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Abstract

This thesis investigates the properties of zeros associated with the Riemann zeta

function ζ(s) and the Hurwitz zeta function ζ(s, a). The thesis builds upon the

work of N. S. Koshliakov [11, Chapter 1, 3], analyzing the properties of ζp(s) and

ηp(s) alongside their analytic continuations with the relationship between ζp(s)

and ηp(s). The research then delves into explicit formulas for the summation of

specific infinite series. A key contribution of this thesis is the identification of a

zero-free region for ζp(s) within the right half-plane.
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CHAPTER 1

Introduction

The investigation of the zeros of the Riemann zeta function and the Hurwitz zeta

function has been a fundamental topic in number theory and analytic number

theory. The Riemann zeta function, ζ(s), is defined for s ∈ C with ℜ(s) > 1 by

the infinite series
∑∞

n=1
1
ns , plays a crucial role in various mathematical disciplines,

including complex analysis, number theory, and physics. The non-trivial zeros of

the Riemann zeta function, ζ(s), are found within the critical strip 0 < ℜ(s) < 1.

It is conjectured that these all zeros lie on the critical line ℜ(s) = 1
2
, a hypothesis

that holds great importance because of its profound connection to the distribution

of prime numbers.

Furthermore, the infinite series
∑∞

n=0
1

(n+a)s
for s ∈ C and 0 < a < 1 with

ℜ(s) > 1, known as Hurwitz zeta function ζ(s, a), generalizes ζ(s). Spira [14]

showed that all the non-trivial zeros of ζ(s, a) do not lie on half-line as well as

he explored zero free region of ζ(s, a). Recently, Dixit and Gupta [3] explored

the Koshliakov’s manuscript [11]. The manuscript contains two generalizations
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of ζ(s) which are ζp(s) and ηp(s). We are interested to study zero free regions for

ζp(s) and ηp(s).
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CHAPTER 2

Riemann zeta function

The Riemann zeta function is the complex function defined on the half plane

ζ(s) =
∞∑
n=1

1

ns
for ℜ(s) > 1. (2.1)

This series converges absolutely for ℜ(s) > 1 and converges uniformly on any

compact subset within this region and hence establishes an analytic function

within this domain.

ζ(s) can be analytically extended to the entire complex plane, excluding a

pole at s = 1 of order one. The functional equation for ζ(s) by Riemann [13] is

given by:

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s). (2.2)

Here, we use the reflection formula of the gamma function Γ(s),

Γ(s)Γ(1− s) =
π

sin(πs)
, s ̸∈ Z.

to rewrite the functional equation in the following asymmetric form

ζ(1− s) = 2(2π)−sΓ(s)ζ(s) cos
(πs
2

)
. (2.3)
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ζ(s) also has a product representation known as Euler’s identity or Euler’s

product defined as:

ζ(s) =
∏

p: prime

1

(1− p−s)
, for ℜ(s) > 1. (2.4)

From Euler’s formula one can say, ζ(s) is non-vanishing for ℜ(s) > 1. Ac-

cording to the results established by Hadamard [4] and Vallée-Poussin [12] in the

late 19th century, ζ(s) is non-vanishing for ℜ(s) = 1.

The symmetric form (2.2) for the ζ(s) implies that ζ(s) remains non-zero

for ℜ(s) ≤ 0, except for the trivial zeros occurring at negative even integers.

So the remaining region 0 < ℜ(s) < 1 is the critical region for ζ(s), in this

region, all the non-trivial zeros of ζ(s) are found.

Riemann’s conjecture, as proposed in his work [13], states that all non-trivial zeros

of ζ(s) are located on the critical line ℜ(s) = 1
2
, known as Riemann hypothesis.
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CHAPTER 3

Hurwitz zeta function

The Hurwitz zeta function [9] for 0 < a ≤ 1 is defined as :

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
for ℜ(s) > 1. (3.1)

The series converges absolutely for ℜ(s) > 1 and converges uniformly on any

compact subset within this region and hence establishes an analytic function

within this domain. The ζ(s, a) generalizes ζ(s) for a = 1 i.e. ζ(s, 1) = ζ(s).

The functional equation of ζ(s, a) [9] for 0 < a ≤ 1 and ℜ(s) > 1 is given

by,

ζ(1− s, a) = 2Γ(s) cos
(πs
2

)
(2π)−s

∞∑
n=1

tan
(
πs
2

)
sin(2πna) + cos(2πna)

ns
. (3.2)

Spira [14], explored the zero-free region of the Hurwitz zeta function. Ad-

ditionally, he analysed the pattern of non-trivial zeros for the specific cases at

a = 1
3
and a = 2

3
.
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3.1 Zero free region in right half plane

In the following theorem, Spira [14] showed that the ζ(s, a) is non-vanishing for

ℜ(s) ≥ 1 + a.

Theorem 3.1. Let s = σ + it. We have ζ(s, a) ̸= 0, if ℜ(s) ≥ 1 + a.

Proof. From (3.1), we have

|ζ(s, a)| =

∣∣∣∣∣
∞∑
n=0

1

(n+ a)s

∣∣∣∣∣
≥ a−σ −

∞∑
n=1

1

(n+ a)σ

> a−σ − (1 + a)−σ −
∫ ∞

1

1

(n+ a)σ
dx

= a−σ − (1 + a)−σ − (1 + a)1−σ

σ − 1
.

For a−σ− (1+a)−σ− (1+a)1−σ

σ−1
> 0 we need

(
1 + 1

a

)σ
> 1+ a+1

σ−1
. By the binomial

theorem we know
(
1 + 1

a

)σ
> 1+ σ

a
. So, this will give 1+ σ

a
> 1+ a+1

σ−1
. Hence the

condition follows if we have σ ≥ a+ 1.

3.2 Zero free region in left half plane

Unlike ζ(s), the functional equation of ζ(s, a) is not symmetric, hence we can not

say that it is non-vanishing in ℜ(s) ≤ −1− a. In this context, Spira showed that

for ℜ(s) ≤ −1 and |ℑ(s)| ≥ 1, the ζ(s, a) is non-vanishing.

Theorem 3.2. If |t| ≥ 1 and σ ≤ −1, then ζ(s, a) ̸= 0.

Proof. From the functional equation (3.2) of ζ(s, a), we have

ζ(1− s, a) =
2Γ(s)

(2π)s

[
cos
(π
2
s
) ∞∑

m=1

cos 2πma

ms
+ sin

(π
2
s
) ∞∑

m=1

sin 2πma

ms

]

=
Γ(s)

(2π)s

∞∑
m=1

cos
(
π
2
s− 2πma

)
ms

.
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Now separating the first term, we get

ζ(1− s, a) =
Γ(s) cos

(
π
2
s− 2πa

)
(2π)s

[
1 +

∞∑
m=2

cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) 1

ms

]
.

Now, for |t| ≥ 1, one can have the following inequality:∣∣∣∣∣cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) ∣∣∣∣∣ ⩽ eπt + 1

eπt − 1
⩽

eπ + 1

eπ − 1
< 1.09.

Then,

|ζ(1− s, a)| =

∣∣∣∣∣Γ(s) cos
(
π
2
s− 2πa

)
(2π)s

∣∣∣∣∣
∣∣∣∣∣1 +

∞∑
m=2

cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) m−s

∣∣∣∣∣
≥

∣∣∣∣∣Γ(s) cos
(
π
2
s− 2πa

)
(2π)s

∣∣∣∣∣
{
1−

∞∑
m=2

∣∣∣∣∣cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) ∣∣∣∣∣m−σ

}

≥

∣∣∣∣∣Γ(s) cos
(
π
2
s− 2πa

)
(2π)s

∣∣∣∣∣
{
1− 1.09

∞∑
m=2

m−σ

}
.

Now, we need 1− 1.09(ζ(σ)− 1) > 0 so, ζ(σ) < 1.917.

But we already have ζ(σ) < ζ(2)(≈ 1.6449) for σ ≥ 2. Also, Γ(s), (2π)−s and

cos
(
π
2
s− 2πa

)
are all non-zero in |t| ⩾ 1, σ ⩾ 2, hence the theorem holds.

3.3 The trivial zeros

In the next theorem, Spira [14] proved that if the real part ℜ(s) < (4a+1+2[1−

2a]), then only zeros are trivial zeros, with an imaginary part ℑ(s) ≤ 1.

Theorem 3.3. If σ < −(4a+ 1 + 2[1− 2a]) and |t| ⩽ 1, then ζ(s, a) ̸= 0 except

for trivial zeros on the negative real axis, one in each interval

[−2n− 4a− 1,−2n− 4a+ 1],

for n ≥ 1− 2a.

Proof. To prove this theorem, we will use Rouche’s theorem. Let

u(s) = 2Γ(s)(2π)−s cos
(π
2
s− 2πa

)
,
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and

v(s) = u(s)
∞∑

m=2

cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) 1

ms
.

Considering the rectangle with the four vertices 2n + 1 + 4a± 1± i, and taking

2n+ 4a > 2, on the horizontal boundary, one can get:∣∣∣∣∣
∞∑

m=2

cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) 1

ms

∣∣∣∣∣ ≤
∞∑

m=2

∣∣∣∣∣cos
(
π
2
s− 2πma

)
cos
(
π
2
s− 2πa

) ∣∣∣∣∣ 1

mσ

≤ 1.09(ζ(σ)) < 1.

On the vertical edges, one can get the following:∣∣∣∣∣cos
(
π
2
(2n+ 4a+ it)− 2πma

)
cos
(
π
2
(2n+ 4a+ it)− 2πa

) ∣∣∣∣∣
=

{
cos2

(
π
2
(2n+ 4a)− 2πma

)
+ sinh2 π

2
t

1 + sinh2 π
2
t

}1/2

⩽ 1,

So, |v(s)| ⩽ |u(s)|(ζ(2)− 1) < |u(s)| for σ ⩾ 2. Given the symmetry properties,

the single zero of ζ(s, a) within this rectangle resides on the real axis.

3.4 The non-trivial zeros of ζ
(
s, 13
)
and ζ

(
s, 23
)

Spira [14] found the zeros of ζ
(
s, 1

3

)
and ζ

(
s, 2

3

)
. He calculated the non-trivial

zeros in the region −1 ≤ σ ≤ 2, 0 ≤ t ≤ 100. He used the regula falsi method to

calculate the zeros.

One of the theorems by Davenport and Heilbronn in [2] tells that ζ
(
s, 1

3

)
and ζ

(
s, 2

3

)
will be zero for ℜ(s) > 1 but Spira [14] did not get any zeros with

ℜ(s) > 1 in his calculation. The following two tables by Spira represent non-

trivial zeros of Hurwitz zeta function at a = 1
3
, 2

3
with some error.
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Table 1

Zeros Of ζ(s, 1/3)

Re Im Re Im

-3.356739 0.0 .382710 59.883303

-1.411510 0.0 .297271 61.558057

.431293 0.0 .087972 63.133469

-.159430 7.184833 .457258 65.195474

.342658 11.431373 .563711 66.783468

.241817 15.189346 .483299 69.515697

-.036837 17.768793 -.067285 70.180061

.591803 20.690440 .401279 72.270589

.193280 23.897873 .328136 74.292420

.127972 25.706324 .520017 75.643415

.334406 28.524914 .330148 77.920206

.429111 30.646264 .495597 79.533738

.462075 33.643477 -.147097 80.830920

-.147835 35.008686 .579068 82.764724

.506383 37.571524 .533603 84.515894

.472657 39.696042 .332095 86.302724

.151364 42.257863 .185455 88.479212

.343298 43.633735 .350208 88.904925

.093732 46.080690 .293221 91.542684

.622256 47.737933 .414854 92.638777

.442315 50.224064 .542324 94,468657

.159285 52.406133 .478417 96.639483

.140729 53.307053 -.016600 97.910995

.580453 56.035147 .316376 99.026723

.322000 57.568636

9



Table 2

Zeros Of ζ(s, 2/3)

Re Im Re Im

-4.582225 0.0 .658788 60.192874

-2.629836 0.0 .136371 62.718934

-.534265 0.0 .694397 65.153529

.166871 10.821929 .145692 66.578130

.570050 16.605888 .510215 69.521528

.002611 20.525222 .799305 71.819557

.850931 24.340409 -.085295 73.824766

-.113795 28.078257 .459084 75.622482

.721490 30.792111 .745029 78.673253

.365790 34.136686 .430076 79.806836

.460172 37.583838 .163703 82.879125

.203952 39.160036 .288050 84.291484

.197874 43.008712 .766662 86.328553

.356658 45.347383 .533808 88.742453

.127852 47.671788 .014239 91.063946

.595766 50.633212 .718618 92.638399

.684428 52.731898 .348818 94.360457

.235421 55.856118 .359310 97.077760

.775805 57.447893 .742946 98.666525
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CHAPTER 4

The manuscripts of N. S. Koshliakov

Recently, Dixit and Gupta [3] have uncovered a manuscript that was overlooked

after World War II. The manuscript, authored by Nikolai Sergeevich Koshliakov,

a distinguished Russian mathematician, contains significant contributions to dif-

ferential equations and analytic number theory. The challenging circumstances

under which Koshliakov wrote this manuscript and how it became known to the

mathematical community are detailed in an article [1].

During the 1930s and even after World War II began, scholars in Leningrad

faced repression. In 1942, during the blockade of Leningrad, Koshliakov and oth-

ers were arrested on false charges and sentenced to 10 years of hard labor. After

the verdict, Koshliakov was exiled to a camp in the Urals due to his health issues,

including severe exhaustion and pellagra. Despite harsh conditions and a severe

paper shortage, Koshliakov managed to write two lengthy memoirs “Issledovanie

nekotorykh voprosov analyticheskoi teorii rational’nogo i kvadratichnogo polya (A

study of some questions in the analytic theory of rational and quadratic fields)”
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and “Issledovanie odnogo klassa transtsendentnykh funktsii, opredelyaemykh obob-

shchennym yravneniem Riemann [11] ” between 1943 and 1944. Unfortunately,

the first memoir was lost while being transferred from jail to the mathematical

community. However, it is believed that Koshliakov recreated its contents in three

subsequent papers after his release from jail.

The second memoir, authored under the name N. S. Sergeev (Koshliakov’s

patronymic name ), attracted the interest of renowned mathematicians I. M.

Vinogradov, S. Bernstein, and Yu. V. Linnik, who recommended its publication.

A problem in heat conduction [10] serves as the basis for this analysis. Let

us consider a sphere with radius R2. Imagine heat radiating outward from its

surface r = R2 into a surrounding medium at zero temperature. The sphere

starts with a uniform temperature of zero u = 0. Now, suppose there are internal

heat sources distributed throughout a spherical region of radius R1 (where 0 <

R1 < R2). The total rate of heat generation within the sphere is denoted by Q,

then the problem involves determining the sphere’s temperature at time t > 0.

Assuming the material properties are characterized by thermal conductivity k,

surface emissivity h, specific heat c, and density ρ, the relevant heat equation for

this scenario is:

∂v

∂t
= a2

∂2v

∂r2
, a =

√
c

kρ
;

v|r=0 = 0,
∂v

∂r
|r=R2 +

(
H − 1

R2

)
v|r=R2 = 0, H =

h

k
.

Using the separation of variables method, one can easily confirm that the

characteristic solution to the given system is:

µ cosµ+ p sinµ = 0, where p = R2H − 1 and µ is its eigenvalue. (4.1)

Hamburger [5] obtained the following characterization of ζ(s).

Theorem 4.1. Let

F (s) =
∞∑
n=1

a(n)

ns
and G(s) =

∞∑
n=1

b(n)

ns
,

be two Dirichlet series absolutely convergent for large ℜ(s), and suppose that F (s)

12



can be analytically extended except for finitely many poles and obeying

π− s
2Γ
(s
2

)
F (s) = π− (1−s)

2 Γ

(
1− s

2

)
G(1− s),

then F (s) = G(s) = Cζ(s), where C is some constant.

Hamburger’s research [5], [6], [7], and [8] interests include the analytical

behaviour of functions defined in the following equation.

For a Dirichlet series F (s) that is valid in a certain right half-plane, the

generalized functional equation links F (s) with G(s) as

F (1− s) = 2(2π)−s cos
(πs
2

)
Γ(s)G(s), (4.2)

where G(s), in general, need not be a Dirichlet series.

Hamburger did not give any examples of such G(s) and F (s). It is important

to consider Hurwitz’s formula, valid for ℜ(s) > 1 and 0 < a ≤ 1, given by

ζ(1− s, a) = 2(2π)−s cos
(πs
2

)
Γ(s)

∞∑
n=1

(cos(2πna) + tan
(
πs
2

)
sin(2πna)

ns
,

where ζ(s, a) is the Hurwitz zeta function.

The left-hand side represents a Dirichlet series, while the right-hand side

does not. However, it is important to note that this relationship is not universally

valid for all s ∈ C. Koshliakov introduced such pairs of functions F (s) and G(s)

exhibiting similar characteristics.
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CHAPTER 5

Koshliakov’s Generalizations of Riemann zeta function

Koshliakov [11, Chapter 1] studied the properties of ζp(s) and ηp(s). In this

chapter of thesis, I am presenting the the chapter 1 of Koshliakov manuscript

[11].

In (4.1), replacing µ by πλ and p by πp respectively, one gets the following

equation:

p sin(πλ) + λ cos(πλ) = 0, p > 0. (5.1)

Let λ1, λ2, λ3, · · · represent the positive roots of the given transcendental

equation (5.1) in increasing order.

Koshliakov considered the following Dirichlet series:

ζp(s) :=
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

for ℜ(s) > 1.

The series ζp(s) converges absolutely for ℜ(s) > 1 and converges uniformly

on any compact subset within this region and hence establishes an analytic func-

tion within this domain.

Koshliakov explored an alternative generalization of the Riemann zeta func-
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tion, namely,

ηp(s) :=
∞∑
k=1

(s, 2πpk)k
ks

for ℜ(s) > 1,

where

(s, νk)k :=
1

Γ(s)

∫ ∞

0

e−x

(
kν − x

kν + x

)k

xs−1dx.

The non-Dirichlet series, ηp(s) converges absolutely for ℜ(s) > 1 and converges

uniformly on any compact subset within this region and hence establishes an

analytic function within this domain.

In two limiting cases p → 0 and p → ∞, the roots λj of the equation (5.1)

will be j − 1
2
and j respectively (j ∈ N). Hence, one can easily confirm,

lim
p→∞

ζp(s) = ζ(s), lim
p→∞

ηp(s) = ζ(s);

lim
p→0

ζp(s) = (2s − 1)ζ(s), lim
p→0

ηp(s) = (21−s − 1)ζ(s).

To study the properties of ζp(s), Koshliakov [11] considered a complex val-

ued function with the help of which he showed the analytic continuation of ζp(s).

The function is given by,
1

σ(z)e2πz − 1
, (5.2)

where

σ(z) =
p+ z

p− z
.

The following corollary provides an alternate representation of equation (5.2) with

which one can easily identify the poles of this equation.

Corollary 5.1.

1

σ(z)e2πz − 1
+

1

2
=

1

2
.
p cosh(πz) + z sinh(πz)

z cosh(πz) + p sinh(πz)
.
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Proof. From (5.2), we have

1

σ(z)e2πz − 1
+

1

2
=

p− z

(p+ z)e2πz − (p− z)
+

1

2

=
(p− z)e−πz

(p+ z)eπz − (p− z)e−πz
+

1

2

=
2pe−πz − 2ze−πz + peπz + zeπz − pe−πz + ze−πz

2((p+ z)eπz − (p− z)e−πz)

=
1

2
.
p cosh(πz) + z sinh(πz)

z cosh(πz) + p sinh(πz)
.

The function in (5.2) has infinite number of simple poles located at points z = 0

and z = ±iλj with residues

R0 =
1

2π

1

1 + 1
πp

, R±iλj
=

1

2π

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.

Now by partial fraction decomposition by residue method, one gets the

following equation

1

σ(z)e2πz − 1
= −1

2
+

1

2π

1

1 + 1
πp

1

z
+

z

π

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

1

z2 + λ2
j

. (5.3)

In the two limiting cases p → 0 and p → ∞, (5.3) gives the following

classical Euler’s formulas respectively,

1

e2πz + 1
=

1

2
− z

π

∞∑
j=1

1

z2 +
(
j − 1

2

)2 ,
1

e2πz − 1
= −1

2
+

1

2π

1

z
+

z

π

∞∑
j=1

1

z2 + j2
.

By using these formulae, one can have the following well-known relations:
∞∑
j=1

1(
j − 1

2

)2k =
(2π)2k

2(2k)!
(22k − 1)Bk,

∞∑
j=1

1

j2k
=

(2π)2k

2(2k)!
Bk,

where k is a positive integer and B1, B2, B3, · · · are Bernoulli numbers.

Let,

σ
(p)
k =

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λ2k
j

, k = 1, 2, 3, 4, · · ·

16



From (5.3) one gets

p− z

(p+ z)e2πz − p+ z
= −1

2
+

1

2πz

p

p+ 1
π

+
z

π

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

× 1

1 +
(

z
λj

)2 1

λ2
j

⇒ (p− z)2πz

(p+ z)e2πz − p+ z
= −πz +

p

p+ 1
π

+ 2z2
∞∑
j=1

p2 + λ2
j

p
(
p 1
π

)
+ λ2

j

×

(
∞∑
k=0

z2k

λ2k
j

(−1)k

λ2
j

)

⇒ (p− z)2πze−πz

(p+ z)eπz + (z − p)e−πz
+ πz =

p

p+ 1
π

+ 2z2
∞∑
j=1

p2 + λ2
j

p
(
p 1
π

)
+ λ2

j

×

(
∞∑
k=1

z2k−2

λ2k
j

(−1)k−1

)

⇒ (p− z)2πze−πz

(p+ z)eπz + (z − p)e−πz
+ πz =

p

p+ 1
π

+ 2z2
∞∑
j=1

p2 + λ2
j

p
(
p 1
π

)
+ λ2

j

×

(
∞∑
k=1

z2k−2

λ2k
j

(−1)k−1

)

⇒ (p− z)2πze−πz

(p+ z)eπz + (z − p)e−πz
+ πz =

p

p+ 1
π

+ 2
∞∑
k=1

(−1)k−1σ
(p)
k z2k.

Thus, upon using the Maclaurian series of ex in the left hand side, one gets the

following equation,

πpz + (π3p+ 2π2)
z3

2!
+(π5p+ 4π4)

z5

4!
+ · · · =

{
p

p+ 1
π

+ 2
∞∑
k=1

(−1)k−1σk(p)z
2k

}
{
(πp+ 1)z + (π3p+ 3π2)

z3

3!
+ (π5p+ 5π4)

z5

5!
+ · · ·

}
.

Comparing coefficients of the same powers of z on both sides of the equation

17



yields the expansion for σ
(p)
1 , σ

(p)
2 , . . ., and so on. In particular,

σ
(p)
1 =

π2

6
.
1 + 3

πp

(
1 + 1

πp

)
(
1 + 1

πp

)2 ,

σ
(p)
2 =

π4

90
.
1 + 6

πp
+ 5

π2p2

(
1 + 1

πp

)
(
1 + 1

πp

)3 .

In general, we have

σ
(p)
k =

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λ2k
j

=
(2π)2k

2(2k)!
B

(p)
k , k = 1, 2, 3, 4, · · · (5.4)

where B
(p)
k exhibits a kind of polynomial behaviour. The first two such polynomial

values, B
(p)
1 and B

(p)
2 , are given by

B
(p)
1 =

1

6

1(
1 + 1

πp

)2 − 1

2

1

1 + 1
πp

+
1

2
,

B
(p)
2 = −1

6

1(
1 + 1

πp

)3 +
7

10

1(
1 + 1

πp

)2 − 1

1 + 1
πp

+
1

2
.

5.1 The analytic continuation of ζp(s)

Koshliakov’s work [11, Chapter 1, p. 17, Equation (16)] established the analytic

continuation of ζp(s) across the complex plane, except a simple pole at s = 1.

Theorem 5.2. The function ζp(s) can be extended analytically to the entire com-

plex plane, with the exception of simple pole at s = 1. It can be shown that

ζp(s) =
α1−s

s− 1
+

∫ α−i∞

α

z−s

σ(iz)e2πiz − 1
dz +

∫ α+i∞

α

z−s

σ(−iz)e−2πiz − 1
dz, (5.5)

where

0 < α < λ1, and σ(z) =
p+ z

p− z
.

Proof. As a function of complex variable z = T + it, 1
σ(iz)e2πiz−1

has the pole of

order one at z = 0 and z = λj with residues

1

2πi

1(
1 + 1

πp

) , 1

2πi

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

,

18
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respectively. Consider a closed loop in the complex plane. This loop has four

sides and resembles a rectangle with height 2h. The rectangle is centered on the

real axis i.e. it is perfectly symmetrical with respect to the real axis. The sides

of the rectangle intersect the real axis at points α and β.

Here, β = n ∈ N and 0 < α < λ1. For all the roots of (5.1), one has to take

β → ∞.

By the Cauchy residue theorem, one gets the following equation for ℜ(s) >

1,

lim
β→∞

∫
ABCDEFA

z−s

σ(iz)e2πiz − 1
dz =

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

1

λs
j

,

since
1

σ(iz)e2πiz − 1
= −1− 1

σ(−iz)e−2πiz − 1
.

If we subdivide the original contour, ABCDEFA, into two smaller contours,
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ABCD and DEFA, we obtain the following equation,

ζp(s) = lim
β→∞

∫
ABCD

z−s

σ(iz)e2πiz − 1
dz + lim

β→∞

∫
DEFA

z−s

σ(iz)e2πiz − 1
dz

= lim
β→∞

∫
ABCD

z−s

σ(iz)e2πiz − 1
dz + lim

β→∞

∫
DEFA

(
−1− 1

σ(−iz)e−2πiz − 1

)
dz

zs

⇒ ζp(s) = lim
β→∞

∫
AFED

dz

z−s
+ lim

β→∞

∫
ABCD

z−s

σ(iz)e2πiz − 1
dz

+ lim
β→∞

∫
AFED

zs

σ(−iz)e−2πiz − 1
dz.

The integrals along the segments BC and FE are examined by∣∣∣∣∣
∫
BC

z−s

σ(iz)e2πiz − 1
dz

∣∣∣∣∣ < Me−2πh

∫ β

α

dx

|x− ih|σ
.

Here, M is a finite value that depends on h and β. Because of this, the right-hand

side of the equation can be made arbitrarily small for any value of β as long as

h is sufficiently large. As h approaches positive infinity, the integral along the

segment BC necessarily tends towards zero for any value of β. The same logic

can be applied to show that the integral along the segment FE also tends to zero

as h approaches infinity for any value of β.

For sections CD and DE, we can easily derive the following inequality,∣∣∣∣∣
∫
CD

z−s

σ(iz)e2πiz − 1
dz

∣∣∣∣∣ < N

∫ ∞

0

e−2πt

(β2 + t2)σ
dt.

Here, N represents a finite value independent of β. As β approaches positive

infinity, the right-hand side of the inequality tends to zero. This behaviour can

also be verified for the integral along path DE. Consequently, we arrive at the

following equation

ζp(s) =

∫
AFED

dz

zs
+

∫ α−i∞

α

z−s

σ(iz)e2πiz − 1
dz +

∫ α+i∞

α

zs

σ(iz)e2πiz − 1
dz. (5.6)

For the integral
∫
AFED

dz
zs

take the quadrilateral AFEDA and apply the Cauchy
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residue theorem over z−s. One can get the following equality∫
AFED

dz

zs
+

∫
DA

dz

zs
= 0∫

AFED

dz

zs
=

∫
AD

dz

zs

⇒ lim
β→∞

∫
AFED

dz

zs
=

∫ ∞

α

dz

zs
=

α1−s

s− 1
.

Thus from (5.6), one can get

ζp(s) =
α1−s

s− 1
+

∫ α−i∞

α

z−s

σ(iz)e2πiz − 1
dz +

∫ α+i∞

α

z−s

σ(−iz)e−2πiz − 1
dz.

which proves (5.5) and gives analytic continuation of ζp(s) in the whole complex

plane except for a pole of order one at s = 1.

5.2 The relation between ζp(s) and ηp(s)

Koshliakov [11, Chapter 1, p. 20, Equation (30)] showed that ζp(s) and ηp(s)

follow the Hamburger’s functional equation (4.2). If we take α approaching to

zero, then we have to restrict ourselves to the region ℜ(s) < 0. We obtain the

equation from (5.5) given by,

ζp(s) = 2 sin
(πs
2

)∫ ∞

0

x−s

σ(x)e2πx − 1
dx. (5.7)

Thus (5.7) implies that ζp(s) vanishes at the points s = −2,−4,−6, · · · .

From (5.7) one gets the following equality:

ζp(1− s) = 2 cos
(πs
2

)∫ ∞

0

xs−1

σ(x)e2πx − 1
dx, ℜ(s) > 1. (5.8)

For x > 0, we know
p− x

p+ x
< 1.

Thus one can write

1

σ(x)e2πx − 1
=

σ(−x)e−2πx

1− σ(−x)e−2πx
=

∞∑
k=1

(
p− x

p+ x

)k

e−2πkx,

and hence one gets the following representation of (5.8),

ζp(1− s) =
2 cos

(
πs
2

)
(2π)s

∞∑
k=1

1

ks

∫ ∞

0

e−x

(
2kπp− x

2kπp+ x

)k

xs−1dx. (5.9)
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Now, let us take the integral from the right hand side of (5.9)

Is(λ) =

∫ ∞

0

e−x

(
λ− x

λ+ x

)k

xs−1dx, ℜ(x) < 0, (5.10)

where k ∈ N ∪ {0}.

The given integral representation is the gamma function

Γ(s) =

∫ ∞

0

e−xxs−1dx, ℜ(s) > 0.

Consider the integral of the form

e
−λ
k

ξΓ(s)

ξs
=

∫ ∞

0

e−(x+
λ
k )ξxs−1dx, ξ > 0.

We now proceed by integrating each term on the right-hand side of the equation

successively k times with respect to ξ over the interval (ξ,∞). Next, we multiply

the resulting expression by e
2λ
k
ξ and differentiate it with respect to ξ a total of k

times. This sequence of operations lead us to the final result,

Γ(s)D
(k)
ξ

{
e2

λ
k
ξ

∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−
λ
k
tt−sdtdξ · · · dξk−1

}

=

∫ ∞

0

e(
λ
k
−x)ξ

(
λ− kx

λ+ kx

)k

xs−1dx.

Putting ξ = k to get

Γ(s)D
(k)
ξ

{
e2

λ
k
ξ

∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−
λ
k
tt−sdtdξ · · · dξk−1

}
ξ=k

=

∫ ∞

0

e(
λ
k
−x)k

(
λ− kx

λ+ kx

)k

xs−1dx.

Hence by (5.10), we obtain the following equation

Is(λ) = Γ(s)kse−λD
(k)
ξ

{
e2

λ
k
ξ

∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−
λ
k
tt−sdtdξ · · · dξk−1

}
ξ=k

.

The multiple integral within the curly brackets can be transformed into a single

integral using the formula,∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−
λ
k
tt−sdtdξ1 · · · dξk−1 =

∫ ∞

ξ

(t− ξ)k−1

(k − 1)!
e

−λ
k

tt−sdt.

Thus, one gets the following representation of Is(λ)

Is(λ) = Γ(s)kse−λD
(k)
ξ

{
e

2λξ
k

∫ ∞

ξ

(t− ξ)k−1

(k − 1)!
e

−λ
k

tt−sdt

}
ξ=k

.

Koshliakov introduced a new function in his analysis (s, λ)k. This function de-
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pends on two complex variables, s and λ, and is defined by

(s, λ)k = kse−λD
(k)
ξ

{
e

2λξ
k

∫ ∞

ξ

e−
λ
k
t (t− ξ)k−1

(k − 1)!

dt

ts

}
ξ=k

.

Thus, we obtain

Is(λ) = Γ(s)(s, λ)k.

We can now express equation (5.9) in the following form:

ζp(1− s) =
2 cos

(
πs
2

)
Γ(s)

(2π)s

∞∑
k=1

(s, 2πpk)k
ks

. (5.11)

We know that,

(s, λk)k
ks

=
1

Γ(s)

∫ ∞

0

e−kx

(
λ− x

λ+ x

)k

xs−1dx. (5.12)

Consider Koshliakov’s second generalized Riemann function [11, chapter 1, p. 20,

Equation (29)], symbolized by ηp(s). This function is defined by an infinite series:

ηp(s) =
∞∑
k=1

(s, 2πpk)k
ks

, ℜ(s) > 1. (5.13)

The function ηp(s) is absolutely and uniformly convergent in ℜ(s) > 1. Based on

(5.11), we derive the following equality:

ζp(1− s) =
2 cos

(
πs
2

)
Γ(s)ηp(s)

(2π)s
. (5.14)

The restriction requiring ℜ(s) > 1 in the proof can actually be relaxed. This

is because both sides of equation (5.14) demonstrate analytic behaviour with

respect to the variables, except for a few isolated points. These isolated points

are the singularities occurring at s = 0.

To analyze the singularities of the function ηp(s), let us consider (5.12). We arrive

at the following equality:

ηp(s) =
1

Γ(s)

∫ ∞

0

∞∑
k=1

e−kx

(
p− x

2π

p+ x
2π

)k

xs−1dx

=
1

Γ(s)

∫ ∞

0

xs−1

σ
(

x
2π

)
ex − 1

dx ℜ(s) > 1.

Now consider the Hankel integral under the assumption that ℜ(s) > 1,∫ (0+)

∞

(−z)s−1dz

σ
(

z
2π

)
ez − 1

,−π < arg(−z) < π. (5.15)

The integration contour avoids all the poles of the integrand function. These
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poles are located at ±2πiλj, (j = 1, 2, . . .), and hold for ℜ(s) > 1,∫ (+0)

∞

(−z)s−1

σ
(

z
2π

)
ez − 1

dz =
{
eπi(s−1) − e−πi(s−1)

}∫ ∞

0

xs−1dx

σ
(

x
2π

)
ex − 1

.

From Euler’s reflection formula, one gets the the following integral representation

of the function ηp(s):

ηp(s) = −Γ(1− s)

2πi

∫
C

(−z)s−1

σ
(

z
2π

)
ez − 1

dz. (5.16)

Consider the integration contour C, it starts at infinity, circles around z = 0 in a

positive direction, and then returns to its starting point. Because integral (5.16)

defines a single-valued analytic function of the variable s for all its values, the

singularities of ηp(s) must coincide with the singularities of Γ(1− s), which occur

at s = 1, 2, · · · . However, we previously presented that ηp(s) is also an analytic

function of s for ℜ(s) > 1. Therefore, the only remaining singular point of ηp(s)

within this region is s = 1. From (5.16), it follows that

lim
s→1

ηp(s)

Γ(1− s)
= − 1

2πi

∫
C

dz

σ
(

z
2π

)
ez − 1

.

The expression on the right-hand side represents the residue of the integrand at

the pole z = 0. Using (5.3), Koshliakov determined that this residue is equal to

1
1+ 1

πp

. Consequently, the function ηp(s) possesses a single singular point at s = 1.

This singularity is a pole of order one with a residue of 1
1+ 1

πp

. Now, we can claim

that the functional equation (5.14), previously established for ℜ(s) > 1, remains

valid for all values of s except for the isolated points mentioned earlier. Some
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proven properties of ζp(s) and ηp(s) are given by:

ζp(0) = −1

2
.

1

1 + 1
πp

, ηp(0) = −1

2
;

lim
s→1

{
ζp(s)−

1

s− 1

}
= c+ log 2π + 2η′p(0);

lim
s→1

{
ηp(s)−

1

1 + 1
πp

1

s− 1

}
= C + log 2π + 2ζ ′p(0);

ζp(−2k) = 0; ηp(−2k) = 0 , k = 1, 2, . . . ;

ζp(2k) =
(2π)2k

2 · (2k)!
B

(p)
k , ηp(−(2k − 1)) =

(−1)kB
(p)
k

2k
.

In particular,

ζp(2) =
π2

6
· 1(

1 + 1
πp

)2 − π2

2
· 1

1 + 1
πp

+
π2

2
,

ηp(−1) = − 1

12
· 1(

1 + 1
πp

)2 +
1

4
· 1

1 + 1
πp

− 1

4
.

5.3 Asymptotic estimations of Koshliakov zeta

functions

Koshliakov [11, Chapter 1, p. 24, Equation (43)] gave an asymptotic estimation

of functions ζp(s) and ηp(s) for s = σ + it and for large values of |t|.

To arrive at this estimate, we analyze two separate cases.

1) σ > 0 and

2) σ < 0

For ℜ(s) > 1, the following equality holds

ζp(s) = ζ(s) +
∞∑
j=1

{
1

λs
j

− 1

js

}
− p

π

∞∑
j=1

1

p
(
p+ 1

π

)
+ λj

2

1

λs
j

· (5.17)

Let us take ζ(s) in the following form of series

ζ(s) =
N∑

n=0

1

(n+ 1)s
+

(N + 1)1−s

s− 1
+

∞∑
n=N

fn(s), (5.18)
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where

fn(s) =
1

s− 1

{
1

(n+ 2)s−1
− 1

(n+ 1)s−1

}
+

1

(n+ 2)s
= s

∫ n

n+1

u− n

(u+ 1)s+1
du.

Equation (5.18) is known to provide an analytic continuation of ζ(s), for values

of σ > 0. This is because the infinite series
∑∞

n=0 fn(s) converges absolutely

and uniformly in the region σ > δ, where (δ > 0), and its terms are analytic

functions in that region. Consequently, for σ > 0, equality (5.17) can be adopted

as the definition of a new function, denoted by ζp(s). To prove it, one can use

the following inequality∣∣∣∣∣s
∞∑

j=m

(
1

λs
j

− 1

js

)∣∣∣∣∣ < |s|
∞∑

j=m

∫ s

λj

du

uσ+1
,

where j − 1
2
< λj < j. Since,∫

λj

du

uσ+1
<

∫ j

λj

du

λσ+1
j

=
j − λj

λσ+1
j

<
1

2

1

λσ+1
j

,

it is clear that the series,
∞∑
j=1

{
1

λs
j

− 1

js

}
,

will be uniformly convergent for σ > δ; (δ > 0). Similarly, it follows the same for

the series
∞∑
j=1

1

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

,

which proves the statement that the series (5.16) is valid in ℜ(s) > 0.

As the absolute value of |t| increases, estimating the value of ζp(s) becomes

increasingly similar to estimating the value of the Riemann zeta function. This

makes sense because both the functions share the same singularity at s = 1, as

demonstrated in equation (5.18).

For the second case, when σ < 0, we need to use the functional equation

ζp(s) = 2(2π)s−1Γ(1− s) sin
(πs
2

)
ηp(1− s),

where

ηp(1− s) =
∞∑
k=1

(1− s, 2kπp)k
k1−s

.
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The series will converge absolutely and uniformly for σ < −δ; (δ > 0). This

property implies that

ζp(s) = O
(
|t|

1
2
−σ
)
, σ < 0. (5.19)

Thus the desired asymptotic estimation of function ζp(s) turns out to be the same

as for the ordinary Riemann function,

ζp(s) = O
(
|t|λ log |t|

)
, at t → ∞, (5.20)

where

λ =
1

2
− σ, (σ ≤ 0);λ =

1

2
, (0 ≤ λ ≤ 1/2);

λ = 1− σ, (
1

2
≤ σ ≤ 1); λ = 0, (1 ≤ σ).

5.4 Series representation of (s, λ)k

Koshliakov [11, Chapter 1, p. 25, Equation (50)] gave the series representation

by the help of which he studied some properties of (s, λ)k. The function ηp(s) as

an infinite series (5.13), involves the function (s, λk)k at λ = 2πp > 0. We can

compute these functions either using the following formula

(s, λk)k = kse−λkD
(k)
ξ

{
e2λξ

∫ ∞

ξ

e−λt (t− ξ)k−1

(k − 1)!

dt

ts

}
ξ=k

,

or by formula

(s, λk)k = kse−λkD
(k)
ξ

{
e2λξ

∫ ∞

ξφ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−λt

ts
dtdξ, · · · dξk−1

}
. (5.21)

Consider a k-dimensional integral on the right-hand side of the equation. If we

differentiate this integral using Leibniz rule, we obtain

D
(k)
ξ [u.v] =

k∑
r=0

k!

r!(k − r)!
u(r)v(k−r),

Substituting our functions into u and v:

u = e2λξ, v =

∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−λt

ts
dtdξ1dξk−1.
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Then by Leibniz rule, the given equation holds

(s, λk)k = (−1)k + eλk
k∑

r=1

(−1)k+rk!(2λ)r

r!(k − r)!

∫ ∞

k

∫ ∞

ξr−1

· · ·
∫ ∞

ξ1

e−λt

(
k

t

)s

dtdξ1 · · · dξk−1. (5.22)

After evaluating the multiple integrals on the right-hand side, we arrive at the

following result

(s, λk)k = (−1)k + eλk
k∑

r=1

(−1)k+rk!(2λ)r

r!(k − r)!

∫ ∞

−k

e−λt (t− k)r−1

(r − 1)!

(
k

t

)s

dt.

By substituting appropriate values, we can rewrite the integral on the right-hand

side in terms of incomplete gamma function,

Qµ(s) =

∫ ∞

µ

e−tts−1dt, µ > 0.

Hence, the following equation holds,

(s, λk)k = eλk
k∑

r=1

r−1∑
q=0

(−1)k+r+qk!2r(λk)q+s

r!(k − r)!(r − q − 1)!
Qλk(r − q − s) + (−1)k.

In particular,

(s, λ)1 = 2eλλsQλ(1− s)− 1,

(s, λ)2 = 4e2λ2λsQ2λ(2− s)− 4e2λ2λsQ2λ(1− s) + 1.

5.5 Properties of (s, λ)k

Koshliakov gave some necessary properties of the function (s, λk)k, given by:

Property 1: For λ > 0

(0, λk)k = 1 (5.23)

A straightforward approach to proving this statement involves utilizing the for-

mula (5.21). Applying this formula, we obtain the following equation

(0, λk)k = e−λkD
(k)
ξ

{
e2πξ

∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−λtdtdξ1 · · · dξk−1

}
= eλk

1

λk
λke−λk = 1.
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Property 2: For λ > 0, we have

(−1, λk)k = 1 +
2

λ
. (5.24)

Furthermore, based on the same formula (5.21) and the equality,

e2λξ
∫ ∞

ξ

∫ ∞

ξk−1

· · ·
∫ ∞

ξ1

e−λttdtdξ1 · · · dξk−1 =
eλ(λξ + k)

λk+1
,

we have (−1, λk)k =
e−λk

k
D

(k)
ξ

{
eλξ(λξ+k)

λk+1

}
ξ=k

= 1 + 2
λ
.

Property 3: At λ > 0

(s,−λ)−k = (s, λ)k. (5.25)

We obtain this property by examining the following representation of the function

(s, λ)k,

(s, λ)k =
1

Γ(s)

∫ ∞

0

e−x

(
λ− x

λ+ x

)k

xs−1dx = (s,−λ)−k. (5.26)

Property 4: At λ > 0,

lim
k→∞

(s, λk)k =
1(

1 + 2
λ

)s . (5.27)

We rewrite formula (5.26) as follows:

(s, λk)k =
1

Γ(s)

∫ ∞

0

e−x
(
1− x

λk

)k (
1 +

x

λk

)−k

xs−1dx,

and because,

lim
k→+∞

(
1− x

λk

)k
= e

−x
λ ; lim

k→+∞

(
1 +

x

λk

)−k

= e
−x
λ ,

hence, we get,

lim
k→∞

(s, λk)k =
1

Γ(s)

∫ ∞

0

e−xe−
x
λ e−

x
λxs−1dx

=
1

Γ(s)

∫ ∞

0

e−x(1+ 2
λ)xs−1dx

=
1(

1 + 2
λ

)s .
Hence the property follows.

Property 5: The following equality holds, when −1 < x < 1,
∞∑
n=0

(n+ 1, λk)kx
n =

(1, λk(1− λ))k
(1− x)

. (5.28)
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From the integral representation of (s, λ)k, one gets the following

(n+ 1, λk)k =
kn+1

n!

∫ ∞

0

e−kx

(
λ− x

λ+ x

)k

xndx.

Then we have
∞∑
n=0

(n+ 1, λk)kx
n = k

∫ ∞

0

e−k(1−x)t

(
λ− t

λ+ t

)k

dt

=
1

1− x

∫ ∞

0

e−u

(
λk(1− x)− u

λk(1− x) + u

)k

du =
(1, λk(1− λ))k

(1− x)
.

Therefore, we get the formula (5.28).

Property 6: For λ > 0 the given relation holds,
∞∑
n=0

(−1)r(−r, λ)1
r!(n− r)!

xn−r =
2

λn

n∑
q=0

(−1)q(λ(x− 1))n−q

(n− q)!
− (x− 1)n

n!
. (5.29)

Koshliakov demonstrated this formula by the properties of (s, λ)1 and utilizing a

specific relation,

Qλ(r + 1) = e−λ
{
λr + rλr+1 + r(r − 1)λr−2 · · · r(r − 1) · · · 2 · 1

}
.

After evaluating the sum on the left-hand side of formula (5.29), we obtain the

following summation

2
n∑

r=0

r∑
q=0

(r − 1)rxn−µ

(r − q)!(n− r)!

1

λq
− (x− 1)n

n!

= 2
n∑

q=0

n∑
r=q

(−1)rxn−r

(r − q)!(n− r)!

1

λq
− (x− 1)n

n!
.

On the right-hand side, we substitute the variable r with a new variable s, defined

as s = r − q. This substitution gives the following equation
n−q∑
s=0

(−1)q+sxn−q−s

s!(n− q − s)!
= (−1)q

(x− 1)n−q

(n− q)!
.

This result leads directly to the formula (5.29).

Property 7: For x > 0 the following formula turns out to be valid,

D(m−1)
x

{
(s, λ(x+ k)k)

(x+ k)s

}
= (−1)m−1Γ(m+ s− 1)

Γ(s)

(m+ s− 1, λ(x+ k))k
(x+ k)m+s−1

.

(5.30)
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To demonstrate this, we differentiate the expression (m − 1) times with respect

to the variable x

(s, λ(x+ k))k
(x+ k)s

=
1

Γ(s)

∫ ∞

0

e−(x+k)t

(
λ− t

λ+ t

)k

ts−1dt.

Then one gets,{
(s, λ(x+ k))k

(x+ k)s

}
=

(−1)m−1

Γ(s)(x+ k)m

∫ ∞

0

e−u

(
λ(x+ k)− u

λ(x+ k) + u

)k

um+s−2du.

Hence, (5.30) follows directly.

In particular, we obtain,

1

(m− 1)!
D(m−1)

x

{
(1, λ(x+ k))k

x+ k

}
=

(−1)m−1(m,λ(x+ k))k
(x+ k)m

.

Property 8: This equality holds for ℜ(s) > 1,∫ ∞

x

(s, λ(x+ k))k
(x+ k)s

dx = − 1

s− 1
D(1)

x

{
(s− 1, λ(x+ k))k

(x+ k)s−1

}
. (5.31)

To establish this formula, we use formula (5.30) by taking m = 2 and substituting

s with s− 1. Hence, the following equation holds,

(s, λ(x+ k))k

(x+ k)s
=

−1

s− 1
D(1)

x

{
(s− 1, λ(x+ k))k

(x+ k)s−1

}
.

Integrating both sides of this equation, we arrive at the equation (5.31).

Property 9: The following equality holds for x > 0,∫ x

0

(1, λ(x+ k))k
x+ k

dx = log
(
1 +

x

k

)
+D(1)

s {(s, λk)k − (s, λ(x+ k))k}s=0 . (5.32)

We demonstrate this statement by utilizing the formula (5.26). This formula

gives ∫ x

0

(1, λ(x+ k))k

(x+ k)
dx =

∫ x

0

e−kt

(
λ− t

λ+ t

)k
1− e−xt

t
dt

= lim
s→0

Γ(s)

{
(s, λk)k

ks
− (s, λ(x+ k))k

(x+ k)s

}
,

where,

(s, λk)k = (0, λk)k +
{
D(1)

s (s, λk)k
}
s=0

s+ · · ·

= 1 +
{
D(1)

s (s, λk)k
}
s=0

s+ · · · ,

(s, λ(x+ k))k = (0, λ(x+ k))k +
{
D(1)

s (s, λ(x+ k))k
}
s=0

s+ · · ·

= 1 +
{
D(1)

s (s, λ(x+ k))k
}
s=0

s+ · · ·
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and

k−s = 1− log ks+ · · · , (x+ k)−s = 1− log(x+ k)s+ · · · .

Therefore,∫ x

0

(1, λ(x+ k))k
x+ k

dx = lim
s→0

Γ(s+ 1)
[{
D(1)

s (s, λk)k

D(′)
s (s, λ(x+ k))k

}
s=0

+ log
x+ k

k

]
.

Based on the above steps, we obtain relation (5.32).

In particular, we have:∫ x

0

(1, λ(x+ 1))1
(x+ 1)

dx = log(1 + x) + 2
{
eλ(x+1)Qλ(1+x)(0)− eλQ

(0)
λ

}
.

From the formula of (s, λ)1, it follows that

D(1)
s {(s, λ)1 − (s, λ(x+ 1))1}s=0

= 2eλ
{
Qλ(1− s)− (1 + x)seλxQλ(1+x)(1− s)

s

}
s=0

.

But,

Qλ(1− s) = Qλ(1)−Q′(1)s+ · · · ;

(1 + x)s = 1 + log(1 + x)s+ · · · ;

therefore,

Qλ(1− s)− (1 + x)seλxQλ(1+x)(1− s)

= −2eλ(x+1)
{
Q′

λ(1) + e−λx log(1 + x)−Q′
λ(1+x)(1)

}
s+ · · ·

where, Q′
λ(1) = log λe−λ +Qλ(0),

Let us make sure that

D(1)
s {(s, λ)1 − (s, λ(x+ 1))1}s=0 = 2

{
eλ(1+x)Qλ(1+x)(0)− eλQλ(0)

}
.
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Property 10: The following equality holds for α > 0 and n ≥ 1,

1

2πi

∫ α+i∞

α−i∞

(s, λk)k

s(s+ 1) . . . (s+ n)

(x
k

)s+n

ds

=


0, at k ⩾ x;

(−1)k(x−k)n

knn!

+ eλk

kn

∑k
r=1

(−1)k+rk!(2λ)r

r!(k−r)!

∫ x

k
e−λt (x−t)n

n!
(t−k)r−1

(r−1)!
dt, at k ⩽ x.

(5.33)

To demonstrate this formula, let us consider the equality (5.22). Applying this,

we will arrive at

1

2πi

∫ α+i∞

α−i∞

(s, λk)k

s(s+ 1) . . . (s+ n)

(x
k

)s+n

ds

= (−1)k
1

2πi

∫ α+i∞

α−i∞

(
x
k

)s+n

s(s+ 1) . . . (s+ n)
ds+ eλk

k∑
r=1

(−1)k+r k!(2λ)r

r!(k − r)!

×
∫ ∞

k

e−λ·t
(
t

k

)n
(t− k)r−1

(r − 1)!

x

2πi

∫ α+i∞

α−i∞

(
x
t

)s+n

s(s+ 1) . . . (s+ n)
dsdt.

(5.34)

To proceed, we examine each of the two cases individually

1) x < k and

2) x > k.

In this first case, when we evaluate the double integral on the right-hand side of

equality (5.34) with respect to the variable t, we find that the integration range

is limited to t > k. Consequently, for this specific case, we have t > x. We can

then utilize the following well-known property:

1

2πi

∫ α+i∞

α−i∞

(
x
t

)s+n

s(s+ 1) · · · (s+ n)
ds = 0 (5.35)

from which we will get the following equality:

1

2πi

∫ α+i∞

α−i∞

(s, λk)k
s(s+ 1)(s+ 2) · · · (s+ n)

(x
k

)s+n

2)s = 0, k > x.

Now, we consider the case where x > k. We analyse the double integral (5.34) by

splitting the integration interval into two parts over t: (k, x) and (x,∞). Within
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the first interval (k, x), we find that:

1

2πi

∫ α+i∞

α−i∞

(
x
t

)s+n

s(s+ 1) · · · (s+ n)
ds =

(
x
t
− 1
)

n!
. (5.36)

For the second interval, we have t > x. In this case, equality (70) holds true.

This leads to:
1

2πi

∫ α+i∞

α−i∞

(s, λk)k
s(s+ 1) · · · (s+ n)

(x
k

)s+n

ds

=
(−1)k(x− k)n

knn!
+

eλk

kn

n∑
m+1

(−1)k+rk!(2λ
)r

r!(k − r)!

∫ x

k

e−λt (x− t)n

n!

(t− k)n−1

(r − 1)!
dt, k < x.

Thus formula (5.33) is proved.

The first chapter of Koshliakov’s manuscript [11] introduced the results

we discussed previously. The subsequent chapter explores “Generalized Bernoulli

polynomials of the first kind”. In the following chapter of my thesis, I will present

a series formula from the third chapter of his manuscript, titled “About the

summation formulas for sums of the form
∑∞

j=1
p2+1j2

p(p+ 1
π )+12j

f (λj)”.
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CHAPTER 6

Sums of type
∑∞

j=1

p2+λ2j

p(p+ 1
π)+λ2j

f (λj)

The functions ζp(s) and σp(x), are some particular cases of sums of the form:
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

f (λj) . (6.1)

In Koshliakov manuscript [11, Chapter 3], he studied functions that are special

cases of (6.1). He was interested to find an explicit formula of (6.1). Given a

predetermined function f(x), Koshliakov aimed to transform (6.1) into a defi-

nite integral. This transformation led to the derivation of several summation

formulas, which are highly valuable in the context of Koshliakov’s manuscript.

Koshliakov derived these formulas using two methods, contour integration and

Mellin transform. Here, we present the proof using contour integration.

Consider a holomorphic function F (s) = F (σ + it), where s is a complex

variable. Koshliakov analyzed this function within a domain defined by the fol-

lowing inequalities:

−α < σ < β + 1, 0 < α < 1, β > 0. (6.2)

Suppose that the F (s) function has a pole at s = 0 which is simple. Addition-
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ally, for all sufficiently large values of |ℑ(s)(= t)|, the function follows certain

asymptotic behaviour:

F (s) = O
(
e−

π
2
|t| |t|−λ

)
. (6.3)

Here, parameter λ must satisfy the condition λ > 1 for all values of σ within the

set defined by formula (6.2). Let us consider a function, f(x). Koshliakov defined

this function for all positive x values using the following integral:

f(x) =
1

2πi

∫ τ+i∞

τ−i∞

F (s)

xs
ds, 0 < τ < β + 1. (6.4)

The following infinite series converges absolutely, which can easily verified,
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

1

λs
j

, (6.5)

on the straight line with abscissa β + 1, and the convergence of the integral∫∞
−∞ |F (β + 1 + it)|dt also follows by estimate (6.3).

Koshliakov wanted an integral representation of (6.1). Hence by (6.1) and (6.4)

we get the following equality:
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

f (λj) =
1

2πi

∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

∫ τ+i∞

τ−i∞

F (s)

λs
j

ds.

The interchange of summation and integration is justified because (6.5) is abso-

lutely convergent for ℜ(s) = β + 1, so we get
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

f (λj) =
1

2πi

∫ β+1+i∞

β+1−i∞
F (s)

(
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

1

λs
j

)
ds

=
1

2πi

∫ β+1+i∞

β+1−i∞
F (s)ζp(s)ds. (6.6)

We now evaluate the integral of F (s)ζp(s) along the closed contour of a quadri-

lateral. The quadrilateral vertices are:

A(β + 1− iT ), B(β + 1 + iT ), C(−α + iT ), D(−α− iT ).

The function F (s)ζp(s) has poles at s = 0, 1 both of which lie inside the contour.

If R0 and R1 denote the residue of integrand F (s)ζp(s) relative to its poles at

s = 0 and s = 1, then by the Cauchy residue theorem, we have

1

2πi

(∫ β+1+iT

β+1−iT

+

∫ −α+iT

β+1+iT

+

∫ −α−iT

−α+iT

+

∫ β+1−iT

−α−iT

)
F (s)ζp(s)ds = R0 +R1,
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because estimate (6.3) guarantees that the integrals along segments BC and DA

vanish as T −→ +∞. We now obtain the following equality

1

2πi

(∫ α−i∞

−α+i∞
F (s)ζp(s)ds+

1

2πi

∫ β+1+i∞

β+1−i∞
F (s)ζp(s)ds

)
=R0 +R1.

Utilizing (6.6), we have
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

f (λj) = R0 +R1 +
1

2πi

∫ α+i∞

−α−i∞
F (s)ζp(s)ds, (6.7)

where R0 and R1 denote the residue of the function F (s)ζp(s) relative to its poles

at s = 0 and s = 1. To determine the residue R0, we consider the integral of the

function F (s)
xs along the contour indicated in the above quadrilateral ABCD. As T

approaches positive infinity, by estimate (6.3), we arrive at the following equality,

f(x) = R +O(xα), 0 < α < 1,

where R is the residue of the function F (s) relative to its pole at s = 0.

It follows that R = f(0) and thus,

R0 = ζp(0)f(0) = −1

2

1

1 + 1
πp

f(0). (6.8)

To find the residue R1, we use equation (6.6) and Mellin’s transformation, to

obtain

F (s) =

∫ ∞

0

f(x)xs−1dx,

We want to transform the integral term in equality (6.7). One can easily verify

that, due to (6.3) the definition of function f(x) can also be defined for complex

values of x with positive real part. Indeed for any x ∈ C, we have

x = |x|eiθ, −π

2
≤ θ < +

π

2
. (6.9)

One get the following asymptotic inequality∣∣∣∣∫ −α+i∞

−α+i∞

F (s)

xs
ds

∣∣∣∣ < |x|
∫ +∞

−∞
e

π
2
|t||F (−α + it)|dt.

Hence, it is clear that the integral
∫ −α+i∞
−α−i∞

F (s)
xs ds will be convergent, and therefore,

f(x) will be regular for all values of θ lying in the region (6.2), as a result of which
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one can write the following equation from (6.4):

f(ix)− f (−ix)

2i
= − 1

2πi

∫ β+1+i∞

β+1−i∞
F (s) sin

(πs
2

) ds

xs
, x > 0

= − 1

2πi

∫ −α+i∞

−α−i∞
F (s) sin

(πs
2

) ds

xs
, x > 0. (6.10)

Multiply both sides of the equation by 1
σ(x)e2πx−1

and integrate over the interval

from x = 0 to x = +∞. Then rearranging the orders of integration based on

Jordan’s theorem and by the functional equation of ζp(s), one has

ζp(s) = 2 sin
(πs
2

)∫ ∞

0

x−sdx

σ(x)e2πx − 1
, ℜ(s) < 0.

By the above functional equation, one get the following equation

1

2πi

∫ −α+i∞

−α−i∞
F (s)ζp(s)ds = −2

∫ ∞

0

f(ix)− f(−ix)

2i

dx

σ(x)e2πx − 1
. (6.11)

Therefore, from (6.7) and the above equation one obtains the following relation
∞∑
j=1

p2 + λ2
j

p
(
p+

1
π

)
+ λ2

j

f (λj) = −1

2

1

1 + 1
πp

f(0) +

∫ ∞

0

f(x)dx

− 2

∫ ∞

0

f(ix)− f(−ix)

2i

dx

σ(x)e2πx − 1
.

Koshliakov [11, Chapter 3, p. 54-56] utilized Mellin transforms to gave

alternative prove for the formula we discussed earlier. He also explored specific

examples of functions, f(x), that can be employed within the infinite series. In the

next chapter of my thesis, I will take a different direction, focusing on analysing

zero-free regions for the function ζp(s) within the left half-plane.
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CHAPTER 7

Zero-free region for ζp(s)

In his work, Koshliakov did not address the zero-free regions for the functions ζp(s)

and ηp(s). Inspired by Spira’s paper [14], we aim to identify the zero-free region

and the critical region for these functions. Like the Hurwitz zeta function, where

some non-trivial zeros lie outside the half-line and even lie outside of 0 < ℜ(s) < 1,

we are curious to see if the same holds for the Koshliakov zeta function. The next

theorem scrutinizes the area within the right half-plane where ζp(s) does not have

any zeros, referred to as its zero-free region.

Theorem 7.1. If σ > 1 +
p(p+ 1

π )+1

p2+ 1
4

, then ζp(s) ̸= 0.

Proof. From definition, we know for ℜ(s) > 1,

ζp(s) =
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

.

By taking absolute value on both sides, we have

|ζp(s)| =

∣∣∣∣∣
∞∑
j=1

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

∣∣∣∣∣
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⇒ |ζp(s)| =

∣∣∣∣∣ p2 + λ2
1

p
(
p+ 1

π

)
+ λ2

1

.
1

λs
1

+
∞∑
j=2

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

∣∣∣∣∣.
Use triangle inequality to see that

|ζp(s)| ⩾

∣∣∣∣∣ p2 + λ2
1

p
(
p+ 1

π

)
+ λ2

1

.
1

λs
1

∣∣∣∣∣−
∣∣∣∣∣

∞∑
j=2

p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

.
1

λs
j

∣∣∣∣∣
|ζp(s)| ⩾

p2 + λ2
1

p
(
p+ 1

π

)
+ λ2

1

.
1

λσ
1

−
∞∑
j=2

∣∣∣∣∣ p2 + λ2
j

p
(
p+ 1

π

)
+ λ2

j

∣∣∣∣∣. 1λσ
j

. (7.1)

Since p2+λ2
j < p

(
p+ 1

π

)
+λ2

j =⇒ p2+λ2
j

p(p+ 1
π )+λ2

j

< 1, then by equation (7.1) we get

|ζp(s)| >
p2 + λ2

1

p
(
p+ 1

π

)
+ λ2

1

.
1

λσ
1

−
∞∑
j=2

1

λσ
j

>
p2 + 1

4

p
(
p+ 1

π

)
+ 1

−
∫ ∞

1

1

xσ
dx

=
p2 + 1

4

p
(
p+ 1

π

)
+ 1

−
(
0− 1

1− σ

)
=

p2 + 1
4

p
(
p+ 1

π

)
+ 1

+
1

1− σ
.

We have to find p such that
p2 + 1

4

p
(
p+ 1

π

)
+ 1

+
1

1− σ
> 0

⇒
p2 + 1

4

p
(
p+ 1

π

)
+ 1

>
1

σ − 1

⇒ (σ − 1) >
p
(
p+ 1

π

)
+ 1

p2 + 1
4

⇒ σ > 1 +
p
(
p+ 1

π

)
+ 1

p2 + 1
4

.

So, when σ > 1+
p(p+ 1

π )+1

p2+ 1
4

, we have ζp(s) > 0 i.e., ζp(s) ̸= 0. Hence the theorem

is proved.

7.0.1 Non-trivial zeros of ζp(s)

Now we mention a few non-trivial zeros of the Koshliakov zeta function ζp(s). We

used Newton-Raphson numerical method to find these non-trivial zeros of ζp(s).
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We utilized Theorem 5.2 in Mathematica software to obtain the below table for

different values of p and 0 < α < 1
2
.

For p = 2 and α = 0.4

Re Im

0.500606 ± 20.3221

0.584657 ± 13.7578

For p = 2 and α = 0.15

Re Im

0.500606 ± 20.3221

0.584657 ± 13.7578

For p = 4 and α = 0.4

Re Im

0.526852 ± 14.0575

0.505677 ± 20.8458

For p = 5 and α = 0.2

Re Im

0.516232 ±14.0916

0.504739 ± 20.9185

For p = 7 and α = 0.25

Re Im

0.507009 ± 14.1175

0.502791 ± 20.9784

For p = 13 and α = 0.12

Re Im

0.501282 ± 14.3182

0.500664 ± 21.0142
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For p = 100 and α = 0.2

Re Im

0.500003 ± 14.1347

0.500002 ± 21.022

For p = 200 and α = 0.2

Re Im

0.5000003 ± 14.1347242

0.5 ± 21.0220396

For p = 300 and α = 0.2

Re Im

0.5 ± 14.1347

0.500002 ± 21.0220396

For p = 400 and α = 0.2

Re Im

0.50000039 ± 14.1347242

0.5 ± 21.0220396

Here we would like to mention that the first two non-trivial zeros of ζ(s) are

0.5+ i 14.1347 and 0.5+ i 21.022. From the above table, one can clearly observe

that the first two non-trivial zeros of ζp(s) are converging to the non-trivial zeros

of ζ(s) as we know ζp(s) becomes ζ(s) when p → ∞.
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CHAPTER 8

Conclusion

Based on the above numerical evidences of the non-trivial zeros of the Koshliakov

zeta function ζp(s), we can clearly see that ζp(s) does not obey the Riemann

hypothesis, that is, there are non-trivial zeros that are not lying on the line

ℜ(s) = 1/2. In our investigation, we attempted to locate non-trial zeros in the

left half-plane ℜ(s) < 0. While unsuccessful in finding zero-free region in the

left half-plane, this work led us to formulate conjecture about the location of

non-trivial zeros of ζp(s).

� Conjecture 1: The Koshliakov zeta function ζp(s) possesses only trivial

zeros in the left half-plane ℜ(s) < 0, which occur at negative even integers.

� Conjecture 2: In Theorem 7.1, we have shown that ζp(s) has no zero in

the right half plane ℜ(s) > 1 +
p(p+ 1

π )+1

p2+ 1
4

. Moreover, we feel that all the

non-trivial zeros of the Koshliakov zeta functions ζp(s) will lie in the region

0 < ℜ(s) < 1.
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[12] C. J. de la Vallé Poussin. Recherches analytiques la theorie des nombres

premiers. Ann. Soc. scient. Bruxelles, 20(1896), 183–256.

[13] Bernhard Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen

Grösse, Monatsberichte der Berliner Akademie, Nov 1859.

[14] R. Spira, Zeros of Hurwitz zeta functions, Mathematics of computation,

30(1976), 863-–866.

45


	Abstract
	Introduction
	Riemann zeta function
	Hurwitz zeta function
	Zero free region in right half plane 
	Zero free region in left half plane
	The trivial zeros 
	The non-trivial zeros of zero

	The manuscripts of N. S. Koshliakov
	Koshliakov's Generalizations of Riemann zeta function
	The analytic continuation of zeta3
	The relation between zeta1 and eta2
	Asymptotic estimations of Koshliakov zeta functions
	Series representation of sum3
	Properties of sum2

	Sums of type sum
	Zero-free region for p(s)
	Non-trivial zeros of p(s)

	Conclusion



