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Abstract

In mathematics, evaluating an integral in terms of well-known constants is always a

fascinating and challenging task. Recently, Choie and Kumar [1] extensively studied

the Herglotz-Zagier-Novikov function F(z;u, v). It is defined as the following integral:

F(z;u, v) :=

∫ 1

0

log(1− utz)

v−1 − t
dt, for Re(z) > 0, (0.1)

where u ∈ L and v ∈ L′. They obtained two-term, three-term and six-term functional

equations for F(z;u, v) and also evaluated special values in terms of di-logarithmic

functions. Motivated from their work, in this thesis, we study the following two

integrals, for Re(z) > 0, and any natural number k,

F(z;u, v, w) :=

∫ 1

0

log(1− utz) log(1− wtz)

v−1 − t
dt, (0.2)

Fk(z;u, v) :=

∫ 1

0

logk(1− utz)

v−1 − t
dt, (0.3)

where u ∈ L and v ∈ L′. For k = 1, the above integral (0.3) reduces to (0.1). This

allows to recover the properties of F(z;u, v) by studying the properties of Fk(z;u, v).

One of the main aims of this thesis is to evaluate special values of these two integrals

in terms of poly-logarithmic functions.
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Symbol Description
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Chapter 1

Introduction

Zagier’s [2] ground breaking exploration of the Kronecker limit formula for real

quadratic fields has ignited considerable interest among number theorists. Novikov

[3], building upon Zagier’s work introduced a novel function within the Kronecker

limit formula paradigm. Recently, Choie and Kumar [1] introduced the following

function F(z;u, v), named as Herglotz-Zagier-Novikov function.(Throughout the the-

sis, we use H-Z-N function rather than Herglotz-Zagier-Novikov function)

Definition 1.1. For Re(z) > 0, it is defined as

F(z;u, v) :=

∫ 1

0

log(1− utz)

v−1 − t
dt, (1.1)

where u ∈ L and v ∈ L′.

Choie and Kumar studied properties inherent within F(z;u, v). This function

serves as a unified framework encompassing three distinct functions extensively stud-

ied by Herglotz [4], Zagier [2], and Muzaffar Williams [5]. These functions are indi-

vidually defined as follows:

For Re(z) > 0,

F(z) :=

∫ 1

0

(
1

1− y
+

1

logy

)
log(1− yz)

dy

y
,

J(z) :=

∫ 1

0

log(1 + tz)

1 + t
dt.

The function F (x) is encountered in Herglotz’s [4] work related to the Kronecker limit

formula for real quadratic fields. Its analytical continuation can be achieved using

the expression [7, equation(1.2)]:

F (x) =
∑
n≥1

ψ(nx)− log(nx)

n
x ∈ C \ (−∞, 0],

where ψ(x) := Γ′(x)/Γ(x) is the digamma function.

Recently, Radchenko and Zagier [7] conducted an extensive study of the functions
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F (x) and J(x). They uncovered connections to Stark’s conjecture, Hecke operators,

and the cohomology of the modular group PSL2(Z). Additionally, they identified a

relationship between the functions F (x) and J(x) [7].

J(z) = F (2z)− 2F (z) + F
(z
2

)
+

π2

12z
.

In their paper, the function F (x) is termed the Herglotz function, while Masri [8]

refers to it as the Herglotz-Zagier function. Expanding on these connections, we in-

troduce the function F(z;u, v) as the Herglotz-Zagier-Novikov function, as it emerges

in Novikov’s work and also converges to F (x) as the limits of u and v approach 1.

In addition to F (z), the function J(z) can also be derived from F(z;u, v) by putting

u = v = −1.

Radchenko and Zagier [7] have derived special values of F (x) at positive rational and

quadratic units, which enable them to calculate value of J(x). For instant :

J(4 +
√
17) = −π

2

6
+

1

2
log2(2) +

1

2
log(2) log

(
2
(
4 +

√
17
))

,

J

(
2

5

)
=

11π2

240
+

3

4
log2 (2)− 2 log2

(√
5 + 1

2

)
.

Earlier Herglotz [4],and Muzaffar and Williams [5], had computed such integrals, but

specifically for J(n+
√
n2 − 1). For example, Herglotz showed:

J(4 +
√
15) = −π

2

12

(√
15− 2

)
+ log(2) log

(√
3 +

√
5
)
+ log

(√
5 + 1

2

)
log(2 +

√
3).

Chowla [15, p 372] remarked on the difficulty of direct evaluation of such integrals,

noting their complexity and the necessity of methods from both analytic and algebraic

number theory.

In this thesis, we first find a generalization of duplication formula (3.2), (3.3)

for any natural number n (instead of 2) for the case of F(z;u, v). Furthermore, we

extend the domain of J(z) (an special case of F(z;u, v)) to cover any z ∈ C.
By multiplying another log term in the numerator, we defined an analogue of

F(z;u, v), namely,

F(z;u, v, w) :=

∫ 1

0

log(1− utz) log(1− wtz)

v−1 − t
dt, Re(z) > 0,

where u,w ∈ L and v ∈ L′. We have studied the similar properties for our analogue

function F(z;u, v, w) throughout the thesis.
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Chapter 2

Preliminaries from Number Theory

First, we define an important function, namely, polylogarithm function Lis(z), which

will be useful in the later part of the thesis.

2.0.1 Polylogarithm function

Definition 2.1 (Polylogarithm function). The polylogarithm function, denoted

as Lis(z), represents a fundamental mathematical concept with a dual representation:

it can be expressed both as a power series in z and as a Dirichlet series in s. It is

defined as

Lis(z) :=
∞∑
n=1

zn

ns . (2.1)

This definition holds true for every complex order s and for any complex argument z

where |z| < 1; analytic continuation allows it to be extended to |z| ≥ 1.

Another way to describe this function is as a repeated integral of itself.

Lis(z) :=

∫ z

0

Lis−1(t)

t
dt. (2.2)

Properties and some special values

The polylogarithm function has numerous unique qualities and values, but in this

thesis, we will focus on a few key characteristics and values.

1. The polylogarithm function’s derivative can be expressed as follows:
∂Lis(z)

∂z
=

Lis−1(z)

z
. (2.3)

2. For s = 1, the polylogarithm function simplifies to the natural logarithm:

Li1(z) = −log(1− z). (2.4)
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3. When z = 1, the polylogarithm function simplifies to the Riemann zeta function

ζ(s)

Lis(1) = ζ(s), Re(s) > 1. (2.5)
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Chapter 3

Well known results on F(z;u, v)

Recall that, the definition of the H-Z-N function (1.1), that is,

F(z;u, v) =

∫ 1

0

log(1− utz)

v−1 − t
dt, Re(z) > 0,

where u ∈ L and v ∈ L′.

3.0.1 Characteristics of F(z;u, v)

Here, we will note down some properties of F(z;u, v) which were proved by Choie

and Kumar [1].

Theorem 3.1. For |u| < 1 and |v| < 1, F(z;u, v) can be expressed as

F(z;u, v) := −
∞∑ ∞∑

m=1 n=1

umvn

m(mz + n)
, z ̸= −p

q
where p, q ∈ N. (3.1)

This gives analytic continuation of F(z;u, v) for any complex z except at neg-

ative rational number.

Theorem 3.2. (Duplication formula). For u ∈ E, v, v2 ∈ E′ and Re(z) > 0,

F(2z;u2, v) = F(z;u, v) + F(z;−u, v), (3.2)

F
(z
2
;u, v2

)
= F(z;u, v) + F(z;u,−v). (3.3)

Theorem 3.3. F(z;u, v) fulfils two and three-term functional equations as shown

below:

1. For u, v ∈ E′, we have

F(z;u, v) + F
(
1

z
; v, u

)
= − log(1− u) log(1− v). (3.4)
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2. For u, v, uv ∈ E′, we have

F(z;u, v)−F(z + 1;uv, v)−F
(

z

z + 1
;u, uv

)
= log(1− u) log(1− uv) + Li2(u)

− Li2

(
v

v − 1

)
+ 2Li2

(
u

u− 1

)
− Li2

(
u− v

1− v

)
−
(

1

z + 1
− 1

2

)
Li2(uv)

−
2∑

j=1

Li2

(
u+

√
uveπij

u− 1

)
− Li2

(
v +

√
uveπij

v − 1

)
. (3.5)

Additionally, Choie and Kumar [1, Theorem 2.3] provided a six-term functional equa-

tion for F(z;u, v). They [1, Theorem 2.5] also provided an explicit expression for

z ∈ Q.

Theorem 3.4. Assume p, q ∈ N and (u, v) ∈ E × E′. For z = p
q
, the function

F(z;u, v) can be calculated as

F
(
p

q
;u, v

)
=
q

p
Li2(u) +

∑
α
p
=1

∑
β
q
=1

Li2

(
βv

1
q

βv
1
q − 1

)
− Li2

(
αu

1
p − βv

1
q

1− βv
1
q

)
.

One can evaluate F(n;u, v) directly by entering p = n and q = 1. Similarly,

F
(
1
n
;u, v

)
can be obtained directly by entering p = 1 and q = n.

3.0.2 A particular case of F(z;u, v)

Herglotz in 1923 studied a function J(z), which is interestingly turns out to be a

particular instance of F(z;u, v). For Re(z) > 0, we have

F(z;−1,−1) = −J(z).

Properties of the function J(z)

Choie and Kumar [1] studied properties of J(z) as a particular case of their function

and gave the following two term functional equation for J(z).

Theorem 3.5. Let Re(z) > 0, then we have

J(z) + J

(
1

z

)
= log2(z). (3.6)

Letting u = v = −1 in (3.4) gives (3.6).

They also evaluated J(z) at z = 1
m

and z = m for m ∈ N.

Theorem 3.6. For any natural number m, one has

J(m) =
π2

12

(
1

m
−m

)
+
m

2
log2(2) +

m∑
j=1

Li2

(
1

2

(
1 + e

πi
m

(2j+1)
))

. (3.7)
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and from equation (3.6), we have

J

(
1

m

)
=
π2

12

(
m− 1

m

)
+
(
1− m

2

)
log2(2)−

m∑
j=1

Li2

(
1

2

(
1 + e

πi
m

(2j+1)
))

. (3.8)
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Chapter 4

Main Results

We highlight the major points of this thesis in this chapter. The equations (3.2),

(3.3) illustrate the duplication formula for F(z;u, v) provided by Choie and Kumar.

Inspired by this, we obtained a generalization of the duplication formula of F(z;u, v).

4.1 Generalization of Duplication Formula for HZN

function

Theorem 4.1. For any natural number n, we have

F(nz;un, v) =
∑
α
n
=1

F(z;uα, v). (4.1)

F
( z
n
;u, vn

)
=
∑
α
n
=1

F(z;u, vα). (4.2)

Remark 1. Putting n = 2, we get the duplication formula (3.2) and (3.3) by Choie

and Kumar [1].

4.2 Extended domain for J(z)

Radchenko and Zagier defined Herglotz function J(z) for Re(z) > 0, but we find that

the integral in J(z) is defined for any z ∈ C. This is because whatever t we choose

between 0 to 1, arg(1 + tz) ̸= −π, hence

J(z) =

∫ 1

0

log(1 + tz)

1 + t
dt,

is valid for any z ∈ C.
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Theorem 4.1. For any z ∈ C, we have

J(−z) = J(z) +
zπ2

12
.

Using equations (3.7), (3.8) and the above theorem, one can directly evaluate

J(−m) and J
(
− 1

m

)
.

4.3 Analogue of H-Z-N function F(z;u, v, w)

Recall that our analogue function F(z;u, v, w) is given as

F(z;u, v, w) =

∫ 1

0

log(1− utz) log(1− wtz)

v−1 − t
dt, Re(z) > 0, (4.1)

where u,w ∈ L and v ∈ L′.

4.3.1 Properties of F(z;u, v, w)

Note that the function F(z;u, v, w) is defined for Re(z) > 0. However, we extend its

domain by analytical continuation.

Theorem 4.1. (Analytic Continuation) For non-zero complex numbers u, v, and w

such that |u| < 1, |v| < 1, and |w| < 1,

F(z;u, v, w) =
∞∑ ∞∑ ∞∑

m=1 n=1 k=1

umwnvk

mn(mz + nz + k)
. (4.2)

This holds for any complex z such that pz + q ̸= 0 for any p, q ∈ N.

We have also found the following multiplication relations for F(z;u, v, w) similar

to the formula in Theorem 4.1 for F(z;u, v).

Theorem 4.2. (Multiplication formula) Take u,w ∈ E, v, vn ∈ E′ and Re(z) > 0

then for any given natural number n, we have

F(nz;un, v, wn) =
∑
α
n
=1

∑
β
n
=1

F(z;uα, v, wβ). (4.3)

F
( z
n
;u, vn, w

)
=
∑
α
n
=1

F(z;u, vα, w). (4.4)

In the next section, we are going to explore a few particular values of F(z;u, v, w)

for z ∈ Q.
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4.3.2 Special Evaluations of F(z;u, v, w)

Theorem 4.3. Let u ∈ E, v ∈ E′, w ∈ E and p, q ∈ N. Then F
(

p
q
;u, v, u

)
can be

given as

F
(
p

q
;u, v, u

)
=
∑
α
q
=1

∑
β
p
=1

∑
γ
p
=1

F(1;u
1
pβ, v

1
qα, u

1
pγ). (4.5)

We can evaluate F(x;u, v, w) on two different arguments using above theorem,

one by putting p = n, q = 1 and another with p = 1, q = n.

Corollary 4.4. For any natural number n and u, v,∈ E we have

F(n;u, v, u) =
∑
α
n
=1

∑
β
n
=1

F(1;u
1
nα, v, u

1
nβ).

Corollary 4.5. For any u, v ∈ E such that u ̸= v, u ̸= 1 and v ̸= 1,

F
(
1

n
;u, vn, u

)
=
∑
α
n
=1

− log2 (1− u) log

(
u(1− αv)

u− αv

)
− 2 log(1− u)

Li2

(
α(−1 + u)v

u− αv

)
− 2Li3

(
αv

αv − u

)
+ 2Li3

(
α(−1 + u)v

u− αv

)
. (4.6)

Letting u tends to 1 and v ∈ E \ {1}, we have

F
(
1

n
; 1, vn, 1

)
= −

∑
α
n
=1

2Li3

(
αv

αv − 1

)
. (4.7)

When n is any even natural number. Letting u tend to 1 and v ∈ E \ {−1, 1} in

equation 4.7, we get

F
(
1

n
; 1, vn, 1

)
= −

∑
α
n
=1

2Li3

(
αv

αv − 1

)
.

Again when n is any odd natural number. Letting u tend to 1 and v ∈ E \ {1} in

equation 4.7 , we get

F
(
1

n
; 1, vn, 1

)
= −

∑
α
n
=1

2Li3

(
αv

αv − 1

)
.

On putting v = −1 in above equation, we get

F
(
1

n
; 1, (−1)n, 1

)
= −

∑
α
n
=1

2Li3

(
α

α + 1

)
. (4.8)

One can evaluate value of F
(
1
n
; 1,−1, 1

)
for any odd natural number directly using

equation 4.8. For n = 1, one gets

F (1; 1,−1, 1) = 2Li3

(
1

2

)
.

Theorem 4.6. For any u ∈ E such that u ̸= 1,

F (1;u, u, u) = −1

3
log3 (1− u) . (4.9)
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Our next corollary illustrates that a certain combination of F(z;u, v, w) can

also be represented in terms of the tri-logarithmic function only.

Corollary 4.7. For n ∈ N and v ∈ E′ we have

1.

F
(
1

n
; 1, v, 1

)
+ F

(
1

n
; 1,

v

1− v
, 1

)

= −2
∑
α
n
=1

Li3

(
αv

1
n

−1 + αv
1
n

)
− 2

∑
α
n
=1

Li3

 α
(

v
v−1

) 1
n

−1 + α
(

v
v−1

) 1
n

 .

2. For 0 < Re(v) < 1, one has

(a)

F
(
1

n
; 1, v, 1

)
+ F

(
1

n
; 1, 1− v, 1

)
= −2

∑
α
n
=1

Li3

(
αv

1
n

−1 + αv
1
n

)
− 2

∑
α
n
=1

Li3

(
α (1− v)

1
n

−1 + α (1− v)
1
n

)
.

(b)

F
(
1

n
; 1,

v

1− v
, 1

)
+ F

(
1

n
; 1, 1− v, 1

)

= −2
∑
α
n
=1

Li3

(
α(1− v)

1
n

−1 + α(1− v)
1
n

)
− 2

∑
α
n
=1

Li3

 α
(

v
v−1

) 1
n

−1 + α
(

v
v−1

) 1
n

 .

3. For Re(v) < 0, we get

(a)

F
(
1

n
; 1, v, 1

)
+F

(
1

n
; 1,

1

1− v
, 1

)

=− 2
∑
α
n
=1

Li3

(
αv

1
n

−1 + αv
1
n

)
− 2

∑
α
n
=1

Li3

 α
(

1
1−v

) 1
n

−1 + α
(

1
1−v

) 1
n

 .

(b)

F
(
1

n
; 1, 1− v, 1

)
+ F

(
1

n
; 1,

1

1− v
, 1

)

= −2
∑
α
n
=1

Li3

(
α(1− v)

1
n

−1 + α(1− v)
1
n

)
− 2

∑
α
n
=1

Li3

 α
(

1
1−v

) 1
n

−1 + α
(

1
1−v

) 1
n

 .
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Chapter 5

Important Lemmas

In this chapter, we will look at a few important lemmas that will help us to prove

our main results.

Lemma 5.1. For any u, v ∈ C such that u ̸= v, u ̸= 1 and v ̸= 1, we have

F(1;u, v, u) =

∫ 1

0

log2(1− ut)

(v−1 − t)
dt,

= − log2(1− u) log

(
u− uv

u− v

)
− 2 log(1− u)Li2

(
uv − v

u− v

)
+ 2Li3

(
v − vu

v − u

)
− 2Li3

(
v

v − u

)
. (5.1)

Proof. We know that

F(1;u, v, u) =

∫ 1

0

log2(1− ut)

(v−1 − t)
dt.

On integrating, we have

F(1;u, v, u) = − log2(1− u) log

(
u− uv

u− v

)
− 2

∫ 1

0

u

1− ut
log(1− ut) log

(
u− uvt

u− v

)
dt.

Using the relation
d

dz
Lis+1(z) =

Lis(z)

z
, (5.2)

we have

F(1;u, v, u) = − log2(1− u) log

(
u− uv

u− v

)
− 2 log(1− u)Li2

(
uv − v

u− v

)
− 2

∫ 1

0

u

1− ut
Li2

(
uvt− v

u− v

)
dt,

17



F(1;u, v, u) = − log2(1− u) log

(
u− uv

u− v

)
− 2 log(1− u)Li2

(
uv − v

u− v

)
+ 2Li3

(
v − vu

v − u

)
− 2Li3

(
v

v − u

)
.

Lemma 5.2. For any u, v ∈ C such that u ̸= v, u ̸= 1 and v ̸= 1,

Fk(1;u, v) :=

∫ 1

0

logk(1− ut)

v−1 − t
dt

=
k+1∑
j=1

(−1)j−1 logk+1−j(1− u) Lij

(
vu− v

u− v

)
k!

(k + 1− j)!
+ (−1)k+1k!

Lik+1

(
v

v − u

)
. (5.3)

Proof. We have

Fk(1;u, v) =

∫ 1

0

logk(1− ut)

v−1 − t
dt

On integrating, we get

Fk(1;u, v) = − logk(1− u) log

(
u(1− v)

u− v

)
− k

∫ 1

0

logk−1(1− ut)
u

1− ut
log

(
u− uvt

u− v

)
dt.

Using the relation
d

dz
Lis+1(z) =

Lis(z)

z
, (5.4)

we have

Fk(1;u, v) = − logk(1− u) log

(
u− uv

u− v

)
− k logk−1(1− u)Li2

(
vu− v

u− v

)
+ k(k − 1)

∫ 1

0

logk−2(1− ut)
u

1− ut
Li2

(
v(ut− 1)

u− v

)
dt,

Fk(1;u, v) = − logk(1− u) log

(
u− uv)

u− v

)
− k logk−1(1− u)Li2

(
vu− v

u− v

)
+ k(k − 1)

logk−2(1− u)Li3

(
vu− v

u− v

)
− k!

(k − 3)!

∫ 1

0

u logk−3(1− ut)

1− ut
Li3

(
v(ut− 1)

u− v

)
dt,

= − logk(1− u) log

(
u− uv

u− v

)
− k logk−1(1− u)Li2

(
v(−1 + u)

u− v

)
+ b · · ·

+ (−1)k! Lik+1

(
v(u− 1)

u− v

)
+ (−1)k+1k! Lik+1

(
−v
u− v

)
,

=
k+1∑
j=1

(−1)j−1 logk+1−j(1− u)Lij

(
vu− v

u− v

)
k!

(k + 1− j)!
+ (−1)k+1 k! Lik+1

(
v

v − u

)
.
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Chapter 6

Proof of Main Results

This chapter is dedicated to presenting the proofs of the main results outlined in this

thesis.

Proof of Theorem 4.1. From equation (1.1), one has

F(nz;un, v) =

∫ 1

0

log(1− untnz)

v−1 − t
dt.

We know that

1− zn = (1− z)(1− zα)(1− zα2)....(1− zαn−1), (6.1)

where α is a primitive nth root of unity. Hence

F(nz;un, v) =

∫ 1

0

log(1− utz)(1− αutz)...(1− αn−1utz)

v−1 − t
dt,

=

∫ 1

0

∑
α
n
=1 log(1− αutz)

v−1 − t
dt.

On swapping the order of summation and integration, one can directly get the result.

Again from equation (1.1), we have

F
( z
n
;u, vn

)
=

∫ 1

0

log
(
1− u(t)

z
n

)
v−n − t

dt.

Making the change of variable t = e−t in above equation, one obtains

F
( z
n
;u, vn

)
=

∫ ∞

0

log
(
1− ue

−tz
n

)
etv−n − 1

dt.

Now substituting t = ny and using the relation
q

1− yq
=
∑
β
q
=1

1

1− βy
, (6.2)

we obtain,

F
( z
n
;u, vn

)
=
∑
β
n
=1

F(z;u, βv).

This proves the theorem.
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Proof of Theorem 4.1. Substituting −z in place of z in J(z) we get,

J(−z) =
∫ 1

0

log(1 + t−z)

1 + t
dt,

=

∫ 1

0

log(1 + tz)

1 + t
dt−

∫ 1

0

log(tz)

1 + t
dt,

=

∫ 1

0

log(1 + tz)

1 + t
dt− z

∫ 1

0

log(t)

1 + t
dt.

We know that ∫ 1

0

log(t)

1 + t
dt = Li2(−1).

Hence, we have

J(−z) = J(z)− Li2(−1)z,

J(−z) = J(z) +
π2z

12
.

This completes the proof of theorem.

Proof of Theorem 4.1. Using the series expansion of logarithm and 1
1−vt

around t =

0, we reach

F(z;u, v, w) =

∫ 1

0

∞∑
m=1

(utz)m

m

∞∑
n=1

(wtz)n

n

∞∑
k=0

v(k+1)tk dt,

=
∞∑

m=1

um

m

∞∑
n=1

wn

n

∞∑
k=0

(vk+1)
1

(mz + zn+ k + 1)
,

=
∞∑

m=1

∞∑
n=1

∞∑
k=1

umwnvk

mn(z(m+ n) + k)
; z ̸= −p

q
for any p, q ∈ N.

This series represents an analytic function in u, v, w. It decays for the specified values

of u, v, and w, suggesting that the series is uniformly convergent for any complex

z other than a negative rational number. As a result, the function F(z;u, v, w) is

analytic.

Proof of Theorem 4.2. From equation (4.1), we get

F (nz, un, v, wn) =

∫ 1

0

log (1− untnz) log (1− wntnz)

v−1 − t
dt.

Using equation (6.1) one obtain,

F (nz, un, v, wn) =

∫ 1

0

∑
α
n
=1 log(1− uαtz)

∑
β
n
=1 log(1− wβtz)

v−1 − t
dt.
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On interchanging sum and integration,

F (nz, un, v, wn) =
∑
α
n
=1

∑
β
n
=1

∫ 1

0

log(1− uαtz) log(1− wβtz)

v−1 − t
dt,

=
∑
α
n
=1

∑
β
n
=1

F (z;uα, v, wβ) .

Again from equation (4.1), we have

F
( z
n
;u, vn, w

)
=

∫ 1

0

log
(
1− ut

z
n

)
log
(
1− wt

z
n

)
v−1 − t

dt. (6.3)

Making the change of variable t = e−t in equation (6.3), one obtains

F
( z
n
;u, vn, w

)
=

∫ ∞

0

log
(
1− ue

−tz
n

)
log
(
1− we

−tz
n

)
etv−n − 1

dt.

Substituting t = ny and using relation (6.2), we gets

F
( z
n
;u, vn, w

)
=
∑
β
n
=1

F(z;u, βv, w).

Hence the proof.

Proof of Theorem 4.3 . From equation (4.4), we have

F
(
p

q
;u, v, u

)
=
∑
α
q
=1

F(p;u, v
1
qα, u).

Again using equation (4.3) for F(p;u, v
1
qα, u), we get

F
(
p

q
;u, v, u

)
=
∑
α
q
=1

∑
β
p
=1

∑
γ
p
=1

F(1;u
1
pβ, v

1
qα, u

1
pγ).

F(1; ζx, y, δx) is well defined and value of this integral can be found using integration

by parts.

By putting q = 1 and p = n, one can directly get Corollary 4.4.

Proof of Corollary 4.5. Using duplication formula (4.4) for F
(
1
n
;u, vn, u

)
, we get

F
(
1

n
;u, vn, u

)
=
∑
α
n
=1

F(1;u, αv, u).

Use equation (5.1) for v = vα to get result.

Proof of Theorem 4.7. Using duplication formula (4.4) for F
(
1
n
; 1, vn, 1

)
, we get

F
(
1

n
; 1, vn, 1

)
=
∑
α
n
=1

F(1; 1, αv, 1),

Using equation (4.7) for αv in place of v one can directly get result.
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Proof of Theorem 4.6. We know that

F (1;u, u, u) =

∫ 1

0

log2 (1 + ut)
1
u
− t

dt.

On integrating, one gets

F (1;u, u, u) = − log3 (1 + u)− 2F (1;u, u, u)

F (1;u, u, u) = −1

3
log3 (1− u) .

Hence the proof.

Proof of Corollary 4.7. The result follows directly from (4.7).
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Chapter 7

Generalization of H-Z-N function

We define another function which is a generalization of the H-Z-N function as follows.

Fk(z;u, v) :=

∫ 1

0

logk(1− utz)

v−1 − t
dt, for any k ∈ N and Re(z) > 0, (7.1)

where u ∈ L and v ∈ L′.

For k = 1, it is same as H-Z-N function F(z;u, v). Below we show the analytic

continuation of Fk(z;u, v) to C except at negative rationals.

Analytic Continuation for Fk(z;u, v)

Theorem 7.1. For |u| < 1 and |v| < 1, we have

Fk(z;u, v) =
k∏

i=1

∞∑
mi,l=1

umivl

mi(z(m1 +m2 + · · ·+mk) + l)
, z ̸= −p

q
where p, q ∈ N.

This result gives analytic continuation of Fk(z;u, v).

Multiplication Formula for Fk(z;u, v)

Theorem 7.2. Take u,w ∈ E, v, vn ∈ E′, and Re(z) > 0, then for any given natural

number n, we have

Fk

( z
n
;u, vn

)
=
∑
α
n
=1

Fk(z;u, vα
−1). (7.2)

Special Values for Fk(z;u, v)

In the next theorem, we give the explicit evaluation of Fk

(
1
n
;u, v

)
for any n ∈ N .
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Theorem 7.3. For any u, v ∈ E such that u ̸= v and u ̸= 1,

Fk

(
1

n
;u, v

)
=
∑
α
n
=1

k+1∑
j=1

(−1)j−1 logk+1−j(1− u) Lij

(
α−1v

1
n (u− 1)

u− α−1v
1
n

)
k!

(k + 1− j)!

+ (−1)k+1k! Lik+1

(
α−1v

1
n

α−1v
1
n − u

)
. (7.3)

We take limit u tends to 1 in the above Theorem 7.3 to have one more special

case.

Fk

(
1

n
; 1, v

)
=
∑
α
n
=1

(−1)k+1 k! Lik+1

(
α−1v

1
n

α−1v
1
n − 1

)
. (7.4)

Next theorem consider u = v to give the following result.

Theorem 7.4. For any u ∈ E such that u ̸= 1

Fk (1;u, u) = − 1

1 + k
log1+k (1− u) . (7.5)

The function Fk(z;u, v) satisfies the following functional equation similar to

that of F(z;u, v, w) given in Corollary 4.7.

Corollary 7.5. For any natural number n and v ∈ E′, we have

1.

Fk

(
1

n
; 1, v

)
+ Fk

(
1

n
; 1,

v

v − 1

)

=
∑
α
n
=1

(−1)k+1 k!

Lik+1

(
α−1v

1
n

−1 + α−1v
1
n

)
+ Lik+1

 α−1
(

v
v−1

) 1
n

−1 + α−1
(

v
v−1

) 1
n

 .

2. Let Re(v) ∈ (0, 1). Then

(a)

Fk

(
1

n
; 1, v

)
+ Fk

(
1

n
; 1, 1− v

)
=
∑
α
n
=1

(−1)k+1 k!

(
Lik+1

(
α−1v

1
n

−1 + α−1v
1
n

)
+ Lik+1

(
α−1 (1− v)

1
n

−1 + α−1 (1− v)
1
n

))
.

(b)

Fk

(
1

n
; 1, 1− v

)
+ Fk

(
1

n
; 1,

v

v − 1

)

=
∑
α
n
=1

(−1)k+1 k!

Lik+1

(
α−1(1− v)

1
n

−1 + α−1(1− v)
1
n

)
+ Lik+1

 α−1
(

v
v−1

) 1
n

−1 + α−1
(

v
v−1

) 1
n

 .

3. For Re(v) < 0,
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(a)

Fk

(
1

n
; 1,

1

1− v

)
+ Fk

(
1

n
; 1, v

)

=
∑
α
n
=1

(−1)k+1 k!

Lik+1

(
α−1v

1
n

−1 + α−1v
1
n

)
+ Lik+1

 α−1
(

1
1−v

) 1
n

−1 + α−1
(

1
1−v

) 1
n

 .

(b)

Fk

(
1

n
; 1, 1− v

)
+ Fk

(
1

n
; 1,

1

1− v

)

=
∑
α
n
=1

(−1)k+1 k!

Lik+1

(
α−1(1− v)

1
n

−1 + α−1(1− v)
1
n

)
+ Lik+1

 α−1
(

1
1−v

) 1
n

−1 + α−1
(

1
1−v

) 1
n

 .

Table containing special values of Fk(z;u, v)

As Herglotz, Radchenko and Zagier have discovered evaluations for the functions

J(x), Muzaffar and Williams also provided evaluations of J(x). Choie and Kumar

provide special value of J(x). In the tables below, we present some special values of

function Fk(z;u, v) using our Theorem 7.3 for different value of k.

Table 7.1: Special values of Fk(x;u, v)
k (z, u, v) value of Fk(z;u, v)
1 (1, 2, -1) − log 2 log 3 + Li2

(
2
3

)
− Li2

(
4
3

)
1 (1, 3, -1) − log 2 log 4 + Li2

(
3
2

)
− Li2

(
3
4

)
1 (1, 4, -1) − log 2 log 5 + Li2

(
4
5

)
− Li2

(
8
5

)
1
(
1
2
, 1,−3

)
-Li2

( √
3√

3−i

)
− Li2

( √
3√

3+i

)
1
(
1
2
, 1,−2

)
-Li2

( √
2√

2−i

)
− Li2

( √
2√

2+i

)
1
(
1
2
, 1,−1

) −5π
2

48
+ log

2
2

4

2 (1, 1, -1) 2 Li3
(
1
2

)
2 (1, -2, -1) − log 4 log2 3− 2 log 3Li2(−3)− 2Li3(−1) + 2Li3(−3)

2 (1,-1,-1) log
3
(2)

3

2 (1,2,-1) π2 log
(
4
3

)
− 2πiLi2

(−1
3

)
− 2Li2

(
1
3

)
+ 2Li3

(−1
3

)
2
(
1
2
, 1, 2

)
−2Li3

(
1

1+ i√
2

)
− 2Li3

(
2
3
+ i

√
2

3

)
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Chapter 8

Proof of results for Fk(z;u, v)

We are going to present the proofs of the results for Fk(z;u, v) in this chapter.

Proof of Theorem 7.1. Using 1
1−vt

as the series expansion around t = 0 and expand-

ing the logarithm as series, we get

Fk(z;u, v) =

∫ 1

0

(
∞∑

m=1

(utz)m

m

)k ∞∑
l=0

vl+1tl dt

=

∫ 1

0

∞∑
m1=1

(utz)m1

m1

∞∑
m2=1

(utz)m2

m2

· · ·
∞∑

mk=1

(utz)mk

mk

∞∑
l=0

vl+1tl.

On switching the integration and summation order, it gives

Fk(z;u, v) =
k∏

i=1

∞∑
mi=1

∞∑
l=0

umi

mi

vl+1

∫ 1

0

tzm1+zm2+···+zmk+ldt,

=
k∏

i=1

∞∑
mi=1

∞∑
l=0

umi

mi

vl+1

(z(m1 +m2 +m3 + · · ·+mk) + l + 1)
,

=
k∏

i=1

∞∑
mi=1

∞∑
l=1

umi

mi

vl

(z(m1 +m2 +m3 + · · ·+mk) + l)
.

Proof of Theorem 7.2. From equation (7.1), we have

Fk

( z
n
;u, vn

)
=

∫ 1

0

logk
(
1− ut

z
n

)
v−n − t

dt. (8.1)

Changing the variable t = e−t in the above equation yields,

Fk

( z
n
;u, vn

)
=

∫ ∞

0

logk
(
1− ue

−tz
n

)
etv−n − 1

dt.
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Making the change of variable t = ny and using the relation
q

1− yq
=
∑
α
q
=1

1

1− αy

in above equation, one obtains

Fk

( z
n
;u, vn

)
=
∑
β
n
=1

Fk(z;u, α
n−1v).

Proof of Theorem 7.3. From multiplication formula (7.2), we have

Fk

(
1

n
;u, v

)
=
∑
α
n
=1

Fk(1;u, α
−1v

1
n ).

Substituting value of Fk(1;u, α
−1v

1
n ) from equation (5.2), one can directly obtained

the result.

Proof of Theorem 7.4. We know that

Fk (1;u, u) =

∫ 1

0

logk (1− ut)
1
u
− t

dt.

On integrating, one gets

Fk (1;u, u) = − logk+1 (1− u)− kF (1;u, u)

Fk (1;u, u) = − 1

k + 1
logk+1 (1− u) .

Proof of Corollary 7.5. The result follows directly from (7.4).
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Chapter 9

Concluding Thoughts

Throughout this thesis, our primary focus has been to study the properties of the

H-Z-N function and to prove some of these properties for our newly defined analogue

function. Additionally, we have discovered a generalization of the H-Z-N function.

While it is quite challenging to identify all similar properties for our generalized

function, we have successfully proven several of them. Furthermore, when u = w

in our analogue function, it reduces to a special case of our generalized function

for n = 2. Investigating other properties of this generalized function would be a

compelling direction for future research. Additionally, we plan to prove a three-term

functional equation for J(z).
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