) neural network, and the

graph embedding (GE) framework.

[2] In Chapter 3, we introduce the granular ball least squares twin support vec-

tor machine (GBLSTSVM) and the large-scale least squares twin support

vector machine (LS-GBLSTSVM). We also present experimental results

and conduct statistical analyses of the proposed models.

[3] In Chapter 4, we propose the graph random vector functional link model

based on two-view learning (GRVFL-2V). Additionally, we provide com-

prehensive experimental results and statistical analyses of the proposed

model.

[4] In Chapter 5, we summarize the contributions of this thesis and outline

potential future research directions.

1https://wang.ist.psu.edu/docs/related/
2http://attributes.kyb.tuebingen.mpg.de
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Chapter 2

Literature Review

Within this chapter, a thorough examination of granular computing and multi-

view learning (MVL) is provided, o↵ering a comprehensive literature overview.

Furthermore, a concise and su�cient mathematical depiction is presented for

the least square twin support vector machine (LSTSVM), granular ball sup-

port vector machine (GBSVM), random vector functional link (RVFL) neural

network, and graph embedding (GE) framework.

2.1 Granular Computing

In 1996, Lin and Zadeh proposed the concept of “granular computing”. It

becomes computationally expensive to process every data point in the space

when dealing with large datasets. The objective of granular computing is

to reduce the number of training data points required for machine learning

models. The core idea behind granular computing is to use granular balls to

completely or partially cover the sample space. This captures the spirit of

data simplification while maintaining representativeness during the learning

process. Granular balls, characterized by two parametric simple representa-

tions, a center o and a radius d, are the most appropriate choice for e↵ectively

handling high-dimensional data. Given a granular ball (GB) containing the

datapoints {x1, x2, . . . , xp}, where xi 2 R
1⇥N , the center o of a GB is the cen-

ter of gravity for all sample points in the ball, and d is equal to the average

distance from o to all other points in GB. Mathematically, they can be cal-

culated as: o = 1
p

Pp
i=1 xi and d = 1

p

Pp
i=1 ||xi � o||. The average distance is

utilized to calculate the radius d as it remains una↵ected by outliers and aligns

appropriately with the distribution of the data. The label assigned to a granu-

lar ball is determined by the labels of the data points that have the maximum
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Determine the
quality  of each individual

granular ball.

        
        The quality of each       
       granular ball satisfies 
            the specified 
                 criteria.

Proceed to further divide
those granular balls that
do not meet the quality
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Treat the entire
dataset as a singular

granular entity.

Partition the granular
entity into m individual

granular balls.

Cease the splitting
process and proceed

with convergence.

YES

NO

Figure 2.1: Pictorial representation of the process of granular ball generation.

frequency within the ball. To quantitatively assess the amount of splitting

within a granular ball, the concept of “threshold purity” is introduced. This

threshold purity represents the percentage of the majority of samples within

the granular ball that possess the same label. The number of granular balls

generated on T is given by the following optimization problem:

min �1 ⇥
m

Pk
j=1 |GBj|

+ �2 ⇤ k,

s.t. quality(GBj) � ⇢,

where �1 and �2 are weight coe�cients. ⇢ is the threshold purity. |.| represents

the cardinality of a granular ball, andm and k represent the number of samples

in T and the number of granular balls generated on T , respectively. The quality

of each granular ball is adaptive [75]. Initially, the whole dataset is considered

as a single granular ball, which fails to represent the dataset’s distribution

accurately and exhibits the lowest level of purity. In the cases where the

purity of this granular ball falls below the specified threshold, it is necessary

to divide it multiple times until all sub-granular balls achieve a purity level
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equal to or higher than the threshold purity. As the purity of the granular

balls increases, their alignment with the original dataset’s data distribution

improves. Fig. 1 depicts the procedure of granular ball generation.

2.2 Least Square Twin Support Vector Ma-

chine

Suppose matrix A 2 R
m1⇥N and B 2 R

m2⇥N contains all the training data

points belonging to the +1 and �1 class, respectively. The primal problem of

LSTSVM [10] can be expressed as:

min
w1,b1

1

2
||Aw1 + e1b1||

2 +
c1
2
||q1||

2,

s.t. � (Bw1 + e2b1) + q1 = e2,

and

min
w2,b2

1

2
||Bw2 + e2b2||

2 +
c2
2
||q2||

2,

s.t. (Aw2 + e1b2) + q2 = e1,

where q1 and q2 are slack variables. Substituting the equality constraint into

the primal problem, we get

min
w1,b1

1

2
||Aw1 + e1b1||

2 +
c1
2
||Bw1 + e2b1 + e2||

2, (2.1)

and

min
w2,b2

1

2
||Bw2 + e2b2||

2 +
c2
2
||Aw2 + e1b2 � e1||

2. (2.2)

Taking gradient of (2.1) with respect to w1 and b1 and solving, we get"
w1

b1

#
= �

h
F 0F + 1

c1
E 0E

i�1

F 0e2. (2.3)

Similarly, for (2.2), we get"
w2

b2

#
=

h
E 0E + 1

c2
F 0F

i�1

E 0e1, (2.4)

where E =
h
A e1

i
and F =

h
B e2

i
.

Once the optimal values of (w1, b1) and (w2, b2) are obtained using (2.3)

and (2.4) respectively. The categorization of a new input data point x 2 R
1⇥N

into either the +1(class-1) or �1(class-2) class can be determined as follows:

Class(x) = argmin
i2{1,2}

⇣
kwix + bik

kwik

⌘
.
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2.3 Granular Ball Support Vector Machine

The basic idea of GBSVM [63] is to mimic the classical SVM [5] using granular

balls during the training process instead of data points. This makes GBSVM

e�cient and robust in comparison to SVM. The parallel hyperplanes in GB-

SVM are constructed using supporting granular balls GBj having support

center oj and support radius dj. Fig. 2 depicts the construction of inseparable

GBSVM using supporting granular balls.

Figure 2.2: Inseperable GBSVM model having support granular balls GBj,
support centers oj, and support radii dj.

The GBSVM model can be expressed as:

min
w,b,⇠j

1

2
||w||2 + C

kX

j=1

⇠j,

s.t. yj(woj + b)� ||w||dj � 1� ⇠j,

⇠j � 0, j = 1, 2, 3, ..., k. (2.5)
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The dual of GBSVM formulation (2.5) is:

max
↵
�

1

2
||w||2 +

kX

j=1

↵j,

s.t.
kX

j=1

↵jyj = 0,

0  ↵j  C, j = 1, 2, 3, ..., k,

where ↵j’s are Lagrange multipliers.

2.4 Random Vector Functional Link Neural

Network

The RVFL model consists of an input layer, a hidden layer, and an output

layer. The input and output layers are connected through the hidden layer,

which acts as a bridge between them. Notably, the original features are also

directly passed to the output layer because of the direct connections between

the input and output layers. During the training process, the weights connect-

ing the input and hidden layers, as well as the biases at the hidden layer, are

randomly generated. Once generated, these parameters remain fixed and do

not require any adjustments during the training phase. In terms of determin-

ing the output weight matrix connecting the input layer and the hidden layer

to the output layer, the least squares or pseudo-inverse methods are employed,

providing an analytical solution.

Consider a training matrix X with dimensions l ⇥ p. Let W1 be a weight

Figure 2.3: The architecture of RVFL model.

matrix with dimensions p⇥h, where the values are randomly generated from a
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uniform distribution within the range of [�1, 1] and B1 2 R
l⇥h (all the columns

are identical) be the randomly generated bias matrix. To obtain the hidden

layer matrix, also called the randomized feature layer, denoted as H1, we apply

a nonlinear activation function � to the matrix XW1 +B1. Consequently, the

hidden layer matrix H1 can be expressed as:

H1 = �(XW1 +B1).

Therefore, the matrix H1 can be represented as:

H1 =

2

64
�(x1w1 + b1) · · · �(x1wh + bh)

...
...

...

�(xpw1 + b1) · · · �(xpwh + bh)

3

75 ,

where xi 2 R
1⇥p and wj 2 R

p⇥1 represent the ith row of X and the jth

column of W1, respectively. The term bj represents the bias of the jth hidden

node.

Let H2 be a concatenated matrix of features from the input and hidden

layers, represented as H2 =
h
X H1

i
2 R

l⇥(p+h). Here, X represents the input

features, and H1 represents the output of the hidden layer. Let W2 denote the

weights matrix connecting the concatenation of input (X) and hidden (H1)

layers to the output layer, with dimensions W2 2 R
(p+h)⇥2. The predicted

output matrix Ypred 2 R
l⇥2 of the RVFL is calculated using the following

matrix equation:

H2W2 = Ypred. (2.6)

The optimization problem of (2.6) is given as:

min
W2

1

2
||W2||

2
2 +

c

2
||⇠||22

s.t. H2W2 � Ytrue = ⇠, (2.7)

where c is a regularization parameter.

The solution of (2.7) is given by:

(W2)min =

8
<

:
(H2

tH2 +
1
cI)

�1H2
tYtrue, (p+ h)  l

H2
t(H2H

t
2 +

1
cI)

�1Ytrue, l < (p+ h).

2.5 Graph Embedding

The concept of graph embedding (GE) framework [73] aims to capture the

underlying graphical structure of data in a vector space. In this framework, a

given input matrix X is utilized to define the intrinsic graph G
int = {X,�int

}
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and the penalty graph G
pen = {X,�pen

} for the purpose of subspace learning

(SL) [68]. The similarity weight matrix �int
2 R

l⇥l incorporates weights that

represent the pairwise relationships between the vertices in X. Conversely, the

penalty weight matrix �pen
2 R

l⇥l assigns penalties to specific relationships

among the graph vertices. The optimization problem for graph embedding is

formulated as follows:

v⇤ = argmin
tr(v0

t
X

t
UXv0)=d

X

k 6=l

||v0
txk � v0

txl||�
int
kl ,

= argmin
tr(v0

t
X

t
UXv0)=d

tr(v0
tX t

LXv0), (2.8)

where tr(·) is the trace operator and d is a constant value. L = D � �int
2

R
l⇥l is a representation of the Laplacian matrix of the intrinsic graph G

int,

with the diagonal elements of D being defined as Dkk =
P

l �
int
kl . Moreover,

U = L
p = D

p
��pen serves as the Laplacian matrix of the penalty graph G

pen.

The matrix v0 is associated with the projection matrix. Equation (2.8) can be

simplified to a generalized eigenvalue problem as shown in the form [76]:

Gints = �Gpens,

where Gint = X t
LX and Gpen = X t

UX. This simplification implies that the

transformation matrix will be constructed from the eigenvectors of the matrix

G = G�1
penGint, where G integrates the intrinsic and penalty graph connections

of the data samples.

2.6 Literature Review on Multiview Learning

Multiview learning (MVL) is an emerging area of research that holds sig-

nificant promise in enhancing the generalization performance across various

learning tasks. By integrating multiple feature sets, each o↵ering unique and

complementary insights, MVL has the potential to significantly improve over-

all model performance [77, 78, 79]. The abundance of diverse data types in

practical applications has led to the development of MVL. In real-world sce-

narios, samples from di↵erent perspectives may reside in distinct spaces or

exhibit vastly di↵erent distributions, often due to significant disparities be-

tween views [80, 81]. However, conventional approaches typically address such

data by employing a cascade strategy, wherein multiview data is amalgamated

into a single-view format through the concatenation of heterogeneous feature

spaces into a homogeneous one. However, this cascading approach overlooks

the distinctive statistical properties of each view and is plagued by the curse
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of dimensionality problems. One notable advantage of MVL is that it can

enhance the performance of a standard single-view approach by leveraging

manually generated multiple views.

In MVL, a distinct function is developed for each view, with the over-

all goal of constructing a unified function to optimize all individual functions

jointly. This approach enhances the generalization performance of the frame-

work across multiple views. According to Zhao et al. [77], MVL models

can be categorized into three main groups: co-training style algorithms, co-

regularization style algorithms, and margin consistency style algorithms. Co-

training style algorithms focus on enhancing mutual agreement among diverse

views. Conversely, co-regularization style algorithms aim to minimize dis-

crepancies during the learning process. MVL learning has been successfully

implemented in various hyper-plane based classifiers, such as SVM-2K [82],

multiview twin support vector machine [83] (MvTSVM), etc.

MVL has demonstrated its e↵ectiveness across various application sce-

narios, including enhancing image classification, annotation, and retrieval per-

formance [84], predicting financial distress [85], forecasting multiple stages of

Alzheimer’s Disease progression [86], and identifying product adoption inten-

tions from social media data [87]. MVL is now widely used in many various

domains and research endeavors.
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Chapter 3

Enhancing Robustness and

E�ciency of Least Square Twin

SVM via Granular Computing

This chapter introduces two novel models for binary classification problems in

both linear and non-linear spaces: the granular ball least square twin support

vector machine (GBLSTSVM) and the large-scale granular ball least square

twin support vector machine (LS-GBLSTSVM). Additionally, the algorithms

for these models are presented, and the computational complexity of the pro-

posed models is thoroughly discussed. We also provide a comprehensive ex-

perimental and statistical analyses of the proposed models.

3.1 The Proposed Granular Ball Least Square

Twin Support Vector Machine

In this section, we introduce a novel GBLSTSVM to tackle the binary classi-

fication problem. We propose the use of granular balls that encompass either

the complete sample space or a fraction of it during the training process. These

granular balls, derived from the training dataset, are coarse and represent only

a small fraction of the total training data points. This coarse nature renders

our proposed model less susceptible to noise and outliers.

By leveraging the granular balls, we aim to generate separating hyper-

planes that are nonparallel and can e↵ectively classify the original data points.

In the construction of optimal separating hyperplanes, we aim to utilize the

maximum information stored in all the training data points while simultane-
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ously decreasing the data points required to find optimal separating hyper-

planes.

Figure 3.1: Granular ball least square twin support vector machine model
having two non-parallel hyperplanes f1 and f2.

Hence, we incorporate both the centers and radii of all the granular

balls generated through granular computing into the primal formulation of

LSTSVM. The integration of granular balls in the training process not only

enhances the LSTSVM’s robustness against noise and outliers but also signif-

icantly reduces the training time, o↵ering enhanced robustness and reduced

computational complexity. The geometrical depiction of GBLSTSVM is shown

in Fig. 3.1.

3.1.1 Linear GBLSTSVM

The proposed optimization problem of linear GBLSTSVM is given by:

min
w1,b1,q1

1

2
||Cw1 + e1b1||

2 +
c1
2
||q1||

2

s.t. � (Dw1 + e2b1) + q1 = e2 +R� (3.1)

and

min
w2,b2,q2

1

2
||Dw2 + e2b2||

2 +
c2
2
||q2||

2

s.t. (Cw2 + e1b2) + q2 = e1 +R+, (3.2)
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where q1 and q2 are slack variables and c1 and c2 are tunable parameters.h
w1; b1

i
and

h
w2; b2

i
are the hyperplane parameters. In equations (3.1)

and (3.2), the incorporation of centers and radii of granular balls is represented

using matrices C and D, along with column vectors R+ and R�, respectively.

To solve (3.1), we substitute the equality constraint into the primal problem

min
w1,b1

1

2
||Cw1 + e1b1||

2 +
c1
2
||Dw1 + e2b1 + e2 +R�

||
2.

Taking gradient with respect to w1 and b1 and equating to 0, we get

C 0(Cw1 + e1b1) + c1D
0(Dw1 + e2b1 + e2 +R�) = 0

and

e01(Cw1 + e1b1) + c1e
0
2(Dw1 + e2b1 + e2 +R�) = 0.

Converting the system of linear equations into matrix form and solving for w1

and b1 we get"
D0D D0e2
e02D m2

#"
w1

b1

#
+

1

c1

"
C 0C C 0e1
e01C m1

#"
w1

b1

#
+

"
D0e2 +D0R�

m2 + e02R
�

#
= 0,

where e01e1 = m1 and e02e2 = m2.

=)

"
w1

b1

#
=�

"
D0D + 1

c1
C 0C D0e2 +

1
c1
C 0e1

e02D + 1
c1
e01C m2 +

1
c1
m1

#�1 "
D0e2 +D0R�

m2 + e02R
�

#
,

=)

"
w1

b1

#
=�

""
D0

e02

# h
D e2

i
+ 1

c1

"
C 0

e01

# h
C e1

i#�1 "
D0 D0

e02 e02

#"
e2
R�

#
,

=)

"
w1

b1

#
=�

h
F 0F + 1

c1
E 0E

i�1

Fe2, (3.3)

where

E =
h
C e1

i
, F =

h
D e2

i
, F =

"
D0 D0

e2
0 e2

0

#
, and e2 =

"
e2
R�

#
.

Solving (3.2) in a similar way, we get

"
w2

b2

#
=

h
E 0E + 1

c2
F 0F

i�1
"
C 0e1 + C 0R+

m1 + e01R
+

#
,

"
w2

b2

#
=

h
E 0E + 1

c2
F 0F

i�1

Ee1, (3.4)

where E =

"
C 0 C 0

e01 e01

#
and e1 =

"
e1
R+

#
.

25



Once the optimal values of w1, b1 and w2, b2 are obtained. The catego-

rization of a new input data point x 2 R
1⇥N into either the +1(class-1) or

�1(class-2) class can be determined as follows:

Class(x) = argmin
i2{1,2}

⇣
kwix + bik

kwik

⌘
. (3.5)

3.1.2 Nonlinear GBLSTSVM

To generalize our proposed model to the nonlinear case, we introduce the map

x� = �(x) : RN
! H, where H represents a Hilbert space. We define T � =

{x� : x 2 T}, where T denotes the training dataset. The granular balls that are

generated on the set T � are denoted by G
� = {((o1

�, d1
�), y1), ((o2

�, d2
�), y2),

· · · , ((ok
�, dk

�), yk)}, where k represents the number of generated granular

balls. Let the matrices C� and D�, along with column vectors R�
+ and R�

�,

represent the features of the centers and radii of the granular balls belonging

to the positive and negative class, respectively.

The optimization problem for nonlinear GBLSTSVM is given as:

min
w1,b1,q1

1

2
||C�w1 + e1b1||

2 +
c1
2
||q1||

2,

s.t. � (D�w1 + e2b1) + q1 = e2 +R�
�, (3.6)

and

min
w2,b2,q2

1

2
||D�w2 + e2b2||

2 +
c2
2
||q2||

2,

s.t. (C�w2 + e1b2) + q2 = e1 +R�
+. (3.7)

The solutions of (3.6) and (3.7) can be derived similarly as in the linear case.

The solutions are: "
w1

b1

#
= �

h
H 0H + 1

c1
G0G

i�1

He2,

and "
w2

b2

#
=

h
G0G+ 1

c2
H 0H

i�1

Ge1,

where

H =
h
D� e2

i
, G =

h
C� e1

i
,

H =

"
D�0 D�0

e2
0 e2

0

#
, G =

"
C�0 C�0

e1
0 e1

0

#
,

e1 =

"
e1
R�

+

#
, e2 =

"
e2
R�

�

#
.
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The classification of data points to class +1 or �1 is done similarly to the

linear case of the GBLSTSVM model.

3.2 The Proposed Large Scale Granular Ball

Least Square Twin Support Vector Ma-

chine

Granular computing significantly reduces the number of training instances,

leading to a substantial reduction in computational requirements. However,

the scalability of the GBLSTSVM may decrease when confronted with large

datasets due to its reliance on matrix inversion for solving the system of linear

equations. Additionally, like LSTSVM, GBLSTSVM lacks the SRM prin-

ciple. To address these issues, we introduce a regularization term into the

primal formulation of GBLSTSVM. This inclusion results in an additional

equality constraint in the primal formulation, e↵ectively eliminating the ne-

cessity for matrix inversions in obtaining optimal nonparallel hyperplanes in

GBLSTSVM. This removal of matrix inversions significantly reduces the com-

putational complexity of LS-GBLSTSVM, making it well-suited for handling

large datasets. Moreover, the integration of the regularization terms imple-

ments the SRM principle in GBLSTSVM. Now, we give the formulation of

linear LS-GBLSTSVM.

3.2.1 Linear LS-GBLSTSVM

The optimized primal problem of linear LS-GBLSTSVM is given by:

min
w1,b1,q1,⌘1

c3
2
(||w1||

2 + b21) +
1

2
||⌘1||

2 +
c1
2
||q1||

2,

s.t. ⌘1 = Cw1 + e1b1,

� (Dw1 + e2b1) + q1 = e2 +R�, (3.8)

and

min
w2,b2,q2,⌘1

c4
2
(||w2||

2 + b22) +
1

2
||⌘2||

2 +
c2
2
||q2||

2,

s.t. ⌘2 = Dw2 + e2b2,

(Cw2 + e1b2) + q2 = e1 +R+. (3.9)
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Introducing Lagrange multipliers ↵ 2 R
k1⇥1 and � 2 R

k2⇥1 in (3.8), we get

L =
c3
2
(||w1||

2 + b21)+
1

2
||⌘1||

2 +
c1
2
||q1||

2 + ↵0(⌘1 � Cw1 � e1b1)

+ �0(�(Dw1 + e2b1)� e2 �R� + q1). (3.10)

Applying the K.K.T. necessary and su�cient conditions for (3.10) we obtain

the following:
@L

@w1
= c3w1 � C 0↵�D0� = 0, (3.11)

@L

@b1
= c3b1 � e01↵� e02� = 0, (3.12)

@L

@q1
= c1q1 + e02� = 0, (3.13)

@L

@⌘1
= ⌘1 + ↵ = 0, (3.14)

⌘1 = Cw1 + e1b1,

�(Dw1 + e2b1) + q1 = e2 +R�.

From (3.11) and (3.12), we get"
w1

b1

#
=

1

c3

"
C 0 D0

e01 e02

#"
↵

�

#
. (3.15)

Substituting (3.13), (3.14), and (3.15) in (3.10) and simplifying, we get the

dual of (3.8):

max
↵,�
�

1

2

⇣
↵0 �0

⌘
Q1

⇣
↵0 �0

⌘0
� c3�

0(e2 +R�)

where Q1 =

"
CC 0 + c3I1 CD0

DC 0 DD0 + c3
c1
I2

#
+ E. (3.16)

Here, E is the matrix of ones of appropriate dimensions, and I1 and I2 are the

identity matrices. Similarly, the Wolfe Dual of (3.9) is:

max
�,✓
�

1

2

⇣
�0 ✓0

⌘
Q2

⇣
�0 ✓0

⌘0
� c4✓

0(e1 +R+),

where Q2 =

"
DD0 + c4I2 DC 0

CD0 CC 0 + c4
c2
I1

#
+ E. (3.17)

Then w2, b2 is given by: "
w2

b2

#
= �

1

c4

"
D0 C 0

e02 e01

#"
�

✓

#
. (3.18)

28



The categorization of a new input data point x 2 R
1⇥N into either the +1(class-

1) or �1(class-2) class can be determined as follows:

Class(x) = argmin
i2{1,2}

⇣
kwix + bik

kwik

⌘
. (3.19)

3.2.2 Nonlinear LS-GBLSTSVM

The optimization problem of nonlinear LS-GBLSTSVM is given as follows:

min
w1,b1,q1,⌘1

c3
2
(||w1||

2 + b21) +
1

2
||⌘1||

2 +
c1
2
||q1||

2,

s.t. ⌘1 = C�w1 + e1b1,

� (D�w1 + e2b1) + q1 = e2 +R�
�, (3.20)

and

min
w2,b2,q2,⌘1

c4
2
(||w2||

2 + b22) +
1

2
||⌘2||

2 +
c2
2
||q2||

2,

s.t. ⌘2 = D�w2 + e2b2,

(C�w2 + e1b2) + q2 = e1 +R�
+. (3.21)

Calculating Lagrangian as in the Linear LS-GBLSTSVM, we get"
w1

b1

#
=

1

c3

"
C�0 D�0

e1
0 e2

0

#"
↵

�

#

The dual of the optimization problem (3.20) and (3.21) are,

max
↵,�
�

1

2

⇣
↵0 �0

⌘
Q1

⇣
↵0 �0

⌘0
� c3�

0(e2 +R�
�),

where, Q1 =

"
C�C�0 + c3I1 C�D�0

D�C�0 D�D�0 + c3
c1
I2

#
+ E, (3.22)

and

max
�,✓
�

1

2

⇣
�0 ✓0

⌘
Q2

⇣
�0 ✓0

⌘0
� c4✓

0(e1 +R�
+),

where, Q2 =

"
D�D�0 + c4I2 D�C�0

C�D�0 C�C�0 + c4
c2
I1

#
+ E.

Then w2, b2 is given by: "
w2

b2

#
= �

1

c4

"
D�0 C�0

e2
0 e1

0

#"
�

✓

#

To solve the optimization problem of types (3.16), we use Sequential Minimal

Optimization (SMO) [88]. The classification of test data points to class +1 or

�1 is done in the same manner as in the linear case of the LS-GBLSTSVM

model. The algorithm of the proposed GBLSTSVM and LS-GBLSTSVM

model is given in Algorithm 1.
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Algorithm 1 Linear GBLSTSVM and LS-GBLSTSVM Model Algorithm

1: Initialize GB as the entire dataset T and set G as an empty collection:
GB = T , G = {}.

2: Initialize Object as a collection containing GB: Object = {GB}.
3: for j = 1 to |Object| do
4: if pur(GBj) < ⇢ then
5: Split GBj into GBj1 and GBj2 using 2-means clustering.
6: Update Object with the newly formed granular balls: Object  

GBj1, GBj2.
7: else
8: Calculate center oj and radius dj of GBj:
9: oj =

1
nj

Pnj

i=1 xi, where xi 2 GBj and nj is the number of samples

in GBj.
10: dj =

1
nj

Pnj

i=1 ||xi � oj||.

11: Assign label yj to GBj based on the majority class samples within
GBj.

12: Add GBj = {((oj, dj), yj)} to G.
13: end if
14: end for
15: if Object 6= {} then
16: Repeat steps 3-14 for further splitting.
17: end if
18: Generate granular balls: G = {((oj, dj), yj), j = 1, 2, . . . , k}, where k is

the number of granular balls.
19: For GBLSTSVM, compute w1, b1, w2, and b2 using (3.3) and (3.4) and

for LS-GBLSTSVM, solve (3.16) and (3.17) to obtain ↵, �, �, and ✓, then
compute w1, b1, w2, and b2 using (3.15) and (3.18).

20: Classify testing samples into class +1 or �1 using (3.5) or (3.19).
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3.3 Computational Complexity

We initiate the computational analysis by treating the training dataset T as

the initial granular ball set (GB). This set GB undergoes a binary split using

the 2-means clustering algorithm, initially resulting in computational com-

plexity of O(2m), where m is the total number of training data points. In

subsequent iterations, if both resultant granular balls remain impure, they are

further divided into four granular balls, maintaining a maximum computa-

tional complexity of O(2m) per iteration. This iterative process continues for

a total of ! iterations. Consequently, the overall computational complexity of

generating granular balls is approximately O(2m!) or less, depending on the

purity of the generated granular balls and the number of iterations required.

Suppose that m1 is the number of +1 labeled data samples and m2 is

the number of �1 labeled data samples with m = m1 + m2. The LSTSVM

model requires the calculation of two matrix inverses of order (m + 1). How-

ever, using the Sherman-Morrison-Woodbury (SMW) formula [89], the calcu-

lation involves solving three inverses of reduced dimensions. Therefore, in the

LSTSVM model, the time complexity includes two inversions of size O(m1
3)

and one inversion of size O(m2
3) ifm1 < m2. Conversely, ifm1 � m2, the com-

plexity involves two inversions of size O(m2
3) and one inversion of size O(m1

3).

GBLSTSVM computes the inverses of two matrices with order (k+1), where k

represents the total number of granular balls generated on a training dataset T .

Hence, the total time complexity of the GBLSTSVM model is approximately

less than or equal to O(2m!) + O(k3). Given that ! represents the number

of iterations, it follows that ! is considerably smaller than m, and also, k is

significantly less than m. Thus, O(2m!)+O(k3)⌧ O(m1
3)+O(m2

3). Hence,

the computational complexity of GBLSTSVM is substantially lower than that

of LSTSVM.

The computational complexity of the SMO algorithm is O(k) to O(k2.2).

Therefore, the complexity of each optimization problem in the LS-GBLSTSVM

model falls approximately between O(2m!) +O(k) and O(2m!) +O(k2.2)⌧

O(m1
3)+O(m2

3). Therefore, the computational complexity of LS-GBLSTSVM

is considerably lower than that of LSTSVM.
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3.4 Experimental Results and Discussions

In this section, we assess the e�cacy of the proposed GBLSTSVM and LS-

GBLSTSVM models. We evaluate their performance against LSTSVM [10]

and various other baseline models over UCI [70] and KEEL [71] benchmark

datasets with and without label noise to the ensure comprehensive testing.

Furthermore, we conduct experiments on NDC datasets [72]. Moreover, we

provide a sensitivity analysis of the hyperparameters and granular ball com-

puting parameters.

3.4.1 Experimental Setup

To evaluate the performance of the GBLSTSVM and LS-GBLSTSVM models,

a series of experiments are conducted. These experiments are carried out on a

PC with an Intel(R) Xeon(R) Gold 6226R processor running at 2.90GHz and

128 GB of RAM. The PC is operating on Windows 11 and utilizes Python

3.11. To solve the dual of QPP in GBSVM, the “QP solvers” function from

the CVXOPT package is employed. The dataset is randomly split, with 70%

samples are used for training and 30% are for testing purposes. The hy-

perparameters are tuned using the grid search method and five-fold cross-

validation.The hyperparameters ci (i = 1, 2, 3, 4) were tuned within the range

{10�5, 10�4, · · · , 105}. For the nonlinear case, a Gaussian kernel is utilized,

defined as K(xi, xj) = exp( �1

2�
2 ||xi � xj||

2), where � varied within the range

{2�5, 2�4, · · · , 25}. In the proposed LS-GBLSTSVM model, the values of c1
and c2 are set to be equal, as well as the values of c3 and c4, for both linear

and nonlinear cases.

3.4.2 Experiments on Real World UCI and KEEL Datasets

on Linear Kernel

In this subsection, we conduct extensive statistical analyses to compare the

proposed GBLSTSVM and LS-GBLSTSVM models with LSTSVM [10] along

with several other baseline models, namely SVM [5], TSVM [9], and GBSVM

[63]. To solve the optimization problem associated with GBSVM, we employ

the PSO algorithm. Our experimental investigation encompasses diverse sce-

narios, encompassing both linear and nonlinear cases, and involves meticulous

numerical experimentation.

We conduct experiments on 34 UCI [70] and KEEL [71] benchmark
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Table 3.1: Average accuracy and average rank of the baseline models and the
proposed models over UCI and KEEL datasets with Linear kernel.

Noise SVM [5] TSVM [9] GBSVM [63] LSTSVM [10] GBLSTSVM† LS-GBLSTSVM†

Average ACC

0% 81.58 71.52 73.71 86.67 88.26 86.79
5% 80.65 81.26 77.25 85.33 87.50 85.59
10% 81.70 82.83 76.63 84.82 87.47 85.50
15% 80.03 80.17 73.89 84.12 86.04 84.93
20% 80.21 80.55 75.76 83.79 86.09 83.85

Average Rank

0% 3.88 5.26 5.15 2.59 1.62 2.50
5% 4.46 4.37 4.97 2.94 1.71 2.56
10% 4.40 3.65 4.99 3.10 1.93 2.94
15% 4.24 4.22 5.29 2.74 1.68 2.84
20% 4.29 4.19 5.16 2.72 1.71 2.93

† represents the proposed model.

datasets. Table 3.12 shows the detailed experimental results of every model

over each dataset. All the experimental results discussed in this subsection

are obtained at a 0% noise level for both linear and Gaussian kernels. The

average accuracy (ACC) and average rank of the linear case are presented in

Table 3.1. The average ACC of the GBLSTSVM model is 88.26%, while the

LS-GBLSTSVM model achieves an average ACC of 86.79%. On the other

hand, the average ACC of the SVM, TSVM, GBSVM, and LSTSVM models

are 81.58%, 71.52%, 73.71%, and 86.67%, respectively. In terms of average

ACC, our proposed GBLSTSVM and LS-GBLSTSVM models outperform the

baseline SVM, TSVM, GBSVM, and LSTSVM models. To further evaluate

the performance of our proposed models, we employ the ranking method. In

this method, each model is assigned a rank for each dataset, with the best-

performing model receiving the lowest rank and the worst-performing model

receiving the highest rank. The average rank of a model is calculated as the

average of its ranks across all datasets. If we consider a set of M datasets,

where l models are evaluated on each dataset, we can represent the position

of the sth model on the tth dataset as rts. In this case, the average rank of

the sth model is calculated as Rs = 1
M

PM
t=1 r

t
s. The average rank of SVM,

TSVM, GBSVM, and LSTSVM models are 3.88, 5.26, 5.15, and 2.59, respec-

tively. On the other hand, the average rank of the proposed GBLSTSVM and

LS-GBLSTSVM models are 1.62 and 2.50, respectively. Based on the average

rank, our proposed models demonstrate a superior performance compared to

the baseline models. This indicates that our proposed models exhibit better

generalization ability.

To assess the statistical significance of the proposed models, we employ

the Friedman test [90]. The purpose of this test is to assess the presence of
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significant disparities among the compared models by examining the average

ranks assigned to each model. By evaluating the rankings, we can determine

if there are statistically significant di↵erences among the given models. The

null hypothesis in this test assumes that all models have the same average

rank, indicating an equivalent level of performance. The Friedman test fol-

lows the chi-squared distribution (�2
F ) with (l � 1) degrees of freedom and is

given by �2
F = 12M

l(l+1)

hP
s Rs

2
�

l(l+1)
2

4

i
. The Friedman statistic FF is given by

FF = (M�1)�
2
F

M(l�1)��
2
F
, where, F -distribution has (l�1) and (l�1)⇥(M�1) degrees

of freedom. For l = 6 and M = 34, we get �2
F = 110.03 and FF = 60.54 at

5% level significance. From the statistical F -distribution table, we find that

FF (5, 165) = 2.2689. Since 60.54 > 2.2689, we reject the null hypothesis, in-

dicating a significant statistical di↵erence among the compared models. To

Table 3.2: Wilcoxon-signed rank test of the baseline models w.r.t. the proposed
GBLSTSVM over UCI and KEEL data with the Linear kernel.

Model R+ R� p-value Null Hypothesis
SVM [5] 465 0 0.000001819 Rejected
TSVM [9] 496 0 0.00000123 Rejected
GBSVM [63] 561 0 0.0000005639 Rejected
LSTSVM [10] 294.5 30.5 0.0004013 Rejected

Table 3.3: Wilcoxon-signed rank test of the baseline models w.r.t. the proposed
LS-GBLSTSVM over UCI and KEEL datasets with Linear kernel.

Model R+ R� p-value Null Hypothesis
SVM [5] 452 13 0.000006632 Rejected
TSVM [9] 489 7 0.000002435 Rejected
GBSVM [63] 527 1 0.0000009169 Rejected
LSTSVM [10] 221.5 156.5 0.4419 Not Rejected

further establish the statistical significance of our proposed GBLSTSVM and

LS-GBLSTSVM models with the baseline models, we conduct the Wilcoxon

signed rank test [90]. This test calculates the di↵erences in accuracy between

pairs of models on each dataset. These di↵erences are then ranked in ascending

order based on their absolute values, with tied ranks being averaged. Subse-

quently, the sum of positive ranks (R+) and the sum of negative ranks (R�)

are computed. The null hypothesis in this test typically assumes that there

is no significant di↵erence between the performances of the models, meaning

that the median di↵erence in accuracy is zero. However, if the di↵erence be-

34



tween R+ and R� is su�ciently large, indicating a consistent preference for

one model over the other across the datasets. If the resulting p-value from the

test is less than 0.05, then the null hypothesis is rejected. The rejection of the

null hypothesis signifies that there exists a statistically significant di↵erence

in performance between the compared models. Table 3.2 presents the results,

demonstrating that our proposed GBLSTSVM model outperforms the base-

line SVM, TSVM, GBSVM, and LSTSVM models. Furthermore, Table 3.3

illustrates that the proposed LS-GBLSTSVM model exhibits superior perfor-

mance compared to the SVM, TSVM, and GBSVMmodels. The Wilcoxon test

strongly suggests that the proposed GBLSTSVM and LS-GBLSTSM models

possess a comprehensive statistical advantage over the baseline models.

Moreover, we employ a pairwise win-tie-loss sign test. This test is conducted

under the assumption that both models are equal and each model wins on M
2

datasets, where M denotes the total number of datasets. To establish statis-

tical significance, the model must win on approximately M
2 +1.96

p
M
2 datasets

over the other model. In cases where there is an even number of ties between

the compared models, these ties are evenly distributed between the models.

However, if the number of ties is odd, one tie is disregarded, and the remain-

ing ties are divided among the specified models. In our case, with M = 34, if

one of the models achieves a minimum of 22.71 wins, it indicates a significant

distinction between the models. The results presented in Table 3.4 clearly

show that our proposed models have outperformed the baseline models in the

majority of the UCI and KEEL datasets.

Table 3.4: Pairwise win-tie-loss test of proposed GBLSTSVM and baseline
models on UCI and KEEL datasets with linear kernel

SVM [5] TSVM [9] GBSVM [63] LSTSVM [10] GBLSTSVM
TSVM [9] [3, 1, 30]
GBSVM [63] [5, 3, 26] [19, 0, 15]
LSTSVM [10] [25, 4, 5] [29, 5, 0] [31, 1, 2]
GBLSTSVM [30, 4, 0] [31, 3, 0] [33, 1, 0] [21, 9, 4]
LS-GBLSTSVM [27, 4, 3] [30, 3, 1] [31, 1, 2] [15, 7, 12] [3, 11, 20]

wherein
⇥
x y z

⇤
, x signifies no. of wins, y no. of draws, and z no. of losses.
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3.4.3 Experiments on Real World UCI and KEEL Datasets

on Gaussian Kernel

Table ?? demonstrates that our proposed GBLSTSVM and LS-GBLSTSVM

models outperform the baseline models in Gaussian kernel space in most of

the datasets. Table 3.5 presents the average accuracy (ACC) and average

rank of the proposed GBLSTSVM and LS-GBLSTSVM models, as well as the

baseline models using the Gaussian kernel. Our proposed GBSLSTVM and

LS-GBLSTSVM models achieve an average accuracy of 83.64% and 84.55%,

respectively, which is superior to the baseline models. Additionally, the average

rank of our proposed GBLSTSVM and LS-GBLSTSVM models is 2.90 and

2.84, respectively, indicating a lower rank compared to the baseline models.

This suggests that our proposed models exhibit better generalization ability

than the baseline models.

Table 3.5: Average accuracy and average rank of the baseline models and the
proposed models over UCI and KEEL datasets with Gaussian kernel.

Noise SVM [5] TSVM [9] GBSVM [63] LSTSVM [10] GBLSTSVM† LS-GBLSTSVM†

Average ACC

0% 75.47 82.40 78.20 76.89 83.64 84.55
5% 76.02 81.07 78.42 75.03 82.67 82.62
10% 75.49 80.00 79.21 74.97 83.06 82.68
15% 77.52 82.05 80.00 75.79 84.05 83.15
20% 76.63 81.93 77.86 77.17 83.11 82.65

Average Rank

0% 4.32 3.24 3.99 3.72 2.90 2.84
5% 4.28 3.44 4.04 3.68 2.81 2.75
10% 4.16 3.66 3.93 3.68 2.69 2.88
15% 3.91 3.44 4.28 3.78 2.49 3.10
20% 4.04 3.04 4.49 3.60 2.85 2.97

† represents the proposed model.

Table 3.6: Wilcoxon-signed rank test of the baseline models w.r.t. the proposed
GBLSTSVM over UCI and KEEL datasets with Gaussian kernel.

Model R+ R� p-value Null Hypothesis
SVM [5] 421 75 0.0007234 Rejected
TSVM [9] 290 238 0.6335 Not Rejected
GBSVM [63] 377 184 0.08628 Not Rejected
LSTSVM [10] 226 50 0.007777 Rejected

Furthermore, we conduct the Friedman test [90] and Wilcoxon signed

rank test [90] for the Gaussian kernel. For l = 6 and M = 34, we obtained

�2
F = 16.6279 and FF = 3.5777 at a significance level of 5%. Referring to

the statistical F -distribution table, we find that FF (5, 165) = 2.2689. Since
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Table 3.7: Wilcoxon-signed rank test of the baseline models w.r.t. the proposed
LS-GBLSTSVM over UCI and KEEL datasets with Gaussian kernel.

Model R+ R� p-value Null Hypothesis
SVM [5] 435 93 0.00143 Rejected
TSVM [9] 332 164 0.1018 Not Rejected
GBSVM [63] 409 152 0.02218 Rejected
LSTSVM [10] 334 101 0.01213 Rejected

Table 3.8: Pairwise win-tie-loss test of proposed and baseline models on UCI
and KEEL datasets with Gaussian kernel

SVM [5] TSVM [9] GBSVM [63] LSTSVM [10] GBLSTSVM
TSVM [9] [22, 4, 8]
GBSVM [63] [17, 1, 16] [9, 4, 21]
LSTSVM [10] [17, 11, 6] [15, 1, 18] [18, 0, 16]
GBLSTSVM [22, 5, 7] [18, 2, 14] [22, 1, 11] [14, 15, 5]
LS-GBLSTSVM [22, 5, 7] [19, 3, 12] [21, 1, 12] [17, 8, 9] [14, 8, 12]

wherein
⇥
x y z

⇤
, x signifies no. of wins, y no. of draws, and z no. of losses.

3.5777 > 2.2689, we reject the null hypothesis. Consequently, there exists a

significant statistical di↵erence among the compared models. Moreover, the

Wilcoxon signed test presented in Table 3.6 for GBLSTSVM and Table 3.7 for

LS-GBLSTSVM demonstrate that our proposed models possess a significant

statistical advantage over the baseline models. The pairwise win-tie-loss re-

sults presented in Table 3.8 further emphasize the superiority of our proposed

models over the baseline models.

3.4.4 Experiments on Real World UCI and KEEL Datasets

with Added Label Noise on Linear and Gaussian

Kernel

The proposed GBTSVM and LS-GBTSVM models are experimentally evalu-

ated using UCI and KEEL benchmark datasets. To assess their performance,

label noise is introduced at varying levels of 5%, 10%, 15%, and 20%. The

results, presented in Table 3.12 and Table 3.13 demonstrate the e↵ectiveness of

these models compared to baseline models in both linear and nonlinear cases.

Throughout the evaluations, the GBLSTSVM and LS-GBLSTSVM models

consistently outperformed the baseline models. The proposed GBLSTSVM

demonstrates a superior average ACC compared to the baseline models, with
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an improvement of up to 3% when increasing the label noise from 5% to

20% for the linear kernel. Similarly, our proposed LS-GBLSTSVM has a bet-

ter average ACC than the baseline models with linear kernel. The average

ACC of LS-GBLSTSVM at noise levels of 5%, 10%, 15%, and 20% are 85.59,

85.50, 84.93, and 83.85, respectively, which is higher than all baseline mod-

els. Additionally, the proposed models outperform the baseline models in

terms of average rank, even when considering various levels of label noise. For

the Gaussian kernel, our proposed GBLSTSVM has up to 3% better average

ACC, and LS-GBLSTSVM has up to 2% better average ACC compared to

baseline models on increasing the levels of label noise from 5% to 20%. Also,

our proposed models have a lower average rank than the baseline models in

increasingly noisy conditions as well. This can be attributed to the incorpora-

tion of granular balls within these models, which exhibit a coarser granularity

and possess the ability to mitigate the e↵ects of label noise. The key feature of

these granular balls is their strong influence of the majority label within them,

e↵ectively reducing the impact of noise points from minority labels on the clas-

sification results. This approach significantly enhances the models’ resistance

to label noise contamination. The consistent superiority of the GBLSTSVM

and LS-GBLSTSVM models over the baseline models highlights their poten-

tial e↵ectiveness in real-world scenarios where noise is commonly encountered

in datasets.

3.4.5 Experiments on NDC Datasets

The previous comprehensive analyses have consistently shown the superior

performance of the proposed GBLSTSVM and LS-GBLSTSVM models com-

pared to the baseline models across the majority of UCI and KEEL benchmark

datasets. Furthermore, we conduct an experiment using the NDC datasets [72]

to highlight the enhanced training speed and scalability of our proposed mod-

els. For this, all hyperparameters are set to 10�5, which is the lowest value

among the specified ranges. These NDC datasets’ sample sizes vary from 10k to

5m with 32 features. The results presented in Table 3.9 show the e�ciency and

scalability of the proposed GBLSTSVM and LS-GBLSTSVM models. Across

the NDC datasets, our models consistently outperform the baseline models in

terms of both accuracy and training times, thus confirming their robustness

and e�ciency, particularly when dealing with large-scale datasets. In the con-

text of ACC, our GBLSTSVM model demonstrates superior accuracy, with

an increase of up to 3% when the NDC dataset scale is expanded from 10k to
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Table 3.9: Accuracy and time of the proposed GBLSTSVM and LS-
GBLSTSVM with baseline models on NDC datasets with Linear kernel.

NDC datasets
SVM [5] TSVM [9] GBSVM [63] LSTSVM [10] GBLSTSVM† LS-GBLSTSVM†

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

NDC 10K
81.64 80.78 64.97 83.34 85.84 83.29
310.66 209.79 1,510.66 12.02 10.66 15.55

NDC 50K
80.35 79.44 60.57 82.80 84.84 84.85
941.11 816.81 2,809.49 54.10 30.11 39.09

NDC 100K c c d 82.91 85.12 84.93
70.16 53.47 109.86

NDC 300K c c d 83.21 84.86 83.93
124.44 112.41 159.27

NDC 500K c c d 83.14 85.90 83.79
199.72 165.98 184.03

NDC 1m c c d 83.07 84.75 83.94
301.42 221.76 265.91

NDC 3m c c d 83.02 84.56 83.61
357.24 267.65 291.51

NDC 5m c c d 83.10 84.30 84.99
406.63 316.89 499.65

c Terminated because of out of memory.
d Experiment is terminated because of the out of bound issue shown by the PSO algorithm.
† represents the proposed model.

5m. Additionally, GBLSTSVM demonstrates reduced training time across all

ranges of NDC datasets compared to LSTSVM. Specifically, for the NDC 5m

dataset, the LS-GBLSTSVMmodel achieves an impressive accuracy of 84.99%,

which stands as the highest accuracy. The experimental results demonstrate

a significant reduction of 100 to 1000 times in the training duration of the

GBLSTSVM and LS-GBLSTSVM models compared to the baseline models.

This exceptional decrease in training time can be attributed to the signifi-

cantly lower count of generated granular balls on a dataset in comparison to

the total number of samples.

3.4.6 Sensitivity Analysis of Hyperparameters

To thoroughly understand the subtle e↵ects of the hyperparameters on the

model’s generalization ability, we systematically explore the hyperparameter

space by varying the values of c1 and c2. This exploration allows us to identify

the configuration that maximizes predictive accuracy and enhances the model’s

resilience to previously unseen data.

The graphical representations in Figure 3.2 provide visual insights into

the impact of parameter tuning on the accuracy (ACC) of our GBLSTSVM

model for the linear case. These visuals demonstrate an apparent variation

in the model’s accuracy across a range of c1 and c2 values, highlighting the
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(a) yeast-0-2-5-6 vs 3-7-8-9 (b) Haber

(c) Monks3 (d) Spambase

Figure 3.2: The e↵ect of hyperparameter (c1, c2) tuning on the accuracy (ACC)
of some UCI and KEEL datasets on the performance of linear GBLSTSVM.

sensitivity of our model’s performance to these hyperparameters. In Figure

3.2 (a), it is evident that lower values of c1 combined with higher values of

c2 result in improved accuracy. Similarly, Figure 3.2 (d) shows that optimal

accuracy is achieved when both c1 and c2 are set to mid-range values. It has

been observed that lower values of c1 and higher values of c2 give the best

generalization performance.

3.4.7 Sensitivity Analysis of Granular Parameters

In the context of granular computing, we can ascertain the minimum number

of granular balls to be generated on the training dataset T , denoted as num.

For our binary classification problem, we establish the minimum value for num

at 2. Hence, our goal is to generate at least two granular balls for each dataset.

The purity (pur) of a granular ball is a crucial characteristic. By adjusting

the purity level of the granular balls, we can simplify the distribution of data

points in space and e↵ectively capture the data points distribution using these
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(a) breast cancer wisc prog (b) haberman

(c) Monks2 (d) Spambase

Figure 3.3: The e↵ect of granular parameter (num, pur) tuning on the accu-
racy (ACC) of some UCI and KEEL datasets on the performance of linear
GBLSTSVM.
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Table 3.10: Performance of the proposed Linear GBLSTSVM across varying
purities, showcasing the relationship between the number of Granular Balls
and the resulting accuracies.

pur 1 0.97 0.94 0.91 0.88 0.85 0.82 0.79

Dataset
ACC ACC ACC ACC ACC ACC ACC ACC
n(GB) n(GB) n(GB) n(GB) n(GB) n(GB) n(GB) n(GB)

spambase
89.21 90.88 86.31 83.13 79.36 81.03 78.13 78.86
400 316 277 201 180 134 107 99

musk 1
83.22 78.32 81.12 79.72 79.72 80.42 79.72 78.52
59 63 60 57 51 48 37 40

tic tac toe
99.65 99.65 75.35 97.22 99.65 99.65 99.65 99.65
108 113 105 100 93 73 76 57

monks 3
80.24 83.23 81.44 79.04 80.84 80.84 82.04 79.04
69 67 65 67 74 60 56 54

vehicle1
83.46 84.25 84.25 83.07 76.77 82.28 84.25 79.13
96 94 93 75 69 61 49 31

Table 3.11: Performance of the proposed Linear LS-GBLSTSVM across vary-
ing purities, showcasing the relationship between the number of Granular Balls
and the resulting accuracies.

pur 1 0.97 0.94 0.91 0.88 0.85 0.82 0.79

Dataset
ACC ACC ACC ACC ACC ACC ACC ACC
n(GB) n(GB) n(GB) n(GB) n(GB) n(GB) n(GB) n(GB)

musk 1
79.02 75.52 79.02 74.13 77.62 72.73 78.32 76.22
59 63 60 57 51 48 37 40

tic tac toe
97.92 100.00 90.63 95.14 97.22 98.26 99.65 91.32
108 113 105 100 93 73 76 57

monks 3
67.07 68.26 60.48 55.09 76.05 70.66 64.07 61.68
69 67 65 67 74 60 56 54

monks 2
53.04 50.28 48.07 64.14 58.01 44.75 51.38 64.09
85 92 88 89 77 72 81 62

breast cancer
60.47 74.41 66.28 37.21 43.02 55.81 62.79 60.47
41 40 39 40 36 35 31 24

granular balls. To analyze the impact of num and pur on the generalization

performance of GBLSTSVM, we have tuned num within the range of {2, 3, 4},

and pur within the range of {92.5, 94.0, 95.5, 97.0, 98.5}. The visual depictions

in Figure 3.3 o↵er valuable visualizations of how this tuning a↵ects the accu-

racy (ACC) of our GBLSTSVM model. Careful examination of these visuals

depicts that there exists an optimal value of num and pur using which our pro-

posed GBLSTSVM mode gives the optimal generalization performance. In the

case of Figure 3.3 (a), when both pur and num are increased simultaneously, a

significant rise in ACC can be observed. This suggests that the accuracy of our

proposed model improves as the purity increases and the minimum number of

granular balls generated increases. Similar patterns can be observed in other

figures in Figure 3.3. This aligns with the principle of granular computing.

As the value of num rises, the minimum count of granular balls required to

42



cover our sample space also increases. With an increase in pur, these granu-

lar balls divide even more, resulting in a greater generation of granular balls.

This process e↵ectively captures the data patterns, ultimately leading to the

best possible generalization performance. Tables 3.10 and 3.11 illustrate the

variation in ACC for linear GBLSTSVM and LS-GBLSTSVM model and the

number of granular balls generated (n(GB)) while tuning purity levels across

various UCI and KEEL datasets when num is fixed at 2.

43



Table 3.12: Performance comparison of the proposed GBLSTSVM and LS-
GBLSTSVM along with the baseline models based on classification accuracy
using linear kernel for UCI and KEEL datasets.

Model SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

Dataset Noise
ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

(c1) (c1, c2) (c1) (c1, c2) (c1, c2) (c1, c2)

acute nephritis

0% 100 100 90.33 100 100 100.00
(0.1) ( 0.01, 0.01) (100000) ( 0.001, 0.001) ( 0.00001, 1000) (0.00001, 0.00001)

5% 100 $100.00 90.33 100 100 100.00
(0.1) (0.1, 1) (100000) (0.1, 1) (0.00001, 0.01) (0.00001, 0.00001)

10% 100 100 94.44 100 100 100.00
(0.1) (0.1, 1) (0.00001) (0.01, 0.01) (0.00001, 0.00001) (0.0001, 0.00001)

15% 100 86.11 83.33 88.89 100 100.00
(0.1) (0.1, 0.1) (10000) (0.01, 0.01) (100000, 0.00001) (0.00001, 0.00001)

20% 100 97.22 83.33 97.22 100 88.89
(0.1) (0.1, 0.1) (10000) (0.1, 0.1) (0.00001, 100000) (0.00001, 0.0001)

breast cancer wisc prog

0% 75.67 75 73 75 76.67 76.67
(0.001) (10, 1) (10) (1,1) (0.00001, 0.00001) (0.00001, 0.01)

5% 68.33 67.33 66.67 65 68.33 76.67
(0.001) (0.01, 0.1) (100000) (10,100) (100000,100000) (0.00001, 0.00001)

10% 72.33 68.33 72.67 76.67 76.67 76.67
(0.001) (0.01, 0.1) (1000) (0.1, 0.001) (0.00001,0.00001) (0.00001, 0.00001)

15% 73.67 75 69.67 71.66666667 76.67 73.33
(0.00001) (1, 0.1) (1000) (1, 0.1) (0.00001,0.00001) (0.00001, 0.00001)

20% 75.67 65.00 71.33 76.67 76.67 76.67
(0.00001) (0.00001, 0.00001) (1000) (0.0001, 0.00001) (0.00001,10000) (0.00001, 0.00001)

breast cancer

0% 72.09 60 62.79 70.93 74.42 73.26
(0.001) (0.001, 0.01 ) (0.00001) (0.1, 0.1) (1000, 0.00001) (0.1, 0.1)

5% 70.93 65.12 80 69.77 72.09 74.42
(0.001) (10, 100 ) (100000) (0.1, 0.1) (0.00001, 0.00001) (0.1, 0.1)

10% 68.6 65.12 74.42 72.09 74.42 74.42
(0.001) (0.000001, 0.000001) (100) (1, 1) (0.00001, 0.00001) (0.1, 0.1)

15% 68.6 75.58 54.65 75.58 76.74 72.09
(0.001) (0.000001, 0.000001) (0.000001) (0.01, 0.01) (100000, 0.00001) (10, 0.1)

20% 65.12 74.42 59.3 75.58 74.42 76.74
(0.001) (10, 1) (1000) (100, 10) (100000, 0.00001) (0.00001, 0.00001)

conn bench sonar mines rocks

0% 74.60 73.02 41.2 74.60 79.37 74.60
(0.01) (10, 1) (1000) (1, 1) (0.00001, 10000) (1000, 100)

5% 74.60 77.78 69.68 76.19 80.95 71.43
(0.01) (10, 1) (1000) (0.1, 0.1) (100000, 100000) (1000, 10)

10% 74.60 77.78 70.68 71.43 79.37 73.02
(0.001) (10, 1) (100000) (100, 100) (10000, 100000) (0.1, 0.1)

15% 71.43 71.43 68.09 68.25 73.02 68.25
(0.001) (0.1, 0.1) (100000) (100, 10) (0.00001, 100000) (0.00001, 0.00001)

20% 71.43 66.67 69.84 69.84 76.67 74.60
(0.001) (0.1, 0.1) (100000) (100, 10) (0.00001, 0.00001) (10, 10)

crossplane130

0% 97.24 71.35 100 100.00 100.00 100.00
(0.001) (0.00001, 0.00001) (1) (0.00001, 0.00001) (0.00001, 0.00001) (1, 0.1)

5% 97.44 100 97.44 100.00 100.00 100.00
(0.1) (0.00001, 0.00001) (0.00001) (0.001, 0.01) (0.00001, 0.00001) (1000, 10)

10% 100 100 97.44 100.00 100.00 100.00
(0.001) (0.00001, 0.00001) (0.00001) (0.001, 0.001) (0.00001, 0.00001) (0.1, 0.01)

15% 100 100 100 100.00 100.00 97.44
(0.001) (0.00001, 0.00001) (10) (0.00001, 0.00001) (0.00001, 0.00001) (100, 10)

20% 97.44 100 97.44 97.44 100.00 100.00
(0.001) (10, 1000) (0.00001) (0.00001, 0.00001) (0.00001, 0.00001) (1, 0.1)

crossplane150

0% 55.56 100.00 72.22 100.00 100.00 97.78
(0.01) (0.00001, 0.00001) (100000) (0.00001, 0.00001) (0.00001, 0.00001) (0.0001, 0.00001)

5% 55.56 95.56 86.67 95.56 100.00 80.00
(0.01) (0.00001, 0.00001) (0.00001) (0.00001, 0.00001) (0.00001, 0.00001) (0.00001, 0.1)

10% 53.33 95.56 86.67 75.56 100.00 97.78
(0.01) (0.00001, 0.00001) (100000) (0.00001, 0.00001) (0.00001, 0.00001) (0.0001, 0.00001)

15% 55.56 62.22 57.78 62.22 64.44 80.00
(0.1) (0.00001, 0.00001) (10) (0.00001, 0.00001) (0.00001, 1000) (0.00001, 0.1)

20% 53.33 64.44 51.89 53.33 55.56 80.00
(0.1) (1, 1) (100000) (0.00001, 0.00001) (0.00001, 100000) (0.00001, 10)

ecoli-0-1 vs 5

0% 88.61 66.68 77.5 95.83 95.83 97.22
(0.01) (0.1, 1) (1000) (0.1, 1) (10,10000) (1, 0.1)

5% 88.61 85.83 86.11 95.83 94.44 91.67
(0.01) (0.1, 1) (10) (0.1, 1) (0.00001,100000) (1, 0.1)

10% 87.22 84.44 96.43 94.44 95.83 95.83
(0.01) (0.1, 1) (10) (0.1, 1) (1, 1) (0.1, 0.001)

15% 87.22 86.11 79.17 86.11 93.06 88.89
(0.01) (0.001, 0.001) (10) (0.00001, 0.00001) (1, 0.1) (1, 0.1)

20% 85.83 88.89 88.89 86.11 94.44 91.67
(0.01) (0.0001, 0.00001) (10000) (0.01, 0.01) (1,1000) (1, 10000)

ecoli-0-1-4-6 vs 5

0% 95.81 67.88 94.05 97.62 97.62 94.05
(0.01) (1, 1) (10) (0.1, 1) (0.1, 100000) (0.0001, 0.1)

5% 97.62 88.81 94.05 96.43 98.81 96.43
(0.01) (10, 1) (10) (1, 1) (10, 10) (0.0001, 0.00001)

10% 87.62 85.24 69.35 96.43 98.81 98.81
(0.01) (0.00001, 0.00001) (10) (1, 1) (0.1, 1000) (0.0001, 0.00001)

15% 90.62 85.24 95.24 94.05 94.05 94.05
(0.01) (0.1, 0.1) (10) (1, 1) (0.0001, 0.00001) (0.00001, 0.1)

20% 94.05 89.05 94.05 97.62 96.43 94.05
(0.00001) (1, 1) (10000) (1, 1) (0.1, 0.1) (0.00001, 0.1)

ecoli-0-1-4-7 vs 2-3-5-6

0% 85.05 68.51 52.48 93.07 91.09 87.13
(0.01) (0.1, 1) (100000) (1, 10) (1, 0.1) (0.0001, 0.00001)

5% 84.06 87.13 73.27 93.07 91.09 91.09
(0.01) (0.1, 0.01) (10) (0.1, 1) (1, 100000) (10000, 10)

10% 94.06 91.09 64.36 91.09 90.10 91.09
(0.01) (0.00001, 0.00001) (10) (0.1, 0.1) (1, 100000) (0.0001, 0.00001)

15% 85.05 74.55 84.16 90.10 93.07 92.08
(0.01) (100000, 100) (10) (0.1, 0.1) (10, 100) (1, 0.1)

20% 87.13 81.09 74.26 90.10 96.04 87.13
(0.00001) (100, 100000) (10) (1, 1) (1, 1) (1, 10000)

† represents the proposed model.
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Table 3.12 (Continued)

Model SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

Dataset Noise
ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

(c1) (c1, c2) (c1) (c1, c2) (c1, c2) (c1, c2)

ecoli2

0% 89.11 87.13 84.85 87.13 89.11 89.11
(0.00001) (1, 1) (10) (0.1, 1) (10, 1000) (0.1, 0.01)

5% 86.11 86.14 76.44 86.14 89.11 89.11
(0.00001) (0.00001, 0.0001) (0.00001) (0.01, 1) (0.0001, 0.00001) (10000, 10)

10% 83.11 86.14 83.66 88.12 90.10 88.12
(0.00001) (0.00001, 0.0001) (10000) (0.01, 0.01) (0.00001, 1) (0.1, 0.0001)

15% 89.11 85.11 75.32 89.11 90.10 89.11
(0.00001) (0.001, 0.00001) (10) (0.001, 0.00001) (0.0001, 1) (10, 0.1)

20% 85.11 85.11 85.15 89.11 89.11 90.10
(0.00001) (0.001, 0.00001) (100) (0.01, 0.00001) (0.0001, 0.00001) (100, 0.1)

ecoli3

0% 89.11 87.13 84.85 87.13 89.11 89.11
(0.00001) (1, 1) (10) (0.1, 1) (10, 1000) (0.1, 0.01)

5% 86.11 86.14 86.44 86.14 89.11 89.11
(0.00001) (0.00001, 0.0001) (0.00001) (0.01, 0.1) (0.0001, 0.00001) (10000, 10)

10% 89.11 86.14 80.66 88.12 90.10 88.12
(0.00001) (0.00001, 0.0001) (10000) (0.01, 0.01) (0.00001, 0.1) (0.1, 0.0001)

15% 89.11 85.11 70.32 89.11 90.10 89.11
(0.00001) (0.001,0.00001) (10) (0.001, 0.00001) (0.00001, 1) (10, 0.1)

20% 85.11 85.11 85.15 89.11 89.11 90.10
(0.00001) (0.001, 0.00001) (100) (0.01, 0.00001) (0.00001, 0.00001) (100, 0.1)

fertility

0% 88 89 85 90.00 90.00 90.00
(0.00001) (0.00001, 0.00001) (100) (0.00001, 0.00001) (0.00001, 0.00001) (0.00001, 0.0001)

5% 89 90 86.67 90.00 90.00 86.67
(0.00001) (0.00001, 0.0001) (100) (0.01, 0.1) (0.00001, 0.00001) (0.00001, 0.0001)

10% 90 80 76.67 76.67 90.00 86.67
(0.00001) (0.00001, 0.0001) (10) (0.001, 0.01) (0.0001, 0.00001) (0.00001, 0.0001)

15% 70 86.67 80 86.67 90.00 90.00
(0.00001) (0.01, 0.01) (1000) (0.01, 0.01) (0.00001, 0.00001) (1, 1000)

20% 80 86.67 70.67 90.00 90.00 86.67
(0.00001) (0.1, 0.1) (1000) (1, 0.1) (0.01, 0.001) (0.001, 0.01)

glass2

0% 89.77 90.77 88.46 92.31 90.77 90.77
(0.00001) (0.00001, 0.00001) (100000) (0.01, 0.1) (0.00001, 0.00001) (0.00001, 0.1)

5% 88.77 87.77 90.17 87.69 90.77 90.77
(0.00001) (0.001, 0.001) (10) (0.01, 0.01) (0.00001, 0.00001) (0.00001, 0.1)

10% 89.77 90.77 90.17 90.77 90.77 90.77
(0.00001) (0.001, 0.001) (10) (0.001, 0.0001) (0.00001, 0.00001) (0.00001, 0.1)

15% 90.77 90.77 75.38 90.77 90.77 90.77
(0.00001) (0.0001, 0.00001) (100) (0.01, 0.001) (0.00001, 0.00001) (0.00001, 0.1)

20% 80.76923077 80.76923077 89.23076923 90.77 90.77 90.77
(0.00001) (0.0001, 0.00001) (100) (0.01, 0.01) (0.00001, 0.00001) (0.00001, 0.1)

glass5

0% 92.92 89.00 80.46 95.38 96.92 96.92
(0.00001) (0.1, 1) (100000) (0.00001, 0.1) (10000, 1000) (0.00001, 0.01)

5% 92.92 92.46 86.15 96.92 96.92 96.92
(0.00001) (1, 1) (10) (0.1, 0.1) (0.00001, 0.00001) (0.00001, 0.01)

10% 92.92 92.46 96.92 96.92 96.92 96.92
(0.00001) (1, 1) (10) (0.001, 0.00001) (0.00001, 0.00001) (0.00001, 0.01)

15% 96.92 90.85 94.92 96.92 96.92 96.92
(0.00001) (0.0001,0.00001) (10) (1, 1) (0.00001, 0.00001) (0.00001, 0.01)

20% 92.92 94.92 91.92 95.38 96.92 96.92
(0.00001) (10, 1) (10) (100, 10) (0.00001, 0.00001) (0.00001, 0.01)

haber

0% 77.17 57.96 77.17 78.26 82.61 78.26
(0.01) (0.00001, 0.00001) (10) (0.1, 0.1) (0.00001, 0.00001) (0.00001, 0.0001)

5% 76.09 75 77.17 77.17 82.61 81.52
(0.01) (1000, 10) (10) (0.1, 0.1) (0.00001, 0.00001) (10, 0,1)

10% 77.17 78.26 58.04 77.17 82.61 78.26
(0.01) (1000, 10) (100) (0.00001, 0.00001) (0.00001, 0.00001) (1, 0,1)

15% 78.26 78.26 59.78 78.26 78.26 77.17
(0.01) (0.00001, 0.00001) (0.00001) (0.00001, 0.00001) (0.00001, 0.1) (0.1, 0.1)

20% 76.09 73.91 68.48 78.26 82.61 77.17
(0.01) (0.00001, 0.00001) (0.00001) (0.00001, 0.00001) (0.00001, 0.00001) (0.1, 0.1)

haberman survival

0% 77.17 57.96 78.26 78.26 82.61 81.52
(0.01) (0.00001,0.00001) (10) (0.1,0.1) (0.00001,0.00001) (0.1, 0.1)

5% 76.09 75 78.26 77.17391304 82.61 78.26
(0.01) (10, 1000) (0.00001) (0.1,0.1) (0.00001,0.00001) (0.0001, 0.00001)

10% 77.17 78.26 75 77.17 82.61 78.26
(0.01) (1000, 10) (10) (0.00001,0.00001) (0.00001,0.00001) (1, 0,1)

15% 78.26 78.26 59.78 78.26 82.61 78.26
(0.01) (0.00001,0.00001) (0.00001) (0.00001,0.00001) (0.00001,0.00001) (1, 0,1)

20% 76.09 73.91 59.78 78.26 81.52173913 77.17
(0.01) (1000, 10) (0.00001) (0.00001,0.00001) (0.00001,0.00001) (0.1, 0.1)

haberman

0% 77.17 57.96 77.17 78.26 82.61 81.52
(0.01) (0.00001, 0.00001) (10) (0.1,0.1) (0.00001,0.00001) (0.00001, 0.0001)

5% 76.09 75 77.17 77.17391304 82.61 78.26
(0.01) (10, 1000) (10) (0.1,0.1) (0.00001,0.00001) (10, 0,1)

10% 77.17 78.26 58.04 77.17 82.61 78.26
(0.01) (10, 1000) (100) (0.00001,0.00001) (0.00001,0.00001) (1, 0,1)

15% 78.26 78.26 59.78 78.26 78.26086957 77.17
(0.01) (0.00001,0.00001) (0.00001) (0.00001,0.00001) (0.1, 1) (0.1, 0.1)

20% 76.09 73.91 68.48 78.26 82.61 78.26
(0.01) (10, 1000) (0.00001) (0.00001,0.00001) (0.00001,0.00001) (0.1, 0.1)

heart hungarian

0% 77.53 75.28 71.53 76.40 79.78 79.78
(0.1) (1, 1) (10) (1, 1) (0.00001, 0.00001) (0.01, 0.00001)

5% 77.53 73.03 77.53 74.16 80.90 78.65
(0.01) (1, 0.1) (100) (1, 1) (0.1,0.1) (100, 10)

10% 78.65 73.03 75.28 73.03 79.78 70.79
(0.01) (1, 0.1) (0.00001) (0.00001,0.00001) (0.00001, 0.00001) (0.0001, 0.00001)

15% 73.65 66.29 75.28 76.40 78.65 74.16
(0.01) (100, 1000) (0.00001) (1, 0.1) (10, 1) (10000, 1000)

20% 77.53 72.40 71.16 77.53 74.16 71.91
(0.001) (0.1, 0.1) (0.1) (1, 1) (1, 0.00001) (0.1, 0.1)

† represents the proposed model.
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Table 3.12 (Continued)

Model SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

Dataset Noise
ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

(c1) (c1, c2) (c1) (c1, c2) (c1, c2) (c1, c2)

led7digit-0-2-4-5-6-7-8-9 vs 1

0% 92.23 66.77 78.35 93.98 94.74 93.98
(0.00001) (1, 1) (100000) (100, 100) (100000, 100000) (10, 0.1)

5% 83.23 83.98 78.35 95.49 94.74 90.23
(0.00001) (1, 1) (100000) (1, 1) (0.1, 100000) (0.0001, 0.00001)

10% 83.23 84.74 90.98 94.74 96.24 93.23
(0.00001) (0.00001,0.00001) (10) (0.01, 0.01) (0.00001, 1) (0.0001, 0.0001)

15% 83.23 84.74 68.42 94.74 94.74 93.23
(0.00001) (1000, 100) (100) (0.1, 0.1) (0.00001, 0.00001) (10000, 1)

20% 92.23 83.74 80.41 94.74 94.74 93.23
(0.00001) (1000, 100) (100000) (0.00001,0.00001) (0.00001, 0.00001) (0.00001, 0.1)

mammographic

0% 79.58 60.41 80.28 82.01 84.08 83.74
(0.001) (0.00001,0.00001) (0.00001) (0.00001, 0.00001) (0.1, 0.1) (0.01, 0.0001)

5% 79.7 64.01 80.28 81.66 83.74 84.08
(0.001) (10000, 10) (0.00001) (100, 100) (1, 1) (0.1, 0.1)

10% 80.28 55.02 79.93 83.04 84.43 84.43
(0.001) (10, 100) (0.00001) (1000, 1000) (0.01, 0.1) (0.00001, 0.00001)

15% 79.93 81.31 80.62 82.01 84.78 84.43
(0.001) (1, 1) (0.00001) (1000, 1000) (0.001, 0.1) (0.1, 0.1)

20% 79.58 82.01 79.58 81.66 82.01 85.47
(0.001) (1, 1) (100000) (1000, 1000) (0.001, 0.001) (1, 0.1)

monk2

0% 62.98 62.43 62.54 62.98 69.61 62.43
(0.00001) (0.001, 0.00001) (100) (1, 1) (0.00001, 0.00001) (100, 10)

5% 62.98 61.98 61.59 62.98 63.54 65.75
(0.00001) (0.001, 0.00001) (0.00001) (1, 1) (0.00001, 0.00001) (0.00001, 0.1)

10% 60.98 62.98 60.28 62.98 62.98 62.43
(0.00001) (0.001, 0.00001) (1000) (0.01, 0.00001) (0.0001, 0.00001) (0.00001, 0.001)

15% 60.98 60.98 60.80 62.98 62.98 62.98
(0.00001) (0.001, 0.00001) (0.1) (0.01, 0.00001) (0.0001, 0.00001) (100, 0.1)

20% 60.98 60.98 59.72 62.98 62.98 67.96
(0.00001) (0.001, 0.00001) (0.00001) (0.0001, 0.00001) (0.0001, 0.00001) (0.00001, 0.1)

monks 2

0% 62.98 62.43 62.54 62.98 62.98 64.64
(0.00001) (0.0001, 0.00001) (1000) (0.0001, 0.00001) (100, 10000) (10, 10000)

5% 61.78 61.98 59.72 62.98 62.98 62.98
(0.00001) (0.0001, 0.00001) (10) (0.0001, 0.00001) (10, 100) (1, 10000)

10% 60.98 62.98 60.49 62.98 62.98 64.09
(0.00001) (0.0001, 0.00001) (0.00001) (0.0001, 0.00001) (0.001, 0.00001) (0.00001, 0.001)

15% 62.98 60.98 60.96 62.98 62.98 64.64
(0.00001) (0.0001, 0.00001) (10) (0.0001, 0.00001) (0.00001, 0.00001) (1, 10000)

20% 62.98 60.98 58.62 62.98 64.09 61.33
(0.00001) (0.0001, 0.00001) (0.00001) (0.0001, 0.00001) (1000, 10) (10, 100000)

monks 3

0% 75.45 59.7 59.88 78.44 81.44 77.84
(0.1) (1, 1) (100000) (0.1,0.1) (10, 10) (0.1, 0.1)

5% 73.65 77.25 59.88 79.04 80.84 77.25
(0.1) (10, 10000 ) (1) (0.00001, 0.00001) (1, 1) (0.00001, 0.00001)

10% 73.05 76.65 70.66 76.65 80.84 73.65
(0.1) (0.00001,0.00001) (0.00001) (0.00001, 0.00001) (1, 1) (0.001, 0.0001)

15% 73.05 70.44 70.06 78.44 82.04 75.45
(100000) (0.00001,0.00001) (100000) (0.00001, 0.00001) (1, 1) (0.1, 0.1)

20% 71.86 71.26 80 76.65 78.44 65.87
(0.01) (10, 10000 ) (100000) (0.00001, 0.00001) (1, 0.1) (0.1, 0.1)

musk 1

0% 68.53 59.15 52.66 79.72 81.12 78.32
(0.001) (1, 1) (10) (0.1,0.1) (10000, 100000 ) (0.0001, 0.00001)

5% 67.13 77.62 56.15 70.63 80.42 79.02
(0.001) (1, 0.1) (100000) (100, 10000) (1000, 100000 ) (10000, 10)

10% 76.92 79.02 80 69.23 69.93 79.02
(0.001) (1, 1) (100000) (10, 10000) (0.00001, 10000 ) (0.1, 0.01)

15% 69.02 65.03 71.32 69.23 69.93 74.13
(0.001) (10, 0.1) (100000) (1, 0.001) (100000, 0.00001) (10, 10)

20% 67.83 67.13 70 56.64 76.92 69.23
(0.01) (10, 0.1) (100000) (1, 1000) (0.00001, 0.00001) (10, 0.1)

ozone

0% 94.58 85.58 94.58 96.58 96.58 96.58
(0.00001) (1, 1) (10) (0.00001, 0.00001) (100000, 100000 ) (0.00001, 0.1)

5% 86.58 85.29 96.58 96.58 96.58 96.58
(0.00001) (0.00001, 0.00001) (0.001) (0.0001, 0.0001) (0.00001, 0.00001) (0.00001, 0.1)

10% 96.58 96.58 75 96.58 96.58 96.58
(0.00001) (0.00001, 0.00001) (0.00001) (0.0001, 0.00001) (0.00001, 0.00001) (0.00001, 0.1)

15% 80.58 85.79 83.09 96.58 96.58 96.58
(0.00001) (1, 1) (100) (0.0001, 0.00001) (0.00001, 0.00001) (0.00001, 0.1)

20% 86.58 96.58 66.89 96.58 96.58 96.58
(0.00001) (10, 10) (10) (0.001, 0.00001) (0.00001, 0.00001) (0.00001, 0.1)

spambase

0% 88.78 74.18 79.79 91.53 90.88 88.70
(0.001) (0.001, 0.001) (100) (0.1, 0.1) (0.1, 0.01) (1, 0.1)

5% 88.49 81.17 51.99 90.30 89.86 88.70
(0.001) (0.1, 0.1) (10000) (0.01, 0.01) (0.01, 0.001) (0.01, 0.001)

10% 88.41 91.09 81.25 90.80 90.51 79.29
(0.001) (0.1, 0.1) (10000) (0.01, 0.01) (0.0001, 0.0001) (100, 0.01)

15% 88.27 88.85 74.41 88.92 90.88 84.79
(0.001) (0.001, 0.001) (100) (0.01, 0.01) (0.1, 0.01) (100, 1)

20% 88.63 89.43 88.92 89.28 90.08 80.01
(10) (0.1, 0.1) (10000) (100, 100) (0.1, 0.01) (1, 0.1)

spectf

0% 76.54 62.39 70.4 82.72 83.95 77.78
(0.01) (0.1, 0.01) (100) (0.1, 0.01) (1000, 10000 ) (100, 100)

5% 76.54 77.78 70.99 75.31 77.78 75.31
(0.001) (0.1, 0.1) (100000) (0.1, 0.01) (0.00001, 0.00001) (0.001, 0.00001)

10% 76.54 80.25 62.67 76.54 77.78 79.01
(0.001) (0.01, 0.01) (100000) (0.001, 0.00001) (0.00001, 0.00001) (0.0001, 0.00001)

15% 76.54 82.72 70.44 80.25 80.25 81.48
(0.001) (0.01, 0.01) (10) (0.001, 0.001) (1000, 1000 ) (1000, 0.100)

20% 76.54 77.78 73.33 80.25 80.25 80.25
(0.001) (0.00001, 0.00001) (1) (0.00001, 0.00001) (0.00001, 0.00001) (0.00001, 0.01)

† represents the proposed model.
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Table 3.12 (Continued)

Model SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

Dataset Noise
ACC (%) ACC (%) ACC (%) ACC (%) ACC (%) ACC (%)

(c1) (c1, c2) (c1) (c1, c2) (c1, c2) (c1, c2)

tic tac toe

0% 75.69 68.66 76.88 99.65 99.65 99.65
(0.001) (0.00001, 0.00001) (100000) (0.00001, 0.00001) (0.00001, 0.00001) (0.1, 0.1)

5% 75.35 95.65 70.47 99.65 99.65 99.65
(0.001) (0.00001, 0.00001) (1000) (0.00001, 0.00001) (0.00001, 0.00001) (0.01, 0.00001)

10% 76.04 89.65 70.97 99.65 99.65 99.65
(0.001) (0.00001, 0.00001) (100) (0.00001, 0.00001) (0.00001, 0.00001) (0.00001, 0.00001)

15% 74.65 89.65 60.76 99.65 99.65 99.65
(0.001) (0.00001, 0.00001) (10) (0.00001, 0.00001) (0.00001, 0.00001) (0.1, 0.1)

20% 73.96 89.65 63.33 99.65 99.65 93.40
(0.001) (10, 100) (100000) (0.00001, 0.00001) (0.00001, 0.00001) (0.1, 0.1)

vehicle1

0% 76.38 59.44 73.62 77.95 83.46 77.17
(0.00001) (10, 1) (10) (100, 10) (1, 1) (0.01, 0.00001)

5% 76.38 78.74 73.62 77.95 81.50 77.56
(0.00001) (10, 1) (10) (100, 10) (0.01, 0.1) (0.01, 0.00001)

10% 76.38 81.5 71.26 83.86 83.46 77.56
(0.00001) (0.1, 0.1) (10) (10, 10) (1, 1) (0.01, 0.0001)

15% 76.38 80.71 70.47 83.07 83.07 80.71
(0.00001) (0.01, 0.01) (10) (0.1, 0.1) (0.1, 1000) (10000, 10)

20% 76.38 78.35 76.38 77.17 80.71 75.20
(0.00001) (10, 1) (10) (0.1, 0.01) (0.1, 0.1) (0.00001, 1)

yeast-0-2-5-6 vs 3-7-8-9

0% 83.71 66.23 64.9 91.72 94.37 93.38
(0.001) (10, 10) (10) (100, 100) (1, 1) (100, 10)

5% 88.38 81.06 82.65 91.39 94.37 92.05
(0.001) (0.00001, 0.00001) (100) (1000, 1000) (1, 1) (1, 0.1)

10% 91.72 82.05 54.97 92.05 92.38 92.05
(0.001) (0.1, 0.1) (100) (0.01, 0.01) (1, 1) (10, 0.01)

15% 88.01 81.06 75.5 92.05 93.38 93.38
(0.001) (0.00001, 0.00001) (10) (0.1, 0.1) (10, 100) (100, 0.1)

20% 87.35 87.55 84.7 91.72 92.72 90.40
(0.001) (100, 100) (100) (1, 1) (10, 10) (1, 0.1)

yeast-0-2-5-7-9 vs 3-6-8

0% 86.79 66.67 68.55 97.02 97.35 95.70
(0.001) (1, 1) (10) (0,1, 1) (0.01, 0.1) (1000, 100)

5% 88.14 80.79 68.42 95.70 97.35 97.68
(0.001) (1, 1) (10) (1, 1) (0.01, 0.1) (10, 0.1)

10% 87.02 94.37 87.15 97.35 94.70 93.71
(0.001) (1, 1) (10000) (1, 1) (0.1, 1) (0.1, 0.00001)

15% 87.5 80.79 74.34 97.35 98.01 93.05
(0.001) (0.1, 0.1) (10) (1, 1) (1, 1) (1, 0.1)

20% 87.5 80.79 77.63 96.69 97.68 98.01
(0.001) (10000, 10000) (1000) (0.1, 0.1) (1, 1) (10, 1)

yeast-0-5-6-7-9 vs 4

0% 81.19 68.29 56.6 90.57 94.34 91.19
(0.00001) (0.1, 0.1) (100000) (0.01, 0.01) (0.1, 0.1) (0.00001, 0.0001)

5% 81.19 81.19 68.55 92.45 91.19 91.82
(0.00001) (0.1, 0.01) (100000) (10, 10) (0.00001, 0.00001) (1, 0.1)

10% 81.19 91.82 83.4 92.45 94.19 91.19
(0.00001) (0.1, 0.1) (10000) (10, 10) (0.00001, 1) (0.00001, 0.00001)

15% 81.19 81.82 89.94 91.82 94.34 91.19
(0.00001) (0.001, 0.0001) (10) (0.0001, 0.00001) (0.00001, 0.00001) (0.00001, 0.1)

20% 81.19 91.19 83.65 93.08 94.34 91.19
(0.00001) (0.001, 0.00001) (10) (1000, 100) (0.00001, 0.00001) (0.00001, 0.1)

yeast-2 vs 4

0% 85.81 67.7 54.19 95.48 93.55 94.84
(0.00001) (0.1, 1) (10) (0.1, 1) (100, 10) (0.0001, 0.00001)

5% 85.81 84.84 85.81 93.55 96.13 93.55
(0.00001) (0.1, 1) (100) (0.1, 1) (0.00001, 1) (1, 0.1)

10% 85.81 87.1 72.67 90.97 92.26 88.68
(0.00001) (1, 1) (100) (1000, 100) (0.1, 0.00001) (0.01, 0.001)

15% 72.87 86.45 75.76 88.39 90.97 93.55
(0.00001) (1, 1) (10000) (1, 1) (0.00001, 1) (10, 0.1)

20% 85.81 87.1 76.13 87.10 94.84 85.81
(0.00001) (10, 1) (10) (1000, 100) (0.1, 0.1) (0.00001, 0.1)

yeast3

0% 79.91 67.15 79.03 93.27 94.17 93.72
(0.001) (0.1, 1) (10000) (0.1, 1) (1, 1) (0.01, 0.01)

5% 80.81 81.48 81.26 91.26 93.95 90.13
(0.001) (1, 1) (1) (0.001, 0.001) (1, 1) (10, 0.1)

10% 89.69 89.69 82.74 91.26 94.39 88.79
(0.001) (0.1, 0.1) (10) (1, 1) (0.1, 1) (0.001, 0.0001)

15% 89.46 88.79 82.87 91.03 93.95 89.46
(0.001) (0.00001, 0.00001) (10) (1, 1) (0.1, 1) (1, 0.1)

20% 88.12 80.81 76.23 91.03 93.95 88.12
(0.00001) (0.00001, 0.00001) (10) (0.1, 0.1) (0.1, 1) (10, 0.1)

Average Accuracy

0% 81.58 71.52 73.71 86.67 88.26 86.79
5% 80.65 81.26 77.25 85.33 87.50 85.59
10% 81.70 82.83 76.63 84.82 87.47 85.50
15% 80.03 80.17 73.89 84.12 86.04 84.93
20% 80.21 80.55 75.76 83.79 86.09 83.85

Average Rank

0% 3.88 5.26 5.15 2.59 1.62 2.50
5% 4.46 4.37 4.97 2.94 1.71 2.56
10% 4.40 3.65 4.99 3.10 1.93 2.94
15% 4.24 4.22 5.29 2.74 1.68 2.84
20% 4.29 4.19 5.16 2.72 1.71 2.93

† represents the proposed model.
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Table 3.13: Performance comparison of the proposed GBLSTSVM and LS-
GBLSTSVM along with the baseline models based on classification accuracy
using Gaussian kernel for UCI and KEEL datasets.

DATASET NOISE
SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
(c1, µ) (c1, c2, µ) (c1, µ) (c1, c2, µ) (c1, c2, µ) (c1, c2, µ)

acute nephritis

0% 41.67 90.00 65.58 41.66 100.00 94.44
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 2) (10, 1000, 2)

5% 41.67 90.00 65.59 41.67 100.00 83.33
(0.00001, 0.03125) (0.001, 0.001, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 0.5) (10, 1000, 2)

10% 41.67 90.00 84.44 41.67 100.00 91.67
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 2) (0.1, 0.1, 32)

15% 41.67 90.44 80.33 41.67 100.00 100.00
(0.00001, 0.03125) (0.001, 0.001, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.1, 32)

20% 41.67 86.11 83.33 41.67 100.00 100.00
(0.00001, 0.03125) (0.01, 0.001, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.1, 32)

breast cancer wisc prog

0% 75.66 75.66 83.33 76.66 76.67 75.00
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.01, 32)

5% 75.67 75.67 76.67 76.67 63.33 70.00
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 1, 32)

10% 73.67 75.67 70.67 76.67 63.33 78.33
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

15% 74.67 71.67 69.67 76.67 63.33 58.33
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

20% 71.67 72.67 71.33 76.67 63.33 76.67
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

breast cancer

0% 74.42 67.44 100.00 74.41 70.93 72.09
(0.00001, 0.03125) (0.1, 0.001, 0.0625) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 1000, 32)

5% 74.42 67.44 74.42 74.42 73.26 74.42
(0.00001, 0.03125) (0.1, 0.001, 0.125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 100000, 32)

10% 74.42 69.77 90.78 74.42 73.26 75.58
(0.00001, 0.03125) (0.1, 0.001, 0.5) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 1, 32)

15% 74.42 68.60 58.84 74.42 75.58 74.42
(0.00001, 0.03125) (0.1, 0.001, 0.0625) (100000, 2) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 100, 32)

20% 74.42 74.42 77.91 74.42 76.74 74.42
(0.00001, 0.03125) (0.01, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 100, 32)

conn bench sonar mines rocks

0% 52.38 55.55 71.26 53.96 80.95 77.78
(10, 1) (0.1, 0.1, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

5% 52.38 55.56 69.68 53.97 77.78 69.84
(1, 1) (0.1, 0.1, 0.03125) (1000, 0.0625) (0.00001, 0.00001, 0.25) (100000, 100000, 32) (10000, 10, 32)

10% 47.62 53.97 69.68 53.97 68.25 74.60
(0.1, 4) (0.0001, 0.00001, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.25) (100000, 100000, 32) (10, 1, 32)

15% 50.79 55.56 61.10 53.97 76.19 73.02
(1, 1) (0.1, 0.1, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.25) (100000, 100000, 32) (1, 1, 32)

20% 46.03 57.14 69.84 53.97 66.67 76.19
(0.001, 16) (0.1, 0.1, 0.03125) (100000, 0.03125) (0.00001, 0.00001, 0.25) (100000, 100000, 32) (10, 10, 32)

crossplane130

0% 51.28 100.00 100.00 48.71 100.00 100.00
(0.001, 16) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.001, 0.03125) (100000, 100000, 32) (10, 10, 32)

5% 81.28 100.00 90.44 51.28 97.44 100.00
(0.001, 4) (0.01, 0.001, 4) (100, 2) (0.00001, 0.00001, 32) (100000, 100000, 32) (10, 10, 32)

10% 51.28 97.87 89.74 48.72 97.44 94.87
(0.001, 2) (1, 1, 0.03125) (10, 1) (0,01, 0.001, 0.0625) (100000, 100000, 32) (0.1, 0.1, 32)

15% 81.28 100.00 94.78 48.72 97.44 94.87
(0.001, 2) (1, 1, 0.03125) (100000, 32) (0,01, 0.001, 0.0625) (100000, 100000, 32) (0.1, 0.1, 32)

20% 81.28 90.44 89.19 74.36 100.00 92.31
(0.01, 0.25) (0.1, 0.1, 16) (100000, 32) (0,01, 0.001, 0.0625) (100000, 100000, 32) (100, 1, 32)

crossplane150

0% 57.77 67.77 62.22 68.88 55.56 80.00
(0.00001, 0.03125) (0.0001, 0.001, 0.03125) (100000, 0.03125) (100, 0.001, 0.03125) (100000, 100000, 16) (0.1, 0.1, 32)

5% 57.78 68.00 82.67 37.78 55.56 62.22
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (0.00001, 0.03125) (100, 0.001, 0.125) (100000, 100000, 16) (0.1, 1000, 32)

10% 57.78 61.11 66.67 37.78 80.00 77.78
(0.00001, 0.03125) (1, 1, 0.03125) (100000, 0.03125) (100, 0.001, 0.125) (100000, 100000, 32) (0.001, 1000, 32)

15% 62.22 65.56 57.78 37.78 82.22 73.33
(1, 0.25) (0.1, 0.1, 0.03125) (10, 0.03125) (100, 0.001, 16) (100000, 100000, 32) (100, 100, 32)

20% 57.78 64.44 51.89 37.78 84.44 75.56
(0.00001, 0.03125) (1, 1, 0.03125) (100000, 0.03125) (100, 0.001, 16) (100000, 100000, 32) (100, 100, 32)

ecoli-0-1 vs 5

0% 94.44 97.22 97.22 88.89 88.89 94.44
(1, 1) (0.00001, 0.0001, 0.125) (10, 8) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 1, 32)

5% 88.89 90.22 90.22 88.89 97.22 94.44
(0.00001, 0.0625) (0.01, 0.01, 0.03125) (1000, 4) (0.00001, 0.00001, 0.03125) (100000, 100000, 8) (1, 0.1, 32)

10% 88.89 95.83 100.00 88.89 94.44 93.06
(0.00001, 0.0625) (0.01, 0.01, 0.03125) (100000, 1) (0.00001, 0.00001, 0.03125) (100000, 100000, 16) (0.1, 1000, 32)

15% 88.89 94.44 100.00 88.89 94.44 91.67
(0.00001, 0.03125) (0.01, 0.01, 0.03125) (100000, 2) (0.00001, 0.00001, 0.03125) (100000, 100000, 16) (100, 10, 32)

20% 88.89 95.83 88.89 88.89 88.89 88.89
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 2) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 100, 32)

ecoli-0-1-4-6 vs 5.

0% 98.80 100.00 100.00 94.05 94.05 92.86
(1, 1) (0.01, 0.1, 0.0625) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 8)

5% 94.05 92.81 88.92 94.05 94.05 98.81
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 1, 32)

10% 94.05 94.05 94.05 94.05 98.81 97.62
(0.00001, 0.03125) (0.01, 0.01, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

15% 94.05 94.05 90.87 94.05 94.05 94.05
(0.00001, 0.03125) (0.01, 0.01, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

20% 94.05 90.62 73.10 94.05 95.24 97.62
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 16) (100, 10, 32)

ecoli-0-1-4-7 vs 2-3-5-6

0% 87.12 96.04 82.69 87.12 87.13 93.07
(0.00001, 0.03125) (0.1, 1, 0.5) (100000, 8) (0.00001, 0.00001, 0.03125) (100000, 100000, 8) (10, 1, 32)

5% 87.13 90.04 80.54 87.13 93.07 72.28
(0.00001, 0.03125) (0.1, 0.1, 0.25) (100000, 2) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.01, 32)

10% 87.13 83.07 85.69 87.13 92.08 84.16
(0.00001, 0.03125) (0.01, 0.01, 0.03125) (100000, 4) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.1, 32)

15% 87.13 93.07 92.54 87.13 90.10 87.13
(0.00001, 0.03125) (1, 0.01, 0.03125) (100000, 4) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 10, 32)

20% 87.13 93.07 73.47 87.13 78.22 92.08
(0.00001, 0.03125) (0.1, 0.01, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 100, 32)

† represents the proposed model.
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Table 3.13 (Continued)

DATASET NOISE
SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
(c1, µ) (c1, c2, µ) (c1, µ) (c1, c2, µ) (c1, c2, µ) (c1, c2, µ)

ecoli2

0% 86.10 87.09 82.85 89.11 89.11 88.12
(0.00001, 0.03125) (0.1, 1, 0.03125) (10, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 85.11 87.11 72.44 89.11 89.11 88.12
(0.00001, 0.03125) (0.001, 0.01, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 0.25) (1, 0.1, 32)

10% 84.11 86.14 80.66 89.11 88.12 86.14
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (10000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 10, 32)

15% 83.11 86.11 77.32 89.11 90.10 89.11
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 10, 32)

20% 81.11 85.11 81.15 89.11 90.10 94.06
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

ecoli3

0% 86.10 87.09 82.85 89.10 89.11 88.12
(0.00001, 0.03125) (0.1, 1, 0.03125) (10, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 85.11 87.11 86.44 89.11 89.11 88.12
(0.00001, 0.03125) (0.001, 0.01, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 0.25) (1, 0.1, 32)

10% 84.11 86.14 81.66 89.11 88.12 86.14
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (10000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 10, 32)

15% 83.11 86.11 72.32 89.11 90.10 89.11
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 10, 32)

20% 81.11 85.11 81.15 89.11 90.10 90.10
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

fertility

0% 89.00 89.00 87.00 90.00 90.00 90.00
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

5% 89.00 86.67 80.67 90.00 90.00 90.00
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

10% 89.00 88.00 72.67 90.00 90.00 90.00
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

15% 86.00 89.00 80.00 90.00 90.00 90.00
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

20% 56.67 89.00 70.67 90.00 90.00 90.00
(10, 1) (0.1, 0.01, 0.03125) (10000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 100, 32)

glass2

0% 89.76 89.76 75.76 90.76 90.77 90.77
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

5% 89.77 88.77 80.17 90.77 90.77 90.77
(0.00001, 0.03125) (1, 1, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

10% 89.77 89.77 80.17 90.77 90.77 90.77
(0.00001, 0.03125) (0.001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

15% 86.77 89.77 75.38 90.77 90.77 90.77
(0.00001, 0.03125) (0.001, 0.00001, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

20% 82.77 89.77 89.23 90.77 90.77 90.77
(0.00001, 0.03125) (0.001, 0.00001, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

glass5

0% 86.92 94.92 80.75 96.92 96.92 96.92
(1, 1) (0.001, 0.01, 0.03125) (1, 1) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

5% 86.92 86.92 86.15 96.92 96.92 92.31
(0.00001, 0.03125) (0.1, 0.01, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

10% 86.92 92.92 76.92 96.92 96.92 95.38
(0.00001, 0.03125) (0.1, 0.01, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

15% 82.92 90.92 94.92 96.92 96.92 96.92
(0.00001, 0.03125) (0.01, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

20% 81.92 90.92 81.92 96.92 96.92 96.92
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

haber

0% 82.61 75.35 57.61 82.61 82.61 82.61
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

5% 82.61 70.26 72.10 82.61 80.43 82.61
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

10% 82.61 75.35 74.00 82.61 80.43 70.65
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10000, 32)

15% 82.61 79.35 80.67 82.61 82.61 82.61
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 2) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

20% 82.61 78.26 78.70 82.61 77.17 80.43
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.1, 32)

haberman survival

0% 82.60 79.35 57.61 82.60 81.52 82.61
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

5% 82.61 78.26 70.97 82.61 82.61 80.43
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

10% 82.61 79.35 78.59 82.61 81.52 75.00
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10000, 32)

15% 82.61 79.35 79.42 82.61 83.70 81.52
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

20% 82.61 78.26 75.65 82.61 84.78 82.61
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 32) (0.00001, 10, 0.5) (100000, 100000, 32) (100000, 100000, 32)

haberman

0% 81.52 75.35 57.61 80.43 82.61 82.61
(0.1, 1) (0.1, 1, 0.25) (100000, 0.25) (0.0001, 10, 0.125) (100000, 100000, 32) (100000, 100000, 32)

5% 81.52 70.26 72.10 80.43 80.43 82.61
(0.1, 1) (0.1, 1, 0.125) (100000, 0.25) (0.0001, 10, 0.125) (100000, 100000, 32) (100000, 100000, 32)

10% 82.61 75.35 79.00 81.52 80.43 70.65
(0.00001, 0.03125) (0.1, 1, 0.125) (100000, 0.25) (0.001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10000, 32)

15% 82.61 79.35 80.67 81.52 82.61 82.61
(0.00001, 0.03125) (0.1, 1, 0.125) (100000, 2) (0.001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

20% 82.61 78.26 75.70 82.61 77.17 80.43
(0.00001, 0.03125) (0.1, 1, 0.125) (100000, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.1, 0.1, 32)

heart hungarian

0% 65.29 71.91 71.52 65.16 79.77 82.02
(0.1, 1) (0.1, 0.1, 0.03125) (10, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

5% 62.42 70.03 72.53 65.17 76.40 79.78
(0.1, 1) (1, 0.1, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

10% 62.17 58.43 70.28 65.17 75.28 73.03
(0.00001, 0.03125) (0.01, 0.1, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

15% 65.17 65.17 75.28 65.17 75.28 75.28
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

20% 62.17 62.92 71.16 65.17 75.28 71.91
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.1, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

† represents the proposed model.
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Table 3.13 (Continued)

DATASET NOISE
SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
(c1, µ) (c1, c2, µ) (c1, µ) (c1, c2, µ) (c1, c2, µ) (c1, c2, µ)

led7digit-0-2-4-5-6-7-8-9 vs 1

0% 81.95 93.98 100.00 93.23 93.23 93.23
(1, 1) (0.00001, 0.0001, 0.125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 1000, 32)

5% 62.42 70.03 72.53 65.17 76.40 79.78
(0.1, 1) (0.00001, 0.00001, 0.03125) (1000, 8) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 1000, 32)

10% 62.17 58.43 70.28 65.17 75.28 93.23
(0.1, 1) (0.01, 0.01, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

15% 87.22 81.73 80.76 93.23 93.23 93.23
(0.1, 1) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

20% 93.23 90.23 92.89 93.23 93.23 93.98
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100000, 100000, 32)

mammographic

0% 52.94 79.93 75.76 52.94 79.23 79.93
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 52.94 81.66 80.00 52.94 60.90 80.62
(0.0001, 2) (0.1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 100, 32)

10% 72.94 81.66 80.76 52.94 64.71 70.24
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 1000, 32)

15% 52.94 81.66 100.00 52.94 76.12 75.09
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 0.1, 32)

20% 68.13 80.28 74.05 52.94 64.71 79.24
(0.1, 0.5) (0.1, 0.1, 0.03125) (10000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

monk2

0% 60.98 63.37 60.54 62.98 64.64 59.67
(0.00001, 0.03125) (1, 1, 0.03125) (100, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 1, 32)

5% 60.98 61.71 71.59 62.98 60.77 62.43
(0.00001, 0.03125) (1, 1, 0.03125) (0.00001, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

10% 60.98 63.43 60.28 62.98 59.12 64.09
(0.00001, 0.03125) (1, 1, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.0001,1, 32)

15% 63.48 60.11 60.80 62.98 66.85 64.09
(1, 0.5) (1, 10, 0.03125) (0.1, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.0001,1, 32)

20% 60.98 75.69 59.72 62.98 71.82 65.19
(0.00001, 0.03125) (1, 10, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

monks 2.

0% 60.98 64.11 60.48 62.98 60.77 58.56
(0.00001, 0.03125) (1, 10, 0.03125) (1000, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 1, 32)

5% 60.98 69.11 59.72 62.98 62.43 63.54
(0.00001, 0.03125) (1, 0.1, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

10% 60.98 72.93 60.49 62.98 59.12 64.09
(0.00001, 0.03125) (10, 0.1, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.0001,1, 32)

15% 62.98 66.72 60.96 62.98 62.98 62.98
(0.00001, 0.03125) (10, 1, 0.03125) (10, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.0001,1, 32)

20% 60.98 64.64 58.62 62.98 59.12 62.98
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (100, 10, 32)

monks 3

0% 46.11 75.21 69.52 54.49 64.67 78.44
(0.00001, 0.03125) (1, 0.1, 0.25) (100000, 32) (0.0001, 0.00001, 0.25) (100000, 100000, 32) (10, 0.1, 32)

5% 69.89 74.61 70.67 52.10 78.44 82.04
(0.00001, 0.03125) (0.1, 0.1, 0.125) (100000, 32) (0.001, 0.0001, 4) (100000, 100000, 32) (1, 0.1, 32)

10% 66.11 81.62 71.26 51.50 77.25 82.04
(0.00001, 0.03125) (0.1, 0.1, 0.125) (100000, 32) (0.0001, 0.00001, 4) (100000, 100000, 32) (1, 0.1, 32)

15% 76.11 85.03 80.00 51.50 76.05 79.04
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.0001, 0.00001, 4) (100000, 100000, 32) (1, 1, 32)

20% 76.11 79.64 70.06 75.45 77.84 68.26
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.001, 0.0001, 0.03125) (100000, 100000, 32) (0.1, 0.01, 32)

musk 1

0% 53.15 83.15 46.85 53.14 82.51 81.82
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (0.1, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 53.15 53.15 41.96 53.15 82.52 82.52
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

10% 53.15 53.15 61.54 53.15 81.12 74.83
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (10000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10, 0.1, 32)

15% 69.23 53.15 52.27 53.15 81.82 65.03
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (10, 8) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

20% 58.04 53.15 51.76 53.15 78.32 67.83
(0.00001, 0.0625) (0.0001, 0.00001, 0.03125) (1, 1) (1, 0.00001, 0.03125) (1, 0.1, 32)

ozone

0% 96.58 96.58 80.00 96.58 96.58 96.58
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 96.58 94.58 80.67 96.58 96.58 96.58
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100, 4) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

10% 96.58 96.58 96.58 96.58 96.58 90.54
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100, 0.25) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (10000, 1, 32)

15% 96.58 96.58 95.65 96.58 96.58 86.47
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (10, 0.0625) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.001, 100, 32)

20% 96.58 96.58 95.78 96.58 96.58 79.11
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100, 0.03125) (1, 0.00001, 0.03125) (100000, 100000, 32) (1, 10000, 32)

spambase

0% 62.20 84.79 70.65 62.27 71.32 86.67
(0.1, 1) (0.01, 1, 0.125) (0.00001, 8) (1, 1, 0.03125) (100000, 100000, 32) (100, 1, 32)

5% 62.27 81.82 62.00 62.27 68.36 83.78
(1, 0.5) (1, 0.1, 0.0625) (0.01, 8) (1, 1, 0.03125) (100000, 100000, 32) (100, 10, 32)

10% 66.33 80.88 79.72 62.27 66.98 73.14
(10, 0.5) (0.1, 0.1, 0.03125) (100000, 8) (1, 1, 0.03125) (100000, 100000, 32) (1, 1, 32)

15% 67.05 79.44 70.87 62.27 57.64 86.60
(1, 0.5) (0.1, 0.1, 0.03125) (0.1, 32) (1, 1, 0.03125) (100000, 100000, 32) (10, 1, 32)

20% 64.52 77.55 72.89 62.27 59.67 67.20
(1, 0.5) (0.1, 0.1, 0.03125) (1000, 0.5) (1, 1, 0.03125) (100000, 100000, 32) (1, 1, 32)

spectf

0% 80.25 79.42 80.25 82.71 82.71 75.31
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (0.00001, 32) (0.001, 0.0001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 80.25 86.42 75.31 80.25 83.95 81.48
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100, 32) (0.001, 0.0001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

10% 80.25 82.42 80.25 80.25 83.95 85.19
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (1000, 100, 32)

15% 80.25 86.42 80.25 80.25 80.25 80.25
(0.00001, 0.03125) (1, 0.1, 0.03125) (0.00001, 8) (0.00001, 0.00001, 0.03125) (100000, 100000, 32) (0.00001, 0.1, 32)

20% 80.25 85.19 81.48 76.54 82.72 81.48
(0.00001, 0.03125) (1, 0.1, 0.03125) (1, 8) (0.00001, 100, 0.125) (100000, 100000, 32) (0.00001, 1, 32)

† represents the proposed model.
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Table 3.13 (Continued)

DATASET NOISE
SVM TSVM GBSVM LSTSVM GBLSTSVM† LS-GBLSTSVM†

ACC(%) ACC(%) ACC(%) ACC(%) ACC(%) ACC(%)
(c1, µ) (c1, c2, µ) (c1, µ) (c1, c2, µ) (c1, c2, µ) (c1, c2, µ)

tic tac toe

0% 66.32 95.00 95.00 68.40 78.82 55.21
(0.00001, 0.03125) (0.1, 0.01, 0.25) (100000, 32) (0.001, 0.01, 0.03125) (100000, 100000, 32) (0.1, 1000, 32)

5% 66.32 97.57 92.89 66.31 81.25 76.04
(0.00001, 0.03125) (0.1, 0.01, 0.03125) (100000, 32) (0.001, 0.01, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

10% 66.32 97.92 66.67 66.32 84.38 86.81
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.001, 0.001, 0.125) (100000, 100000, 32) (10, 1, 32)

15% 66.32 93.40 90.76 66.32 80.21 71.18
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (0.001, 0.001, 0.125) (100000, 100000, 32) (1, 0.1, 32)

20% 86.32 92.71 87.57 66.32 87.85 66.32
(0.00001, 0.03125) (0.01, 0.01, 0.25) (100000, 32) (0.001, 0.001, 0.125) (100000, 100000, 32) (0.00001, 0.1, 32)

vehicle1

0% 75.98 80.31 73.62 76.37 75.59 76.77
(0.00001, 0.03125) (0.01, 0.01, 0.03125) (10000, 32) (10, 0.00001, 0.03125) (100000, 100000, 32) (10, 10, 32)

5% 76.38 76.77 80.89 76.38 74.80 72.05
(0.00001, 0.03125) (1, 1, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10, 100, 32)

10% 76.38 77.17 72.87 76.38 75.98 70.47
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

15% 76.38 79.13 70.00 76.38 72.83 75.20
(0.00001, 0.03125) (1, 0.01, 0.0625) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10, 1, 32)

20% 76.38 78.35 76.38 76.38 76.77 74.41
(0.00001, 0.03125) (1, 0.01, 0.0625) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10, 10000, 32)

yeast-0-2-5-6 vs 3-7-8-9

0% 91.39 84.04 100.00 91.39 91.39 94.04
(0.00001, 0.03125) (0.1, 0.1, 2) (100000, 32) (10, 0.00001, 0.03125) (100000, 100000, 32) (10000, 10, 32)

5% 91.39 93.38 90.89 91.39 92.05 88.08
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.001, 100, 32)

10% 91.39 92.38 90.47 91.39 92.72 92.05
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 16) (10, 1, 32)

15% 91.39 91.39 90.78 91.39 91.39 90.40
(0.00001, 0.03125) (1, 0.1, 0.125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.001, 1000, 32)

20% 91.39 91.39 90.87 91.39 90.40 91.39
(0.00001, 0.03125) (10, 0.01, 0.125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

yeast-0-2-5-7-9 vs 3-6-8

0% 87.50 53.15 69.48 90.72 90.72 96.03
(0.00001, 0.03125) (0.1, 0.00001, 0.03125) (100000, 32) (10, 0.00001, 0.03125) (100000, 100000, 32) (1, 0.1, 32)

5% 87.50 87.50 100.00 90.73 95.36 94.04
(0.00001, 0.03125) (0.00001, 0.00001, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 16) (10000, 10, 32)

10% 87.50 86.18 95.03 90.73 93.38 98.01
(0.00001, 0.03125) (0.001, 0.001, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10, 1, 32)

15% 90.73 87.50 85.67 90.73 92.38 97.02
(0.00001, 0.03125) (0.01, 0.001, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

20% 90.73 87.50 89.76 90.73 89.07 90.73
(0.00001, 0.03125) (0.01, 0.00001, 0.03125) (100000, 8) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

yeast-0-5-6-7-9 vs 4

0% 91.19 82.45 100.00 91.20 93.08 91.20
(0.00001, 0.03125) (0.001, 0.01, 0.0625) (1000, 2 ) (10, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

5% 91.19 88.68 89.57 91.19 88.68 90.57
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (1000, 2 ) (10000, 0.00001, 0.03125) (100000, 100000, 16) (0.0001, 10000, 32)

10% 91.19 79.31 80.54 91.19 91.19 77.36
(0.00001, 0.03125) (0.1, 0.01, 0.125) (1000, 2 ) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10, 1, 32)

15% 91.19 90.57 79.34 91.19 89.94 89.31
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (1000, 4 ) (10000, 0.00001, 0.03125) (100000, 100000, 16) (10000, 10, 32)

20% 91.19 90.57 89.43 91.19 93.71 90.57
(0.00001, 0.03125) (0.0001, 0.00001, 0.03125) (1000, 4 ) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

yeast-2 vs 4

0% 85.81 94.19 100.00 85.80 89.03 95.48
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 32) (10, 0.00001, 0.03125) (100000, 100000, 32) (10000, 10, 32)

5% 85.81 94.19 95.48 85.81 85.81 85.81
(0.00001, 0.125) (0.001, 0.01, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 16) (10, 1, 32)

10% 85.81 82.26 90.67 85.81 94.84 92.90
(0.00001, 0.125) (0.1, 0.01, 0.03125) (10000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

15% 85.81 90.32 100.00 85.81 92.26 94.84
(0.00001, 0.125) (1, 0.01, 0.125) (10000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

20% 85.81 89.68 82.78 85.81 89.68 92.26
(0.00001, 0.125) (0.1, 0.01, 0.03125) (100000, 32) (10000, 0.00001, 0.03125) (100000, 100000, 32) (1000, 10, 32)

yeast3

0% 89.24 92.38 60.84 88.11 88.11 92.15
(0.00001, 0.03125) (0.01, 0.1, 0.125) (100000, 32) (10, 0.00001, 0.03125) (100000, 100000, 32) (10000, 10, 32)

5% 88.12 90.13 89.42 88.12 90.36 89.46
(0.00001, 0.03125) (1, 0.1, 0.03125) (100000, 2) (10000, 0.00001, 0.03125) (100000, 100000, 16) (10, 1, 32)

10% 88.12 80.81 90.00 88.12 88.34 90.81
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 2) (10000, 0.00001, 0.03125) (100000, 100000, 32) (0.0001, 10000, 32)

15% 88.12 87.89 100.00 88.12 91.70 91.48
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (1000, 2) (10000, 0.00001, 0.03125) (100000, 100000, 16) (0.0001, 10000, 32)

20% 88.12 90.13 88.87 88.12 88.34 88.12
(0.00001, 0.03125) (0.1, 0.1, 0.03125) (100000, 2) (10000, 0.00001, 0.03125) (100000, 100000, 32) (10000, 10, 32)

Average Accuracy

0% 75.47 82.40 78.20 76.89 83.64 84.55
5% 76.02 81.07 78.42 75.03 82.67 82.62
10% 75.49 80.00 79.21 74.97 83.06 82.68
15% 77.52 82.05 80.00 75.79 84.05 83.15
20% 76.63 81.93 77.86 77.17 83.11 82.65

Average Rank

0% 4.32 3.24 3.99 3.72 2.90 2.84
5% 4.28 3.44 4.04 3.68 2.81 2.75
10% 4.16 3.66 3.93 3.68 2.69 2.88
15% 3.91 3.44 4.28 3.78 2.49 3.10
20% 4.04 3.04 4.49 3.60 2.85 2.97

† represents the proposed model.
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Chapter 4

GRVFL-2V: Graph Random

Vector Functional Link Based

on Two-View Learning

In this chapter, we propose a novel model called graph random vector func-

tional link based on two-view learning (GRVFL-2V). Moreover, we present

the computational complexity and algorithm of the proposed model. We also

discuss the results from experimental and statistical analyses

4.1 The proposed Graph Random Vector Func-

tional Link Based on Two-View Learning

model

In this section, we introduce a novel model called GRVFL-2V, which integrates

the RVFL with MVL. Our model is structured to leverage the strengths of

RVFL while incorporating both intrinsic and penalty graphical representations

of multiview data through the GE framework. To derive the network output

weights, the optimization process integrates subspace learning (SL) criteria,

incorporating both intrinsic and penalty-based SL methodologies within the

GE framework. To preserve the geometric structure e↵ectively, we incorpo-

rate local Fisher discriminant analysis (LFDA) [74] into the GE framework.

Additionally, we introduce a regularization parameter for GE to enhance the

learning process further. To trade o↵ the error between multiple views, we

introduce a coupling term in the primal optimization problem of our proposed

53



model. This term minimizes the combined error from both views, resulting

in an improved generalization performance for our model. The proposed opti-

mization problem of the GRVFL-2V model is presented below:

min
�1,�2

c1
2
||⇠1||

2
2 +

c2
2
||⇠2||

2
2 +

c3
2
||�1||

2
2 +

1

2
||�2||

2
2+

✓1
2
||G1/2

1 �1||
2
2 +

✓2
2
||G1/2

2 �2||
2
2 + ⇢⇠t1⇠2 (4.1)

s.t. Z1�1 � Ytrue = ⇠1 and Z2�2 � Ytrue = ⇠2,

where Z1 =
h
XA HA

i
and Z2 =

h
XB HB

i
. (4.2)

HA = �(XAWA + BA) and HB = �(XBWB + BB), where �(·) is a non-linear

activation function. WA and BA are the randomly initialized weight and bias

matrices for view�A and WB and BB for view�B, respectively. The primal

formulation (4.1) has the following components:

1. Connections between the concatenated matrix Z1 and the output layer

are established by the weight matrix �1, while the weight matrix �2

establishes connections between the Z2 and the output layer. Minimizing

||�1||
2
2 and ||�2||

2
2 incorporates the structural risk minimization (SRM)

principle.

2. G1 and G2 represent the graph embedding matrices, and minimizing

||G1/2
1 �1||

2
2 and ||G1/2

2 �2||
2
2 facilitates the preservation of structural rela-

tionships between data points.

3. ⇠1 and ⇠2 represent the empirical errors in view�A and view�B, respec-

tively. Minimizing ||⇠1||
2
2 and ||⇠2||

2
2 leads to the reduction of empirical

errors in both views.

4. The term ⇠t1⇠2 acts as a coupling term that integrates information from

both views and promotes the simultaneous minimization of errors in both

views.

5. The variables ✓1 and ✓2 are graph regularization parameters, while c1,

c2, and c3 represent the regularization parameters and ⇢ is the coupling

parameter.
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The lagrangian of (4.1) is:

L =
c1
2
||⇠1||

2 +
c2
2
||⇠2||

2 +
c3
2
||�1||

2 +
1

2
||�2||

2+

✓1
2
||G1/2

1 �1||
2 +

✓2
2
||G1/2

2 �2||
2 + ⇢⇠t1⇠2

�↵1
t(Z1�1 � Ytrue � ⇠1)� ↵2

t(Z2�2 � Ytrue � ⇠2). (4.3)

Partially di↵erentiating w.r.t. ⇠1, ⇠2, �1, �2,↵1, and ↵2 we get
@L

@⇠1
= c1⇠1 + ⇢⇠2 + ↵1 = 0, (4.4)

@L

@⇠2
= c2⇠2 + ⇢⇠1 + ↵2 = 0, (4.5)

@L

@�1
= c3�1 + ✓1G1�1 � Z1

t↵1 = 0, (4.6)

@L

@�2
= �2 + ✓2G2�2 � Z2

t↵2 = 0, (4.7)

@L

@↵1
= Z1�1 � Ytrue � ⇠1 = 0, (4.8)

@L

@↵2
= Z2�2 � Ytrue � ⇠2 = 0. (4.9)

Substituting (4.4) and (4.5) in (4.6) and (4.7) respectively, we get

c3�1 + ✓1G1�1 + Z1
t(c1⇠1 + ⇢⇠2) = 0, (4.10)

�2 + ✓2G2�2 + Z2
t(c2⇠2 + ⇢⇠1) = 0. (4.11)

Substituting the value of (4.8) and (4.9) in (4.10) and (4.11), we get

c3�1 + ✓1G1�1 + Z1
t (c1(Z1�1 � Ytrue) + ⇢(Z2�2 � Ytrue)) = 0,

�2 + ✓2G2�2 + Z2
t (c2(Z1�1 � Ytrue) + ⇢(Z2�2 � Ytrue)) = 0.

On simplifying, we get

c3�1 + ✓1G1�1 + c1Z1
tZ1�1 + ⇢Z1

tZ2�2 = Z1
t(c1 + ⇢)Ytrue,

�2 + ✓2G2�2 + c2Z2
tZ2�2 + ⇢Z2

tZ1�1 = Z2
t(c2 + ⇢)Ytrue.

Finally, we get

(c3I1 + ✓1G1 + c1Z1
tZ1)�1 + (⇢Z1

tZ2)�2 = Z1
t(c1 + ⇢)Ytrue,

(⇢Z2
tZ1)�1 + (I2 + ✓2G2 + c2Z2

tZ2)�2 = Z2
t(c2 + ⇢)Ytrue,

where I1 and I2 are the identity matrices of the appropriate dimension. Con-

verting into matrix form, we get"
c3I1 + ✓1G1 + c1Z1

tZ1 ⇢Z1
tZ2

⇢Z2
tZ1 I2 + ✓2G2 + c2Z2

tZ2

#"
�1

�2

#
=

"
Z1

t(c1 + ⇢)

Z2
t(c2 + ⇢)

#
Ytrue,
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"
�1

�2

#
=

"
c3I1 + ✓1G1 + c1Z1

tZ1 ⇢Z1
tZ2

⇢Z2
tZ1 I2 + ✓2G2 + c2Z2

tZ2

#�1 "
Z1

t(c1 + ⇢)

Z2
t(c2 + ⇢)

#
Ytrue.

(4.12)

For a new data point x having representation xA and xB w.r.t. view�A and

view � B, respectively, we give the classification function as follows:

class(x) = argmax
i2{1,2}

{yci}, (4.13)

where

yc =
1

2
([xA �(xAWA + bA)]�1 + [xB �(xBWB + bB)]�2))

and yc = (yc1 , yc2).

where WA and WB are the randomly generated weights matrices, and bA and

bB represents the bias column vectors of the bias matrices BA and BB, respec-

tively. Since, all the columns of the bias matrix BA are identical, hence bA can

be chosen to be any column of BA. A similar argument follows for bB. The

algorithm for the proposed GRVFL-2V is presented in Algorithm 2.

4.1.1 LFDA Under the GE Framework

The intrinsic as well as the penalty graphs are constructed using concatenated

matrices Z1 and Z2. Specifically, for Z1, we have G
int
1 = {Z1, 1�

int
} and

G
pen
1 = {Z1, 1�

pen
}. Similarly for Z2, we have G

int
2 = {Z2, 2�

int
} and G

pen
1 =

{Z2, 2�
pen

}. Hence, the intrinsic graph is denoted as G1
int = Z1

t
L1Z1 and the

penalty graph as G1
pen = Z1

t
U1Z1. Similarly, for Z2, the intrinsic graph is

G2
int = Z2

t
L2Z2 and the penalty graph is G2

pen = Z2
t
U2Z2. Within the graph

embedding (GE) framework, we employ the weighting scheme of Local Fisher

Discriminant Analysis (LFDA) [74]. Consequently, the weights for the LFDA

model’s intrinsic and penalty graphs are determined as follows:

i�
int
kl =

8
<

:

�kl
Nck

, ck = cl

0, otherwise.
(4.14)

i�
pen
kl =

8
<

:
�kl(

1
N �

1
Nck

), ck = cl
1
N , otherwise.

(4.15)

Where i = 1, 2. In this context, Nck denotes the number of samples within

the class labeled as ck, while �kl quantifies the similarity between hk and hl,

where hk, hl 2 Zi(i = 1, 2). The kernel function is utilized in this paper to
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compute the similarity measure, i.e., �kl = exp(�||hk�hl||
2

2�
2 ) where � is a scaling

parameter.

Algorithm 2 GRVFL-2V Model Algorithm
Input: Training datasets XA and XB.
Output: GRVFL-2V model.

1: Given the values for c1, c2, c3, ✓1, ✓2, and ⇢.
2: Compute Z1 and Z2 using Equation (4.2).
3: Compute intrinsic and penalty graph weights using Equations (4.14) and

(4.15) for Z1 and Z2.
4: Calculate Laplacian matrices Li = Di � i�

int and Ui = L
p
i = D

p
i � i�

pen

for Zi(i = 1, 2).
5: Compute G1

int = Z1
t
L1Z1 and G1

pen = Z1
t
U1Z1 for Z1, and G2

int = Z2
t
L2Z2

and G2
pen = Z2

t
U2Z2 for Z2.

6: Compute G1 = (G1
pen)

�1G1
int and G2 = (G2

pen)
�1G2

int.
7: Use Equation (4.12) to calculate �1 and �2.
8: Use test condition (4.13) to classify a new data point.

4.2 Computational Complexity

We analyze the computational complexity of our proposed GRVFL-2V model

in this section. ForXA, computing the graph embedding (GE) matrix G1 using

the methodologies from [91] which account for intrinsic as well as penalty graph

structures results in a time complexity of O((m+h1)
3+(m+h1)

2l). Similarly,

for XB, computing G2 yields a complexity of O((n+ h2)
3 + (n+ h2)

2l). Thus,

the GE process incurs a total computational complexity of O((n+h1)
3+(n+

h1)
2l) + O((m + h2)

3 + (m + h2)
2l). To solve our model, we address (4.12).

The complexity of this step is primarily governed by the inversion of a square

matrix with an order of (m+n+h1+h2), leading to a computational complexity

of O((m + n + h1 + h2)
3). Consequently, the total computational complexity

of our proposed model becomes O((n + h1)
3 + (n + h1)

2l) + O((m + h2)
3 +

(m+ h2)
2l) +O((m+ n+ h1 + h2)

3) ⇡ O((m+ n+ h1 + h2)
3).

4.3 Experiments, Results, and Discussions

The performance of the proposed model has been evaluated against the base-

line models: SVM2K [82], MvTSVM [83], ELM1 (performance of ELM [11] on
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‘view�A’), ELM2 (performance of ELM [11] on ‘view�B’), RVFL1 (perfor-

mance of RVFL [6] on ‘view � A’) and RVFL2 (performance of RVFL [6] on

‘view�B’), and MVLDM [92]. The datasets used for the evaluation are UCI

[70], KEEL [71], Animal with Attributes (AwA)1, and Corel5K2.

4.3.1 Experimental Setup

The experiments are carried out on a PC equipped with an Intel(R) Xeon(R)

Gold 6226R processor clocked at 2.90GHz and 128 GB of RAM. The system

runs on Windows 11 and uses Python 3.11. The dual of the QPP in SVM2K

[82] and MvTSVM [83] is solved using the “QP solvers” function from the

CVXOPT package. The dataset is randomly divided, allocating 70% of the

samples for training and 30% for testing. Hyperparameters are optimized and

validated using a five-fold cross-validation approach. The regulazation param-

eters ci (i = 1, 2, 3), the graph regularization parameters ✓j (j = 1, 2), and the

coupling parameter ⇢ are tuned within the range {10�5, 10�4, · · · , 105}. In our

experiments, we have taken c1 = c2 = c3 and ✓1 = ✓2. All the hyperparame-

ters of the baseline models were also taken within the same range. The hidden

neurons (hl) varies as 3:20:203.

4.3.2 Experiments on UCI and KEEL Datasets

Within this subsection, we delve into analyzing the statistical significance

of the results obtained from our experiments, specifically concentrating on

datasets sourced from UCI and KEEL repositories [70, 71]. Through our as-

sessment, we encompass a total of 27 datasets. Given the absence of inherent

multi-view characteristics in the UCI and KEEL datasets, we designated the

95% principal component extracted from the original data as ‘view�B’, while

the unaltered data itself acts as ‘view�A’. In order to thoroughly compare the

performance levels between our proposed graph random vector functional link

based on the two-view learning (GRVFL-2V) model and the baseline models

with optimized hyperparameters, the outcomes are illustrated in Table 4.1.

1http://attributes.kyb.tuebingen.mpg.de
2https://wang.ist.psu.edu/docs/related/
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The baseline models SVM2K, MvTSVM, ELM1, EML2, RVFL1, RVFL2,

and MVLDM achieves the average ACC of 75, 24%, 65.83%, 82.11%, 80.94%,

82.62%, 80.26%, and 80.58%, respectively. The GRVFL-2V model that we put

forward exhibited an outstanding average accuracy rate of 84.35%, surpassing

the performance levels of the baseline models. The di↵erence in average ACC

of the proposed model and the baseline models lies approximately between

4%� 20%. This showcases the superior generalization capabilities inherent in

our proposed model compared to the baseline models.

In order to further assess the e↵ectiveness of the proposed model, a

ranking method is utilized. This method involves assigning a rank to each

model for every dataset, where the model that performs the best is given

the lowest rank, and the model that performs the worst is given the highest

rank. The average rank for each model is then calculated by finding the

mean of its ranks across all datasets. If there are a total of N datasets,

each evaluated with � models, the rank of the pth model on the tth dataset

can be represented as stp. Subsequently, the average rank of the pth model is

calculated as Rp =
1
N

PN
t=1 s

t
p. The proposed GRVFL-2V model has been able

to achieve an average rank of 1.74. On the other hand, the baseline models

such as SVM2K, MvTSVM, ELM1, ELM2, RVFL1, RVFL2, and MVLDM

have average ranks of 5.52, 7.69, 4.02, 4.30, 3.54, 4.41, and 4.80, respectively.

These results clearly demonstrate the superiority of the proposed model over

the baseline models.

In order to assess the statistical significance of the proposed model, the

Friedman test is utilized as outlined in [90]. This particular test is designed to

pinpoint noteworthy variations among the models being compared by scruti-

nizing their average ranks. The underlying assumption of the null hypothesis

is that all models showcase an identical average rank, indicating an equivalent

level of performance. The Friedman test adheres to a chi-squared distribution

denoted as �2
F with (�� 1) degrees of freedom, which can be calculated using

the formula: �2
F = 12N

�(�+1)

hP
p Rp

2
�

�(�+1)
2

4

i
. Here, Rp signifies the average

rank of the pth model, � represents the total number of models, and N denotes

the number of datasets involved in the analysis. The Friedman statistic FF

is determined by the formula: FF = (N�1)�
2
F

N(��1)��
2
F
, where the F -distribution is

characterized by (�� 1) and (�� 1)⇥ (N � 1) degrees of freedom. Given that

N = 27 and � = 8, the values of �2
F and FF are calculated to be 91.37 and

24.33, respectively. By consulting the F -distribution table at a 5% level of

significance (↵), the critical value of FF (7, 182) = 2.39 is obtained. Since the
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calculated value of FF is 24.33, which exceeds the critical value of 2.39, the

null hypothesis is rejected. This outcome underscores a substantial statistical

distinction among the models under comparison. In addition, the Nemenyi

Table 4.2: The statistical comparison of the proposed GRVFL-2V model with
the baseline models on UCI and KEEL datasets using the Nemenyi post hoc
test.

SVM2K [82] MvTSVM [83] ELM1 [11] ELM2 [11] RVFL1 [6] RVFL2 [6] MVLDM [92]
GRVFL-2V (proposed) 3 3 3 3 3 3 3
3 indicates that the model listed in the row is statistically superior to the model mentioned in the column.

post hoc test [90] is utilized to delve deeper into the di↵erences between the

models. If the average ranks of the models exhibit a variance of at least the

critical di↵erence (CD), then they are deemed to be significantly distinct. The

CD is determined by the formula: CD = q↵
h
�(�+1)
6N

i1/2
. On calculating, we

get the CD = 1.35. The results presented in Table 4.2 provide clear evidence

that the average rank di↵erence between the baseline model and the proposed

GRFVL-MVL is larger than the critical di↵erence (CD) value. To be more

precise, the average rank di↵erence between MvTSVM and GRVFL-2V is 5.95,

which is greater than the CD value of 1.35. Similarly, the average rank di↵er-

ence between MVLDM and GRVFL-2V is 3.06, also surpassing the CD value.

Therefore, these results unequivocally demonstrate that the proposed model

exhibits significant dissimilarity compared to the baseline models.

Furthermore, a pairwise win-tie-loss sign test is conducted under the

assumption of equal performance between the two models under the null hy-

pothesis. It is anticipated that each model will emerge victorious in roughly

half of the total datasets, denoted as N
2 , where N represents the total number

of datasets. To establish statistical significance, a model must secure wins

in approximately N
2 + 1.96

p
N
2 datasets more than its counterpart. In scenar-

ios where there is an even number of ties between the models, the ties are

Table 4.3: Pairwise win-tie-loss-sign test of proposed GRVFL-2V model and
baseline models on UCI and KEEL datasets.

SVM2K [82] MvTSVM [83] ELM1 [11] ELM2 [11] RVFL1 [6] RVFL2 [6] Large Margin [92]
MvTSVM [83] [2, 2, 23]
ELM1 [11] [18, 1, 8] [27, 0, 0]
ELM2[11] [18, 2, 7] [26, 0, 1] [10, 4, 13]
RVFL1 [6] [21, 1, 5] [27, 0, 0] [11, 10, 6] [14, 4, 9]
RVFL2 [6] [18, 1, 8] [25, 1, 1] [9, 5, 13] [10, 9, 8] [7, 7, 13]
Large Margin [92] [16, 1, 10] [24, 0, 3] [11, 0,16] [11, 0, 16] [9, 0, 18] [13, 0, 14]
GRVFL-2V (proposed) [25, 0, 2] [27, 0, 0] [22, 1, 4] [23, 1, 3] [21, 1, 5] [24, 1, 2] [25, 0, 2]

wherein
⇥
x y z

⇤
, x signifies no. of wins, y no. of draws, and z no. of losses.
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evenly distributed. Conversely, in cases of an odd number of ties, one tie is

discounted, and the remaining ties are divided between the models. With N

set at 27, a minimum of 18.59 wins is required to establish a significant dif-

ference between the two models. The results depicted in Table 4.3 showcase

a distinct advantage for our proposed model over the baseline model. Clearly,

we can see that our proposed model wins on at least 21 (> 18.59) datasets

out of 27 datasets. Hence, our proposed model is far superior to the baseline

models. In particular, we can observe that our proposed GRVFL-2V surpasses

SVM2K in 25 datasets out of the 27 datasets. Furthermore, it outperforms the

MvTSVM in all 27 datasets while excelling against MVLDM in 25 datasets out

of the 27. The findings unequivocally a�rm that our proposed model exhibits

a significantly higher performance level compared to the baseline models.

4.3.3 Experiments on Corel5k Datasets

The Corel5k3 dataset serves as a prominent benchmark in the realms of com-

puter vision and image processing. Comprising 5,000 images across 50 distinct

categories, each category includes 100 images. This dataset is widely used

for a variety of applications, including content-based image retrieval (CBIR),

object recognition, and image classification. We divide the dataset into 50

binary datasets using the one-versus-rest approach. For every binary dataset,

100 photographs from the target category make up the positive class, while

another 100 images are chosen at random from the other categories to make

up the negative class. This approach facilitates the creation of tailored bi-

nary datasets for focused analysis and experimentation. The results presented

in Table 4.4 provide clear evidence that our proposed model outperforms the

baseline models. With an average accuracy (ACC) of 77.33%, our model

achieves the highest accuracy among all the models compared. Additionally,

the proposed GRVFL-2V model obtains the lowest average rank of 2.94, in-

dicating its superior performance compared to the baseline models. These

findings are from the 50 datasets from Corel5k, which further solidifies the

superiority of our proposed model.
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Table 4.4: Performance comparison of the proposed GRVFL-2V along with
the baseline models based on classification accuracy for Corel5k datasets.

Dataset SVM2K [82] MvTSVM [83] ELM1 [11] ELM2 [11] RVFL1 [6] RVFL2 [6] MVLDM [92] GRVFL-2V†

(C1) (C1, C2, D) (C,N) (C,N) (C,N) (C,N) (C1, ⌫1, ⌫2, �) (C1, ✓, ⇢, N)
1000 81.67 50 83.33 78.33 83.33 76.67 73.33 83.33

(0.0625) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 43) (0.0001, 183) (0.00001, 3) (0.01, 0.001, 0.001, 4) (0.01, 10, 0.001, 23)
10000 71.67 48.33 56.67 63.33 71.67 71.67 55 65.00

(0.03125) (0.00001, 0.00001, 0.00001) (1000, 23) (1000, 23) (0.01, 3) (0.00001, 63) (0.01, 0.01, 0.001, 4) (1, 10, 0.01, 183)
100000 71.67 55 63.33 73.33 78.33 75 61.67 78.33

(0.0625) (0.00001, 0.00001, 0.00001) (100000, 183) (0.00001, 123) (0.001, 183) (0.00001, 123) (100, 1000, 100, 4) (0.1, 100, 0.01, 3)
101000 66.67 58.33 75 73.33 68.33 76.67 55 80.00

(0.0625) (0.00001, 0.00001, 0.00001) (0.001, 123) (0.00001, 143) (0.001, 3) (0.00001, 143) (100, 10, 100, 4) (1000, 10000, 10, 23)
102000 81.67 51.67 81.67 75 81.67 71.67 83.33 81.67

(0.03125) (0.00001, 0.00001, 0.00001) (0.01, 63) (0.00001, 143) (0.01, 3) (100000, 3) (0.001, 0.001, 0.0001, 4) (0.1, 100, 0.00001, 3)
103000 73.33 45 80 75 81.67 73.33 65 80.00

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 163) (0.0001, 43) (0.001, 163) (0.00001, 43) (0.0001, 0.1, 0.001, 4) (1000, 100000, 0.0001, 43)
104000 71.67 46.67 55 65 76.67 76.67 46.67 51.67

(32) (0.00001, 0.00001, 0.00001) (10, 123) (10000, 23) (0.0001, 203) (0.00001, 83) (0.0001, 0.0001, 0.00001, 4) (100, 0.1, 1000, 83)
108000 80 48.33 75.65 76.67 78.33 76.67 78.33 81.67

(8) (0.00001, 0.00001, 0.00001) (0.001, 63) (0.00001, 83) (0.1, 3) (0.00001, 3) (100, 1000, 10000, 4) (100, 100000, 0.01, 23)
109000 65 43.33 68.33 73.33 68.33 75 73.33 88.33

(1) (0.00001, 0.00001, 0.00001) (0.0001, 203) (100, 63) (0.0001, 203) (0.0001, 43) (0.001, 0.001, 0.0001, 0.25) (1, 100, 0.001, 23)
113000 66.67 45 68.33 63.33 70 63.33 66.67 66.67

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 123) (1000, 203) (0.001, 123) (0.0001, 23) (0.0001, 0.001, 0.001, 0.25) (100000, 10000, 0.00001, 3)
118000 58.33 48.33 68.33 61.67 68.33 56.67 58.33 60.00

(8) (0.00001, 0.00001, 0.00001) (0.001, 103) (100000, 43) (0.001, 103) (1000, 43) (0.01, 0.1, 0.01, 4) (100000, 100, 1, 183)
119000 71.33 53.33 81.67 83.33 78.33 80 70 80.00

(16) (0.00001, 0.00001, 0.00001) (0.001, 143) (0.00001, 123) (0.01, 63) (0.00001, 83) (0.001, 0.0001, 0.01, 0.25) (0.0001, 0.01, 0.00001, 23)
12000 60 48.33 63.33 58.33 63.33 51.67 61.67 68.33

(32) (0.00001, 0.00001, 0.00001) (0.0001, 83) (0.00001, 63) (0.0001, 83) (0.00001, 43) (0.1, 0.1, 0.1, 2) (0.00001, 10000, 1000, 203)
120000 73.33 48.33 78.33 80 78.33 85 66.67 75.00

(0.03125) (0.00001, 0.00001, 0.00001) (0.01, 203) (0.00001, 203) (0.01, 203) (0.00001, 103) (0.001, 0.0001, 0.001, 4) (0.0001, 10, 100, 203)
121000 63.33 55 68.33 75 71.67 71.67 71.67 75.00

(2) (0.00001, 0.00001, 0.00001) (0.0001, 163) (0.00001, 103) (0.001, 143) (0.00001, 103) (0.001, 0.1, 0.01, 2) (0.0001, 0.01, 0.00001, 3)
122000 78.33 55 70 76.67 70 71.67 61.67 81.67

(0.0625) (0.00001, 0.00001, 0.00001) (0.01, 163) (100, 23) (0.01, 163) (0.00001, 123) (0.01, 0.001, 0.01, 0.25) (0.0001, 0.1, 0.00001, 23)
13000 85 50 83.33 91.67 85 90 78.33 85

(32) (0.00001, 0.00001, 0.00001) (0.001, 183) (0.00001, 103) (0.001, 183) (0.00001, 43) (0.01, 0.001, 0.0001, 2) (0.0001, 0.001, 0.00001, 3)
130000 58.96 48.33 58.33 65 58.33 61.67 60 61.67

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 103) (100, 23) (0.001, 103) (0.00001, 23) (0.001, 0.001, 0.001, 4) (0.001, 0.1, 0.00001, 83)
131000 78.33 63.33 73.33 76.67 83.33 76.67 81.67 75.00

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 163) (0.00001, 83) (0.01, 23) (0.00001, 183) (0.01, 0.001, 0.01, 4) (1, 1000, 1000, 163)
140000 71.67 40 58.33 76.67 56.67 78.33 45 80.00

(0.0625) (0.00001, 0.00001, 0.00001) (0.1, 183) (0.00001, 143) (0.1, 3) (100, 3) (0.01, 0.001, 0.0001, 4) (10, 1, 1, 3)
142000 86.67 51.67 85 68.33 91.67 88.33 78.33 91.67

(0.25) (0.00001, 0.00001, 0.00001) (0.001, 183) (10000, 23) (0.1, 3) (1, 3) (0.01, 0.001, 0.0001, 4) (1, 100, 0.01, 3)
143000 66.67 51.67 63.33 65 63.33 65 71.67 58.33

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 163) (0.00001, 203) (0.001, 163) (0.00001, 203) (0.01, 0.1, 0.1, 0.25) (0.001, 10, 1, 183)
144000 73.33 48.33 68.33 71.67 68.33 70 66.67 68.33

(16) (0.00001, 0.00001, 0.00001) (0.01, 63) (0.00001, 203) (0.01, 63) (0.00001, 203) (0.1, 0.1, 0.1, 0.25) (100, 0.1, 0.00001, 203)
147000 58.33 55 63.33 73.33 63.33 73.33 70 75.00

(0.125) (0.00001, 0.00001, 0.00001) (0.01, 203) (0.00001, 123) (0.01, 203) (0.00001, 123) (0.001, 0.001, 0.1, 4) (0.1, 1, 0.00001, 203)
148000 86.67 50 90 80 88.33 86.67 83.33 83.33

(2) (0.00001, 0.00001, 0.00001) (0.001, 103) (0.00001, 83) (0.001, 23) (0.00001, 63) (0.001, 0.0001, 0.1, 4) (0.1, 100, 0.001, 83)
152000 56.67 48.33 65 66.67 66.67 45 51.67 68.33

(0.25) (0.00001, 0.00001, 0.00001) (0.0001, 143) (0.1, 23) (0.00001, 103) (1, 103) (0.1, 0.1, 0.001, 0.25) (100, 100000, 10, 43)
153000 79.33 55 76.67 73.33 76.67 68.33 80.00

(0.5) (0.00001, 0.00001, 0.00001) (0.001, 203) (0.00001, 43) (0.001, 203) (0.00001, 43) (0.01, 10, 100, 4) (1, 1000, 0.1, 203)
161000 86.67 46.67 91.67 91.67 88.33 90 93.33 91.67

(0.5) (0.00001, 0.00001, 0.00001) (0.001, 183) (0.00001, 143) (0.1, 23) (0.00001, 43) (0.001, 0.0001, 0.00001, 2) (100, 1000, 0.001, 3)
163000 80 41.67 80 78.33 80 85 71.67 83.33

(4) (0.00001, 0.00001, 0.00001) (0.0001, 203) (1, 23) (0.001, 83) (0.00001, 3) (0.001, 0.0001, 0.00001, 0.5) (0.0001, 0.01, 0.00001, 43)
17000 83.33 56.67 86.67 90 86.67 86.67 83.33 93.33

(2) (0.00001, 0.00001, 0.00001) (0.001, 163) (0.00001, 143) (0.001, 163) (0.00001, 203) (0.001, 0.00001, 0.1, 4) (0.001, 0.1, 0.0001, 203)
171000 88.33 48.33 76.67 68.33 76.67 75 63.33 75.00

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 123) (0.00001, 83) (0.001, 123) (0.00001, 3) (0.1, 0.001, 0.1, 0.25) (0.00001, 0.01, 0.00001, 183)
173000 85 61.67 86.67 71.67 83.33 78.33 80 86.67

(0.125) (0.00001, 0.00001, 0.00001) (0.001, 203) (1000, 23) (0.001, 63) (1000, 3) (0.0001, 0.01, 0.1, 0.25) (10, 10000, 0.00001, 23)
174000 81.67 45 81.67 85 83.33 88.33 88.33 90.00

(0.03125) (0.00001, 0.00001, 0.00001) (0.01, 103) (0.001, 43) (0.01, 103) (0.00001, 23) (0.0001, 0.01, 0.0001, 4) (0.00001, 0.0001, 0.00001, 3)
182000 76.67 46.67 78.33 76.67 80 76.67 70 81.67

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 183) (0.00001, 123) (0.001, 183) (0.00001, 123) (0.00001, 0.0001, 0.0001, 0.25) (1, 100, 0.1, 3)
183000 70 48.33 80 68.33 80 78.33 68.33 80.00

(4) (0.00001, 0.00001, 0.00001) (0.0001, 203) (1000, 43) (0.0001, 203) (0.00001, 43) (0.00001, 0.01, 0.00001, 4) (1, 10000, 0.0001, 203)
187000 83.33 43.33 81.67 80 83.33 85 81.67 83.33

(0.03125) (0.00001, 0.00001, 0.00001) (0.0001, 103) (10000, 23) (0.001, 103) (0.00001, 3) (0.01, 0.01, 0.01, 0.25) (0.0001, 0.1, 0.00001, 163)
189000 76.67 58.33 80 81.67 80 75 73.33 75.00

(0.25) (0.00001, 0.00001, 0.00001) (0.001, 203) (0.00001, 123) (0.001, 203) (0.00001, 163) (0.01, 0.001, 0.001, 4) (1000, 0.1, 10, 3)
20000 65 40 63.33 73.33 70 63.33 65 73.33

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 183) (100000, 23) (0.01, 3) (0.00001, 163) (0.001, 0.001, 0.0001, 4) (0.1, 100, 0.00001, 43)
201000 86.67 58.33 90 88.33 91.67 86.67 80 90.00

(1) (0.00001, 0.00001, 0.00001) (1, 23) (0.00001, 63) (0.001, 63) (0.00001, 23) (0.0001, 0.01, 0.001, 4) (0.001, 0.01, 0.00001, 23)
21000 90 50 93.33 83.33 88.33 86.67 86.67 88.33

(1) (0.00001, 0.00001, 0.00001) (0.001, 183) (0.00001, 43) (0.01, 163) (0.00001, 103) (0.1, 0.1, 0.1, 0.25) (1000, 100000, 0.00001, 203)
22000 70 46.67 70 53.33 73.33 68.33 68.33 73.33

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 143) (1, 23) (0.1, 23) (0.00001, 43) (0.001, 0.001, 0.001, 0.25) (10, 1000, 0.001, 203)
231000 65 55 61.67 60 56.67 60 53.33 53.33

(0.0625) (0.00001, 0.00001, 0.00001) (0.1, 123) (0.00001, 203) (0.01, 83) (0.00001, 203) (0.1, 0.001, 0.0001, 0.25) (100, 1000, 0.0001, 123)
276000 78.67 56.67 78.33 76.67 80 76.67 71.67 78.33

(0.25) (0.00001, 0.00001, 0.00001) (0.01, 63) (0.00001, 183) (0.01, 63) (0.00001, 183) (0.001, 0.0001, 0.0001, 4) (0.01, 10, 0.00001, 23)
296000 78.33 46.67 85 71.67 85 78.33 68.33 76.67

(16) (0.00001, 0.00001, 0.00001) (0.001, 183) (0.00001, 103) (0.001, 183) (0.00001, 3) (0.00001, 0.001, 0.01, 4) (0.01, 10, 0.001, 103)
33000 83.33 43.33 86.67 81.67 88.33 81.67 68.33 88.33

(0.03125) (0.00001, 0.00001, 0.00001) (0.001, 143) (0.00001, 43) (0.01, 3) (0.00001, 43) (0.01, 0.1, 0.1, 0.25) (1, 10000, 0.1, 63)
335000 78.33 43.33 75 78.33 73.33 75 70 76.67

(8) (0.00001, 0.00001, 0.00001) (0.001, 203) (0.00001, 43) (0.01, 3) (0.00001, 43) (0.1, 0.1, 0.1, 4) (0.00001, 1, 0.00001, 103)
34000 80.33 53.33 76.67 86.67 83.33 86.67 73.33 85.00

(0.25) (0.00001, 0.00001, 0.00001) (0.001, 83) (0.00001, 163) (0.001, 203) (0.00001, 163) (0.1, 0.001, 0.001, 0.5) (100000, 10000, 1, 3)
384000 85 55 78.33 86.67 78.33 85 78.33 81.67

(8) (0.00001, 0.00001, 0.00001) (0.001, 83) (1000, 63) (0.001, 83) (0.00001, 183) (0.01, 0.01, 0.001, 2) (0.00001, 0.01, 0.00001, 143)
41000 65 43.33 66.67 68.33 56.67 65 56.67 66.67

(0.125) (0.00001, 0.00001, 0.00001) (0.1, 43) (0.00001, 183) (0.1, 43) (1000, 23) (0.001, 0.0001, 0.01, 4) (0.00001, 0.01, 0.00001, 143)
46000 70 46.67 78.33 81.67 80 83.33 65 71.67

(0.125) (0.00001, 0.00001, 0.00001) (0.001, 163) (0.00001, 43) (0.001, 163) (0.00001, 43) (0.0001, 0.001, 0.01, 4) (1000, 100000, 0.00001, 103)
Average ACC 74.87 49.93 74.98 74.83 76.33 75.43 69.87 77.33
Average Rank 4.11 7.91 3.99 3.97 3.42 4.05 5.61 2.94

† represents the proposed model.
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Table 4.5: Performance comparison of the proposed GRVFL-2V along with
the baseline models based on classification accuracy for AwA datasets.

Dataset SVM2K [82] MvTSVM [83] ELM1 [11] ELM2 [11] RVFL1 [6] RVFL2 [6] MVLDM [92] GRVFL-2V†

(C1) (C1, C2, D) (C,N) (C,N) (C,N) (C,N) (C1, ⌫1, ⌫2, �) (C1, ✓, ⇢, N)
Chimpanzee vs Giant panda 84.03 47.22 71.53 72.92 71.53 80.89 72.22 90.97

(0.00001) (0.00001, 0.00001, 0.00001) (0.0001, 123) (0.00001, 163) (0.001, 3) (0.001, 3) (1000, 0.0001, 0.01, 4) (0.001, 10, 0.00001, 3)
Chimpanzee vs Leopard 80.11 46.53 63.89 83.33 72.92 80.42 68.75 89.58

(0.00001) (0.00001, 0.00001, 0.00001) (1000, 43) (0.00001, 203) (0.01, 23) (0.0001, 3) (0.001, 0.00001, 0.00001, 4) (0.001, 100000, 0.00001, 3)
Chimpanzee vs Persian cat 70.86 50 79.86 69.44 79.17 80.56 86.11 83.33

(0.0001) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 183) (0.0001, 183) (0.1, 3) (100, 0.0001, 0.00001, 4) (10, 10000, 0.00001, 3)
Chimpanzee vs Pig 50.42 51.39 68.75 81.25 69.44 79.17 66.67 83.33

(0.01) (0.00001, 0.00001, 0.00001) (0.00001, 163) (0.00001, 163) (0.00001, 163) (10, 3) (100000, 0.001, 0.001, 4) (0.001, 10, 0.0001, 3)
Chimpanzee vs Hippopotamus 70.94 54.86 71.53 70.14 72.92 78.47 78.47 78.47

(0.00001) (0.00001, 0.00001, 0.00001) (0.00001, 143) (0.00001, 183) (0.00001, 143) (0.001, 3) (1000, 0.0001, 1, 4) (0.0001, 10, 0.00001, 3)
Chimpanzee vs Humpback whale 92.36 81.39 86.81 92.36 88.89 91.14 81.25 96.53

(0.1) (0.00001, 0.00001, 0.00001) (0.0001, 83) (0.00001, 183) (0.0001, 83) (0.01, 3) (10000, 0.001, 0.0001, 4) (0.001, 100000, 0.001, 23)
Chimpanzee vs Raccoon 80.33 63.47 69.44 63.89 73.61 79.86 72.22 83.33

(0.001) (0.00001, 0.00001, 100000) (0.0001, 203) (0.00001, 123) (0.001, 3) (1000, 23) (10000, 0.00001, 0.01, 4) (0.001, 1, 0.0001, 3)
Chimpanzee vs Rat 77.08 52.78 57.64 75 63.89 71.94 68.06 82.64

(10) (0.00001, 0.00001, 0.00001) (100000, 43) (0.00001, 183) (0.001, 163) (0.001, 3) (100000, 0.0001, 0.00001, 4) (0.1, 1000, 0.0001, 43)
Chimpanzee vs Seal 70.69 53.47 79.17 76.39 79.17 79.81 75.69 85.42

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 143) (0.001, 3) (0.0001, 3) (0.001, 0.001, 0.01, 0.25) (0.001, 100000, 0.01, 3)
Giant panda vs Leopard 80.19 54.17 61.11 78.47 72.92 80.11 61.81 90.97

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 103) (0.00001, 203) (0.001, 3) (0.001, 3) (100000, 0.00001, 0.01, 0.25) (0.001, 10, 0.001, 3)
Giant panda vs Persian cat 81.81 52.08 77.78 76.39 64.58 80.42 66.67 84.03

(0.0001) (0.00001, 0.00001, 0.00001) (100, 103) (0.00001, 203) (0.001, 23) (100000, 3) (0.01, 0.00001, 0.01, 4) (0.1, 1000, 0.01, 23)
Giant panda vs Pig 80.56 51.39 63.89 75 65.97 79.81 65.97 88.19

(0.0001) (0.00001, 0.00001, 0.00001) (1, 43) (0.00001, 203) (0.001, 3) (0.001, 3) (1000, 0.00001, 0.01, 0.25) (0.001, 10, 0.00001, 3)
Giant panda vs Hippopotamus 77.78 54.17 74.31 81.25 68.06 71.94 74.31 84.72

(0.01) (0.00001, 0.00001, 0.00001) (0.00001, 183) (0.00001, 183) (0.01, 3) (0.01, 23) (100000, 0.001, 100, 2) (0.01, 100, 0.001, 23)
Giant panda vs Humpback whale 93.06 46.53 93.06 91.67 93.06 93.22 93.75 81.25

(0.00001) (0.00001, 0.00001, 0.00001) (0.0001, 203) (0.00001, 203) (0.0001, 203) (0.001, 3) (0.001, 0.00001, 0.01, 4) (0.001, 1, 0.00001, 3)
Giant panda vs Raccoon 80.19 52.78 68.06 74.31 68.75 80.19 64.58 89.58

(10000) (0.00001, 0.00001, 0.00001) (0.0001, 203) (0.00001, 163) (0.00001, 203) (0.001, 3) (100000, 0.00001, 0.00001, 2) (0.001, 10, 0.0001, 3)
Giant panda vs Rat 83.33 69.31 66.67 76.39 68.06 80.5 70.14 84.72

(1) (0.00001, 0.00001, 100000) (10, 103) (0.00001, 123) (0.001, 43) (0.001, 3) (10000, 0.0001, 0.01, 0.25) (0.001, 0.1, 0.00001, 43)
Giant panda vs Seal 85.89 56.94 80.56 77.08 80.56 80.19 86.81 89.58

(0.1) (0.00001, 0.00001, 0.00001) (0.0001, 203) (0.00001, 183) (0.001, 3) (0.0001, 3) (100000, 0.001, 0.01, 2) (1, 1000, 0.0001, 3)
Leopard vs Persian cat 82.19 79.31 70.83 84.72 77.78 88.19 80.56 90.97

(0.00001) (0.00001, 0.00001, 0.00001) (100, 63) (0.00001, 203) (0.001, 23) (0.001, 3) (0.00001, 0.00001, 100, 4) (0.001, 1, 0.001, 3)
Leopard vs Pig 75 61.39 61.11 75 66.67 72.17 68.75 78.47

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 183) (0.001, 3) (0.001, 3) (0.01, 0.001, 100, 4) (0.001, 1, 0.0001, 3)
Leopard vs Hippopotamus 78.17 50.69 73.61 77.08 74.31 75.94 75 80.56

(10) (0.00001, 0.00001, 0.00001) (0.0001, 143) (0.00001, 143) (0.0001, 43) (0.0001, 3) (10000, 0.0001, 0.001, 4) (0.01, 10, 0.001, 23)
Leopard vs Humpback whale 90.75 79.31 89.58 91.67 90.97 90.83 89.58 95.83

(0.00001) (0.00001, 0.00001, 0.00001) (0.00001, 103) (0.00001, 183) (0.0001, 143) (0.001, 23) (100, 0.00001, 0.01, 4) (0.001, 10, 0.0001, 3)
Leopard vs Raccoon 80.56 55 59.03 57.64 59.03 69.25 56.94 79.17

(0.0001) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.0001, 183) (0.001, 3) (0.001, 3) (0.01, 0.00001, 0.00001, 0.25) (100, 100000, 0.00001, 23)
Leopard vs Rat 76.42 68.61 72.22 76.39 68.06 79.86 65.28 83.33

(0.0001) (0.00001, 0.00001, 0.00001) (10000, 43) (0.00001, 183) (0.001, 3) (0.001, 3) (10000, 0.0001, 0.00001, 0.25) (0.001, 1, 0.0001, 3)
Leopard vs Seal 80.42 63.47 75.69 79.86 75 83.33 81.25 84.72

(10000) (0.00001, 0.00001, 0.00001) (0.0001, 123) (0.00001, 143) (0.0001, 123) (0.001, 43) (10000, 0.0001, 0.0001, 4) (10, 100000, 0.01, 3)
Persian cat vs Pig 70 69.31 63.89 67.36 70.14 74.31 69.44 73.61

(0.001) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 163) (0.001, 3) (10000, 3) (100, 0.00001, 0.01, 4) (0.01, 1, 0.00001, 3)
Persian cat vs Hippopotamus 76.81 76.53 75.69 79.86 77.08 78.94 75.69 80.56

(0.01) (0.00001, 0.00001, 0.00001) (1, 63) (0.00001, 203) (0.01, 3) (1, 3) (100000, 0.001, 0.00001, 0.25) (0.01, 10, 0.001, 23)
Persian cat vs Humpback whale 71.67 71.39 81.25 88.19 81.94 81.75 85.42 95.14

(0.00001) (0.00001, 0.00001, 0.00001) (0.00001, 143) (0.00001, 203) (0.00001, 143) (1, 23) (0.01, 0.00001, 0.1, 4) (0.001, 1, 0.001, 3)
Persian cat vs Raccoon 82.64 79.31 73.61 81.25 69.44 71.64 65.97 84.72

(0.00001) (0.00001, 0.00001, 0.00001) (100, 23) (0.00001, 163) (0.001, 23) (0.001, 3) (100000, 0.00001, 0.001, 2) (0.001, 0.1, 0.00001, 43)
Persian cat vs Rat 60.44 64.17 54.86 56.25 59.72 60.67 56.94 65.97

(0.001) (0.00001, 0.00001, 0.00001) (0.001, 183) (100000, 103) (0.001, 3) (0.001, 3) (1000, 0.00001, 10, 0.5) (0.0001, 1, 0.0001, 3)
Persian cat vs Seal 80.42 73.47 72.22 71.53 65.97 72.94 83.33 84.72

(1) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 83) (0.01, 63) (0.001, 3) (10000, 0.00001, 0.01, 4) (0.0001, 10, 0.00001, 3)
Pig vs Hippopotamus 71.53 65.83 70.14 65.97 64.58 67.36 72.22 83.33

(0.0001) (0.00001, 0.00001, 0.00001) (0.0001, 83) (0.00001, 203) (0.0001, 123) (0.01, 63) (1000, 0.00001, 0.01, 0.25) (10, 10000, 0.00001, 3)
Pig vs Humpback whale 80.19 77.92 82.64 89.58 82.64 80.19 88.89 82.64

(0.01) (0.00001, 0.00001, 0.00001) (0.00001, 203) (0.00001, 203) (0.00001, 203) (0.001, 3) (100000, 0.001, 0.0001, 0.25) (0.1, 1000, 0.0001, 43)
Pig vs Raccoon 71.69 69.31 61.11 72.92 64.58 72.22 62.5 81.25

(0.00001) (0.00001, 0.00001, 0.00001) (0.0001, 43) (0.00001, 183) (0.0001, 43) (10000, 3) (0.0001, 0.00001, 0.0001, 4) (0.001, 1, 0.00001, 3)
Pig vs Rat 71.53 68.61 62.5 59.72 57.64 68.06 64.58 63.89

(0.01) (0.00001, 0.00001, 0.00001) (1000, 63) (0.0001, 203) (0.001, 43) (0.001, 3) (1000, 0.00001, 0.01, 0.25) (100, 10000, 0.001, 43)
Pig vs Seal 72.69 65.56 70.14 68.06 72.92 74.31 72.92 78.47

(0.01) (0.00001, 0.00001, 0.00001) (0.00001, 163) (0.00001, 183) (0.001, 3) (0.0001, 3) (0.001, 0.001, 0.00001, 4) (0.001, 1, 0.00001, 3)
Hippopotamus vs Humpback whale 82.03 80.31 77.78 79.86 81.25 82.81 79.86 88.19

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 143) (0.00001, 143) (0.01, 3) (0.001, 23) (0.001, 0.0001, 10000, 0.25) (0.001, 1, 0.00001, 3)
Hippopotamus vs Raccoon 78.47 75.14 72.22 70.14 78.47 80.94 75.69 77.78

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 203) (0.00001, 183) (0.001, 3) (0.001, 23) (0.00001, 0.001, 1, 4) (0.01, 1000, 0.001, 43)
Hippopotamus vs Rat 75.33 75.83 65.28 71.53 70.14 70.25 64.58 81.25

(100) (0.00001, 0.00001, 0.00001) (1000, 43) (0.00001, 183) (0.01, 23) (0.001, 3) (100000, 0.0001, 0.1, 4) (0.001, 0.1, 0.001, 3)
Hippopotamus vs Seal 69.44 49.31 58.33 65.28 61.81 70.83 60.42 61.81

(0.01) (0.00001, 0.00001, 0.00001) (0.1, 63) (0.00001, 183) (0.001, 43) (0.001, 3) (0.001, 0.01, 0.00001, 4) (0.001, 1, 0.00001.63)
Humpback whale vs Raccoon 85.67 80.69 84.03 90.97 81.94 82.36 83.33 93.06

(0.00001) (0.00001, 0.00001, 10000) (0.00001, 83) (0.00001, 123) (0.0001, 83) (0.001, 3) (10000, 0.0001, 0.01, 0.25) (10, 100000, 0.00001, 3)
Humpback whale vs Rat 82.28 80.31 81.94 86.11 81.94 80.58 77.78 90.97

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 183) (0.00001, 203) (0.0001, 183) (100, 3) (100000, 0.001, 10, 0.25) (0.001, 0.01, 0.0001, 3)
Humpback whale vs Seal 76.39 72.08 77.78 73.61 78.47 79.17 78.47 80.56

(0.01) (0.00001, 0.00001, 0.00001) (0.0001, 143) (0.00001, 203) (0.0001, 143) (0.0001, 3) (100000, 0.0001, 0.001, 0.25) (0.01, 100, 0.0001, 3)
Raccoon vs Rat 62.22 61.89 59.72 70.83 61.81 60.22 65.28 70.83

(100) (0.00001, 0.00001, 0.00001) (100, 43) (0.00001, 163) (0.001, 163) (0.001, 3) (100000, 0.00001, 10, 4) (0.001, 0.1, 0.001, 3)
Raccoon vs Seal 90.28 75.39 78.47 84.03 82.64 80.28 75.69 88.19

(100) (0.00001, 0.00001, 100000) (0.00001, 183) (0.00001, 183) (0.001, 63) (0.001, 3) (100000, 0.00001, 0.01, 4) (100, 100000, 10, 43)
Rat vs Seal 70.86 65.17 68.75 68.75 68.75 67.83 69.87 81.25

(0.001) (0.00001, 0.00001, 0.00001) (0.00001, 183) (0.00001, 143) (0.00001, 183) (0.01, 3) (100000, 0.001, 0.01, 0.25) (0.0001, 0.1, 0.00001, 3)
Average ACC 77.46 64.31 71.74 75.99 72.87 77.46 73.33 83.29
Average Rank 3.46 6.84 5.99 4.32 5.22 3.59 5.02 1.56

† represents the proposed model.
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4.3.4 Experiments on Animal with Attributes (AwA)

Datasets

AwA4 is a large dataset with 30,475 images covering 50 di↵erent animal types.

Six representations of pre-extracted features are used to describe each image.

For our analysis, we focus on a subset of ten specific test classes drawn from this

dataset. These classes include animals like chimpanzees, giant pandas, leop-

ards, Persian cats, pigs, hippopotamuses, humpback whales, raccoons, rats,

and seals, totaling 6180 images. For our analysis, we employ two distinct

feature representations: a 2000-dimensional L1 normalized speeded-up robust

features (SURF) descriptors (view � B) and a 252-dimensional histogram of

oriented gradient features (view�A). We build and train 45 binary classifiers

using the one-against-one method for every possible combination of class pairs

in the dataset. The average rank and ACC of our proposed model are displayed

in Table 4.5 in relation to the baseline models. Across the 45 datasets from

AwA, our model achieved the highest average accuracy and the lowest average

rank. The average ACC of proposed GRVFL-2V is 83.29, which is upto 4% to

20% higher than the baseline models. Also, GRVFL-2V has the lowest average

rank of 1.56. The results clearly demonstrate the superior performance of the

proposed GRVFL-2V model over the baseline models.

4.3.5 Sensitivity Analysis of Hyperparameters c1 and c2

To gain a comprehensive understanding of how hyperparameters a↵ect the

generalization ability of the proposed GRVFL-2V model, we conducted a sys-

tematic exploration of the hyperparameter space by tuning the values of c1
and c2. This helps us to identify the optimal configuration that maximizes

predictive accuracy and improves the model’s resilience to previously unseen

data. Figure 4.1 visually represents how the accuracy of the model behaves

when the hyperparameters are tuned. The visual clearly shows that the pro-

posed model is highly sensitive to the values of hyperparameters c1 and c2. In

Figure 4.1 (a), we see that optimal accuracy is achieved when c1 = 105 and

c2 = 104 whereas, in Figure 4.1 (c), optimal configuration is found at two dis-

tinct coordinates, (105, 105) and (10, 105). Similar observations can be made

for Figure 4.1 (b) and Figure 4.1 (d). Overall, these findings underscore the

need for careful selection of hyperparameter values to achieve optimal model

3https://wang.ist.psu.edu/docs/related/
4http://attributes.kyb.tuebingen.mpg.de
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(a) bupa or liver-disorders (b) hepatitis

(c) ilpd indian liver (d) monks 2

Figure 4.1: The e↵ect of hyperparameter (c1, c2) tuning on the accuracy (ACC)
of some UCI and KEEL datasets on the performance of proposed GRVFL-2V
model.
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performance.

4.3.6 Sensitivity Analysis of Coupling Parameter ⇢

(a) UCI and KEEL (b) AwA (c) Corel5k

Figure 4.2: The e↵ect of coupling parameter ⇢ tuning on the accuracy (ACC)
of UCI and KEEl, AwA, and Corel5k datasets on the performance of proposed
GRVFL-2V model.

The primal optimization problem (4.1) combines two distinct classifica-

tion objectives, each corresponding to a di↵erent view. These objectives are

linked through a coupling term ⇠t1⇠2, where ⇢ serves as the regularization con-

stant known as the coupling parameter. We analyzed the impact of ⇢ on our

model’s performance by fixing other parameters at their optimal values and

tuning ⇢ within the specified range outlined in the experimental setup. The

performance of the proposed model across di↵erent datasets is depicted in Fig-

ure 4.2. It can be observed from Figure 4.2 (a) that the proposed GRVFL-2V

model achieves the highest accuracy when ⇢ is set to 10�5. This trend is also

evident in Figure 4.2 (b) and Figure 4.2 (c). These results indicate that the

optimal e↵ect of coupling terms and improved generalization performance are

achieved when ⇢ is tuned to 10�5.

4.3.7 Sensitivity Analysis of Graph Regularization Pa-

rameter ✓

The primal optimization problem (4.1) involves two graph regularization pa-

rameters ✓1 and ✓2 for each view, with the goal of preserving the geometrical

aspects of multiview data through the graph embedding GE) framework in

the model. In our experiment, we set ✓1 = ✓2 = ✓ to study the e↵ect of geo-

metrical properties of the multiview data through the LFDA technique under

the GE framework. The impact of tuning ✓ on the e�cacy of the GRVFL-2V

model is illustrated in Figure 4.3. In Figure 4.3 (a), when utilizing datasets
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from Corel5k, it is evident that the model’s performance is most favorable

initially at the minimum ⇢ value, specifically at ⇢ = 10�5, and subsequently,

performance increases for ⇢ > 1. Conversely, Figure 4.3 (b), the optimal per-

formance is achieved at ⇢ = 10�5 but then experiences a significant decline.

These results emphasize the critical importance of selecting the appropriate ⇢

value for maximizing the proposed model’s performance.

(a) Corel5k (b) AwA

Figure 4.3: The e↵ect of graph embedding parameter ✓ tuning on the accuracy
(ACC) of Corel5k and AwA datasets on the performance of proposed GRVFL-
2V model.
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Chapter 5

Conclusions and Future

Directions

The study in this thesis has concentrated on examining two state-of-the-art

shallow machine learning classification models, namely the least square twin

support vector machine (LSTSVM) and the random vector functional link

(RVFL) neural network. These shallow learning models have been widely ap-

plied in di↵erent scenarios and have demonstrated commendable performance.

Nevertheless, it is important to acknowledge that both models possess cer-

tain limitations and intricacies that have been addressed and mitigated in the

research presented in this thesis. In this thesis, e↵orts have been made to

enhance the performance of these algorithms by addressing inherent issues in

the models and proposing solutions to improve their overall e↵ectiveness and

applicability in real-world scenarios.

5.1 Conclusions

[1] Literature review: An extensive review of the literature was provided on

hyperplane-based classifiers, including the least square twin support vector

machine and the granular ball support vector machine. Additionally, an

overview was given on granular computing and multiview learning, shed-

ding light on their significance in the field. Furthermore, the theory of

random vector functional link neural network and graph embedding was

also presented, o↵ering insights into their applications and implications

in various domains. This comprehensive presentation aimed to provide a

thorough understanding of these advanced concepts and methodologies for
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the readers.

[2] Development of least square twin support vector machine: We have pro-

posed two novel models, the granular ball least square twin support vector

machine (GBLSTSVM) and the large-scale granular ball least square twin

support vector machine (LS-GBLSTSVM), by incorporating the concept

of granular computing in LSTSVM. This incorporation enables our pro-

posed models to achieve the following: (i) Robustness: Both GBLSTSVM

and LS-GBLSTSVM demonstrate robustness due to the coarse nature of

granular balls, making them less susceptible to noise and outliers. (ii) E�-

ciency: The e�ciency of GBLSTSVM and LS-GBLSTSVM stems from the

significantly lower number of coarse granular balls compared to finer data

points, enhancing computational e�ciency. (iii) Scalability: Our proposed

models are well suited for large-scale problems, primarily due to the signif-

icantly reduced number of generated granular balls compared to the total

training data points. The proposed LS-GBLSTSVM model demonstrates

exceptional scalability since it does not necessitate matrix inversion to de-

termine optimal parameters. This is evidenced by experiments conducted

on the NDC dataset, showcasing their ability to handle large-scale datasets

e↵ectively. An extensive series of experiments and statistical analyses have

supported the above claims, including ranking schemes, the Friedman test,

the Wilcoxon signed rank test, and the win-tie-loss test. The key find-

ings from our experiments include: (i) Both linear and nonlinear versions

of GBLSTSVM and LS-GBLSTSVM demonstrate superior e�ciency and

generalization performance compared to baseline models, with an average

accuracy improvement of up to 15%. (ii) When exposed to labeled noise in

the UCI and KEEL datasets, our models exhibit exceptional robustness,

achieving up to a 10% increase in average accuracy compared to baseline

models under noisy conditions. (iii) Evaluating our proposed models on

NDC datasets ranging from 10k to 5m samples underscores their scala-

bility, surpassing various baseline models in training speed by up to 1000

times, particularly beyond the NDC-50k threshold, where memory limi-

tations often hinder baseline models. These findings collectively highlight

the e↵ectiveness, robustness, and scalability of our proposed GBLSTSVM

and LS-GBLSTSVM models, particularly in handling large-scale and noisy

datasets.

[3] Development of random vector functional link neural network: We pre-
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sented a generic framework that integrates RVFL architecture with MVL,

enhancing generalization by incorporating intrinsic and penalty graphi-

cal representations of multiview data via the GE framework, resulting

in the development of the GRVFL-2V model. The proposed model aims

to enhance the classification performance by integrating information from

multiple views. To evaluate the performance of the proposed model, it

is compared to various baseline models using UCI and KEEL datasets,

Corel5K datasets, and AwA datasets. The experimental results reveal sev-

eral key findings. Firstly, the proposed GRVFL-2V model demonstrates

exceptional performance for UCI and KEEL datasets, achieving an av-

erage accuracy improvement ranging from 4% to 20% compared to the

baseline models. Moreover, it also achieves the lowest rank among all

the models considered. Secondly, in the case of the Corel5K dataset, our

proposed GRVFL-2V model outperforms the baseline models by achieving

the highest average accuracy and the lowest average rank. This indicates

its superior performance in handling the Corel5K dataset. Lastly, for the

AwA dataset, the proposed model exhibits outstanding performance by

achieving an accuracy improvement of up to 20% compared to the base-

line models. Additionally, it also attains the least average rank among all

the models considered. Furthermore, a comprehensive statistical analysis

is conducted to validate the e↵ectiveness and superiority of the proposed

model. The analysis includes a ranking scheme, Friedman test, Nemenyi

post hoc test, and win-tie-loss test. The results of these tests unequivo-

cally support the superiority of the proposed GRVFL-2V model over the

existing baseline models.

5.2 Future Directions

In this section, we explore potential future directions arising from the findings

of this thesis.

[1] In this thesis, we have focused on binary classification problems. A crucial

area for future research would involve adapting the proposed models to be

suitable for multi-class and regression problems.

[2] In this thesis, we presented an RVFL model based on two views. An es-

sential research direction involves extending the proposed model to accom-

modate datasets with more than two views while simultaneously reducing
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computational complexity.

[3] The classification models introduced in this thesis have the potential to

be expanded to include advanced kernel-based models such as restricted

kernel machines (RKM), Boltzmann machines, and others.

[4] The proposed models do not address scenarios with imbalanced datasets,

which may result in reduced generalization performance. Thus, developing

novel models based on multi-view and granular computing to handle imbal-

ance will have a significant impact, particularly in the healthcare domain

where imbalanced datasets are common.

[5] Shallow learning has limited capacity to identify intricate patterns and

features in datasets. Thus, extending the developed models to incorporate

deep learning techniques while preserving the overall principles and archi-

tecture can be a potential future direction to enhance the models’ ability

to capture complex data structures and improve performance.
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