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Abstract

P versus NP is a popular conjecture in Computer science. In this conjecture P

stands for the problem for which there exists a polynomial time running algo-

rithm and NP stands for the problems for which there exists a nondeterministic

polynomial time algorithm. P ?
= NP is the conjecture where we have to answer

the question of whether there exists a polynomial time running algorithm for all

NP problems or not.

This thesis presents a comprehensive survey of the Boolean Satisfiability

Problem (SAT), a cornerstone of theoretical computer science and practical ap-

plications in various domains. We explore the fundamental aspects of SAT, in-

cluding its historical development, theoretical significance, and the progression

of algorithms designed to solve it. The survey encompasses classic approaches

such as the Davis-Putnam-Logemann-Loveland (DPLL) algorithm and modern

advancements like Conflict-Driven Clause Learning (CDCL) solvers.

We delve into the empirical phenomena observed in SAT instances, such as

the phase transition behavior and the easy-hard-easy pattern, providing insights

from seminal works by Cheeseman et al. [11], and Mitchell et al. [12] The
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investigation extends to the structure of SAT problems, highlighting the concepts

of backbones and backdoors, and their influence on problem hardness.

Furthermore, the thesis examines the application of SAT solvers in indus-

trial contexts, where instances often differ significantly from random benchmarks.

The superior performance of CDCL solvers on industrial instances, as opposed to

random instances, is analyzed, with a focus on the role of backdoor structures in

facilitating this efficiency. Contributions by Gregory et al. [13] and Zulkoski et

al. [8] are reviewed to understand how these solvers implicitly exploit structural

features.

By synthesizing findings from various studies, this survey provides a co-

hesive understanding of SAT, bridging the gap between theoretical insights and

practical applications. The thesis concludes with a discussion on the future di-

rections in SAT research, emphasizing the potential for further advancements in

solver algorithms and their applications across different fields.
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CHAPTER 1

Introduction

Satisfiability also known as SAT is the first NP problem which was proven to

be NP complete. Many problems of combinatorics can be reduced to SAT. This

report is mainly focusing on the solution of 3-SAT problem. So firstly, discuss

some definitions and define some terminologies that are useful throughout this

report.

Consider a set of variables X = {x1, x2, . . . , xn}

1.1 Boolean Algebra

1. NP complete problem: A P is said to be NP complete if every NP

problem can be reduced into the problem P in polynomial time.

2. Truth value: Let xi 2 X which can take value either true or false. Then

the true or false value of the given variable is known as the truth value.

3. AND operator: x1 ^ x2 gives the result true iff both x1 and x2 are true
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otherwise x1 ^ x2 is false, where ^ denotes the logical AND operator.

4. OR operator: x1 _ x2 gives the result true if either x1 or x2 is true oth-

erwise x1 _ x2 is false, where _ denotes the logical OR operator.

5. NOT operator: Let xi 2 X then ¬xi gives the result true if the variable

xi is false vice versa, where ¬ denotes the logical NOt operator.

6. Boolean algebra: Boolean algebra is an expression of the variables from

the set X composed with the logical operators AND, OR, and NOT. The

output of a Boolean algebra is either true or false.

7. Literal: If a Boolean algebra consist a variable x then the variable x or ¬x

can be present in the given boolean algebra. So the literal of x is defined

as x or the negation of x.

8. Clause: A Boolean algebra where the logical OR operator connects the

literals.

9. Conjunctive normal form (CNF): The boolean algebra is called in

conjunctive normal form if the logical operator AND connects all the clauses.

10. Tseytin transformation: Tseytin transformation is the algorithm

which is used to convert a given boolean algebra into a conjunc-

tive normal form in polynomial time.

11. Satisfibility (SAT): Satisfiblility also known as SAT, is the problem of

answering the question of whether a given Boolean algebra in CNF is true

for some particular true and false value of the variables of given boolean

algebra. Also, note that SAT is a NP complete problem.

12. 3-SAT: 3 � SAT is the problem where all the clauses of the given CNF

contain exactly three literals.
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13. Cook-Levin Theorem: It states that P = NP if and only if a polynomial

time running algorithm exists for any one of NP complete problems.

1.2 Graph Theory

Let’s consider boolean expression � in conjunctive normal form with variables

Z = {z1, z2, . . . , zn} and clauses K. Consider an undirected weighted graph

H(Y, v) where Y is the set of vertices and v is the edge weight function defined

from Y ⇥ Y to R+
[ {0} satisfying the condition that v(zi, zj) = v(zj, zi) then

define:

1. Garph of Variable Incidence (GVI) for SAT : We will convert the

given CNF formula in the graph H(Y, v) with the variables Z as the set of

vertices and the weight v is given by:

v(zi, zj) =
mX

k2K
zi,zj2k

1
�|k|

2

� ,

where zi, zj 2 Z and |k| gives the number of variables present in the clause

k 2 K.

2. Diameter (Shortest Path Length): Consider zi, zj 2 Z then the di-

ameter from zi to zj is defined as the distance of minimal weight required

to go through zi to zj and is denoted by dzi,zj .

3. Degree of Vertex (DoV): Let zi, zj 2 Z and let us denote the edge

from the vertex zi to zj by Ei,j. Then the DoV of zi denoted by deg
zi

is

mathematically given by:

deg
zi
= |{Ei,j such that zi, zj 2 Z}|.

Further, we can define the degree of vertex zi with weight. The weighted

vertex degree of zi is defined as the total weights of all the adjacent edges
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of the vertex zi and is denoted by degwzi and is given by:

degwzi =
X

zj2Z

9Ezi,zj

w(zi, zj).

4. Box: Let B is a box defined as a collection of vertices i.e. B ⇢ Z with

the magnitude of the cardinality of the set B such that 8zi, zj 2 Z we have

dzi,zj < |B|.

5. Graph volume: Volume of the graph H(Y, v) denoted by volH is defined

as the sum of the weighted degree of vertices of H, mathematically volH is

given by:

volH =
X

z2Z

degwz.

Empirical data from a variety of methodologies supports either the existence or

the absence of dimensional measures in SAT problems. Structural measures are

typically computed for every SAT instance and then means and standard devia-

tions are determined. Applying structural measures as features, a unique method

involves classifying SAT cases into arbitrary, crafted, and industrial classes and

training a classifier model. The existence of structural parameters in SAT in-

stances is indicated by high classification accuracy, implying that these measures

can function as predictors of SAT features.

Research studies encompass the analysis of structural measurements asso-

ciated with clause learning algorithms and examining the effects of introducing

new clauses on the SAT structure. The objective is to comprehend how clause

learning affects SAT structure and apply this knowledge to enhance SAT solver

performance. A summary of the structural elements of SAT as discussed from

both theoretical and experimental angles in the literature is given in this section.
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CHAPTER 2

Structural Meaures for SAT

Since the early 1990s, phase transitions have remained at the forefront of re-

search on artificial intelligence (AI). Informally speaking, a "phase transition" is

a sudden change in a problem’s behavior resulting in by a shift in one of the key

factors. There is a clear phase transition between the relative values of clauses to

variables and the level of difficulty of k�SAT situations (see Table 1). Empirical

examinations of random k � SAT cases show that the mathematical challenge

of solving them follows an “easy hard easy” pattern as the ratio of the number

of clause to the number of variables varies; the most difficult scenarios, when 50

percent from the total examples are satisfiable, exists close to the point of tran-

sition of phase. The formal description of the change of phase depending on the

ratio of the clause to the variable is as follows:

Phase Transition Let the class of issues generated from a set of SAT

problems be denoted by R�(|Z|, |K|). Where |Z| is the number of variables and

|K| denoting the number of clauses, define � with variables Z and clauses K.

5



The likelihood that a randomly chosen problem from R�(|Z|, |K|) is satisfiable is

indicated by the variable Prob�(SAT,R�(|Z|, |K|)). If and only if the value |K|
|Z|

has a threshold ↵̄ such that, � experiences a phase shift between satisfiability of

� and unsatisfiability of �.

lim
|Z|!1

Prob�(SAT,R�(|Z|, |K|)) =

8
<

:
0, ↵ > ↵̄,

1, ↵ < ↵̄.

An “easy hard easy” pattern relative to certain problem parameters has al-

ready been identified. However, the study was limited due to the small size of the

SAT examples and the basic search method of backtracking. Some researchers

focused on uniform cases of random 3� SAT and identified that clauses to vari-

ables ratio is the order parameter. Their experiments demonstrated that the

Davis-Putnam (DP) solver’s average performance followed the “easy hard easy”

design, with the most challenging cases at the point of transition of phase which

is 4.3. Similar patterns were found in various randomly generated SAT . Re-

search into phase transitions in industrial-like randomly generated cases showed

that these instances also exhibit a phase transition based on the ratio of the num-

ber of clauses to the number of variables, though at reduced values compared to

benchmarks of randomly k � SAT . The better presentation of solvers based on

CDCL relative to “look ahead based” solvers on these benchmarks suggests that

industrial-like random benchmarks share structural similarities with industrial

examples. The difficulty level of the benchmarks was measured using metrics

such as the number of DP calls, branches, average proof tree nodes, CPU time,

backtracks, or conflicts. Studies by Zulkoski et al. [8] found that traditional met-

rics like the number of clauses, variables, or the ratio of the number of the clauses

to the number of variables do not give any kind of connection to the performance

of the solver based on CDCL and industrial instances.

Backbone and Backdoor: Well-known structural characteristics of Boolean

expressions that have been researched in the literature are backbones and back-
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doors. The main topic of this survey is the foundation of solely satisfiable SAT

instances. Calculation of backbone or the backdoor is generally impossible. As

a result, these attributes’ upper and lower bounds are established. Consider a

CNF Boolean expression � over the set of variables Z and clauses K. Then we

can define formally:

1. Backbone Literal: Let z be a literal of the boolean expression � then z is

called a backbone literal if and only if the truth value of the literal z is fixed

in all the assignments of �.

2. Backbone: The collection of all the backbone literals is defined as the back-

bone of �.

3. Weak Backdoor: Consider a sub-solver � then a collection of variables

BD� ✓ Z is known as the weak backdoor with respect to the sub-solver

� if and only if � gives the result satisfiability or unsatisfiability for some

assignment of BD�.

4. Strong Backdoor: Consider a sub-solver � then a collection of variables

BD� ✓ Z is known as the strong backdoor with respect to the sub-solver

� if and only if � gives the result satisfiablity for some assignment of BD�.

5. LS Backdoor: Consider a sub-solver � then a collection of variables BDLS ✓

Z is known as the LS backdoor with respect to the sub-solver � if and only if

there is a search tree investigation order s.t. a CDCL SAT solver branches

exclusively on variables in BLS, and with � at the leaves of the search tree,

determines the satisfiability of �.

6. LSR Backdoor: Consider a sub-solver � then a collection of variables BDLSR ✓

Z is known as the LS backdoor with respect to the sub-solver � if and only if

there is a tree search investigation order alongside renew s.t. a SAT solver
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based on CDCL branches exclusively upon the variables in BLSR, and with

� at the leaves of the tree search, answers the satisfiability of �.

The Satisfiability Problem (SAT) is a fundamental challenge in computer science,

highlighting the difficulty of finding efficient solutions for NP-complete problems.

Researchers have identified structural properties, such as the backbone and back-

doors, that significantly influence the efficiency of SAT solvers, particularly ad-

vanced ones like Conflict-Driven Clause Learning (CDCL) solvers. The backbone

consists of variables that maintain consistent values across all satisfying assign-

ments, indicating a highly constrained structure. Identifying these variables in-

volves analyzing the solution space to determine which variables remain invariant.

Although computationally intensive, this process provides valuable insights into

the problem’s complexity. SAT instances with a large backbone tend to be more

challenging to solve because the fixed variables impose rigid constraints, reducing

the solver’s flexibility. Recognizing backbone variables allows solvers to concen-

trate on the more flexible parts of the problem, potentially narrowing the search

space and enhancing efficiency.

Backdoors represent another strategic approach to optimizing SAT solvers.

A backdoor is a small subset of variables that, when assigned appropriate values,

significantly simplify the SAT instance, often transforming it into a problem solv-

able in polynomial time. Strong backdoors simplify the problem to a polynomial-

time solvable instance regardless of the specific values assigned to the backdoor

variables. In contrast, weak backdoors only simplify the problem under certain

assignments, making the problem easier to solve only for specific values of the

backdoor variables.

LS (Literal-Setting) and LSR (Literal-Setting Reduced) backdoors are spe-

cialized types used in specific solving strategies. LS backdoors are subsets of

variables that, once set, allow the remainder of the problem to be solved effi-

ciently using a particular algorithm, typically a polynomial-time procedure. LSR
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backdoors identify the smallest subset of variables that achieve this simplifica-

tion, minimizing the number of variables that need to be fixed to transform the

problem into an easier instance.

Integrating the identification and exploitation of backdoors, including LS

and LSR backdoors, can significantly enhance the performance of CDCL solvers.

CDCL solvers iteratively refine their search process through conflict analysis and

clause learning. By incorporating backdoor detection, CDCL solvers can pri-

oritize the assignment of backdoor variables, effectively reducing the problem’s

complexity early in the solving process. This strategy allows the solver to bypass

large portions of the search space, focusing computational resources on the most

promising areas and improving convergence rates. For instance, when a strong

backdoor is identified, the solver can confidently fix the values of the backdoor

variables, knowing that the remaining subproblem is tractable. Conversely, when

dealing with weak backdoors, the solver might employ heuristic methods to ex-

plore different assignments and determine the most effective ones for simplifying

the problem.

The integration of backbone and backdoor analysis within the CDCL frame-

work represents a sophisticated approach to SAT solving. By leveraging these

structural properties, solvers can gain a deeper understanding of the problem’s

inherent complexity and devise more targeted strategies for exploration. This

holistic approach not only improves the efficiency of the solving process but also

enhances the solver’s capability to handle larger and more complex SAT instances.

Additionally, the continuous development of techniques for detecting and utiliz-

ing backdoors, such as dynamic backdoor identification—where the backdoor set

can adapt as the solver progresses—holds promise for further advancements in

SAT solver technology.

In conclusion, the concepts of the backbone and backdoors, including strong,

weak, LS, and LSR backdoors, are pivotal in the study and application of SAT
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solving. By focusing on these structural properties, researchers and practition-

ers can develop more powerful and efficient solvers. The strategic integration of

backbone and backdoor insights within the CDCL framework exemplifies how

theoretical understanding can drive practical improvements, ultimately enabling

solvers to tackle a wider range of SAT problems with greater success.

Small-World: A mathematical graph’s closeness ratio, clustering coefficient,

and characteristic path length define its small-world attribute. The following

formulas hold given a boolean expression �(say) in CNF form defined on a

collection of variables Z with the clauses K, and given a method of encode GVI,

H(Y, v) of �:

1. Characteristic Path Length: The characteristic path length in short CPL

is defined as the mean of the shortest diameter of all the pairs of zi and zj,

mathematically:

CPL =

P
i

P
j
dzi,zj

|Z|(|Z|� 1)
,

where |Z| denotes total vertices present in graph H.

2. Vertex Clustering Coefficient (CLC): The ratio of a vertex zi’s degree to

the number of total edges separating it from its surrounding vertex is its

clustering coefficient, and it can be calculated as follows:

CLCzi =
2Lzi

deg
zi
(deg

zi
� 1)

,

where the term Lzi is used for showing the count of edges between the deg
zi

surrounding vertex of zi.

3. Graph Clustering Coefficient (GCL): The mean clustering of all the vari-

ables in a graph H(Y, v) is its Clustering Coefficient (GCLH), which may

be found as follows:

CLC =

P
i
GCLzi

|Z|(|Z|� 1)
.
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4. Proximity Ratio (Pr): Pr is defined mathematically as follows:

Pr =
CLC ⇥ CPLrand

CPL⇥ CLCrand

,

where CPLrand and CLCrand are the characteristic path length and clus-

tering coefficient of a random graph with the same number of variables and

clauses in �, respectively.

5. Small-world: G is known as a small-world topology if and only if Pr >> 1.

2.0.1 Scale-Free

Many graphs in the actual world have been found to have a scale-free structure.

Significant variation in the node arity, which appears to follow an exponential

distribution, is a feature of these graphs. The following defines the scale-free

property.

G is scale-free for the graph H(Y, v) if and only if following are true:

1. Nodes’ arity is determined by a randomly generated variable M that has a

distribution of law of power, mathematically:

P (M = m) = m
�� such that � 2 [2, 3].

2. It is a self-similar distribution.

Uniform random 3 � SAT formulae, on the other hand, follow an Erdós-Rényi

graph structure and are not scale-free.

2.0.2 Width of tree

A graph’s treelikeness is determined by its widh of tree; the lower the width

of tree, the graph is very similar to a tree. Consider a boolean expression �

in CNF form defined on the collection of variables Z with clauses from the
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collecction K transformed to an undirected graph H(Y, v) whose vertices are

Z = {z1, z2, . . . , zn}.

1. Decomposition: D(�, T ) is the tree decomposition of the graph H, where

� = {B1, B2, . . . , Bn} is the collection of boxes and P with the elements of

� forms a tree as its vertices such that:

(a) All the elements of � together gives us Z.

(b) 8 edges (zi, zj) 2 Z, 9k 2 N with (zi, zj) 2 BK

(c) We can make a tree P with the elements of �.

2. Width of a Decomposition: The decomposition D(�, T ) of a tree P has the

following width:

 D = maxk{|Bk|� 1}.

3. Width of tree: The minimal width over all possible tree decompositions

of the graph H with the following tree decompositions: D1, D2, . . . , Dn. is

defined as the width of tree of the graph H, given by

TH = mini{ Di}.

2.0.3 Centrality

The term “centrality” describes a node’s relative importance in a graph. Cen-

tral nodes can be defined in several ways, such as betweenness centrality and

eigenvector centrality. Eigenvector centrality is a colloquial term that combines

neighbor importance with degree centrality. The adjacency matrix is used to

monitor neighbors. Below is a formal definition:

1. Eigenvector Centrality: For the graph H(Y, v) and p, q 2 Z, let A = (ap, q)

be defined as the adjacency matrix. If p is a neighbor of q then ap,q = 1;

12



otherwise 0. We can also define the relative centrality of variable p as:

up =
1

⇤

X

q2V (p)

uq

=
P

q2H ap,quq,

where V (p) is denoting the set of neighbors of p and ⇤ is any constant. The

vector notation of the above equation can be written as:

Au = ⇤p.

Katsirelos and Simon [14] initially discovered a correlation between centrality and

certain features of how CDCL solvers behaved during the search, especially the

branching heuristic. Their experimental findings indicated that, in comparison

to unselected variables, the majority of decision variables have a higher average

centrality. It was found that influential variables are more apparent in the neigh-

borhood and rich-get-richer distributions, while all variables typically have equal

influence on the uniform random distribution. Betweenness centrality, proposed

by Jamali and Mitchell [12], is a variation of centrality defined as follows:

2. Betweennes Centrality: The idea of breaking down SAT cases into con-

nected components was first presented and put to use by Biere and Sinz

[15], however their experimental research revealed that this is insufficient

to solve SAT instances quickly. Compared to linked components, the con-

cept of community is more universal. To find communities, a quantitative

metric known as modularity is utilized. The following equations hold given

a boolean expression � in CNF form defined on the set of variables Z with

the clauses K, and transformed in the GVI H(Y, v) of �, and a set of box

� = B1, B2, . . . , Bn on G:

BEzi =
X

(j,m),i 6=j 6=k

pzj ,zm(zi)

pzj ,zm

,
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where pzj ,zm(zi) is used for the number of the paths passing through the

node zi and pzj ,zm denotes the total number of shortest paths from zj to zm.

3. Community: The idea of breaking down SAT cases into connected compo-

nents was first presented and put to use by Biere and Sinz [15]. However,

their experimental research revealed that this is insufficient to solve SAT

instances effectively. Compared to linked components, the concept of com-

munity is more universal. To find communities, a quantitative metric known

as modularity is utilized.

The following equations hold given a boolean expression � in CNF form

defined over the set of variables Z and clauses K, an transformed GVI of

�, H(Y, v), and a box set � = {B1, B2, . . . , Bn} on H:

4. Modularity: Let the set of least number of boxes covering the graph H(Y, v)

is �. Modularity of R is given as:

R(H, �) =
X

Bi2�

 P
zi,zj2Bi

v(zi, zj)P
zi,zj2Z v(zi, zj)

�

✓P
zi2Bi

deg
ziP

zi2Z deg
zi

◆2
!
.

5. Clear Community: If the modularity value of Q(H, �) is greater than or

equal to 0.7 i.e. Q(H, �) � 0.7 then the graph H has a clear community.

6. Hierarchical Community Graph: A graph H(Y, v) can be recursively divided

into subgraphs, forming a hierarchical community decomposition. TH is

the tree that depicts the hierarchical structure of communities in graph

H, where node set C is defined as C1, C2, . . . , Ck, and depth dep
H

. The

community depth and degree for a node Ci 2 C are shown by dep
Ci

and

deg
Ci

, respectively. A community of leaflets Cf is one with deg(Cf ) = 0.

The community of ith number within the l
th level is represented by C

l

i
✓ Z.

More specifically, H’s initial set of vertices is represented by C
1
1 .

7. Self-Similarity: Phenomenon of self-similarity represents a prevalent at-

tribute evident in numerous real-world graphs. In essence, a graph exhibits
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self-similarity when it upholds a consistent structure following rescaling,

which involves the replacement of groups of nodes with a single node. Con-

sider a CNF formula � defined with the variables form the set Z and the

clauses K, and its transformation as a Variable Incidence Graph (GVI)

H(Z, v) with a set of boxes � = {B1, B2, ..., Bn} on H, we can define the

property of the self-similar as follows:

• Self-similar: Let c(s) represent the bare minimum size s boxes needed

to cover H. H resembles herself. if, for every value ⇤, �(s) ⇠ s
�⇤,

meaning that �(s) reduces polynomially. The fractal dimension of H

is denoted by ⇤.

8. Entropy: Researchers have explored the entropy measure as a means of

assessing the complexity of instances of SAT when viewed as graphs. The

measure of uncertainty in random systems is expressed by entropy. The em-

bedded system’s unpredictability increases with increasing entropy. Below,

you will find the formal definition of entropy, also referred to as entropy of

one-dimensional and entropy of two-dimensional.

9. One-dimensional Entropy: For the graph H(Y, v) we can define the struc-

tural entropy of one-dimensional as:

H
1(H) = �

|Z|X

i=1,xi2Z

deg
zi

volH
log2

deg
zi

volH
,

where deg
zi

is the degree of zi and volH is the volume of the graph.

10. Entropy of One-dimensional Entropy on the collection of Boxes: Consider a

disjoint set of boxes � = B1, B2, . . . , Bn on H. Then over this set of boxes,

we can define the entropy of one dimension of H(Y, v) as follows:

H
B(H),

where EBi is used for showing the total count of edges of the box Bi.
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11. Entropy of Two-dimensional: For the graph H(Y, v) we can define the struc-

tural entropy in two-dimensional as:

H
2(H) = minBH

�(H).

Research involving study of uniformly generated random 3-SAT and in-

stances of industry has demonstrated a proportional relationship between entropy

and problem hardness. Furthermore, the structural entropy of a variable directly

influences its probability of being flipped, as detailed in Table 4.
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CHAPTER 3

Analysis

The thesis presents a comprehensive survey of the Satisfiability Problem (SAT),

emphasizing its structural aspects and implications within theoretical computer

science and practical applications. The analysis delves into various dimensions

of the SAT problem, providing insights into its complexity, algorithmic solutions,

and the influence of different structural properties on its solvability.

Structural Complexity of SAT: The thesis begins by examining the

intrinsic complexity of SAT, one of the first problems proven to be NP-complete.

It highlights the problem’s foundational role in computational complexity theory,

serving as a benchmark for classifying other problems within the NP class. The

survey underscores the pivotal significance of Cook’s Theorem, which established

SAT’s NP-completeness, and explores subsequent research that has extended and

deepened our understanding of SAT’s complexity.

Algorithmic Approaches: A substantial portion of the thesis is dedi-

cated to exploring various algorithmic strategies for solving SAT. This includes
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an analysis of classical algorithms such as the Davis-Putnam-Logemann-Loveland

(DPLL) algorithm and its modern enhancements like Conflict-Driven Clause

Learning (CDCL). The discussion extends to heuristic methods, such as stochastic

local search algorithms, which offer practical solutions for large instances of SAT

despite the problem’s theoretical intractability. By comparing these algorithms,

the thesis elucidates the trade-offs between exact and heuristic approaches, high-

lighting their respective strengths and limitations.

Structural Properties and SAT: The thesis provides an in-depth analy-

sis of how certain structural properties of SAT instances influence their solvability.

Key concepts such as clause-to-variable ratios, phase transitions, and the role of

symmetries are explored. The survey discusses empirical studies and theoretical

models that demonstrate how these properties can predict the difficulty of SAT

instances. For instance, it examines the critical threshold phenomenon, where

the satisfiability of random SAT instances undergoes a sharp transition, and how

this insight guides the design of more efficient algorithms.

Practical Applications: Beyond theoretical considerations, the thesis

also addresses the practical implications of SAT and its variants, such as 3-SAT

and k-SAT, in various domains. It reviews applications in fields like hardware and

software verification, artificial intelligence, and operations research. By demon-

strating the utility of SAT solvers in these areas, the thesis underscores the real-

world relevance of studying the SAT problem’s structure.

Advances and Open Problems: The survey concludes by highlighting

recent advances in SAT research and identifying open problems that continue

to challenge researchers. This includes ongoing efforts to improve SAT solver

performance, the exploration of new algorithmic paradigms, and the quest to

better understand the fine-grained complexity of SAT and related problems. The

thesis emphasizes the dynamic nature of SAT research, driven by both theoretical

breakthroughs and practical demands.
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Conclusion: Overall, the thesis provides a thorough and nuanced survey of

the structure of the Boolean Satisfiability Problem, blending theoretical insights

with practical considerations. By dissecting the complexity, algorithmic strate-

gies, structural properties, and applications of SAT, the survey offers a holistic

view of a problem that lies at the heart of computational complexity theory and

has profound implications across various technological domains.
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CHAPTER 4

Challenging Part & Future Aim

4.1 Challenging Part:

One of the most challenging aspects of the Boolean Satisfiability Problem (SAT)

lies in its inherent computational complexity. As an NP-complete problem, SAT

epitomizes the difficulty of finding efficient solutions for large instances. This

complexity manifests in several ways:

1. Scalability of Algorithms: While significant progress has been made in de-

veloping efficient SAT solvers, scalability remains a major challenge. Al-

gorithms that perform well on small to moderately sized instances often

struggle with the exponential growth in complexity as the size of the input

increases. The DPLL and CDCL algorithms, for instance, while powerful,

can face significant performance bottlenecks on larger or more complex SAT

instances.

2. Phase Transition Phenomenon: The critical threshold phenomenon, where
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the satisfiability of random SAT instances sharply transitions from satisfi-

able to unsatisfiable as the clause-to-variable ratio changes, poses a unique

challenge. Understanding and predicting this transition requires deep the-

oretical insights and sophisticated empirical analysis, making it difficult to

generalize findings across different SAT instances.

3. Structure and Symmetry: Identifying and exploiting structural properties

and symmetries within SAT instances can greatly enhance solver efficiency.

However, this task is inherently complex and often problem-specific. Devel-

oping general methods to detect and leverage these properties remains an

ongoing challenge.

4. Heuristics and Heuristic-Based Methods: While heuristic methods provide

practical solutions for many SAT instances, their unpredictable performance

and lack of guaranteed optimality are significant drawbacks. Designing

heuristics that are both effective and reliable across a wide range of instances

is an ongoing area of research.

5. Real-World Applications: Applying SAT solvers to real-world problems of-

ten introduces additional layers of complexity. These problems may involve

constraints and requirements that are not present in theoretical SAT for-

mulations, necessitating customized or hybrid approaches that blend SAT

solving with other techniques.

4.2 Future Aims:

The future aims of research into the structure of the Boolean Satisfiability Prob-

lem encompass several ambitious goals:

1. Enhanced Algorithmic Performance: One of the primary aims is to develop

more advanced SAT solvers that can handle larger and more complex in-
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stances efficiently. This involves improving existing algorithms, like CDCL,

and exploring new algorithmic paradigms that can offer better performance.

2. Deeper Understanding of Phase Transitions: Future research aims to deepen

the understanding of the phase transition phenomenon in SAT. By devel-

oping more precise theoretical models and conducting extensive empirical

studies, researchers hope to better predict and exploit these transitions to

improve solver performance.

3. Exploiting Structural Properties: Another key aim is to develop general-

ized methods for identifying and utilizing structural properties and symme-

tries in SAT instances. This includes advancing techniques for symmetry

breaking and structural decomposition, which can significantly enhance the

efficiency of SAT solvers.

4. Integration with Other Techniques: Combining SAT solving with other

computational techniques, such as constraint programming and integer pro-

gramming, is a promising area of future research. This hybrid approach

could leverage the strengths of multiple paradigms to tackle complex, real-

world problems more effectively.

5. Machine Learning and SAT: Incorporating machine learning techniques to

predict the difficulty of SAT instances and guide the search process in solvers

is a cutting-edge aim. Machine learning models can potentially learn from

large datasets of SAT instances to provide insights and heuristics that im-

prove solver performance.

6. Application-Specific Solvers: Developing SAT solvers tailored to specific ap-

plication domains, such as hardware verification, artificial intelligence, and

bioinformatics, is a practical aim. Customized solvers can exploit domain-

specific knowledge to achieve better performance and reliability.
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7. Benchmarking and Standardization: Establishing comprehensive bench-

marks and standardized testing frameworks for SAT solvers is crucial for

comparing and evaluating different approaches. Future efforts aim to cre-

ate more robust and diverse benchmarks that reflect the wide range of SAT

instances encountered in practice.

By addressing these challenges and pursuing these future aims, research

into the Boolean Satisfiability Problem can continue to advance, driving

both theoretical understanding and practical applications forward.
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Table 1

Benchmarks Solvers

Results

random Crafted Industrial metric

Uniform 3� SAT instances SATz No NS Yes. Evidence

Industrial 2002-2005 SATRaces CDCL: MiniSAT NS NS NS CPU time

Positive NS Positive Clause learning

Table 2

Benchmarks Solvers

Results

random Crafted Industrial metric

NS NS NS Evidence

Industrial 2009 PrecoSAT NS NS - CPU time

NS NS NS Clause learning

Uniform 2007/2009 SAT competitions Yes Yes Yes. Evidence

Crafted 2009-2014 MapleCOMSPs - - - CPU time

Industrial 2009-2014 NS NS NS Clause learning

Table 3

Benchmarks Solvers

Results

random Crafted Industrial metric

Uniform 3� SAT instances CDCL SAT solver: Picosat No Yes Yes. Evidence

Industrial 2018 NS NS NS CPU time

- inverse inverse Clause learning

Table 4

Benchmarks Solvers

Results

random Crafted Industrial metric

Uniform 3� SAT examples CCAsat Yes NS Yes. Evidence

Industrial 2018 Sparrow 2018 NS NS NS CPU time

NS NS NS Clause learning

Note: NS indicates that the metric has not been studied and the symbol -

denotes no reaction.
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