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Abstract

In this survey, we try to understand boundedness of translation-invariant (lin-
ear) operators on Lebesgue spaces. Translation-invariant operators are an im-
portant part of Fourier Analysis. These operators enjoy “nice”-properties. For
instance, it is known, due to Hormander, that translation-invariant operators are
“LP-improving”. Our main aim is to see the boundedness of such operators on
LP-spaces of the Euclidean space not only with the usual Lebesgue measure, but
also with measures induced by positive (measurable) functions. Such functions
are referred to as weights.

A natural question arises: Are all weights “good”? At the first glance, this ques-
tion is ambiguous and does not merit an answer at alll How does one define
“oood” weights? A part of this thesis also describes some literature in this direc-
tion. Study of averages of functions on the real line was done nearly a century
ago by Hardy and Littlewood, in the context of differentiability properties of inte-
grable functions. Their study gave rise to a whole new area of Maximal functions.
Muckenhoupt further developed theory on the weighted boundedness of maximal

functions, and characterized all (positive) weights for which the Hardy-Littlewood

v



maximal functions are bounded on LP. These classes of weights are now famously
known as Muckenhoupt classes A,. In our survey, we focus on these weights.

Our aim, therefore, is twofold: One, to understand Muckenhoupt weights, their
characterizations, possible generalization, and “nice” properties; and two, to use
this knowledge in understanding the LP-boundedness of translation-invariant op-
erators. While, in generality, there are a variety of translation-invariant operators,
we deal with those that are of convolution type. Particularly, in this thesis, we
study the LP-boundedness of (generalized) Calderén-Zygmund operators, and a
few multipliers. For the latter, we require Littlewood-Payley theory, which is also
dealt with. We see that the Muckenhoupt classes and the boundedness results
for (Hardy-Littlewood) Maximal functions play an important role in this study.
In the final chapter of the thesis, we give a few (and in no way exhaustive) direc-

tions that one can approach with this knowledge.
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CHAPTER 1

Introduction

The study of averages is an important part of mathematics. The knowledge of
average behaviour of a system is of interest to many fields, such as Dynamics,
Ergodic Theory, and even Harmonic analysis. In this survey, we are interested in
the Harmonic analysis point of view.

While the origin of the study of averages cannot be pinned to a particular
event in mathematical history, we briefly describe the the view of Hardy and
Littlewood for the study of averages of functions defined on the Euclidean space
R"™. The motivation for them goes back to the first fundamental theorem of
calculus. We know that given a continuous function f : [a,b] — R, the “area

function”, F : [a,b] — R, defined by

F () :/f<t>dt,

is differentiable, and in fact, F’ (x) = f(x), for every x € (a,b). Let us try to
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understand the derivative of F' in detail. By definition, we have,
F h)— F
F'(z) = lim (z+h) (I>

h—0 h

However, since the limit exists, we may very well write it as

F(x)—F(x—h).

/ BT
F(z) = Jim h
By adding the two expressions, we get
z+h
. F(x+h)—F(x—h) . 1
JR— / —_— f— —
fle) = F(z) = im 2h _;lfi%zh/f(t)dt'
xz—h
x+h
If we notice carefully, the expression % [ f(t)dt gives the average of f over the
z—h

interval (z — h,z + h). Therefore, essentially, the first fundamental theorem of
calculus says that for continuous functions, the averages over intervals centered
at x converge to the function f as the size of the interval shrinks to zero.

The next step is to generalize this concept to higher dimensions. Hardy and
Littlewood in [14], study these averages through their corresponding maximal
function, and derive a differentiation theorem, famously known as the Lebesgue
differentiation theorem. When generalizing this idea to higher dimensions, the
most natural way is to consider balls in place of intervals, and study the averages
of the form mB( i | f () dt, where | - | denotes the Lebesgue measure of a set
in R”™. This was donzrby Wiener in [26] in the context of Ergodic Theory. These
averages are the main component of our study.

Speaking of averages, we easily notice that they are “smoothing” operators.
Vaguely, taking averages of functions increase their regularity, at least in terms of
differentiation. One might ask whether taking averages increase the integrability
of functions? That is, given a p-integrable function on R, is its average also p-
integrable? Can we expect it to be g-integrable for ¢ # p? These questions are
the basic framework of our study.

Apart from the averages, another important operation in Harmonic analysis

is the convolution. Formally, given two “nice” functions f, g : R™ — C, we define
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their convolution by the function f x g : R" — C, as
fro@=[1@-9a0d
RTL

A particular case of convolutions is the averaging operator. So, we may ask
similar questions about integrability of convolution operators. Particularly, we
fix a nice function K defined on R", called the kernel of convolution, and define
an operator 1" by

Tf=Kxf.

Now, we ask whether T f is ¢-integrable whenever f is p-integrable. In fact,
we ask a stronger question: Is 7" bounded from LP to L7 Due to a famous
result by Hérmander ([15]), it is known that a necessary condition is ¢ > p. In
fact, Hormander proved the result translation-invariant operators. Formally, an
operator T is translation-invariant, if for any x € R", we have T'o71, = 7, 0T

Here, 7, is an operator defined by

mf () =f(y—=).

Translation-invariant operators form the other part of our study. It is known (see,
for instance, [12]) that translation-invariant operators are of convolution type.
More precisely, they can be written as convolutions for a “nice” class of functions.
Owing to their importance in analysis, we study two types of translation-invariant
operators in this thesis. First, we consider the operators that mimic convolutions
in some sense. This leads us to the Calderén-Zygmund theory. Next, we study
the (translation-invariant) operators whose Fourier transform is a multiplication
by a bounded function. Such operators are called multipliers. While the study
of multipliers is vast, and a lot of research is going on, we deal with three major
multiplier theorems in this survey.

This thesis is organized as follows: Chapter [2| deals with preliminaries re-
quired later. Here, we begin with recalling basic concepts from measure theory

and functional analysis. We do not give most of the proofs and details of the
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results mentioned in this chapter, but rather only their references. The main sec-
tion of this chapter deals with the development of Bochner integral (also known
as vector-valued or Banach-valued integral), which is not usually covered in a
first course on Functional Analysis. Hence, we give all the required details. The
next chapter (Chapter 3] deals with the study of averages and maximal functions,
and their LP-boundedness. In Chapter [4] we try and characterize all the weight
functions w that make the Hardy-Littlewood maximal function bounded on the
weighted Lebesgue spaces LP (w). This completes the first part of our thesis. The
next part deals with the study of LP-boundedness of translation-invariant oper-
ators. In Chapter p| we start by a prototypical example of a convolution-type
operator, and build our way to the Calderén-Zygmund theory. We see later that
this study is also useful in our study of multipliers. The penultimate chapter
(Chapter @ first deals with Littlewood-Paley theory, which is further required to
study multipliers. In our study of multiplier theory, we deal with three important
results due to Hérmander, Marcinkiewicz and Bochner. Finally, in Chapter [7], we

conclude the thesis and discuss a few directions of further study.



CHAPTER 2

Preliminaries

In this chapter, we provide preliminary results required later, and make some
notation precise. We refrain from giving detailed proofs of simple results and
rather refer to the sources at most places. Two sections of this chapter are of
importance to us: First, the section on interpolation results, and second, on the
Bochner integral. In these sections we provide complete details of all results

discussed.

2.1 LP spaces

We start by recalling certain basic definitions and results from integration theory.
Most of the material presented here can be found in [22] or [9]. Throughout this
chapter, (X,pu) denotes a o-finite measure space. If 1 < p < oo, the space

LP(X, 1) consists of all complex valued measurable functions on X such that

/ F@)P duz) < oo.
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To simplify the notation, we write LP(X). If f € LP(X), the LP norm of f is
defined as

1/p

1l = | [ 1#@P duto)

Sometimes we abbreviate the norm as || f||z» or || f||,-

Similarly, we define L>° (X) as the collection of all essentially bounded mea-
surable functions. A function f : X — C is essentially bounded if there is some
M > 0 such that the p({z € X||f ()] > M}) = 0. The uniform norm of es-
sentially bounded functions || f||o is defined to be the smallest M > 0 such that
p{w € X|If (2)] > M}) =0.

Remark 2.1. Often, in statements of many results, we abuse notation and write

fll, = <){ |f (z)|” dx) " for p = 400 as well. It is to be understood that in this

case, the norm is taken as the uniform norm.
The following are some important examples of L” spaces.

1. If X = R"™ and p equals Lebesgue measure then the L? space is denoted by
LP(R™). There, we write

1/p
1]l = /V@Mm |

2. If we take X = Z, p equal to the counting measure, we get discrete LP
spaces. They are denoted by (7 (Z). Measurable functions are simply se-
quences [ = (y),cz of complex numbers, and

1/p
| (@) pez e = (Z ‘an|p> .
nez
It is known that the space LP(X), is a Banach space with the norm defined above.
The following inequalities are crucial to us. In what follows, given 1 < p < 400,

the conjugate exponent p’ to p is given by
1 1

p p
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Theorem 2.1 (Holder’s inequality [9]). Let f and g be two measurable functions

on X. Let p and p' be conjugate exponents, 1 < p < oo. Then, we have
1/p 1/p'

/ F(@)9(2)] du(z) < / @) dp(e) / 9@ du()|

where, the case p =1 or p = 400 is understood accordingly.

Theorem 2.2 (Minkowski’s inequality [I7]). If 1 < p < o0 and f,g € LP(X),
then f + g € LP(X), and || f + gllee < [|f|lz» + lgl|z»-

We also have the continuous version of Minkowski’s inequality.

Theorem 2.3 (Minkowski’s Integral Inequality [7]). Let (X, u) and (Y,v) be
measure spaces and F': X xY — C be a measurable function. Then, we have for

1 <p <o,

//F(x,y)dypdx ; S/ /|F(m,y)dx| pdy. (2.1)

Remark 2.2. The spaces L? (X) can be defined for 0 < p < 1 analogously.
However, in these cases, the map || - ||, is not a norm, since it no longer satisfies
the triangle inequality. Nonetheless, we call it a “norm”, and use it at some places

where the triangle inequality is not important.

2.2 Operators on Banach space

In this section, we recall a few definitions and results concerning linear operators
on Banach spaces. A normed linear space consists of an underlying vetor space
V' over a field of scalars (the real or complex number), together with a norm

|- || : V — RT that satisfies:
1. |Jv|| = 0 if and only if v = 0.

2. ||av|| = |a]||v]|, where « is a scalar and v € V.
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3. v+ w|| < ||| + |Jw|| for all v,w € V.

The space V is said to be complete if every Cauchy sequence in V' is convergent.

A complete normed linear space is called a Banach space.

2.2.1 Bounded Linear Operator

Continuous linear operators between Banach spaces are of importance to us.

Here, we recall a few related definitions and results from Functional Analysis.

Definition 2.1 (Bounded Linear Operator). Let X and Y be normed linear
spaces, a linear operator T' : X — Y is bounded if there is a constant C' > 0

such that for all x € X,

T ()] < Clfz]].
Operator norm of a bounded linear operator T': X — Y is
Tx
7= sup L2 = s 7)) = sup 7).
zex |7l z€X z€X
20 lel=1 el <1

The following result is the link between bounded operators and continuous

operators.

Theorem 2.4. A linear operator from a normed space X to another mormed

space Y is bounded if and only if it is continuous.

2.2.2 Linear functional and the dual of Banach space

Let B be a Banach space over a field F. For our purpose, F = C. A linear
functional is a map A : B — F that satisfies

Alau + Bv) = alA(u) + BA(v),
for all a, 8 € F, and u,v € B. We know that the set of all continuous linear
functionals over B is a vector space over F. It is denoted by B’. Equipped with
the operator norm, B’ is a Banach space.

The following well-known duality is well-known.
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Theorem 2.5. For 1 < p < 0o, the normed dual of L? (X) is L? (X). Moreover,

we have for measurable functions f: X — C,

1l = sup /fumme@»:wmmns1
X

2.2.3 Transpose of a linear operator

We also require the definition of transpose of a linear operator.

Definition 2.2 (Transpose). Let T : X — Y be a linear operator where X and

Y are normed spaces. Then the transpose operator T : Y' — X' is defined by
(T"g)(x) = 9(Tx),

The following result is well known.

Theorem 2.6. If T : X — Y is a bounded linear operator, then Tt : Y' — X' is

also a bounded linear operator. Moreover, we have ||T|| = ||T"]|.

2.3 Weak-type inequalities and Interpolation

In this section, we give important techniques useful to our study. Since the results
discussed here might be new to some readers, we give complete details. We begin

by defining weak boundedness of operators on LP spaces.

Definition 2.3 (Weak type boundedness). Let (X,pu) and (Y,v) be measure
spaces, and let T' be an operator from LP(X) into the space of measurable func-
tions from Y to C. We say that T is of weak type (p,q), for ¢ < oo, if

vt ey srie) > < (k)
and we say that T is weak (p, 00) if it is bounded operator from LP(X) to L>=(Y').

One might wonder about the notion of “strong” boundedness. The defini-

tion is not different from that of bounded operators (see Definition [2.1)).
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Definition 2.4 (Strong boundedness). Let T' be an operator from LP(X) into the
space of measurable functions from'Y to C. We say that T is of strong type (p, q)
if it is bounded from LP(X) to LYU(Y), i.e., there is a constant C > 0 such that
for all f € LP(X), we have

T fllg < Cl -

It is easy to see that if an operator is strong (p,q) then it is weak (p,q).
Indeed, let Ex ={y €Y : |T'f(y)| > A}. Then,

8) = [ vty < [ L2 ) < I < (UL

Remark 2.3. When (X, u) = (Y,v) and T is the identity operator, the weak (p, p)

inequality is the classical Chebyshev (or Markov’s) inequality (see for example,
[9)).

The relationship between weak (p,q) inequalities and almost everywhere

convergence is given by the following result. Here, we assume that (X, u)=(Y, v).

Theorem 2.7. Let {T;}ier be a family of linear operators on LP(X) and define
a mazimal function associated to {T;}ier by
T f(x) = sup T2 f ()]
S
Here, the index set I is a topological subspace of R with a limit point to. If T is
weak (p,q) then the set

{fGLp(X) ‘th_rg Tif(x) = f(x) a.e. :EEX}
is closed in LP(X).

Proof. Let us consider a sequence of functions (f,),,cy in LP(X) which converges
to the function f € LP(X) in the L? norm and such that VYn € N, T, f,, converges

to f, almost everywhere. Now,
Tif (x) = f(2)] = [Ti(f = f)(@) = (f(2) = ful@)) + Tifu(z) — fol2)]
< |T(f = fo) (@) = (f (@) = fu(@))] + | Tefn(2) = ful(2)].
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Therefore, limsup |73 f(x) — f()] < limsup|T(f — fu)(x) — (f(x) — fulw))| +

t—>to t—to

limsup |7} f.(x) — fu(x)|. As a result,

t—>to
{x eX

{xGX

U {x € X :limsup |Tifn(z) — fu(z)] > /\}.
t—to
Since T, f,, converges pointwise to f,, almost everywhere, we have

hmsup |thn(x) - fn(x)| = O,

t—to
for almost every x € X. Therefore,

u({x € X : limsup |T3 f(x) — ful)| > A}) = 0.

t—to

lim sup T, £ (2) — £(z)] > m} c

t—to

fmsup[73(f ~ £,)(x) = (£(0) = fue))] >}

t—to

So, we have the following:

u({ € X s 1350) - 10 > 2}

t—to

< { € X tmsup 107 - £)(0) - U0 - Fi0)] > 1)
<u({rexmu-n)w>3hea({oexic-rw>3})

2C T2 .
< (= slk) + (30 -l )

The last inequality follows from the fact that 7* is weak (p, ¢), and the Cheby-
shev’s inequality. Since (fy),cy converges to the function f in LP(X) norm, the
right hand side of above inequality tends to 0 as n — co. So, for a given A > 0

we have

u({x € X : limsup |T}f(z) — f(z)| > )\}) — 0.

t—to
{:L‘ e X

—G{xeX
k=1

Now, we have

limsup |11 f(x) — f(z)] > o}

t—>to

limsup |1, (z) — f(2)] > %}

t—to
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Hence,

u({x € X : limsup |T3f(z) — f(z)] > o}) = 0.

t—>to

]
Next, we define the distribution function of a given measurable function. It plays

a role in proving the interpolation results of this section. We keep the notation

as in [12], and refer to reader to this source for further details on this topic.

Definition 2.5 (Distribution function). Let (X, ) be a measure space and let
f X — C be a measurable function. We call the function dy : (0,00) — R,
defined by

dr(N) = p({z € X - [f(z)] > A}),

the distribution function of f associated with .

In the next result we see the relation between the LP norm of a function f

and its distribution function, dy.

Lemma 2.8. Let f € LP(X), with 0 < p < oo. Then, ||f[[P :pofap_ldf(a)da.

Proof. 'We prove this result as follows.

p/ap_ldf(a)da: /ap_l/x{x.m J>at () dp(x) do

0

P /Oép "X, @) (@) du(z) da
X

(7&1” X, f@) (@) da | du(z)
H

[f ()" dp()

I
S

Il
3
— N Y~ °

X\N

= [I/115-
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]

With the help of the Lemma /2.8 we now prove an important result, known as the
Marcinkiewicz Interpolation theorem. This theorem says that if we know that an
operator is of weak type (po, po) and weak type (p1,p1), then it is of strong type
(p,p), for all py < p < p;. We use this theorem frequently in the sequel. There
is a general version of the Marcinkiewicz interpolation, and can be found in [2].
Since we only deal with LP-LP boundedness of operators, we do not require it in

the full generality. We state and prove the result in a manner convenient to us.

Theorem 2.9 (Marcinkiewicz Interpolation). Let (X, u) and (Y,v) be measure
spaces, 1 < py < p1 < 00, and let T be sublinear operator from L°(X) + LP*(X)
to the space of measurable functions on'Y that is of weak type (po,po) and weak
type (p1,p1). Then T is of strong type (p,p) for any py < p < p1.
Proof. Given f € LP(X), for each A > 0 we decompose f = fy + f1, where,

fo = fX{zex:|f@)|>cr}s

J1 = [X{wex:|f@)<en}-
The constant ¢ > 0 can be fixed later in the proof. Let r = p — py and consider

the set Ay :={z € X : |f(z)| > cA}. Then

/ o) Pda = / f()Pda
_ / F@PLf ()] ds
Ax
< (N / £(@)Pdz

< (eA)[f(@)][; < oo
That is, fo € L*(X). Now, let s = p; — p and consider the set By := {z € X :

|f(z)| < cA}. Then,
/ Ai(@)Pde = / (@) da

X
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- / F@)PIf (@) da

< (A / )P

< @YIIf @) < oo.
That is, f; € LP*(X). Now if y is such that |T'f(y)| > A, then from the sublin-
carity of T, \ < [TS(y)] < [Tfo()| + [TfHiy)l. Therefore {y € Y : [Tf(y)| >
M ClyeY Tyl >3 Uy € Y [THi(y)] > 3} So we have v({y € Y :
TfW)| >} <v{y €Y :|Thy) > 3H +v({y €Y [Thi(y) > 3}). That is
drs(AN) < drsy(3) + dry, (3). Let us consider the following cases.
where A; is such that ||Tg|| < A1l|9]|co-

o =
Therefore, dry,(3) = v({y € Y : [Tfi(y)] > 3}) = 0. By the weak (po,po)

Case 1 : p; = oco. Choose ¢ =

inequality, there exists a constant A such that

by A Po
ira (5) < (32050 )

Now, by Lemma we have,

o0

_ A
ITfl < [ g (i
0

oS 2A Po
/ A( 0||f0||po> an

= (2A40) pop/)\p Po— 1||f Hpod)\
0
— (240)"p / Aot / £ (@)[P P, ()P d () dA

= (240" //A 1) P ey (Ndp(2)

= a0 [ 1@ | Apmlxw,@)mdx) e
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— (240" / @) [”’__m} " dule)
= 240" / e ')Z(p”m)du(:c)

2A po
0 /\f )|Pdp(x

c(p—po)

_ (2A0) p(2A,)P7P

(29 - Po)

_ 2PpARP AT
(p — po)

2 pAPOAP Po

(p — po)

11

1115

Hence, ||T][% <

Case 2: p; < 0.

15

|| f[[P, and we have the strong (p, p) inequality.

We know that fo € LP(u) and f; € LP'(u). Therefore, we have the following

pair of inequalities

A 2A P
i (5) = (B0 )
A 2A po
o (5) = (32050 )

By Lemma 2.8 we also have

oo

1751l =p [ 3 drs0dr
0
As dpy(X) < deo(%) + del(%), we have the following

ITA1I5 = p/Ap_ldeo (5) dA +p/>\p‘1de1 (5) dA.
0 0

Now for the first integral, we have,

oo o 2A Po
o (3)nza e (M) o
0

= (24,) pop/)\p Po— 1||f\|p°d)\

0

— (240)p / NP / (@) 2], ()P ) dA

0

(2.2)

(2.3)

(2.4)
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~ 240 [ / NP @)X g ey ()N

= (24,)" /|f )7 <7>\p Y X (0,4 )(A)OU\) dp(z)

()\

= (24,)" /|f ) {/\p - } dp(x)
0

b —Po

= (24p) / |f(x |”° o dp(z)

c(P—po)

(2A0)
e /\f )Pdu(a).

That is, we have,

p [ty (g) s By 2.5)

P — Po)c
0

For the second integral,

T 924
p/)\pldel ( )d)\ <p Ap 1 (—Ouflupl) A
0

|

2A1 Plp

p1p

\-'8 0\8

o / H@P e, (@ dua)ax

= (24" //)\p Pt (o) [Py (U, )() p(z)dA

= a7 / P []j_ p]m e

(24, / fla |p0 " ()

p—p Pm)

C(pl =) / |f (@) Pdp(e
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So we have,
(o]

p [ ton s 2T

P1 p)

0
Now, from Inequalities (2.4)), (2.5 and (2.6) we get,
(QAO)pop (2A1)p1p
ITAI < WWHZ + m”f“ﬁ
= (A 2
(p — pO)c(p—pO) (pl — p) (p1—p)
We want to choose a ¢ such that

(2A0>pop B (QAl)mp

(p — po)c(P*po) (pl — p)c(?l*p)

1
c= (27”01’1’4_]60191 —p> s

L. (2.6)

From this we have,

AT p = po
Now,
(QAO)pOp B 2p0Ap0
(p - p0>c(p_p0) N AP0 P—_po
(p — po) <2p07p1 AO 11;1 pg) P1—P0
— _ P—PQ
= QPA?(PPII*P%)AI;I(Q*?O) (p_p0>p1_p0 D '
p1—p (p — po)
Let ¢t € (0,1) such that 1 = &2 4 L Then using 2 = P04 qpq 2o =
P po P p Po p

p1(1—t)+tpo
P1

and

b — Do
pl( ): p
P1— Do
and

P—PQ

p—po\nro _p G =
P — t/p)r1d-+irg t)+tpo 1 —1t)/pg)rrG-Dtieo t)+tp0
(pl —p) (p — po) = Po) ™ (t/P) ( )/20)

using the above expressions we have
(2A40)™p
(p — po)c(p—PO)
Therefore we have
iTrp < 2
(p — po)c(p P0)

(t=1)py —tpg

— A0 ALy — o)t/ (1~ 1) o) O

(2A1)P1p

p A A
15+ o=y

17115
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(t=1)p

— P AP A () — ) (t/p) 0= (1 — ) /po) P00 || f |2,

]

Next we prove another important interpolation theorem. We start with the fol-

lowing definition.

Definition 2.6 (Truncation of a function). If f is a measurable function, then
truncation of f is any one of the functions g defined by letting g(x) = f(x) if

1 < f(x) <ry and g(x) = 0 otherwise, where 11 and ry are non-negative.

Lemma 2.10 (Three Lines Lemma). Let F' be a bounded continuous complex

valued function on the closed strip

S={x+iyeC:0<z <1},
that is analytic in the interior of S. If | f(iy)| < mg and |F(1+1iy)| < my, for all
y € R then |F(z +iy)| < m{ " m? for all z =x +1iy € S.

Proof. The problem is reduced to the case my = 1 = m; by considering the

function m?j;i Thus, suppose that [F(iy)| < 1 and |F(1 + iy)| < 1 for all
y € R. We want to show that |F'(z)| <1, for all z € S.
We observe that if we are able to prove that ‘y|li_n>100 F(x 4 iy) = 0 uniformly for
0 < 2 < 1, then there is yo > 0 such that |F(x + iy)| < 1 for |y| > yo, while
|F(2)| <1 on the boundary of the rectangle with vertices 1yq, 1 +iyo, 1 —iyo, —i%o-
Therefore, by using maximal principle, we conclude that |F(z)| < 1 on the strip
S.
Note that we can apply the above argument for each of the functions F,(z) =
F(2)e®=D/" for n € N, because

[Fu(2)] = [F(z + dy) e /™D < | P(z) e/ — 0
uniformly as |y| — oo. Therefore, |F,(z)] < 1, for each n € N. Now the

desired result follows from the fact that F,,(z) — F'(z) when n — oo, for each

zeS. O
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Now we are ready to prove the following interpolation theorem.

Theorem 2.11 (Riesz-Thorin interpolation). Suppose a linear operator is of
strong type (p;, q;) with the operator norm M;, for i =0,1. Then, T is of strong

type (p,q) with its operator norm M < My~"M?!, where
1 1—1 t 1 1—1t t
= + — and — =

p Po Y41 q do q1

Proof. First we estimate ||T f||, for simple function f belongs to the domain of

T. Since

9

ITf]ls= sup / (TF(2))g(x) dv

llgllgr=1
1 Y

where ¢ is simple function and ¢’ is conjugate exponent of ¢ it is enough to show
that absolute value of each such integral is less than or equal to My~ " M{||f|l,-
Now, dividing by || f||p, we can reduce the problem further to the case ||f||, = 1.
Suppose f = Z ajXg, and g = Z bix F, are such simple functions that satisfy all
of the above Condltlons Suppose a; =1/p;, B; =1/q;, for j =0,1, and a = 1/p
and f = 1/q. Also let a(z) = (1 — 2)ag + zay and [(z) = (1 — 2)5y + 201, for

z € C. Now in the above expression of f and g if a; = |a;|e? and by = |by|e'*,

we define
_ Z |aj|a(z)/a€i9jXEj
j=1
and
Zw(l B(2))/ (1~ ﬁ)eimXFk
Let us define F(z) := [(T fz x))g.(z) dv. By using the linearity of T we also
N
have
F(z) =) lag[*@/2 by |1 -PE A=y
7,k=1
where v, = €@ [(Txp, (2))XF.(x) dv. Note that each term of this sum

N
is bounded in the strip S, given in Lemma [2.10L Therefore the function F is

bounded when restricted to this strip. Now, we prove that |F(iy)| < My and
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|F(1+1dy)| < M, for all y € R. Then, the desired inequality
[t i
v

follows from Lemma [2.10} First observe that a(iy) = ag + iy(ag — ap) and

1—B(iy) = (1 — Bo) — iy(B1 — Bo). Hence, we have
il = el 9 | ies=ealle g0 | g,

< My tM}

and
|giy|q() — |ei arg g|g|—iy(61—ﬁo)/(1—ﬂ)|g|(q’/q6)|q6 — |g|q’.
Therefore, by using Holder’s inequality and the fact that T is of strong type

(Po, qo) with operator norm M, we get

[E )| < IT fiyllaollgivlay < Mol fiyllpol |91l
= Mol gl /) = My,
With a similar argument it follows that |F/(1 + iy)| < M;. Therefore ||Tf]|, <
My =" M| f||, for all simple functions f € LP(X). To prove the result for general
function f € LP(X), we shall show that we can find a sequence of simple function
(fn)nen such that ||f, — f|l, — 0 and T'f,(z) — T'f(x) a.e. as n — co. We

can assume that f is non-negative. We can also assume that py < p;. Let

T when f(x 1.
ey 2 ) e ) >
0 when f(z) <1.

and fi = f — fo. We have, (fo)* < f?, and (fi)" < fP. Let (gm),ey De
a sequence of non-negative simple functions increases pointwise to f then by
monotone convergence theorem, ||g,, — f||, — 0 as m — oo. For the same
reason, we also have || (gm), — fol|p and || (gm); — fill, —> 0, as m — oo. Since
T is of strong type (po,qo) and (p1,q1), we have ||T (gm)y — T foll, — 0 and
T (gm); — T f1llp — 0, as m — oo. So, there is are subsequences ((gmk)())kej\r
and ((gmk)l)keN such that T' (¢, ), and T (gm,, ); converge to T'f, and T f; almost

everywhere respectively. Now, let fi = (¢m,)o+(gm,.);- Then, we have a sequence

(fr)ken satisfying the desired properties: lim ||fy — f||, = 0 and lim T fi(x) =
k— o0 k— o0
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T fo(x) + T fi(z) = Tf(z) almost everywhere. This completes the proof. O

2.4 Schwartz Functions and tempered distribu-
tion

This section is dedicated to the study of rapidly decreasing functions. Most
material presented here is available in [23], and we do not give detailed proofs of

any results.

2.4.1 The space of Schwartz functions

Given z = (21,...,7,) € R" we denote |z| = (2 + ... + 22)Y/2. The first order
partial derivative of a function f on R"™ with respect to jth variable z; is denoted
by 0;f while the mth order partial derivative with respect to jth variable is

denoted by 97" f. A multi-index « is an ordered n-tuple of non-negative integers.

For a multi-index o = (v, ..., ), D®f denotes the derivative,
olelf
Daf - O[—'
Ox{' -+ Oxon
If = (ay,...,q,) is a multi-index, |a] = a7 -+ + «,, denotes its size. For

Qn
n -

x € R" and a multi-index o we set x* = 27" ---x
Definition 2.7 (Schwartz function). A complex valued smooth function f is a
Schwartz function or a rapidly decreasing function if for every pair of multi-

indices o and f3,

paslf) = sup [2°D"f(@)] < oc.
TER™

The set of all Schwartz class functions are denoted by S(R™). The quantities
pPa,p are called Schwartz seminorms of f. The collection of seminorms {p, s} as
given in Definition [2.7| give a topology on S (R™). The details of the construction
of open sets using seminorms can be found in [23]. The concept of interest to us

is the convergence of sequences in S (R"). We state it as a definition.
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Definition 2.8. Let f, f be in S(R™) for k € N. The sequence ( f)ren converges
to f in S(R™) if for all multi-indices o and 5 we have

pa,ﬂ(fk - f) —0

as k — oo.

Remark 2.4. An equivalent definition of the Schwartz seminorms is given by
N «
pony i= sup { (1+[2P) " [D°f (@)}
zeR™
for multiindex v and N € N U {0}. These seminorms are equivalent to that

given in Definition in the sense that they give the same topology on the space

S (R™), and capture all essential properties of Schwartz functions.

The space S(R™) is a topological vector space, i.e., the operations (f, g) —
f+g, (a,f) —> af and f — 0*f are continuous for all f,g € S(R"), a € C,

and multi-indices «.

2.4.2 Tempered distributions

Since we have a topology (and a notion of convergence) on the Schwartz space

S (R™), we can consider studying continuous linear functionals.

Definition 2.9 (Tempered distribution). The space of all bounded linear func-

tionals is known as the space of tempered distribution, and is denoted by S'(R™).

The action of a tempered distribution u on a function f € S(R") is repre-
sented by (u, f) = u(f). We give have a characterization for tempered distribu-

tion.

Proposition 2.12 ([23]). A linear functional u on S(R") is a tempered distribu-
tion if and only if there exists C > 0 and N, m € N such that

[(u, I < C Y pas(f),

lo|<m
IBI<N

for all f € S(R™).
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We know convolutions of two functions. Now, we define convolution of
a Schwartz function with a tempered distribution. This is of interest to us in
Chapter . First, we define, for a function f : R — C, the function f : R" — C
as f (r) = f(—z). Also, for a fixed a € R", we define 7,f (z) = f (z — a). With

this, we now make the following definition.

Definition 2.10. Let u € S'(R™) and h € S(R™). Then, the convolution of u

with h is a function ux h : R™ — C, given by

(uxh)(x) = (u,7h).

We say that a tempered distribution u coincides with a function h if we

have

<wﬂ=/ﬁuﬁ@wu

for all f € S(R™).

2.5 Fourier transform

In this section, we recall a few facts about the Fourier transform on R".

Definition 2.11 (Fourier transform). For a given f € L*(R") function, Fourier
transform of f is defined by
fie) = [ saje e an
R?’L
where x - § = 118 + & + -+ + &, Here © = (xq1,29,++ ,2,) € R" and
52 (517527"' afn) € R".

The following facts about Fourier transform can be found in [12]. If f, g €

L'(R™), then following are true.

1. Fourier transform is a linear operator, that is, for a, 5 € C, we have the

following

(af + Bg) = af + 57.
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2. Convolution of f, g is defined as

(f % g)(x) = / f(z - 1)9(y) dy.

~

Then we have (f * g) = f§.

3. Let for h € R™, 7, f(x) = f(z + h). Then
(0 f)(€) = f(&)e™.

4. Let p € O(n), where O (n) is the set of all orthogonal transformations on
R™. Then,

(f(p)) (€) = f(pE).
5. 1f g(x) = A" f(A~"2), then §(&) = F(AE).
For Fourier transform on S(R™) we have the following

1. The Fourier transform of a Schwartz function is a Schwartz function. More-
over, the Fourier transform as a map from S (R") to S (R") is a continuous

bijection of period 4.

2. If f € S(R") and P is a polynomial, then
(P(D)f) = P,

(Pf) = P(=D)/f,

where, D is the differential operator.

3. Fourier transform is a continuous linear one to one mapping from S(R")
onto S(R™) whose inverse is also continuous and
flo) = [ Fe= ag

R”

[N

4. For f € S(R™), (f) = f, where f(z) = f(—=x).

5. For f,g € S(R"), we have (f * g)" = f4.
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6. The following duality relation holds for f,g € S (R™).
[F@g@ o= [ @i dr
Rr Rn

We can also define the Fourier transform of a tempered distribution. The
details and properties can be found in [23]. In our survey, we only require the

definition, which we state here.

Definition 2.12 (Fourier transform of tempered distributions). Let u € 8’(R").
The Fourier transform 4 is defined by the tempered distribution.

(i, f) = (u. f),
for all f € S(R™).

2.6 Integration on the sphere and Bessel func-

tion of the first kind

In this section we see some important results related to Bessel function of the
first kind. The study of Bessel functions is often a part of a semester course
on Special Functions. The natural way of development is through the study of
solutions of an ordinary differential equation with non-constant coefficients. In
this survey, we take a different approach with this study. Instead of studying
differential equations, we consider the integration of functions defined on the unit

sphere in R”, and develop some basic results concerning the Bessel function of

the first kind.

2.6.1 Integration on the sphere

We are well versed with the integration on the Euclidean space R"”. The theory of
integration is developed through the Lebesgue measure, a natural way to capture

“volume” of sets. In Harmonic Analysis, we often deal with universes other
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than the Euclidean ones, and therefore, we require the theory of measures and
integration on non-Euclidean spaces. This theory is vast, and different structures
have (somewhat) different theories. To exposit the complete idea is beyond the
scope of this survey. Nonetheless, we exposit a very small part on the integration
of functions that are defined on the unit sphere. We provide a rather heursitic
argument, instead of a rigorous one.

The idea is that if we slice S®~! by a hyperplane, we end up with a sphere
inside the hyperplane (see Figure . Consequently, to integrate a function

e

-l - -
S ) -."'-:.
sin @

-
-

-

Figure 2.1: The slice of a sphere at a distance cos 6.

f:S*! — C, it remains to “add up” all the integrals obtained on such “slices”
made along a particular direction. Effectively, fixing a unit vector e € S*° !, let
us consider the sets Sy = {2/ € S"! : e- 2/ = cosf}, formed by intersecting
hyperplanes orthogonal to the vector e at a distance cos# from the origin. For
a fixed 6, the integral of f over Sy is again an integration over a sphere of a
smaller dimension, and of a different radius. It is to be noticed that two spheres

of different radii can be deformed into one another in a “smooth” fashion. In fact,
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one can do so by a simple rescaling! Hence, the measure on an n-dimensional
sphere of radius, say R, must be R" times the measure on the unit n-dimensional
sphere. In the hyperplane (e, z) = cosf, we notice that the sphere Sy has radius
sinf (see Figure 2.1). On the other hand, for every 6 € [0, 7], we get a slice (see
Figure . Therefore, we have,

e

-k wowm o
- -
s | i

Figure 2.2: A sphere can be covered by slices through hyperplanes.

/f(U)dUZ/ﬁ/f(a(Q,w)) dw db

Sn—1 0 Sy

:]/f(a(@,w))sinnzﬁ dw do.

0 §n—2
Here, the point o € S*~! depends on the distance § of the hyperplane, and on
a direction w in the hyperplane. Of interest to us are the functions for which
f(o(0,w)) is independent of w. From the argument we provided above, it is

easy to see that in this case, we must have f (o) = f (cos®), for an appropriate

function f : [0,7] — C. Such functions are called “radial” functions on the
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sphere, and for them, we have

/ fo / J / F(cos6) sin" 2 0dfdw

= |S"?| /f(cos 0) - sin™ %6 dé.

With this understanding, we now proceed to look at the Bessel function of

first kind.

2.6.2 Bessel Function of first kind

In this section, we follow the notation of [24]. The results given here can be
found in the reference we mentioned. But we provide a few details that might of

help to a new reader. For k > —%, Bessel function Ji is defined by the following

expression
1
(t/2)* / it 21 (2k—1)/2
f) = its(] — d
O = rerryaram ) ¢ ) i
e
for t > 0.
If we develop the power series > (its)?/;j! of e, for real k > 3, we get
=0
o ) (t/2)k+2j
Jip(t) = -1y . 2.7

Fourier transform of a radial function on R”, can be expressed in terms of

Bessel function.

Theorem 2.13. Let forn > 2, f € LY(R"), be a radial function, i.e. f(x) =
fo(|x|) for a.e. x € R™. Then the Fourier tmnsform of f, has the following form

f(z) = Fo(r) = 2mr7ln= 2)/2]/‘780 n_2)/2(2778)s"? ds,

where, 7 = |x|.
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Proof. By the definition of Fourier transform

/f —27rza:u du—/fo /6—27Ti7"8<x’7u’> dul Sn—l ds. (28)

Rn
The inner integral can be evaluate in the following way

/6—27rirs(z'7u/> du/:/ / 6—27r7’50080 dv(siné’)"‘Q do

Sn—1 0 §n—1
1

_ wn2/62ﬂirs§(1 . 52)(7173)/2 dg

_ 260-00((n - 1)/200(1/2)
= T[(n - 1)/2](xrs)- D)2

=27 (rs) """, gy 0 (277S).

Jn—2)/2(2m75)

Substituting this in Equation (2.8) we get the desired result. ]

Next, we see another useful result.

Theorem 2.14. Ifv > —1 then
t’y-i-l ;
Jyimia(t) = / T, (ts)s" (1 — 82)* ds

2T (y+1)
0

whenever v > —1 and t > 0.

Proof. Using Equation ([2.7)) we have

/Jl,(ts)s”ﬂ(l —sH) ds = / (Z<_1>]3'1'(‘t(j/—|2—);+4—31)> s"TH1 — )7 ds

0 0o N0
Now substituting s? = r, we have
1

/waﬁwwl_ﬁydSZE:“JVﬂég?jiD%/%le_mvM'

0 7=0
1
Using the well known relation I'(x = [w" (1 —wu)¥"! du, we have
0
1
27T ( 7 +1) ° 4 t/2)u+w+1+2j
JI/ t v+1 1 — 2\v d
/ <$>S ( S) S = t’7+1 ]_ZO ‘Fy+f)/+]+2)
) -
C2T(y+1)

pe] Jurr1(t)-
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This completes the proof. O

2.7 Approximation to Identity

In this section, we consider a special family of (compactly supported smooth)
functions {¢.} ., called an approximation to identity. To motivate such a family,
let us consider the space L' (R™). Then, Young’s convolution inequality quickly
tells us that L' (R") is closed under taking convolutions with || f * g|/ 1 @n) <
|| fll21n)ll 9]l L1 (mn), making it a Banach Algebra. However, this algebra lacks
unity, i.e., there is no f € L' (R™) such that for all g € L' (R"), we have f * g =
g = g f. To see this, suppose on the contrary, f € L' (R") is the unity for
convolution. Then, taking Fourier transforms, we obtain for all g € L' (R™) that
§ = f§. Consider the Gaussian ¢ (z) = e~®". Tt is known that § (§) = \/7_re_§.
Therefore, we must have f = 1, which contradicts the Riemann-Lebesgue Lemma.

To understand the identity for convolution, let us go back to Schwartz
functions. Let us consider the Dirac delta distribution § € S’ (R™), given by

6(f)=f(0).
The fact that 0 is a tempered distribution easily follows from the convergence in
S (R™). Now, we see that for any f € S (R"), we have
05 f (@) =0 (f) = (2f) (0) = F (=) = f (@)

That is, the Dirac delta distribution is an identity for convolution. However,
§ ¢ L'(R"), since it is not a function to begin with! The question, now, is
that whether we can “approximate” the distribution § with nice (preferably L!)
functions? To understand whether this is possible, we first observe that ¢ is a
“point-mass distribution”. That is, ¢ ignores all the points in R" and focuses
on 0 alone. In fact, this is the reason ¢ cannot be viewed as a true function
(for otherwise, it would be zero almost everywhere). So, essentially, we require a

collection of functions supported around 0 in a manner that their supports shrink
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but the size does not change. The following example deals with this construction.

Example 2.1. Consider the function ¢ : R” — C, defined as

o
Ce -7, |z| < 1.
() =
0, |z] > 1.

It is clear that ¢ € C*(R") C L'(R"). Here, C' > 0 is chosen such that
||l 1y = 1. We consider the dilations ¢ = ¢ "¢ (£). The graphs in Figure
show that as e — 0, the functions ¢, concentrates more on the point 0, a
desirable property for the Dirac distribution. Let us now quickly check if . can
approximate 0 (for Schwartz functions).

For f € S (R™), we have

[e@@ar-r0)< [ p@f@- 70
n B(0,¢)
Since f is continuous at 0, for every n > 0, there is some ¢y > 0 such that for all

€ < ¢ and x € B(0,¢), we have |f (x) — f(0)] <n. Consequently, for € < ¢, we
have,
[ea f@ar—r©) <u [p@dz=n

n Rn

By a simple change of variables, we easily see that for any = € R",

lim (g f) (z) = f(z) = (0% f) (2).

For this reason, we call the collection {¢.}, ., an approximation to identity.

Remark 2.5. It is to be noticed that the calculations in Example follow
through for L!-functions easily by density of S (R"). Particularly, we have lir% D *

€E—
f=f, forall fe L' (R").

Example is not a unique way to construct an approximate identity. In
fact, a more general definition holds. For details on the (uniform and pointwise)

convergence, we refer the reader to [12].
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Figure 2.3: The functions ¢, concentrate towards 0 as e becomes smaller.

Definition 2.13 (Approximation to Identity). An approzimate identity on R™ is
a family {¢c}.., of L'-functions such that

1. There is some C > 0 such that for all € > 0, we have ||¢c|| 1 @n) < C.

2. For all e > 0, we have [ ¢, (z)dz = 0.
Rn

3. For every 6 > 0, we have lim [ ¢, (x)dz = 0.

e—0 2] >6
Remark 2.6. It is clear that the family {¢.},., in Example[2.1}is an approxima-
tion to identity. In the sequel, we use the construction of Example without

mentioning it explicitly.

2.8 Bochner Integral and related results

In this section our main aim to discuss about integration of functions that take
values in a separable Banach space over C. Throughout this section, B denotes
a separable Banach space. The theory we are about to describe is analogous
to Lebesgue’s theory of integration, except for a few modifications. To begin
integrating functions, we first require the notion of measurability. The results

presented here are a part of the exposition found in [16].
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Definition 2.14. A function F' : R® — B is strongly measurable if for each
b' € B’ (the dual of B) the complex valued map x — (F(x),b') is measurable.

Remark 2.7. Since we do not deal with any other notion of measurability of

vector valued functions, we use “measurable” to mean strongly measurable.

Our goal is to define integration of functions F' : R® — B in a manner
analogous to the Lebesgue theory. Omne of the important compoenents in the
Lebesgue theory is that whenever a function f : R® — C is measurable, so is
|f| : R™ — [0,00). First, we get an analogue for this result. That is, we wish
to prove that given a measurable function F' : R” — B, the real valued map
x — ||F (z)||p is also measurable. For the same, we begin with the following

lemma.

Lemma 2.15. Let B be a separable Banach space. Then, there exists a countable

collection {b/,}

neny © B'with ||b),||p = 1, such that Vo € B, ||z||p = suIN){|b;1(x)|}
ne

Proof. Let D C B be countable dense subset. For a fixed z,, € D, we have
|xn||p = sup {|b'(z,)[}. Therefore, there exists a sequence (b, )ken in B such

16" =1

that for all k € N, [|b},||p = 1, and |bj, ,,(2)| > ||zn||5 — 1. Therefore, we have
||znll5 = sup{|by, ,,(zn)]}-
keN
For z € B\ D, we consider the following.
First, we note that Vn € N, (1 — %) [|z,||p < ||zallp = sup {|V'(z,)|}. Then,
116 =1
Vn € N,3b, € B' with ||V),||p = 1 such that (1 — 1) ||z,||p < |b],(z,)|. Let us fix
a0 <9 <1, and ng € N such that nio < ¢ and z,, € B(x,0). Then, using the

triangle inequality and the observation about {¥,}, ., We get

(1= 0)lllls < (1 - —) /|5 < (1 - —) ol + (1 - _> 5
o No un

1
/ 1 .
<ol + (1-7-)0

1
sw%@mﬂ+w%@m—xn+(1——)a

N
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< @)+ (2- 1)

o
< |by,, ()] + 20.
That is, Vd € (0,1), we have,

(1= )|zl < [by, (x)] + 26 < Sup b7, ()]
ne

Upon simplifying, we get for all 6 € (0, 1),
||2|l5 — sup [0, (2)|
neN

o>

2+ [|zl|5
Hence,

|zl < sup [0, (z)].
neN
Also, ||x||p > sup{|¥],(z)|}, so that ||z||p = sup{|b,(x)|}. So, the required count-
neN neN
able collection is {b}, ,, : k € N,n € N} U {b, |n € N}, as constructed above. [

Remark 2.8. We call the countable collection {b,} constructed in Lemma

neN?
2.15) a “norming sequence”.

Next, we see that measurable Banach valued functions can be approximated by
simple functions. Indeed, we first look at the definition of a Banach valued simple

function.

Definition 2.15 (Simple Function). A function F' : R" — B is simple if there are
distinct elements by,--- by € B and disjoint measurable sets Ay,--- , Ay C R”
k
such that F (z) = > xa, (x)b;.
i=1
Remark 2.9. We notice that a function F' : R®™ — B is simple if and only if its

range is a finite set.

Theorem 2.16. Let B be a separable Banach space. F : R" — B be strongly
measurable function. Then there exists a sequence (F})jen of simple functions

such that F,, — F' pointwise.

Proof. Let {b; }jeN C B’ be a norming collection (see Lemma [2.15). We know

that the real valued function = —— ||f(x) — b||p = sup{|b,,(f(x) — b)|} is mea-
neN
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surable, Vb € B. Let {b,}
For b € B, let k(j,b) € N be the smallest number such that 1 < k(j,b) < j,

nen © B be a countable dense set with b, = 0.

1brinlls < [1blls, and [[b = bigplls = min{[b —b[s. For j € N, define
@;j: B — B as ¢j(b) = by(jp- Then clearly, j@m ll;(b) —b||s = 0, and for each
J € N, we have ||p;(b)||g < ||b]|5. Define F; : R* — B as F;(z) = (¢;j o f)(2).
Clearly, F;(R™) C {by,b,---b;}, and hence is simple. Now, let us define

Augi= F7(00) = {2 € RUIF () = bl < i [ (2) — b}

J
Therefore, Ay ; is measurable and we have F; = > x Ay,; bk Moreover, for z € R",

k=1
we have
lim ||Fj(z) = F(z)||p = lim |lo;(F(z)) — F(z)||s = 0.
J—>00 J—>00
That is, F,, — F pointwise. ]

We now state the result we were aiming for.

Corollary 2.17. The real valued function x — ||F(x)||p is measurable whenever

F:R" — B 1is strongly measurable.

Proof. We have from Theorem [2.16| ||F(z)||p = lim ||F;(z)||s. We notice that
j—00
(in the notation of Theorem [2.16]),

||bk||B7 T e Ak,j-
|1Fj(@)]|5 =
0, otherwise.

Clearly, x — ||Fj (z) || is measurable for every j € N. So z — ||F(2)||p is

measurable. O]

With the basic construction about Banach values measurable functions at
hand, we now proceed to define LP-spaces. This definition is a direct analogue of
the usual LP-spaces defined in Section 2.1, Here, we replace the absolute value

(|-]) of C by the norm (|| - ||5) of B.
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Definition 2.16 (Bochner space). For 1 < p < oo, the Bochner spaces are
defined as

LP (R, B) := {F :R" — B ’ F is measurable and /||F(x)|]% dz < oo}
RTL
Norm of a function F in LP(R™, B), 1 < p < 00, is defined as
1/p
1Fllsery = | [P ds
For p = oo, we define
1E | oo, B) := sup ||F(z)][B,
zeR”
and the space L>*°(R™, B) as
L*®(R", B) :={F :R" — B | F is strongly measurable and ||F||s < 00}.

Remark 2.10. We notice that for a function F' : R — B, we have

1F|| e e, B) = [InF| Lo n),
where, ng : R" — R is defined by ng () = ||F (z) ||g. From this observation, it

is clear that || - ||»(rn,5) is & norm on L? (R™, B).

Remark 2.11. When B = C, the Bochner spaces L? (R", C) coincide with the

usual Lebesgue spaces LP (R"), for any 1 < p < 400.

Remark 2.12. The Bochner spaces L? (R", B) enjoy all the “nice” properties
similar to the Lebesgue spaces. Particularly, L? (R™, B) is a banach space. We

refer the reader to [16] for a complete exposition on the subject.

We now wish to give meaning to the symbol [ F (z)dz, for a Banach valued
function F. As with the case of complex valued IlerllmctionS, simple functions play
an important role in this. However, we first give a more general definition. Let
f € LP(R™) and b € B. Then, we can define a function f-b : R* — B as

(f-b)(z) = f(x)b. Now, we notice that

1/p

I(f - D)o (rn By = /Ilf(l’)bll% de | = [[fllplbl]5-
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That is, f-b € LP(R", B). Let us define
L ® B ::span{f-b

fELp(R"),bGB}.
Clearly, the collection of simple functions taking non-zero values on a finite mea-

sure set is included in I ® B. We now show that the space L” ® B is dense in

L? (R", B).

Proposition 2.18. Let B be a separable Banach space. The collection of func-

tions of the form ) xg;b;, where b; € B and {E;}J, are disjoint, measur-
j=1

able subsets of R™ with finite measure, is a dense subset of LP(R™, B) for any

1<p<oo.

Proof. Let F € LP(R", B). Then, we have,
/\|F(x)||g dz < oo.
Rn

Therefore, for any € > 0, there is a bounded subset K; C R" such that,
€p

| IP@IE ds < S

R”\Kl
Let {bj}j en = Bo € B be a countable dense subset, and for b; € By, let us define

B(bj,€) = {be B:||b—b,]|s < e(3]K;|)""*}.

By the density of By, we have

B =] B(b;.e).
j=1

~ ~ J—1 _
Now, let A; = B(by,€), and A; = B(b;,¢€) \ (U B(bk,e)), for j > 2. We notice
k=1

that the collection {A;} ey is pairwise disjoint and
j=1 j=1

Now consider the collection {Z;}]EN, where
Then clearly,

G&:ﬂm)
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Now, let

Since F'is strongly measurable, using Corollary , we see that £ is measurable.

Also, E/; C K, and hence, is of finite measure. Note that
UE =Kn (U F—l(le)) = KiN (FY(F(Ky)) = K,
j=1 j=1

since K, C F7Y(F(K,)).
Since {A;}jen is a pairwise disjoint collection, so is the collection {E}}en.

Now, we observe that

3 / IF () de = / IF@)|P, dz < / IF () [5de < oo,

j=1 E'j
Therefore, there exists m € N such that
ep

| IP@IE ar < S

[e]
U Ej
j=m+1

Let us now define the simple function
Fu(z) =) x5, (2)b;.
j=1
For any v/ € B’, and a fixed j € N consider the function

wj(x) =V, x5, (7)b;) =
V(). ifzeE,

It is easy to verify that ¢; is meaurable. Hence, the function Fj is strongly

measurable. Now let z € E; for some j = 1,2,---,m. Then, F(z) € fij C

B(bj,€). Therefore, if x € E;, we have

1 F(z) = byl[ < (2.9)

€
(3|1 ])~1P
Now, we have

/ HF(Q;) - ém(x)bj

E;
1

P m
do=Y" [ I1F@) - b ds
B j=1"Ej

I3

J
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<N " |E;
;3|K1|’ i
]_
eP eP
< — K| =—.
_3\K1\‘ 3 3

Finally we see that

/ HF(J;) - iXEj(x)bj

dez / |F(z)]]%, do + / 1) [

R\ Ky 5 b,
Jj=m+1 ’
[ 1PE) = Y @l ds
U Ej j=1
j=1
e e € »
< — J— — =
g T3ty ¢
This completes the proof! ]

The following corollary is immediate.

Corollary 2.19. The space LP ® B is dense in the Bochner space L (R™, B), for

any 1 < p < oo.

Now let us define an operator [ : L' ® B — B as follows. For F =

ij'bj@[/l@B,
j=1

I(F) ::Z / fi(x) dz | b;. (2.10)

n

It is clear that [ is linear. The following lemma says that this operator is contin-

uous.

Lemma 2.20. The operator I defined in Equation (2.10)) is a bounded operator
from L' ® B to B.

Proof. We have for any F' =Y f;-b; € L' ® B,
j=1

<b§j JECr bj>'

Jj=1

H(F)|lz = sup

16" 7 <1
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= sup /<b’, f(a:)b> dx
111 <1 ; e

_||bﬁ\1§)<1 /‘<b’;fj(x)bj> dr

sup {/HbHB/ fi(
||b’|\15»/<1 Z ’

S HFHLI(R"L,B)'

| arh

]

We have already observed that the space L' ® B is a dense subset of L*(R", B).
Therefore the operator I can be extended uniquely to L'(R™, B). The unique
extension of the operator [ is known as Bochner integral, and for a function
F e LY(R", B), we denote it by | F(z) dz. We now move on to prove a duality
result for Bochner spaces. We reR(;uire the following lemma.
Lemma 2.21. Let F' € LP(R", B). Then, for each € > 0, there exists a non-
negative function h € LP (R™) with 17| o gy < 1 such that

1Pl < [ W@ F@)la do+ e

R

Proof. Consider the real valued function ¢ : R* — R, given by ¢(z) =
||F(z)||g- Note that

1/p
Il ey = / p@l de| = [ [IF@IEds | =Pl
That is, ¢ € LP(R™). Also, ”
1F N orgar iy = llilr ey = sup {] [ 1ota) de s < 1}.
J

Therefore, for € > 0, there exists a function k' € L” (R™) such that

1Pl < | [ W@l |+ 5 < [W@IIF@IL s+ 5 @1
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Note that as the function 2/(-)||F(-)||z € L'(R"), there exists R > 0 such that
€
[ w@lE@is do< .
R™\B(0,R)
Therefore from Inequality (2.11]), we have

Immwét/WWWﬂMbM+ / W @NIF@)lp do+ 5

2
B(0,R) R™\B(0,R)
< / W (@)|||F(@)||s de + ¢
B(0,R)

= / W (z)|xBo.R)||F(2)||s dz + €.
Rn

Hence, the desired function is h(z) = |V (z)|xB(0,r)(2). O

We now present the duality result. This result is often used in this thesis,

especially in the Littlewood-Paley theory (Chapter @
Theorem 2.22.

1. Let B be a separable Banach space. Then for any F € LP(R",B), 1 < p <

oo, we have

. / (G(z), F(z)) dz|.

1107 e oy <1

|F||zrrn,5) = sup (2.12)

2. The space LP(R™, B) is isometrically embed in (Lp/(]R”,B’))/, where 1 <

p < 00.

Proof.

1. Let F € LP(R™, B). Then for an ¢ > 0 there exists a function F.(z) =
ZE Xg,(2)b; € LP ® B (for some m € N), such that
j=1

[|[Fe — F||Lr5) <

DO ™
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Using Lemma [2.21 we have a non-negative function h € LY (R") with
||2]] s @ny < 1 such that

1/p
€
1l = | [IE@IE ) < [h@lE@s dor S @219
n Rn
Also, for b; € B, there exists 0; € B" with ||b}|[p = 1, such that
€

AP g gy +1)°
We notice that given b; € B’ with the property shown in Inequality ([2.14] -,

we define IZ = arg<bj’b3'>b’ Then, clearly, (b = | (¥, b;)| and Hb’ s =

16;1l5 < (b5, b5)| + (2.14)

1. In the sequel, we abuse notation and write b;- to denote b;-. Hence, we

have,
€

4 (1 + HhHLP’(R")>

16515 < (b}, b5) + (2.15)

Let us now define the function

Now, we have,

Il RnB,<ZHh><EJ A

_Z/Hh T)XE, ( pr,dx

J= 1Rn

—Z/|h o), @ 1812 de
J= 1Rn

:Z/Vz T)XE, ( z)|P dx
] 1Rn

— [ Bl @

<RI, <1

Lo (Rn) =
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We also notice that for any x E R™

(@G (x Z h (@) X,0m, () (b}, 0) € R,
7,k=1
and we have,

@@, r@) dx—/<fjh 5, 3 v )

From Inequality (2 , we get

/<G(“”“)’F<)dx>ﬂ! Lt (“bj"B_4<||h||L1iRn>+1>) e

R

As |[Fe(2)||s = | leEj(l“)bjllB < leEj(w)HbjllB, we get
Jj= j=

/ (G(a), Fy(x)) d > / h(@)||Fu)||5 da

R7 R™

€ e
h(z)xg,(z) dz
4(||h]| 1 rny + 1)RZ]-21

From Inequality (2.13]), we obtain,

€ ||h||L1(R")6
G(z), F.(x)) de > ||F.||prn.By — — —
[ (©@) B a2 1Bl = § = g

R”

€ €

€
> ||F€||LP(R",B) 11 ||Fe||LP(R”7B) )

Hence,

€
Il < sw | (G F@) e + 5. (216)
Gl <1

Now, for G € L¥ (R", B') with ||G|| . &5y < 1, we have,

/<G ) da /\ \dx+‘/ dz

< / 6@ &) ~ Pla)]a d

+ sup /<G(SL’),F(SC)> dz

HGHLp’(]Rn’B/)Sl R
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< Gl @ gy 1 Ee = F|o(@n 5y

| 6@ @) a

e’ (rn,B) =" 'pn

/ (G(z), F(x)) dz

R

Therefore, from Inequalities (2.16]) and (2.17)), we get
i@,y a

Rn

+ sup
el

€
<<+ sup

. (2.17)
2 el <t

|| Fel|zrmn,y < sup +e

G| <1

Now, we observe that

||| ze@n By < || Fe = Fl|lir@n,By + || Fe||Lo@n,B)

< -+ sup /(G(w),F(x)) dz| +e

1G Lt <1

DO ™

— s 1/<G(x),F(x)>dx+f

1G] (2 <11, 2
As e > 0 is arbitrary, we have
|| F||ze@n,B) < sup /(G(z),F(m» dx|.

||G||Lp/ (R",B’)Sl

Now for ||G|| Ly gn gy < 1, by using Hélder’s inequality, we get,

/ (G(x), F(x)) dz

<Gl @n ) || Fll e @n,5) < [|Fl| 2o @n,5)-
R
This gives us

||F||LP(RTL7B) = sup
GHLp’ (R",B’)S

/ (G(z), F(x)) dz

1
R

2. For F € LP(R", B), we define a linear functional Hp : L” (R", B') — C by
1) = [ (Glo). Fo)de

R"

We have

|He(G)] =

| (@@, Faas

< [ 6@, F@) ds
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< /|IG(x)||Bf||F(x)HB de < |G| n )1 f 1] Lo,y
R

Here, the last inequality is consequence of Holder’s inequality. Using the

first part of this theorem we have

el = swp | [(Gla). F@) da| = |[Flliseon)
HGHLP’(IR"L,B’)Sl R
Thus the space LP(R", B) is isometrically embed in (Lf”/ (R™, B ))/, for any

1 <p< oo

]

Before we end this chapter, we present a remarkable fact about taking

continuous operators inside an integral.

Proposition 2.23. Let B be a reflexive separable Banach space and B* be the
dual space of B. Let A € B*. Then, for any F € L'(B), we have,
A /F(x) dz | = /A(F(x)) dz. (2.18)
n R
Proof. Recall from Proposition[2.18|that L' ® B is a dense subset of L*(B). First
we prove the result in this dense set. Let F € L'® B. That is, F(z) = i fi(x)b;,
where f; € LY(R") and b; € B for alli =1,2,--- ,m. So, -

A /F(x)dx _A /i::fi(a:)bidx

n n

Now by definition for Bochner integral, we get

A /F(q;)da: =A 2:: /fz(:c)d:c b;
:i [ 5@ az) A
:é / fi(2)A(b) da
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_ / A(F(z)) da.

So the result is true when F € L' ® B. The L.H.S of Equation is the
operator Ao I : L'(R", B) — C. Clearly, it is continuous. Consider the linear
map T : L}(R", B) — C, defined as T(F) = [ (Ao F) (y) dy. Then, [T(F)| <
an [A(F ()] dz < an Al - [[E ()] dy < |ETA||B’ |IF||p1(gn,p). Hence, T is

continuous. Since 7" = A o I on the dense set L' ® B, the equality follows on

entire L'(R", B).

We now see a special case of Proposition [2.23]

Corollary 2.24. Let B = ("(C), for somer > 1. Let F € L'(¢"). We can write
F(y) = (fi(y))ien, where f; € L'(R"). Then

Sty ay={ [ £ ) -

R " i
Proof. Suppose for j € N, A; € ¢ such that for any (z;)en € ", Aj((7:)ien) =
xj. Now suppose (x;); € " be such that

[ P dy = @

Rn
Now by using above lemma

vy = Ay((w)s) = A, / Fly) dy | = / A(F(y)) dy = / fi(y) dy.

n Rn Rn
Therefore we can say that

/(f@-(y))i dy = /fi(y) dy

n n .
R (2



CHAPTER 3

Maximal Operators

In Chapter , we have seen that the study of averages (over intervals) is natural
in differentiation theory. A natural generalization of these averages to higher
dimensions are averages over balls centered at a given point. However, in higher
dimensions, one can also look at averages over cubes centered at a point. This
chapter is dedicated to the study of a few averaging operators and their corre-
sponding maximal function, and forms a base for upcoming chapters. A maximal
function corresponding to a collection of averages is understood as the “largest”
average (around a given point). We begin with the Hardy-Littlewood maximal

operator.

3.1 Hardy-Littlewood Maximal operator

Definition 3.1 (Hardy-Littlewood maximal function). Let B, = B(0,r) be the
Euclidean ball of radius r centered at origin. Given f € L} (R™) , the Hardy-

loc

47
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Littlewood maximal function of f is defined as

Mfmwzwp]'/hﬂw—wwy

r>0 ‘Br|
B

The function M f is defined in the extended real sense, i.e., M f(x) = 400 is

allowed.

Before we developing theory on Hardy-Littlewood maximal function let us

see an easy example.

Example 3.1. Let f = x[o1]. For a given € > 0, we denote M, f(x) to be average

of f over (x — €,z + €). That is, we wish to find
M (a) = sup Mof(2),
€>
for a given x € R.
1 1

M, = dy = — 1 dy.
Ty L v

2e (z—e,z+€)N[0,1]
We consider the following cases.

1. First, let us take « € [0,1]. Then, either (z — e,z +¢€) C [0,1], or x — € €
[0,1] but x + € ¢ [0,1], or z — € ¢ [0,1] but x + € € [0,1], or [0,1] C
(x —€,x + €). We compute the value of the above integral for each of these
intervals. If (z — e,z 4¢€) C [0,1] then (z — e,z +€)N[0,1] = (z — €,z +¢€).

This case is illustrated in Figure |3.1]

0 rT—e T x4+e 1

Figure 3.1: (z — e,z +¢) C [0, 1]

Therefore,
2¢

M.f(z) = — 1dy = 2 = 1.
f(x) |2€’ /(ac—e,x—i-e) Y 2e
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Ifx—ee€0,1], and x+¢€ & [0,1] then (z — e,z +€)N[0,1] = (x —¢,1]. For

an illustration, see Figure |3.2]

(
< ]

€ T 1 T+ €

Or——

T

Figure 3.2: (z —e,2+¢)N[0,1] = (z — €, 1].

So,

1 l—x+e€

‘26‘ (z—e,1] 2e
Note that x + € > 1 therefore ¢ > 1 —x. So, 1 — x 4+ € < 2¢. Therefore
M. f(z) < 1.
If v —e ¢ [0,1] and z + € € [0,1], then (z — €,z +¢€) N[0,1] = [0,2 + €).
Therefore,
1 r+te
|2€| [0,x+€) 2e

Note that in this case x — € < 0 so & < e. Therefore M, f(z) < 1 as well.

Lastly, if [0, 1] C (z — €,z + €), then (x — e,z 4+ €) N[0, 1] = [0, 1], as seen in

Figure [3.3]
Hence, we must have ¢ > %, and hence
1
M. f(z) = — ldy=— <1
|2€| [0,1] 2€
Thus, M f(x) = sup M. f(x) =1, when x € [0, 1].
e>0

2. Next, let us assume z > 1. Then, either (x — e,z +¢) N [0,1] = 0 or
x—eecl0,1] or [0,1] C (z — €,z + ¢€). In the first case clearly M.f(z) = 0.
In the second case, (x — €,z +¢) N[0, 1] = (z — ¢, 1]. For an illustration, see

Figure [3.4 We notice that, we must have z — 1 < € < z.
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(1 |
Vo ] )
r—e 0 x 1 T+e

Figure 3.3: [0,1] C (x — €,z + ¢)

®
N—

€ 1 x T+ €

Figure 3.4: (z —e,x +¢€)N[0,1] = (x — €, 1]

Therefore, we have
1 (1—x+c¢€)
M, = — ldy=———=.
fla) =5 /( oY 5
Note that L (M.f(z)) = Z3 > 0. Therefore, M.f(z) is an increasing

function of e. Hence, M, f(x) < M, f(z) = 5-. That is, when z — € € [0, 1]
we have M, f(x) < =, with equality for e = x.

Lastly, if [0,1] C (x — €,z + €), we have € > z, and (x — €,z +¢€)N[0,1] =
[0, 1], as shown in Figure

[ ] ] . )
\L ] )
x—e€ 0 1 x T+

Figure 3.5: [0,1] C (z — €,z +€)

Then

1 1 1
Me = — 1d __<_
Thus, we get M f(z) = sup M f(x ):

e>0
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3. Finally we consider the case x < 0. Then either one of the following holds:
(x—ex+e)N[0,1]] =0 orxz+ee01]or01l C(xr—ex+e). In
the first case, it is clear that M. f(z) = 0. In the second case, we have
(x—e,x+€N[0,1] = [0,z +¢€) as seen in Figure 3.6l We notice that this

gives —x < e <1 —ux.

Figure 3.6: (z —e,x +¢€)N[0,1] = [0,z + ¢€)

Therefore, we have

1 T+e€
M.f(z) = — 1dy = .
fo =g [ vaw="g

We see that 4(M.f(z)) = 5% > 0, since z < 0. Therefore, M. f(z) is an

increasing function of e. Hence, M f(x) < My_.f(x) = ﬁ That is,

when z + € € [0, 1], we have M f(x) < ﬁ, with equality for e = 1 — x.

Lastly, when [0,1] C (z —€,x 4+ €), we have ¢ > 1 —x, and (x — €,z +€) N
0,1] = [0, 1]. For an illustration, see Figure [3.7]

Figure 3.7: [0,1] C (x — €,z + €)

Hence, we get

1 1
Mf)=— [ ldy=—<-—— .
T@) =5 o T2 T 2(1—w)

Now, we have M f(z) = sup M f(z) = 2(1—1_1,), for x < 1.
e>0
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Combining the above observations we have

2(11790)7 if x < 1.
Mf(z) =141, if z € [0,1].
1 .
\%, lf.’L'> 1.

Figure [3.8| shows the graph of the maximal function for the function x/o 1.

//\

Figure 3.8: Maximal Function of xo 1

Now, we see a first estimate related to Hardy-Littlewood maximal function.
For a fixed f € L'(R"), maximal function corresponding to the convolution of f
with dilations of a radial, decreasing function is bounded by the Hardy-Littlewood

maximal function of f.

Proposition 3.1. Let ¢ be a function that is positive, radial, and decreasing (as

a function on (0,00)). Then, for f € L*(R"),

iglgl%*f(ﬂﬂﬂ < el M f(z), (3.1)

where oy(x) =t "p(t 1z).

Proof. Let us first assume that ¢ is a simple function , i.e., it can be written as

p(x) = Z%XBT]. (),
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with a; > 0 and B,, is a ball centered at 0 of radius ; > 0. Then,

k
o * f(z)| = ZaJ|Br]||B |XBr * f(z)
=1
k
B, —y)d
Sty [, 1 i

k
< Zaj|Br]|Mf(x)
j=1

= [leliM [ ().
k k
Now for any ¢ > 0, we have ¢y(z) =t7" > a;xp, (§) =t™" > a;xs,. (v). Thus,
j=1 ! j=1 !

k

1
m > ajxs,, * f(x)

j=1

k
1 1
EE ) f@—ym4
tnjzl ’ | Bur,| Br,

|oe % f()] =

k
1 n
< m ;1 t*| By | M f ()

= el M f ().
Therefore, the result is true for simple functions. Now, let ¢ be any arbitrary
function satisfying the hypothesis of the theorem. Then, ¢ can be approximated

by an increasing sequence of simple functions, say (¢,) each satisfying the

neN?

hypothesis of the theorem. Then for each n € N we have

lon * f(2)] < |laliM f(x) < [l@|[s M f(2).
That is, Vn € N,

[ entisia =] < liellnsie)
By dominated convergence theorem, we have

/@@ﬁ@—yMySHthﬂ@-

]Rn
That is, ¢ * f(x)| < ||¢|[1M f(z). Now any dilation ¢, is also positive, radial,
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decreasing function with the same L!-norm as that of ¢. Therefore, it also satisfies

the same inequality. That is, for any ¢t > 0, we have

[orx f(@)] < ol M [ ().

Hence, the result is proved. O

Let us see a few more maximal functions that are equivalent to the Hardy-

Littlewood maximal function.

Definition 3.2 (Cubic maximal function). Let @, be the cube [—r,r|" . Then for

f e L (R™), the cubic mazimal function is defined by
1

M (@) = sup e [ 1 =)l
Qr

We observe that when n = 1, M and M’ coincide. For n > 1, let us consider
the cube @, = [—r,r|" and let D; and Dj be the balls centred at 0 with radius
r and /nr, respectively. Then, D; C @, C D, as seen in Figure . We have

21/,

Figure 3.9: D; C Q, C D,

|Dy1| = a,r™, |Q,| = (2r)" and |Ds| = a,(y/nr)", where a, is the volume of the

unit ball and it only depends on n, the dimension of the space. Thus, we have
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the following

y)|dz <

Do
That is,

S /|f Pl <

So, we have7

y)|dz < a" /\fx— )|dx.

o f() < 20 () < P N ().
That is, there are positive constants ¢, and C,, depending only on n, such that
enM f (2) < Mf(z) < C,M f (), (3.2)
where, ¢, = ﬁ and C, = (21—:. Due to Inequality the operators M

and M’ are essentially interchangeable and we use whichever is more appropriate,
depending on the situation.

There is another kind of maximal function where we are interested in the averages
over the cubes containing the given point that might not necessarily be the center

of the cube.

Definition 3.3 (Non-centered cubic maximal function). Let f € Li (R™). Then
non-centred cubic mazximal function of f 2'5 defined by

M (@) = sup / £ (y)ldy,

where Q) s a cube in R™ containing x.

We now show that M and M are equivalent. For the same, we first see
that the set of all cubes containing a point x is larger than the set of cubes whose
center is z. Therefore, directly by the definitions of M and M" we have

M f(z) < M f(). (3:3)
Now let () be any cube containing x with side length is a.

It is easy to see that the ball centered at x and with radius \/na contains

the cube @ (see Figure 3.10). Also, |Q| = a™ and |B(x, a\/n)| = C(ay/n)". That



CHAPTER 3. MAXIMAL OPERATORS 56

Figure 3.10: Q C B(x,a/n)

is, |Q] = %. Therefore, we have
1 1
— d — d
g [l s [l
Q B(z,ay/n)
C(yn)"
= WV d
Boaymi | V010
B(way/n)
< C(Wn)"Mf(x).

Since the choice of @Q is arbitrary we get M~ f(x) < C(y/n)"M f(x). Using this
observation along with Inequalities (3.2) and (3.3)), we get constants C; and Cs
such that

CiM f(z) < M f(z) < CoM f(z). (3.4)

In the sequel, the equivalence of these maximal operators becomes useful.
Particularly, one can interchange them as per convenience, without disturbing the
results. In the next chapter, the non-centered cubic maximal function helps us
understand weighted boundedness of Hardy-Littlewood maximal function. Before

that, however, let us see another kind of averaging operator.
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3.2 Dyadic Maximal operator and Calderén-
Zygmund decomposition

We begin with the dyadic decomposition of R™. We define the unit cube, open on
right, to be the set [0, 1)" and define Qg be the collection of those cubes congruent
to [0,1)" with vertices on Z". By dylating this family by a factor of 27%, we end
up with a collection Qy, (k € Z). That is, Qk is the family of cubes, open on
the right, whose vertices are adjacent points of the lattice (27¥Z)". The cubes in
|J Qk are called dyadic cubes. We observe that each family Qy is countable,
Ziefce a cube in Qy is uniquely determined by its vertices (that comes from a
countable collection (27%Z)"). Therefore, the total collection |J O of all dyadic
cubes is also countable (being a countable union of countable};C esZets). Figure [3.11]

shows a part of the dyadic decomposition of R™.

From this construction we immediately get the following properties:
1. Given z € R™ and k € Z, there is a unique cube ) € Q) such that = € Q.
2. Any two dyadic cubes are either disjoint or contained in one-another.

3. A dyadic cube in Qj is contained in a unique cube of each family Q;, for

J < k, and contains 2" many dyadic cubes from the family Q..

We now give dyadic averages of functions defined in R™ and the corresponding
maximal operator. Later, this construction gives us an important technique called

Calderén-Zygmund decomposition, that is used throughout our exposition.

Definition 3.4 (Dyadic average). Given a function f € L} (R"), we define the

loc

dyadic average at level k € 7 as

s = Y | 7 [ 1) | e (3.5)
Q

QeQy
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Figure 3.11: Dyadic decomposition of R"

It is easy to see that for a fixed Q@ € Ok, Fif is constant, and equals
the average of f over (). The dyadic average satisfies the following fundamental

lemma.

Lemma 3.2. If Q is a union of the cubes in Qy, then

/ Fof (x)de = / f(z)da. (3.6)

Proof. Let Q = |J Q; for some index set I C N. Here, Vj € I, Q); € Q. Since
jeI
() is a disjoint union, we have,

/Ekf(x)dx = Z/Ekf(x)dx
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-3 [ % ([ wa) et

]GI QEQk

ZX;Q/ |Q]|/f J | xa,(x

=2 @/f /XQJ

Now, we define the dyadic maximal function.

Definition 3.5 (Dyadic maximal function). Let f € Li .(R"). Then the dyadic

loc

mazimal function is defined as

Mg f(z) := sup |Ep.f(x)]. (3.7)

keZ
Before developing any further theory, let us see a simple example.
Example 3.2. Let f = x[p,1)- In one dimensional situation, dyadic cubes are
dyadic intervals. We keep the notations same. That is, ) denotes a dyadic
interval. Let Q € Qy for some k € Z. We wish to evaluate Ejf(z), for a given

x € R. We have the following three cases

1. First suppose x € [0,1). Then one of the following may happen. Either
QN0,1] =0 or [0,1] € Q or @ C [0,1]. In the first case we readily see

that Ej f(xz) = 0. In the second case @ N [0, 1] = [0, 1] therefore
1

Bif(@ |@|/X[°” = |@|/X[°” v dy=1g <t

[0,1]
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Lastly, if Q C [0 1], then [0,1] N Q = Q. Hence,

B QI
Bif(@ \@|/ Xoa(y) dy = \@|/1d Q"

Consequently, for |Ey f(x )| < 1. Therefore if € [0,1), we have
Mqf(x) = sup |Epf ()] =
keZ

2. Next let us consider x > 1. Let Q € Qj such that x € ). Then either
QNI0,1] =0, or {1}, or [0,1] C Q. In the first case, when Q N [0,1] =
() or {1}, clearly Exf(x) = 0. In the second case we have Q N[0, 1] = [0, 1].

Therefore,

1
Eif(x /X dy:—/ldy——<1
o @) =1qy ) Yol N Q]

That is, E,f(z) <1 When r > 1

We notice that as the size of the dyadic cube @ increases, the value of

el QI f X[ (y) dy = | | 1dy decreases. Therefore, we have to find smallest
(0,1]

dyadlc cube containing the point z and [0, 1] C Q. Let k € Z be such that
27k < 2 < 27+ Taking logarithm, we get k < log,z < —(k + 1).
Therefore, —k = [log,x] where, [-] is the greatest integer function. So
the desired cube is [0, 2[°¢27]). For this choice of k, Ejf(z) =
Myf(x) = gy, for o > 1.

1
olloga ] and

3. Finally let us consider x < 0. Let @ be a dyadic cube containing the point
x. By construction of dyadic cubes given at the start of this section, it
is clear that @ N[0,1] = 0 or {0}. In either case Eif(x) = 0, and hence
Myf(z) = 0, for x < 0. Therefore in this case @ N [0,1] = § and hence,

Myf(x) =
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Combining the above analysis we have the following

Maf(x) =41, if0<z<l1.
0, if x <0.

Figure gives the graph of Myx/o 1.

Maxo)

Figure 3.12: Dyadic Maximal Function of x[o 1

It is clear that M, is not equivalent of M.

Next we see a weak type inequality for the dyadic maximal function. This
plays a crucial role in the Calderéon-Zygmund decomposition on R”, and also in

the Lebesgue differentiation theorem.
Theorem 3.3. The following are true.
1. The dyadic mazimal function is weak (1,1).

2. For any f € L}, .(R"), Jim Eyf(z) = f(x) for a.e. z € R™
—00

loc
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Proof. Let us fix an f € L'(R"). Due to the sublinearity of My, it suffices to
show the result for positive functions, since general (complex real valued) function
can be decomposed into a sum of positive functions.
We consider the following set, for a given A > 0,
Qp:={z eR": Exf(x) > X and E;f(z) < A for any j < k}.

Equivalently, = € Qy if Ejf(x) is the first conditional expectation of f which is

greater than \. Note that since f e LYR") fQ ) dz < [o. f(z) do < oo
for every @ € Q. S ‘le fQ ) dz < |‘|£‘k||1 Also |Qx] = (2 _k)” — 00 as

k — —oo. Therefore as hm y)dy = 0 Hence, by well ordering

\Qk| ka
principle, for a given A > 0 there exists s smallest k& € Z such that Ejf(z) > A

For any = € Q, there exists exactly one cube Q) € Qi such that v € Q. Eif(z) =

|Q| fQ y)dy > A. That is, the entire cube @ is inside €. Therefore, {2 can be

written as disjoint union of cubes in Q.

We also notice that if ky # ko, then Q, N Q, = 0. To see this, without loss of
generality let us assume that k; < ko, and 3 2 € Q, N Qy,. Then, Ey, f(x) > A
and E;f(z) < X\ when j < ky. Particularly Ey, < A, which contradicts the

definition of Qy,. Therefore |J € is a disjoint union dyadic cubes.
keZ
To prove the weak (1,1) boundedness of M, we need to estimate the size of the

set H :={z € R": Myf(z) > A} for a given A\ > 0. Now, we claim the following

H:UQk.

keZ
If z € H then by the definition of Myf(x), for any x € H, 3 k' € Z such that

Ew f(z) > A. Now if k € Z is the minimum of all such &" then Ej f(z) > A and
E;f(x) < AVj < k. That is z € , and hence z € |J Q. So, H C |J Q.

keZ keZ
Conversely, suppose x € |J Q. Then, 3 k' € Z such that x € Q. By the
kEZ

definition of Q, Ep f(z) > A. Hence, Myf(x) = sup Exf(z) > A. That is,
keZ

H D |J Q, and our claim is proved. We have seen that (J € is a disjoint union
kEZ keZ
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of dyadic cubes. Thus, from Lemma we have
{z e R™: Myf(x) > M = | [ %l

kEZ

= 1%
k

This proves (1).

To prove (2), let us first consider f € C(R™) and x € R™ be fixed. So, for a given

€ > 0,30 > 0 such that Yy € R" with |y — x| < J, we have |f(z) — f(y)| < e. For

cubes Qi € Qi (k € Z), we have the following relation between their diameters
diam(Qy,) = 2 *diam(Qo) = 27"\/n,

where Qg = [0,1)" € Qy is the unit cube in R™. By the Archimedean property,

3 ky € N such that 2k > k, > \/Tﬁ So 6 > 27k /n. Therefore Yk > ko,

diam(Qy) = 27%/n < 27%0/n < §. That is for any Q) € Qr(with k > ko) with

T € Qp, Yy € Q) we have |y — x| < 27%\/n < 4, and hence |f(z) — f(y)] < e.

Now Vk > ko,

Bt - 1@ =| 3 | 5 / F@)y | xola) = @)

QGQ

- e Q/ )y — f(2)
1
- o Q/ <f<y>—f<x>>dy‘

1
<G Q/ F) — Fo)ldy
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1
< — [ edy = €.
|Qk|/ Y
Qk

Hence, kli_r}rloo Epf(x) — f(z) for any z € R" whenever f € C(R"). Now,
consider the set S := {f € LY (R") : Exf(z) — f(z) a.e.}. It is clear from
above that C(R™) C §. We also know from part (1) that My f(x) is weak (1,1).
Hence by Theorem the set S is closed and dense in L'(R"). As a result,
S = L*(R™). So the result is true if for L' functions. To complete the proof, note
that if f € L} (R") then fyxg € L*(R™) for any cube QQ € Qy. Hence, (2) holds

for almost every x € (), and so for almost every € R". ]

We now give an important result related to the dyadic decomposition of R, called
the Calderén-Zygmund decomposition. This theorem allows us to decompose a
given function in L'(R") into two parts, called “good” and “bad” parts. This

technique forms the crux for many proofs involving weak type inequalities.

Theorem 3.4. Given a non-negative function f € LY(R™), and given a X > 0,

there exists a sequence {Q;}jen of disjoint dyadic cubes such that

1. f(z) < X for almost every v & |J Q,

jEN

2. §§||f||1, and

U @;
JeN

3. For every j €N, A < |Q—1‘ [ fly)dy <27,
J QJ

Proof. For a fixed A > 0, let us consider the set
Qp:={r eR": E f(x) > Xand E;f(z) < XNif j < k}.

As in Theorem , U € is a disjoint union of dyadic cubes. Now consider the

keZ
family {Q,};en of dyadic cubes in |J €. That is, |J % = J @;. So,
kEZ kEZ jEN
S
jeN keZ

<> [ By
Qi

kEZ
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:_kezzlf

§—||f||1'

This proves the second part of the theorem.

We notice that if z ¢ |J Q;, then for every k € Z, Ej.f(x) < A. Since f € L'(R"),
by the second part o]fENTheorem , Epf(z) — f(x), as k — oo, for almost
every = € R". We therefore have f(z) < A almost every = ¢ U Q-

Lastly, by definition of the sets €2, the average of f over ijeli\ls greater than .
This is the first inequality in (3). Now suppose x € Q. Then by the definition
of the sets Q, Er_1f(z) < A. If Q" is the unique cube in Q;_; containing x then

x)dz < A. Now,

Q|
|QJ|/f IQJIIQI/f(y>d

This proves (3). O

@i Jo /1

The decomposition of R"” given by the previous theorem allows us to decompose

the function f as the sum of two functions, g and b, defined by

f(x), ife ¢ Q.
" J (3.8)
a7 [ f0y. iteeq;
And j
z) = ij(ﬂﬁ)
where, J

1
bi(@) = | f@) — 757 | Sy | xq,(x) = f(z) — g(x).
Qjl Ja,
Then g(z) < 2"\ almost everywhere and b; is supported on @; with f bj(x)dx =
0. The functions g and b defined above are called “good” and “bad” parts re-
spectively of the given function f. It is easy to see that the function g has the

same integral as that of f.
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Lemma 3.5. If f is a non negative locally integrable function, then

Hz e R": M'f(x) > 4" X} < 2"|{x € R" : Myf(x) > A} (3.9)

Proof. As in Theorem [3.4] we form the decomposition

{z eR": Myf(x) > A} =] @,
jeN
where each @) is a dyadic cube. Let 2Q); be the cube with the same center as @);

and whose sides are twice as long. We claim that

{z eR": M'f(z) > 4"\} C | 20;.
JjEN

Let us fix z ¢ |J2Q); and let @ be any cube centred at z. Let [(Q)) denote the
J

length of the cube Q and k € Z such that 281 < 1(Q) < 2*. Then Q intersects
m many dyadic cubes in Q; say them Ry, Rs,---, R,,. Observe that m < 2".
We have explained this fact taking £ = 0 and n = 2 in Figure [3.13]

Figure 3.13: () intersects 4 dyadic cubes

None of these cubes is contained in any of the @’s, for otherwise we would

have z € J 2Q);. Hence, the average of f on each R; is at most A, and so
jEN
m

1 1
el /Q Py =12 /Q (LY
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As the above inequality is true for any cube @ centered at z, we have M'f(z) <

4" \. Therefore, z € {y € R" : M’ f(y) > 4"A}. That is, we have
{z eR": M'f(z) > 4"A} C | 20,
J
Therefore,

{z e R": M'f(z) > 4"\} < || 2]
< 2”|UQJ'|

=2"{z € R" : Myf(z) > A}

3.3 LP — L? boundedness of Hardy-Littlewood
Maximal operator

In this section we wish to study the LP boundedness of the Hardy-Littlewood
maximal operator. The idea we use is to get weak type boundedness for p = 1,
and strong boundedness for p = co. For 1 < p < oo, the result then follows from
the Marcinkiewicz interpolation theorem. As mentioned earlier we can replace
Hardy-Littlewood operator by the cubic maximal operator, and the boundedness
result won’t change. In what follows, we use the centered cubic maximal function
M’'. With the help of the Lemma [3.5, we now prove weak (1, 1) boundedness of

cubic maximal function.

Theorem 3.6. The mazimal operator M’ is weak (1,1).
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Proof. From Lemma we have,

{z e R": M'f(z) > N} < 2"{z € R" : Myf(x) > 47"\}.
Using the weak (1,1) inequality of the dyadic maximal operator (Theorem [3.3]),
we get

Hz e R" : M'f(z) > A} < 2"{x € R" : Myf(x) > 47"}

871
= Sl
Hence M’ is weak (1,1). O

Remark 3.1. We have shown that the maximal operators M and M are essen-

tially interchangeable due to Inequality (3.2)). Therefore we can say that

{xGR”:Mf(x)>)\}§{xER":M’f(x)>CA}.

Now, using Theorem [3.6]
Hz e R": M f(z) > A} <

Cn
That is, the Hardy-Littlewood maximal operator M is weak (1,1).

{x ER": M'f(z) > i}‘ .

An important consequence of the weak (1,1) inequality is the Lebesgue
differentiation Theorem. It is a generalization, to higher dimensions, of the first

fundamental theorem of calculus.

Corollary 3.7 (Lebesgue’s differentiation). For any f € L, .(R™) we have
1 ) dy =
5 T T = )

for almost every x in R™.

Proof. Let f € C(R") and z € R™ be fixed. Then for given ¢ > 0, 3 rq > 0 such

that for any r < rg, and y € B(z,r) we have |f(z) — f(y)| < e. Now,

‘|er|/m ) dy - 1o ‘leM/m () dy
) — )] dy < e

N |B(.l’ 7”)| B(z,r)
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Therefore for f € C(R"), we have

im —~— [ fy)dy = fa),

r—0 ’B(LL’ 7,)| B(z,r)
for every # € R". We know from Theorem [3.6]that the Hardy-Littlewood maximal
operator is weak (1, 1). Hence, by using a similar argument as given in the second

part of the Theorem [3.3 we have the desired result. O

With the weak (1,1) inequality of the Hardy-Littlewood maximal opera-
tor we now see its strong LP-boundedness. As discussed in the beginning of
this section, the result is an easy consequence of the Marcinkiewicz interpolation

theorem.

Theorem 3.8. The operator M is strong (p,p), for 1 < p < oc.

Proof. First, notice that for any f € L*°(R"), we have for any r > 0,
i J 17 @ =) by < sup g [ 17lldy = 1l Hence MF(2) < ] fo

almost every x € R™. That is, ||M flloo < |If]loo- We have already shown that
the operator M is weak (1,1). Hence by using Marcinkiewicz Interpolation The-

orem, we have that M is strong (p,p), for any 1 < p < occ. ]

It is natural to ask whether Lemma can be used to get strong L'-

boundedness of M. The next result shows that it is not possible.
Lemma 3.9. For f(#0) € L'(R™), Mf ¢ L'(R").

Proof. Let f(#0) € L'(R"). Define f; = fxp(,)- Then, f; — fin L'(R") and
therefore we can find jy such that, f;, # 0. Now note that B(0, jo) C B(z, |z|+Jo).
This is shown in Figure [3.14}

Therefore,

1
Mf(x) > M fj,(z) = f}ilgm ) | fio(y)| dy

e i}
> . | fio ()| dy
‘B(.CE, ‘l" +]0)’ B(z,|z|+j0) ’
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Figure 3.14: B(0, jo) C B(z,|z| + jo)

).
B(L ’I| + ]0) B(z,]z|+70)NB(0,50)

= cu(|| +jo) ™ /B(O . £ (y)|dy
»JO

[f ()| dy

= cnll@] + o) " fjollLr -
This implies that
M (@)e 2 cullfyly [ (el +0)"do = o
Rn R™
Hence M f ¢ L*(R™). O

It is also natural to ask about the admissible range of ¢ > 1 such that
M : LP(R") — L4(R™) is bounded.

We discuss it in the next result.

Proposition 3.10. The operator M is not bounded from LP(R™) to L1(R™) unless

pP=4q.
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Proof. Let f € LP(R") and let fi(z) := f(A\x), for a fixed A > 0. Then,

1/p

falls = /u&mmx

Taking A\x = y we get
1/p

Il =2 ([ 1f@pds | =3,
Note that

1
M fi(z) = Sup B, R)| /B(O,R) |fa(z = y)ldy

)
= SUp |f(Az = Ay)|dy
r>0 |B(0, R)| Jp(o.R)

— Mf(\2)

= (M f)x(x).
Therefore ||M fy(z)||, = A"4||M f||,. If M is bounded from LP(R") to LI(R"),
we must have for all A > 0,

1M fxllg < ClIAp-

That is,

ATM llg < O]

Equivalently, for all A > 0 we require

)\n(l/p—l/q) <C ||f||P < 0.
1M £l

However, this is only possible when p = q. O

3.4 Rectangular Maximal Operator

In this section we discuss about a special type of maximal operator called Rectan-
gular maximal operator. In the next chapter we see some special weights related
to the rectangular maximal operator that are ultimately useful in our study of
Littlewood-Paley theory. In this section we only give its definition.

First by a rectangle in R” we mean the set R(hq,--- , hy) = [—hy, hy] X+ X
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[—hp, hy], where hq, -+ h, are non-negative real numbers.

Definition 3.6 (Strong maximal function). Let f € L}, .(R"), strong mazimal

function of f is defined by

M f(x) = sup !

z —y)| dy.
pomedonso |R(h1, -+ hy)] / |f(x —y)| dy

R(h1, hn)

We notice that any cube @), is a rectangle. Hence, the strong maximal
function M, is pointwise larger than M’. That is, Vx € R", we have M'f(x) <
M f(z). It can be shown that the strong maximal operator M, is bounded on
LP(R™) for p > 1 but M, is not weak (1,1). We refer the reader to [7] for further

details on this topic.

3.5 Sharp maximal operator and BMO space

This section is dedicated to the study of another useful maximal operator. The

idea is to capture the mean deviation of a given function from its average be-

1
loc

haviour. For a given f € L; (R"), we denote the average of f on a cube @ by

fo, that is,

1
- dy.
fo |Q‘Q/f(y) Yy

This lead us to the definition of the sharp maximal function.

Definition 3.7 (Sharp Maximal function). Let f € L. _(R"). We define the

loc

sharp mazximal function of f by

1
# i —

Q>z

where the supremum is taken over all cubes ) containing x.

We collect all the functions which do not deviate far away from their average.

We call this collection the BMO space.
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Definition 3.8 (BMO space). Let f € L} (R"). We say f has bounded mean
oscillation if the function M7 f is bounded. The space of such functions is denoted
by BMO(R™). That is,
BMO(R") = {f € LL(R") : M¥#f € L*(R")}.
First we notice that BMO(R™) # 0, since for any constant function “C”,

we have M#C = 0. Also we see that BMO(R") is a vector space. Indeed is
f1, fo € BMO(R") and «, 5 € C, then,

M*(af + Bfs)

il
= sup —
3Q |Q|

Q

< aM* fi(z) + BM* f,(x).
We can define a norm on BMO(R") by
11l = 11M# f].

The function || - ||+ is not a true norm since it can not separate constant

1
afil) +820) - | Q/ (afi(2) + Bfa(2) d2) | | dy

function from one another. However, by taking equivalence classes of functions
defined upto addition of constant, || - ||« become a norm. We begin with the

following easy property of M# and || - ||..
Proposition 3. 11 Let f € LZOC(R”). Then,
3111l < supnf / 7w) = al dy < |11l (3.10)
M) < 20 5(0) (3.11)

Proof. We have for any a € C we can write

/|f<x>—fQ| de < /|f<x>—a| daz+/|a—f@| . (3.12)
Q Q

Q

1
a—@Q/f(x) dx

We notice that,

la — fol =
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_ )F;’/(a—f(xﬂ s

la — f(z)] de.
@ /
Therefore,

Jlo-tolar< [ | & [la=f@lar | ay= [lo= @)

Q Q Q Q
Using the above inequality, Inequality (3.12) becomes

/\f(x)—fQ| dx§2/\f(x)—a| dz.
Q Q

Now, dividing both side by |Q| we get

1 2
o Q/ @) ~ fol de < 15 Q/ £(2) ol da. (313)

Note that Va € C, Inequality (3.13)) is true and left hand side of this inequality

is free from a. Therefore, we have

1
@Q/U( fQ|dx<21nf‘Q’/|f(x)—a|dx.

Taking supremum over all cubes containing a point y we get

supﬁ@/\f( — fol dx<23up1nf |Q|/]f(w)—a| dx.

Q3y

Therefore, by the definition of M#, we have

M7 f(y )<22L;[y)1nf Lo /|f(x)—a| dz.

Hence,

71l = 1M 7)o < 250p nf 0 /If(:v) ~qf da. (3.14)

Now in Inequahty - takmg a = fg, we get
||f|| <sup1nf /|f —a|dx<sup /|f — fo| dz
e Ale] ¢

= M*f(y)
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< I£1
The fact that M#|f|(z) < 2M* f(z), follows from above. O

We now get a relation between LP-norm of Myf and M# f for f € LP(R"). For

the same we required the following “good-A inequality”.

Lemma 3.12. If f € LP(R") for some 1 < py < oo, then for any v > 0 and
A>0,

{z € R™ : Myf(x) > 2, M* f(z) < 7A} < 2"9/{z € R" : Myf(x) > A}

Proof. With out loss of generality we may assume that f is non-negative. Let A,
v > 0 be fixed. Let us form the Calderén-Zygmund decomposition of the function
f at the height A\. Then by Theorem [3.3] we have

{zeR": Myf(x) >N = =] @,
kEZ jEN
where {Q;};en is a family of disjoint dyadic cubes. Suppose Q;, € Qk, be one of

such cube for some ky € Z. Clearly, Q;, C €1,. We first prove that

{z € Qjy : Maf(x) > 2X\, M* f(x) < YA} < 2°9(Qj-
Suppose )’ be the dyadic cube whose sides are twice as long and Q)j, C @’. Then
Q" € Qp,—1. Hence by the definition of the set Qy,, Ey,—1f(z) < A, forallz € Q.

Therefore
1
ff:—/fy dy <\
el W

Further, if € Qj, and Myf(x) > 2A then My(fxq, )(x) > 2A. This can be
proved as follows. If Myf(x) > 2\ there exists a dyadic cube @Q;, € Qj, with
x € @;, such that

|Ql | /f(y) dy > 2\ > . (3.15)
o

Therefore, by the definition of €2, we have ki > ky. So, @;, € Qj,- We have the

following

1 1
Qs dy =157 (y) dy > 2.
|Qj1|Q_/ f(y) dy ,le|Q/ fxq;,(y) dy >
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Hence, if * € @, and Myf(x) > 2\ we have Mu(fxq, )(x) > 2A. Now for
re{y € Qj, : Maf(y) > 2)}, we have

Ma(fxq;,)(x) < Ma(f — for)xaq,, () + foMa(xq,, ) ().

Since Vz € Qj,, Ma(xq,,)(z) =1, from the above inequality, we get

Ma(f = fo)xa, (®) = Ma(fxq, )(x) — for > 2A = A=A

Therefore,

[0 €Q: Maf(z) > 20} C {w € Qy - Mal(f — far)xa)(x) > A},
From the weak (1,1) inequality of dyadic maximal function we have for any
€T € Qjov

o € Qu s Mul(F = folra, @) > N < 5 [ 1£0) ~ Jorl dy
Qi
< el 2 1) - fol ay
J

o 2n’Q'0|
= Telart ().

Therefore,

{2 € Qo Mal(f — for)xo, (@) > A} < 209l i art (o)

)\ IGQjO

Hence,

{z € Qo - Maf(z) > 22} < zn'f“' inf M*f(z).

As{z € Qj, : Maf(x) > 2\, M# f(z) < yA\} C{x € Qj, : Myf(z) > 2)\} we have
{z € Qo+ Maf(x) > 2X, M¥ f(z) <AA} < {z € Qj : Muf(w) > 2X}|

2n|Qjo| .
< 2L nf M#
ST MAS()
2n|Qj0|
< — 220 AN\
< \ Y
< 2"9|Qj, |-
Note that

{x € R™: Myf(x) > 2\, M7 f(z) < y\}
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— {x € UQJ CMyf(z) > 20 M7 f(z) < ’y)\}

jeN
oo UQss Masta) > 20 00%f(0) < 2 .
jEN

If 2 ¢ U Q; then Myf(z) < A So, the set {x ¢ UQ; : Myf(x) >

jEN jEN
20\, M7 f(z) < 7)\} = (). Therefore,

o € R : Myf() > 2), M* f(z) < yA}

{x € U Q;: Myf(z) > 2\, M*f(z) < 7)\}‘.
jEN
Because |J @; is a disjoint union, we get
jeN

Hx € R™: Myf(z) > 2\ M¥ f(z) < A}
=2
jeN
<> 2"Q]
jeN
= 2"y ) Q]
jeN

= 2"y{x € R" : Myf(z) > A}

{a: €Qj: Myf(z) > 2\ M* f(z) < fy)\}‘

]

With the help of above lemma we can show that LP norm of M, bounded above

by LP norm of M%.

Lemma 3.13. If 1 <py < p < oo and f € LP°(R™), then
/ Muf (@)l dz < C / M*f(2)] d.
R™ Rn

Proof. For any N > 0, let us first define the following
N

Iy = /p/\p_1|{x € R : Myf(x) > A} dA. (3.16)
0
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Note that Iy is finite, because
N

Iy = /p)\polp°+p]{x e R": Myf(xz) > A} dA
0
< Np—pop
Do
Since f € LP°(R"™) and M, is strong (po, po),

o

N
/po)\po_1|{93 e R": Myf(x) > A} dA.
0

[ Mafllp —PO/APO_IHx eR": Myf(x) > A} d)\ < <.

0
Hence, Iy < oo. Now doing a substitution A = 2s, in Equation (3.16[) we get
N/2

Iy =2° /psp1|{x € R": Myf(z) > 2s}| ds.

0

Equivalently,
N/2

Iy =2v /p)\pll{x € R™ : Myf(z) > 2)\}| dA. (3.17)

0
Note that

{z € R": Myf(x) >2\} C {x € R": Myf(z) > 2\, M* f(z) < yA}
U{z € R": M#* f(z) > v)A}.
Therefore,
{z e R": Myf(x) > 20} < [{z € R" : Myf(z) > 2\, M¥* f(x) < 4}
+ {x € R™ : M# f(z) > A}

Using the above inequality in Equation (3.17]), we get,
N/2
Iy =27 /p)\p‘1|{a: € R": Myf(x) > 2A} dA
0
N/2

<o / pX U {z € R” 1 Myf(z) > 20, M* f(z) < 4A}| dA
0
N/2
+ /p)\p_1|{:c € R": M# f(z) > v} dA.

0
By using Lemma|3.12] for the first part of the right hand side and doing a change
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of variable in the second part of right hand side we arrive at
N/2

Iy = 2+0r / PN {z € R : Myf(z) > A} dA

0
YN/2

op
+ - / pNTH{x € R" : M¥ f(x) > A d)
0

o YN/2
= 2" Py N + p / pN T H{w € R™ : M¥ f(x) > A d)
0

YN/2

op
<2ly 2 [ e RS ) > Al
0

Now choosing v = ﬁ, we get
YN/2
1 2P 1 " 4
Y
0
We have yN/2 = N/22TPT" < N. So, we have

p+1

_ /pAply{x ER™: M#* f(z) > Al dA.
0

Iy <

Note that
N

[V e € A (@) > N < st £
0
So for all N > 0, we have
i op+1
Iy = /pvl\{x € R M f(x) > M dr < S|l

0
By taking N — oo, we get,

o) ) ) 2p+1
10af1y = [ oo € R 2 AP (o) > N ah < 2|0 )

0



CHAPTER 4

Muckenhoupt weights

In the previous chapter, we have seen a variety of maximal functions. We have also
seen that the Hardy-Littlewood maximal function is LP-bounded. This chapter
deals with boundedness of these operators on weighted Lebesgue spaces. Our
goal here is to characterize all positive (measurable) functions w on R"™ such
that the Hardy-Littlewood maximal operator M is bounded on LP(w), for any
1 < p < oco. We won't worry about the case L™, since L>°(w) = L*®(R"), for any
positive measurable function w.

The study of such weights started more than half a century ago, when
Rosenblum in [20] first gave a condition on such weight functions. However, the
author studied the condition in a very specific context of Fourier series. Muck-
enhoupt, in [19], characterized the condition in the one-dimensional case. Muck-
enhoupt’s work was generalized to higher dimensions by Coifman and Fefferman
(see [B]). A lot of related work and surveys can be found in [25]. In this chapter,

we exposit some of these works on the general Euclidean space R™.

80
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4.1 A Weighted Norm Inequality

In this section we see that for a given positive function w maximal operator
is bounded from LP(Mw) space into LP(w) space. We start with a few simple

lemmata.

Lemma 4.1. If f € L'(Mw) then f; = fxp,) s a sequence of integrable

function which increases pintwise to f.

Proof. Since f € L'(Mw), we have
/|f(x)|Mw(x) dz < oo.
R?’l

First, we prove that there exists a constant C' > 0 such that Mw(z) > C,
Vo € B(0,j). If this is not the case, then V C' > 0, 3 z € B(0,j) (depending
on C) such that Mw(z) < C. Therefore there is a sequence (z,,)men such that

Muw(z,,) — 0 as m — oo. As B(0,j) is a pre-compact set, (z,) has

meN
a convergent subsequence. By passing on to the subsequence, we may assume
that x,, — xg as m — oo. Therefore, for all ¢ > 0, 3 n;y € N such that,
Ym > ny, Mw(x,,) < e. Notice that for a fixed r > 0, 3 ny € N such that

B(zo,7) € B(%m, 2r). Now suppose ny = max{ng,ni}. Then Vm > na,
1
—_ d :
Blan2r)] / w(x) dz <€

B(xm,2r)
Now we notice that

1 1
Blon 2| / w(z) de > Cary / w(z) dx

B(xm,2r) B(zo,r)

1
:—2”]3(9&0,7’)] / w(x) dz.

B(zo,r)

Therefore,
1

—2”\3(900,7“)\ / w(z) dz < e.

B(zo,r)
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/ w(z) de = 0.

B(zo,r)
Since |B(z,r)| # 0, we have that w(z) = 0 for a.e. = € B(zo,r). Since r

As this is true for any € > 0,

was arbitrary we conclude that w(x) = 0 for a.e. x € R™. However, this is a
contradiction. Therefore 3 C' > 0 such that Mw(z) > C, Vo € B(0,7). Now we
have

/|f )X B(0,j) (% /|f i) xél / |f(z)|Mw(z) dz < co.

B(0,5)

]

Lemma 4.2. Let w be a non-negative function in L*(R™). If for some zy € R",

we have Mw(xg) > 0, then Mw(z) > 0,Vx € R™.

Proof. As Mw(xzg) > 0 there is 79 > 0 such that W [ w(y) dy > 0.
B(zo,r0)

Let € R™ be arbitrary. Then, there is r; > 0 such that B(xo,r) C B(x,r1).
Therefore, [ w(y)dy > [ w(y)dy > 0. Hence, m [ w(y)dy >0

B(z,r1) B(zo,70) B(z,r1)

Figure 4.1: B(xg,ro) C B(z,71)
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and

1
Muw(x) = sup

e | 0 By [ w0

B(z,r) B(z,r1)
]

We are now in a position to give a weighted norm inequality for the Hardy-

Littlewood Maximal function.

Theorem 4.3. If w is a non-negative, measurable function and 1 < p < oo, then
there exists a constant C,, > 0 such that

[ats@y w@as < 6, [ 1#@Pyus.

Rn
Furthermore,
01

Ly 2@ < 5@t
Proof. We show that [[M f||re@w) < ||f||lzemw) and that the weak (1,1) in-
equality holds; the strong (p,p) inequality then follows from the Marcinkiewicz
interpolation theorem. We have the following cases:

Case 1. Mw = 0. Then, for any r > 0, we have
1
m/w(x —y)dy < Mw(x).

By Lebesgue differentiation theorem, for almost every x € R", we have

0 <w(z)= lim |B]/ y)dy < Mw(z) = 0.

r—0+

Thus, we have w(z) = 0 for a.e. = E R™. So, in this case the theorem holds
trivially.

Case 2 : Mw(xp) > 0 for some z € R". Due to Lemma [1.2] Mw(z) > 0.
Here, we first show that |[[Mf|[zec@w) < [|f]leeuw)- I a > ||f]|Lo(arw), then
Mw({x € R" : |f(z)| > a}) = 0. This means f{xER":|f(x)|>a} Mw(z)dx = 0. As
Mw(z) > 0,Vx € R™, we have |[{z € R" : |f(z)| > a}| = 0. Therefore, |f(z)| <
a, almost everywhere. So, M f(z) < a, almost everywhere. Hence, [{z € R" :

Mf(z) > a}| = 0. This gives us f{xeR":Mf(x)>a} w(z)dz = 0. Equivalently,
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w({z € R" : M f(x) > a}) =0, and hence, ||M f||row) < a
Now we can conclude that ||M f||reeqw) < || f]] o (vuw)-
Next, we show the weak (1, 1) inequality. To prove this we may assume, due to
Lemma | that f is non-negative and f € L'(R"). If (@) e is the Calderon-
Zygmund decomposition of f at a height A > 0, then by Theorem [3.4] we have
the following

1

— " .
)\<!QJ\ o flz)dz <2 (4.1)

Now as we proved in Lemma, |3.5]

{z eR": M'f(z) > 4"A} C | 20;.
JEN
Therefore,

w({z €R™: M'f(z) > 4"A\}) < Y w(2Q)).
7j=1

Then, we have,

o o0 1
r)der <Y w(2Q;) =) 2"Q;|—— w(x)dz.
/{V:EGR”:M’f(x)>4")\} ; ’ ; ’ |2Q]| 2Q;
From Inequality 1) we have |Q;] < & f f(y)dy. Thus,

w(z)dr < 22;/ f(y) (’2223’ (a:)das) dy

<5 [ M utwy

j=1 Qj
nC
<25 [ e
U Q@

JEN

/{zeR":M'f(a:)>4n>\}

<2 ) Muty)ay

So we have w({z € R" : M'f(x) > 4”)\}) < 2 [ f(y)Mw(y)dy. We know
that M f(x) < C,M'f(x). Hence, w({z € R* : M'f(z) > 4"A}) > w({x € R :
M f(x) > Cp4"\}). Therefore,

w{z € R" : M f(z) > C,4"\}) <

n

. f(y) Mw(y)dy.



CHAPTER 4. MUCKENHOUPT WEIGHTS 85

Now if we replace C,4"\ by A\, we have
w{zx e R": M f(x) > A}) <

TCC )ty
R

This shows that M is weak (1,1) with weights Mw on domain and w on co-

domain. The result now follows from Marcinkiewicz interpolation theorem. [

Note that if for a positive function w, Mw(z) < Cw(zx) for some C > 0, almost
everywhere then the operator M is bounded on L”(w) space. This is a sufficient
condition on w. The natural question now is “what are the necessary conditions

for the same?”

4.2 Definition and Properties of A, weights

In this section we characterize the non-negative, locally integrable functions w
such that the Hardy-Littlewood maximal operator is bounded on the space LP(w).
To simplify our notation, throughout this section we replace our earlier definition
of Hardy-Littlewood maximal function with non-centered cubic maximal function
(Definition [3.3). Abusing notation, we use M to denote the non-centered cu-
bic maximal function. Due to its equivalence with Hardy-Littlewood maximal
function, all results discussed here follow for Hardy-Littlewood maximal function
as well. We want to find a necessary condition on w for which M is bounded
on LP(w) space. We know that strong boundedness implies weak boundedness.

Therefore let us first assume that M f satisfies a weighted, weak-type inequality,

w({re R Mi@ >N < 5 [ \f(x)\pw(w)dx, (42)
R
Let f be a non-negative function and @) be a cube such that f =/, f 0 x)dz >
0. F1X0</\<f|(7Q|> If:EEchen/\<|?%‘ff( )dy < sup |Q’| f(fXQ)(y)dy:
Q Q'

M(fxq)(z). Therefore @ C {x € R" : M(fxo)(z) > )\} In Inequality (4.2), we
replace f by fxq to get

w(@ < 5 [ 1@)re@ds (4.3
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As this holds for all such A satisfying 0 < \ < %, it follows that
Q p
w@ (1) < ¢ [i@put. (1.4
Q
Now for a given measurable set S C @, let f = xg. Then, Inequality ({4.4)
becomes
1STY?
w(Q) 7] < Cw(S). (4.5)

Remark 4.1. The same condition can be obtained for balls replacing M with

the Hardy-Littlewood maximal function.
From Inequality (4.5) we immediately deduce the following:

1. The weight w is either identically 0 or w > 0 a.e. To see this we consider
the following:
If w is not positive almost everywhere, then w = 0 on a set of positive mea-
sure S. Then by Inequality , for every cube @ containing S, w(Q) = 0.

Sow =0 a.e.

2. The weight w is either locally integrable or w = oo a.e.

Figure 4.2: Q,Q' C Q"
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If w is not locally integrable, assume w(Q) = oo for some cube @, then
the same is true for any larger cube containing the cube ) due to the
monotonicity of measure. Let Q' be any cube and Q” be a cube containing
the both @ and @'. Then w(Q") = oo. Now from Inequality (4.5]), we have
the following
Q"
w(Q") <|Q,,|> < Cw(Q").

Therefore w(Q') = co. Now let S be any set of positive measure and @

be a cube such that S C Q. Since w(Qy) = oo, using Ineqaulity (4.5)), we

have w(S) = co. That is, w = oo a.e.

To deduce the necessary conditions for weak (p, p) boundedness of M, we consider

two cases.

Case 1: p = 1. In this case Inequality (4.5 becomes
W@ _ u(s)
Q| S|

Let a = inf{w(z) : x € @}, where “inf” is the essential infimum, that is, excluding

a set of measure zero. We claim that for each ¢ > 0 there exists S, C @) with
|Se| > 0 such that w(xz) < a + € for any x € S.. Suppose this is not true. Then
3 € > 0 such that for all S C @ with |S| > 0 we have w(z) > a+ ¢ for any x € S.
But this is same as saying a + € is an essential lower bound of w on (). Since this

cannot happen, our claim is true. Hence for all € > 0 we have,
w(@ _ ,w(S)
Q| S|

C
= m/w(z) dz.
€ g

1/
< a+¢€) dx.
51/ 0+

= Cl(a+e€).

Since € > 0, is arbitrary, for any cube @,
%CT) <C 1r€1£w(x) < Cw(z), foraex €Q (4.6)
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Inequality called the A; condition, and we refer to the weights which satisfy
it as A; weights. Condition is equivalent to

Mw(z) < Cw(z), for ae. v € R" (4.7)
Clearly, Inequality implies Inequality . Conversely suppose that In-
equality holds and let x be such that Mw(z) > Cw(x). Then there exists a
cube @ with rational vertices such that w(Q)/|Q| > Cw(z). Therefore, x lies in a
subset of @ of measure zero. Taking the union over all such cubes (with rational

vertices), we have that Mw(z) > Cw(x) holds only on a set of measure 0 in R".

Case 2: 1 < p < oo. In Inequality (4.4), let f = w' . Then,
p

w(Q) ﬁ Q/ W'V ()de | <C Q/ W' (2)da.

Equivalently,
p—1

1 / 1 /
— [ w(z)dz — /wl_p (x)dz <, (4.8)
Q| Q|
Q Q
where C' is independent of Q).
Condition (4.8)) is called A, condition and the weights that satisfy it are
called A, weights.

The following properties of A, weights are consequences of the definition.
Proposition 4.4.
1. A, C Ay, foranyl <p<gq.
2. Forp>1, we A, if and only if w P € Ay
3. If wy, wy € A; then wowifp €A,
Proof.

1. Let us first assume that 1 = p < q. As w € A; we have

w(Q)

—= < Cw(z), for a.e xz € Q.

QI
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Since 1 — ¢ < 0 we get

Therefore,

[(9) e

O

g

—~
S

—

|

Q\

(oW
S

This implies,

and we have

(g—1)
(1=¢')(q—1)
w(Q)) 1 / 1—¢'
—_— >C | — [ w(z) Tdx
( Q| Q|
Q
Because (¢ — 1)(¢’ — 1) = 1, we arrive at
(g—1)
w(Q)>_l 1 / 1—¢
—_— >C | — [ w(z) Tdx
( Q| Q|
Q
Therefore,
(g—1)
1 / 1—¢ w(Q)
— [ w(z) Tdx (— <C.
Q| J Q|

Hence, w € A, and A; € A,. Now suppose p > 1. As p < ¢ we have,

r q/ -1

q

/

/ / 1
q<p.So,p,1<1. Let s > 1 be such that + — = 1. Then, by
s

using Holder’s inequality,
(¢-1) T

ﬁ/w(m)l—q/dx < |Q|1‘1—1 /w(x)l—p/ dx v Q%
Q Q
S CEoN [y a
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Therefore,
(a=1) p—1
w(Q) 1 / 1—q w(Q) 1 / 1—p'
— | — | w(x dz < — | —= | w(z) Pdx < C.
Q (Q ) o \jar/ "
Q Q

Hence, w € A,.

2. To prove the second part we have the following. As p > 1,

p'—1
Q

(' —=1)(p—1)

‘:’(wl|;| ) (l/w =¢
‘:’(wl|;| ) (l/w def=¢

& w e A,

3. Since wy € Ay, we have the following

wyoé;f) < Cwy(x), for a.e z € Q.
So we have for a.e. x € Q,
-1 wy(Q) -
wo(z) <C 1] : (4.9)

Now, we have,

(%Q/wg(az)wl(x)lpdx) (LlQ/wo(:c)lplwl(x)(lp)(lp/)d:c) B
= %Q/wo(ﬁ)wl(ﬂﬁ)lpdl’) LQ/wo(f)lp,”wl(515)0190>p
ﬁcg/wo(@ (Cwl “

IN
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’712' Q/ (o%) 7 (@)

< ()t (Cat) (t)

p—1

<C.

That is, wow, * € A,.

4.3 Characterization of A, weights

We have seen that the A, condition is necessary for M to be weak type (p,p),

1 < p < oo. We now see its sufficiency.

Theorem 4.5. For 1 < p < oo, the weak (p,p) inequality
w({z €R™: Mf(z) > \}) < /\p/\f Pw(e

holds if and only if w € A,.

Proof. We proved the necessity of the A, condition in Section 1.2 .
Now suppose that p > 1 and w € A,. Given a function f € LP(w), we first
show that Inequality (4.4) holds and so Inequality (4.5)) also holds. By Holder’s

inequality, we have

p—1
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Where the last inequality is a consequence of the A,-condition. This shows that

w<@>(\@|) / @l u(z) dr.

So, Inequality (4.5) holds. We may assume without loss of generality that f is
non-negative. We form the Calderén-Zygmund decomposition of f at height 47"\
to get a collection of disjoint cubes (Q;),cy such that f(Q;) > 47"A|Q;[. Then

by a similar argument as in the proof of Lemma 3.5 we can show that

{z eR": Mf(zx) > A} C | 3Q;.
jeN
Here we dilate the cubes by a factor of 3 instead of 2 because M is a non-centered

maximal operator.

Therefore,

w(fr eR™: Mf(z) > A}) <Y w(3Q;).
jeN
As (); C 3Q);, using Inequality (4.4]), we get

w(30,) (é%h)p < Cw(Q)).

Therefore, we have

w({z €R™: Mf(x) > \}) < C3" Y w(Q;).
jEN
Now from Inequality ,

w({e €R™: Mf(z) > \}) < C3™ (’Qf ) / ) P

< cyv (47) / @) Pu(z) do

This shows that M is weak (p,p) with respect to w, when p > 1.

Now, suppose w € A;. We have shown that Mw(x) < Cw(z) almost every

z € R™. So, by using Theorem [4.3| we get

/ wede < G [ (r@ibreds < [ (f@uds
{z:Mf(z)>A}

Therefore, M is weak (1,1) Whenever w € A. O
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4.3.1 Strong-type inequalities with weights

We have seen that the operator M is weak (p,p) on LP(w) if and only if w € A,
for 1 <p<oo. If we Ay, is it true that M is strong (p,p) on LP(w)? Here we
are going to find an affirmative answer to this question. Before going to derive
the weighted strong type inequalities, let us first prove the following lemma. It

gives the relation between L*(R"™) and L*>*(w), for w € A,,.

Proposition 4.6. If w € A,, for 1 < p < oo, then L*(w) = L*(R"™) with

equality of the norms.

Proof. 'We show that w(E) = 0 if and only if |[E| = 0 . First, suppose w(E) = 0.
Let Q be a cube such that E C @ and w(Q) > 0. In Theorem [4.5] we have shown
that Inequality is true when w € A,. So, we have

w(Q) (%)p < Cw(F)=0.
As w(Q) > 0, we must have |E| = 0. If E is unbounded, we can write £ =
U ENQ), for disjoint cubes @);. By the above observation, whenever w(E) = 0,
jvxfgalso have w(ENQ;) =0 and hence [ENQ;| =0. . [E] =3 [ENQ;| = 0.

Conversely, If |E| = 0 then by definition w(F) = 0. -

Now suppose f € L®(R™) and let a = ||f||e. So [{x € R" : |f(x)] > a}| =
0. Therefore w({x € R™ : |f(z)] > a}) = 0. This implies f € L*(w) and
[ f|zoe(w) < a. Similarly we can show that || f||ze@w) > |[f|loc- This completes

the proof! ]

Corollary 4.7. The mazimal operator M is bounded on L>(w), for any w € A,

for any 1 < p < 0.

Proof. The proof follows from the fact that M is bounded on L*(R™) together
with Proposition [4.6] O

The following theorem gives a partial answer to our question of character-

izing weights that make M bounded on LP(w).
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Theorem 4.8. If1 < ¢ <p < oo and w € A, then M is strong (p,p).

Proof. As w € A,, from Theorem we know that M is weak (q,q). We
have already seen that ||M f||zew) < || ]| (w)- By Marcinkiewicz interpolation

theorem we have M is strong (p,p) on LP(w). O

To complete our desired characterization, it is now enough to show that given a
w € A,, there exists 1 < ¢ < p, such that w € A,;. Essentially we ask whether
A, = |J A,? Notice that from Proposition we already have |J A, C A,, we
now pl;f)]\)/e the other inclusion. "~

For this we require the reverse Holder inequality. We begin with the follow-

ing lemma.

Lemma 4.9. Let w € Ay, 1 < p < co. Then for every 0 < o < 1, there exists
0 < 8 < 1 such that given a cube Q and S C Q with |S| < a|Q|, w(S) < fw(Q).

Proof. We know that if w € A,, then for any cube () and any measurable subset

S of ) we have
w(Q) (ﬂ)ﬁ < Cw(9).

Q|
As @\ S C @, and all of these sets have finite measure, we also have,
S p
w(@ (1-121) < C (@) - u(s)).
Since |S| < a|Q|, we have (1 —a)” < (1 — %Dp. Therefore, we get
w(Q) (1 —a)’ < C(w(Q) —w(S)).
Simplifying,
u(s) < V)
(1—a)

Choosing C > 1, we get 0 < g =1 — 7 < 1. The desired result now

follows. O]
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Theorem 4.10 (Reverse Holder Inequality). Let w € A,, 1 < p < co. Then
there ezists constants C' and € > 0, depending only on p and the A, constant of

w, such that for any cube Q,

L w(x) e da 2 w(z) dz
’Q‘Q/ (@) d S%/ (x) da. (4.11)

Proof. Fix a cube () and form the Calderén-Zygmund decompositions of w with

respect to @) at heights given by the following increasing sequence w|(QCf) =N <
Al < -0 < A < ---; where A s are chosen later. For each A\, we get a family of
disjoint cubes {Qk ; }x jen such that

w(z) < A\ if o ¢ Qp = Uka
and ’

A < ! / w(z)dr < 2"\y. (4.12)

| Q]
Qg
From Theorem we have ) = jLEJN Q% ;» where ) . = {z € R" : E} jw(z) >
Ak and By w(z) < A, Vi < j}. For each j, @, = UNQS;?) where Q,(:;) are
me

disjoint dyadic cubes.
Suppose = € Qyq1. Then 31 € Z such that v € O, = U Q,(g)l’l. This
meN

1
— [ w(z)dz > A1 > Ay for some
kil QU

dyadic cube QJ',;. So 3 j < [ such that Ej jw(z) > A, and for any i < j,

implies Eji1,w(z) > Agy1. That is,

Epw(x) < A\, Hence, x € . Therefore 1y C Q. If we fix @y, from the
Calderén-Zygmund decomposition at the height Ag, then @y j, N Q2441 is union of

cubes {Qg+1.}ier from the decomposition at height Ax.;. Therefore,

‘Qk,jo N QkH‘ = Z |Qk+1z’
iel

Using the first inequality of (4.12), we get
1 1
N Q) < / w(z)de < /wxdx.
T WD B MRSy I

k+1 °;
€N Qo
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Now using second inequality of (4.12)), we get

2")\k
|Qkjo N Q1| < +— ’Qk dol-

W

Now, let us fix a < 1 and choose the A;’s so that = «; that is A\, =

k+1

(2" H*w(Q)/|Q]. Then |Qrjo N t1| < @|Qk o). By Lemma , there exists
B < 1 such that w(Qgj, N Q1) < Pw(Qrj,)- Now,

w ((U Qk,j> N Qk+1> =w (U(Qk,] N Qk+1)>

=) " w(Qry N Q1) < Bw(UQs).
jeN
Therefore we have w(Q41) < fw(Q4). Iterating this inequality we get w(€)) <

BFw(€p). Similarly, || < af|€]. Hence, by downward monotone convergence
theorem we have,

Ne.

k— o0

keN
Therefore,
1 / 1+ 1 / )i+ 1+
— [ w(z) T dr = — w(x) 6dx+— w(x) ™ dx
Q| Q| \Q|
Q Q\Q0
1 1 «
= — / w(x)™ dr + — Z/ w(x)'e do
’Q‘Q\Qo ‘Q’ k=0 ¥ U\t 1
1 1 «
= [ w@A§dr+ =) / w(z)A;,, dz
|Q|Q\QO 012~ Joan,
o IQ\ ZA“‘”
w(Q) —1)(k+1)e ye gk
277/ EAEB ( )
o QI & Z
Now we fix € > 0 such that (2"a~')3 < 1, then the series Y. (2"a~!)(k+legk

k=0

converges to (27?—1 As w(y) < w(Q), we have that
S 1-(2"«a

1 " eﬂ (Q) B M 1+4e€
i [ wer = xtg ot o () a
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This completes the proof. O

As a corollary to the reverse Holder inequality, we get the following properties of

A, weights.
Corollary 4.11.
1. Ap=U,,Ag, 1 <p < 0.
2. Ifwe Ay, 1<p<oo, then 3 e >0 such that w'*e € A,.

3. Ifwe A,, 1 <p < oo, then there exists > 0 such that given a cube Q)

and S C @, )
w(S) 151
w(Q) SO(IQI) |

Proof.

q<p

We need to find some ¢ < p such that w € A,. Again by Proposition
if w € A, we have w'? € A, . Therefore from Theorem m 3 e > 0 such

1. Tt is clear from Proposition , that (J A, € A,. Now suppose w € A,.

that
1 g C
— (1—p’)(1+e)( ) d < _/ ( )1—p’ d
w z) da < w(x x.
Q| / QI
Q Q
Choosing a ¢ > 1 such that (p' —1)(1+€) = (¢’ — 1). This is possible since
/
-1
1+ (p—=1)(1+4¢€) > 1. Then we observe that ¢ < p, and q/ e 1+e.
p J—
Therefore from Equation (4.13]) we have
p—1
1 / (1_(]/) o C 1— /
— [w (x) dx < — [ w(x) Pdx.
Q QI
Q
As p—1 > 0, we have the following
@' -1 (p-1) p—1
q'—1
F;/w(l_q,)(x)dx <crt ﬁ/wl_p’(x)dx
Q Q
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We know that w € A, and (p )(p—1) = 1, the above inequality becomes

)
1 IQI
IQI

Since (¢ —1)(¢' — 1) = 1

Ly e ) 19
Q
This is the same as,

% rclﬂ/w(l_q/)(x)dx <C,
Q

which further implies w € A,.

2. First consider the case p > 1. Let us choose € > 0 so small, such that w

and w!' " both satisfy the reverse Holder Inequality (4.11)) Since p—1 > 0,

we have,
) &5 ) p-1
— [ w059 (4)q <cor | L / -
w x)dz < w
Q| / Q|
Q Q
Also, w € A,. Therefore, we get
p=1 p—1
1 o 1
— (1fp’)(1+6)< )d < ort _/ 1fp’< )d
w x)dz < w x)dz.
Q| / Q|
Q Q
_ola
w(Q)
From the reverse Holder inequality for w, we get
p—1

1 a9 g <C (—|Q| >1+6 < ¢
Q| Q/w (z)dz - w(Q) - ﬁgwlﬂ(z)dx'

Therefore, we have

ﬁ/wlﬂ(:c)dx @Ll/w(lpl)““)(x)dx <C.
Q

This implies w!'™ € A,.

If p =1, then for any cube @ and a.e z € Q, — [w(y)dy < Cw(z). Now

IQI 2
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by reverse Holder inequality, we get some € > 0 for which,
1+e€

e y 1
— [ w T (x)de < C | = [ w(z)dz < Cw't(x).
Q| Q|
Q Q
Therefore, for any cube @) and for a.e x € )

1
—/w1+€(x) dr < Cw'*(z),
Q]
Q
which implies w!*€ € A;.

3. Let S C @ and let w satisfy reverse Holder inequality with € > 0. Then, by

using Holder inequality and reverse Holder inequality we have

1/(1+¢)
wS = /Xsw(x) de < /w”e(m) dzx |S|</(+e)
Q Q
El )e/(1+6)
< Cw(Q (— .
D\a

This gives desired inequality by choosing § = €/(1 + €).

]

We are now ready to characterize all weights that make M bounded on

LP(w).

Theorem 4.12. The mazimal operator M is bounded on LP(w) if and only if

w e A, forl <p<oo.

Proof. Using the first part of the Corollary (.11, we can say that if w € A,
p > 1, then there exists 1 < g < p such that w € A,. Now we can use Theorem
[4.8 to conclude the result. [

We have seen that M is bounded on LP(w) spaces if and only if w € A,. It
is indeed true that constant functions are A, weights. In next section, we see a
way to construct A, weights with the help of Hardy-Littlewood maximal operator

M. This can give a variety of non-trivial examples.
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4.4 Construction of A; weights

In this section, we construct A; weight with the help of Hardy-Littlewood max-
imal function. The result presented here is due to Coifman and Rochberg ([6]).
This, combined with Proposition @, lets us construct a few A, weights for all

1 < p < oo. We start with the following lemma.

Lemma 4.13. Given an operator S which is weak (1,1) and 0 < v < 1, and a

set E of finite measure, there exists a constant C' depending only on v such that

/E SF@)[ de < CIEI|IfI].

Proof. For f € LP(X,v) and 0 < p < 0o, we have

(e o]

171 =p [ 2 ds0an
0
where ds(\) = {x € R" : |f(z)| > A}. Therefore,

[e.o]

/E|Sf(:v)|” dz = v/m—w{x € E:|Sf(x)] > A} dA.

0
Since S is weak (1,1), we have [{z € E : |Sf(z)| > A} < §||f||1 Also,
{r € E:|Sf(z)| > A} C E, so that [{z € E: |Sf(x)] > A}| < |E|. Therefore,
C
{z € E:|Sf(z)| > A\}| < min (|E\, XHle) Hence,

I C
[issr as <o [artuin (125171 ) ax
0

CHle

:7/ R d/\+’y/ CN2(|f]] dA
0 1

ol
)\"/

_\E H +vc\|f||1[
Y Jo

B
(Y ,
= E (”ﬁ)

= ClIfIFIE.

11411y
CoE]

-1 r

v —1]on

[E]
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We also require an easy inequality concerning power of sums of positive numbers.

Lemma 4.14. Let a, b, ¢ > 0 be such that ¢ < a+b. Then for any 0 < a <1

we have c® < a® + b*.

Proof. Let g = i Then clearly 3 > 1. We first prove that (a+0b)® > a®+b°. Let
us consider the following function G : [1,00) — R, defined as G(r) = (a +b)" —
a” —b". Note that G(r) can be written as, G(r) = a"{(1 4+ b/a)" — (1 + (b/a)")}.
Now we show that G(r) > 0. To this end, consider another function H of 1 <
r < oo, defined as H(r) = (1 + x)" — (1 + 2"), for a fixed z > 0. Note that
H'(r) = (1 +x)"log(1 4+ z) — 2"logx > 0. Therefore H is an increasing function
of r. So, H(r) > H(1)for any » > 1. This clearly implies H(r) > 0 for any
r > 1. Hence by substituting z = b/a we get {(1+ b/a)" — (1 + (b/a)")} > 0.
That is G(r) > 0. So, (a+b)" > a" + b" for any r > 1. By taking a; = a® and
by = b* in place of a and b respectively, we get a® + b* > (a + b)*. As a, b and
¢ are non-negative with a + b > ¢ we have (a + b)* > ¢*. Therefore we have

a® +b* > (a+ b)* > ¢*. Hence the result. O

We now discuss the construction of A; weights. In fact, we see that up to

a multiplication by bounded function, this is only way to produce A; weights.
Theorem 4.15.

1. Let f € L}, .(R") be such that M f(x) < oo a.e. If0 < § < 1, then

loc

w(z) = M f(x)° is an Ay weight whose A, constant depends only on 6.

2. Conversely, if w € Ay, then there exists f € L} (R"), 0<d <1, and K a

loc

function on R™, with K ,+ € L>(R"), such that w(z) = K(z)M f(x)’.

Proof.
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1. Tt suffices to show that there exists a constant C' such that for every cube

@ and almost every z € @,
1
ol /(Mf(x)f de < CMf(z)".
Now fix cube () and decompose f as f = fi + fa, where fi = fx2¢. Then
Mf(z) < M fi(xz) + M fo(x) and by using Lemma , we get,
Mf(z)" < Mfi(x)’ + M fo(x)".

As M is Weak ), from Lemma we have,
M fi(2))’ da < —|Q|1‘5||f1||‘5
Q| / Q| '

=Cj réﬂ/fl(x) dz
R
1
= Cs @/f(x) dz
2Q

no 1
= — d
2"(Cs 2 |2/ f(x) dz

< 2CsM f(z)°.

To estimate M fo, we see that if y € () and R is a cube with y € R and
f | fo(z)| dz > 0, then we must have {(R) > 31(Q), where I(-) denotes the
81de length of a cube. To see this, assume if possible [(R) < %Z(Q)
fo=f—h
=f—f X2Q-
Asxz € R =z € 2Q. fo(x) =0, Vo € R. This implies [|f(z)] dz = 0,
which is a contradiction! Hence, there exists a constant canepending only

on n, such that if x € Q) then z € cnR Therefore,
o) do < S [ ()] do < M f(a),
\R!/ | nR\

cnR
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and so, M fo(y) < "M f(x) for any y € Q. Thus,
ﬁ@/]%fg(y)‘S dy < M f(z)°.

Now, for any cube @),

1 )0 T+ — z))° dx
,Q|Q/Mf<>d |Q,/Mf1 d+‘Q| (Mfo(z))’ d

< 2CsMf(2)° + M f(z)°
— CMf(a:)é.

This proves (1).

2. For w € Ay, by reverse Holder inequality 3 € > 0 such that

1

o)< fro

And for any cube @, for a.e x € ), we have

|@!/ 7) dz < Culz).

Therefore for a.e x € ), we get

ﬁ/wlﬁ(aj) dx < Cw(x),
Q

which implies for a.e x € R",

(Mwlﬁ(x))%*é < Cw(x).
Let f = w!'™ and § = 1+,sovvehaver( 1)’ <
By Lebesgue differentiation theorem w'™¢(z) < Mw!'™(z) = M f(z), so
w(z) < (Mf(z))°. Therefore, for a.e x € R, w(x) < (Mf(x))° < Cw(x).
Now let K(x) = % Note that K(z) < 1 and K '(z) < C for a.e
r €R™ So K, K~! € L®(R"). Finally, we have w(z) = K (2)M f(z)°.

w(m) for a.e x € R™.
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4.5 An Extrapolation Theorem

In this section we discuss a remarkable result due to Rubio de Francia ([21]) that
deals with boundedness of operators on Muckenhoupt weighted L? spaces. We
recall that we have seen “interpolation” results, wherein we can discuss bounded-
ness of linear operators between two “end points”. We see that “extrapolation” is
also possible! Particularly, if it is known that an operator 7" is bounded on LP(w)
for a fixed p > 1 and each w € A,, then it becomes bounded on all L"-spaces

with all Muckenhoupt weights.

Theorem 4.16 (Rubio de Francia [21]). Fiz, 1 < r < co. If T is a bounded
operator on L™ (w) for any w € A,., with operator norm depending only on the A,

constant of w, then T is bounded on LP(w), for any 1 < p < oo, and w € A,,.

Proof.  We first show that if 1 < ¢ <7 and w € A; then T is bounded on L?(w).
By Theorem we know that the function (Mf)% € Ay sincer —g<r—1,
and by Proposition [4.4] w(M f)?™" € A,. Therefore,

/ T (@) () d

= [T @) (@) () da

Rn

= / T f (2)|4(M f ()~ =D (M f ()"0 0w (2) "w ()"~ da

R™
a/r (r—q)/r

< | [Irr@re@orsaya || o)) d

n

q/r (r—q)/r
<c / @) () (M f (@) da / (@) [w(z) da

The last inequality follows because T is bounded operator on L" ((w)(M f)?7")
and M is strong (¢, ¢) on LY(w), for w € A,. We also have that |f(z)| < |M f(x)]

a.e. and ¢ —r < 0. So, Mf(x)T" < |f(x)]?" a.e. The above inequality now



CHAPTER 4. MUCKENHOUPT WEIGHTS 105

become
[Tt a
Rn

q/r (r—q)/r
<c / (@) (@) f@)" de / (@) |(z) da

e / @) w(z) dr.

We now show that, given any 1 < p < oo and 1 < ¢ < min(p,r), T is bounded on
LP(w) for w € Ag. The desired result follows at once from this: given w € A,,
by Corollary there exists ¢ > 1 such that w € A% and so T' is bounded on
LP(w).

Let us fix a w € A%' Then, by duality there exists a non-negative u € L®/9"(w)

with ||ul|(p/qy = 1 such that
a/p

/ Ti@)Pw() de | = / T (@) w(e)u(z) de.

For any s > 1, wu < (M (wu)®)Y*, and (M (wu)®)*/* € A;. This can be shown in

the following way: let K’ C R"™ be any compact set. Then,

/'LU(:U)su(x)sdxg /w(fﬂ)Slu(x)sw(x) dz
= /w<x>(81)p/w($) dwv ’ /U(:v)(p/q)’w(x)dx o

S
(r/a) . )
< 00. Since w € Ag, choosing a
q

As u € L(p/Q)/(w), (kfu(x)(p/q)/w(x)dx>
proper s we have w607 ¢ Ae. Therefore wiHe=Dp ¢ L} (R™). So (wu)® €
L} (R™). Now by using Theorem [4.15] we have (M (wu)®)'/* € A;. Therefore, by

loc

the first part of the proof we have

/ T ()" (z)u(z) de
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< / T ()| (M (wu)* (2))* de
]Rn
<c / F@)] (M (wu))

~c / @) ") (M () ) () 7/ d

q/p 1/(p/a)
<C /|f )[Pw(z /(M(wu)s)(p/qy/sw(x)(1—(p/q)’) dx

n

Since w € A,/,, by Proposition M, w' =P/ €Aw/q) Therefore, If we take s
sufficiently close to 1, w'~®/9" ¢ A(p/qy/s- Hence by Theorem m the second

integral is bounded by
C/(wu)(p/q)/ 1=/ Jr < co.

Rn
So, we have
qa/p

[Irr@pu) az) - = [ 105 @l) d

n R

<c( [ir@ruw a

q/p

4.6 Strong A, weights

We have introduced the strong maximal function in Chapter This operator
satisfies weighted norm inequalities with weights analogous to A, weights. These
weights are known as “strong” A, weights. The collection of all such weights is
denoted as A;. The strong A, condition is the following: w € Ay, for 1 < p < oo,

if for any rectangle R with sides parallel to the co-ordinate axes,
p—1

%m/w(x) dz %m/w(x)lp/ dz <C,
R R
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where C'is independent of R. A non-negative locally integrable function w € Aj
if for almost every z € R"”,

Mow(z) < Cw(x).
We have seen that Hardy-Littlewood maximal operator is bounded on LP(w)

space, for 1 < p < co. Similar result is true for the strong maximal function.

Theorem 4.17 ([7]). For 1 < p < oo, M, is bounded on L (w) if and only if

*
weAp.

Another interesting fact about “strong” A, weights is given by the following
result. It gives a connection of the n-dimensional strong A, weights with the
one-dimensional A, weights. The result is of importance in proving the higher

dimensional analogue of the Marcinkiewicz multiplier theorem (see Chapter @

Theorem 4.18 ([7]). If w € A}, 1 < p < oo, then for each i € {1,2,--- ,n},
w(Ty, - T, Tip1, - -+, Tp) Salisfies one-dimensional A, condition with a uni-

form constant.



CHAPTER b

Calderén-Zygmund Theory

In this chapter, we begin our study of translation invariant operators. As men-
tioned earlier, we are interested in operators of convolution type. That is, opera-
tors T' that act as T'f = K « f for a fixed kernel K. While in general, the kernel
K can be a distribution (generalized function), we deal with only those kernels
that come from locally integrable functions.

Our aim is to get sufficient conditions on K that make the operator T :
LP(R™) — LP(R"™) bounded. To this end, we first look at a prototypical operator,

namely the Hilbert transform.

5.1 Hilbert transform

In this section we deal with a basic convolution type operator. As mentioned in
the introduction of this chapter, our goal is to find sufficient conditions on the
kernel K so that T becomes LP bounded. Let us, for some time, become more

restrictive and demand that T also commutes with dilations. That is , if for A > 0,

108
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hf(x) = X"f(x/N) is the dilation of f by A, we require 5, T'f = Td,f. Let us
try and use the definitions of 7" and J) to get some preliminary observations on

K. We write that
(Toxf)(z) = (K % xf)(x)

/Kx— (6:/)(y) dy

= / K (@, 5) fly/NA" dy

~ [ K= 25w v

On the other hand (0,Tf)(z) = X" [ K(§¥ —y)f(y) dy. It is clear that if
R
K(Az) = A"K(z), then T' commutes with dilation. Functions satisfying such a

7

relation are called “homogeneous of degree —n”.

with dilations have kernel of the form K(z) = K (| |x||ﬁ> = K/l - Therefore

[l|™

Particularly , if 7' commutes

the typical convolution operators that commutes with dilations have kernel of the
form K(x) = %, where (Q is a function defined on S*~*. Such operators are
called singular integrals, and their boundedness was first studied by Calderén and
Zygmund in [4].

If we restrict our attention to R, then S = {£1}. One example of this

1 _ son(e)

desired kernel in this case is K(z) = R We now begin studying this

kernel.

5.1.1 The principal value of 1/z

We wish to integrate functions against % However in general, this is not possible
since % has a non-integrable singularity at 0. Therefore, any integral involving
% is an improper integral. We are interested in its Cauchy principle value. We

denote by p.V.% the principle value distribution of %, defined as

pov. —(p) = lim z, (5.1)
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for p € S(R). We first show that this expression is well defined. To see this, we
first rewrite Equation ({5.1]) in the following way.

1 . p(z) ¢(z)
V.— = lim — dx — dux.
p.v.—(¢p) +/|x>1

T 0 Jeclzl<1 T T

Now we see that since the function @ is odd, we have [ 0 gz = 0.
e<|z|<l =

Therefore,
1 _
T |z|>1

0 Jeclz|<1 T T
We know that ¢ is smooth. Hence by the mean value theorem, we get,

1 : ¢(x)
V.— = x)) dx — duz,
pv. 2 () degm> +/

x lz[>1 T
where, {(z) = t, - x, for some t, € (0,1). Therefore

<[ el LA;>1—139 dz
<[] [ 200

<[ weepan sl [ s

< C (Il + ol ) < 00

So we get that p.v.% is a tempered distribution.

jS

‘p'Vé(@)

Next proposition we see that p.v.% can be seen as a (distributional) limit of certain

“nice” function.

Proposition 5.1. Consider Qy(x) = %712 Then, Vo € S(R), we have
. 1 1
th_I{lo/Qt ) do = —b-v E(‘P)

Proof. For each € > 0, the functions ¢(z) = 7 x{jz/>¢} 1S bounded and define

a tempered distribution in the following way

/M z)dr = /{|z>6} @ dx

1
for o € S(R). By the definition of p.v.—, we have Vyp € S(R),
T

1

Jim () = p.v';(cp)-
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Therefore it suffices to prove that Vo € S'(R),

tim, (@~ 200 ) ()=
Let us fix ¢ € S(R). Then,

WQ—WWF]”“MM—AMﬂﬂm

12 + 22 x
R

zo(r) / x 1)
= d + - — dz.
L|<t 2 + 22 x| >t (t2 + 2?2 X 90(1.) o

By substituting x = ty, we obtain,

| volty) g, _ /| | y(@ﬂdy

wl<1 1+ 92 1+ y?)

zp(tr) _ zp(0) wtz) _ _»(0)

and hm Also, we notice

Now we see that tli;no 1722 = Tira? L H(14e?) T w(l4a?)
that, Vo € (—1 1) we have xl“jr(tﬁ) < < + > and for |x| > 1 we have (ﬁ(fc)g) < (14&;2)-

We know that —— is integrable on R. Hence by using the dominated convergence

theorem, we get
. ye(ty) . p(ty)
lim (7@ — ¢ m/ >dy — hm/ ————dy
t—>0( bt t)< ) t—0 lyl<1 1 + y t—0 |y‘>1 y(l + y2>

_ / y(0) dy — / (0) dy.
<1 1+ 92 w1 y(1+9?)

Since the integrand of both the integrals above are odd functions on a symmetric

domain, we have,

Jing (7 Q0 — 1) () = 0

5.1.2 Definition and properties of Hilbert transform

As a consequence Proposition [5.1 we define Hilbert transform.

Definition 5.1. Let f € S(R), then we define its Hilbert transform by one of the

following expressions:
_ L1y flz—y)
ly|>e Y
Equivalently, we can define H f = p.v.% x f = tlimo Qi x f.
—

dy, (5.2)
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Next, we see that Hilbert transform can be defined in terms of Fourier

transform.

Proposition 5.2. For f € S(R) we have
HJ(€) = ~isgn(€)(©). (5.3)

Remark 5.1. Proposition [5.2| is the starting point of our study of multipliers.
In chapter 6 we deal with operator T" that satisfy f\f =m f , for a “nice” function

m. Indeed Hilbert transform is a prototypical example.

Next, we see a few basic properties of the Hilbert transform. All of them

are direct consequence of definition and Proposition [5.2]
Lemma 5.3. Let f,g € L?>(R). Then, we have the following

1' H<Hf) = _f7

2. Hf = —Hf, where f(m) = f(—x),

H
8. [Hf(x) g(z)dx = Il{f(x) - Hg(z)dz.
Proof.

1. Taking the Fourier transform

—

H(Hf) = —isgn(€)H[(€)
= (—isgn(€))*f(€)
= — (&)

Since the Fourier transform on L?(RR) is an isometry, we have, H(H f) = —f.

2. By definition,

Hf(x) = Hf(~x)
1. f(=z—y) d

= — lim
7T e—0

Yy
ly|>e Yy
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1 ~
T e—0 |y‘>€ y

1 ol
T N e
T e—0 |z|>€ —z

= —H[(x).

3. Using the duality of Fourier transform, and the second part of this Lemma

we have the following.
[ Hi@gte) o = [ E@GE) do

~ o~

—isgn(§) f(£)g(&) dg

5.1.3 [P — L? boundedness of Hilbert transform

We have already seen that Hilbert transform is an isometry on L?(R). We now

ask whether it is bounded on LP(R) for p > 1.
Theorem 5.4. For f € S(R), the following assertions are true:

1. H is weak (1,1). That is, 3C' > 0such that Y\ > 0.
C
{z € R: |Hf(@)] > A} < [l
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2. H is strong (p,p), for any 1 < p < oo. That is 3C, > 0 such that
H fllp < Coll fllp-
Proof.

1. Let A > 0 be fixed and f € S(R) be non-negative. We form the Calderén-
Zygmund decomposition of f at the height A\. This gives a sequence of

disjoint intervals {I;},en such that

flz) < Aforae z¢gQ= OIJ’ (5.4)
j=1

90 < {lIf1l, (5.5)

>\<m/f 2)dr < 2\, (5.6)

Given this decomposition of R, we now decompose f = g + b, where g and

b are defined by

f(x), ife ¢ Q.
g(x) = ;
a7 [ f0)y. itreq;
And, J
) =D _bi(), (5.7
=1
where,

by(z) = ( S / 1 dy>xf 2). (5:8)

Then g(z) < 2\ almost everywhere, and b; is supported on /; and has zero
integral : Since H is linear, we have {x € R : |[Hf(z)| > \} C {z € R :
|Hg(z)| > A\/2} U{z € R: |Hb(x)| > A\/2}. So, we have,
{z eR:[Hf(x)] > A} < {z e R: [Hg(x)] > A/2}|
+ [{z € R: |Hb(x)| > N/2}|. (5.9)
We estimate the first term of the above inequality in the following way:

I@GRWH%M>AMH§@MV4HM@WM
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Using the fact that ||Hgl||]2 = ||g||]2 we can write
o € R [Hg(o)] > M2} < 2/ [ lo(o)d,
R
Since |g(x)| < 2, almost everywhere, the above inequality becomes

IweRﬂH%M>AﬂHS§/m®HM- (5.10)

As [g(z)dz = [ f(z)dz and f is non-negative, we get
R R

o eRslHg@)] > N <3 [ @) de=TIAlk (5a)

To estimate the “bad part” in Inequality (5.9, we consider the following.

Let 21; be the interval with the same center as I; and twice the length, and

let Q* = |J 21;. Then, from Inequality |D we have
j=1
Uz

Jj=1

2
o) <2(|J 5| =209 < Sl (512)

Now, we see that,
{z e R:|Hb(x)] > A/2}] < {2 € Q" : [Hb(z)| > A/2}]
+ [z & @« |[Hb(x)| > A/2}|
< |+ o & @« [Hb(z)] > A/2}

From Inequality (5.12)), we get
2 *
o € R [Hb(2)] > A/2} < SIflls + [{z & @« [Hb(x)| > A/2}]

2 2
sﬂum+XAWUMme

We know that > b; and > Hb; converge to b and Hb in L*.Thus, there
: b=

j=1

ng

is a subsequence T, = > Hb; such that T, — Hb pointwise almost
j=1

everywhere. Therefore, for almost every x € R, we have

n,

k
j=

|Hb(z)| =
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s

< lim > [Hbj(x)|

=1

k—> o0
< Z |Hb;(x
j=1

[ m@i< [ S @) ds
R\Q* R\Q* 27
Now we have

2 2 >
IWGRWHWM>AMH§%VM+XAW}:W%@MM.(&m
2
Since 21; € Q*. We have
[ i@l o< [ i) s

R\Q* R\21;
for every j € N. Therefore to complete the proof of the weak (1, 1) inequal-

Therefore,

ity it suffices to show that

}j/ |Hb,(2)|dx < C|| £l
R\21,

Note that, Since = ¢ 2] and supp(b;) C I;, we have
b
I

Suppose the center of ; is ¢;. Then,
b
/ biy) dy‘ de.
-y

[t [
R\21, IR\QI

Since b; has zero integral, we have fIv ;dy = 0, and we can write
J J

1 1
Hb;(z dx—/ /by< — )dy
L, = [ j<>x_y .
/ /|b _ly—el dy dz.
R\21; |$ - y||x — ¢l

Now, by applying Fubini’s theorem we arrive at

ly — ¢
Hb;(x de/ bi(y / — 2 7 _dz | dy.
/R\2Ij| i()l 59)] ( R\2I [z —yllz — ¢

|z— 07‘

dx

Asy € I; and = € 21;, we have |y —¢,| < Uil and |z —y| > . Therefore
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ly—c;] 1251
lz—yllz—c;] |z —cj]?

I
[om@ies [won( [ Aoar)a e
R\21; I R\21; |z — ¢

Let 2I; = (a,b) where a,b € R with a < b. Then

oo
/ |51 / G |11
R\21, |x—c]|2 ¢ —x|2 \x—cj|2

|fj| N |15
ci—a b—g
_ 4l(b—a)
(cj—a)(b—cj)

=2,

. we have

/ LY (5.15)
R

\21; |z — ¢j]?
where the last inequality follows from the fact that (b — a) = 2|[;| and
(¢; —a) = (b—c¢;j) = |I;|. Therefore from Inequality (5.14), we get

[t <2 [ i (5.16)
R\27, I;
Now note that

/Ij|bj(y)|dy: ; ( y) II!/f dx) X, (y )‘dy
< / f(y)ldy + / F()ldy
—» / £ () ldy.

That is, using the above observation in Inequality (5.16]) we get

/ |Hb;(2)]d < 4 / F@)ldy.
R\21; I;

=14 d
/Do F)ldy

Therefore
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34/U@mw
R

=4[ f]x-
So from ((5.13))
2 8 10
[{z € R+ [Hb(z)] > A/2}] < SIflle + [ fll = S If]]L (5.17)

Now by using Inequalities ([5.9)), (5.10]) and (5.17)) we have,

8 10 18
R:|H A<=+ — =— :
o e Rlf@> A< (545 ) 171 = S0l
This completes the proof of weak (1,1) boundedness of the Hilbert Trans-

form.

2. We have shown that H is weak (1,1) and strong (2,2). Therefore by

Marcinkiewicz interpolation theorem we have strong (p,p) inequality for
1 < p < 2. Immediately we see that H can be extended to LP(R) for

1 < p <2, and is in fact bounded. If p > 2, then p’ < 2 and we have

||Hf||p:sup{ /Hf(x)-g(a:)dx gl < 1}.
R
Now by using part (3) of Lemma ({5.3]) we have

1Efl, = p{\ [ fo)- Hateyie ol <1

< Ifllpsup{l[Hgll, : llgll, <1}
< Cyllfllp-
in the last inequality we have used the fact that H : LP(R) — LP(R) is

bounded for 1 < p < 2.

]

Remark 5.2. Due to the strong (p, p) inequalities of the Hilbert transform V1 <
p < oo we can continuously extend H to LP(R). We now see that it is also
possible when p = 1.

Let f € L'(R) and (f,)nen be a sequence of functions in S(R) that converges
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to f in L}(R). By using weak (1,1) inequality of H, we have for any € > 0,
1
Ho € R [(Hfo = Hfn)(@)] > €} < Zllfa = funllr.
Since (fn)nen is Cauchy in L'(R), {z € R : |(Hf, — Hfn)(z)] > €}| — 0 as
m,n — 00. So, (H fn)nen is Cauchy sequence in measure. Therefore (H f,,)nen

converges to a measurable function in measure which we define to be the Hilbert

transform of f. However, we do not claim that Hf € L'(R) for f € L'(R).

5.1.4 Pointwise convergence of truncated integrals

We have already seen that the definition of Hilbert transform can be extended
to the functions in LP(R). However, this extension gives us no idea of point
evaluation of Hf as a function. Here we see that Equation is true for
almost every x € R for any f € LP(R). To this end, we notice that the function

iX{\y|>e} € LY(R), for any 1 < ¢ < co. Hence the function

1 _
T Jly|>e Y
is well defined for any f € LP(R), when 1 < p < oco. Now we see that
6 )A<s> i S—
X € = lm Y
) > N=—=00 Jecly|<N Y
— lim sin(2my¢) dy
N—o0 e<|y|<N Y
NI sin (t)

= —2isgn(§) lim dt.

N=00 Joneg) 1
The last integral is uniformly bounded. We know that H.f = GX{W‘X}) x f.
Hence using Plancheral theorem, strong (2,2) inequality for H. holds with the
constant independent of e. We can also prove the weak (1, 1) inequality essentially
to the proof of Theorem [5.4]
Now we see that when f € LP(R), is fixed then the family (H.f) converges

to Hf in LP(R) if p > 1 and in measure if p = 1. Indeed, if we fix a sequence
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(fa)nen € S(R) converging to f in LP, then we have
|Hef = Hfllp < [[Hef = Hefullp + [[Hefu = H fullp + |[[H fo = HFl,
< Cllfa = fllp + 1Hefo = Hfnllp + Cllfn = fllp-

Now, since f, € S(R), we have,

Hf, — H.f, = lim /@dy—/wdy

n—s=_0 Yy
ly|>n ly|>e
= lim —f(a; —Y) dy
n—:0 Yy
n<ly|<e
— im ﬂx—w—f@)®
n—0 |y ’
n<ly|<e

where the last equality follows from the fact that

1
/ —dy =0,Yn > 0.
)

n<ly|<e
=0 v
n<ly|<e
lyl  sup  [f'(z)]
lim z€(x—e€,x+€) dy
=0 [yl
n<ly|<e
=2 sup |f'(2)].
z€(x—e€,x+€)
Particularly, for € < 1, we have
sup  |f'()l < sup |f(2)] € S(R).
z€(x—e,x+e€) z€(z—1,x+1)
p
~1Han—ftﬁM§=u/@@p< sup Lf@ﬂ) dz
z€(x—e€,x+€)
]Rn
p
= (a)’)| sup |f'(2)|
z€(x—e,x+e€) p

That is
Hef = Hfll, < CUfu— fllp +€)-

Now, given 7 > 0, choose ng € N such that ||f,, — fll, < z7t5 and € =
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min{1, 7}. Then, V0 < € < €,

Ui n
Hf—-H :
1.5 = 151l < € (505 + g ) <
.lim H . f = Hf in the LP-norm.

T e—50

1+C

Definition 5.2. Let f € LP(R). We define a maximal operator H* as
H* f(z) = sup |Hf(z)].

e>0

We want to show that H* is strong (p, p) for any ,1 < p < co. To that end,

we need the following results.

Lemma 5.5. If f € S(R) then H* f(x) < M(H f)(x) + CM f(z) for some con-
stant C' > 0, independent of f.

Proof. 'We show that for each € > 0, H, satisfies the inequality with a constant
independent of €. Let ¢ € S(R) be non-negative, even, decreasing on (0, 00),

supported on {z € R : |z| < 1} with |[¢||1 = 1. Let ¢.(z) = ¢ "p(z/€). Then,

ixm>q@)=(pvi*w%(@*—BXW>@@)—(DVi*¢J(w}~ (5.19)

Let us find a pointwise estimate for the term [iX{IyIX} — (pv.2x o) (y)} CTtis
sufficient to find the estimate when ¢ = 1 since it is follows for any other € by
dilation.

If |y| > 1, then,

1 1 1
- — (p.v.— * gp) (y)‘ = ‘— — lim de‘
Y Z Y

6—0 |z|>d y—x

Since ¢ is supported on {z € R : |z < 3}, we have
1 1 1 x
- — (p.v.—*gp) (y)’:‘——/ de’
Yy x lz|<i ¥ — T
| G5
|x\<f y—x

<[ s,
)<t ylly — 2|
As |z| < 1, we have

i eiee) o)< g [ Wi




CHAPTER 5. CALDERON-ZYGMUND THEORY 122

Also since |z| < £, and |y| > 1, we have 2] < $so |1 —x/y| > L. Therefore,

1 1 2 1
——|pvimxp ) (y)] < —/ p(z)de = —,
‘y ( T ) 2Y% Jya)<L y?

since ||¢||1 = 1. That is, in this case,

1 1 C
RS (p-V-; * we) (y)’ ST (5.20)

for some different constant C. If |y| < 1, then,

1 — —
 lim / ey =) 4 / ply —2)|
=0 Jo<jel<2 T le|>2 T

1
;X1 = (v ) ()
For |y| < 1 and |z| > 2 we have |y — x| > 1. Therefore p(y — z) = 0. So,

fl$|>2 @ = 0. Also f\w|<2 % dxr = 0. Hence, using the mean value theorem, we
get
1 1 : ply — ) — ¢(y)
— — (p.v.— =11 d
‘yX{y|>1} (p-v.— % @(y)‘ Jim e . x
— | 1im ¢ (€(2))de
0—0 Js<jz|<2
—| [ Sl
|z|<2

< /| REGEINE

< Cl¢loo-

Hence, in this case, we have

1 1
, vl>er — (p-V-; * ¢e) ()| <C. (5.21)
Note that if |y| > 1 then § < 1_7@2 < 1. Therefore we have y% < % For |y| < 1

we have 1 < 1+ y? < 2 therefore 2 < —L,. So, C < 2%, Therefore from

2 1+y2° T+y?°
Inequality , we have,
1 1 C
, Xlol>a) ~ <p-V-5 * soe) (y)’ <7 7
Now, from Equation , we arrive at

1 < 1 ( )+ C
- a < [pv.=xq, S
yX{Iy\>} PV x P )Y 1+ 42

Now taking convolution with f, we get

(xweas) @ < ((pvgwe) s F) @+ (1)@ G2
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Now,

((pvd e« 7) @ = (bt f0) (@) = (T 0000

By using Proposition 3.1, we have conclude

((@ \ p.vé) ; f) (z)

‘( ¢ *f) (v)| < CMf(2).

1492
Therefore from Inequality ([5.22)), we get
1
75 = | (Sxuma + £) )] < M) + €M F o),

This completes the proof. ]

< M(H f(x)).

Also, we have,

We now ready to show that H* is bounded on LP(R), for 1 < p < 0.

Theorem 5.6. The operator H* is strong (p,p) and weak (1,1).

Proof. From Lemma [5.5, we get for 1 < p < oo,
H* fll, < [[MH )], + ClM ]
By using strong (p, p) boundedness of M and H, we get,

H* I, < Cl -
That is, H* is strong (p, p) where 1 < p < o0.
Now we show that H* is weak (1,1). It is enough to consider f > 0. For a fix
A > 0, form the Calderén-Zygmund decomposition of f at height \. Then we can

write f as

j=1

Where g and b; are as mentioned in Theorem [5.4 Now H*f < H*g + H*D.

Therefore we have

HreR: H" f(z) > A} <

A
{x eR: Hb(z) > 5}’
(5.23)
As H* is strong (2,2), using an argument similar to that in the Theorem [5.4] we

{xeR:H*g(x) > %}' +
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get

{xER:H*g(x)>%H §C§||f||1. (5.24)

Let I;, 21;, Q and Q* are as in the Theorem We get a similar inequality as
before from the Theorem [5.4. That is,

{z e R:[Hb(z)] > A/2}] < ;Hflh + e € Q7 [H ()| > A2} (5.25)

Now we estimate the second term of Inequality (5.25)). To make the notation less
cumbersome, we replace % by A and show that

o g @ [Hb()] > A} < Sl

(5.26)
Let x & Q* be fixed and € > 0. Then one of the following holds:

L. (z—ex+e€e) NI =1
2. (z—ex+e)NI; =0

3. x—ecljorx+ecl;.

For case (1), if |[y| > €, then 2 —y > z+ € or v —y < x — €. Therefore,

r—y & (r—ex+e). Sox—y ¢l Since b; is supported on [;, we must have
bj(x —y) =0 on |y| > €. Therefore

bilr —
H.b;(z) :/ J(‘”_y)dy —0.
ly|>e Y
Now for the second case we show that Hb; = H.b;. If this is not true, then 3n > 0
such that for any 7 >0, 30 <4 < 7,

bilr —
ly[>6

Y
Choosing 7 = €, we have
bz —
Hebj _/ Mdy =0,
ly|>5 Y
which is a contradiction! Therefore Hb; = H.bj, when (x — e,z +¢) N I; = 0.
Now we have
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As |y| > € and is supported on I;, we have
b;(y)
Hoib(z) = | “2qy,
i (@) /Ij Z—y Y
Also, f] y)dy = 0. So
b; b;
o - [ (L b0,
L\T—Yy T

J

Therefore,
1 1
H.b; < — (y)|dy. 5.27
\g@H_AQHy o lay (5.27)
As |y—c]|< L and |z — y| > 22 C"
y y| |11
Hbj(z)| < dy = ————||b;|]1- 5.28
[Huby () /m Wl = 2l (5.28)
For case (3), as « € Q*, I; C (v — 3¢,z + 3¢) can be shown with a figure, (see
above) and for all y € I, |z — y| > 5. Therefore,
b Y 3 z+3e
L e L (5.29)
5 [z =yl € Joae

If we sum over all j's | using Inequalities ((5.28)) and ((5.29)) we have,

|H.b(x |<Z|Hb

x+36
—th mmuﬁ-Ej/ y)| dy

For the first term of the above inequality, the sum runs over all j’s for which case

(2) holds. For the second term, sum is running over j’s for which case (3) holds.
Now by Equation ((5.7)) and the fact that (I;);en is a pairwise disjoint collection,

we have
zr+3e

3
'Hb'<iﬁ Pmm ‘/ Ib(y)| dy
J x

—3e
Note that - f“g’e |b(y)|dy < CMb( ) we have
|15
|Heb( |<Z| |2||bj!|1+CMb(l‘)-
¢
It follows from this that,

H{x & QO : H*b(z) > \}|
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_ngm* Z’ JP ]b|\1>;\}'+ {xeR:Mb(x)>%}‘

|15 ¢
< — ———||b;||1 dx + —||b]|1-
A/R\m;m_cjlgu il o+ el
The last inequality follows from the fact that M is weak (1,1). As R\Q* C R\ 2,

we have,
o g s HYa >A}r<2/ T eellh + Sl
From Equation (5 we get
|{x§m*:H*b<x>>A}|s%ZH@Hw%ZHw
j=1 Jj=1

c C
ol = Sl

<

Therefore,

A Cy
{ego >3} < S

This completes the proof. ]

We have seen that if f € LP(R) then H.f converges to Hf in L? norm. The

following theorem shows that, we also have pointwise convergence.

Theorem 5.7. Given f € LP(R), for 1 < p < oo, we have

Hf(x)= li_rrgo H.f(z) a.ex € R. (5.30)

Proof. Since H.f converges to H f in LP(R), there exists a subsequence {H,, f}

such that Equation(5.30) holds. We only need to show that lim0 H.f(x) ex-
e—>

ists for almost every x € R. From Theorem H* is weak (p,p) for 1 <
p < oo. Therefore by using the Theorem we have the set {f € LP(R) :
E1i_r1>10 H.f(z) exists a.e} is closed. For the functions in S(R) this limit exists al-
most everywhere. Therefore S(R) C {f € L?(R) : 61i_r)nO H.f(x) exists a.e}. Since
S(R) is dense in LP(R), we must have {f € LP(R) : Eli_r)no H.f(z) exists a.e } =
IP(R). O
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5.2 Calderén-Zygmund operator

Let us now observe a few things from our study of Hilbert transform. To show L”
boundedness, it was enough to show L? boundedness and weak (1,1) inequality.
The desired result then followed by interpolation argument. For the L? bounded-
ness of Hilbert transform, all that was needed was an observation about its Fourier
transform. On the other hand, for weak (1, 1) bound, Calderén-Zygmuund decom-
position together with certain properties of the function %, played an important
role.

In this section we pick up the study of general convolution type operator,
Tf = K * f. Again our goal is to see if T is bounded on LP(R™). To this end,
we try to mimic the proof of boundedness of Hilbert transform. The conditions

required to do so are given in the next theorem.

Theorem 5.8 (Calderon-Zygmund). Let K be locally integrable function on R™\

{0} such that its Fourier transform is a function on R", and
K| <A
Moreover, assume that there is some B > 0 such that for all y € R™, we have,
/ |K(z —y) — K(x)| de < B. (5.31)
Then for any 1 < p < o<|32,|>u2)f|have a constant C, > 0 such that Vf € LP(R"),
1 % Flly < Cyllf 1l
Further, we also have a constant C > 0 such that ¥Vf € L'(R"),
o e R K » 7)) > M < Sl

Proof. Let f € S(R"), and let Tf = K * f. First we show that 7" is bounded on
L2(R™). Note that, since K& (¢) is bounded, using the Plancheral theorem, we get,
T fll2 = [ fllo = |[K * fll2 = [[K(&) f(E)l]2 < Allfll2 = Allf]]2-

Next, we prove weak (1, 1) boundedness of T'. As before we employ the Calderén-

Zygmund decomposition. Let A > 0 be fixed and f € L'(R") be positive. This
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gives a sequence of disjoint dyadic cubes {Q;};en such that

flz) < Xforae x¢&Q= GQJ"
j=1

1
20 < I (5.32)
and
Ao — [ f(a) de < 27a (5.33)
|Q]‘ Qj
Given this decomposition of R", we write f = g + b, where,
f(), if o ¢ Q.
g(x) = ’
o1 fwdy, ifeeQ;
Qj
And,
b(x) =Y bj(x), (5.34)
j=1
where,
1
bi(x) = | f(z) =57 | fwdy | xq,(z).
|Q]| Qj

We know that for almost every = € R", we have
g(x) <2"A. (5.35)

Also, we have that b; is supported on ); and has zero integral. Using the linearity

of T" we get,
{m eR": |Tf(x)] > /\H < Hx eR": |Tg(x)| > %}’
+ Hx e R" : |Tb(z)| > %H (5.36)

From the L?-boundedness of T', we have

A 2\? 4A
H ER": [Ty(a)] > 5}\ < (x) [ ar <25 [l a
Rn Rn
Using Inequality ([5.35)) we have
. A ont+2 4\
zeR":|Tg(z)| > 5 | < |g(2)| dx
Rn

2 A2

2n+2A
<=2 1@l
R'l’l
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Last inequality follows from the fact that ||g||1 = ||f]|1. So we have
A ont2 g
o e R Tg(o)] > 5} < 27 [ 17@)] do, (5.37)

Now let @ be the same center as (; where sides are 2y/n times larger and let
o=Je.
jEN
Then,
2n n/2

] < 2"n"%|Q] < 111

Now,

{x e R": |Tb(x)| > %}’

A A
< {IE e QO |Th(z)| > §}| + {x & Q: |Th(x)| > 5}‘
* * A

< || + {:chQ | Th(x)] >§H

oMy n/2
<20+ 2 / Th(z)| da

R\ Q*

2n n/2 o0
<S5 L, T b

2 "/2||f|| Z/ Tb,(@)] d
< + x

) e

onn n/2

< ||f||1+AZ/ 7o) s

That is we get

A nn/2
{xGR”:|Tb( ) > = H ’ |!f||1+AZ/n Tb;(x)] dz  (5.38)

\Qj

Now, we observe that
Th;(z) = K = bj( /Ka:— dy—/K:c— y) dy.

Here the last inequality follows from the fact that bj is supported on @);. Now,

because b; has zero integral, we have

/K(ﬂf —¢;)bi(y) dy =0,



CHAPTER 5. CALDERON-ZYGMUND THEORY 130

where ¢; is the center of the cube @);. Therefore,

Th(a) = 1K@ ~y) = Kl - &) )
This implies “

IThy(2)] < / K(x —y) - K — ¢;)||b;()] dy.
Qj

Therefore,

[omyeiars [ K@= p - K@= o))y | d
RA\Q R\Q; \ S

-/ ( / |K<x—y>—f<<x—cj>|dx) b;(y) dy. (5.39)
4 R7\Q;

i
It is easily seen that

R™\Q C {z € R : [z — ;| > 2ly — o).
Hence,

|K(z—y) — K(z —¢)| do
M\Qj

N S~

|K(z —y) = K(z — ¢;)| dz

[a—c; [>2ly—c;|

IA

[K((z —¢)) = (y —¢))) = K(z — ;)| dw

lz—c;j]>2ly—c;]
<B
The last inequality follows from the Condition (5.31)) in the hypothesis of the
theorem and a simple change of variable. Now from Inequality (5.39) we have,

[ mn@las< s [
RO\Q

Qj
Therefore from Inequality ([5.38)) we get

{xemwwg}\ P+ 22y [ G0

—
=1 Q;
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Now, we see that

Q[|bj<x>|dxsﬂ F() |Q]|/f dy | xe,@)

/|f )| dz + |Q]/|f )y | 10

<2/\f )| dy.

Using above observations in Inequallty - we get

A 2n n/2
foew s> 3} < 2250501+ 2 [l

1
J= Qj

21/ L 4B
< - ) 171l
Using the above inequality and Inequality (5.37)) in Inequality (5.36]) we conclude

dx

that 7" is weak (1,1). Note that we already proved that T is strong (2,2). There-
fore by using Marcinkiewicz interpolation theorem, T is bounded on LP(R"), for
any 1 < p < 2. To prove the result for p > 2 we use a duality arguments. For
the same, let us first study the transpose of T. For f,g € S(R), whence we can
use Fubini’s theorem, we have,

[ Ti@gta) e = [ \R/ Kz —y)f(y) dy | g(z) do

R™ R™

1[ \J

]

Rn \]Rn

RT’L
where K(z) = K(—z). Therefore transpose of the operator T is Ttg = K .

We show that K satisfies the hypothesis given in the theorem. Since K K we
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have for all £ € R™,
K(©)] = IR(-9)] < A
Also,
[ Re-p-R@ldi= [ K- - Kol ds
|z[>2]y]

|z|>2]y|
:/ |K(x+y) — K(z)| de < B.
|z|>2]y|

Therefore from the observation above, T* is also bounded on LP(R"), for any

1 < p < 2. Thus for p > 2, we have

111, = p{\ [ 110t @

Nglly < 1}

~aup {\ [ rriate) as

gl <1}
Using Holder’s inequality, we get,

ITl], < sup {||f||p||Ttg||pf Nglly < 1}

< ||f||psup{||T||||9||p' gl < 1}

< Ol -

This completes the proof. O

The Condition known as Hormander condition . It is to be noticed that
Hormander condition is crucial to the proof of Theorem [5.8] while the condition
on Fourier transform of K for our boundedness result. It is the Hormander
condition that gives way to the proof. This generalises the idea! If a convolution
type operator is known to be bounded, then the only condition we require is
the Hormander condition. However, we observe that it has nothing to do with
convolution kernel! In fact, it can be written for function K (z,y) of two variables.
This observation motivates us to generalize convolution-type operator satisfying
the hypothesis of Theorem [5.8] Let us begin by formally defining a kernel. We
denote

A:={(z,x) € (R" xR")|x € R"}
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Definition 5.3 (Standard Kernel). A function K : (R* x R")\ A — C is a
standard kernel if there exists 6 > 0 and C' > 0 such that V(z,y) € (R" x R")\ A,

we have
‘K@ﬂﬂgﬁta? (5.41)
Ko~ K2 < 0 i oy o 2l (5.42)
Kry) — Ky <0270 o s ol —ul. (5.43)

|z —y[**?
Now we can define generalized Calderén-Zygmund operator in the following

way.

Definition 5.4 (Generalized Calderén-Zygmund Operator). An operator T' is

generalized Calderon-Zygmund operator if

1. T is bounded on L*(R™), and

2. there exists a standard kernel K such that for f € L*(R™) with compact

support, whenever x & supp (f),
7f) = [ Ke.)f) dy
’n

Before we start studying the LP-boundedness of Generalized Caldedén-
Zygmund operators, we consider the following easy result about their transpose.

It is helpful for the duality argument we wish to employ.

Lemma 5.9. Let T be a generalized Calderon-Zygmund operator with kernel
K. Then, its transpose T is also a generalized Calderén-Zygmund operator with

kernel K. Here, we define K (x,y) = K (y, ).

Proof. Since T is a Calderén-Zygmund operator, 7' is bounded on L? (R"). Tt is,
therefore, clear that 7" is bounded on L? (R™). Now, suppose f,g € L* (R") are
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of compact supports such that supp (f) Nsupp (¢) = 0. Then, we have,

!/f ) Tl dx_/Tﬂ@g@mx

:l/Tﬂ@(@m

Supp

/ /ny y)dy | g(z)dx

supp

:/f /K% z)dz | dy.

R
Now, fix g € L? (R") with compact support and = ¢ supp (g). We wish to show

I/K(aﬁ,y)g(y)dy

For this, consider an approximation to identity {y.},.,, where supp (¢.) C

that

B(0,¢). For instance, one may consider the family defined in Example
It is then clear that supp (7,¢.) C B (x,€), where 7, is the translation by x
and ¢ (z) = ¢ (—=z). Since supp (g) is compact, there is some ¢ > 0 such that
supp () Nsupp (g) = 0. Consequently, we have

fﬂ)zlig%/soe(x—y)Ttg(Z)dz

R"

We now generalize Theorem [5.8] to certain operators.

Theorem 5.10. Let T' be bounded operator on L*(R™), and let K be a function on
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(R™ xR™)\ A such that if f € LZ(R" has compact support, then for x & supp(f),

/ K(x,y)f
Further, suppose K also satisfies

/ K(z,y) — K(z,2)| < C
lz—y|>2|y—2z|

and,

/ K (z,y) — K(w,y)| < C.
|z—y|>2]|z—w

Then T is weak (1,1) and strong (p,p), for any 1 < p < co.

(5.44)

(5.45)

Proof. 'With the help of similar arguments, as those used in the proof of Theorem

.8 forming Calderon-Zygmund decomposition for function f at a height A and

using the fact that T is bounded on L?*(R™), it can be proved that for the good

part we have

{eer i) H_A/!f )| da.

Similarly for the bad part, we have,

{xER":|Tb( >|>AH = W“f”lﬂz/n

Now we note that if ¢ supp(b;) = @;, we have

\Q;

|Th,(x)| da.

/K >@=/K@wwwd
Qj

Since b; has zero mtegral, we can write

Thy(a) = [ (.9) = K(o.c)bo) dy
Qj
Therefore,

[ myaia— |
R™\Q; RM\Q;

/Qj(”“*y) — K(r,¢5)byy) dy] &

< / K (z,y) — K(z,¢)|lb;(y)] dy do

= b; K(z,y) — K(z,c;)|dz | dy.
Q[xy)(/w\@ (,9) ~ K(r.c,) ) y

Now, we know from the proof of the Theorem that R" \ Q5 C {z € R" :
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|z — ¢j| > 2|y — ¢;|}. Therefore, using condition (5.44), we have
[ Ky - K<
RM\Q?

Hence,

[ my@iar<c [
R™MQ;
Qj
The rest of the arguments to prove T' is weak (1, 1) are verbatim to the proof of

Theorem [5.8

It is given that 7" is strong (2, 2). Therefore by Marcinkeicz Interpolation theorem
T is strong (p,p) for 1 < p < 2. To prove T is strong (p, p) for p > 2, we use the
duality argument. From Lemma we know that T is a generalized Calderén-

Zygmund operator with kernel K. From Condition (5.45), we have,

/| |>2fe— ||[N((y’x) - Ky w) dy:/ |K(z,y) — K(w,y)| dy < C.

|z—y|>2|z—w]

Therefore K satisfies the condition (5.44) and hence T" is weak (1,1). As T
is bounded on L*(R™), T" is also bounded L?(R™). Therefore by Marcinkeicz
Interpolation theorem T* is bounded on LP(R™), for 1 < p < 2. Now the fact
that 7" is bounded on LP(R™) for p > 2 follows from duality arguments, used in
Theorem [5.8] O

We now see that a standard kernel satisfies the hypotheses of Theorem [5.10
Consequently generalized Calderoii-Zygmund operator are weak (1, 1) and strong

(p,p) for any 1 < p < o0,

Lemma 5.11. A standard kernel K satisfies conditions and (5.49).

Proof. We note that
ly — 2

|K(x,y)—K(x,z)|dx§C/ T dz
/|xy>2yz| a—yl>2ly—2| | — Y[+

rtdr
sn=1Jr>2ly—z| T

< Cly = 2|’ls" ] 3
r>2|y—z| T1+6



CHAPTER 5. CALDERON-ZYGMUND THEORY 137

=C.
Condition ((5.45)) is proved similarly. O

Now we can prove the following important result.

Theorem 5.12. A generalized Calderon-Zygmund operator T is bounded on
LP(R™), for 1 < p < oo and is weak (1,1).

Proof. Note that, with the help of Lemma|5.11] it is clear that 7" satisfies all the
hypothesis of Theorem [5.10, That completes the proof. ]

5.3 Weighted inequalities for Calderdn-
Zygmund operators

In this section we study the boundedness of (generalized) Calderdn-Zygmund
operators on weighted LP spaces. We keep our focus on Muckenhoupt weights,

which we have studied in Chapter 4. The following Lemma is crucial to us.

Lemma 5.13. If T is a Calderon-Zygmund operator, then for each s > 1, we

have,

MH#(Tf)(x) < CM(|f1°) ()",

Proof. Fix s > 1 and x € R". Let g be an arbitrary cube () containing x. If we
can find ag € C, such that

ﬁ / ITf(y) — aol dy < CM(If]")(@)"", (5.46)
Q

then by Proposition [3.11], we would have

1 : 1 . s 1/s
SIIT Al < swpint o [ 17706) = ol dy < CM( 1)@
Q
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Now for such a cube let fi = fxg«. Where Q* = (4y/n + 1)Q. We write f as
f=f1+ fo, and let ag = T fo(x). Then

1 1
" Q/ 770) = aol dy = o Q/ ITf(y) — Thol)] dy

— ﬁ/ﬁfl(y) +Tfay) — T fa(x)| dy
Q

1 1
<1 Q/ Th) i+ Q/ Thy) — Thlx)) dy.

Using Holder inequality for exponent s and s’, we have

1/s 1/s'
1 1 1
— d — S d 5d
|Q|Q/|Tf1(y)l y< |Q|Q/|Tf1(y)l y (Qfl y)

1/s

1 S
-l Q/ ThHE) dy

Since T is a Calderén-Zygmund operator, it is bounded on L*(R™). Therefore we

"
1 1 .
@Q/‘Tfl(y)’ dy <C 5/]3(@)

(4yn+1)" 8
=\ TeT /'f dy) '

The last inequality follows from the fact that f; = f Xq+- We also have

1 . )
\Q*Ilwy)' dy < M(|f]*)(=).

get

That is,
L n n/s s xl/s
IQ|Q/ ITh )] dy < Clav/n+ 1) M(F1) (@) (5.47)

Also because T is a Calderén-Zygmund operator there is some standard kernel

K such that
o Q/ Tho(y) — Thale)| dy
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:ﬁ/‘/[((y,z)ﬁ(z) dz—/K(az,z)fg(z) dz| dy
Q Rn R»

Since fy is supported on R™ \ Q* we have,

1
@Q/Isz(y)—sz( z) dy < — |Q| (/Rn\Q* |K(y, 2) — K(z, 2)| f2(2) dz) dy.

Using the fact that K is a standard kernel, we get some 6 > 0 such that, for

7 — 2| > 2]z —yl, )
ly — |

K (y, 2) — K(z,2)| < Cm.

(5.48)

We claim that R\ Q* C {z € R" : |z — z| > 2|z — y|, for z,y € Q}.

Suppose [ be the length of each side of the cube Q. As z,y € Q, 2|z —y| < 2l\/n.
Now if z € R™\ Q* then 2l\/n < |x — z|. Hence for all z,y € @ and z € R"\ Q*,
2|z —y| < |z — 2| (See Figure ). This proves our claim.

Now, we get

RS T s ly — ) Z)
|Q|Q/|Tf2(y) 71 >'dy§O|Q|Q/</Rn\Q* P ) dz ) dy. (549

Note that R"\Q* C |J Ay where Ay := {2z € R" : 2¥2\/nl < |z—2z| < 28H12/nl }.
k=0

Note that the sets Ak_’s are disjoint. (See Figure for the case when z is at one
of the corner point of Q.)
Therefore from Inequality((5.49)), we arrive at

L _ —al
’Q‘Q/ITfQ(y) Tfifa >|dy<c‘Q, Z/| )z | ay

For each k € NU {0}, we have A C Bk, where Bk = B(z,2*12l\/n). As for
z € Ay, |v — 2| > 2*21\/n we have

‘Q’/Isz ~Thx \dy<C’Q‘/ Z/ T n+6|f( 9 d= | dy.

Further, since x,y € Q, |z — y| < ly/n < 2ly/n. We have
1
57 [ 1) =T 1) ay
Q
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ING

INGD

Q"

Figure 5.1: R*\ @Q* C {z € R™:

Z/ kaﬁj—_ nt+o (z)dz) dy

21’L
Z (2k+12l\/ﬁ)n2k6/|f(z)| dZ) dy

k=0

SN |
> wim | f(Z)dZ) y
By

|z — 2| > 2|z —vy|, forz,y € Q}.

140
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20 /n

N
Q*

Figure 5.2: Ay = {z € R" : 2l\/n < |z — z| < 4l\/n}

<C@/Mf < ﬁ) dy.

Here we have used that Hardy-Littlewood maximal function and non-centered
[e.e]
cubic maximal function are equivalent. We know the series Y 555 converges. So

k=0
we have

1 n
@/!sz(y)—sz( z)] dy<C’Q|/Mf dy < C2"M f(z).  (5.50)

Using Holder’s inequality, we get

= su L N(x)Y*
M) = sup Q/ W) dy < M) ().
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Therefore from (| - we have
r@L/”%Z _Thy(a)] dy < 2°CM(f*) ()", (5.51)

This completes the proof. O

Lemma 5.14. Let w € Ay, and 1 < py < p < o0, and f € LP(w) then for all
v >0 and \ > 0, there exists 6 > 0, such that

w({z € R™ : Myf(x) > 2\, M¥* f(x) < y\}) < CYw({x € R" : Myf(z) > A}).

Proof.  'We recall from Theorem [3.3| that {z € R™ : M;f(z) > A} can be written
as disjoint union of dyadic cubes ). Because of a similar argument, used in the

proof of Lemma [3.12] it is enough to show
w({z € Q : Myf(x) > 2)\, M7 f(z) <AA}) < CY’w({z € Q : Maf(x) > A}).
As w € A,, then by using A condition, there exists ¢ > 0 such that, for any

measurable subset S of the cube @), we have

w(S) 151\’
w@)SC(WO' (5:52)

Let S := {z € Q : Maf(xz) > 2A\, M# f(z) < yA}. From Lemma [3.12] |S| <
2"y|@Q|. That is @ < 2™y. Therefore, from Inequality ((5.52) we have
w(S)

T\MT n.\0
w(g) =@

]

Lemma 5.15. Letw € A,, and1 < py < p < oo. If f is such that Myf € LP°(w),
then

/th|%(<m<0/wﬁfl%()
R n

Proof. For N € N, consider
N

Iy = /p)\p_lw({x e R": Myf(z) > A}) dA
0
Note that for each N € N,

'Ul@

N
/p AP0kl (f @ R My f(z) > AY) dA
0
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< /po)\polw({x eR™: Myf(xz) > A}) dA
Po /
prpr
< o ||Maf] I}jc»o(w) < 0.
By doing a change of variable (A = 2)\" and writing the expression in terms of \),
we get
N/2
Iy=2 /p)\p_lw({:zr € R": Myf(x) > 2A}) dA. (5.53)
0
Since

{x € R": Myf(x) > 2)\} C {x € R™: Myf(x) > 2\, M¥* f(x) < y\}
U{z € R": M*f(z) > v},
Equation (5.53)) becomes

N/2
Iy < 2P / pN T w({r € R™ :Myf(z) > 2\, M# f(z) < 4A}) dX

0
N/2

+ 2P /p)\plw({x € R™ : M# f(x) > yA}) d).

0
Now using Lemma and similar arguments as in Lemma [3.12] desired result

is proved. O

We now see a few preliminary properties of Calderén-Zygmund operator on
weighted LP space. The results that follow lead us to weighted boundedness

of Caldertn-Zygmund operator.

Lemma 5.16. If T is a Calderon-Zygmund operator, then for any w € A,, with
l<p<oo, Tfe LP(w) for any compactly supported bounded function f.

Proof. Let w € A, be fixed and supp(f) C B(0, R). We observe that,
/ T () Pu(z) de = / T ()P (z) dx+/ T (@) Pw(z) dz. (5.54)
o |z|<2R

|z|>2R

Now for any € > 0, as 1%_6 + 1= = 1, using Holder’s inequality

/| TP a



CHAPTER 5. CALDERON-ZYGMUND THEORY 144

1/(1+¢) €/(1+e€)
< (/ w(x) e d:p) (/ T f () [P+ da:) . (5.55)
|z|<2R |z|<2R

By using reverse Holder inequality we can choose ¢y > 0, such that the first
integral in the right hand side of the above inequality is finite. Note that ¢ =
plte) - 1. Hence T f € L1(R™). Therefore the last integral in the right hand

€0

side of Inequality (5.55)), is also finite. That is,

/ T f(x)|Pw(x) dz < oo. (5.56)
lz|<2R
Now to complete the proof, we show that other integral in Equation (5.54)) is also

finite. Since T is a Calderon-Zygmund operator, there exists a standard kernel

K such that
/ny ) dy,

whenever x & supp(f). As supp(f) Q B(0, R), for any x € R™ with |z| > 2R, we

have

|Tf<x>|='/f<<x,y> dy' [ K@) .

Since K is a standard kernel |K(x,y)] < for some C independent of z,y €

Je—y[™ yl"
R™. Moreover, since f is supported inside B(0, R), we have
dy

riwise [ T <o [ o s
i<k [T =yl wi<r 1T = Yl
Now note that if |x| > 2R and |y| < R then % < 2. This implies 1 — % > 1.
Therefore,
ool 1 fal = ol 1 = Ja| 1= 2 | > 1
From Inequality (5.57)), we get
n dy _ 2°Cl|fllo
i@l <2l [ 2= 2l o gy = £
i<k 7] |z ||
Now,
/ TF(2)Pw(z) de < c/ wie) g,
|z|>2R w>2r [P

o0

= / w(z) dz
=1 J 2 R<|a|<2FH1R |z [P
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<CS @Ry / w(z) dz

x|<2k+1R
=C> (2*R)™w (B(0,2""'R)).
k=1

As w € A,, there exists ¢ < p such that w € A,. By the A, condition for any

measurable subset S of a cube (), we have

w(Q) (%) < Cu(S).

This is true for balls also. Hence, )
k

w(B(0, 2" R)) (%) < Cw (B(0,2*R)),

which implies
w(B(0,2"'R)) < 2"w (B(0,2°R)) .

Applying the same inequality for the ball B(0,2*R) and continuing this we get
w(B(0, 281 R)) < 2k+hnay, (B(0, R)).

That is, with a new constant C' depending on n, R, w we have

w (B(0,25 R)) < C2F.

From the above observation, we have,

S —MN T —N - 1
[ et < oS et S b
k=1 k=1

oo
As p > ¢ the series kz nglp—q) < 00. Therefore,
=1

/||>2R T f(z)[Pw(z) do < oo.

We are now ready to prove the main result of this section.

Theorem 5.17. If T' is a Calderon-Zygmund operator, then for any w € A,,
1 <p<oo, T is bounded on LP(w).

Proof. Let w € A, be fixed. It is enough to prove this result for compactly

supported bounded function because these functions are dence in LP(w). By
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Corollary we can find an s > 1 such that w € A,,,. Now by the Lebesgue
differentiation theorem, T'f(z) < My(T f)(x) for a.e. x € R"™. Therefore,

/ T () Pw(z) dz < / My(T f (@) Puo(z) da. (5.58)
Using Lemma , Tf € LP(w) and hfr?ce My(Tf) € LP(w). Thus from Lemma

BT, we get

[ s dr <o [t Ts@)Pt) i
Now, by using Lemma [5.13] we obtain -

/ [75(e)Pue) do < € / M) @) ula) da.

Asw e Ay, and M is bounded on Lp/s( ) we have

/|Tf )[Pw(x da:<C/|f )[Pw(x

]

Theorem gives strong weighted boundedness of Calderén-Zygmund op-
erators for 1 < p < co. We now see the weak (1,1) boundedness of Calderén-

Zygmund operator with respect to A; weights.

Theorem 5.18. Let T' be a Calderon-Zygmund operator and let w € Ay. Then,
for every f € L*(R"),

w(fr e B3 7f(@)] > A < [ 1F@)u(a) do

Proof. We form the Calderén -Zygmund decomposition of f at the height A > 0.
This gives a sequence of disjoint dyadic cubes {Q),} en such that

flx) < Aforae z¢&Q= U Q;, (5.59)
j=1
1
Q] < <11 (5.60)
A< L f(x) de < 2" (5.61)

|QJ| Qj
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Given this decomposition of R, We write f = g + b where

f(a), itz ¢ Q.
g(x) = !
@Qf fly)dy, ifze@
And J .
r) = bix)
j=1
where,
1
bi(x) = | f(x) — = | [y | xq,(®).
|QJ’ Qj
We recall for almost every x € R", we have
g(xz) <27

Further, we also have,

w({z €R™: |Tf(2)] > A\}) < w ({x eR": |Tg(x)| > %})

+w <{a: eR": Tb(z) > %}) .

First, we estimate the “good part”. We notice that

w({x e R" : |Tg(z)| > A\}) < / |Tg/\(;£)| w(x) dz.

R™
As Ay C Ay, and T is strong (2,2) with w as a weight, we have,

w({r € R" : [Tg(x)| > \}) _v/rg )

Note that for a particular j € N,

1
[t ar< [ 2 [ 1wl ay | ) as
Qj @i Qj
1
-1 Q/ )] dy / w(z) de
_ w(Q;)
= [ 1wl
Q@

= / Fw)lS
Qj

147

(5.62)

(5.63)

(5.64)

(5.65)
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As w € Ay, for almost every z € (), we have

w(Q;) wl(x
Q, =@

[t ar < [ 1@t a
Q@ Qj

/ gl dr= [ gl et [ @)

That is,

Now,

JEN JEN
_ / @) de+ Y / l9(@)|w(z
K \jLG-JNQJ JENQJ
< / @) de+ 3 / @)l
R7l\jL€-JNQJ JENQJ

- / f@)w(z) do

Using the above observatlon in Inequality (/5.65) - we have
w({x e R" : |Tg(z)| > A\}) < x)|w(z (5.66)

Now we estimate the “bad part”. We denote by @j the cube with the same

centre ¢; (as that of ;) whose sides are 2/n times longer. Then,

w{z e R": Th(z) > A\}) < w ({x ¢ JQ;: Tb(x)| > A})

jEN

+w ({x € U Q; : |Tb(z)| > )\})

JEN

w({z ¢ |J @« 1Tb(x)] > A\ +w(lJ@)) (5.67)
jeN jEN
We can find a constant depending on n such that

w<UQ;)chw<@j Z |Q] i,

jEN jEN jEN
Using Inequality (5.61]), we get,

1
@l < [ 1)y
Qj
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Therefore, we have the following

(UQ>‘MN IQ!/'f :_Z/'f o

JEeN

As w € A; we have

(UQ>_AZ/|f o) dv < 5 [ wlet) & (508)

JeN JeN R

Now using Inequahty in Inequality ([5.67] -, we get
w({:L'GR":Tb(:v)>)\})§w({x§3’UQ;:|Tb )| > A}) + /|f )|w(y)
jeN
(5.69)
To estimate w({z ¢ U Q7 : [Tb(x)| > A}), we notice that
jEN
C
w{z & U Q; |Th(z)| > A}) < X/ |Th(z)|w(x) dzx

jeN R\ U QF

JEN

/ Z Tb;(x)|w(z) do
"\U Q;

i g=1

-y / Tb;(2)| de.
j=1 R\ U @
JEN

As R"\ U Q; C R"\ Q; we have the following
jeN

Th(x A < Th;( dx.
(CHVEARRERS Z/\Q*I w(a) da

Note that b; € L*(R") and it is supported on @;. Therefore, there exists a

/Kwy ‘d

(5.70)

standard kernel K such that

v ({az ¢ U@ Imoia) > A}) < % /W\Q*

JEN

As b; has zero integral on @), from Inequality (5.70) we arrive at,
w({z & |J @} : 1Tb(x)] > A})

JEN

C oo
SO R

[K(z,y) — K(,¢;)]b;(y) dy| dz

J
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5 OO/ /
< — K(z,y) — K(z,¢;)||b;(y)| dy dz.
T2 g [ i)

By the use of Fubini’s theorem, we get

w({z & | Q; :|Tb(z)| > \})

C o
<53 Q/ ( / g PN ) = Kla) dx> ;)] dy.

(5.71)
Since K is a standard kernel, there is some C' > 0 and § > 0 such that for all

x € R" satisfying | — y| > 2|y — ¢;|, we have

ly — ¢l
|K(2,y) — K(z.¢))| < - -
|z — ¢
Therefore from Inequality (5.71)), we have
w ({x ¢ J @ Tb(z)| > A})
jEN
C / / ly — ol
¢ w@) =g ) ) . (5.72)
A ;Q ( R\Q} |z — ¢+ ’

If @ be the length of the cube @Q; and y € Q; then |y — ¢;| < ay/n.

—_ .0 s
/ w(a:)‘y—]’ﬂsdx < / Ln)ww(x) dz.
RO\QS |z — ¢ r\Q; 2 — "
Now let By, := B(z,2"a\/n) and Ay := {z € R" : 2ka\/n < |z — ¢j| < 2¥1ay/n}.

Then,

< (av/n)’ Z/ Qka\/_ yto dz

. 2"a\/n
< Z 2k+1a\/_ n+o ’LU($) dz
k=0

< C2"Muw(y )Z -

k=0

wxﬂ (4 ﬂdx
/RH\Q; (x) <3 oy
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Note that the series appearing in the last inequality is convergent. Therefore

there is a constant C' depending on n such that

|y - Cj|‘S
w(zr)————dz < CMw(z). (5.73)
R”\Q*

|z — ¢

Using Inequality (5.73)) in Inequality - we get

({wu@ 7 >\>A})<— /Mw )b, (w)] dy.

JEN

Asw e Ay, Mw(y) < Cw(y) for a.e. y € R". So the above inequality becomes

wlfrg Q1@ > ) < T3 [umlh)l

JEN j= le
C o0
<53 [
J_le
< S [t ay

Therefore we get
. C
w(e# U@ sim@l =2 < S [l a6
jGN n
Now note that f = g+b. Therefore |b| < |f|+]g|, which further implies [b] < 2|f],
because |g| < |f|. Therefore from Inequality (5.74), we have

wlz & | Q; : [Th( |>)\}<—/|f Vew(y) dy. (5.75)

JeN R»
Now combining Inequalities ((5.66]) and ((5.75]) and using them in Inequality (5.64)),

we complete the proof! O]



CHAPTER 6

Littlewood-Paley Theory and Multipliers

The main aim of this chapter is to study multipliers on LP-spaces. As discussed
earlier, multipliers are translation invariant operators that are well-behaved with
Fourier transform. We see that the study becomes a lot easier when we have
tools due to Littlewood and Paley. The two authors wished to derive certain
boundedness results for not just one functions, but rather a sequence of functions.
In their paper (see [I8]), they get the results for functions defined on R using
complex analysis techniques.

However, the techniques of complex analysis are of no help in higher dimen-
sions! Keeping this in mind, Calderén with Benedek and Panzone ([1]), derived
the results for functions that take values in a Banach space. This approach led the
authors to easily generalize Littlewood and Paley’s work to higher dimensions.
Apart from the study of boundedness of certain linear operators, Littlewood-
Paley theory is also useful in the study of some exotic function spaces. We refer

the reader to [I0] for further details on this topic.

152
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We are interested only from the viewpoint of boundedness of certain oper-
ators. We describe Calderén’s approach in the chapter. We start by generalizing

the Calderéon-Zygmund theorem to Banach-valued functions.

6.1 Calderén-Zygmund Theorem for Banach-
Valued Functions

We begin by giving a vector valued analogue of the Calderén-Zygmund Theorem
(Theorem in chapter 5). Let A and B be two Banach spaces and L(A, B) be
the space of all bounded linear operators from A to B. Let K be a function defined
from the set (R™ x R™) \ A to the space L(A, B), where A := {(z,z) : z € R"}
is the diagonal of R™ x R™. Let T be an operator such that for a compactly

supported function f € LOO(R” , we have

/ny ) dy,

Theorem 6.1. Let A and B be reflexive Banach spaces and T be an operator as

defined above, Let T : L"(R", A) — L"(R™, B) be bounded for some 1 < r < 00,

whenever x & supp(f).

and the above mentioned function K satisfies the following two conditions:

/ 1K (2,9) = K (2, 2)llcas) de < O (6.1)
lz—y[>2|y—z|

o G~ Kl dy < C 62)
r—y|>2|x—w

Then the operator T is bounded from LP(R™, A) to LP(R™, B) for all 1 < p < o0
and for p =1 it is weak (1,1).

Proof. Given f : R® — A, a function ¢ : R® — R is defined as ¢(z) =
|| f()]|a. Now, we form the Calderon-Zygmund decomposition at the height
A > 0 for p. Then we get a collection of dyadic cubes {Q;};en. Then we have

p(z) = pg(x) + pu(),
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where
Wg(x) = ' !
|Q|f y)dy, ifze Q.
And
= Z ©b; (‘T)
j=1
where

o1, (x) = ﬂ@—iﬁ/wwdyX@-

Let Q = |J @;. We recall that the following properties hold

jEN
1
2 = Sl (6.3)
log(x)] < 2"\ a.e x € R", (6.4)
A< —/ ) dz < 2" (6.5)
Q5
Now we write the function f as f = g + b, where
f(a), if o ¢ UQy.
j

g(z) =
& [ f)dy, ifreq;
Qj

b= b
j=1
where,
bi(z) = | f(x) /f dy | xq,(x).
: @il 2

Here the integrals are understood in the Bochner sense. Note that if x ¢ €2, then

lg(@)[la = 1[f(@)|[a = @g(z) < 2"A.
If z € Q; then

e M_@%ﬂvlum—@”/ e < 20
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Therefore for any = € R",

lg(z)[|a < 27A. (6.6)

/bj(:c) dz =0.

R’ﬂ
First, we prove that T" is weak (1,1). Note that T'f(z) = T'g(x) + Tb(x). Then,

Also, we have

we have,
{z e R": [[Ty(z)l[s > A} < {z € R" : |[Tg(z)|[s > A/2}]
+ |[{z e R" : ||Tb(x)||g > A/2}.
(6.7)
Since the operator T" is bounded from L"(R", A) to L"(R™, B),

{z e R : |[Tg(x )||B>A/2}|<C /Ilg )y d.

Using the Inequality (6.4) we obtain
" 2(2n )\t C
o e R Tg(a)lls > M2l < 02— [lg)lla de < S [ 1) do.
R~ R~

(6.8)

Now let @7 be a cube with same center as J; and whose sides are 2y/n times

larger, and let

=Ue

jeN
Then, it is easy to see that |Q*| < C|Q]. Also, we have ||¢|[1 = || f||r1(rn,4)- SO

that by using Inequality , we get
9] < S llgan
where C' depends only on ‘n’. Now,
{z € R" [|Tb(z)||5 > A/2}| < [{z € Q"+ [|Tb(x)||s > A/2}]
+{z € Q7 [[Th(x)[|5 > A/2}|

< @[+ {z g Q- ||To(2)|[5 > A/2}]

C 2
< Sl +3 [ T8l do.
R\Q*
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So we have

C 2
{z € R ITb(@)lls > A/2H < Sl + 5 / o Tl Az 69)

A
Now, To estimate the second term in the R.H.S of Inequality , we consider
the following

[ ms@lsde< [ 3 Ims@ls de=>" [ ITh@)]n de

R\ Q* Rn\Q* Jj=1 jlen\Q*
Last equality is an easy consequence of Fubini’s theorem for a non-negative inte-

grand. We know that supp(b;) C @); C Q*. Hence, from the definition of T', we
recall that

[ ir@lear<y [ [ Kb )| a
R \Q* I=lgn\@+ Rr B
=Y [ | [Keonw ||
I=lpaor T Q; b
Now, since R™\ 2* C R" \ @Q;, we get
[ imv@llaar <> [ | [ Kb a| e
Rn\Q* I=lRn\Qr Qs b

For z € R" with z # z, we have [ K(z,2)b;(y) dy = 0. So, we can write

Q
[ imseis a <y 1K) - K 20) a

RT\Q* I=Rm\Qs Qs

<> [ [llKE) - K 2lb@lls dy do

TlRe\Q; @

<> [ G0 ~ Kbl dy o

TlRe\Q; @

<3 [ [ 1K@ - K 2lewn bl dy de

=10 r\Q;
Now recall (Theorem 5.8 chapter 5) that R\ Q5 C {z € R" : [z —y| > 2|y — 2|}

J

dx
B
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Therefore by using Condition (6.1]), we get

[ 1mwls ar <3 [ il ay (6.10)

Rn\Q*
Now, we observe that

Q[Hbj(y)nAdy:Q[H f(a) |QJ|/f dy | xe,@)

< / 1/ (@)]]a da.

da:

Using the above in Inequality (6.10) - we get
[ e s <€ [l ar < C/Hf lla do = Ol .

R7\Q* J= lQ]
Therefore from Inequality (6.9 . we have

o € B T85> M2 < 11 llqan i + o M flloren ) = Al eo
(6.11)

Therefore using Inequalities and in Inequality , we obtain,

o € R ITg@lls > M < 11 floscen a

This proves that the operator T' is weak (1,1). As T is bounded from L"(R", A)

to L"(B) for some r > 1 by using Marcinkiewicz interpolation 7" is bounded from

LP(R™ A) to LP(R™, B) for all 1 < p < r. For all p > r we use a duality argument.

As A is reflexive L™ (R, A') and (L"(R", A))" are isomorphic to each other. Now

let T be the transpose of the operator T, so for any F € L™ (B') and g € L"(A),

(T'F)lg) = F(Tg) = [ (Fl2). Tg(w)) do

]Rn
Now suppose supp (f) Nsupp (g) = (), then we have

[ @11 ao= [ (Fo). [ Koot v da

R” Rn

- //<F(x)>K<w7y)g(y)> dy du.

R™ R
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Let K'(z,y) be the transpose of the operator K (x ) Then,

/ (F@). To(w) do = [ 1K) F@).glo) dy do.

R R"™

Let K(z,y) = K'(z,y). Therefore,

/(F(:E),Tg( dx—/</K Y, x ) dz, g(y )> dy.

Rn Rn R”
Now using similar arguments as that in Lemma we have
- [ Rawr
]Rn

At once we get,

||.f(/(.l’,y) — [N((x’Z)HE(B’,A’) dCC

lz—y[>2]y—z|

= [ K@) - K0l e
|z—y[>2[y—z|

= / 1K (y,z) — K(2,7)||z(a,5)dz.
|z—y[>2[y—z|

By using Condition ([6.2)), we have
H[?(xa?/) - [?(33, Z)H[:(B’,A') de < C.

|z —y|>2|y—2|

158

So the operator T is also weak (1,1). As the operator T is bounded from
L"(R™ A) to L"(R", B), T* is bounded from L (B’) to L' (A’). Therefore by

Marcinkiewicz interpolation theorem 7" is bounded from LP(B’) to LP(A’) for

1 < p < r'. Now suppose p > r. Then p’ < r’, and

711l = sup | [ (G0 T10) ] (6 <1}
—sup{| [ (0600 10) | 1G]l ey <1}
<1

= sup {"TtGHLP’(Rn,A/)HfHLP(R",A) G @ )

< | lze(n ) Sup{HTtHHGHLP'(Rn ay Gllpw @y < 1}

< Ol fllzr(ay
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Hence the result. O]

Now we see a few applications of the vector valued analogue of the Calderon-
Zygmund theorem. In this section we mainly focus on some important inequalities
of some vector valued operators. These inequalities are often used in upcoming

sections.

Theorem 6.2. Let T be a convolution operator with kernel K, which is bounded

S Cp,r
p

on L*(R™). Assume that the kernel K satisfies the Hormander condition,
/ K(z —y) — K(z)] dz < C.
|z[>2[y|
Then for any 1 < r,p < oo we have,
o 1/r 00 1/r
| (Srmer) (Sur)
j=1 j=1 D
Moreover, for p=1,
50 1/r c 0o 1/r
{:UGR”: <Z|Tf]’r> >/\H§Tr <Z’f]|r>
Jj=1 j=1
Proof. To prove the result we show that the vector-valued operator which as-

1

sociates to each sequence (f;)jen the sequence (T'f;);jen satisfies the hypothesis
of Theorem with A = B = ¢". If we denote the operator by 7 then, using
Corollary we have,

7 ((fi)ien) = (K * f;) ieEN — /K r—y)fi(y

where, K (z,y) = K(x — y)I and I is the identity operator on ¢". First we prove
that 7 is bounded on LP(R™, (") when p = r.

r/r
|7 ((f5)em)lI7 / (Z T f;(x ) dz
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- [ s a

Rn Jj=1

=3 [msera

In the last equality, we have employed Fubini’s theorem. From the hypothesis on

T, it is evident from the Calderén-Zygmund Theorem (Theorem [5.10| in chapter
5) that T" is bounded on LP(R™), Vp satisfying 1 < p < co. Hence, we have,
In((5)iells <€ 3 [ 15N do = Cll el

j:l Rn
Now we notice

||F(a¢,y} — E(m, z)||£(gr7gr) dx
|z—y[>2[y—z|

—

|K(x —y) — K(x = 2)|||1]|z@r ey da.
lz—y|>2]y—2|
Taking © = 2’ +y and z —y = ¢/, we get

IR e.9) = Ko Ay b= [ K@)~ K —)| ' < €.

lz—y|>2[y—z| |z'[>2]y’|
Similarly, it can be shown that

/ . 1K (z,y) = K(w,y)l| ey dy < C.
r—y|>2|x—w
Hence the desired result follows directly by using Theorem [6.1} ]

Now we prove a matrix analogue of Theorem [6.2]

Theorem 6.3. Let T be as defined in Theorem[6.4. Then for any 1 < r < oo

and p, 1 < p < oo.

00 1/r
(5

0o 1/r
< Op,r (Z |fj,k‘r>
Moreover, for p =1,
o 1/r c 0 1/r
{w ER": (Z |Tfj7k,|7"> > AH < <Z Ifj,k|’”>
Jk€EL J,k€Z !
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Proof. As in the previous theorem, the operator 7 is defined in the following way

T (fa)hes) = / K 9) (F0))sucz) dy.

Here K(z,y) = K(x —y)I, where I is the identity operator on ¢"(Z x Z). With
exactly the same reasoning as in Theorem [6.2] it can be shown that 7 is bounded

on L™ (R™,("(Z x Z)). Again, using a similar argument as in Theorem [6.2] we see

||K($7y) - K(% Z)||£(zr(2xz),er(2xz)) dz

lz—y[>2]y—2|
_ / K(2) - K(2' — )| do’ < C.
|’ |>2ly’|
Finally, from Theorem [6.1] we conclude the result. O

We now give a few applications of Theorem and Theorem [6.3] The

results discussed below are useful in our study of Littlewood-Paley Theory.

Corollary 6.4. Let {I;};en be a sequence of intervals on the real line, finite

or infinite, and let {S;}jen be the sequence of operators defined by (S;f)(€) =

X1, (f)f(f) Then for any 1 < r,p < oo,
0o 1/r o 1/r
H <Z|ijj|’“> (Z |fj|r>
j=1 j=1

Proof. We recall from Chapter [plthat if I; is the interval (a;, b;) for some a; < b;,

S Op,r
p

p

Then the operator S; can be written as
S; = % (M, HM _,, — M, HM ),
where for any a € R, M, f(z) = €™ f(x) and H is the Hilbert transform. We
Notice that |M,f(x)| = |f(x)|,Vx € R. Therefore,
10500 < 5 (Mo HM., f5(2) | Mo, M, £ (1))

= L HM o f @ 1 50

We know that the Hilbert transform is a Calderén-Zygmund operator of convo-
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lution type. Hence, by Theorem ([6.2) we have V1 < p,r < oo,

o 1/r o 1/r
‘ (Z‘HM%JCJ'V) < Cpﬂ" (Zlf]’r>
J=1 J=1

(6.12)

p
Similarly,

p

00 1/r o 1/r
‘ (Z |HM—bjfj|T> ‘ < Cpyr (Z |fj|r> ‘ : (6.13)
=1 =1

As we have already seen that

15;f5(2)] < 5 (IHM o Ji(@)| + [HM_y, f()]) -

Therefore, we get,

00 1/
H (Z |ijj‘7")
j=1

Using the triangle inequality of ¢" and LP(R™), we arrive at

[(Ssar) | H (im_w) [ (Emann)”

p

o 1/r
< H (Z (’HM—ajfﬂ + ’HM—bjijT)
P j=1

p
By using Inequahtles and - we conclude
1/r 1/r
| ( 5,6 ) <c, (Z !fj|’”>
p j=1 p
[

The matrix valued analogue of Corollary follows easily from the tech-
niques discussed above and Theorem [6.3] We do not include the proof here since

it is essentially verbatim to that of Corollary [6.4]

Corollary 6.5. Let {I;} be a sequence of intervals on the real line, finite or infi-

nite, and let {S;} be the sequence of operators defined by (S;f)(€) = X1, (§)f(§)
Then for 1 <r,p < oo,

1/ 1/
H (Z |ijj,k|r> <Z |fj,k|r>
J1,kEZ J,k€Z

Until now we have seen a sequence of operators or a matrix -valued operator

S Cp,r
p

p

(1), associated to a nice bounded linear operator 7' : L*(R") — L?(R"). Next,
we consider the case when we have a sequence {7 },cy of “nice” operator. In the

result that follows, the Muckenhoupt class A, plays an important role.
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Theorem 6.6. Let {1;};en be a sequence of linear operators that are bounded
on L*(w) for any w € Ay with constants that are uniform in j and which depend

only on the Ay constant of w. Then for all 1 < p < oo, we have,

00 1/2 0o 1/
H (Z|ijj|2> < CH (Z\fHQ)
=1 p j=1

p
Proof. When p = 2, we have
0o 1/2 2 00
(Z\ijﬁ) - [ S @hd.
j=1 2 gn g=1

Since the integrand is non-negative, we can use Fubini’s theorem and obtain

~ 1/2
(Somor) [ -3 [ mares
j=1 i=1gn
From the hypothesis of the theorem, the operators Tj are bounded on L?(w) space

for any w € A, with the constant uniform in j and since constant function 1 is

in Ay, we get by an application of Fubini’s theorem,

H(ilel) <cz/|fj |df—/Z|f] ds

re J=1
This prove the result when p = 2. For p > 2, we notice that

H (‘1 |fj| >
H (Zool o j'Z) 1/2 i: / (imjw)p/z da

By duality of L? spaces, there exists a non-negative function u € L®/?’'(R") with

2

2

HUHL@/z)’(Rn) = 1 such that

H (ilijjQ)m :/imfj(m)ﬁu(x) da. (6.14)

Now if 0 < § < 1 then M (u'/%)? € A;, with the A, constant depending only on 6.
As A} C Ay, M(u'/?)° € Ay, As u(x) < (Mu'/’(2)) a.e v € R*, from Equation
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(6.14)), we have

[(Smar) [« [ Smsor oo on

Now, using Fubini’s theorem, and the fact that all T}’s are bounded on L*(w)

with constants uniform in j, we have

H (f;ijﬂ)l/Q <CZ/|fJ 2 (Mu'(2))’ da
(Gt

Now let us choose 0 < ¢ < 1 such that §(p/2)" > 1. Applying Holder’s inequality

with exponents p/2 and (p/2)" we have

/ (Zm ) (Mu(2))’ da

Rn
2/p 1/(p/2)

. v d(p/2)
/ (erxm)\z) a| | [ e @) a

n

As M is bounded on L®/2)'(R™),

[ (§oronot el (Zor)

2
| ‘U1/6| |§(p/2)’

p
0o 1/2 2
= H (Zlfj|2> Null 2y
j=1 p
Since ||ul|sp 2y = 1, we have
0o 1/2 2 0o 1/2 2
H (Z |ijj|2> <q (Z w) (6.15)
7j=1 p 7=1 p

This prove the theorem for p > 2. As Tj is bounded on L*(w), T} is also bounded
on L*(w). Therefore for p > 2, T} also satisfies Inequality . Using this fact

and Holder’s inequality, we have for p < 2,

~ 1/2
\ ] (Z |ijj|2>
j=1

p
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:sup{ i/ijj(x)'gj(x) dz| : (igj2>1/2 = 1}

jlen Jj=1

i/ ) Tl (a) da (mgﬂ)m <1}

Z/Ifj( )| - |Tjg;(z)] du : (Zlgjlz) < 1}

J= ]-Rn

/ £(@)] - 1T gy(a)] da (Zw) §1}

T Z |f312> (g \ngj!Q)

1/2 ’ 00 1/2 ’ ‘ 0o 1/2
<q, (Zw) -sup{H(ngF) ;H(Zw)
];1 y p =1 P
SCP <Z|fy‘2>
j=1

This completes the proof! ]

sup

IA
w
o
T

| /\

f_/H/_/;\/_/H/_/H

p

6.2 Littlewood-Paley theory

Now we are ready to study boundedness results for certain vector-valued opera-
tors. The results so developed are of direct use in the study of multipliers. We
begin with the following construction.
For j € Z, let A; = (=271 —27] U [27,27) and define an operator S; as
(S31)(€) = xa,(E)F(©),
where j € Z. If f € L?(R), then by using Plancharal theorem we have,

H (Z !ij|2> N /Z 1S,/ da

JEZ JEZ

—Z/\Sf ) de

GZR
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=Y [ a

]GZ

—Z/\XA (©)]* dg

JEL R

=Y [Ifer a

]GZA

GRS

= If1I5.

(Z !ij|2> N

’ jEz

In this section our main aim is to prove Littlewood-Paley theorem which states
1/2

<Z |S; f ]2> and || f||2 are comparable. We first consider the smooth

JEL 2

analogue of S;. We start with ¢ € S(R), with 0 < ¢ < 1, having support in

1/2 < [¢| < 4, which is equal to 1 on 1 < [¢] < 2. We define

¥;(€) = ¥(277€)

So we have

= [I£1l2- (6.16)

that

and

~

(SiF(E€) = v;(6) f(©). (6.17)

Note that by using the definitions of S; and S’j, we have

~

(S;S;F)(E) = xa, () (SifI(€) = xa, ()¥; (&) ()
Now, for £ € Aj, ¢;(¢) = 1. Therefore

~

(S;S5)(€) = xa, () (&) = (S, £)(&)-
That is, Sjgj = S;. Keeping the above construction in mind, we prove the

following result.

Theorem 6.7. For any 1 < p < 0o, there ewists a constant C, > 0 such that for
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~ 1/2
| (Z rs;-f|2>

Proof. Let ® € S(R) be such that ® = ¢ and let ®;(z) = 27®(27z). Then note

a f € LP(R), we have,

< Gol[f1lp- (6.18)

p

that
B;() = 2D(27)(€) = B(&/2') = Y(€/2) = ().
Therefore for f € S(R)
(S:5)(©) = (O F(©) = DE)F(©) = (B * £)(©)-
So, gj f = ®; x f. To prove the theorem we have to show that the operator T’
which maps a function f to the sequence (gj f ) is bounded from LP(R) to the

€L
space LP(R, (?), for 1 < p < oo. Now

TN = (Sif) = @ Fez = | [ @sle =1 ay

- / (@5~ ) (W)ep du.

R
In the last equation, we have used Corollary 2.24] Let K : R x R — £(C, %) be
the kernel of the operator T. Then K is defined in the following way

K(2,y)(2) = (95(z = ¥)2) ez »
where (z,y) € R x R and z € C. We show that the operator T satisfies all
the conditions of Theorem . First we note that T is bounded from L*(R) to
L2(R, ¢?). Indeed,

H (Z \S}fP)

/Z|Sf ) de

JEL

/ SIS O de

R JEZ

/ ST O RITE)R de.
JEZL

We claim that for any £ € R, at most three of 1;’s are non zero. To see this,

first we observe that for any £ € R there is a unique j(£) € Z, such that |£| €
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[2708) 29()+1) " As for any j € Z, support of 9;(€) is [2771,2042) ,(€) = 0 for
j<j) -1 andj > j(&) + 1. Therefore,

H (Z Ef f|2> = / (1511 (©)* + [se) ()1 + [hse1 () 1 F(E) dg

Now we show that the kernel K satisfies Hormander condition. That is,

2

<3 / FOPR de = 3)1£112

|| K(z,y) — K(z, Z)||E(R7g2) dz < C.

|z —y|>2ly—=|
As [[K(z, Y)llcezy) = [| (®(x — y)) ;7 |2, we have the following.

1K (2,y) — K(2, 2)||crye2y da

lz—y[>2]y—z]

= [ @ - 2 ) le de
lz—y[>2]y—2|
Now doing a change of variable as we did in Theorem we have

/ 1K (2,) — K (2, 2)| |y do

|z—y[>2[y—z|
< [ @+ - 8@l do
|z[>2[y]

Hence, we observe that

1/2
{®;(x +y) — ()}l = (Z |®j(z +y) — ‘I’j(l’)IQ)

JEZ

1/2
(Zly\2 sup & (x + ty)] )

<t<
jez 0<t<1

1/2
< |y| sup (Z@ (x + ty)| ) .

0<t<1 ez

So, we have

/ 1K (2,5) — K (2,2)| @y do

|z—y|>2[y—z|
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Now, since ¢! C (2,

1/2
(Smr) < Swoi ¥ o
jez jET jez
As @ € S(R), we have some C' > 0 such that |®'(z)] < C and |z]3|®'(z)| <

C, Vx € R. Therefore, we have,
|®'(x)] < Cmin(1, |z|7?).

Now, for x € R there is some i € Z such that 27¢ < |z| < 27!, Then,

1/2
(Swer) < Towears Seiwe.
jez j<i >
Note that when j < i we have |z| < 271 < 279 Therefore (2|z])~! > 1 and we

have

Z22j|(1),<2j$)| < CZQQj _ 0221 < C|JZ|_2.
j<i j<i
Further when j > i, then we have (27]x])™ < 1.

D 29|02 < O 29 (2a)) P = Cla P 27 = C27 |z < Claf 2.
j>i Jj>i J=i
Therefore we can say that

1/2
(Z |¢}($>|2> < Clz|™

jEL
From Inequality (6.19)) we get
1
/ K (z,y) — K(x, 2)||cr2) dz < Cly / sup —— dz. (6.20)

o<t<1 |T + ty]?
|z—y|>2|y—2| |z|>2]yl

For |z| > 2|y|, we have
|z] [ ||
tyl > |z = tly| > |z — = > |z — 2 = =L
oty > o] — 1] 2 o] — 12 > Jof - B = 2
Therefore,
1 4

su )
ogtgl |z 4+ ty]2 — |x|?
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So, from Inequality ((6.20]), we have
1
| K(z,y) — K(x, 2)||zr,2) dz < 4Cy| / e dz < C.

lz—y[>2ly—2| |z|>2[y]
The result now readily follows from Theorem [2.23] [
Using the fact that Sjgj = 5, and using above theorem we can prove

Inequality 1’ replacing S'j by S;. In fact, a stronger claim can be proved.

Theorem 6.8 (Littlewood-Paley). For any 1 < p < oo, there exists positive
constants ¢, and C, such that for all f € LP(R),

1/2
Sl < H (Z !ij|2>

jEz

< Gpll[1lp-

p

Proof. From Equation (6.16)) it is clear that the result holds for p = 2. Using
the identity Sjgj = 5; and from Theorems and we get for 1 < p < o0,

1/2 1/2
H <Z|5jf|2> = H (Z|Sj§jf|2>
JEZ p

JEZ p
1/2
<q| (Z \ijﬁ)
jEZ p
< Cpl[flp-
Therefore, we have
1/2
H (Z |ij|2> < Op“f“p- (6-21)
jez p

To prove the other inequality we first remark that, inner product on L?(R, ¢?) is

defined as
(F. G poqase) = / (F(2),G(2))e da

R
Now, consider F' = (S;f)jez and G = (S;9)jez, for f,g € L*(R). Then from

Equation (6.16)), and the Polarization identity, we have
1
(F,G)swey =  (IF + Clliage) = IF = Gl

HlF + G g ) — 1lIF = G2z )



CHAPTER 6. LITTLEWOOD-PALEY THEORY AND MULTIPLIERS 171

(1 + gllz = I1f = gll5 + illf +igll5 — illf —igll3)

= ({f, 92w
That is, for any f,g € L*(R), we have,

/ZSf S;g(x dx—/f (6.22)

JEZ

Particularly, Equatlon (6.22)) holds for all f,g E S(R).
Now for p # 2, we have the following for f € S(R).

Hf\lpzsup{‘/f(x)g(l‘) dz| - {lglly < 17965(113%)}

zsup{‘/ZSf 59

JEZL

msl —

Mlly < Lg e 8<R>}

gsup{/DSf Msia(o)l do s llly < 1.9 € SR .

JEZL
By using Holder’s mequahty for the sum, we get

1]

1/2 1/2
sSup{/<Z|Sf |> (Dsjg(x)ﬁ) s lllly < 1.9 € SR |

JEZL JEZL

Further, from Holder’s inequality for exponents p and p’ we have

1 £11
1/2 1/2

<sun | (Z |ij|2> (Z Sigle )
JEZ JEZ
Now by using Inequality (6.21)), we have
1/2

11 < (lejf(x)F)

jez

1/2
(Z !ij(w)IQ)

jEz
So, there is a constant ¢, such that

()

jez

glly < Lge S(R)}.

p/

sup {c;ngupf Molly < Lg e S<R>}
V4

p

= || fllp- (6.23)

p
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]

We now wish to extend Theorems [6.7] and [6.8) to R”. First we prove an analogue
of Theorem Then we consider characteristic functions of products of dyadic
intervals on the coordinate axes and define an operator similar to S}, but taking

functions defined on R" as its input.

Theorem 6.9. Let ¢ € S(R™) with (0) = 0, let (S;£)(€) = ¥(279€)f (). Then

for 1 < p < oo, there is a constant C, > 0 such that Vf € LP(R™), we have

()

JEZ

Furthermore if for all £ # 0

< Cyllfllp- (6.24)

p

> w7 =C, (6.25)
jez
then, we also have a constant C), > 0 such that Vf € LP(R").

(Z \ijP) N

jET

£l < G (6.26)

p

Proof. Note that as 1) € S(R™) and ¥(0) = 0, >_ ¥(277¢) < C. Therefore,

H @'Sﬂf ’2) - Z= [ S 1©PIFOR a

n JEZL

< [eift©Pr a=cilfla
R
Now following similar steps as in Theorem we can prove Inequality (6.24). If

for all £ #0
> P =,

JEL.

|(Zsr)”

JEZ
Therefore with similar argument as in Theorem we have for f,g € S(R").

[ S 85w de=C [ syt ae

fn JEZ

we have
2

= CI[[fll2-

2
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Now Inequality (6.26)) follows from the last part stated in the last part of Theorem
6.5l 0

We now generalize Theorem for functions in LP(R, ¢*). We keep the

same notations as in Theorem [6.7].

Lemma 6.10. For 1 < p < oo, there exists a constant C,, > 0 such that for any

(fr)rez € LP(R, £?), we have,
1/2 1/2
H (Z \ijw) (Z |fk!2)
4,kEZ keZ

Proof. First we show that for p = 2, the operator (fi),cy — <S'jfk) is
jkeZ

<G

p

p

bounded. Using the Plancheral theorem we have

H (Z |§jfk|2> = > /|S fi(@))? do
3,kEZ

jkEZ

— [ S 1SiTOR o
R Jk€EZ

/Zm &P (O de.
7,kEZ

Now arguing as in Theorem we get

1/2
H (Z |§jfk|2> < 3/Z|fk ©F dg—:%H (zw)
J,kEZ

kEZ kEZ
Let K : RxR — E(KQ,EQ(Z x Z)) be kernel of the operator (fi),., —

<S’jfk> . That is, for (z,y) € R x R, we have
Jk€EZ

2

2

K(x,y) ((ur)rez) = (®5(x — y)uk)j,kGZ'

Note that
K (2, y) (we)kez) 2z = Y 1@5(x — y)]*|ug]”
3,kEZ
= @iz —y)* Y |uil®
JEL keZ

= 1(@5(z = y)) jez ]| (un) ez |-
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Therefore

1K (2, 9)[] =[] (2(z = y)) ez |-
By the exact same arguments as in Theorem [6.7, we see that K satisfies the
Hormander condition

1K (2, y) — K(z,2)[| dz < C.

lz—y[>2]y—z]|
The lemma now follows from Theorem [6.2]. O]

We are now ready to state the Littlewood-Paley theorem for functions defined on
R2. To make the theorem less cumbersome, we make the following constructions
and notations here. Let f be a complex valued function defined on R% Let us

define the operators

—~ ~

(S;f) (&1,&) = xa, (&) f(&1,&)

and

—~ ~

(S/%f) (51>§2) = XAk(§2) (51752)-
We use (f)z, (1) = f(x1,22) and f,, (x9) = f(x1, 22). If Fy is the one dimensional
Fourier transform, then
Fi ($i(Dn) (&) = 0@ IE) (Naa&r) = F1 (S1) (€,2).
Similar statement can be made about restriction of f to the second variable. We
now see that Lemma also holds for functions of several variables where S'j

acts only on one of the variables.

Lemma 6.11. There is a constant C, > 0 such that V(fi)rez € LP(R, (%), we

have
1/2 1/2
[(Ss) | <o (Sme)
G kEZ P keZ P
Proof. We notice that,
1/p

I(zsr)”

<G,
k€T P

p/2
(R/ (Z |5jf(x)|2> da
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p/2 p/p v
= /|:/ (Z |ij(l’1,{E2)|2> dZE1:| dl’g
% Ln o \jkez
vz 1/p
= / <Z ’(gjfk)zz(')|2> das
2 = P
1/2 » 1/p
= / (Z |Sj(fk)m2<')|2> dzy
2 G ke P
As (fi)e, is a one variable function, using Lemma we have
1/2 2 1/p
|(Z ) || <ol [l (Zmmor) | o
jkez P 2 kez P
p/2 1/p
-/ (me) az
\&> \kez
1/2
=0 <Z |fk’2>
keZ P
O]

Theorem 6.12 (Littlewood-Paley in R?). Let 1 < p < oo. Then there exist

positive constants ¢, and C, such that Vf € LP(R?), we have,

1/2
] (Z rs;ssz)

JkEZ

Spllflp < < Gol[f1lp-

p

Proof. Note that S} = 5;531 Therefore

1/2 1/2
‘ (Z |S}S§f|2> _ H (Z |S;S;sif|2>
V4

J,k€EL 4,kEZL P
By using Theorem [6.5, we have
1/2 1/2
\ (Z |S}S;S£f|2> < CH (Z |S}Sféf|2)
Jk€EZ P jkEZ P
From Lemma we obtain
1/2 1/2
‘ (Z \S;SifP) <G, (Z \Sif\2>
jkeEZ P . kEZ P
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Finally, using Theorem [6.8] we arrive at

1/2
\KE]%N) < Gliflly
J,kEL p
which proves
1/2
\KEJ%%N) A
JkEZ P

Now to prove other inequality we use the fact that

/f dx—/ZSSk ) - SIS?g(x) da,

R2 Js keZ
for all f,g € S(R?). Indeed this follows from the L?-estimate and the Polarization

identities of L*(R?) and L?(R?, (*(ZxZ)). The result now follows from the duality
argument given in the proof of Theorem [6.8] ]

6.3 Multipliers

Suppose m € L®(R"). We define an operator T}, on L*(R™) by

T (€) = m(&)F(9). (6.27)
By Plancherel theorem, T}, f is well defined and bounded on L?(R"). In fact we

have the following result.

Theorem 6.13. The operator T, : L*(R") — L*(R"™) is bounded with operator

norm ||m||s-

Proof. We notice that,

T fll2 = T fll2 = [[m(€) F(E)l]2 = [m(E)I[f )]z < [Imlol[f1]2-
Therefore T}, is bounded on L*(R™) and ||T,,|l2 < ||m|]e- Now let € > 0 and
let A be a subset of {x € R : |m(x)| > ||m||s — €} whose measure is finite and

positive. Let f € L*(R") such that f— x4. Now,
T3 13 = [Im(€) |b—/M1 (©F ¢
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= [Im©F a

> ([Imllo — €)*|4]

= ([Imlloe = )*II£115-

Since € > 0 is arbitrary, we have ||T,,[|2 > ||m||s. Therefore, ||T).||2 = ||m||o. O

Definition 6.1. A function m € L>®(R™) is an LP-multiplier if the operator T,,
is bounded on LP(R™).

Now let us see some examples of multipliers.

Example 6.1. We have seen that the Hilbert transform has the following ex-
pression

Hf(§) = —i sgn(§)f(£),
So, for f € L*(R), m(£) = —i sgn(§) is a multiplier for the operator H. As we
have also seen that H is bounded on LP(R) for 1 < p < oo, m is a multiplier on

LP(R) as well.

Definition 6.2. Let —oo < a < b < 00, we define mqp(§) = X@p)(§). We define

an operator S, associated with this multiplier as

-~

SunF(E) = X(an) () F(&).

We see that X(qp is a multiplier on LP(R) for any 1 < p < oo. For the

same, let us first define modulations.

Definition 6.3 (Modulation). For a € R, modulation by ‘a’ is the operator M,
1s defined as

M, f(x) = ™ f(z).
Lemma 6.14. The multiplier of the operator iM,HM_, is sgn(§ — a).

Proof. Using the definition of the operator M, and the definition of Hilbert

transform we have the following

(M HM_.f) (€) = (™ HM_. f) (€)
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= (HM_,f(2)) (€ — a)
= —i sgn(€ — a)M_o f (€ — a)
= —i sgn(¢ — a) f(€).
Therefore the multiplier of the operator iM,HM_, is sgn(¢ — a). O

Using Lemma we get an equivalent expression for the operator S, ; in terms

of Hilbert transform.

Theorem 6.15. On L*(R) the operator S, can be written as
1

Sa,b - 5

provided —oo < a < b < o0o. In the other cases, we have,

(MyHM_y — MyHM_y) ,

&mb:1+%MJMLmﬁwb<w.

Saco = %MGHM,Q + 1, fora> —oc.

S

Here, I is the identity operator on L* (R™).

Proof. 'We notice from Lemma that

~

Sunf (€) = X(am () F(©)
— 1 (sen(e — a) — sgu(e - b)) (&)

2
i .
=3 (M HM_,f — MyHM _,f) (€).
Now, let us assume that b = co. We notice that
~ 0 if ¢ <a.
Xa,0o(§)f(€) =

O ife>a

Therefore we can write the following

(Sacel)(€) = Xael©F(E)
=+ (sen(e — ) (0 + F1O))

2
(M HM_,f)" + f(£).

i
)
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Therefore we have

Suoo = %MaHM,a + 1.
The proof for the case S_ p is similar. The last case when a = —oo and b = —o0,

SINCe X (—o00,00) = 1. O
Theorem 6.16. The operator S,y is bounded on LP(R), where 1 < p < oco.

Proof. First we see that M, is an isometry on LP(R). Indeed, we have

@l = [ 17 f@p de = [ 7P o =17
R R
Therefore ||M,|| = 1. Now using Theorem and the fact that H is strong

(p, p) we have the following

1Sasfllp < 5 ([MaH o fllp + [[MyH M)

IN
Ql\DIH[\DI»—‘

(HH M flp + [[HM-]l,)
< = (Mo fllp + M- ])

< Gyl fllp-

We have proved the case when —oo < a < b < oo. As the operators M, HM_,
and I are bounded, S, « is also bounded. O

|
G

We next look at some consequence of the definition of multipliers. The

following result gives a way to generate “new” multipliers from a given multiplier.

Proposition 6.17. If m is a multiplier on LP(R™), then the functions defined by

1. m(§ +a), for a € R";
2. m(XE), for A > 0; and

3. m(p€), for p € O(n) (orthogonal group),

are multipliers on LP(R™) with the same norm as that of m.
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Proof. We begin by studying translation of m.
Let m' (&) = m(¢ — a). It is clear that m’ € L®(R"), for a fixed a € R™.

Then, by definition of a multipliers we have
(T, DI(E) = m' (€)](€).
Therefore (m)(ﬁ +a) = m'(E+a)f(E+a) = mE)f(&+a) As 62/””7]0(5) =

~

f(€+ a), we have

(T, F)(E +a) = m(€) (2o f)(€)
= m(€)(M, f(x))(€)
= (T (M, f)) (€).

—

Therefore, (T, f)(€) = (Tn(M.f)) (€ — a). Now using the properties of Fourier

transform we get

— —~

(T F)(E) = (M_oTrMa) () (£).

Taking the inverse Fourier transform, we have

T, = M_,T,M,. (6.28)
Similarly,

T, = M,T./M_,. (6.29)
As ||M,|| = ||M_4|] = 1, on any LP(R"), we have from Equitation and

(6.29) that ||T,|| < ||T|| and ||Tm|| < ||Tw||. That is, m’ is an LP-multiplier
with || T || = || Tl|-
Next, we consider dilations, mq(§) = m(A§) for A > 0. Again it is easy to see

that m; € L>®(R™). Then, by definition, we have,

o —

(T, F)(€) = ma(€) F(£).

Therefore,

(T 1)(E/X) = m(€)F(€/N)

~ ~

We know that (A" f(A-)) (€) = f(£/A). Hence, we must have

o —

(T, £)(E/A) = m(€) (A" F(A))TE)-
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Let g(x) = A" f(Ax). Then,
(T F)(E/A) = m(€)[9())(€) = (Tg) (€)-

Therefore,
T D(E) = Tmg) (AE)
= (A" Tug(A )
= (AT, ( f™ 1>\))) €3
= T )(©).

Therefore we have T,,, f = T,,f. Clearly, m is an multiplier with ||7,,,||, =
[Tl

Lastly we look at the action of the orthogonal group on multipliers. Let p € O(n),
and ma(&) = m(p§). We have that my € L>*°(R™) and

(T F)(€) = ma(&) FLS).

Therefore,

(Tonaf) (p7€) = m(€) fp~1)(€)
= (T9)(©),
where g(z) = f(p~'z). Consider the map ¢ : O —» GL(LP(R™)) defined by
o(p)f(z) = f(p~'z). We wish that Vp € O(n), ¢(p) : LF(R") — LP(R™) is an

isometry. Indeed, we have

() fIE = / )P da

= [1r@) 4z = 115,

That is for all p € O(n), the operator norm ||p(p)|| = 1, on any LP(R™).

Now, we have

(Tos )(€) = (Tg) (0€)
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= ((6(p™")To(p)) £) (€)-
Therefore T,, = ¢(p~1)Tmod(p). This also gives Ty, = (p(p™1)) 1T, (0(p)) L.
As ¢(p) is an isometry on LP(R™), we have ||T,,|| < ||Tm,|| and || T, || < ||Tml]-

Hence my is an LP-multiplier with ||, ||, = ||Tm,||p- O

6.3.1 The Hormander multiplier theorem

In this section we deal with the space
Ly(R?) :={g € L*(R) : (1 +]-[))**g € L*(R") € L*(R")}.

This space is known as the Sobolev space of regularity ‘a’. The origin of Sobolev
spaces lies with the distribution theory, where we generalize the notion of classical
derivatives to functions that might not be continuous. For details on distribution
we refer to [23]. We would like to remark here that if g € L?*(R™) is smooth and
a € N is an even number, then we notice that (14 || - [|?)¥/?7 = ((I + A)¥/?g),
where A = i 6‘9—; is the Laplacian on R™. Essentially, the Sobolev space LZ(R™)
consists of %Elctions in L?(R™) that are a times “differentiable” in some sense.
Similarly, we can define Sobolev spaces of LP(R™)-functions. However that is out
of scope of this thesis. For more details we refer the readers to [I1]. The Sobolev

norm of the function ¢ is defined by
1/2

lolliz = | [ 100+1€R)"5(€) ag
We have the following easy result for Sobolev functions.

Proposition 6.18. Ifa > n/2 and g € L2(R") then g € L'(R").

Proof. We have,
/ 36| de = / (14 [€P)25(E)(1 + |€P)" de
R™ R™

1/2 1/2

< / (14 [EP)Y 251 d(e) / (1+ [€P) de

n
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< Callgllzz-

We see from the polar decomposition of R™ that
o0

n—1
(L+[€]) ™ de = C | ——— dr < o,
/ / (1+7r2)

R?’L
since the total power of r towards coisn —1—a < —1. [

To prove the main result of this section we need to prove a weighted norm
inequality.
Lemma 6.19. Let m € L2(R"), a > n/2, and let A > 0. Define the operator
(TAf)(€) =m

. Then for a positive function u defined in R"™, we have

MOFe)
/ ITo (@) Pu(z) dz < C / (@) PMu(z) dr,

where the constant C' is independent of uw and X\ and M is the Hardy-Littlewood

maximal operator.

Proof. Let K € L*(R") be such that K = m then note that (1 + |z[2)72K (z) =
R(z) € L*(R"). We have (A""K(A™")) = K(\-) = m()\-). Let K; be such that
Ki(z) = A"K(\x). Therefore

(TAf)(€) = KO F() = (K1 * £)(€).

Therefore, we have,

[ mr@Pu) o
- / K+ 1) Pula) dr
/)/ 1+|>\ Iy_)é;zﬂf(y) dy

R\ 2 f ()P
S]R[ [\A RA Mz —y))|* dy [(1+\)\1(a:—y)]2)“ dy | u(z) dz.

In the last Inequality, we have employed the Holder inequality with p = p’ = 2.

]2, = A" / [RO2)? da

2

u(z) do
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Therefore

[P de < x| [ G H 0 v i)

R
Since the integrand is non-negative by applying Fubini’s theorem, we obtain

/ 1 f@)Pule) do <3l [ [ e 4o | LGP d

Rn n

(6.30)

The inner integration can be written as

u(x) o
]R[(1+|)\_1(x—y)|)“ dz = (ox *u)(y).

where, p(z) = ﬁ and py(z) = A"p(A"x). Note the ¢ is positive, radial,

and decreasing (as a function on (0,00)), and integrable. Therefore we have

o x u(z)] < |leliMu(x)
for a.e z € R". Now, Inequality ((6.30) - ) gives

/ 13 @)Pu(e) do < [jm; / el M) AP dy

< Cullmll / F )P Mu(y) dy

—c / F@)PMu(y) dy

]

To prove Hormander’s multiplier theorem, we require the following construction.
let v € C*°(R™) be a function which is radial and supported on the annulus
1/2 < [¢| < 2 such that

> (@)

JEZ

when & # 0.

We now prove the main result of this section due to Hérmander (see [15]).

Theorem 6.20 (Hormander). Let 1) be as defined above and let m be such that
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for some a > n/2,

sug\hn(2j)szLg~< 0.

je
Then the operator T' associated with the multiplier m is bounded on LP(R™), for

any 1 <p < oo.

Proof. First define the family of operators {S;},ecz by (S;f)(§) = w(2_j£)f(€).
Then by our choice of 1, Inequality 1} holds. Now let ¢ € C(R™) be

supported on 1/4 < €| < 4 and equal to 1 on 1/2 < [£| < 2. Now, let us define
S by (S;f1(€) = $(277€) J(€). Then note that

(8;8,)(6) = v(@7ODRTOF ) = (278 F(€) = (S,)(©).
Therefore Sjgj = S;. Note that the family (§]> satisfies Inequality (6.24]).

jJET

Since <Sj)jeZ satisfies Inequality 1} we have

1/2 1/2
‘ (Z\Sij\2> = CH (Z|Sj§ij|2>

JEZ JEZ.

ITfll, <C

p
Now we observe that

-~ ~ —~ ~ —~

(SiTf)(€) = (279 (Tf) () = $(277m(&) F(€) = m(&)(S;/)(€) = (TS, [)(€).

Therefore we have,

1/2
T ], < OH (Z |5jT5jf|2> (6.31)

jez
Let gjf = g;. Since the multiplier of the operator S;T is ¥(277¢)m(&), by the hy-

p

pothesis of this theorem and Lemma [6.19] there exists a constant C' independent

of j such that for any positive u defined on R", we have,

/|Sjng(x)|2u(x) dr < C’/ 9;(z) > Mu(z) dz. (6.32)
R

R
Now, for p > 2, we see that

1/2
' (Z ISjngF) > 18Tyl

JEL jEzZ p/2
So there exists u € L®/?'(R™) with u > 0 and ||ul|(,/2y = 1, such that

H (Z |Sjng|2> v z: /Z 1S;Tg;(x)|u(z) dz.

= . JET

2
P
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Using Inequality (6.32]), we obtain

1/2
H <Z \Sjng\2>

JEZ

2
<C [ g @) Mu(z) d.
p Rn

Now, applying Holder’s Inequality for exponents p/2 and (p/2)" and using the
fact that M is bounded on L®/?'(R™), we have
1/2 1/2 1/2
| (Z \SjngF) <c| (Z W) Il < | <Z W)
ez P jET. P jEz
From Inequality(6.31]), we get,
1/2 1/2
i1, < (Z rng) (Z |ij\2>
JET

=

2

p

=C

p

p

Since the family <§]> , satisfies Inequality (6.24) we have ||T'f||, < C||f||,-
jeN

This completes the proof for p > 2. When p < 2, we use a duality argument. We
want to see the transpose of operator T . Notice that, for f,g € S(R"™), using
duality of Fourier transform, we get,

[ Tr@) d= [ 7@ d

R7 R™

Here transpose of operator T, is defined by

Tig(x) = m(—z)g(z).
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Therefore T" is also bounded for p > 2. Now for p < 2,

1711 =suw { | [ 7se) as| s llly <1}

< sup{[|f1[p||IT"glly - [lglly < 1}
< CollfllpAllglly : Mgl <13
< Cpllf1lp-

6.3.2 The Marcinkiewicz multiplier theorem

In this section, we study multipliers associated to dyadic intervals on R. The
theorem was originally due to Marcinkiewicz. Here, we follow the ideas of

Duoandikoetxea ([7]).

Theorem 6.21. Let m be a bounded function which has uniformly bounded vari-

ation on each dyadic interval in R. Then m is a multiplier on LP(R), 1 < p < oo.

Proof. Let T be the operator associated with the multiplier m, i.e, (Tf)(£) =
m(&)f(é*). Let Tj be the operator associated with the multiplier my;,. We con-
sider the case I; = (27,27%1); The case when I; = (—27%! 27) can be handled in
exactly the same way. We do not provide the details of the latter case here. Note

that for £ € I;, we have,

3
m(27) +/ dm(t) = m(27) + m(&) — m(27) = m(&).

Therefore,

3
(mxi,)(€) = m(27) + / dmi(t).
This gives }

£
(mx )(€) F(€) = m(2)xs, (€)F(€) + / (€) dmit). (6.33)

2j
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We claim that
27+1
T3f(a) =m(2)S, @)+ [ iz fia) dmio), (6:34)
29
where (S 241 f)(€) = X(241)(€) f(£). To this end, we observe that

9j+1

jf<£>dm<t>—/ (.61 (&) dm(t)

27
27+1

- / v (E)F(€) dm()

9
27+1
~ [ Swn s dmo
2
We denote
2J+1
17O = [ (S 1€) dm(t)
9
Now, considering f € S(R), we can use Fubini’s theorem to get,
27+1

) = [ / (S £1(€) dm(t)ei™e de

2J+1

= / / X241 ( )e™t dédmi(t)

2]—0—1

- / [ (S i@ ag ame)

2J+1

= / St,2j+1f(33) dm(t).
27
Therefore by taking inverse Fourier transform both side in Equation (6.33)) and

from the definition of S;, Equation (6.34) is proved. Now we show that for any

w € Ay, S; and S, 951 are bounded on L?(w). The operator S; can be written as

i

S = —
J 2 (

where for any a € R, M, f(z) = > f(z). We recall that the Hilbert Transform

MQj HM_Qj — M2j+1 HM_2j+1)
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H, is a Calderén-Zygmund operator, and hence is bounded on L?(w), for any
w € Ay. Since ||Mg||r2(w) = 1, for any a € R, the operator S; is bounded on
L*(w), for any w € A,. Similarly, S, i+1 can be written as

Syaiir = % (MyHM_; — Myss HM g541) .

Hence S; 5i+1 is also bounded on L?(w) Vw € A;. Now, we have,

9i+1 9j+1 ) 1/2
H / Sy it f dm(t) = /‘ / Syt f(E)dm(t)| w(§) d§
2 L2(w) R 2
Using Minkowski’s integral inequality, we have,
9i+1 9i+1 1/2
H [ swnt©am@| < [ [iswar©Pue ) am)
27 LQ(w) 27 R
27 +1

As the operator S; 9i+1 is bounded on L?(w) we obtain
2J+1 2j+1

| [ Swns@ant)|  <Clillaw [ an)

2j

< CV(m)|[f1c2w),

L (w)

where V(m) is the total variation of m. Combining the above observations, we

get

2j+1

Il < @Sl + || [ Sean 1(©) ame)
5

L2 (w)

< Climllol[fl 2wy + CV ()| f] 2wy
< Cllfllz2(w)-
From Theorem [6.8] we have

1/2
ITfl], < OH (Z |Sij|2>

JEL

p
Hence, we observe that

—~ ~ ~

(S;TI)E) = x1,(E)m(E) F(€) = X1, (E)m(&)x1;(€) F(£)
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= x1,(E)m(E)(S;£) (&) = (T35;:£)(€).
That is, S;T = T;95;. Therefore

1/2

Il < (Z |7}ij|2)

JEL

Since T is bounded on L?(w) for any w € Ay, from Theorem , we get
1/2

| (Z \7}ij!2)

JEL
This completes the proof. ]

p

< C[[fllp-

p

We now generalize Theorem to higher dimensions. We state the result only
for R?, where the notations are bit less cumbersome. The general case of R"

follows in a similar fashion. For details, we refer the reader to [12] and [7].

Theorem 6.22. Suppose m is a bounded function on R?, twice differentiable in

each quadrant, such that

0
Sup/ 8—7:(751,152) dt; < oo,

jez

I;

0

sup/ —m(tl,tg) dt, < oo,
jez J | Ota

I

*m

sup —F (11, o dtldtg < o0,
JEZ /I;le atlatQ( )

where I; is dyadic interval in R. Then m is a multiplier on LP(R?), for any

1 <p<oo.

Proof. We restrict our attention to dyadic intervals in R,. That is we only
analyse the first quadrant of R”. Other cases can be handled exactly similar way.
We take I; = (2,2""1) and I; = (27,27). Now, for a fixed (£1,&) € [; x I;. We
claim that

1 2 1 am ‘
m(&, &) = // atlathtl dty + ot —(t1,27) dty
2Z

27 21
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&2
0 ) S
+ / —m(21,t2) dty +m(2',27). (6.35)
Oty
9J
Indeed, if (&1, &) € I; x I;, then
&1 &2 &2

; om,_;
// 02,0, o At Ao = m(&1, &) —m(&,27) — / 8_t2(2 ,to) dto,

27

om , o
and/ a—t<t1,2]) dtl = m(f,QJ) — m(2’, 2j>
1
21'
By substituting the above observations in the RHS of (6.35]) our claim is proved.

Now we consider the operators
(S1AE) = x1, (60 F (),

~

(S?j)A(f) = XI; (&2)f(S).
Then

(S1.52 F)(€) = x1.€1x1, (&) () = x1.x1, (€1 €2) F(€)-

Now multiplying both sides of Equation (6.35]) by xr,x1,(£1,&2), we have
2

o°m
m(&1, &) Xnixa; = //X(2i,§1)(tl)X(zj,@)(tz)m dt; di,

I I

om , om
+/X(2i’§1)<t1)8_tl(tl,2]) dtl +/X(21 &2) ( )815 (2 t2> dtQ
I; Ij
+m(2%, 27 ) x1,x1, (&1, &2).
Now multiplying both sides by f(g ), we have

~ ~ 82
(Ti; ) (&) = / (Stll,zi+151:22,21+1f) €3] ot,0t (t1,t2) dty dty

]iX]]'

+ / (Stll,zi+1f) (fl) (t1, 271 dty

I;

4 [ (8L s ) (@G, 27)

I;

+(SESFF)€)m(2", 7).
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Now taking inverse Fourier transform and arguing as in Theorem [6.21| we get,
32
(Tijf)(x) = / (Sl 9i+1 2,2j+1f)( )8t ot (t1,t2) dty di,

]iX]]'

[ (Shaad) @3 027 at

I;
om
/(SQ2Z+1f) ( )8 (t2]72j+1) dt2
lo
1
T (SIS2f)(@)m(2,2)
Now we want to show that the operator 7T;; is bounded on L?(w) space for any

w € Aj. First we notice that

~

(Spgii f) () = X201 (£2) ().
Therefore we can write
/S&2i+1f(l') —iwg dr = Xt 2i+1 61 / —ix{ dzx.

RQ
This can be written as

//S;2i+1f(95)€m£1d951€m&dxz Xt,2i+1 51 // ml&dﬂ’f’leﬂwﬁ2 dws.
R R R

Equivalently,
Fi (Fi(Stan f(22)(60))) (&) = Fu (Fr (X (E0) F( 22)) (£1)) (&),

where F; denote the one dimensional Fourier transform. Equivalently,

Fi (Siainn f(22)(61) = Fi (X200 (E2) (5 22)) (1)
We know that the one dimensional operator S} 1.0i+1 Operator is bounded on L*(w)
space for any w € As(R). Now suppose w € A5. Then w(-,z2) € Ay(R) and

w(xy,-) € A(R). Therefore,
1/2

1S}, gier fll 2wy = \R/|5t1172¢+1f(951,x2)\2w(:v1,932) dx

1/2

= //‘Stll,gf(ilfl,xz)!?w(%,a:g) dxq dzo

R R
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1/2

<C // |f(z1, 20) |Pw(zy, 22) doy dag

R R

= Ol f 2.
Similarly, S? e S and S? operators are also bounded on L?(w), for any w € Aj.
Using these facts we show that 7} ; is bounded on L?*(w), for any w € Aj. First

note that, using Minkowski’s integral inequality, we obtain,

82
' / 21+lst2 2]+1f) ( )@t at (tl,tQ) dtl dtg

L (w)
1/2
*m 2
/’ tl 21+1St22 23+1f) ( )8t18t2 dtl dtg U)(.Z‘) dx
I;x1;
) 1/2
?m
< / m(tl,tg) / Sl 2”’15152 23+1f( ) ’LU(.’E) dzx dtl dtg
I,L'XIJ' 2
1/2
*m 2
= / —(tl,t2> / Stll 2i+1St22 2j+1f(f,l§') w(:r:l,xg) dl’l dIQ dtl dtg
Ot10t, \R ’ ’
I; <1 2
) 1/2
?m
— / —(tl,t2> / 52 2J+1f( ) U}(Z)’Jhl’g) d[El d[[‘g dtl dtQ
81516152 \R
IiXIj 2
1/2
0*m )
= — (11,1 d dt; dis.
[ g et \R/ f@)Pue) de | dn dey
LL‘XIJ' 2
From the above hypothesis of this theorem,
82
t1,to)|dt dts <
j}elg/lm 8t18t2( 1, t2)|dt1dts < oo.
We have
*m
/ (S} 210150 gier f) (@) 7o (t1, t2) diy dty < ClIfllz2w)
[iX[j
Similarly, we can show that,
[ (8o @502 an|| < Cllfla,
L2 (w)

i



CHAPTER 6. LITTLEWOOD-PALEY THEORY AND MULTIPLIERS 194

| ot s

< O f1l2(w)

L2(w)

and

\(S}Sﬁfx@m(w')

Using all these facts it is easy to see that T; ; is bounded on L*(w), for any w € Aj.

\ < Olfmllollf 1l 2200)

Now using the Littlewood Paley theory on R? we have

1/2
\ (Z !S}SfoP)
2,] P

Also, from the definition of S}, S7, T' and T}, we can show that

SIS2Tf =T,,;51 5.

1/2 1/2
(Z ISZ-15?Tf|2> =< C‘ (Z IT%JSES?fF)
1,5 (2]

Now by using Theorem with an obvious change for A; weights we can say

1/2 1/2
H (Z |ﬂ,jSSS?f|2> < H (Z |S$S?f|2>
,] p .

Lastly, by using Theorem [6.4] we have

(o)’

This completes the proof! ]

ITfll, <C

Therefore

1T, < c'

p

that

p

< {1F1lp-
p

6.3.3 Bochner-Riesz multipliers

In this section we discuss about the operator

(TF)(€) = (1= [EP)LF(E),
where a > 0 and A, = max(A,0). Such operators were first introduced by
Bochner in [3] and arise naturally in the study of multipliers associated to balls
in R". For details we refer the reader to [12]. We start with the following

construction. Let us choose functions ¢y € C°(R) which are supported on [1 —
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2k+1 1 —27k=1) such that 0 < ¢ < 1 and |DPyy| < C2%8 for 8 € NU{0} (where
Cj is independent of k), and for 1/2 <t < 1, we have

Z pr(t) =

We also define g by

H=1-3 @)

for 0 <t < 3 and ¢o(t) =0 for ¢ > 1/2. For 0 < [£| < 1, we have

Z%(KD =
k=0

Since (1 — |£|?)% survives exactly when 0 < [£] < 1, we have

(1= 163 = > (1 =€) er(l])-
k=0
Now we define another sequence of functions by

Ge(l€]) = 2"(1 — [€1*) "ex((€]).
So, we can write
(1—le)g Zz FGr(€1).
Therefore we can decompose the operator T as
f = Z kaaka,
k=0
where,

(T f)(€) = or(€]) F(£).

The behaviour of the operator T} is discussed in the following lemma.

Lemma 6.23. Given 0 < § < 1, let ¢ be a function on R which is supported on
(1 —40,1—0) such that 0 < ¢ <1 and |D?¢| < C5~18! for any B € N. Then for
any € > 0 the operator Ty associated with the multiplier (|£|), satisfies

—(" 5t 4o |2-1
| T5 /1], < Ced

/11

Proof. Let K be such that K (&) = ©([€]). Let a € N be even. We claim that
11+ K|l < Co27. (6.36)
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Note that

(14 [z ) Ko = [[((1+ |- DE)|2-
As for any polynomial P, (Pf)(¢) = P(—D)f({'),
1L+ 1K) ]2 = CIIE + (=2)2)(@QUI - D)2

It is easy to verify using binomial expansion that

Ltz =C |1+ ) 2’
|8|=a
We have,

1@+ 19K < C [ Tle(- Dl + Y 11D (el - D)2
|Bl=a
Now we notice that

DIE = 24 1 d¢.
(] DI /1_45<£|<1_5|w<\§|>| ¢ < /g| ¢

depending on the value of delta there are two cases. First let us consider 1 —44 >

0. That is 6 < }1. Then using polar decomposition of R", we have
/ 1.d¢
1-46<|€|<1-6

= / / r" L dr du
Sn=l J1-46<r<1-§

::§%1ﬂ1_®n—u—4@@

|Sn1 ! e 4
<= l1-6-1+4 1—8)" 1741 — 46)
< ——@1=9 +<DZ; )" (1 — 46)

< C(30),
where the second last inequality follows from that fact that (1 —¢) < 1 and
(1 —46) < 1. In the other case when 1 — 46 < 0, we have

1—o)"
/ 1d¢ —/ / " dr du = \S”’l\—< ) .
1-46<¢|<1—6 Sn—1 n

0<r<1-4
a=e)n
8

) < 0,and hence % is decreasing on (1, 1). There-

We observe that for d%(

fore,
-0y _ (-3
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So (1 — )™ < C6. This gives,

/ 1.d¢ < 06,
1-46<|€]<1-6

Hence we get ||¢||» < C6'/2. Now,
1D7e(] - DII2 :/ Do (le])I? dg

1-46<|€|<1-8

< C/ 5218l dé¢
1-46<|€|<1-6

=52 / 1dé
1-40<[€|<1-8

S 051—2(1 )
Therefore,

ST ID (- Dl < 052
|B]=a
Therefore we have

||(1 + | ) |2)K||2 < C (51/2 + 5_a+%> = 051/2 (1 + 5_0‘) < 061/225—11 — Ca—a—‘r%'
Here we use the fact that 6= > 1. This proves our claim. Now we prove that

Inequality (6.36)) is true for any @ > 0. Let s > 1 be such that as € N is even.

Now using the concavity of the function z — /%, we have,
(1+[2]*) < C(1+[a]*)"".
Therefore,
11+ |2|) K2 < CII(L+ |a|*) K]y
< I+ 1)K 1K
Since as is an even positive integer, we know from Inequality that
(] 2) K|y < coze.
As [|Kll2 = [[é(] - )2 < C8'72, we have,
1+ 1)K ILE L < comragar < o,
Taking a = 7 + €, we obtain by using Holder’s inequality,

1K1 = [+ |2]*) (1 + 2] 7l < O )+ 2] 7 |2
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Since [|(1 + |z|*)!||, < C., we have
K|l < Co~**2 < C.5- 59,
We also have (T5£1(€) = @(€]) F(£) = K(€)f(£) = (K % f](€). That is,
Tsf =K f.
Therefore [|T5f[l> = |[(T5f)]l2 = llé(] - Dfll2 < ClIf|l2. Also, using Young’s

convolution inequality we get

1 Tsf1l < CIIK ]I fIl < Co™C2 ),

and
_(n=1l,
1T5f oo < CIK ] flloo < Cd™ || £ oo
The result now follows from Riesz-Thorin interpolation for p =1 and p = 2
together with p = 2 and p = oco. O]

Lemma 6.24. If m is a function with compact support which is a multiplier on

LP(R™) for some p then m € LP(R").

~

Proof. Let f € S(R™) with f(z) =1 for x € supp(m). Now

—~ ~

(T f)(€) = m(&) f(§) = m(§).
Note that
M) = (T f)(E) = Tmf(—€).
As T, f € LP(R™), m € LP(R"). O

Lemma 6.25. The Fourier transform of (1 — [{[*)% is

n__

K(x) = 7D+ 1)z 3" Ty a2 e]),

where
(%)V / it 2\p—1
Nz s 1_ 14 d
v+ L1}/ © (15772 ds,
1

T,(t) =

is the Bessel function of the first kind.
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Proof. First note that

Ja-iprac= [ a-igpra=g) [ a-sreas<oo

R" 0<fel<t 0<s<1
That is, (1 — [£]*)% € LY(R™).
Therefore,
(=1 P @ = [ - lePe e a
0<[¢l<1
_ / / (1 . 82)a6727ri(x,su>snfl ds du
§n-10<s<1
_ / (1 . S2)a8n—1 / 6—27ri<x,su> du ds
0<s<1 sn-1
n—1
= / s (1 — 52)“2W(|$|3)_(T)J%2(27r|$|s) ds
0<s<1
— 2nfz|0-3) / (1= 82)%8"/2 s (2r]als) ds
0<s<1
0y 2°T(a + 1)
— -5z 71 )
= 2m|x|V 72 Grla) Juz2 (27|x]).
Here we used the following. If r = |z| and 2’/ = r and v’ = & we have

/ 6727m'xu du/ _ / 6*27”'|$HU\<1’,W> Clu/ — 27_(_(’1_”,“’)—%*2{]”7_2 (27T‘LCHUD

Sn—1 Sn—1
We are now in a position to give the main result of this section.
Theorem 6.26. The Bochner-Riesz multipliers T satisfy the following:

1. Ifa > "T’l then T* is bounded on LP(R™), for any 1 < p < 0.

2. If 0 < a <25t then T* is bounded on LP(R") if
1 1

p 2

a

n—1’
and is not bounded if
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Proof. First note that using Lemma [6.23] for any € > 0, we have
ITifll, < C”®HDECTHM ], < [P

HT“fllpéZIIkaH;o2 <G 22“ Ok 1]l

T is bounded if k("Tl + e)|% — 1] —ka< O, Wthh implies
1 1 ‘ a

n—1+
2 ¢ P

2 2
As e > 0 is arbitrary, we have
n—1\|1 1 a
2 Jlp 2| %
That is T is bounded if |— — —‘ < ﬁ This proves the first part of (2). We
observe that if @ > 25+, then —%= > 2 < —%=. Hence (1) is proved. Now we recall

a few asymptotic properties of Bessel function. As ¢ — 0, we have J,(t) < Mt”,
for some constant M, and as t — 0o, we have
Mt~z < J,(t) < Myt~ 2,
for constants My, M,y > 0.
Using these facts, we have for |z| — 0,
K*(x)| < C.
And for |z] — oo, we have,

n+1

n—1
Cilz[~ ) < K% ()] < Cola| 719,

Now,

il = [ 1@ do

_ / |K“(x)]pdx+/|K“(x)|pdx

0<|z|<1 |z|>1
> / K9 (2)P dz + C / 2| g
0<]z|<1 |z|>1

> / | K ()P dz + C|S™ | /T(T“)pr”l dr

0<|z|<1 r>1
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= / |K(z)[" dz + C / p S rapinl gy
0<|z|<1 r>1

Therefore |[K|[F < oo only if (%1 +a)p —n + 1 > 1 that is if p > 21—

Now by using Lemma [6.24] T can be bounded on LP(R"), only if p >
Suppose on the contrary that 7% is bounded on LP(R™), for

n+1—|—2a
1 1 2 1
L Py (6.37)
p 2 2n
There are two possibilities. When l — 1 >0, Inequality 1) implies
1 2n
< -
“n+1+2a
This is clearly a contradiction!
In the other case When L —4 <0, we have p’ < 2% We note that if K'(z)

is the kernel of T, then transpose (T%)* has kernel K, where K(z) = K(—xz).
So the multiplier of (T)* is K (¢). Fourier transform of the multiplier of (77)*,
is I%(m) = K(x) = K*(—x). Note that by our assumption (7*)* is bounded for

p < —2%—. But K*(-) € LP(R") only when p > —="—

- +1 +2a . This gives contradiction

+1+2

and completes the proof.
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Conclusion

This thesis is a brief survey of a few techniques commonly used in Harmonic Anal-
ysis. We have seen the importance of averaging operators, and their techniques
in understanding the LP-boundedness of certain translation-invariant operators.
The techniques presented open the doors for a graduate level study as well as
research. Now, we mention few of those directions one can pursue.

We have seen in Chapter [6] three types of multiplier operators. In Section
we commented that the study of multipliers associated to the characteristic
functions of balls is difficult. This is one of the directions of study one can take
up. Indeed, the study of multipliers is a vast subject in itself.

In Chapter [5, we have seen singular integral operators. The Calderén-
Zygmund theory answers most of the questions that may arise in the study of
singular integrals of convolution type. Therefore, the next step would be to see
singular integrals of non-convolution type. These are typically difficult to study,

since we no longer have translation-invariance at hand. Nonetheless, much devel-

202
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opment is done in this direction. One often starts by defining a special tempered
distribution, called the T'(1)-distribution, and studies its boundedness. The the-
ory so developed, what is called the “T’(1)-theory”, answers certain questions on
the boundedness of singular integrals of non-convolution type. A more general
theory, called the “T'(b)-theory” is also developed in accordance to this. We refer
the reader to [I1] for preliminary details on the topic.

Speaking of the theory of boundedness of translation-invariant operators,
we notice that the Muckenhoupt class (A,) of weights have been more than helpful
in deriving a variety of weighted and unweighted results. We believe that this
class finds its use in the study of several other exotic operators. For instance
Duoandikoetxea et al. in [§] have used A, weights in the study of a maximal
function associated to the k-plane transform. The k-plane transform is a natural
integral transform that comes in the study of densities using only the average
values along k-dimensional planes. It is interesting to see the use of A, weights
in the study of boundedness of similar kind of operators.

Another branch of study one may pursue is the multilinear Harmonic anal-
ysis, where, as the name suggests, we look at multilinear operators (taking more
than one input) and ask similar questions about boundedness. Several theories
about such operators has been developed till date. We refer the reader to [11]
for a brief introduction to the topic. Some of the interpolation results are also
known for multilinear operators (see for instance, [13] and the references therein).
However, we believe much work can be done here.

Before closing the thesis, we would like to mention one last direction of
work. Our study only deals with operators defined on the Euclidean space. It is
natural to ask whether similar theory can be developed on non-Euclidean spaces.
There are several challenges that one may face if one tries to develop this theory
verbatim. First, to talk about (Hardy-Littlewood) averaging operators, one would

require “balls”. So, one must work with a metric structure that has a compatible



CHAPTER 7. CONCLUSION 204

measure. Riemannian manifolds are easy examples of such spaces. Apart from
this, the major difficulty that one faces is that on general non-Euclidean spaces,
one may not have the notion of “cubes”. Consequently, the Calderén-Zygmund
decomposition, that has been the main ingredient of many proofs, no longer holds.
This forces one to work only with metric balls. However, the non-Euclidean metric
balls might not be as well-behaved as the Euclidean ones. For instance, in the
Euclidean space R", we have, what we call the “measure-doubling” phenomenon.
That is, the measure of the ball of radius 2r (centered at any point) in the
Euclidean space is a constant (2") times that of the ball of radius r. Such a
phenomenon is not expected in other non-Euclidean spaces. For instance, in
the hyperbolic space, the volume of a ball increases exponentially, while in the
sphere, it increases like sine. Due to the troublesome nature of these spaces,
similar theory on these spaces has not been developed yet. One would like to see

if new techniques can be developed for these spaces that give analogous results.



Bibliography

[1] A. Benedek, A.-P. Calderén, and R. Panzone. Convolution operators on
Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A., 48:356-365,
1962.

[2] C. Bennett and R. Sharpley. Interpolation of Operators. Elsevier Science,
1988.

[3] S. Bochner. Summation of multiple fourier series by spherical means. Trans-

actions of the American Mathematical Society, 40(2):175-207, 1936.

[4] A. P. Calderon and A. Zygmund. On the existence of certain singular inte-
grals. Acta Math., 88:85-139, 1952.

[5] R. R. Coifman and C. Fefferman. Weighted norm inequalities for maximal

functions and singular integrals. Studia Math., 51:241-250, 1974.

[6] R. R. Coifman and R. Rochberg. Another characterization of BMO. Proc.
Amer. Math. Soc., 79(2):249-254, 1980.

205



BIBLIOGRAPHY 206

[7]

[10]

[11]

[12]

[13]

[14]

[15]

J. Duoandikoetxea. Fourier analysis, volume 29 of Graduate Studies in
Mathematics. American Mathematical Society, Providence, RI, 2001. Trans-
lated and revised from the 1995 Spanish original by David Cruz-Uribe.

J. Duoandikoetxea, V. Naibo, and O. Oruetxebarria. k-plane transforms
and related operators on radial functions. Michigan Math. J., 49(2):265—
276, 2001.

G. B. Folland. Real analysis. Pure and Applied Mathematics (New York).
John Wiley & Sons, Inc., New York, 1984. Modern techniques and their

applications, A Wiley-Interscience Publication.

M. Frazier, B. Jawerth, and G. Weiss. Littlewood-Paley theory and the study
of function spaces, volume 79 of CBMS Regional Conference Series in Math-
ematics. Conference Board of the Mathematical Sciences, Washington, DC;

by the American Mathematical Society, Providence, RI, 1991.

L. Grafakos. Modern Fourier analysis, volume 250 of Graduate Texts in

Mathematics. Springer, New York, second edition, 2009.

L. Grafakos. Classical Fourier analysis, volume 249 of Graduate Texts in

Mathematics. Springer, New York, third edition, 2014.

L. Grafakos and E. M. Ouhabaz. Interpolation for analytic families of mul-
tilinear operators on metric measure spaces. Studia Math., 267(1):37-57,

2022.

G. H. Hardy and J. E. Littlewood. A maximal theorem with function-
theoretic applications. Acta Math., 54(1):81-116, 1930.

L. Hérmander. Estimates for translation invariant operators in LP spaces.

Acta Math., 104:93-140, 1960.



BIBLIOGRAPHY 207

[16]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

T. Hytonen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach
spaces. Vol. 1. Martingales and Littlewood-Paley theory, volume 63 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern
Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Se-

ries. A Series of Modern Surveys in Mathematics]. Springer, Cham, 2016.

E. Kreyszig. Introductory functional analysis with applications. Wiley Clas-
sics Library. John Wiley & Sons, Inc., New York, 1989.

J. E. Littlewood and R. E. A. C. Paley. Theorems on Fourier Series and
Power Series. J. London Math. Soc., 6(3):230-233, 1931.

B. Muckenhoupt. Weighted norm inequalities for the Hardy maximal func-
tion. Trans. Amer. Math. Soc., 165:207-226, 1972.

M. Rosenblum. Summability of Fourier series in L”(dp). Trans. Amer. Math.
Soc., 105:32-42, 1962.

J. L. Rubio de Francia. Factorization theory and A, weights. Amer. J.
Math., 106(3):533-547, 1984.

W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York,
third edition, 1987.

W. Rudin. Functional analysis. International Series in Pure and Applied

Mathematics. McGraw-Hill, Inc., New York, second edition, 1991.

E. M. Stein and G. Weiss. Introduction to Fourier analysis on Fuclidean
spaces, volume No. 32 of Princeton Mathematical Series. Princeton Univer-

sity Press, Princeton, NJ, 1971.

G. Weiss and S. Wainger, editors. Harmonic analysis in Fuclidean spaces.

Part 1, volume XXXV, Part 1 of Proceedings of Symposia in Pure Math-



BIBLIOGRAPHY 208

ematics. American Mathematical Society, Providence, RI, 1979. Dedicated

to Nestor M. Riviere.

[26] N. Wiener. The ergodic theorem. Duke Math. J., 5(1):1-18, 1939.



	Acknowledgement
	Abstract
	Introduction
	Preliminaries
	Lebesgue spaces
	Operators on Banach space
	Bounded Linear Operator
	Linear functional and the dual of Banach space
	Transpose of a linear operator

	Weak-type inequalities and Interpolation
	Schwartz Functions and tempered distribution
	The space of Schwartz functions
	Tempered distributions

	Fourier transform
	Integration on the sphere and Bessel function of the first kind
	Integration on the sphere
	Bessel Function of first kind

	Approximation to Identity
	Bochner Integral and related results

	Maximal Operators
	Hardy-Littlewood Maximal operator
	Dyadic Maximal operator and Calderón-Zygmund decomposition
	Lp-Lp boundedness of Hardy-Littlewood Maximal operator
	Rectangular Maximal Operator
	Sharp maximal operator and BMO space

	Muckenhoupt weights
	A Weighted Norm Inequality
	Definition and Properties of Ap weights
	Characterization of Ap weights
	Strong-type inequalities with weights

	Construction of A1 weights
	An Extrapolation Theorem
	Strong Ap weights

	Calderón-Zygmund Theory
	Hilbert transform
	The principal value of 1/x
	Definition and properties of Hilbert transform
	Lp-Lp boundedness of Hilbert transform
	Pointwise convergence of truncated integrals

	Calderón-Zygmund operator
	Weighted inequalities for Calderón-Zygmund operators

	Littlewood-Paley Theory and Multipliers
	Calderón-Zygmund Theorem for Banach-Valued Functions
	Littlewood-Paley theory
	Multipliers
	The Hörmander multiplier theorem 
	The Marcinkiewicz multiplier theorem
	Bochner-Riesz multipliers


	Conclusion

