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Abstract

In this survey, we try to understand boundedness of translation-invariant (lin-

ear) operators on Lebesgue spaces. Translation-invariant operators are an im-

portant part of Fourier Analysis. These operators enjoy “nice”-properties. For

instance, it is known, due to Hörmander, that translation-invariant operators are

“Lp-improving”. Our main aim is to see the boundedness of such operators on

Lp-spaces of the Euclidean space not only with the usual Lebesgue measure, but

also with measures induced by positive (measurable) functions. Such functions

are referred to as weights.

A natural question arises: Are all weights “good”? At the first glance, this ques-

tion is ambiguous and does not merit an answer at all! How does one define

“good” weights? A part of this thesis also describes some literature in this direc-

tion. Study of averages of functions on the real line was done nearly a century

ago by Hardy and Littlewood, in the context of differentiability properties of inte-

grable functions. Their study gave rise to a whole new area of Maximal functions.

Muckenhoupt further developed theory on the weighted boundedness of maximal

functions, and characterized all (positive) weights for which the Hardy-Littlewood

iv
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maximal functions are bounded on Lp. These classes of weights are now famously

known as Muckenhoupt classes Ap. In our survey, we focus on these weights.

Our aim, therefore, is twofold: One, to understand Muckenhoupt weights, their

characterizations, possible generalization, and “nice” properties; and two, to use

this knowledge in understanding the Lp-boundedness of translation-invariant op-

erators. While, in generality, there are a variety of translation-invariant operators,

we deal with those that are of convolution type. Particularly, in this thesis, we

study the Lp-boundedness of (generalized) Calderón-Zygmund operators, and a

few multipliers. For the latter, we require Littlewood-Payley theory, which is also

dealt with. We see that the Muckenhoupt classes and the boundedness results

for (Hardy-Littlewood) Maximal functions play an important role in this study.

In the final chapter of the thesis, we give a few (and in no way exhaustive) direc-

tions that one can approach with this knowledge.
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CHAPTER 1

Introduction

The study of averages is an important part of mathematics. The knowledge of

average behaviour of a system is of interest to many fields, such as Dynamics,

Ergodic Theory, and even Harmonic analysis. In this survey, we are interested in

the Harmonic analysis point of view.

While the origin of the study of averages cannot be pinned to a particular

event in mathematical history, we briefly describe the the view of Hardy and

Littlewood for the study of averages of functions defined on the Euclidean space

Rn. The motivation for them goes back to the first fundamental theorem of

calculus. We know that given a continuous function f : [a, b] → R, the “area

function”, F : [a, b] → R, defined by

F (x) =

x∫
a

f (t) dt,

is differentiable, and in fact, F ′ (x) = f (x), for every x ∈ (a, b). Let us try to

1



CHAPTER 1. INTRODUCTION 2

understand the derivative of F in detail. By definition, we have,

F ′ (x) = lim
h→0

F (x+ h)− F (x)

h
.

However, since the limit exists, we may very well write it as

F ′ (x) = lim
h→0

F (x)− F (x− h)

h
.

By adding the two expressions, we get

f (x) = F ′ (x) = lim
h→0

F (x+ h)− F (x− h)

2h
= lim

h→0

1

2h

x+h∫
x−h

f (t) dt.

If we notice carefully, the expression 1
2h

x+h∫
x−h

f (t) dt gives the average of f over the

interval (x− h, x+ h). Therefore, essentially, the first fundamental theorem of

calculus says that for continuous functions, the averages over intervals centered

at x converge to the function f as the size of the interval shrinks to zero.

The next step is to generalize this concept to higher dimensions. Hardy and

Littlewood in [14], study these averages through their corresponding maximal

function, and derive a differentiation theorem, famously known as the Lebesgue

differentiation theorem. When generalizing this idea to higher dimensions, the

most natural way is to consider balls in place of intervals, and study the averages

of the form 1
|B(x,r)|

∫
B(x,r)

f (t) dt, where | · | denotes the Lebesgue measure of a set

in Rn. This was done by Wiener in [26] in the context of Ergodic Theory. These

averages are the main component of our study.

Speaking of averages, we easily notice that they are “smoothing” operators.

Vaguely, taking averages of functions increase their regularity, at least in terms of

differentiation. One might ask whether taking averages increase the integrability

of functions? That is, given a p-integrable function on R, is its average also p-

integrable? Can we expect it to be q-integrable for q ̸= p? These questions are

the basic framework of our study.

Apart from the averages, another important operation in Harmonic analysis

is the convolution. Formally, given two “nice” functions f, g : Rn → C, we define
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their convolution by the function f ∗ g : Rn → C, as

f ∗ g (x) =
∫
Rn

f (x− y) g (y) dy.

A particular case of convolutions is the averaging operator. So, we may ask

similar questions about integrability of convolution operators. Particularly, we

fix a nice function K defined on Rn, called the kernel of convolution, and define

an operator T by

Tf = K ∗ f.

Now, we ask whether Tf is q-integrable whenever f is p-integrable. In fact,

we ask a stronger question: Is T bounded from Lp to Lq? Due to a famous

result by Hörmander ([15]), it is known that a necessary condition is q ≥ p. In

fact, Hörmander proved the result translation-invariant operators. Formally, an

operator T is translation-invariant, if for any x ∈ Rn, we have T ◦ τx = τx ◦ T .

Here, τx is an operator defined by

τxf (y) = f (y − x) .

Translation-invariant operators form the other part of our study. It is known (see,

for instance, [12]) that translation-invariant operators are of convolution type.

More precisely, they can be written as convolutions for a “nice” class of functions.

Owing to their importance in analysis, we study two types of translation-invariant

operators in this thesis. First, we consider the operators that mimic convolutions

in some sense. This leads us to the Calderón-Zygmund theory. Next, we study

the (translation-invariant) operators whose Fourier transform is a multiplication

by a bounded function. Such operators are called multipliers. While the study

of multipliers is vast, and a lot of research is going on, we deal with three major

multiplier theorems in this survey.

This thesis is organized as follows: Chapter 2 deals with preliminaries re-

quired later. Here, we begin with recalling basic concepts from measure theory

and functional analysis. We do not give most of the proofs and details of the
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results mentioned in this chapter, but rather only their references. The main sec-

tion of this chapter deals with the development of Bochner integral (also known

as vector-valued or Banach-valued integral), which is not usually covered in a

first course on Functional Analysis. Hence, we give all the required details. The

next chapter (Chapter 3) deals with the study of averages and maximal functions,

and their Lp-boundedness. In Chapter 4, we try and characterize all the weight

functions w that make the Hardy-Littlewood maximal function bounded on the

weighted Lebesgue spaces Lp (w). This completes the first part of our thesis. The

next part deals with the study of Lp-boundedness of translation-invariant oper-

ators. In Chapter 5, we start by a prototypical example of a convolution-type

operator, and build our way to the Calderón-Zygmund theory. We see later that

this study is also useful in our study of multipliers. The penultimate chapter

(Chapter 6) first deals with Littlewood-Paley theory, which is further required to

study multipliers. In our study of multiplier theory, we deal with three important

results due to Hörmander, Marcinkiewicz and Bochner. Finally, in Chapter 7, we

conclude the thesis and discuss a few directions of further study.



CHAPTER 2

Preliminaries

In this chapter, we provide preliminary results required later, and make some

notation precise. We refrain from giving detailed proofs of simple results and

rather refer to the sources at most places. Two sections of this chapter are of

importance to us: First, the section on interpolation results, and second, on the

Bochner integral. In these sections we provide complete details of all results

discussed.

2.1 Lp spaces

We start by recalling certain basic definitions and results from integration theory.

Most of the material presented here can be found in [22] or [9]. Throughout this

chapter, (X,µ) denotes a σ-finite measure space. If 1 ≤ p < ∞, the space

Lp(X,µ) consists of all complex valued measurable functions on X such that∫
X

|f(x)|p dµ(x) <∞.

5
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To simplify the notation, we write Lp(X). If f ∈ Lp(X), the Lp norm of f is

defined as

||f ||Lp(X) =

∫
X

|f(x)|p dµ(x)

1/p

.

Sometimes we abbreviate the norm as ∥f∥Lp or ∥f∥p.

Similarly, we define L∞ (X) as the collection of all essentially bounded mea-

surable functions. A function f : X → C is essentially bounded if there is some

M > 0 such that the µ ({x ∈ X| |f (x)| > M}) = 0. The uniform norm of es-

sentially bounded functions ∥f∥∞ is defined to be the smallest M > 0 such that

µ ({x ∈ X| |f (x)| > M}) = 0.

Remark 2.1. Often, in statements of many results, we abuse notation and write

∥f∥p =
(∫
X

|f (x)|p dx
) 1

p

for p = +∞ as well. It is to be understood that in this

case, the norm is taken as the uniform norm.

The following are some important examples of Lp spaces.

1. If X = Rn and µ equals Lebesgue measure then the Lp space is denoted by

Lp(Rn). There, we write

||f ||p =

∫
Rn

|f(x)| dx

1/p

.

2. If we take X = Z, µ equal to the counting measure, we get discrete Lp

spaces. They are denoted by ℓp (Z). Measurable functions are simply se-

quences f = (xn)n∈Z of complex numbers, and

|| (xn)n∈Z ||Lp =

(∑
n∈Z

|an|p
)1/p

.

It is known that the space Lp(X), is a Banach space with the norm defined above.

The following inequalities are crucial to us. In what follows, given 1 ≤ p ≤ +∞,

the conjugate exponent p′ to p is given by

1

p
+

1

p′
= 1.
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Theorem 2.1 (Hölder’s inequality [9]). Let f and g be two measurable functions

on X. Let p and p′ be conjugate exponents, 1 ≤ p ≤ ∞. Then, we have∫
X

|f(x)g(x)| dµ(x) ≤

∫
X

|f(x)|p dµ(x)

1/p∫
X

|g(x)|p′ dµ(x)

1/p′

,

where, the case p = 1 or p = +∞ is understood accordingly.

Theorem 2.2 (Minkowski’s inequality [17]). If 1 ≤ p ≤ ∞ and f, g ∈ Lp(X),

then f + g ∈ Lp(X), and ||f + g||Lp ≤ ||f ||Lp + ||g||Lp.

We also have the continuous version of Minkowski’s inequality.

Theorem 2.3 (Minkowski’s Integral Inequality [7]). Let (X,µ) and (Y, ν) be

measure spaces and F : X ×Y → C be a measurable function. Then, we have for

1 ≤ p <∞, ∫
X

∣∣∣∣∣∣
∫
Y

F (x, y) dy

∣∣∣∣∣∣
p

dx


1
p

≤
∫
Y

∫
X

|F (x, y) dx|

 1
p

dy. (2.1)

Remark 2.2. The spaces Lp (X) can be defined for 0 < p < 1 analogously.

However, in these cases, the map ∥ · ∥p is not a norm, since it no longer satisfies

the triangle inequality. Nonetheless, we call it a “norm”, and use it at some places

where the triangle inequality is not important.

2.2 Operators on Banach space

In this section, we recall a few definitions and results concerning linear operators

on Banach spaces. A normed linear space consists of an underlying vetor space

V over a field of scalars (the real or complex number), together with a norm

|| · || : V −→ R+ that satisfies:

1. ||v|| = 0 if and only if v = 0.

2. ||αv|| = |α|||v||, where α is a scalar and v ∈ V .
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3. ||v + w|| ≤ ||v||+ ||w|| for all v, w ∈ V .

The space V is said to be complete if every Cauchy sequence in V is convergent.

A complete normed linear space is called a Banach space.

2.2.1 Bounded Linear Operator

Continuous linear operators between Banach spaces are of importance to us.

Here, we recall a few related definitions and results from Functional Analysis.

Definition 2.1 (Bounded Linear Operator). Let X and Y be normed linear

spaces, a linear operator T : X −→ Y is bounded if there is a constant C > 0

such that for all x ∈ X,

||T (x)|| ≤ C||x||.

Operator norm of a bounded linear operator T : X → Y is

∥T∥ := sup
x∈X
x ̸=0

∥Tx∥
∥x∥

= sup
x∈X
∥x∥=1

∥Tx∥ = sup
x∈X
∥x∥≤1

∥Tx∥.

The following result is the link between bounded operators and continuous

operators.

Theorem 2.4. A linear operator from a normed space X to another normed

space Y is bounded if and only if it is continuous.

2.2.2 Linear functional and the dual of Banach space

Let B be a Banach space over a field F. For our purpose, F = C. A linear

functional is a map Λ : B −→ F that satisfies

Λ(αu+ βv) = αΛ(u) + βΛ(v),

for all α, β ∈ F, and u, v ∈ B. We know that the set of all continuous linear

functionals over B is a vector space over F. It is denoted by B′. Equipped with

the operator norm, B′ is a Banach space.

The following well-known duality is well-known.
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Theorem 2.5. For 1 ≤ p <∞, the normed dual of Lp (X) is Lp′ (X). Moreover,

we have for measurable functions f : X → C,

∥f∥Lp = sup


∣∣∣∣∣∣
∫
X

f (x) g (x) dµ (x)

∣∣∣∣∣∣ : ∥g∥Lp′ (X) ≤ 1

 .

2.2.3 Transpose of a linear operator

We also require the definition of transpose of a linear operator.

Definition 2.2 (Transpose). Let T : X −→ Y be a linear operator where X and

Y are normed spaces. Then the transpose operator T t : Y ′ −→ X ′ is defined by

(T tg)(x) = g(Tx),

The following result is well known.

Theorem 2.6. If T : X → Y is a bounded linear operator, then T t : Y ′ → X ′ is

also a bounded linear operator. Moreover, we have ∥T∥ = ∥T t∥.

2.3 Weak-type inequalities and Interpolation

In this section, we give important techniques useful to our study. Since the results

discussed here might be new to some readers, we give complete details. We begin

by defining weak boundedness of operators on Lp spaces.

Definition 2.3 (Weak type boundedness). Let (X,µ) and (Y, ν) be measure

spaces, and let T be an operator from Lp(X) into the space of measurable func-

tions from Y to C. We say that T is of weak type (p, q), for q <∞, if

ν ({y ∈ Y : |Tf(y)| > λ}) ≤
(
C||f ||p
λ

)q

,

and we say that T is weak (p,∞) if it is bounded operator from Lp(X) to L∞(Y ).

One might wonder about the notion of “strong” boundedness. The defini-

tion is not different from that of bounded operators (see Definition 2.1).
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Definition 2.4 (Strong boundedness). Let T be an operator from Lp(X) into the

space of measurable functions from Y to C. We say that T is of strong type (p, q)

if it is bounded from Lp(X) to Lq(Y ), i.e., there is a constant C > 0 such that

for all f ∈ Lp (X), we have

||Tf ||q ≤ C||f ||p.

It is easy to see that if an operator is strong (p, q) then it is weak (p, q).

Indeed, let Eλ = {y ∈ Y : |Tf(y)| > λ}. Then,

ν(Eλ) =

∫
Y

χEλ
dν(y) ≤

∫
Y

∣∣∣∣Tf(y)λ

∣∣∣∣qdν(y) ≤ ||Tf ||qq
λq

≤
(
C||f ||p
λ

)q

.

Remark 2.3. When (X,µ) = (Y, ν) and T is the identity operator, the weak (p, p)

inequality is the classical Chebyshev (or Markov’s) inequality (see for example,

[9]).

The relationship between weak (p, q) inequalities and almost everywhere

convergence is given by the following result. Here, we assume that (X,µ)=(Y, ν).

Theorem 2.7. Let {Tt}t∈I be a family of linear operators on Lp(X) and define

a maximal function associated to {Tt}t∈I by

T ∗f(x) = sup
t∈I

|Ttf(x)|.

Here, the index set I is a topological subspace of R with a limit point t0. If T
∗ is

weak (p, q) then the set{
f ∈ Lp(X)

∣∣∣∣ limt−→t0
Ttf(x) = f(x) a.e. x ∈ X

}
is closed in Lp(X).

Proof. Let us consider a sequence of functions (fn)n∈N in Lp(X) which converges

to the function f ∈ Lp(X) in the Lp norm and such that ∀n ∈ N, Ttfn converges

to fn almost everywhere. Now,

|Ttf(x)− f(x)| = |Tt(f − fn)(x)− (f(x)− fn(x)) + Ttfn(x)− fn(x)|

≤ |Tt(f − fn)(x)− (f(x)− fn(x))|+ |Ttfn(x)− fn(x)|.
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Therefore, lim sup
t−→t0

|Ttf(x) − f(x)| ≤ lim sup
t−→t0

|Tt(f − fn)(x) − (f(x) − fn(x))| +

lim sup
t−→t0

|Ttfn(x)− fn(x)|. As a result,{
x ∈ X

∣∣∣∣ lim sup
t−→t0

|Ttf(x)− f(x)| > 2λ

}
⊆{

x ∈ X

∣∣∣∣ lim sup
t−→t0

|Tt(f − fn)(x)− (f(x)− fn(x))| > λ

}
⋃{

x ∈ X : lim sup
t−→t0

|Ttfn(x)− fn(x)| > λ

}
.

Since Ttfn converges pointwise to fn almost everywhere, we have

lim sup
t−→t0

|Ttfn(x)− fn(x)| = 0,

for almost every x ∈ X. Therefore,

µ

({
x ∈ X : lim sup

t−→t0

|Ttfn(x)− fn(x)| > λ

})
= 0.

So, we have the following:

µ

({
x ∈ X : lim sup

t−→t0

|Ttf(x)− f(x)| > λ

})
≤ µ

({
x ∈ X : lim sup

t−→t0

|Tt(f − fn)(x)− (f(x)− fn(x))| > λ

})
≤ µ

({
x ∈ X |T ∗(f − fn

)
(x) >

λ

2

}
) + µ

({
x ∈ X ||(f − fn)(x)| >

λ

2

})
≤
(
2C

λ
||f − fn||p

)q

+

(
2

λ
||f − fn||p

)p

.

The last inequality follows from the fact that T ∗ is weak (p, q), and the Cheby-

shev’s inequality. Since (fn)n∈N converges to the function f in Lp(X) norm, the

right hand side of above inequality tends to 0 as n −→ ∞. So, for a given λ > 0

we have

µ

({
x ∈ X : lim sup

t−→t0

|Ttf(x)− f(x)| > λ

})
= 0.

Now, we have {
x ∈ X

∣∣∣∣ lim sup
t−→t0

|Ttf(x)− f(x)| > 0

}
=

∞⋃
k=1

{
x ∈ X

∣∣∣∣ lim sup
t−→t0

|Ttf(x)− f(x)| > 1

k

}
.
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Hence,

µ

({
x ∈ X : lim sup

t−→t0

|Ttf(x)− f(x)| > 0

})
= 0.

Next, we define the distribution function of a given measurable function. It plays

a role in proving the interpolation results of this section. We keep the notation

as in [12], and refer to reader to this source for further details on this topic.

Definition 2.5 (Distribution function). Let (X,µ) be a measure space and let

f : X −→ C be a measurable function. We call the function df : (0,∞) → R,

defined by

df (λ) = µ({x ∈ X : |f(x)| > λ}),

the distribution function of f associated with µ.

In the next result we see the relation between the Lp norm of a function f

and its distribution function, df .

Lemma 2.8. Let f ∈ Lp(X), with 0 < p <∞. Then, ||f ||pp = p
∞∫
0

αp−1df (α)dα.

Proof. We prove this result as follows.

p

∞∫
0

αp−1df (α)dα = p

∞∫
0

αp−1

∫
X

χ{x:|f(x)|>α}(x) dµ(x) dα

= p

∞∫
0

∫
X

αp−1χ(0,|f(x)|)(α) dµ(x) dα

= p

∫
X

 ∞∫
0

αp−1χ(0,|f(x)|)(α) dα

 dµ(x)

= p

∫
X

[
αp

p

]|f(x)|
0

dµ(x)

=

∫
X

|f(x)|p dµ(x)

= ||f ||pp.
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With the help of the Lemma 2.8, we now prove an important result, known as the

Marcinkiewicz Interpolation theorem. This theorem says that if we know that an

operator is of weak type (p0, p0) and weak type (p1, p1), then it is of strong type

(p, p), for all p0 < p < p1. We use this theorem frequently in the sequel. There

is a general version of the Marcinkiewicz interpolation, and can be found in [2].

Since we only deal with Lp-Lp boundedness of operators, we do not require it in

the full generality. We state and prove the result in a manner convenient to us.

Theorem 2.9 (Marcinkiewicz Interpolation). Let (X,µ) and (Y, ν) be measure

spaces, 1 ≤ p0 < p1 ≤ ∞, and let T be sublinear operator from Lp0(X) + Lp1(X)

to the space of measurable functions on Y that is of weak type (p0, p0) and weak

type (p1, p1). Then T is of strong type (p, p) for any p0 < p < p1.

Proof. Given f ∈ Lp(X), for each λ > 0 we decompose f = f0 + f1, where,

f0 = fχ{x∈X:|f(x)|>cλ},

f1 = fχ{x∈X:|f(x)|≤cλ}.

The constant c > 0 can be fixed later in the proof. Let r = p − p0 and consider

the set Aλ := {x ∈ X : |f(x)| > cλ}. Then∫
X

|f0(x)|p0dx =

∫
Aλ

|f(x)|p0dx

=

∫
Aλ

|f(x)|p|f(x)|−rdx

≤ (cλ)−r

∫
Aλ

|f(x)|pdx

≤ (cλ)−r||f(x)||pp <∞.

That is, f0 ∈ Lp0(X). Now, let s = p1 − p and consider the set Bλ := {x ∈ X :

|f(x)| ≤ cλ}. Then, ∫
X

|f1(x)|p1dx =

∫
Bλ

|f(x)|p1dx
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=

∫
Bλ

|f(x)|p|f(x)|sdx

≤ (cλ)s
∫
Bλ

|f(x)|p

≤ (cλ)s||f(x)||pp <∞.

That is, f1 ∈ Lp1(X). Now if y is such that |Tf(y)| > λ, then from the sublin-

earity of T , λ < |Tf(y)| ≤ |Tf0(y)| + |Tf1(y)|. Therefore {y ∈ Y : |Tf(y)| >

λ} ⊆ {y ∈ Y : |Tf0(y)| > λ
2
}
⋃
{y ∈ Y : |Tf1(y)| > λ

2
}. So we have ν({y ∈ Y :

|Tf(y)| > λ}) ≤ ν({y ∈ Y : |Tf0(y)| > λ
2
}) + ν({y ∈ Y : |Tf1(y)| > λ

2
}). That is

dTf (λ) ≤ dTf0(
λ
2
) + dTf1(

λ
2
). Let us consider the following cases.

Case 1 : p1 = ∞. Choose c = 1
2A1

, where A1 is such that ||Tg||∞ ≤ A1||g||∞.

Therefore, dTf1(
λ
2
) = ν({y ∈ Y : |Tf1(y)| > λ

2
}) = 0. By the weak (p0, p0)

inequality, there exists a constant A0 such that

dTf0

(
λ

2

)
≤
(
2A0

λ
||f0||p0

)p0

.

Now, by Lemma 2.8 we have,

||Tf ||pp ≤ p

∞∫
0

λp−1dTf0(
λ

2
)dλ

≤ p

∞∫
0

λp−1

(
2A0

λ
||f0||p0

)p0

dλ

= (2A0)
p0p

∞∫
0

λp−p0−1||f0||p0p0dλ

= (2A0)
p0p

∞∫
0

λp−p0−1

∫
X

|f(x)|p0|χAλ
(x)|p0dµ(x)dλ

= (2A0)
p0p

∞∫
0

∫
X

λp−p0−1|f(x)|p0χ(0, |f(x)|c )(λ)dµ(x)dλ

= (2A0)
p0p

∫
X

|f(x)|p0
 ∞∫

0

λp−p0−1χ(0, |f(x)|c )(λ)dλ

 dµ(x)
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= (2A0)
p0p

∫
X

|f(x)|p0
[
λp−p0

p− p0

] |f(x)|
c

0

dµ(x)

= (2A0)
p0p

∫
X

|f(x)|p0 |f(x)|(p−p0)

(p− p0)c(p−p0)
dµ(x)

=
(2A0)

p0p

(p− p0)c(p−p0)

∫
X

|f(x)|pdµ(x)

=
(2A0)

p0p(2A1)
p−p0

(p− p0)
||f ||pp

=
2ppAp0

0 A
p−p0
1

(p− p0)
||f ||pp.

Hence, ||Tf ||pp ≤
2ppAp0

0 A
p−p0
1

(p− p0)
||f ||pp, and we have the strong (p, p) inequality.

Case 2: p1 <∞.

We know that f0 ∈ Lp0(µ) and f1 ∈ Lp1(µ). Therefore, we have the following

pair of inequalities

dTf1

(
λ

2

)
≤
(
2A1

λ
||f1||p1

)p1

, (2.2)

dTf0

(
λ

2

)
≤
(
2A0

λ
||f0||p0

)p0

. (2.3)

By Lemma 2.8, we also have

||Tf ||pp = p

∞∫
0

λp−1dTf (λ)dλ.

As dTf (λ) ≤ dTf0(
λ
2
) + dTf1(

λ
2
), we have the following

||Tf ||pp ≤ p

∞∫
0

λp−1dTf0

(
λ

2

)
dλ+ p

∞∫
0

λp−1dTf1

(
λ

2

)
dλ. (2.4)

Now for the first integral, we have,

p

∞∫
0

λp−1dTf0

(
λ

2

)
dλ ≤ p

∞∫
0

λp−1

(
2A0

λ
||f0||p0

)p0

dλ

= (2A0)
p0p

∞∫
0

λp−p0−1||f0||p0p0dλ

= (2A0)
p0p

∞∫
0

λp−p0−1

∫
X

|f(x)|p0 |χAλ
(x)|p0dµ(x)dλ
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= (2A0)
p0p

∞∫
0

∫
X

λp−p0−1|f(x)|p0χ(0, |f(x)|c )(λ)dµ(x)dλ

= (2A0)
p0p

∫
X

|f(x)|p0
 ∞∫

0

λp−p0−1χ(0, |f(x)|c )(λ)dλ

 dµ(x)

= (2A0)
p0p

∫
X

|f(x)|p0
[
λp−p0

p− p0

] |f(x)|
c

0

dµ(x)

= (2A0)
p0p

∫
X

|f(x)|p0 |f(x)|(p−p0)

(p− p0)c(p−p0)
dµ(x)

=
(2A0)

p0p

(p− p0)c(p−p0)

∫
X

|f(x)|pdµ(x).

That is, we have,

p

∞∫
0

λp−1dTf0

(
λ

2

)
dλ ≤ (2A0)

p0p

(p− p0)c(p−p0)
||f ||pp. (2.5)

For the second integral,

p

∞∫
0

λp−1dTf1

(
λ

2

)
dλ ≤ p

∞∫
0

λp−1

(
2A0

λ
||f1||p1

)p1

dλ

= (2A1)
p1p

∞∫
0

λp−p1−1||f1||p1p1dλ

= (2A1)
p1p

∞∫
0

λp−p1−1

∫
X

|f(x)|p1|χBλ
(x)|p1dµ(x)dλ

= (2A1)
p1p

∞∫
0

∫
X

λp−p1−1|f(x)|p1χ( |f(x)|
c

,∞)(λ)dµ(x)dλ

= (2A1)
p1p

∫
X

|f(x)|p1
[
λp−p1

p− p1

]∞
|f(x)|

c

dµ(x)

= (2A1)
p1p

∫
X

|f(x)|p0 |f(x)|(p−p1)

(p1 − p)c(p−p1)
dµ(x)

=
(2A1)

p1p

(p1 − p)c(p1−p)

∫
X

|f(x)|pdµ(x).
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So we have,

p

∞∫
0

λp−1aTf1(
λ

2
)dλ ≤ (2A1)

p1p

(p1 − p)c(p1−p)
||f ||pp. (2.6)

Now, from Inequalities (2.4), (2.5) and (2.6) we get,

||Tf ||pp ≤
(2A0)

p0p

(p− p0)c(p−p0)
||f ||pp +

(2A1)
p1p

(p1 − p)c(p1−p)
||f ||pp

=

(
(2A0)

p0p

(p− p0)c(p−p0)
+

(2A1)
p1p

(p1 − p)c(p1−p)

)
||f ||pp.

We want to choose a c such that

(2A0)
p0p

(p− p0)c(p−p0)
=

(2A1)
p1p

(p1 − p)c(p1−p)

From this we have,

c =

(
2p0−p1

Ap0
0

Ap1
1

p1 − p

p− p0

) 1
p1−p0

.

Now,

(2A0)
p0p

(p− p0)c(p−p0)
=

2p0Ap0
0 p

(p− p0)
(
2p0−p1 A

p0
0

A
p1
1

p1−p
p−p0

) p−p0
p1−p0

= 2pA
p0

(
p1−p
p1−p0

)
0 A

p1
(

p−p0
p1−p0

)
1

(
p− p0
p1 − p

) p−p0
p1−p0 p

(p− p0)
.

Let t ∈ (0, 1) such that 1
p
= (1−t)

p0
+ t

p1
. Then using p1

p
= p1(1−t)+tp0

p0
and p0

p
=

p1(1−t)+tp0
p1

p0

(
p1 − p

p1 − p0

)
= p(1− t)

and

p1

(
p− p0
p1 − p0

)
= tp

and (
p− p0
p1 − p

) p−p0
p1−p0 p

(p− p0)
= (p1 − p0)

−1(t/p)
(t−1)p1

p1(1−t)+tp0 ((1− t)/p0)
−tp0

p1(1−t)+tp0

using the above expressions we have

(2A0)
p0p

(p− p0)c(p−p0)
= 2pA

p(1−t)
0 Atp

1 (p1 − p0)
−1(t/p)

(t−1)p1
p1(1−t)+tp0 ((1− t)/p0)

−tp0
p1(1−t)+tp0

Therefore we have

||Tf ||pp ≤
(2A0)

p0p

(p− p0)c(p−p0)
||f ||pp +

(2A1)
p1p

(p1 − p)c(p1−p)
||f ||pp
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= 2p+1A
p(1−t)
0 Atp

1 (p1 − p0)
−1(t/p)

(t−1)p1
p1(1−t)+tp0 ((1− t)/p0)

−tp0
p1(1−t)+tp0 ||f |pp.

Next we prove another important interpolation theorem. We start with the fol-

lowing definition.

Definition 2.6 (Truncation of a function). If f is a measurable function, then

truncation of f is any one of the functions g defined by letting g(x) = f(x) if

r1 < f(x) ≤ r2 and g(x) = 0 otherwise, where r1 and r2 are non-negative.

Lemma 2.10 (Three Lines Lemma). Let F be a bounded continuous complex

valued function on the closed strip

S = {x+ iy ∈ C : 0 ≤ x ≤ 1},

that is analytic in the interior of S. If |f(iy)| ≤ m0 and |F (1+ iy)| ≤ m1, for all

y ∈ R then |F (x+ iy)| ≤ m1−x
0 mx

1 for all z = x+ iy ∈ S.

Proof. The problem is reduced to the case m0 = 1 = m1 by considering the

function F (z)

m1−z
0 mz

1

. Thus, suppose that |F (iy)| ≤ 1 and |F (1 + iy)| ≤ 1 for all

y ∈ R. We want to show that |F (z)| ≤ 1, for all z ∈ S.

We observe that if we are able to prove that lim
|y|−→∞

F (x + iy) = 0 uniformly for

0 ≤ x ≤ 1, then there is y0 > 0 such that |F (x + iy)| ≤ 1 for |y| > y0, while

|F (z)| ≤ 1 on the boundary of the rectangle with vertices iy0, 1+iy0, 1−iy0,−iy0.

Therefore, by using maximal principle, we conclude that |F (z)| ≤ 1 on the strip

S.

Note that we can apply the above argument for each of the functions Fn(z) =

F (z)e(z
2−1)/n, for n ∈ N, because

|Fn(z)| = |F (x+ iy)|e−y2/n+(x2−1)/n ≤ |F (z)|e−y2/n −→ 0

uniformly as |y| −→ ∞. Therefore, |Fn(z)| ≤ 1, for each n ∈ N. Now the

desired result follows from the fact that Fn(z) −→ F (z) when n −→ ∞, for each

z ∈ S.
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Now we are ready to prove the following interpolation theorem.

Theorem 2.11 (Riesz-Thorin interpolation). Suppose a linear operator is of

strong type (pi, qi) with the operator norm Mi, for i = 0, 1. Then, T is of strong

type (p, q) with its operator norm M ≤M1−t
0 M t

1, where

1

p
=

1− t

p0
+

t

p1
and

1

q
=

1− t

q0
+

t

q1
.

Proof. First we estimate ||Tf ||q for simple function f belongs to the domain of

T . Since

||Tf ||q = sup
||g||q′=1

∣∣∣∣ ∫
Y

(Tf(x))g(x) dν

∣∣∣∣,
where g is simple function and q′ is conjugate exponent of q it is enough to show

that absolute value of each such integral is less than or equal to M1−t
0 M t

1||f ||p.

Now, dividing by ||f ||p, we can reduce the problem further to the case ||f ||p = 1.

Suppose f =
m∑
j=1

ajχEj
and g =

n∑
k=1

bkχFk
are such simple functions that satisfy all

of the above conditions. Suppose αj = 1/pj, βj = 1/qj, for j = 0, 1, and α = 1/p

and β = 1/q. Also let α(z) = (1 − z)α0 + zα1 and β(z) = (1 − z)β0 + zβ1, for

z ∈ C. Now in the above expression of f and g if aj = |aj|eiθj and bk = |bk|eiϕk ,

we define

fz =
m∑
j=1

|aj|α(z)/αeiθjχEj

and

gz =
n∑

k=1

|bk|(1−β(z))/(1−β)eiϕkχFk
.

Let us define F (z) :=
∫
N

(Tfz(x))gz(x) dν. By using the linearity of T we also

have

F (z) =
mn∑

j,k=1

|aj|α(z)/α|bk|(1−β(z))/(1−β)γjk,

where γjk = ei(θj+ϕk)
∫
N

(TχEj
(x))χFk(x) dν. Note that each term of this sum

is bounded in the strip S, given in Lemma 2.10. Therefore the function F is

bounded when restricted to this strip. Now, we prove that |F (iy)| ≤ M0 and
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|F (1 + iy)| ≤M1 for all y ∈ R. Then, the desired inequality∣∣∣∣ ∫
Y

(Tf(x))g(x) dx

∣∣∣∣ ≤M1−t
0 M t

1

follows from Lemma 2.10. First observe that α(iy) = α0 + iy(α1 − α0) and

1− β(iy) = (1− β0)− iy(β1 − β0). Hence, we have

|fiy|p0 = |ei arg f |f |iy(α1−α0)/α|f |(p/p0)|p0 = |f |p.

and

|giy|q
′
0 = |ei arg g|g|−iy(β1−β0)/(1−β)|g|(q′/q′0)|q′0 = |g|q′ .

Therefore, by using Hölder’s inequality and the fact that T is of strong type

(p0, q0) with operator norm M0, we get

|F (iy)| ≤ ||Tfiy||q0||giy||q′0 ≤M0||fiy||p0||giy||q′0
=M0||f ||(p/p0)p ||g||(q′/q′0)q =M0.

With a similar argument it follows that |F (1 + iy)| ≤ M1. Therefore ||Tf ||q ≤

M1−t
0 M t

1||f ||p for all simple functions f ∈ Lp(X). To prove the result for general

function f ∈ Lp(X), we shall show that we can find a sequence of simple function

(fn)n∈N such that ||fn − f ||p −→ 0 and Tfn(x) −→ Tf(x) a.e. as n −→ ∞. We

can assume that f is non-negative. We can also assume that p0 ≤ p1. Let

f0(x) =

f(x) when f(x) > 1.

0 when f(x) ≤ 1.

and f1 = f − f0. We have, (f0)
p0 ≤ fp, and (f1)

p1 ≤ fp. Let (gm)m∈N be

a sequence of non-negative simple functions increases pointwise to f then by

monotone convergence theorem, ||gm − f ||p −→ 0 as m −→ ∞. For the same

reason, we also have || (gm)0 − f0||p and || (gm)1 − f1||p −→ 0, as m −→ ∞. Since

T is of strong type (p0, q0) and (p1, q1), we have ||T (gm)0 − Tf0||p −→ 0 and

||T (gm)1 − Tf1||p −→ 0, as m −→ ∞. So, there is are subsequences
(
(gmk

)0
)
k∈N

and
(
(gmk

)1
)
k∈N such that T (gmk

)0 and T (gmn)1 converge to Tf0 and Tf1 almost

everywhere respectively. Now, let fk = (gmn)0+(gmn)1. Then, we have a sequence

(fk)k∈N satisfying the desired properties: lim
k−→∞

||fk−f ||p = 0 and lim
k−→∞

Tfk(x) =
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Tf0(x) + Tf1(x) = Tf(x) almost everywhere. This completes the proof.

2.4 Schwartz Functions and tempered distribu-

tion

This section is dedicated to the study of rapidly decreasing functions. Most

material presented here is available in [23], and we do not give detailed proofs of

any results.

2.4.1 The space of Schwartz functions

Given x = (x1, . . . , xn) ∈ Rn we denote |x| = (x21 + . . . + x2n)
1/2. The first order

partial derivative of a function f on Rn with respect to jth variable xj is denoted

by ∂jf while the mth order partial derivative with respect to jth variable is

denoted by ∂mj f . A multi-index α is an ordered n-tuple of non-negative integers.

For a multi-index α = (α1, . . . , αn), D
αf denotes the derivative,

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαn

n

.

If α = (α1, . . . , αn) is a multi-index, |α| = α1 · · · + αn denotes its size. For

x ∈ Rn and a multi-index α we set xα = xα1
1 · · · xαn

n .

Definition 2.7 (Schwartz function). A complex valued smooth function f is a

Schwartz function or a rapidly decreasing function if for every pair of multi-

indices α and β,

ρα,β(f) := sup
x∈Rn

|xαDβf(x)| <∞.

The set of all Schwartz class functions are denoted by S(Rn). The quantities

ρα,β are called Schwartz seminorms of f . The collection of seminorms {ρα,β} as

given in Definition 2.7 give a topology on S (Rn). The details of the construction

of open sets using seminorms can be found in [23]. The concept of interest to us

is the convergence of sequences in S (Rn). We state it as a definition.
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Definition 2.8. Let fk, f be in S(Rn) for k ∈ N. The sequence (fk)k∈N converges

to f in S(Rn) if for all multi-indices α and β we have

ρα,β(fk − f) −→ 0

as k −→ ∞.

Remark 2.4. An equivalent definition of the Schwartz seminorms is given by

ρα,N := sup
x∈Rn

{(
1 + |x|2

)N |Dαf (x) |
}
,

for multiindex α and N ∈ N ∪ {0}. These seminorms are equivalent to that

given in Definition 2.7 in the sense that they give the same topology on the space

S (Rn), and capture all essential properties of Schwartz functions.

The space S(Rn) is a topological vector space, i.e., the operations (f, g) 7−→

f + g, (a, f) 7−→ af and f 7−→ ∂αf are continuous for all f, g ∈ S (Rn), a ∈ C,

and multi-indices α.

2.4.2 Tempered distributions

Since we have a topology (and a notion of convergence) on the Schwartz space

S (Rn), we can consider studying continuous linear functionals.

Definition 2.9 (Tempered distribution). The space of all bounded linear func-

tionals is known as the space of tempered distribution, and is denoted by S ′(Rn).

The action of a tempered distribution u on a function f ∈ S(Rn) is repre-

sented by ⟨u, f⟩ = u(f). We give have a characterization for tempered distribu-

tion.

Proposition 2.12 ([23]). A linear functional u on S(Rn) is a tempered distribu-

tion if and only if there exists C > 0 and N , m ∈ N such that

|⟨u, f⟩| ≤ C
∑
|α|≤m
|β|≤N

ρα,β(f),

for all f ∈ S(Rn).
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We know convolutions of two functions. Now, we define convolution of

a Schwartz function with a tempered distribution. This is of interest to us in

Chapter 5. First, we define, for a function f : Rn → C, the function f̃ : Rn → C

as f̃ (x) = f (−x). Also, for a fixed a ∈ Rn, we define τaf (x) = f (x− a). With

this, we now make the following definition.

Definition 2.10. Let u ∈ S ′(Rn) and h ∈ S(Rn). Then, the convolution of u

with h is a function u ∗ h : Rn → C, given by

(u ∗ h) (x) = ⟨u, τxh̃⟩.

We say that a tempered distribution u coincides with a function h if we

have

⟨u, f⟩ =
∫
Rn

h(x)f(x) dx

for all f ∈ S(Rn).

2.5 Fourier transform

In this section, we recall a few facts about the Fourier transform on Rn.

Definition 2.11 (Fourier transform). For a given f ∈ L1(Rn) function, Fourier

transform of f is defined by

f̂(ξ) =

∫
Rn

f(x)e−ix·ξ dx,

where x · ξ = x1ξ1 + x2ξ2 + · · · + xnξn. Here x = (x1, x2, · · · , xn) ∈ Rn and

ξ = (ξ1, ξ2, · · · , ξn) ∈ Rn.

The following facts about Fourier transform can be found in [12]. If f, g ∈

L1(Rn), then following are true.

1. Fourier transform is a linear operator, that is, for α, β ∈ C, we have the

following

(αf + βg)̂ = αf̂ + βĝ.
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2. Convolution of f, g is defined as

(f ∗ g)(x) =
∫
Rn

f(x− y)g(y) dy.

Then we have (f ∗ g)̂ = f̂ ĝ.

3. Let for h ∈ Rn, τhf(x) = f(x+ h). Then

(τhf )̂(ξ) = f̂(ξ)eih·ξ.

4. Let ρ ∈ O (n), where O (n) is the set of all orthogonal transformations on

Rn. Then,

(f(ρ·))̂ (ξ) = f̂(ρξ).

5. If g(x) = λ−nf(λ−1x), then ĝ(ξ) = f̂(λξ).

For Fourier transform on S(Rn) we have the following

1. The Fourier transform of a Schwartz function is a Schwartz function. More-

over, the Fourier transform as a map from S (Rn) to S (Rn) is a continuous

bijection of period 4.

2. If f ∈ S(Rn) and P is a polynomial, then

(P (D)f )̂ = P f̂ ,

(Pf )̂ = P (−D)f̂ ,

where, D is the differential operator.

3. Fourier transform is a continuous linear one to one mapping from S(Rn)

onto S(Rn) whose inverse is also continuous and

f(x) =

∫
Rn

f̂(ξ)eixξ dξ.

4. For f ∈ S(Rn), (f̂ )̂ = f̃ , where f̃(x) = f(−x).

5. For f, g ∈ S (Rn), we have (f ∗ g)∧ = f̂ ĝ.
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6. The following duality relation holds for f, g ∈ S (Rn).∫
Rn

f̂ (x) g (x) dx =

∫
Rn

f (x) ĝ (x) dx.

We can also define the Fourier transform of a tempered distribution. The

details and properties can be found in [23]. In our survey, we only require the

definition, which we state here.

Definition 2.12 (Fourier transform of tempered distributions). Let u ∈ S ′(Rn).

The Fourier transform û is defined by the tempered distribution.

⟨û, f⟩ = ⟨u, f̂⟩,

for all f ∈ S(Rn).

2.6 Integration on the sphere and Bessel func-

tion of the first kind

In this section we see some important results related to Bessel function of the

first kind. The study of Bessel functions is often a part of a semester course

on Special Functions. The natural way of development is through the study of

solutions of an ordinary differential equation with non-constant coefficients. In

this survey, we take a different approach with this study. Instead of studying

differential equations, we consider the integration of functions defined on the unit

sphere in Rn, and develop some basic results concerning the Bessel function of

the first kind.

2.6.1 Integration on the sphere

We are well versed with the integration on the Euclidean space Rn. The theory of

integration is developed through the Lebesgue measure, a natural way to capture

“volume” of sets. In Harmonic Analysis, we often deal with universes other
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than the Euclidean ones, and therefore, we require the theory of measures and

integration on non-Euclidean spaces. This theory is vast, and different structures

have (somewhat) different theories. To exposit the complete idea is beyond the

scope of this survey. Nonetheless, we exposit a very small part on the integration

of functions that are defined on the unit sphere. We provide a rather heursitic

argument, instead of a rigorous one.

The idea is that if we slice Sn−1 by a hyperplane, we end up with a sphere

inside the hyperplane (see Figure 2.1). Consequently, to integrate a function

Figure 2.1: The slice of a sphere at a distance cos θ.

f : Sn−1 → C, it remains to “add up” all the integrals obtained on such “slices”

made along a particular direction. Effectively, fixing a unit vector e ∈ Sn−1, let

us consider the sets Sθ = {x′ ∈ Sn−1 : e · x′ = cos θ}, formed by intersecting

hyperplanes orthogonal to the vector e at a distance cos θ from the origin. For

a fixed θ, the integral of f over Sθ is again an integration over a sphere of a

smaller dimension, and of a different radius. It is to be noticed that two spheres

of different radii can be deformed into one another in a “smooth” fashion. In fact,
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one can do so by a simple rescaling! Hence, the measure on an n-dimensional

sphere of radius, say R, must be Rn times the measure on the unit n-dimensional

sphere. In the hyperplane ⟨e, x⟩ = cos θ, we notice that the sphere Sθ has radius

sin θ (see Figure 2.1). On the other hand, for every θ ∈ [0, π], we get a slice (see

Figure 2.2). Therefore, we have,

Figure 2.2: A sphere can be covered by slices through hyperplanes.

∫
Sn−1

f (σ) dσ =

π∫
0

∫
Sθ

f (σ (θ, ω)) dω dθ

=

π∫
0

∫
Sn−2

f (σ (θ, ω)) sinn−2 θ dω dθ.

Here, the point σ ∈ Sn−1 depends on the distance θ of the hyperplane, and on

a direction ω in the hyperplane. Of interest to us are the functions for which

f (σ (θ, ω)) is independent of ω. From the argument we provided above, it is

easy to see that in this case, we must have f (σ) = f̃ (cos θ), for an appropriate

function f̃ : [0, π] → C. Such functions are called “radial” functions on the
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sphere, and for them, we have∫
Sn−1

f(σ) dσ =

π∫
0

∫
Sn−2

f̃(cos θ) sinn−2 θdθdω

= |Sn−2|
π∫

0

f̃(cos θ) · sinn−2 θ dθ.

With this understanding, we now proceed to look at the Bessel function of

first kind.

2.6.2 Bessel Function of first kind

In this section, we follow the notation of [24]. The results given here can be

found in the reference we mentioned. But we provide a few details that might of

help to a new reader. For k > −1
2
, Bessel function Jk is defined by the following

expression

Jk(t) =
(t/2)k

Γ[(2k + 1)/2]Γ(1/2)

1∫
−1

eits(1− s2)(2k−1)/2 ds

for t > 0.

If we develop the power series
∞∑
j=0

(its)j/j! of eits, for real k > 1
2
, we get

Jk(t) =
∞∑
j=0

(−1)j
(t/2)k+2j

j!Γ(j + k + 1)
. (2.7)

Fourier transform of a radial function on Rn, can be expressed in terms of

Bessel function.

Theorem 2.13. Let for n ≥ 2, f ∈ L1(Rn), be a radial function, i.e. f(x) =

f0(|x|) for a.e. x ∈ Rn. Then the Fourier transform of f , has the following form

f̂(x) = F0(r) = 2πr−[(n−2)/2]

∞∫
0

f0(s)J(n−2)/2(2πrs)s
n/2 ds,

where, r = |x|.
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Proof. By the definition of Fourier transform

f̂(x) =

∫
Rn

f(u)e−2πi⟨x,u⟩ du =

∞∫
0

f0(s)

 ∫
Sn−1

e−2πirs⟨x′,u′⟩ du′

 sn−1 ds. (2.8)

The inner integral can be evaluate in the following way∫
Sn−1

e−2πirs⟨x′,u′⟩ du′ =

π∫
0

∫
Sn−1

e−2πrscosθ dv(sinθ)n−2 dθ

= ωn−2

1∫
−1

e−2πirsξ(1− ξ2)(n−3)/2 dξ

=
2π(n−1)/2Γ[(n− 1)/2]Γ(1/2)

Γ[(n− 1)/2](πrs)−(n−2)/2
J(n−2)/2(2πrs)

= 2π(rs)−(n−2)/2J(n−2)/2(2πrs).

Substituting this in Equation (2.8) we get the desired result.

Next, we see another useful result.

Theorem 2.14. If ν > −1
2
then

Jν+γ+1(t) =
tγ+1

2γΓ(γ + 1)

1∫
0

Jν(ts)s
ν+1(1− s2)ν ds

whenever γ > −1 and t > 0.

Proof. Using Equation (2.7) we have
1∫

0

Jν(ts)s
ν+1(1− s2)ν ds =

1∫
0

(
∞∑
j=0

(−1)j
(ts/2)ν+2j

j!Γ(j + ν + 1)

)
sν+1(1− s2)γ ds

Now substituting s2 = r, we have
1∫

0

Jν(ts)s
ν+1(1− s2)ν ds =

∞∑
j=0

(−1)j
(t/2)ν+2j

j!Γ(j + ν + 1)

1

2

1∫
0

rν+j(1− r)γ dr.

Using the well known relation Γ(x)Γ(y) =
1∫
0

ux−1(1− u)y−1 du, we have

1∫
0

Jν(ts)s
ν+1(1− s2)ν ds =

2γΓ(γ + 1)

tγ+1

∞∑
j=0

(−1)j
(t/2)ν+γ+1+2j

j!Γ(ν + γ + j + 2)

=
2γΓ(γ + 1)

tγ+1
Jν+γ+1(t).
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This completes the proof.

2.7 Approximation to Identity

In this section, we consider a special family of (compactly supported smooth)

functions {φϵ}ϵ>0, called an approximation to identity. To motivate such a family,

let us consider the space L1 (Rn). Then, Young’s convolution inequality quickly

tells us that L1 (Rn) is closed under taking convolutions with ∥f ∗ g∥L1(Rn) ≤

∥f∥L1(Rn)∥g∥L1(Rn), making it a Banach Algebra. However, this algebra lacks

unity, i.e., there is no f ∈ L1 (Rn) such that for all g ∈ L1 (Rn), we have f ∗ g =

g = g ∗ f . To see this, suppose on the contrary, f ∈ L1 (Rn) is the unity for

convolution. Then, taking Fourier transforms, we obtain for all g ∈ L1 (Rn) that

ĝ = f̂ ĝ. Consider the Gaussian g (x) = e−x2
. It is known that ĝ (ξ) =

√
πe−

ξ2

4 .

Therefore, we must have f̂ ≡ 1, which contradicts the Riemann-Lebesgue Lemma.

To understand the identity for convolution, let us go back to Schwartz

functions. Let us consider the Dirac delta distribution δ ∈ S ′ (Rn), given by

δ (f) = f (0) .

The fact that δ is a tempered distribution easily follows from the convergence in

S (Rn). Now, we see that for any f ∈ S (Rn), we have

δ ∗ f (x) = δ
(
τxf̃
)
=
(
τxf̃
)
(0) = f̃ (−x) = f (x) .

That is, the Dirac delta distribution is an identity for convolution. However,

δ /∈ L1 (Rn), since it is not a function to begin with! The question, now, is

that whether we can “approximate” the distribution δ with nice (preferably L1)

functions? To understand whether this is possible, we first observe that δ is a

“point-mass distribution”. That is, δ ignores all the points in Rn and focuses

on 0 alone. In fact, this is the reason δ cannot be viewed as a true function

(for otherwise, it would be zero almost everywhere). So, essentially, we require a

collection of functions supported around 0 in a manner that their supports shrink
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but the size does not change. The following example deals with this construction.

Example 2.1. Consider the function φ : Rn → C, defined as

φ (x) =

Ce
− 1

1−|x|2 , |x| < 1.

0, |x| ≥ 1.

It is clear that φ ∈ C∞
c (Rn) ⊆ L1 (Rn). Here, C > 0 is chosen such that

∥φ∥L1(Rn) = 1. We consider the dilations φϵ = ϵ−nφ
(
x
ϵ

)
. The graphs in Figure

2.3 show that as ϵ → 0, the functions φϵ concentrates more on the point 0, a

desirable property for the Dirac distribution. Let us now quickly check if φϵ can

approximate δ (for Schwartz functions).

For f ∈ S (Rn), we have∣∣∣∣∣∣
∫
Rn

φϵ (x) f (x) dx− f (0)

∣∣∣∣∣∣ ≤
∫

B(0,ϵ)

φϵ (x) |f (x)− f (0)| dx.

Since f is continuous at 0, for every η > 0, there is some ϵ0 > 0 such that for all

ϵ < ϵ0 and x ∈ B (0, ϵ), we have |f (x)− f (0)| < η. Consequently, for ϵ < ϵ0, we

have, ∣∣∣∣∣∣
∫
Rn

φϵ (x) f (x) dx− f (0)

∣∣∣∣∣∣ < η

∫
Rn

φϵ (x) dx = η.

By a simple change of variables, we easily see that for any x ∈ Rn,

lim
ϵ→0

(φϵ ∗ f) (x) = f (x) = (δ ∗ f) (x) .

For this reason, we call the collection {φϵ}ϵ>0 an approximation to identity.

Remark 2.5. It is to be noticed that the calculations in Example 2.1 follow

through for L1-functions easily by density of S (Rn). Particularly, we have lim
ϵ→0

φϵ∗

f = f , for all f ∈ L1 (Rn).

Example 2.1 is not a unique way to construct an approximate identity. In

fact, a more general definition holds. For details on the (uniform and pointwise)

convergence, we refer the reader to [12].
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Figure 2.3: The functions φϵ concentrate towards 0 as ϵ becomes smaller.

Definition 2.13 (Approximation to Identity). An approximate identity on Rn is

a family {φϵ}ϵ>0 of L1-functions such that

1. There is some C > 0 such that for all ϵ > 0, we have ∥φϵ∥L1(Rn) ≤ C.

2. For all ϵ > 0, we have
∫
Rn

φϵ (x) dx = 0.

3. For every δ > 0, we have lim
ϵ→0

∫
|x|>δ

φϵ (x) dx = 0.

Remark 2.6. It is clear that the family {φϵ}ϵ>0 in Example 2.1 is an approxima-

tion to identity. In the sequel, we use the construction of Example 2.1 without

mentioning it explicitly.

2.8 Bochner Integral and related results

In this section our main aim to discuss about integration of functions that take

values in a separable Banach space over C. Throughout this section, B denotes

a separable Banach space. The theory we are about to describe is analogous

to Lebesgue’s theory of integration, except for a few modifications. To begin

integrating functions, we first require the notion of measurability. The results

presented here are a part of the exposition found in [16].
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Definition 2.14. A function F : Rn −→ B is strongly measurable if for each

b′ ∈ B′ (the dual of B) the complex valued map x 7−→ ⟨F (x), b′⟩ is measurable.

Remark 2.7. Since we do not deal with any other notion of measurability of

vector valued functions, we use “measurable” to mean strongly measurable.

Our goal is to define integration of functions F : Rn → B in a manner

analogous to the Lebesgue theory. One of the important compoenents in the

Lebesgue theory is that whenever a function f : Rn → C is measurable, so is

|f | : Rn → [0,∞). First, we get an analogue for this result. That is, we wish

to prove that given a measurable function F : Rn → B, the real valued map

x 7→ ∥F (x) ∥B is also measurable. For the same, we begin with the following

lemma.

Lemma 2.15. Let B be a separable Banach space. Then, there exists a countable

collection {b′n}n∈N ⊆ B′ with ||b′n||B′ = 1, such that ∀x ∈ B, ||x||B = sup
n∈N

{|b′n(x)|}.

Proof. Let D ⊆ B be countable dense subset. For a fixed xn ∈ D, we have

||xn||B = sup
||b′||B′=1

{|b′(xn)|}. Therefore, there exists a sequence (b′k,n)k∈N in B such

that for all k ∈ N, ||b′k,n||B′ = 1, and |b′k,n(xn)| > ||xn||B − 1
k
. Therefore, we have

||xn||B = sup
k∈N

{|b′k,n(xn)|}.

For x ∈ B \ D, we consider the following.

First, we note that ∀n ∈ N,
(
1− 1

n

)
||xn||B < ||xn||B = sup

||b′||B′=1

{|b′(xn)|}. Then,

∀n ∈ N,∃b′n ∈ B′ with ||b′n||B′ = 1 such that
(
1− 1

n

)
||xn||B < |b′n(xn)|. Let us fix

a 0 < δ < 1, and n0 ∈ N such that 1
n0
< δ and xn0 ∈ B(x, δ). Then, using the

triangle inequality and the observation about {b′n}n∈N, we get

(1− δ)||x||B <

(
1− 1

n0

)
||x||B ≤

(
1− 1

n0

)
||xn0||B +

(
1− 1

n0

)
δ

< |b′n0
(xn0)|+

(
1− 1

n0

)
δ

≤ |b′n0
(xn0)|+ |b′n0

(xn0 − x)|+
(
1− 1

n0

)
δ
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≤ |b′n0
(x)|+

(
2− 1

n0

)
δ

< |b′n0
(x)|+ 2δ.

That is, ∀δ ∈ (0, 1), we have,

(1− δ)||x||B < |b′n0
(x)|+ 2δ ≤ sup

n∈N
|b′n(x)|.

Upon simplifying, we get for all δ ∈ (0, 1),

δ ≥
||x||B − sup

n∈N
|b′n(x)|

2 + ||x||B
Hence,

||x||B ≤ sup
n∈N

|b′n(x)|.

Also, ||x||B ≥ sup
n∈N

{|b′n(x)|}, so that ||x||B = sup
n∈N

{|b′n(x)|}. So, the required count-

able collection is {b′k,n : k ∈ N, n ∈ N} ∪ {b′n|n ∈ N}, as constructed above.

Remark 2.8. We call the countable collection {bn}n∈N, constructed in Lemma

2.15, a “norming sequence”.

Next, we see that measurable Banach valued functions can be approximated by

simple functions. Indeed, we first look at the definition of a Banach valued simple

function.

Definition 2.15 (Simple Function). A function F : Rn → B is simple if there are

distinct elements b1, · · · , bk ∈ B and disjoint measurable sets A1, · · · , Ak ⊆ Rn

such that F (x) =
k∑

i=1

χAi
(x) bi.

Remark 2.9. We notice that a function F : Rn → B is simple if and only if its

range is a finite set.

Theorem 2.16. Let B be a separable Banach space. F : Rn −→ B be strongly

measurable function. Then there exists a sequence (Fj)j∈N of simple functions

such that Fn −→ F pointwise.

Proof. Let
{
b′j
}
j∈N ⊆ B′ be a norming collection (see Lemma 2.15). We know

that the real valued function x 7−→ ||f(x) − b||B = sup
n∈N

{|b′n(f(x) − b)|} is mea-
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surable, ∀b ∈ B. Let {bn}n∈N ⊆ B be a countable dense set with b1 = 0.

For b ∈ B, let k(j, b) ∈ N be the smallest number such that 1 ≤ k(j, b) ≤ j,

||bk(j,b)||B ≤ ||b||B, and ||b − bk(j,b)||B = min
1≤l≤j

||b − bl||B. For j ∈ N, define

φj : B −→ B as ϕj(b) = bk(j,b). Then clearly, lim
j−→∞

||φj(b)− b||B = 0, and for each

j ∈ N, we have ||φj(b)||B ≤ ||b||B. Define Fj : Rn −→ B as Fj(x) = (φj ◦ f)(x).

Clearly, Fj(Rn) ⊆ {b1, b2, · · · bj}, and hence is simple. Now, let us define

Ak,j := F−1
j (bk) =

{
x ∈ Rn|∥F (x)− bk∥B < min

1≤l≤k
∥F (x)− bl∥

}
.

Therefore, Ak,j is measurable and we have Fj =
j∑

k=1

χAk,j
bk. Moreover, for x ∈ Rn,

we have

lim
j−→∞

||Fj(x)− F (x)||B = lim
j−→∞

||φj(F (x))− F (x)||B = 0.

That is, Fn −→ F pointwise.

We now state the result we were aiming for.

Corollary 2.17. The real valued function x 7−→ ||F (x)||B is measurable whenever

F : Rn −→ B is strongly measurable.

Proof. We have from Theorem 2.16, ||F (x)||B = lim
j−→∞

||Fj(x)||B. We notice that

(in the notation of Theorem 2.16),

||Fj(x)||B =

||bk||B, x ∈ Ak,j.

0, otherwise.

Clearly, x 7−→ ∥Fj (x) ∥B is measurable for every j ∈ N. So x 7−→ ||F (x)||B is

measurable.

With the basic construction about Banach values measurable functions at

hand, we now proceed to define Lp-spaces. This definition is a direct analogue of

the usual Lp-spaces defined in Section 2.1. Here, we replace the absolute value

(| · |) of C by the norm (∥ · ∥B) of B.
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Definition 2.16 (Bochner space). For 1 ≤ p < ∞, the Bochner spaces are

defined as

Lp (Rn, B) :=

{
F : Rn −→ B

∣∣∣∣ F is measurable and

∫
Rn

||F (x)||pB dx <∞
}
.

Norm of a function F in Lp(Rn, B), 1 ≤ p <∞, is defined as

||F ||Lp(Rn,B) :=

∫
Rn

||F (x)||pB dx

1/p

.

For p = ∞, we define

||F ||L∞(Rn,B) := sup
x∈Rn

||F (x)||B,

and the space L∞(Rn, B) as

L∞(Rn, B) := {F : Rn −→ B | F is strongly measurable and ||F ||∞ <∞}.

Remark 2.10. We notice that for a function F : Rn → B, we have

∥F∥Lp(Rn,B) = ∥nF∥Lp(Rn),

where, nF : Rn → R is defined by nF (x) = ∥F (x) ∥B. From this observation, it

is clear that ∥ · ∥Lp(Rn,B) is a norm on Lp (Rn, B).

Remark 2.11. When B = C, the Bochner spaces Lp (Rn,C) coincide with the

usual Lebesgue spaces Lp (Rn), for any 1 ≤ p ≤ +∞.

Remark 2.12. The Bochner spaces Lp (Rn, B) enjoy all the “nice” properties

similar to the Lebesgue spaces. Particularly, Lp (Rn, B) is a banach space. We

refer the reader to [16] for a complete exposition on the subject.

We now wish to give meaning to the symbol
∫
Rn

F (x) dx, for a Banach valued

function F . As with the case of complex valued functions, simple functions play

an important role in this. However, we first give a more general definition. Let

f ∈ Lp(Rn) and b ∈ B. Then, we can define a function f · b : Rn 7−→ B as

(f · b)(x) = f(x)b. Now, we notice that

||(f · b)||Lp(Rn,B) =

∫
Rn

||f(x)b||pB dx

1/p

= ||f ||p||b||B.
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That is, f · b ∈ Lp(Rn, B). Let us define

Lp ⊗B := span

{
f · b

∣∣∣∣f ∈ Lp (Rn) , b ∈ B

}
.

Clearly, the collection of simple functions taking non-zero values on a finite mea-

sure set is included in Lp ⊗ B. We now show that the space Lp ⊗ B is dense in

Lp (Rn, B).

Proposition 2.18. Let B be a separable Banach space. The collection of func-

tions of the form
m∑
j=1

χEj
bj, where bj ∈ B and {Ej}mj=1 are disjoint, measur-

able subsets of Rn with finite measure, is a dense subset of Lp(Rn, B) for any

1 ≤ p <∞.

Proof. Let F ∈ Lp(Rn, B). Then, we have,∫
Rn

||F (x)||pB dx <∞.

Therefore, for any ϵ > 0, there is a bounded subset K1 ⊆ Rn such that,∫
Rn\K1

||F (x)||pB dx <
ϵp

3
.

Let {bj}j∈N = B0 ⊆ B be a countable dense subset, and for bj ∈ B0, let us define

B̃(bj, ϵ) = {b ∈ B : ||b− bj||B ≤ ϵ(3|K1|)−1/p}.

By the density of B0, we have

B =
∞⋃
j=1

B̃(bj, ϵ).

Now, let A1 = B̃(b1, ϵ), and Aj = B̃(bj, ϵ) \
(

j−1⋃
k=1

B̃(bk, ϵ)

)
, for j ≥ 2. We notice

that the collection {Aj}j∈N is pairwise disjoint and
∞⋃
j=1

Aj =
∞⋃
j=1

B̃(bj, ϵ) = B

Now consider the collection {Ãj}j∈N, where

Ãj := Aj ∩ F (K1).

Then clearly,
∞⋃
j=1

Ãj = F (K1).
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Now, let

K1 ∩ F−1(Ãj) = Ej.

Since F is strongly measurable, using Corollary 2.17, we see that Ej is measurable.

Also, Ej ⊆ K1 and hence, is of finite measure. Note that
∞⋃
j=1

Ej = K1 ∩

(
∞⋃
j=1

F−1(Ãj)

)
= K1 ∩

(
F−1 (F (K1))

)
= K1,

since K1 ⊆ F−1(F (K1)).

Since {Aj}j∈N is a pairwise disjoint collection, so is the collection {Ej}j∈N.

Now, we observe that
∞∑
j=1

∫
Ej

∥F (x) ∥pBdx =

∫
K1

||F (x)||pB dx ≤
∫
Rn

∥F (x) ∥pBdx <∞,

Therefore, there exists m ∈ N such that∫
∞⋃

j=m+1
Ej

||F (x)||pB dx <
ϵp

3
.

Let us now define the simple function

Fm(x) =
m∑
j=1

χEj
(x)bj.

For any b′ ∈ B′, and a fixed j ∈ N consider the function

φj(x) = ⟨b′, χEj
(x)bj⟩ =

0, if x ̸∈ Ej.

b′(bj). if x ∈ Ej.

It is easy to verify that φj is meaurable. Hence, the function Fj is strongly

measurable. Now let x ∈ Ej for some j = 1, 2, · · · ,m. Then, F (x) ∈ Ãj ⊆

B̃(bj, ϵ). Therefore, if x ∈ Ej, we have

||F (x)− bj||pB <
ϵ

(3|K1|)−1/p
. (2.9)

Now, we have∫
m⋃

j=1
Ej

∣∣∣∣∣∣∣∣F (x)− m∑
j=1

χEj
(x)bj

∣∣∣∣∣∣∣∣p
B

dx =
m∑
j=1

∫
Ej

||F (x)− bj||pB dx
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<
m∑
j=1

ϵp

3|K1|
|Ej|

≤ ϵp

3|K1|
|K1| =

ϵp

3
.

Finally we see that∫
Rn

∣∣∣∣∣∣∣∣F (x)− m∑
j=1

χEj
(x)bj

∣∣∣∣∣∣∣∣p
B

dx =

∫
Rn\K1

||F (x)||pB dx+

∫
∞⋃

j=m+1
Ej

||F (x)||pB

+

∫
m⋃

j=1
Ej

||F (x)−
m∑
j=1

χEj
(x)uj||pB dx

<
ϵp

3
+
ϵp

3
+
ϵp

3
= ϵp.

This completes the proof!

The following corollary is immediate.

Corollary 2.19. The space Lp⊗B is dense in the Bochner space Lp (Rn, B), for

any 1 ≤ p <∞.

Now let us define an operator I : L1 ⊗ B −→ B as follows. For F =
m∑
j=1

fj · bj ∈ L1 ⊗B,

I(F ) :=
m∑
j=1

∫
Rn

fj(x) dx

 bj. (2.10)

It is clear that I is linear. The following lemma says that this operator is contin-

uous.

Lemma 2.20. The operator I defined in Equation (2.10) is a bounded operator

from L1 ⊗B to B.

Proof. We have for any F =
m∑
j=1

fj · bj ∈ L1 ⊗B,

||I(F )||B = sup
||b′||B′≤1

∣∣∣∣〈b′, m∑
j=1

∫
Rn

fj(x) dx

 bj

〉∣∣∣∣
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= sup
||b′||B′≤1

∣∣∣∣ ∫
Rn

〈
b′,

m∑
j=1

fj(x)bj

〉
dx

∣∣∣∣
≤ sup

||b′||B′≤1


∫
Rn

∣∣∣∣〈b′, m∑
j=1

fj(x)bj

〉 ∣∣∣∣dx


≤ sup
||b′||B′≤1

{∫
Rn

||b′||B′

∣∣∣∣∣∣∣∣ m∑
j=1

fj(x)bj

∣∣∣∣∣∣∣∣
B

dx

}
≤ ||F ||L1(Rn,B).

We have already observed that the space L1 ⊗B is a dense subset of L1(Rn, B).

Therefore the operator I can be extended uniquely to L1(Rn, B). The unique

extension of the operator I is known as Bochner integral, and for a function

F ∈ L1(Rn, B), we denote it by
∫
Rn

F (x) dx. We now move on to prove a duality

result for Bochner spaces. We require the following lemma.

Lemma 2.21. Let F ∈ Lp(Rn, B). Then, for each ϵ > 0, there exists a non-

negative function h ∈ Lp′(Rn) with ||h||Lp′ (Rn) ≤ 1 such that

||F ||Lp(Rn,B) <

∫
Rn

h(x)||F (x)||B dx+ ϵ.

Proof. Consider the real valued function φ : Rn −→ R, given by φ(x) =

||F (x)||B. Note that

||φ||Lp(Rn) =

∫
Rn

|φ(x)|p dx

1/p

=

∫
Rn

||F (x)||pBdx

1/p

= ||F ||Lp(Rn,B).

That is, φ ∈ Lp(Rn). Also,

||F ||Lp(Rn,B) = ||φ||Lp(Rn) = sup

{∣∣∣∣ ∫
Rn

h(x)φ(x) dx

∣∣∣∣ : ||h||Lp(Rn) ≤ 1

}
.

Therefore, for ϵ > 0, there exists a function h′ ∈ Lp′(Rn) such that

||F ||Lp(B) ≤
∣∣∣∣ ∫
Rn

h′(x)||F (x)||B dx

∣∣∣∣+ ϵ

2
≤
∫
Rn

|h′(x)|||F (x)||B dx+
ϵ

2
(2.11)
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Note that as the function h′(·)||F (·)||B ∈ L1(Rn), there exists R > 0 such that∫
Rn\B(0,R)

|h′(x)|||F (x)||B dx <
ϵ

2
.

Therefore from Inequality (2.11), we have

||F ||Lp(B) ≤
∫

B(0,R)

|h′(x)|||F (x)||B dx+

∫
Rn\B(0,R)

|h′(x)|||F (x)||B dx+
ϵ

2

≤
∫

B(0,R)

|h′(x)|||F (x)||B dx+ ϵ

=

∫
Rn

|h′(x)|χB(0,R)||F (x)||B dx+ ϵ.

Hence, the desired function is h(x) = |h′(x)|χB(0,R)(x).

We now present the duality result. This result is often used in this thesis,

especially in the Littlewood-Paley theory (Chapter 6).

Theorem 2.22.

1. Let B be a separable Banach space. Then for any F ∈ Lp(Rn, B), 1 ≤ p <

∞, we have

||F ||Lp(Rn,B) = sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣. (2.12)

2. The space Lp(Rn, B) is isometrically embed in
(
Lp′(Rn, B′)

)′
, where 1 ≤

p ≤ ∞.

Proof.

1. Let F ∈ Lp(Rn, B). Then for an ϵ > 0 there exists a function Fϵ(x) =
mϵ∑
j=1

χEj
(x)bj ∈ Lp ⊗B (for some m ∈ N), such that

||Fϵ − F ||Lp(B) <
ϵ

2
.
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Using Lemma 2.21, we have a non-negative function h ∈ Lp′(Rn) with

||h||Lp′ (Rn) ≤ 1 such that

||Fϵ||Lp(B) =

∫
Rn

||Fϵ(x)||pB dx

1/p

<

∫
Rn

h(x)||Fϵ(x)||B dx+
ϵ

4
. (2.13)

Also, for bj ∈ B, there exists b′j ∈ B′ with ||b′j||B′ = 1, such that

||bj||B < |⟨b′j, bj⟩|+
ϵ

4(||h||Lp′ (Rn) + 1)
. (2.14)

We notice that given b′j ∈ B′ with the property shown in Inequality (2.14),

we define b̃′j := e−i arg⟨bj ,b′j⟩b′j. Then, clearly, ⟨b̃′j, bj⟩ =
∣∣⟨b′j, bj⟩∣∣ and ∥b̃′j∥B′ =

1. In the sequel, we abuse notation and write b′j to denote b̃′j. Hence, we

have,

∥bj∥B < ⟨b′j, bj⟩+
ϵ

4
(
1 + ∥h∥Lp′ (Rn)

) . (2.15)

Let us now define the function

G(x) =
m∑
j=1

h(x)χEj
(x)b′j.

Now, we have,

||G||p
′

Lp′ (Rn,B′)
≤

m∑
j=1

||hχEj
b′j||

p′

Lp′ (Rn,B′)

=
m∑
j=1

∫
Rn

||h(x)χEj
(x)b′j||

p′

B′ dx

=
m∑
j=1

∫
Rn

|h(x)χEj
(x)|p′||b′j||

p′

B′ dx

=
m∑
j=1

∫
Rn

|h(x)χEj
(x)|p′ dx

=

∫
n⋃

j=1
Ej

|h(x)|p′ dx

≤ ||h||p
′

Lp′ (Rn)
≤ 1.
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We also notice that for any x ∈ Rn,

⟨G (x) , Fϵ (x)⟩ =
mϵ∑

j,k=1

h (x)χEj∩Ek
(x) ⟨b′j, bk⟩ ∈ R,

and we have,∫
Rn

⟨G(x), Fϵ(x)⟩ dx =

∫
Rn

〈 m∑
j=1

h(x)χEj
(x)u∗j ,

m∑
j=1

χEj
(x)uj

〉
dx

=

∫
Rn

h(x)
m∑
j=1

χEj
(x)⟨u∗j , uj⟩ dx.

From Inequality (2.15), we get,∫
Rn

⟨G(x), Fϵ(x)⟩ dx >
∫
Rn

h(x)
mϵ∑
j=1

χEj
(x)

(
||bj||B − ϵ

4(||h||L1(Rn) + 1)

)
dx.

As ||Fϵ(x)||B = ||
mϵ∑
j=1

χEj
(x)bj||B ≤

mϵ∑
j=1

χEj
(x)||bj||B, we get∫

Rn

⟨G(x), Fϵ(x)⟩ dx >
∫
Rn

h(x)||Fϵ(x)||B dx

− ϵ

4(||h||L1(Rn) + 1)

∫
Rn

mϵ∑
j=1

h(x)χEj
(x) dx.

From Inequality (2.13), we obtain,∫
Rn

⟨G(x), Fϵ(x)⟩ dx ≥ ||Fϵ||Lp(Rn,B) −
ϵ

4
−

||h||L1(Rn)ϵ

4(||h||L1(Rn) + 1)

≥ ||Fϵ||Lp(Rn,B) −
ϵ

4
− ϵ

4
= ||Fϵ||Lp(Rn,B) −

ϵ

2
.

Hence,

||Fϵ||Lp(Rn,B) ≤ sup
||G||

Lp′≤1

∣∣∣∣∣∣
∫
Rn

⟨G(x), Fϵ(x)⟩ dx

∣∣∣∣∣∣+ ϵ

2
. (2.16)

Now, for G ∈ Lp′ (Rn, B′) with ∥G∥Lp′ (Rn,B′) ≤ 1, we have,∣∣∣∣ ∫
Rn

⟨G(x), Fϵ⟩ dx
∣∣∣∣ ≤ ∫

Rn

|⟨G(x), Fϵ(x)− F (x)⟩| dx+
∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣

≤
∫
Rn

||G(x)||B′ ||Fϵ(x)− F (x)||B dx

+ sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣
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≤ ||G||Lp′ (Rn,B′)||Fϵ − F ||Lp(Rn,B)

+ sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣

≤ ϵ

2
+ sup

||G||
Lp′≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣. (2.17)

Therefore, from Inequalities (2.16) and (2.17), we get

||Fϵ||Lp(Rn,B) ≤ sup
||G||

Lp′≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣+ ϵ.

Now, we observe that

||F ||Lp(Rn,B) ≤ ||Fϵ − F ||Lp(Rn,B) + ||Fϵ||Lp(Rn,B)

≤ ϵ

2
+ sup

||G||
Lp′ (Rn,B′)

≤1

∣∣∣∣∣∣
∫
Rn

⟨G(x), F (x)⟩ dx

∣∣∣∣∣∣+ ϵ

= sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣∣∣
∫
Rn

⟨G(x), F (x)⟩ dx

∣∣∣∣∣∣+ 3ϵ

2
.

As ϵ > 0 is arbitrary, we have

||F ||Lp(Rn,B) ≤ sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣∣∣
∫
Rn

⟨G(x), F (x)⟩ dx

∣∣∣∣∣∣ .
Now for ||G||Lp′ (Rn,B′) ≤ 1, by using Hölder’s inequality, we get,∣∣∣∣ ∫

Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣ ≤ ||G||Lp′ (Rn,B′)||F ||Lp(Rn,B) ≤ ||F ||Lp(Rn,B).

This gives us

||F ||Lp(Rn,B) = sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣.

2. For F ∈ Lp(Rn, B), we define a linear functional HF : Lp′(Rn, B′) −→ C by

HF (G) =

∫
Rn

⟨G(x), F (x)⟩dx.

We have

|HF (G)| =
∣∣∣∣ ∫

Rn

⟨G(x), F (x)⟩dx
∣∣∣∣ ≤ ∫

Rn

|⟨G(x), F (x)⟩| dx
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≤
∫
Rn

||G(x)||B′||F (x)||B dx ≤ ||G||Lp′ (Rn,B′)||f ||Lp(Rn,B).

Here, the last inequality is consequence of Hölder’s inequality. Using the

first part of this theorem we have

||HF || = sup
||G||

Lp′ (Rn,B′)
≤1

∣∣∣∣ ∫
Rn

⟨G(x), F (x)⟩ dx
∣∣∣∣ = ||F ||Lp(Rn,B).

Thus the space Lp(Rn, B) is isometrically embed in
(
Lp′(Rn, B′)

)′
, for any

1 ≤ p ≤ ∞.

Before we end this chapter, we present a remarkable fact about taking

continuous operators inside an integral.

Proposition 2.23. Let B be a reflexive separable Banach space and B∗ be the

dual space of B. Let Λ ∈ B∗. Then, for any F ∈ L1(B), we have,

Λ

∫
Rn

F (x) dx

 =

∫
Rn

Λ(F (x)) dx. (2.18)

Proof. Recall from Proposition 2.18 that L1⊗B is a dense subset of L1(B). First

we prove the result in this dense set. Let F ∈ L1⊗B. That is, F (x) =
m∑
i=1

fi(x)bi,

where fi ∈ L1(Rn) and bi ∈ B for all i = 1, 2, · · · ,m. So,

Λ

∫
Rn

F (x) dx

 = Λ

∫
Rn

m∑
i=1

fi(x)bi dx


Now by definition for Bochner integral, we get

Λ

∫
Rn

F (x) dx

 = Λ

 m∑
i=1

∫
Rn

fi(x) dx

 bi


=

m∑
i=1

∫
Rn

fi(x) dx

Λ(bi)

=
m∑
i=1

∫
Rn

fi(x)Λ(bi) dx
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=

∫
Rn

Λ(F (x)) dx.

So the result is true when F ∈ L1 ⊗ B. The L.H.S of Equation (2.18) is the

operator Λ ◦ I : L1(Rn, B) −→ C. Clearly, it is continuous. Consider the linear

map T : L1(Rn, B) −→ C, defined as T (F ) =
∫
Rn

(Λ ◦ F ) (y) dy. Then, |T (F )| ≤∫
Rn

|Λ(F (x))| dx ≤
∫
Rn

||Λ||B′ · ||F (y)|| dy ≤ ||Λ||B′ · ||F ||L1(Rn,B). Hence, T is

continuous. Since T = Λ ◦ I on the dense set L1 ⊗ B, the equality follows on

entire L1(Rn, B).

We now see a special case of Proposition 2.23.

Corollary 2.24. Let B = ℓr(C), for some r > 1 . Let F ∈ L1(ℓr). We can write

F (y) = (fi(y))i∈N, where fi ∈ L1(Rn). Then∫
Rn

(fi(y))i dy =

∫
Rn

fi(y) dy


i

.

Proof. Suppose for j ∈ N, Λj ∈ ℓr
′
such that for any (xi)i∈N ∈ lr, Λj((xi)i∈N) =

xj. Now suppose (xi)i ∈ lr be such that∫
Rn

F (y) dy = (xi)i.

Now by using above lemma

xj = Λj((xi)i) = Λj

∫
Rn

F (y) dy

 =

∫
Rn

Λj(F (y)) dy =

∫
Rn

fi(y) dy.

Therefore we can say that∫
Rn

(fi(y))i dy =

∫
Rn

fi(y) dy


i

.



CHAPTER 3

Maximal Operators

In Chapter 1, we have seen that the study of averages (over intervals) is natural

in differentiation theory. A natural generalization of these averages to higher

dimensions are averages over balls centered at a given point. However, in higher

dimensions, one can also look at averages over cubes centered at a point. This

chapter is dedicated to the study of a few averaging operators and their corre-

sponding maximal function, and forms a base for upcoming chapters. A maximal

function corresponding to a collection of averages is understood as the “largest”

average (around a given point). We begin with the Hardy-Littlewood maximal

operator.

3.1 Hardy-Littlewood Maximal operator

Definition 3.1 (Hardy-Littlewood maximal function). Let Br = B(0, r) be the

Euclidean ball of radius r centered at origin. Given f ∈ L1
loc(Rn) , the Hardy-

47
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Littlewood maximal function of f is defined as

Mf (x) := sup
r>0

1

|Br|

∫
Br

|f (x− y) |dy.

The function Mf is defined in the extended real sense, i.e., Mf(x) = +∞ is

allowed.

Before we developing theory on Hardy-Littlewood maximal function let us

see an easy example.

Example 3.1. Let f = χ[0,1]. For a given ϵ > 0, we denote Mϵf(x) to be average

of f over (x− ϵ, x+ ϵ). That is, we wish to find

Mf(x) = sup
ϵ>0

Mϵf(x),

for a given x ∈ R.

Mϵf(x) =
1

|(x− ϵ, x+ ϵ)|

∫
(x−ϵ,x+ϵ)

χ[0,1](y) dy =
1

2ϵ

∫
(x−ϵ,x+ϵ)∩[0,1]

1 dy.

We consider the following cases.

1. First, let us take x ∈ [0, 1]. Then, either (x − ϵ, x + ϵ) ⊆ [0, 1], or x − ϵ ∈

[0, 1] but x + ϵ ̸∈ [0, 1], or x − ϵ ̸∈ [0, 1] but x + ϵ ∈ [0, 1], or [0, 1] ⊂

(x− ϵ, x+ ϵ). We compute the value of the above integral for each of these

intervals. If (x− ϵ, x+ ϵ) ⊆ [0, 1] then (x− ϵ, x+ ϵ)∩ [0, 1] = (x− ϵ, x+ ϵ).

This case is illustrated in Figure 3.1.

[
0

]
1x

)
x+ ϵ

(
x− ϵ

Figure 3.1: (x− ϵ, x+ ϵ) ⊆ [0, 1]

Therefore,

Mϵf(x) =
1

|2ϵ|

∫
(x−ϵ,x+ϵ)

1 dy =
2ϵ

2ϵ
= 1.
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If x− ϵ ∈ [0, 1], and x+ ϵ ̸∈ [0, 1] then (x− ϵ, x+ ϵ)∩ [0, 1] = (x− ϵ, 1]. For

an illustration, see Figure 3.2.

[
0

]
1x

)
x+ ϵ

(
x− ϵ

Figure 3.2: (x− ϵ, x+ ϵ) ∩ [0, 1] = (x− ϵ, 1].

So,

Mϵf(x) =
1

|2ϵ|

∫
(x−ϵ,1]

1 dy =
1− x+ ϵ

2ϵ
.

Note that x + ϵ > 1 therefore ϵ > 1 − x. So, 1 − x + ϵ < 2ϵ. Therefore

Mϵf(x) < 1.

If x − ϵ ̸∈ [0, 1] and x + ϵ ∈ [0, 1], then (x − ϵ, x + ϵ) ∩ [0, 1] = [0, x + ϵ).

Therefore,

Mϵf(x) =
1

|2ϵ|

∫
[0,x+ϵ)

1 dy =
x+ ϵ

2ϵ
.

Note that in this case x− ϵ < 0 so x < ϵ. Therefore Mϵf(x) < 1 as well.

Lastly, if [0, 1] ⊆ (x− ϵ, x+ ϵ), then (x− ϵ, x+ ϵ)∩ [0, 1] = [0, 1], as seen in

Figure 3.3.

Hence, we must have ϵ > 1
2
, and hence

Mϵf(x) =
1

|2ϵ|

∫
[0,1]

1 dy =
1

2ϵ
< 1.

Thus, Mf(x) = sup
ϵ>0

Mϵf(x) = 1, when x ∈ [0, 1].

2. Next, let us assume x > 1. Then, either (x − ϵ, x + ϵ) ∩ [0, 1] = ∅ or

x− ϵ ∈ [0, 1] or [0, 1] ⊆ (x− ϵ, x+ ϵ). In the first case clearly Mϵf(x) = 0.

In the second case, (x− ϵ, x+ ϵ)∩ [0, 1] = (x− ϵ, 1]. For an illustration, see

Figure 3.4 We notice that, we must have x− 1 < ϵ < x.
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[
0

]
1x

)
x+ ϵ

(
x− ϵ

Figure 3.3: [0, 1] ⊆ (x− ϵ, x+ ϵ)

[
0

]
1 x

(
x− ϵ

)
x+ ϵ

Figure 3.4: (x− ϵ, x+ ϵ) ∩ [0, 1] = (x− ϵ, 1]

Therefore, we have

Mϵf(x) =
1

2ϵ

∫
(x−ϵ,1]

1 dy =
(1− x+ ϵ)

2ϵ
.

Note that d
dϵ
(Mϵf(x)) = x−1

2ϵ2
> 0. Therefore, Mϵf(x) is an increasing

function of ϵ. Hence, Mϵf(x) ≤ Mxf(x) =
1
2x
. That is, when x− ϵ ∈ [0, 1]

we have Mϵf(x) ≤ 1
2x
, with equality for ϵ = x.

Lastly, if [0, 1] ⊆ (x− ϵ, x + ϵ), we have ϵ > x, and (x− ϵ, x+ ϵ) ∩ [0, 1] =

[0, 1], as shown in Figure 3.5.

[
0

]
1 x

(
x− ϵ

)
x+ ϵ

Figure 3.5: [0, 1] ⊆ (x− ϵ, x+ ϵ)

Then

Mϵf(x) =
1

|2ϵ|

∫
[0,1]

1 dy =
1

2ϵ
<

1

2x
.

Thus, we get Mf(x) = sup
ϵ>0

Mϵf(x) =
1
2x
.
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3. Finally we consider the case x < 0. Then either one of the following holds:

(x − ϵ, x + ϵ) ∩ [0, 1] = ∅ or x + ϵ ∈ [0, 1] or [0, 1] ⊆ (x − ϵ, x + ϵ). In

the first case, it is clear that Mϵf(x) = 0. In the second case, we have

(x− ϵ, x+ ϵ) ∩ [0, 1] = [0, x+ ϵ) as seen in Figure 3.6. We notice that this

gives −x < ϵ < 1− x.

[
0

]
1x

)
x+ ϵ

(
x− ϵ

Figure 3.6: (x− ϵ, x+ ϵ) ∩ [0, 1] = [0, x+ ϵ)

Therefore, we have

Mϵf(x) =
1

2ϵ

∫
[0,x+ϵ)

1 dy =
x+ ϵ

2ϵ
.

We see that d
dϵ
(Mϵf(x)) =

−x
2ϵ2

> 0, since x < 0. Therefore, Mϵf(x) is an

increasing function of ϵ. Hence, Mϵf(x) ≤ M1−xf(x) = 1
2(1−x)

. That is,

when x+ ϵ ∈ [0, 1], we have Mϵf(x) ≤ 1
2(1−x)

, with equality for ϵ = 1− x.

Lastly, when [0, 1] ⊂ (x− ϵ, x+ ϵ), we have ϵ > 1− x, and (x− ϵ, x+ ϵ) ∩

[0, 1] = [0, 1]. For an illustration, see Figure 3.7.

[
0

]
1x

)
x+ ϵ

(
x− ϵ

Figure 3.7: [0, 1] ⊂ (x− ϵ, x+ ϵ)

Hence, we get

Mϵf(x) =
1

|2ϵ|

∫
[0,1]

1 dy =
1

2ϵ
<

1

2(1− x)
.

Now, we have Mf(x) = sup
ϵ>0

Mϵf(x) =
1

2(1−x)
, for x < 1.
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Combining the above observations we have

Mf(x) =


1

2(1−x)
, if x < 1.

1, if x ∈ [0, 1].

1
2x
, if x > 1.

Figure 3.8 shows the graph of the maximal function for the function χ[0,1].

Figure 3.8: Maximal Function of χ[0,1]

Now, we see a first estimate related to Hardy-Littlewood maximal function.

For a fixed f ∈ L1(Rn), maximal function corresponding to the convolution of f

with dilations of a radial, decreasing function is bounded by the Hardy-Littlewood

maximal function of f .

Proposition 3.1. Let φ be a function that is positive, radial, and decreasing (as

a function on (0,∞)). Then, for f ∈ L1(Rn),

sup
t>0

|φt ∗ f(x)| ≤ ||φ||1Mf(x), (3.1)

where φt(x) = t−nφ(t−1x).

Proof. Let us first assume that φ is a simple function , i.e., it can be written as

φ(x) =
∞∑
j=1

ajχBrj
(x),
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with aj > 0 and Brj is a ball centered at 0 of radius rj > 0. Then,

|φ ∗ f(x)| =
∣∣∣∣ k∑
j=1

aj|Brj |
1

|Brj |
χBrj

∗ f(x)
∣∣∣∣

=

∣∣∣∣ k∑
j=1

aj|Brj |
1

|Brj |

∫
Brj

f(x− y)dy

∣∣∣∣
≤

k∑
j=1

aj|Brj |Mf(x)

= ||φ||1Mf(x).

Now for any t > 0, we have φt(x) = t−n
k∑

j=1

ajχBrj
(x
t
) = t−n

k∑
j=1

ajχBtrj
(x). Thus,

|φt ∗ f(x)| =
∣∣∣∣ 1tn

k∑
j=1

ajχBtrj
∗ f(x)

∣∣∣∣
=

∣∣∣∣ 1tn
k∑

j=1

aj|Btrj |
1

|Btrj |

∫
Brj

f(x− y)dy

∣∣∣∣
≤ 1

tn

k∑
j=1

tn|Btrj |Mf(x)

= ||φ||1Mf(x).

Therefore, the result is true for simple functions. Now, let φ be any arbitrary

function satisfying the hypothesis of the theorem. Then, φ can be approximated

by an increasing sequence of simple functions, say (φn)n∈N, each satisfying the

hypothesis of the theorem. Then for each n ∈ N we have

|φn ∗ f(x)| ≤ ||φn||1Mf(x) ≤ ||φ||1Mf(x).

That is, ∀n ∈ N, ∣∣∣∣ ∫
Rn

φn(y)f(x− y)dy

∣∣∣∣ ≤ ||φ||1Mf(x).

By dominated convergence theorem, we have∣∣∣∣ ∫
Rn

φ(y)f(x− y)dy

∣∣∣∣ ≤ ||φ||1Mf(x).

That is, |φ ∗ f(x)| ≤ ||φ||1Mf(x). Now any dilation φt is also positive, radial,
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decreasing function with the same L1-norm as that of φ. Therefore, it also satisfies

the same inequality. That is, for any t > 0, we have

|φt ∗ f(x)| ≤ ||φ||1Mf(x).

Hence, the result is proved.

Let us see a few more maximal functions that are equivalent to the Hardy-

Littlewood maximal function.

Definition 3.2 (Cubic maximal function). Let Qr be the cube [−r, r]n . Then for

f ∈ L1
loc(Rn), the cubic maximal function is defined by

M
′
f (x) := sup

r>0

1

(2r)n

∫
Qr

|f (x− y) |dy.

We observe that when n = 1,M andM
′
coincide. For n > 1, let us consider

the cube Qr = [−r, r]n and let D1 and D2 be the balls centred at 0 with radius

r and
√
nr, respectively. Then, D1 ⊆ Qr ⊆ D2 as seen in Figure 3.9. We have

r

2r
√
n

Figure 3.9: D1 ⊆ Qr ⊆ D2

|D1| = anr
n, |Qr| = (2r)n and |D2| = an(

√
nr)n, where an is the volume of the

unit ball and it only depends on n, the dimension of the space. Thus, we have
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the following

1

(2r)n

∫
D1

|f(x− y)|dx ≤ 1

(2r)n

∫
Qr

|f(x− y)|dx ≤ 1

(2r)n

∫
D2

|f(x− y)|dx.

That is,

an
2n|D1|

∫
D1

|f(x− y)|dx ≤ 1

(2r)n

∫
Qr

|f(x− y)|dx ≤ an(
√
n)n

2n|D2|

∫
D2

|f(x− y)|dx.

So, we have,

an
2n
Mf(x) ≤M

′
f(x) ≤ an(

√
n)n

2n
Mf(x).

That is, there are positive constants cn and Cn depending only on n, such that

cnM
′
f (x) ≤Mf (x) ≤ CnM

′
f (x) , (3.2)

where, cn =
2n

an(
√
n)n

and Cn =
2n

an
. Due to Inequality (3.2) the operators M

andM
′
are essentially interchangeable and we use whichever is more appropriate,

depending on the situation.

There is another kind of maximal function where we are interested in the averages

over the cubes containing the given point that might not necessarily be the center

of the cube.

Definition 3.3 (Non-centered cubic maximal function). Let f ∈ L1
loc(Rn). Then

non-centred cubic maximal function of f is defined by

M
′′
f(x) := sup

x∈Q

1

|Q|

∫
Q

|f(y)|dy,

where Q is a cube in Rn containing x.

We now show that M and M
′′
are equivalent. For the same, we first see

that the set of all cubes containing a point x is larger than the set of cubes whose

center is x. Therefore, directly by the definitions of M
′
and M

′′
we have

M
′
f(x) ≤M

′′
f(x). (3.3)

Now let Q be any cube containing x with side length is a.

It is easy to see that the ball centered at x and with radius
√
na contains

the cube Q (see Figure 3.10). Also, |Q| = an and |B(x, a
√
n)| = C(a

√
n)n. That



CHAPTER 3. MAXIMAL OPERATORS 56

a

a
√
n

x

Figure 3.10: Q ⊆ B(x, a
√
n)

is, |Q| = |B(x,a
√
n)|

C(
√
n)n

. Therefore, we have

1

|Q|

∫
Q

|f(y)| dy ≤ 1

|Q|

∫
B(x,a

√
n)

|f(y)| dy

=
C(

√
n)n

|B(x, a
√
n)|

∫
B(x,a

√
n)

|f(y)| dy

≤ C(
√
n)nMf(x).

Since the choice of Q is arbitrary we get M
′′
f(x) ≤ C(

√
n)nMf(x). Using this

observation along with Inequalities (3.2) and (3.3), we get constants C1 and C2

such that

C1Mf(x) ≤M
′′
f(x) ≤ C2Mf(x). (3.4)

In the sequel, the equivalence of these maximal operators becomes useful.

Particularly, one can interchange them as per convenience, without disturbing the

results. In the next chapter, the non-centered cubic maximal function helps us

understand weighted boundedness of Hardy-Littlewood maximal function. Before

that, however, let us see another kind of averaging operator.
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3.2 Dyadic Maximal operator and Calderón-

Zygmund decomposition

We begin with the dyadic decomposition of Rn. We define the unit cube, open on

right, to be the set [0, 1)n and define Q0 be the collection of those cubes congruent

to [0, 1)n with vertices on Zn. By dylating this family by a factor of 2−k, we end

up with a collection Qk, (k ∈ Z). That is, Qk is the family of cubes, open on

the right, whose vertices are adjacent points of the lattice (2−kZ)n. The cubes in⋃
k∈Z

Qk are called dyadic cubes. We observe that each family Qk is countable,

since a cube in Qk is uniquely determined by its vertices (that comes from a

countable collection (2−kZ)n). Therefore, the total collection
⋃
k∈Z

Qk of all dyadic

cubes is also countable (being a countable union of countable sets). Figure 3.11

shows a part of the dyadic decomposition of Rn.

From this construction we immediately get the following properties:

1. Given x ∈ Rn and k ∈ Z, there is a unique cube Q ∈ Qk such that x ∈ Q.

2. Any two dyadic cubes are either disjoint or contained in one-another.

3. A dyadic cube in Qk is contained in a unique cube of each family Qj, for

j < k, and contains 2n many dyadic cubes from the family Qk+1.

We now give dyadic averages of functions defined in Rn and the corresponding

maximal operator. Later, this construction gives us an important technique called

Calderón-Zygmund decomposition, that is used throughout our exposition.

Definition 3.4 (Dyadic average). Given a function f ∈ L1
loc(Rn), we define the

dyadic average at level k ∈ Z as

Ekf(x) :=
∑
Q∈Qk

 1

|Q|

∫
Q

f(y)dy

χQ(x). (3.5)
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2−1 20 21 22−20

Figure 3.11: Dyadic decomposition of Rn

It is easy to see that for a fixed Q ∈ Qk, Ekf is constant, and equals

the average of f over Q. The dyadic average satisfies the following fundamental

lemma.

Lemma 3.2. If Ω is a union of the cubes in Qk, then∫
Ω

Ekf(x)dx =

∫
Ω

f(x)dx. (3.6)

Proof. Let Ω =
⋃
j∈I

Qj for some index set I ⊆ N. Here, ∀j ∈ I, Qj ∈ Qk. Since

Ω is a disjoint union, we have,∫
Ω

Ekf(x)dx =
∑
j∈I

∫
Qj

Ekf(x)dx
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=
∞∑
j∈I

∫
Qj

∑
Q∈Qk

(∫
Q

f(y)dy

)
χQ(x)dx

=
∑
j∈I

∫
Qj

 1

|Qj|

∫
Qj

f(y)dy

χQj
(x)dx

=
∑
j∈I

 1

|Qj|

∫
Qj

f(y)dy

∫
Qj

χQj
(x)dx

=
∞∑
j∈I

∫
Qj

f(y)dy

=

∫
∞⋃
j∈I

Qj

f(y)dy

=

∫
Ω

f(y)dy.

Now, we define the dyadic maximal function.

Definition 3.5 (Dyadic maximal function). Let f ∈ L1
loc(Rn). Then the dyadic

maximal function is defined as

Mdf(x) := sup
k∈Z

|Ekf(x)|. (3.7)

Before developing any further theory, let us see a simple example.

Example 3.2. Let f = χ[0,1]. In one dimensional situation, dyadic cubes are

dyadic intervals. We keep the notations same. That is, Q denotes a dyadic

interval. Let Q ∈ Qk for some k ∈ Z. We wish to evaluate Ekf(x), for a given

x ∈ R. We have the following three cases

1. First suppose x ∈ [0, 1). Then one of the following may happen. Either

Q ∩ [0, 1] = ∅ or [0, 1] ⊆ Q or Q ⊆ [0, 1]. In the first case we readily see

that Ekf(x) = 0. In the second case Q ∩ [0, 1] = [0, 1] therefore

Ekf(x) =
1

|Q|

∫
Q

χ[0,1](y) dy =
1

|Q|

∫
[0,1]

χ[0,1](y) dy =
1

|Q|
< 1.
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Lastly, if Q ⊂ [0, 1], then [0, 1] ∩Q = Q. Hence,

Ekf(x) =
1

|Q|

∫
Q

χ[0,1](y) dy =
1

|Q|

∫
Q

1 dy =
|Q|
|Q|

= 1.

Consequently, for |Ekf(x)| ≤ 1. Therefore if x ∈ [0, 1), we have

Mdf(x) = sup
k∈Z

|Ekf(x)| = 1.

2. Next let us consider x ≥ 1. Let Q ∈ Qk such that x ∈ Q. Then either

Q ∩ [0, 1] = ∅, or {1}, or [0, 1] ⊆ Q. In the first case, when Q ∩ [0, 1] =

∅ or {1}, clearly Ekf(x) = 0. In the second case we have Q ∩ [0, 1] = [0, 1].

Therefore,

Ekf(x) =
1

|Q|

∫
Q

χ[0,1](y) dy =
1

|Q|

∫
[0,1]

1 dy =
1

|Q|
< 1.

That is, Ekf(x) < 1 when x ≥ 1.

We notice that as the size of the dyadic cube Q increases, the value of

1
|Q|

∫
Q

χ[0,1](y) dy = 1
|Q|

∫
[0,1]

1 dy decreases. Therefore, we have to find smallest

dyadic cube containing the point x and [0, 1] ⊆ Q. Let k ∈ Z be such that

2−k ≤ x < 2−(k+1). Taking logarithm, we get k ≤ log2x < −(k + 1).

Therefore, −k = [log2x] where, [·] is the greatest integer function. So

the desired cube is [0, 2[log2x]). For this choice of k, Ekf(x) = 1
2[log2x]

and

Mdf(x) =
1

2[log2x]
, for x ≥ 1.

3. Finally let us consider x < 0. Let Q be a dyadic cube containing the point

x. By construction of dyadic cubes given at the start of this section, it

is clear that Q ∩ [0, 1] = ∅ or {0}. In either case Ekf(x) = 0, and hence

Mdf(x) = 0, for x < 0. Therefore in this case Q ∩ [0, 1] = ∅ and hence,

Mdf(x) = 0.
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Combining the above analysis we have the following

Mdf(x) =


1

2[log2x]
, if x ≥ 1.

1, if 0 ≤ x < 1.

0, if x < 0.

Figure 3.12 gives the graph of Mdχ[0,1].

Figure 3.12: Dyadic Maximal Function of χ[0,1]

It is clear that Md is not equivalent of M .

Next we see a weak type inequality for the dyadic maximal function. This

plays a crucial role in the Calderón-Zygmund decomposition on Rn, and also in

the Lebesgue differentiation theorem.

Theorem 3.3. The following are true.

1. The dyadic maximal function is weak (1, 1).

2. For any f ∈ L1
loc(Rn), lim

k−→∞
Ekf(x) = f(x) for a.e. x ∈ Rn.
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Proof. Let us fix an f ∈ L1(Rn). Due to the sublinearity of Md, it suffices to

show the result for positive functions, since general (complex real valued) function

can be decomposed into a sum of positive functions.

We consider the following set, for a given λ > 0,

Ωk := {x ∈ Rn : Ekf(x) > λ and Ejf(x) ≤ λ for any j < k}.

Equivalently, x ∈ Ωk if Ekf(x) is the first conditional expectation of f which is

greater than λ. Note that since f ∈ L1(Rn),
∫
Q
f(x) dx ≤

∫
Rn f(x) dx < ∞

for every Q ∈ Qk. So 1
|Qk|

∫
Qk
f(x) dx ≤ ||f ||1

|Qk|
. Also |Qk| = (2−k)n −→ ∞ as

k −→ −∞. Therefore as lim
k−→−∞

1
|Qk|

∫
Qk
f(y)dy = 0 Hence, by well ordering

principle, for a given λ > 0 there exists s smallest k ∈ Z such that Ekf(x) > λ

For any x ∈ Ωk, there exists exactly one cube Q ∈ Qk such that x ∈ Q. Ekf(x) =

1
|Q|

∫
Q
f(y)dy > λ. That is, the entire cube Q is inside Ωk. Therefore, Ωk can be

written as disjoint union of cubes in Qk.

We also notice that if k1 ̸= k2, then Ωk1 ∩ Ωk2 = ∅. To see this, without loss of

generality let us assume that k1 < k2, and ∃ x ∈ Ωk1 ∩ Ωk2 . Then, Ek2f(x) > λ

and Ejf(x) ≤ λ when j < k2. Particularly Ek1 ≤ λ, which contradicts the

definition of Ωk1 . Therefore
⋃
k∈Z

Ωk is a disjoint union dyadic cubes.

To prove the weak (1, 1) boundedness of Md, we need to estimate the size of the

set H := {x ∈ Rn :Mdf(x) > λ} for a given λ > 0. Now, we claim the following

H =
⋃
k∈Z

Ωk.

If x ∈ H then by the definition of Mdf(x), for any x ∈ H, ∃ k′ ∈ Z such that

Ek′f(x) > λ. Now if k ∈ Z is the minimum of all such k′ then Ekf(x) > λ and

Ejf(x) ≤ λ ∀j < k. That is x ∈ Ωk, and hence x ∈
⋃
k∈Z

Ωk. So, H ⊆
⋃
k∈Z

Ωk.

Conversely, suppose x ∈
⋃
k∈Z

Ωk. Then, ∃ k′ ∈ Z such that x ∈ Ωk′ . By the

definition of Ωk′ , Ek′f(x) > λ. Hence, Mdf(x) = sup
k∈Z

Ekf(x) > λ. That is,

H ⊇
⋃
k∈Z

Ωk, and our claim is proved. We have seen that
⋃
k∈Z

Ωk is a disjoint union
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of dyadic cubes. Thus, from Lemma 3.2, we have

|{x ∈ Rn :Mdf(x) > λ}| =
∣∣∣∣ ⋃
k∈Z

Ωk

∣∣∣∣.
=
∑
k

|Ωk|

≤
∑
k

1

λ

∫
Ωk

Ekf(x)dx

=
1

λ

∑
k

∫
Ωk

f(x)dx

≤ 1

λ
||f ||1.

This proves (1).

To prove (2), let us first consider f ∈ C(Rn) and x ∈ Rn be fixed. So, for a given

ϵ > 0,∃ δ > 0 such that ∀y ∈ Rn with |y−x| < δ, we have |f(x)− f(y)| < ϵ. For

cubes Qk ∈ Qk (k ∈ Z), we have the following relation between their diameters

diam(Qk) = 2−kdiam(Q0) = 2−k
√
n,

where Q0 = [0, 1)n ∈ Q0 is the unit cube in Rn. By the Archimedean property,

∃ k0 ∈ N such that 2k0 ≥ k0 >

√
n

δ
. So δ > 2−k0

√
n. Therefore ∀k ≥ k0,

diam(Qk) = 2−k
√
n ≤ 2−k0

√
n < δ. That is for any Qk ∈ Qk(with k > k0) with

x ∈ Qk, ∀y ∈ Qk we have |y − x| ≤ 2−k
√
n < δ, and hence |f(x) − f(y)| < ϵ.

Now ∀k ≥ k0,

|Ekf(x)− f(x)| =
∣∣∣∣ ∑
Q∈Qk

 1

|Q|

∫
Q

f(y)dy

χQ(x)− f(x)

∣∣∣∣
=

∣∣∣∣ 1

|Qk|

∫
Qk

f(y)dy − f(x)

∣∣∣∣
=

∣∣∣∣ 1

|Qk|

∫
Qk

(f(y)− f(x))dy

∣∣∣∣
≤ 1

|Qk|

∫
Qk

|f(y)− f(x)|dy
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<
1

|Qk|

∫
Qk

ϵdy = ϵ.

Hence, lim
k−→∞

Ekf(x) −→ f(x) for any x ∈ Rn whenever f ∈ C(Rn). Now,

consider the set S := {f ∈ L1(Rn) : Ekf(x) −→ f(x) a.e.}. It is clear from

above that C(Rn) ⊆ S. We also know from part (1) that Mdf(x) is weak (1, 1).

Hence by Theorem 2.7 the set S is closed and dense in L1(Rn). As a result,

S = L1(Rn). So the result is true if for L1 functions. To complete the proof, note

that if f ∈ L1
loc(Rn) then fχQ ∈ L1(Rn) for any cube Q ∈ Q0. Hence, (2) holds

for almost every x ∈ Q, and so for almost every x ∈ Rn.

We now give an important result related to the dyadic decomposition of Rn, called

the Calderón-Zygmund decomposition. This theorem allows us to decompose a

given function in L1(Rn) into two parts, called “good” and “bad” parts. This

technique forms the crux for many proofs involving weak type inequalities.

Theorem 3.4. Given a non-negative function f ∈ L1(Rn), and given a λ > 0,

there exists a sequence {Qj}j∈N of disjoint dyadic cubes such that

1. f(x) ≤ λ for almost every x ̸∈
⋃
j∈N

Qj,

2.

∣∣∣∣ ⋃
j∈N

Qj

∣∣∣∣ ≤ 1
λ
||f ||1, and

3. For every j ∈ N, λ < 1
|Qj |

∫
Qj

f(y)dy ≤ 2nλ.

Proof. For a fixed λ > 0, let us consider the set

Ωk := {x ∈ Rn : Ekf(x) > λ and Ejf(x) ≤ λ if j < k}.

As in Theorem 3.3,
⋃
k∈Z

Ωk is a disjoint union of dyadic cubes. Now consider the

family {Qj}j∈N of dyadic cubes in
⋃
k∈Z

Ωk. That is,
⋃
k∈Z

Ωk =
⋃
j∈N

Qj. So,∣∣∣∣ ⋃
j∈N

Qj

∣∣∣∣ ≤∑
k∈Z

|Ωk|

≤
∑
k∈Z

1

λ

∫
Ωk

Ekf(y)dy
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=
1

λ

∑
k∈Z

∫
Ωk

f(y)dy

≤ 1

λ
||f ||1.

This proves the second part of the theorem.

We notice that if x ̸∈
⋃
j∈N

Qj, then for every k ∈ Z, Ekf(x) ≤ λ. Since f ∈ L1(Rn),

by the second part of Theorem 3.3, Ekf(x) −→ f(x), as k −→ ∞, for almost

every x ∈ Rn. We therefore have f(x) ≤ λ almost every x ̸∈
⋃
j∈N

Qj.

Lastly, by definition of the sets Ωk, the average of f over Qj is greater than λ.

This is the first inequality in (3). Now suppose x ∈ Ωk. Then by the definition

of the sets Ωk, Ek−1f(x) ≤ λ. If Q
′
is the unique cube in Qk−1 containing x then

1
|Q′ |

∫
Q′ f(x)dx ≤ λ. Now,

1

|Qj|

∫
Qj

f(y)dy ≤ |Q′|
|Qj||Q′ |

∫
Q

′

f(y)dy ≤ 2nλ.

This proves (3).

The decomposition of Rn given by the previous theorem allows us to decompose

the function f as the sum of two functions, g and b, defined by

g(x) =


f(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

f(y)dy, if x ∈ Qj.
(3.8)

And

b(x) =
∑
j

bj(x),

where,

bj(x) =

(
f(x)− 1

|Qj|

∫
Qj

f(y)dy

)
χQj

(x) = f(x)− g(x).

Then g(x) ≤ 2nλ almost everywhere and bj is supported on Qj with
∫
Rn

bj(x)dx =

0. The functions g and b defined above are called “good” and “bad” parts re-

spectively of the given function f . It is easy to see that the function g has the

same integral as that of f .
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Lemma 3.5. If f is a non negative locally integrable function, then

|{x ∈ Rn :M ′f(x) > 4nλ}| ≤ 2n|{x ∈ Rn :Mdf(x) > λ}|. (3.9)

Proof. As in Theorem 3.4, we form the decomposition

{x ∈ Rn :Mdf(x) > λ} =
⋃
j∈N

Qj,

where each Qj is a dyadic cube. Let 2Qj be the cube with the same center as Qj

and whose sides are twice as long. We claim that

{x ∈ Rn :M ′f(x) > 4nλ} ⊆
⋃
j∈N

2Qj.

Let us fix x ̸∈
⋃
j

2Qj and let Q be any cube centred at x. Let l(Q) denote the

length of the cube Q and k ∈ Z such that 2k−1 ≤ l(Q) < 2k. Then Q intersects

m many dyadic cubes in Qk; say them R1, R2, · · · , Rm. Observe that m ≤ 2n.

We have explained this fact taking k = 0 and n = 2 in Figure 3.13.

Figure 3.13: Q intersects 4 dyadic cubes

None of these cubes is contained in any of the Q′
js, for otherwise we would

have x ∈
⋃
j∈N

2Qj. Hence, the average of f on each Ri is at most λ, and so

1

|Q|

∫
Q

f(y)dy =
1

|Q|

m∑
i=1

∫
Q

⋂
Ri

f(y)dy
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≤
m∑
i=1

2kn

|Q||Ri|

∫
Ri

f(y)dy

≤ 2nmλ

≤ 4nλ.

As the above inequality is true for any cube Q centered at x, we have M ′f(x) ≤

4nλ. Therefore, x ̸∈ {y ∈ Rn :M ′f(y) > 4nλ}. That is, we have

{x ∈ Rn :M ′f(x) > 4nλ} ⊆
⋃
j

2Qj.

Therefore,

|{x ∈ Rn :M ′f(x) > 4nλ}| ≤ |
⋃
j

2Qj|

≤ 2n|
⋃
j

Qj|

= 2n|{x ∈ Rn :Mdf(x) > λ}|.

3.3 Lp − Lp boundedness of Hardy-Littlewood

Maximal operator

In this section we wish to study the Lp boundedness of the Hardy-Littlewood

maximal operator. The idea we use is to get weak type boundedness for p = 1,

and strong boundedness for p = ∞. For 1 < p <∞, the result then follows from

the Marcinkiewicz interpolation theorem. As mentioned earlier we can replace

Hardy-Littlewood operator by the cubic maximal operator, and the boundedness

result won’t change. In what follows, we use the centered cubic maximal function

M ′. With the help of the Lemma 3.5, we now prove weak (1, 1) boundedness of

cubic maximal function.

Theorem 3.6. The maximal operator M ′ is weak (1, 1).
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Proof. From Lemma 3.5 we have,

|{x ∈ Rn :M ′f(x) > λ}| ≤ 2n|{x ∈ Rn :Mdf(x) > 4−nλ}|.

Using the weak (1, 1) inequality of the dyadic maximal operator (Theorem 3.3),

we get

|{x ∈ Rn :M ′f(x) > λ}| ≤ 2n|{x ∈ Rn :Mdf(x) > 4−nλ}|

≤ 2n
1

4−nλ
||f ||1

=
8n

λ
||f ||1.

Hence M ′ is weak (1, 1).

Remark 3.1. We have shown that the maximal operators M and M
′
are essen-

tially interchangeable due to Inequality (3.2). Therefore we can say that

{x ∈ Rn :Mf(x) > λ} ⊆
{
x ∈ Rn :M ′f(x) >

λ

Cn

}
.

Now, using Theorem 3.6,

|{x ∈ Rn :Mf(x) > λ}| ≤
∣∣∣∣{x ∈ Rn :M ′f(x) >

λ

Cn

}∣∣∣∣ ≤ Cn8
n

λ
||f ||1.

That is, the Hardy-Littlewood maximal operator M is weak (1, 1).

An important consequence of the weak (1, 1) inequality is the Lebesgue

differentiation Theorem. It is a generalization, to higher dimensions, of the first

fundamental theorem of calculus.

Corollary 3.7 (Lebesgue’s differentiation). For any f ∈ L1
loc(Rn) we have

lim
r−→0

1

|B(x, r)|

∫
B(x,r)

f(y) dy = f(x),

for almost every x in Rn.

Proof. Let f ∈ C(Rn) and x ∈ Rn be fixed. Then for given ϵ > 0, ∃ r0 > 0 such

that for any r < r0, and y ∈ B(x, r) we have |f(x)− f(y)| < ϵ. Now,∣∣∣∣ 1

|B(x, r)|

∫
B(x,r)

f(y) dy − f(x)

∣∣∣∣ = ∣∣∣∣ 1

|B(x, r)|

∫
B(x,r)

(f(y)− f(x)) dy

∣∣∣∣
≤ 1

|B(x, r)|

∫
B(x,r)

|f(y)− f(x)| dy < ϵ.
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Therefore for f ∈ C(Rn), we have

lim
r−→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x),

for every x ∈ Rn. We know from Theorem 3.6 that the Hardy-Littlewood maximal

operator is weak (1, 1). Hence, by using a similar argument as given in the second

part of the Theorem 3.3 we have the desired result.

With the weak (1, 1) inequality of the Hardy-Littlewood maximal opera-

tor we now see its strong Lp-boundedness. As discussed in the beginning of

this section, the result is an easy consequence of the Marcinkiewicz interpolation

theorem.

Theorem 3.8. The operator M is strong (p, p), for 1 < p ≤ ∞.

Proof. First, notice that for any f ∈ L∞(Rn), we have for any r > 0,

1
|Br|

∫
Br

|f (x− y) |dy ≤ sup
r>0

1
|Br|

∫
Br

||f ||∞dy = ||f ||∞. Hence Mf(x) ≤ ||f ||∞ for

almost every x ∈ Rn. That is, ||Mf ||∞ ≤ ||f ||∞. We have already shown that

the operator M is weak (1, 1). Hence by using Marcinkiewicz Interpolation The-

orem, we have that M is strong (p, p), for any 1 < p ≤ ∞.

It is natural to ask whether Lemma 3.5 can be used to get strong L1-

boundedness of M . The next result shows that it is not possible.

Lemma 3.9. For f (̸= 0) ∈ L1(Rn), Mf ̸∈ L1(Rn).

Proof. Let f (̸= 0) ∈ L1(Rn). Define fj = fχB(0,j). Then, fj −→ f in L1(Rn) and

therefore we can find j0 such that, fj0 ̸≡ 0. Now note that B(0, j0) ⊂ B(x, |x|+j0).

This is shown in Figure 3.14.

Therefore,

Mf(x) ≥Mfj0(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|fj0(y)| dy

≥ 1

|B(x, |x|+ j0)|

∫
B(x,|x|+j0)

|fj0(y)| dy
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x

|x|+ j0

j0

Figure 3.14: B(0, j0) ⊂ B(x, |x|+ j0)

=
1

B(x, |x|+ j0)

∫
B(x,|x|+j0)∩B(0,j0)

|f(y)| dy

= cn(|x|+ j0)
−n

∫
B(0,j0)

|f(y)|dy

= cn(|x|+ j0)
−n||fj0||L1(Rn).

This implies that∫
Rn

Mf(x)dx ≥ cn||fj0||1
∫
Rn

(|x|+ j0)
−ndx = ∞.

Hence Mf ̸∈ L1(Rn).

It is also natural to ask about the admissible range of q ≥ 1 such that

M : Lp(Rn) −→ Lq(Rn) is bounded.

We discuss it in the next result.

Proposition 3.10. The operatorM is not bounded from Lp(Rn) to Lq(Rn) unless

p = q.



CHAPTER 3. MAXIMAL OPERATORS 71

Proof. Let f ∈ Lp(Rn) and let fλ(x) := f(λx), for a fixed λ > 0. Then,

||fλ||p =

∫
Rn

|f(λx)|pdx

1/p

.

Taking λx = y we get

||fλ||p = λ−n/p

∫
Rn

|f(y)|pdx

1/p

= λ−n/p||f ||p.

Note that

Mfλ(x) = sup
R>0

1

|B(0, R)|

∫
B(0,R)

|fλ(x− y)|dy

= sup
R>0

1

|B(0, R)|

∫
B(0,R)

|f(λx− λy)|dy

=Mf(λx)

= (Mf)λ(x).

Therefore ||Mfλ(x)||q = λ−n/q||Mf ||q. If M is bounded from Lp(Rn) to Lq(Rn),

we must have for all λ > 0,

||Mfλ||q ≤ C||fλ||p.

That is,

λ−n/q||Mf ||q ≤ Cλ−n/p||f ||p.

Equivalently, for all λ > 0 we require

λn(1/p−1/q) ≤ C
||f ||p

||Mf ||q
<∞.

However, this is only possible when p = q.

3.4 Rectangular Maximal Operator

In this section we discuss about a special type of maximal operator called Rectan-

gular maximal operator. In the next chapter we see some special weights related

to the rectangular maximal operator that are ultimately useful in our study of

Littlewood-Paley theory. In this section we only give its definition.

First by a rectangle in Rn we mean the set R(h1, · · · , h2) = [−h1, h1]×· · ·×
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[−hn, hn], where h1, · · · , hn are non-negative real numbers.

Definition 3.6 (Strong maximal function). Let f ∈ L1
loc(Rn), strong maximal

function of f is defined by

Msf(x) := sup
h1,··· ,hn>0

1

|R(h1, · · · , hn)|

∫
R(h1,··· ,hn)

|f(x− y)| dy.

We notice that any cube Q, is a rectangle. Hence, the strong maximal

function Ms is pointwise larger than M ′. That is, ∀x ∈ Rn, we have M ′f(x) ≤

Msf(x). It can be shown that the strong maximal operator Ms is bounded on

Lp(Rn) for p > 1 but Ms is not weak (1, 1). We refer the reader to [7] for further

details on this topic.

3.5 Sharp maximal operator and BMO space

This section is dedicated to the study of another useful maximal operator. The

idea is to capture the mean deviation of a given function from its average be-

haviour. For a given f ∈ L1
loc(Rn), we denote the average of f on a cube Q by

fQ, that is,

fQ =
1

|Q|

∫
Q

f(y) dy.

This lead us to the definition of the sharp maximal function.

Definition 3.7 (Sharp Maximal function). Let f ∈ L1
loc(Rn). We define the

sharp maximal function of f by

M#f(x) := sup
Q∋x

1

|Q|

∫
Q

|f(y)− fQ| dy,

where the supremum is taken over all cubes Q containing x.

We collect all the functions which do not deviate far away from their average.

We call this collection the BMO space.
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Definition 3.8 (BMO space). Let f ∈ L1
loc(Rn). We say f has bounded mean

oscillation if the functionM#f is bounded. The space of such functions is denoted

by BMO(Rn). That is,

BMO(Rn) = {f ∈ L1
loc(Rn) :M#f ∈ L∞(Rn)}.

First we notice that BMO(Rn) ̸= ∅, since for any constant function “C”,

we have M#C = 0. Also we see that BMO(Rn) is a vector space. Indeed is

f1, f2 ∈ BMO(Rn) and α, β ∈ C, then,

M#(αf1 + βf2)

= sup
x∋Q

1

|Q|

∫
Q

∣∣∣∣αf1(y) + βf2(y)−

 1

|Q|

∫
Q

(αf1(z) + βf2(z)) dz)

∣∣∣∣ dy
≤ αM#f1(x) + βM#f2(x).

We can define a norm on BMO(Rn) by

||f ||∗ = ||M#f ||∞.

The function || · ||∗ is not a true norm since it can not separate constant

function from one another. However, by taking equivalence classes of functions

defined upto addition of constant, || · ||∗ become a norm. We begin with the

following easy property of M# and || · ||∗.

Proposition 3.11. Let f ∈ L1
loc(Rn). Then,

1

2
||f ||∗ ≤ sup

Q
inf
a∈C

1

|Q|

∫
Q

|f(y)− a| dy ≤ ||f ||∗, (3.10)

M#(|f |)(x) ≤ 2M#f(x). (3.11)

Proof. We have for any a ∈ C we can write∫
Q

|f(x)− fQ| dx ≤
∫
Q

|f(x)− a| dx+
∫
Q

|a− fQ| dx. (3.12)

We notice that,

|a− fQ| =
∣∣∣∣a− 1

|Q|

∫
Q

f(x) dx

∣∣∣∣
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=

∣∣∣∣ 1

|Q|

∫
Q

(a− f(x)) dx

∣∣∣∣
≤ 1

|Q|

∫
Q

|a− f(x)| dx.

Therefore,∫
Q

|a− fQ| dx ≤
∫
Q

 1

|Q|

∫
Q

|a− f(x)| dx

 dy =

∫
Q

|a− f(x)| dx.

Using the above inequality, Inequality (3.12) becomes∫
Q

|f(x)− fQ| dx ≤ 2

∫
Q

|f(x)− a| dx.

Now, dividing both side by |Q| we get

1

|Q|

∫
Q

|f(x)− fQ| dx ≤ 2

|Q|

∫
Q

|f(x)− a| dx. (3.13)

Note that ∀a ∈ C, Inequality (3.13) is true and left hand side of this inequality

is free from a. Therefore, we have

1

|Q|

∫
Q

|f(x)− fQ| dx ≤ 2 inf
a∈C

1

|Q|

∫
Q

|f(x)− a| dx.

Taking supremum over all cubes containing a point y we get

sup
Q∋y

1

|Q|

∫
Q

|f(x)− fQ| dx ≤ 2 sup
Q∋y

inf
a∈C

1

|Q|

∫
Q

|f(x)− a| dx.

Therefore, by the definition of M#, we have,

M#f(y) ≤ 2 sup
Q∋y

inf
a∈C

1

|Q|

∫
Q

|f(x)− a| dx.

Hence,

||f ||∗ = ||M#f(y)||∞ ≤ 2 sup
Q∋y

inf
a∈C

1

|Q|

∫
Q

|f(x)− a| dx. (3.14)

Now in Inequality (3.14), taking a = fQ, we get

1

2
||f ||∗ ≤ sup

Q∋y
inf
a∈C

1

|Q|

∫
Q

|f(x)− a| dx ≤ sup
Q∋y

1

|Q|

∫
Q

|f(x)− fQ| dx

=M#f(y)
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≤ ||f ||∗.

The fact that M#|f |(x) ≤ 2M∗f(x), follows from above.

We now get a relation between Lp-norm of Mdf and M#f , for f ∈ Lp(Rn). For

the same we required the following “good-λ inequality”.

Lemma 3.12. If f ∈ Lp0(Rn) for some 1 ≤ p0 < ∞, then for any γ > 0 and

λ > 0,

|{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}| ≤ 2nγ|{x ∈ Rn :Mdf(x) > λ}|

Proof. With out loss of generality we may assume that f is non-negative. Let λ,

γ > 0 be fixed. Let us form the Calderón-Zygmund decomposition of the function

f at the height λ. Then by Theorem 3.3 we have

{x ∈ Rn :Mdf(x) > λ} =
⋃
k∈Z

Ωk =
⋃
j∈N

Qj,

where {Qj}j∈N is a family of disjoint dyadic cubes. Suppose Qj0 ∈ Qk0 be one of

such cube for some k0 ∈ Z. Clearly, Qj0 ⊆ Ωk0 . We first prove that

|{x ∈ Qj0 :Mdf(x) > 2λ,M#f(x) ≤ γλ}| ≤ 2nγ|Qj0|.

Suppose Q′ be the dyadic cube whose sides are twice as long and Qj0 ⊂ Q′. Then

Q′ ∈ Qk0−1. Hence by the definition of the set Ωk0 , Ek0−1f(x) ≤ λ, for all x ∈ Qj0 .

Therefore

fQ′ =
1

|Q′|

∫
Q′

f(y) dy ≤ λ.

Further, if x ∈ Qj0 and Mdf(x) > 2λ then Md(fχQj0
)(x) > 2λ. This can be

proved as follows. If Mdf(x) > 2λ there exists a dyadic cube Qj1 ∈ Qk1 with

x ∈ Qj1 such that
1

|Qj1|

∫
Qj1

f(y) dy > 2λ > λ. (3.15)

Therefore, by the definition of Ωk0 , we have k1 ≥ k0. So, Qj1 ⊆ Qj0 . We have the

following

1

|Qj1 |

∫
Qj1

f(y) dy =
1

|Qj1|

∫
Qj1

fχQj0
(y) dy > 2λ.
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Hence, if x ∈ Qj0 and Mdf(x) > 2λ we have Md(fχQj0
)(x) > 2λ. Now for

x ∈ {y ∈ Qj0 :Mdf(y) > 2λ}, we have

Md(fχQj0
)(x) ≤Md(f − fQ′)χQj0

(x) + fQ′Md(χQj0
)(x).

Since ∀x ∈ Qj0 , Md(χQj0
)(x) = 1, from the above inequality, we get

Md(f − fQ′)χQj0
(x) ≥Md(fχQj0

)(x)− fQ′ > 2λ− λ = λ.

Therefore,

{x ∈ Qj0 :Mdf(x) > 2λ} ⊆ {x ∈ Qj0 :Md((f − fQ′)χQ′)(x) > λ}.

From the weak (1, 1) inequality of dyadic maximal function we have for any

x ∈ Qj0 ,

|{x ∈ Qj0 :Md((f − fQ′)χQj0
)(x) > λ}| ≤ 1

λ

∫
Qj0

|f(y)− fQ′| dy

≤ 2n|Qj0|
λ

1

|Q′|

∫
Q′

|f(y)− fQ′| dy

=
2n|Qj0|
λ

M#f(x).

Therefore,

|{x ∈ Qj0 :Md((f − fQ′)χQj0
)(x) > λ}| ≤ 2n|Qj0 |

λ
inf

x∈Qj0

M#f(x).

Hence,

|{x ∈ Qj0 :Mdf(x) > 2λ}| ≤ 2n|Qj0|
λ

inf
x∈Qj0

M#f(x).

As {x ∈ Qj0 :Mdf(x) > 2λ,M#f(x) ≤ γλ} ⊆ {x ∈ Qj0 :Mdf(x) > 2λ} we have

|{x ∈ Qj0 :Mdf(x) > 2λ,M#f(x) ≤ γλ}| ≤ |{x ∈ Qj0 :Mdf(x) > 2λ}|

≤ 2n|Qj0|
λ

inf
x∈Qj0

M#f(x)

≤ 2n|Qj0|
λ

γλ

≤ 2nγ|Qj0|.

Note that

{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}
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=

{
x ∈

⋃
j∈N

Qj :Mdf(x) > 2λ,M#f(x) ≤ γλ

}
∪
{
x ̸∈

⋃
j∈N

Qj :Mdf(x) > 2λ,M#f(x) ≤ γλ

}
.

If x ̸∈
⋃
j∈N

Qj then Mdf(x) ≤ λ. So, the set

{
x ̸∈

⋃
j∈N

Qj : Mdf(x) >

2λ,M#f(x) ≤ γλ

}
= ∅. Therefore,

|{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}|

=

∣∣∣∣{x ∈
⋃
j∈N

Qj :Mdf(x) > 2λ,M#f(x) ≤ γλ

}∣∣∣∣.
Because

⋃
j∈N

Qj is a disjoint union, we get

|{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}|

=
∑
j∈N

∣∣∣∣{x ∈ Qj :Mdf(x) > 2λ,M#f(x) ≤ γλ

}∣∣∣∣
≤
∑
j∈N

2nγ|Qj|

= 2nγ
∑
j∈N

|Qj|

= 2nγ|{x ∈ Rn :Mdf(x) > λ}|.

With the help of above lemma we can show that Lp norm of Md bounded above

by Lp norm of M#.

Lemma 3.13. If 1 ≤ p0 ≤ p <∞ and f ∈ Lp0(Rn), then∫
Rn

|Mdf(x)|p dx ≤ C

∫
Rn

|M#f(x)|p dx.

Proof. For any N > 0, let us first define the following

IN =

N∫
0

pλp−1|{x ∈ Rn :Mdf(x) > λ}| dλ. (3.16)
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Note that IN is finite, because

IN =

N∫
0

pλp0−1−p0+p|{x ∈ Rn :Mdf(x) > λ}| dλ

≤ Np−p0p

p0

N∫
0

p0λ
p0−1|{x ∈ Rn :Mdf(x) > λ}| dλ.

Since f ∈ Lp0(Rn) and Md is strong (p0, p0),

||Mdf ||p0p0 = p0

∞∫
0

λp0−1|{x ∈ Rn :Mdf(x) > λ}| dλ <∞.

Hence, IN <∞. Now doing a substitution λ = 2s, in Equation (3.16) we get

IN = 2p
N/2∫
0

psp−1|{x ∈ Rn :Mdf(x) > 2s}| ds.

Equivalently,

IN = 2p
N/2∫
0

pλp−1|{x ∈ Rn :Mdf(x) > 2λ}| dλ. (3.17)

Note that

{x ∈ Rn :Mdf(x) > 2λ} ⊂ {x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}

∪ {x ∈ Rn :M#f(x) > γλ}.

Therefore,

|{x ∈ Rn :Mdf(x) > 2λ}| < |{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}|

+ |{x ∈ Rn :M#f(x) > γλ}|.

Using the above inequality in Equation (3.17), we get,

IN = 2p
N/2∫
0

pλp−1|{x ∈ Rn :Mdf(x) > 2λ}| dλ

≤ 2p
N/2∫
0

pλp−1|{x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}| dλ

+

N/2∫
0

pλp−1|{x ∈ Rn :M#f(x) > γλ}| dλ.

By using Lemma 3.12, for the first part of the right hand side and doing a change
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of variable in the second part of right hand side we arrive at

IN = 2n+pγ

N/2∫
0

pλp−1|{x ∈ Rn :Mdf(x) > λ}| dλ

+
2p

γp

γN/2∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ

= 2n+pγIN/2 +
2p

γp

γN/2∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ

≤ 2n+pγIN +
2p

γp

γN/2∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ.

Now choosing γ = 1
21+p+n , we get

1

2
IN ≤ 2p

γp

γN/2∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ.

We have γN/2 = N/22+p+n < N . So, we have

IN ≤ 2p+1

γp

N∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ.

Note that
N∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ ≤ ||M#f ||pp.

So for all N > 0, we have

IN =

N∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ ≤ 2p+1

γp
||M#f ||pp.

By taking N −→ ∞, we get,

||Mdf ||pp =
∞∫
0

pλp−1|{x ∈ Rn :M#f(x) > λ| dλ ≤ 2p+1

γp
||M#f ||pp.



CHAPTER 4

Muckenhoupt weights

In the previous chapter, we have seen a variety of maximal functions. We have also

seen that the Hardy-Littlewood maximal function is Lp-bounded. This chapter

deals with boundedness of these operators on weighted Lebesgue spaces. Our

goal here is to characterize all positive (measurable) functions w on Rn such

that the Hardy-Littlewood maximal operator M is bounded on Lp(w), for any

1 ≤ p <∞. We won’t worry about the case L∞, since L∞(w) = L∞(Rn), for any

positive measurable function w.

The study of such weights started more than half a century ago, when

Rosenblum in [20] first gave a condition on such weight functions. However, the

author studied the condition in a very specific context of Fourier series. Muck-

enhoupt, in [19], characterized the condition in the one-dimensional case. Muck-

enhoupt’s work was generalized to higher dimensions by Coifman and Fefferman

(see [5]). A lot of related work and surveys can be found in [25]. In this chapter,

we exposit some of these works on the general Euclidean space Rn.

80
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4.1 A Weighted Norm Inequality

In this section we see that for a given positive function w maximal operator

is bounded from Lp(Mw) space into Lp(w) space. We start with a few simple

lemmata.

Lemma 4.1. If f ∈ L1(Mw) then fj = fχB(0,j) is a sequence of integrable

function which increases pintwise to f .

Proof. Since f ∈ L1(Mw), we have∫
Rn

|f(x)|Mw(x) dx <∞.

First, we prove that there exists a constant C > 0 such that Mw(x) > C,

∀x ∈ B(0, j). If this is not the case, then ∀ C > 0, ∃ x ∈ B(0, j) (depending

on C) such that Mw(x) < C. Therefore there is a sequence (xm)m∈N such that

Mw(xm) −→ 0 as m −→ ∞. As B(0, j) is a pre-compact set, (xm)m∈N has

a convergent subsequence. By passing on to the subsequence, we may assume

that xm −→ x0 as m −→ ∞. Therefore, for all ϵ > 0, ∃ n1 ∈ N such that,

∀m > n1, Mw(xm) < ϵ. Notice that for a fixed r > 0, ∃ n0 ∈ N such that

B(x0, r) ⊆ B(xm, 2r). Now suppose n2 = max{n0, n1}. Then ∀m > n2,

1

|B(xm, 2r)|

∫
B(xm,2r)

w(x) dx < ϵ.

Now we notice that

1

|B(xm, 2r)|

∫
B(xm,2r)

w(x) dx ≥ 1

C(2r)n

∫
B(x0,r)

w(x) dx

=
1

2n|B(x0, r)|

∫
B(x0,r)

w(x) dx.

Therefore,

1

2n|B(x0, r)|

∫
B(x0,r)

w(x) dx < ϵ.
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As this is true for any ϵ > 0, ∫
B(x0,r)

w(x) dx = 0.

Since |B(x, r)| ≠ 0, we have that w(x) = 0 for a.e. x ∈ B(x0, r). Since r

was arbitrary we conclude that w(x) = 0 for a.e. x ∈ Rn. However, this is a

contradiction. Therefore ∃ C > 0 such that Mw(x) > C, ∀x ∈ B(0, j). Now we

have∫
Rn

|f(x)|χB(0,j)(x) dx =

∫
B(0,j)

|f(x)|Mw(x)

Mw(x)
dx ≤ 1

C

∫
B(0,j)

|f(x)|Mw(x) dx <∞.

Lemma 4.2. Let w be a non-negative function in L1(Rn). If for some x0 ∈ Rn,

we have Mw(x0) > 0, then Mw(x) > 0,∀x ∈ Rn.

Proof. As Mw(x0) > 0 there is r0 > 0 such that 1
|B(x0,r0)|

∫
B(x0,r0)

w(y) dy > 0.

Let x ∈ Rn be arbitrary. Then, there is r1 > 0 such that B(x0, r0) ⊂ B(x, r1).

Therefore,
∫

B(x,r1)

w(y) dy >
∫

B(x0,r0)

w(y) dy > 0. Hence, 1
|B(x,r1)|

∫
B(x,r1)

w(y) dy > 0

x0

x r

r0

Figure 4.1: B(x0, r0) ⊂ B(x, r1)
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and

Mw(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

w(y) dy >
1

|B(x, r1)|

∫
B(x,r1)

w(y) dy > 0,

We are now in a position to give a weighted norm inequality for the Hardy-

Littlewood Maximal function.

Theorem 4.3. If w is a non-negative, measurable function and 1 < p <∞, then

there exists a constant Cp > 0 such that∫
Rn

(Mf(x))pw(x)dx ≤ Cp

∫
Rn

|f(x)|pMw(x)dx.

Furthermore, ∫
{x:Mf(x)>λ}

w(x)dx ≤ C1

λ

∫
Rn

|f(x)|Mw(x)dx.

Proof. We show that ||Mf ||L∞(w) ≤ ||f ||L∞(Mw) and that the weak (1, 1) in-

equality holds; the strong (p, p) inequality then follows from the Marcinkiewicz

interpolation theorem. We have the following cases:

Case 1. Mw ≡ 0. Then, for any r > 0, we have

1

|Br|

∫
Br

w (x− y) dy ≤Mw(x).

By Lebesgue differentiation theorem, for almost every x ∈ Rn, we have

0 ≤ w(x) = lim
r−→0+

1

|Br|

∫
Br

w (x− y) dy ≤Mw(x) = 0.

Thus, we have w(x) = 0 for a.e. x ∈ Rn. So, in this case the theorem holds

trivially.

Case 2 : Mw(x0) > 0 for some x ∈ Rn. Due to Lemma 4.2, Mw(x) > 0.

Here, we first show that ||Mf ||L∞(w) ≤ ||f ||L∞(Mw). If a > ||f ||L∞(Mw), then

Mw({x ∈ Rn : |f(x)| > a}) = 0. This means
∫
{x∈Rn:|f(x)|>a}Mw(x)dx = 0. As

Mw(x) > 0,∀x ∈ Rn, we have |{x ∈ Rn : |f(x)| > a}| = 0. Therefore, |f(x)| ≤

a, almost everywhere. So, Mf(x) ≤ a, almost everywhere. Hence, |{x ∈ Rn :

Mf(x) > a}| = 0. This gives us
∫
{x∈Rn:Mf(x)>a}w(x)dx = 0. Equivalently,
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w({x ∈ Rn :Mf(x) > a}) = 0, and hence, ||Mf ||L∞(w) ≤ a.

Now we can conclude that ||Mf ||L∞(w) ≤ ||f ||L∞(Mw).

Next, we show the weak (1, 1) inequality. To prove this we may assume, due to

Lemma 4.1, that f is non-negative and f ∈ L1(Rn). If (Qj)j∈N is the Calderon-

Zygmund decomposition of f at a height λ > 0, then by Theorem 3.4 we have

the following

λ <
1

|Qj|

∫
Qj

f(x)dx ≤ 2nλ. (4.1)

Now as we proved in Lemma 3.5,

{x ∈ Rn :M ′f(x) > 4nλ} ⊂
⋃
j∈N

2Qj.

Therefore,

w({x ∈ Rn :M ′f(x) > 4nλ}) ≤
∞∑
j=1

w(2Qj).

Then, we have,∫
{x∈Rn:M ′f(x)>4nλ}

w(x)dx ≤
∞∑
j=1

w(2Qj) =
∞∑
j=1

2n|Qj|
1

|2Qj|

∫
2Qj

w(x)dx.

From Inequality (4.1), we have |Qj| < 1
λ

∫
Qj

f(y)dy. Thus,∫
{x∈Rn:M ′f(x)>4nλ}

w(x)dx ≤
∞∑
j=1

2n

λ

∫
Qj

f(y)

(
1

|2Qj|

∫
2Qj

w(x)dx

)
dy

≤ 2n

λ

∞∑
j=1

∫
Qj

f(y)M
′′
w(y)dy

≤ 2nC

λ

∫
⋃
j∈N

Qj

f(y)Mw(y)dy

≤ 2nC

λ

∫
Rn

f(y)Mw(y)dy.

So we have w({x ∈ Rn : M ′f(x) > 4nλ}) ≤ 2nC
λ

∫
Rn f(y)Mw(y)dy. We know

that Mf(x) ≤ CnM
′f(x). Hence, w({x ∈ Rn : M ′f(x) > 4nλ}) ≥ w({x ∈ Rn :

Mf(x) > Cn4
nλ}). Therefore,

w({x ∈ Rn :Mf(x) > Cn4
nλ}) ≤ 2nC

λ

∫
Rn

f(y)Mw(y)dy.
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Now if we replace Cn4
nλ by λ, we have

w({x ∈ Rn :Mf(x) > λ}) ≤ 8nCCn

λ

∫
Rn

f(y)Mw(y)dy.

This shows that M is weak (1, 1) with weights Mw on domain and w on co-

domain. The result now follows from Marcinkiewicz interpolation theorem.

Note that if for a positive function w, Mw(x) ≤ Cw(x) for some C > 0, almost

everywhere then the operator M is bounded on Lp(w) space. This is a sufficient

condition on w. The natural question now is “what are the necessary conditions

for the same?”

4.2 Definition and Properties of Ap weights

In this section we characterize the non-negative, locally integrable functions w

such that the Hardy-Littlewood maximal operator is bounded on the space Lp(w).

To simplify our notation, throughout this section we replace our earlier definition

of Hardy-Littlewood maximal function with non-centered cubic maximal function

(Definition 3.3). Abusing notation, we use M to denote the non-centered cu-

bic maximal function. Due to its equivalence with Hardy-Littlewood maximal

function, all results discussed here follow for Hardy-Littlewood maximal function

as well. We want to find a necessary condition on w for which M is bounded

on Lp(w) space. We know that strong boundedness implies weak boundedness.

Therefore let us first assume that Mf satisfies a weighted, weak-type inequality,

w({x ∈ Rn :Mf(x) > λ}) ≤ C

λp

∫
Rn

|f(x)|pw(x)dx, (4.2)

Let f be a non-negative function and Q be a cube such that f(Q) :=
∫
Q
f(x)dx >

0. Fix 0 < λ <
f(Q)

|Q|
. If x ∈ Q then λ < 1

|Q|

∫
Q

f(y)dy ≤ sup
Q′∋x

1

|Q′|
∫
Q′
(fχQ)(y)dy =

M(fχQ)(x). Therefore Q ⊂ {x ∈ Rn : M(fχQ)(x) > λ}. In Inequality (4.2), we

replace f by fχQ to get

w(Q) ≤ C

λp

∫
Q

|f(x)|pw(x)dx. (4.3)
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As this holds for all such λ satisfying 0 < λ <
f(Q)

|Q|
, it follows that

w(Q)

(
f(Q)

|Q|

)p

≤ C

∫
Q

|f(x)|pw(x)dx. (4.4)

Now for a given measurable set S ⊂ Q, let f = χS. Then, Inequality (4.4)

becomes

w(Q)

(
|S|
|Q|

)p

≤ Cw(S). (4.5)

Remark 4.1. The same condition can be obtained for balls replacing M with

the Hardy-Littlewood maximal function.

From Inequality (4.5) we immediately deduce the following:

1. The weight w is either identically 0 or w > 0 a.e. To see this we consider

the following:

If w is not positive almost everywhere, then w = 0 on a set of positive mea-

sure S. Then by Inequality (4.5), for every cube Q containing S, w(Q) = 0.

So w ≡ 0 a.e.

2. The weight w is either locally integrable or w = ∞ a.e.

Q
′′

Q

Q
′

Figure 4.2: Q,Q′ ⊆ Q”
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If w is not locally integrable, assume w(Q) = ∞ for some cube Q, then

the same is true for any larger cube containing the cube Q due to the

monotonicity of measure. Let Q′ be any cube and Q′′ be a cube containing

the both Q and Q′. Then w(Q′′) = ∞. Now from Inequality (4.5), we have

the following

w(Q′′)

(
|Q′|
|Q′′|

)p

≤ Cw(Q′).

Therefore w(Q′) = ∞. Now let S be any set of positive measure and Q0

be a cube such that S ⊆ Q0. Since w(Q0) = ∞, using Ineqaulity (4.5), we

have w(S) = ∞. That is, w = ∞ a.e.

To deduce the necessary conditions for weak (p, p) boundedness ofM , we consider

two cases.

Case 1: p = 1. In this case Inequality (4.5) becomes

w(Q)

|Q|
≤ C

w(S)

|S|
.

Let a = inf{w(x) : x ∈ Q}, where “inf” is the essential infimum, that is, excluding

a set of measure zero. We claim that for each ϵ > 0 there exists Sϵ ⊆ Q with

|Sϵ| > 0 such that w(x) ≤ a + ϵ for any x ∈ Sϵ. Suppose this is not true. Then

∃ ϵ > 0 such that for all S ⊂ Q with |S| > 0 we have w(x) > a+ ϵ for any x ∈ S.

But this is same as saying a+ ϵ is an essential lower bound of w on Q. Since this

cannot happen, our claim is true. Hence for all ϵ > 0 we have,

w(Q)

|Q|
≤ C

w(Sϵ)

|Sϵ|

=
C

|Sϵ|

∫
Sϵ

w(x) dx.

≤ C

|Sϵ|

∫
Sϵ

(a+ ϵ) dx.

= C(a+ ϵ).

Since ϵ > 0, is arbitrary, for any cube Q,

w(Q)

|Q|
≤ C inf

x∈Q
w(x) ≤ Cw(x), for a.e x ∈ Q (4.6)
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Inequality (4.6) called the A1 condition, and we refer to the weights which satisfy

it as A1 weights. Condition (4.6) is equivalent to

Mw(x) ≤ Cw(x), for a.e. x ∈ Rn. (4.7)

Clearly, Inequality (4.7) implies Inequality (4.6). Conversely suppose that In-

equality (4.6) holds and let x be such that Mw(x) > Cw(x). Then there exists a

cube Q with rational vertices such that w(Q)/|Q| > Cw(x). Therefore, x lies in a

subset of Q of measure zero. Taking the union over all such cubes (with rational

vertices), we have that Mw(x) > Cw(x) holds only on a set of measure 0 in Rn.

Case 2: 1 < p <∞. In Inequality (4.4), let f = w1−p′χQ. Then,

w(Q)

 1

|Q|

∫
Q

w1−p′(x)dx

p

≤ C

∫
Q

w1−p′(x)dx.

Equivalently,  1

|Q|

∫
Q

w(x)dx

 1

|Q|

∫
Q

w1−p′(x)dx

p−1

≤ C, (4.8)

where C is independent of Q.

Condition (4.8) is called Ap condition and the weights that satisfy it are

called Ap weights.

The following properties of Ap weights are consequences of the definition.

Proposition 4.4.

1. Ap ⊆ Aq, for any 1 ≤ p < q.

2. For p > 1, w ∈ Ap if and only if w1−p′ ∈ Ap′.

3. If w0, w1 ∈ A1 then w0w
1−p
1 ∈ Ap.

Proof.

1. Let us first assume that 1 = p < q. As w ∈ A1 we have

w(Q)

|Q|
≤ Cw(x), for a.e x ∈ Q.
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Since 1− q′ ≤ 0 we get (
w(Q)

|Q|

)1−q′

≥ Cw(x)1−q′ .

Therefore, ∫
Q

(
w(Q)

|Q|

)1−q′

dx ≥ C

∫
Q

w(x)1−q′dx.

This implies, (
w(Q)

|Q|

)1−q′

≥ C

|Q|

∫
Q

w(x)1−q′dx,

and we have(
w(Q)

|Q|

)(1−q′)(q−1)

≥ C

 1

|Q|

∫
Q

w(x)1−q′dx

(q−1)

.

Because (q − 1)(q′ − 1) = 1, we arrive at(
w(Q)

|Q|

)−1

≥ C

 1

|Q|

∫
Q

w(x)1−q′dx

(q−1)

.

Therefore,  1

|Q|

∫
Q

w(x)1−q′dx

(q−1)(
w(Q)

|Q|

)
≤ C.

Hence, w ∈ Aq and A1 ⊆ Aq. Now suppose p > 1. As p < q we have,

q
′
< p

′
. So, q

′−1

p′−1
< 1. Let s > 1 be such that

q′ − 1

p′ − 1
+

1

s
= 1. Then, by

using Hölder’s inequality, 1

|Q|

∫
Q

w(x)1−q′dx

(q−1)

≤ 1

|Q|q−1

∫
Q

w(x)1−p′ dx

 1
p′−1

|Q|
q−1
s

=
(
|Q|

1
s
−1
)(q−1)

∫
Q

w(x)1−p′ dx

 1
p′−1

=

 1

|Q|

∫
Q

w(x)1−p′ dx

p−1

.
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Therefore,

w(Q)

|Q|

 1

|Q|

∫
Q

w(x)1−q′dx

(q−1)

≤ w(Q)

|Q|

 1

|Q|

∫
Q

w(x)1−p′dx

p−1

≤ C.

Hence, w ∈ Aq.

2. To prove the second part we have the following. As p > 1,

w1−p′ ∈ Ap′ ⇔
w1−p′(Q)

|Q|

 1

|Q|

∫
Q

w(x)(1−p′)(1−p) dx

p′−1

≤ C.

⇔
(
w1−p′(Q)

|Q|

)p−1
 1

|Q|

∫
Q

w(x) dx

(p′−1)(p−1)

≤ C.

⇔
(
w1−p′(Q)

|Q|

)p−1
 1

|Q|

∫
Q

w(x) dx

 ≤ C.

⇔ w ∈ Ap.

3. Since w0 ∈ A1, we have the following

w0(Q)

|Q|
≤ Cw0(x), for a.e x ∈ Q.

So we have for a.e. x ∈ Q,

w0(x)
−1 ≤ C

(
w0(Q)

|Q|

)−1

. (4.9)

Similarly, as w1 ∈ A1 we have for a.e. x ∈ Q,

w1(x)
−1 ≤ C

(
w1(Q)

|Q|

)−1

. (4.10)

Now, we have, 1

|Q|

∫
Q

w0(x)w1(x)
1−pdx

 1

|Q|

∫
Q

w0(x)
1−p′w1(x)

(1−p)(1−p′)dx

p−1

=

 1

|Q|

∫
Q

w0(x)w1(x)
1−pdx

 1

|Q|

∫
Q

w0(x)
1−p′w1(x)dx

p−1

≤

 1

|Q|

∫
Q

w0(x)

(
C
w1(Q)

|Q|

)1−p

dx

×
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|Q|

∫
Q

(
C
w0(Q)

|Q|

)1−p′

w1(x)dx

p−1

≤
(
C
w1(Q)

|Q|

)1−p
w0(Q)

|Q|

(
w1(Q)

|Q|

)p−1(
C
w0(Q)

|Q|

)−1

≤ C.

That is, w0w
1−p
1 ∈ Ap.

4.3 Characterization of Ap weights

We have seen that the Ap condition is necessary for M to be weak type (p, p),

1 ≤ p <∞. We now see its sufficiency.

Theorem 4.5. For 1 ≤ p <∞, the weak (p, p) inequality

w({x ∈ Rn :Mf(x) > λ}) ≤ C

λp

∫
Rn

|f(x)|pw(x)dx

holds if and only if w ∈ Ap.

Proof. We proved the necessity of the Ap condition in Section 1.2 .

Now suppose that p > 1 and w ∈ Ap. Given a function f ∈ Lp(w), we first

show that Inequality (4.4) holds and so Inequality (4.5) also holds. By Hölder’s

inequality, we have 1

|Q|

∫
Q

|f(x)| dx

p

≤ 1

|Q|p

∫
Q

|f(x)|pw(x) dx


p
p
∫

Q

w(x)−
p′
p dx


p
p′

=
1

|Q|p

∫
Q

|f(x)|pw(x) dx

∫
Q

w(x)1−p′ dx

p−1

≤ C

 1

|Q|

∫
Q

|f(x)|pw(x) dx

 |Q|
w(Q)

,
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Where the last inequality is a consequence of the Ap-condition. This shows that

w(Q)

(
f(Q)

|Q|

)p

≤ C

∫
Q

|f(x)|pw(x) dx.

So, Inequality (4.5) holds. We may assume without loss of generality that f is

non-negative. We form the Calderón-Zygmund decomposition of f at height 4−nλ

to get a collection of disjoint cubes (Qj)j∈N such that f(Qj) > 4−nλ|Qj|. Then

by a similar argument as in the proof of Lemma 3.5, we can show that

{x ∈ Rn :Mf(x) > λ} ⊆
⋃
j∈N

3Qj.

Here we dilate the cubes by a factor of 3 instead of 2 becauseM is a non-centered

maximal operator.

Therefore,

w({x ∈ Rn :Mf(x) > λ}) ≤
∑
j∈N

w(3Qj).

As Qj ⊂ 3Qj, using Inequality (4.4), we get

w(3Qj)

(
|Qj|
|3Qj|

)p

≤ Cw(Qj).

⇒ w(3Qj) ≤ C3npw(Qj).

Therefore, we have

w({x ∈ Rn :Mf(x) > λ}) ≤ C3np
∑
j∈N

w(Qj).

Now from Inequality (4.4),

w({x ∈ Rn :Mf(x) > λ}) ≤ C3np
∑
j

(
|Qj|
f(Qj)

)p ∫
Qj

|f(x)|pw(x) dx

≤ C3np
(
4n

λ

)p ∫
Rn

|f(x)|pw(x) dx.

This shows that M is weak (p, p) with respect to w, when p > 1.

Now, suppose w ∈ A1. We have shown that Mw(x) ≤ Cw(x) almost every

x ∈ Rn. So, by using Theorem 4.3 we get∫
{x:Mf(x)>λ}

w(x)dx ≤ C1

λ

∫
Rn

|f(x)|Mw(x)dx ≤ C1

λ

∫
Rn

|f(x)|w(x)dx.

Therefore, M is weak (1, 1) whenever w ∈ A1.
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4.3.1 Strong-type inequalities with weights

We have seen that the operator M is weak (p, p) on Lp(w) if and only if w ∈ Ap

for 1 ≤ p < ∞. If w ∈ Ap, is it true that M is strong (p, p) on Lp(w)? Here we

are going to find an affirmative answer to this question. Before going to derive

the weighted strong type inequalities, let us first prove the following lemma. It

gives the relation between L∞(Rn) and L∞(w), for w ∈ Ap.

Proposition 4.6. If w ∈ Ap, for 1 < p < ∞, then L∞(w) = L∞(Rn) with

equality of the norms.

Proof. We show that w(E) = 0 if and only if |E| = 0 . First, suppose w(E) = 0.

Let Q be a cube such that E ⊆ Q and w(Q) > 0. In Theorem 4.5, we have shown

that Inequality (4.5) is true when w ∈ Ap. So, we have

w(Q)

(
|E|
|Q|

)p

≤ Cw(E) = 0.

As w(Q) > 0, we must have |E| = 0. If E is unbounded, we can write E =⋃
j∈N

E ∩Qj, for disjoint cubes Qj. By the above observation, whenever w(E) = 0,

we also have w(E ∩Qj) = 0 and hence |E ∩Qj| = 0. ∴ |E| =
∑
j∈N

|E ∩Qj| = 0.

Conversely, If |E| = 0 then by definition w(E) = 0.

Now suppose f ∈ L∞(Rn) and let a = ||f ||∞. So |{x ∈ Rn : |f(x)| > a}| =

0. Therefore w({x ∈ Rn : |f(x)| > a}) = 0. This implies f ∈ L∞(w) and

||f ||L∞(w) ≤ a. Similarly we can show that ||f ||L∞(w) ≥ ||f ||∞. This completes

the proof!

Corollary 4.7. The maximal operator M is bounded on L∞(w), for any w ∈ Ap

for any 1 ≤ p <∞.

Proof. The proof follows from the fact that M is bounded on L∞(Rn) together

with Proposition 4.6.

The following theorem gives a partial answer to our question of character-

izing weights that make M bounded on Lp(w).
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Theorem 4.8. If 1 ≤ q < p <∞ and w ∈ Aq then M is strong (p, p).

Proof. As w ∈ Aq, from Theorem 4.5 we know that M is weak (q, q). We

have already seen that ||Mf ||L∞(w) ≤ ||f ||L∞(w). By Marcinkiewicz interpolation

theorem we have M is strong (p, p) on Lp(w).

To complete our desired characterization, it is now enough to show that given a

w ∈ Ap, there exists 1 < q < p, such that w ∈ Aq. Essentially we ask whether

Ap =
⋃
q<p

Aq? Notice that from Proposition 4.4 we already have
⋃
q<p

Aq ⊆ Ap, we

now prove the other inclusion.

For this we require the reverse Hölder inequality. We begin with the follow-

ing lemma.

Lemma 4.9. Let w ∈ Ap, 1 ≤ p < ∞. Then for every 0 < α < 1, there exists

0 < β < 1 such that given a cube Q and S ⊂ Q with |S| ≤ α|Q|, w(S) ≤ βw(Q).

Proof. We know that if w ∈ Ap, then for any cube Q and any measurable subset

S of Q we have

w(Q)

(
|S|
|Q|

)p

≤ Cw(S).

As Q \ S ⊆ Q, and all of these sets have finite measure, we also have,

w(Q)

(
1− |S|

|Q|

)p

≤ C (w(Q)− w(S)) .

Since |S| ≤ α|Q|, we have (1− α)p ≤
(
1− |S|

|Q|

)p

. Therefore, we get

w(Q) (1− α)p ≤ C (w(Q)− w(S)) .

Simplifying,

w(S) ≤ C − (1− α)p

C
w(Q).

Choosing C > 1, we get 0 < β = 1 − (1− α)p

C
< 1. The desired result now

follows.
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Theorem 4.10 (Reverse Hölder Inequality). Let w ∈ Ap, 1 ≤ p < ∞. Then

there exists constants C and ϵ > 0, depending only on p and the Ap constant of

w, such that for any cube Q, 1

|Q|

∫
Q

w(x)1+ϵ dx

 1
(1+ϵ)

≤ C

|Q|

∫
Q

w(x) dx. (4.11)

Proof. Fix a cube Q and form the Calderón-Zygmund decompositions of w with

respect to Q at heights given by the following increasing sequence
w(Q)

|Q|
= λ0 <

λ1 < · · · < λk < · · · ; where λ′ks are chosen later. For each λk we get a family of

disjoint cubes {Qk,j}k,j∈N such that

w(x) ≤ λk if x /∈ Ωk =
⋃
j

Qk,j,

and

λk <
1

|Qk,j|

∫
Qk,j

w(x)dx ≤ 2nλk. (4.12)

From Theorem 3.3, we have Ωk =
⋃
j∈N

Ω′
k,j, where Ω′

k,j = {x ∈ Rn : Ek,jw(x) >

λk and Ek,iw(x) ≤ λk,∀i < j}. For each j, Ω′
k,j =

⋃
m∈N

Q
(m)
k,j where Q

(m)
k,j are

disjoint dyadic cubes.

Suppose x ∈ Ωk+1. Then ∃ l ∈ Z such that x ∈ Ω′
k+1,l =

⋃
m∈N

Q
(m)
k+1,l. This

implies Ek+1,lw(x) > λk+1. That is,
1

|Q(m)
k+1,l|

∫
Q

(m)
k+1,l

w(x)dx > λk+1 > λk for some

dyadic cube Qm
k+1,l. So ∃ j ≤ l such that Ek,jw(x) > λk and for any i < j,

Ek,iw(x) ≤ λk. Hence, x ∈ Ωk. Therefore Ωk+1 ⊆ Ωk. If we fix Qk,j0 from the

Calderón-Zygmund decomposition at the height λk, then Qk,j0 ∩Ωk+1 is union of

cubes {Qk+1,i}i∈I from the decomposition at height λk+1. Therefore,

|Qk,j0 ∩ Ωk+1| =
∑
i∈I

|Qk+1,i|.

Using the first inequality of (4.12), we get

|Qk,j0 ∩ Ωk+1| ≤
1

λk+1

∑
i∈N

∫
Qk+1,i

w(x)dx ≤ 1

λk+1

∫
Qk,j0

w(x)dx.
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Now using second inequality of (4.12), we get

|Qk,j0 ∩ Ωk+1| ≤
2nλk
λk+1

|Qk,j0|.

Now, let us fix α < 1 and choose the λk’s so that
2nλk
λk+1

= α; that is λk =

(2nα−1)kw(Q)/|Q|. Then |Qk,j0 ∩ Ωk+1| ≤ α|Qk,j0|. By Lemma 4.9, there exists

β < 1 such that w(Qk,j0 ∩ Ωk+1) ≤ βw(Qk,j0). Now,

w

((⋃
j∈N

Qk,j

)
∩ Ωk+1

)
= w

(⋃
j∈N

(Qk,j ∩ Ωk+1)

)

=
∑
j∈N

w(Qk,j ∩ Ωk+1) ≤ βw(∪Qk,j).

Therefore we have w(Ωk+1) ≤ βw(Ωk). Iterating this inequality we get w(Ωk) ≤

βkw(Ω0). Similarly, |Ωk| ≤ αk|Ω0|. Hence, by downward monotone convergence

theorem we have, ∣∣∣∣ ⋂
k∈N

Ωk

∣∣∣∣ = lim
k−→∞

|Ωk| = 0.

Therefore,

1

|Q|

∫
Q

w(x)1+ϵ dx =
1

|Q|

∫
Q\Ω0

w(x)1+ϵ dx+
1

|Q|

∫
Ω0

w(x)1+ϵ dx

=
1

|Q|

∫
Q\Ω0

w(x)1+ϵ dx+
1

|Q|

∞∑
k=0

∫
Ωk\Ωk+1

w(x)1+ϵ dx

≤ 1

|Q|

∫
Q\Ω0

w(x)λϵ0 dx+
1

|Q|

∞∑
k=0

∫
Ωk\Ωk+1

w(x)λϵk+1 dx

= λϵ0
w(Q)

|Q|
+

1

|Q|

∞∑
k=0

λϵk+1w(Ωk)

≤ λϵ0
w(Q)

|Q|
+

1

|Q|

∞∑
k=0

(2nα−1)(k+1)ϵλϵ0β
kw(Ω0).

Now we fix ϵ > 0 such that (2nα−1)ϵβ < 1, then the series
∞∑
k=0

(2nα−1)(k+1)ϵβk

converges to (2nα−1)ϵ

1−(2nα−1)ϵβ
. As w(Ω0) ≤ w(Q), we have that

1

|Q|

∫
Q

w(x)1+ϵ dx = λϵ0
w(Q)

|Q|
+ Cλϵ0

w(Q)

|Q|
= C

(
w(Q)

|Q|

)1+ϵ

. (4.13)
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This completes the proof.

As a corollary to the reverse Hölder inequality, we get the following properties of

Ap weights.

Corollary 4.11.

1. Ap =
⋃

q<pAq, 1 < p <∞.

2. If w ∈ Ap, 1 ≤ p <∞, then ∃ ϵ > 0 such that w1+ϵ ∈ Ap.

3. If w ∈ Ap, 1 < p < ∞, then there exists δ > 0 such that given a cube Q

and S ⊆ Q,

w(S)

w(Q)
≤ C

(
|S|
|Q|

)δ

.

Proof.

1. It is clear from Proposition 4.4, that
⋃
q<p

Aq ⊆ Ap. Now suppose w ∈ Ap.

We need to find some q < p such that w ∈ Aq. Again by Proposition 4.4,

if w ∈ Ap we have w1−p′ ∈ Ap′ . Therefore from Theorem 4.10 ∃ ϵ > 0 such

that  1

|Q|

∫
Q

w(1−p′)(1+ϵ)(x) dx

 1
(1+ϵ)

≤ C

|Q|

∫
Q

w(x)1−p′ dx.

Choosing a q > 1 such that (p′ − 1)(1 + ϵ) = (q′ − 1). This is possible since

1 + (p′ − 1)(1 + ϵ) > 1. Then we observe that q < p, and
q′ − 1

p′ − 1
= 1 + ϵ.

Therefore from Equation (4.13,) we have 1

|Q|

∫
Q

w(1−q′)(x) dx


p′−1
q′−1

≤ C

|Q|

∫
Q

w(x)1−p′dx.

As p− 1 > 0, we have the following 1

|Q|

∫
Q

w(1−q′)(x)dx


(p′−1)(p−1)

q′−1

≤ Cp−1

 1

|Q|

∫
Q

w1−p′(x)dx

p−1

.
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We know that w ∈ Ap and (p′−1)(p−1) = 1, the above inequality becomes 1

|Q|

∫
Q

w(1−q′)(x)dx

 1
q′−1

≤ C
|Q|
w(Q)

.

Since (q − 1)(q′ − 1) = 1, 1

|Q|

∫
Q

w(1−q′)(x)dx

q−1

≤ C
|Q|
w(Q)

.

This is the same as,

w(Q)

|Q|

 1

|Q|

∫
Q

w(1−q′)(x)dx

q−1

≤ C,

which further implies w ∈ Aq.

2. First consider the case p > 1. Let us choose ϵ > 0 so small, such that w

and w1−p′ both satisfy the reverse Hölder Inequality (4.11) Since p− 1 > 0,

we have, 1

|Q|

∫
Q

w(1−p′)(1+ϵ)(x)dx


p−1
(1+ϵ)

≤ Cp−1

 1

|Q|

∫
Q

w1−p′(x)dx.

p−1

.

Also, w ∈ Ap. Therefore, we get 1

|Q|

∫
Q

w(1−p′)(1+ϵ)(x)dx


p−1
(1+ϵ)

≤ Cp−1

 1

|Q|

∫
Q

w1−p′(x)dx.

p−1

≤ C
|Q|
w(Q)

.

From the reverse Hölder inequality for w, we get 1

|Q|

∫
Q

w(1−p′)(1+ϵ)(x)dx

p−1

≤ C

(
|Q|
w(Q)

)1+ϵ

≤ C
1
|Q|

∫
Q

w1+ϵ(x)dx
.

Therefore, we have 1

|Q|

∫
Q

w1+ϵ(x)dx

 1

|Q|

∫
Q

w(1−p′)(1+ϵ)(x)dx

p−1

≤ C.

This implies w1+ϵ ∈ Ap.

If p = 1, then for any cube Q and a.e x ∈ Q,
1

|Q|
∫
Q

w(y)dy ≤ Cw(x). Now
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by reverse Hölder inequality, we get some ϵ > 0 for which,

1

|Q|

∫
Q

w1+ϵ(x)dx ≤ C

 1

|Q|

∫
Q

w(x)dx

1+ϵ

≤ Cw1+ϵ(x).

Therefore, for any cube Q and for a.e x ∈ Q

1

|Q|

∫
Q

w1+ϵ(x) dx ≤ Cw1+ϵ(x),

which implies w1+ϵ ∈ A1.

3. Let S ⊆ Q and let w satisfy reverse Hölder inequality with ϵ > 0. Then, by

using Hölder inequality and reverse Hölder inequality we have

wS =

∫
Q

χSw(x) dx ≤

∫
Q

w1+ϵ(x) dx

1/(1+ϵ)

|S|ϵ/(1+ϵ)

≤ Cw(Q)

(
|S|
|Q|

)ϵ/(1+ϵ)

.

This gives desired inequality by choosing δ = ϵ/(1 + ϵ).

We are now ready to characterize all weights that make M bounded on

Lp(w).

Theorem 4.12. The maximal operator M is bounded on Lp(w) if and only if

w ∈ Ap for 1 < p <∞.

Proof. Using the first part of the Corollary 4.11, we can say that if w ∈ Ap,

p > 1, then there exists 1 ≤ q < p such that w ∈ Aq. Now we can use Theorem

4.8 to conclude the result.

We have seen that M is bounded on Lp(w) spaces if and only if w ∈ Ap. It

is indeed true that constant functions are Ap weights. In next section, we see a

way to construct Ap weights with the help of Hardy-Littlewood maximal operator

M . This can give a variety of non-trivial examples.
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4.4 Construction of A1 weights

In this section, we construct A1 weight with the help of Hardy-Littlewood max-

imal function. The result presented here is due to Coifman and Rochberg ([6]).

This, combined with Proposition 4.4, lets us construct a few Ap weights for all

1 ≤ p <∞. We start with the following lemma.

Lemma 4.13. Given an operator S which is weak (1, 1) and 0 < γ < 1, and a

set E of finite measure, there exists a constant C depending only on γ such that∫
E

|Sf(x)|γ dx ≤ C|E|1−γ||f ||γ1 .

Proof. For f ∈ Lp(X, ν) and 0 < p <∞, we have

||f ||pp = p

∞∫
0

λp−1df (λ)dλ,

where df (λ) = {x ∈ Rn : |f(x)| > λ}. Therefore,∫
E

|Sf(x)|γ dx = γ

∞∫
0

λγ−1|{x ∈ E : |Sf(x)| > λ}| dλ.

Since S is weak (1, 1), we have |{x ∈ E : |Sf(x)| > λ}| ≤ C

λ
||f ||1. Also,

{x ∈ E : |Sf(x)| > λ} ⊂ E, so that |{x ∈ E : |Sf(x)| > λ}| ≤ |E|. Therefore,

|{x ∈ E : |Sf(x)| > λ}| ≤ min

(
|E|, C

λ
||f ||1

)
. Hence,∫

E

|Sf(x)|γ dx ≤ γ

∞∫
0

λγ−1min

(
|E|, C

λ
||f ||1

)
dλ

= γ

∫ C
||f ||1
|E|

0

λγ−1|E| dλ+ γ

∫ ∞

C
||f ||1
|E|

Cλγ−2||f ||1 dλ

= λ|E|
[
λγ

γ

]C ||f ||1
|E|

0

+ γC||f ||1
[
λγ−1

γ − 1

]∞
C

||f ||1
|E|

=
(C||f ||1)γ

|E|1−γ

(
1 +

γ

1− γ

)
= C||f ||γ1 |E|1−γ.
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We also require an easy inequality concerning power of sums of positive numbers.

Lemma 4.14. Let a, b, c ≥ 0 be such that c ≤ a + b. Then for any 0 ≤ α < 1

we have cα ≤ aα + bα.

Proof. Let β = 1
α
. Then clearly β > 1. We first prove that (a+b)β ≥ aβ+bβ. Let

us consider the following function G : [1,∞) −→ R, defined as G(r) = (a+ b)r −

ar − br. Note that G(r) can be written as, G(r) = ar{(1 + b/a)r − (1 + (b/a)r)}.

Now we show that G(r) ≥ 0. To this end, consider another function H of 1 ≤

r < ∞, defined as H(r) = (1 + x)r − (1 + xr), for a fixed x > 0. Note that

H ′(r) = (1 + x)rlog(1 + x) − xrlogx ≥ 0. Therefore H is an increasing function

of r. So, H(r) ≥ H(1)for any r ≥ 1. This clearly implies H(r) ≥ 0 for any

r ≥ 1. Hence by substituting x = b/a we get {(1 + b/a)r − (1 + (b/a)r)} ≥ 0.

That is G(r) ≥ 0. So, (a + b)r ≥ ar + br for any r ≥ 1. By taking a1 = aα and

b1 = bα in place of a and b respectively, we get aα + bα ≥ (a + b)α. As a, b and

c are non-negative with a + b ≥ c we have (a + b)α ≥ cα. Therefore we have

aα + bα ≥ (a+ b)α ≥ cα. Hence the result.

We now discuss the construction of A1 weights. In fact, we see that up to

a multiplication by bounded function, this is only way to produce A1 weights.

Theorem 4.15.

1. Let f ∈ L1
loc(Rn) be such that Mf(x) < ∞ a.e. If 0 ≤ δ < 1, then

w(x) =Mf(x)δ is an A1 weight whose A1 constant depends only on δ.

2. Conversely, if w ∈ A1, then there exists f ∈ L1
loc(Rn), 0 ≤ δ < 1, and K a

function on Rn, with K, 1
K

∈ L∞(Rn), such that w(x) = K(x)Mf(x)δ.

Proof.
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1. It suffices to show that there exists a constant C such that for every cube

Q and almost every x ∈ Q,

1

|Q|

∫
Q

(Mf(x))δ dx ≤ CMf(x)δ.

Now fix cube Q and decompose f as f = f1 + f2, where f1 = fχ2Q. Then

Mf(x) ≤Mf1(x) +Mf2(x) and by using Lemma 4.14, we get,

Mf(x)δ ≤Mf1(x)
δ +Mf2(x)

δ.

As M is weak (1, 1), from Lemma 4.13 we have,

1

|Q|

∫
Q

(Mf1(x))
δ dx ≤ Cδ

|Q|
|Q|1−δ||f1||δ1

= Cδ

 1

|Q|

∫
Rn

f1(x) dx

δ

= Cδ

 1

|Q|

∫
2Q

f(x) dx

δ

= 2nδCδ

 1

|2Q|

∫
2Q

f(x) dx

δ

≤ 2nδCδMf(x)δ.

To estimate Mf2, we see that if y ∈ Q and R is a cube with y ∈ R and∫
R

|f2(x)| dx > 0, then we must have l(R) > 1
2
l(Q), where l(·) denotes the

side length of a cube. To see this, assume if possible l(R) ≤ 1
2
l(Q).

f2 = f − f1

= f − fχ2Q.

As x ∈ R ⇒ x ∈ 2Q. f2(x) = 0, ∀x ∈ R. This implies
∫
R

|f(x)| dx = 0,

which is a contradiction! Hence, there exists a constant cn depending only

on n, such that if x ∈ Q then x ∈ cnR. Therefore,

1

|R|

∫
R

|f2(x)| dx ≤ cnn
|cnR|

∫
cnR

|f2(x)| dx ≤ cnnMf(x),
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and so, Mf2(y) ≤ cnnMf(x) for any y ∈ Q. Thus,

1

|Q|

∫
Q

Mf2(y)
δ dy ≤ cnδn Mf(x)δ.

Now, for any cube Q,

1

|Q|

∫
Q

Mf(x)δ dx ≤ 1

|Q|

∫
Q

(Mf1(x))
δ dx+

1

|Q|

∫
Q

(Mf2(x))
δ dx

≤ 2nδCδMf(x)δ + cnδn Mf(x)δ

= CMf(x)δ.

This proves (1).

2. For w ∈ A1, by reverse Hölder inequality ∃ ϵ > 0 such that 1

|Q|

∫
Q

w1+ϵ(x) dx

 1
1+ϵ

≤ C

|Q|

∫
Q

w(x) dx.

And for any cube Q, for a.e x ∈ Q, we have

1

|Q|

∫
Q

w(x) dx ≤ Cw(x).

Therefore for a.e x ∈ Q, we get 1

|Q|

∫
Q

w1+ϵ(x) dx

 1
1+ϵ

≤ Cw(x),

which implies for a.e x ∈ Rn,(
Mw1+ϵ(x)

) 1
1+ϵ ≤ Cw(x).

Let f = w1+ϵ and δ = 1
1+ϵ

, so we have Mf(x)δ ≤ cw(x) for a.e x ∈ Rn.

By Lebesgue differentiation theorem w1+ϵ(x) ≤ Mw1+ϵ(x) = Mf(x), so

w(x) ≤ (Mf(x))δ. Therefore, for a.e x ∈ Rn, w(x) ≤ (Mf(x))δ ≤ Cw(x).

Now let K(x) = w(x)
Mf(x)δ

. Note that K(x) ≤ 1 and K−1(x) ≤ C for a.e

x ∈ Rn. So K, K−1 ∈ L∞(Rn). Finally, we have w(x) = K(x)Mf(x)δ.
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4.5 An Extrapolation Theorem

In this section we discuss a remarkable result due to Rubio de Francia ([21]) that

deals with boundedness of operators on Muckenhoupt weighted Lp spaces. We

recall that we have seen “interpolation” results, wherein we can discuss bounded-

ness of linear operators between two “end points”. We see that “extrapolation” is

also possible! Particularly, if it is known that an operator T is bounded on Lp(w)

for a fixed p > 1 and each w ∈ Ap, then it becomes bounded on all Lr-spaces

with all Muckenhoupt weights.

Theorem 4.16 (Rubio de Francia [21]). Fix, 1 < r < ∞. If T is a bounded

operator on Lr(w) for any w ∈ Ar, with operator norm depending only on the Ar

constant of w, then T is bounded on Lp(w), for any 1 < p <∞, and w ∈ Ap.

Proof. We first show that if 1 < q < r and w ∈ A1 then T is bounded on Lq(w).

By Theorem 4.15 we know that the function (Mf)
r−q
r−1 ∈ A1 since r − q < r − 1,

and by Proposition 4.4, w(Mf)q−r ∈ Ar. Therefore,∫
Rn

|Tf(x)|qw(x) dx

=

∫
Rn

|Tf(x)|q(Mf(x))−(r−q)q/r(Mf(x))(r−q)q/rw(x) dx

=

∫
Rn

|Tf(x)|q(Mf(x))−(r−q)q/r(Mf(x))(r−q)q/rw(x)q/rw(x)r−q/r dx

≤

∫
Rn

|Tf(x)|rw(x)(Mf(x))q−r dx

q/r∫
Rn

(Mf(x))qw(x) dx

(r−q)/r

≤ C

∫
Rn

|f(x)|rw(x)(Mf(x))q−r dx

q/r∫
Rn

|f(x)|qw(x) dx

(r−q)/r

.

The last inequality follows because T is bounded operator on Lr ((w)(Mf)q−r)

and M is strong (q, q) on Lq(w), for w ∈ Aq. We also have that |f(x)| ≤ |Mf(x)|

a.e. and q − r < 0. So, Mf(x)q−r ≤ |f(x)|q−r a.e. The above inequality now
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become∫
Rn

|Tf(x)|qw(x) dx

≤ C

∫
Rn

|f(x)|rw(x)|f(x)|q−r dx

q/r∫
Rn

|f(x)|qw(x) dx

(r−q)/r

= C

∫
Rn

|f(x)|qw(x) dx.

We now show that, given any 1 < p <∞ and 1 < q < min(p, r), T is bounded on

Lp(w) for w ∈ A p
q
. The desired result follows at once from this: given w ∈ Ap,

by Corollary 4.13 there exists q > 1 such that w ∈ A p
q
and so T is bounded on

Lp(w).

Let us fix a w ∈ A p
q
. Then, by duality there exists a non-negative u ∈ L(p/q)′(w)

with ||u||(p/q)′ = 1 such that∫
Rn

|Tf(x)|pw(x) dx

q/p

=

∫
Rn

|Tf(x)|qw(x)u(x) dx.

For any s > 1, wu ≤ (M(wu)s)1/s, and (M(wu)s)1/s ∈ A1. This can be shown in

the following way: let K ⊂ Rn be any compact set. Then,∫
K

w(x)su(x)sdx ≤
∫
K

w(x)s−1u(x)sw(x) dx

≤

∫
K

w(x)(s−1)p′w(x) dx

1/p′∫
K

u(x)(p/q)
′
w(x)dx

 s
(p/q)′

As u ∈ L(p/q)
′
(w),

(∫
K

u(x)(p/q)
′
w(x)dx

) s
(p/q)′

< ∞. Since w ∈ A p
q
, choosing a

proper s we have w1+(s−1)p
′
∈ A p

q
. Therefore w1+(s−1)p

′
∈ L1

loc(Rn). So (wu)s ∈

L1
loc(Rn). Now by using Theorem 4.15, we have (M(wu)s)1/s ∈ A1. Therefore, by

the first part of the proof we have∫
Rn

|Tf(x)|qw(x)u(x) dx
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≤
∫
Rn

|Tf(x)|q(M(wu)s(x))1/s dx

≤ C

∫
Rn

|f(x)|q(M(wu)s)1/s

= C

∫
Rn

|f(x)|qw(x)p/q(M(wu)s(x))1/sw(x)−p/q dx

≤ C

∫
Rn

|f(x)|pw(x) dx

q/p∫
Rn

(M(wu)s)(p/q)
′/sw(x)(1−(p/q)′) dx

1/(p/q)′

.

Since w ∈ Ap/q, by Proposition 4.4, w1−(p/q)′∈A(p/q)′ . Therefore, If we take s

sufficiently close to 1, w1−(p/q)′ ∈ A(p/q)′/s. Hence by Theorem 4.12 the second

integral is bounded by

C

∫
Rn

(wu)(p/q)
′
w1−(p/q)′ dx <∞.

So, we have∫
Rn

|Tf(x)|pw(x) dx

q/p

=

∫
Rn

|Tf(x)|qw(x)u(x) dx

≤ C

∫
Rn

|f(x)|pw(x) dx

q/p

.

4.6 Strong Ap weights

We have introduced the strong maximal function in Chapter 3. This operator

satisfies weighted norm inequalities with weights analogous to Ap weights. These

weights are known as “strong” Ap weights. The collection of all such weights is

denoted as A∗
p. The strong Ap condition is the following: w ∈ A∗

p, for 1 < p <∞,

if for any rectangle R with sides parallel to the co-ordinate axes, 1

|R|

∫
R

w(x) dx

 1

|R|

∫
R

w(x)1−p′ dx

p−1

≤ C,
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where C is independent of R. A non-negative locally integrable function w ∈ A∗
1

if for almost every x ∈ Rn,

Msw(x) ≤ Cw(x).

We have seen that Hardy-Littlewood maximal operator is bounded on Lp(w)

space, for 1 < p <∞. Similar result is true for the strong maximal function.

Theorem 4.17 ([7]). For 1 < p < ∞, Ms is bounded on LP (w) if and only if

w ∈ A∗
p.

Another interesting fact about “strong” Ap weights is given by the following

result. It gives a connection of the n-dimensional strong Ap weights with the

one-dimensional Ap weights. The result is of importance in proving the higher

dimensional analogue of the Marcinkiewicz multiplier theorem (see Chapter 6).

Theorem 4.18 ([7]). If w ∈ A∗
p, 1 < p < ∞, then for each i ∈ {1, 2, · · · , n},

w(x1, · · · , xi−1, ·, xi+1, · · · , xn) satisfies one-dimensional Ap condition with a uni-

form constant.



CHAPTER 5

Calderón-Zygmund Theory

In this chapter, we begin our study of translation invariant operators. As men-

tioned earlier, we are interested in operators of convolution type. That is, opera-

tors T that act as Tf = K ∗ f for a fixed kernel K. While in general, the kernel

K can be a distribution (generalized function), we deal with only those kernels

that come from locally integrable functions.

Our aim is to get sufficient conditions on K that make the operator T :

Lp(Rn) −→ Lp(Rn) bounded. To this end, we first look at a prototypical operator,

namely the Hilbert transform.

5.1 Hilbert transform

In this section we deal with a basic convolution type operator. As mentioned in

the introduction of this chapter, our goal is to find sufficient conditions on the

kernel K so that T becomes Lp bounded. Let us, for some time, become more

restrictive and demand that T also commutes with dilations. That is , if for λ > 0,

108
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δλf(x) = λ−nf(x/λ) is the dilation of f by λ, we require δλTf = Tδλf . Let us

try and use the definitions of T and δλ to get some preliminary observations on

K. We write that

(Tδλf)(x) = (K ∗ δλf)(x)

=

∫
Rn

K(x− y)(δλf)(y) dy

=

∫
Rn

K(x, y)f(y/λ)λ−n dy

=

∫
Rn

K(x− λ)f(y) dy.

On the other hand (δλTf)(x) = λ−n
∫
Rn

K(x
λ
− y)f(y) dy. It is clear that if

K(λz) = λ−nK(z), then T commutes with dilation. Functions satisfying such a

relation are called “homogeneous of degree −n”. Particularly , if T commutes

with dilations have kernel of the form K(x) = K
(
||x|| x

||x||

)
= K(x/||x||)

||x||n . Therefore

the typical convolution operators that commutes with dilations have kernel of the

form K(x) = Ω(x/||x||)
||x||n , where Ω is a function defined on Sn−1. Such operators are

called singular integrals, and their boundedness was first studied by Calderón and

Zygmund in [4].

If we restrict our attention to R, then S0 = {±1}. One example of this

desired kernel in this case is K(x) = 1
x
= sgn(x)

|x| . We now begin studying this

kernel.

5.1.1 The principal value of 1/x

We wish to integrate functions against 1
x
. However in general, this is not possible

since 1
x
has a non-integrable singularity at 0. Therefore, any integral involving

1
x
is an improper integral. We are interested in its Cauchy principle value. We

denote by p.v. 1
x
the principle value distribution of 1

x
, defined as

p.v.
1

x
(φ) = lim

ϵ−→0

∫
|x|>ϵ

φ(x)

x
dx, (5.1)
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for φ ∈ S(R). We first show that this expression is well defined. To see this, we

first rewrite Equation (5.1) in the following way.

p.v.
1

x
(φ) = lim

ϵ−→0

∫
ϵ<|x|<1

φ(x)

x
dx+

∫
|x|>1

φ(x)

x
dx.

Now we see that since the function φ(0)
x

is odd, we have
∫
ϵ<|x|<1

φ(0)
x

dx = 0.

Therefore,

p.v.
1

x
(φ) = lim

ϵ−→0

∫
ϵ<|x|<1

φ(x)− φ(0)

x
dx+

∫
|x|>1

φ(x)

x
dx.

We know that φ is smooth. Hence by the mean value theorem, we get,

p.v.
1

x
(φ) =

∫
|x|<1

φ
′
(ξ(x)) dx+

∫
|x|>1

φ(x)

x
dx,

where, ξ(x) = tx · x, for some tx ∈ (0, 1). Therefore∣∣∣∣p.v. 1x(φ)
∣∣∣∣ ≤ ∫

|x|<1

|φ′
(ξ(x))| dx+

∣∣∣∣ ∫
|x|>1

φ(x)

x
dx

∣∣∣∣
≤
∫
|x|<1

|φ′
(ξ(x))| dx+

∣∣∣∣ ∫
|x|>1

xφ(x)

x2
dx

∣∣∣∣
≤
∫
|x|<1

|φ′
(ξ(x))| dx+ ||xφ||∞

∫
|x|>1

1

x2
dx

≤ C
(
||φ′ ||∞ + ||xφ||∞

)
<∞.

So we get that p.v. 1
x
is a tempered distribution.

Next proposition we see that p.v. 1
x
can be seen as a (distributional) limit of certain

“nice” function.

Proposition 5.1. Consider Qt(x) =
1
π

x
x2+π2 . Then, ∀φ ∈ S(R), we have

lim
t−→0

∫
R

Qt(x)φ(x) dx =
1

π
p.v.

1

x
(φ)

.

Proof. For each ϵ > 0, the functions ψϵ(x) = x−1χ{|x|>ϵ} is bounded and define

a tempered distribution in the following way

ψϵ(φ) =

∫
R

ψϵ(x)ϕ(x)dx =

∫
{|x|>ϵ}

φ(x)

x
dx

for φ ∈ S(R). By the definition of p.v.
1

x
, we have ∀φ ∈ S(R),

lim
ϵ−→0

ψϵ(φ) = p.v.
1

x
(φ).
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Therefore it suffices to prove that ∀φ ∈ S ′
(R),

lim
t−→0

(
Qt −

1

π
ψt

)
(φ) = 0.

Let us fix ϕ ∈ S(R). Then,

(πQt − ψt)(φ) =

∫
R

xφ(x)

t2 + x2
dx−

∫
|x|>t

φ(x)

x
dx

=

∫
|x|<t

xφ(x)

t2 + x2
dx+

∫
|x|>t

(
x

t2 + x2
− 1

x

)
φ(x)dx.

By substituting x = ty, we obtain,

(πQt − ψt)(φ) =

∫
|y|<1

yφ(ty)

1 + y2
dy −

∫
|y|>1

φ(ty)

y(1 + y2)
dy.

Now we see that lim
t−→0

xφ(tx)
1+x2 = xφ(0)

1+x2 and lim
t−→0

φ(tx)
x(1+x2)

= φ(0)
x(1+x2)

. Also, we notice

that, ∀x ∈ (−1, 1) we have xφ(tx)
1+x2 ≤ C

1+x2 and for |x| > 1 we have

∣∣∣∣ φ(tx)
x(1+x2)

∣∣∣∣ ≤ C
(1+x2)

.

We know that 1
1+x2 is integrable on R. Hence by using the dominated convergence

theorem, we get

lim
t−→0

(πQt − ψt)(φ) = lim
t−→0

∫
|y|<1

yφ(ty)

1 + y2
dy − lim

t−→0

∫
|y|>1

φ(ty)

y(1 + y2)
dy

=

∫
|y|<1

yφ(0)

1 + y2
dy −

∫
|y|>1

φ(0)

y(1 + y2)
dy.

Since the integrand of both the integrals above are odd functions on a symmetric

domain, we have,

lim
t−→0

(πQt − ψt)(φ) = 0.

5.1.2 Definition and properties of Hilbert transform

As a consequence Proposition 5.1, we define Hilbert transform.

Definition 5.1. Let f ∈ S(R), then we define its Hilbert transform by one of the

following expressions:

Hf(x) =
1

π
lim
ϵ−→0

∫
|y|>ϵ

f(x− y)

y
dy, (5.2)

Equivalently, we can define Hf = p.v. 1
x
∗ f = lim

t−→0
Qt ∗ f .



CHAPTER 5. CALDERÓN-ZYGMUND THEORY 112

Next, we see that Hilbert transform can be defined in terms of Fourier

transform.

Proposition 5.2. For f ∈ S(R) we have

Ĥf(ξ) = −isgn(ξ)f̂(ξ). (5.3)

Remark 5.1. Proposition 5.2 is the starting point of our study of multipliers.

In chapter 6 we deal with operator T that satisfy T̂ f = mf̂ , for a “nice” function

m. Indeed Hilbert transform is a prototypical example.

Next, we see a few basic properties of the Hilbert transform. All of them

are direct consequence of definition and Proposition 5.2.

Lemma 5.3. Let f, g ∈ L2(R). Then, we have the following

1. H(Hf) = −f ,

2. H̃f = −Hf̃ , where f̃(x) = f(−x),

3.
∫
R
Hf(x) · g(x)dx =

∫
R
f(x) ·Hg(x)dx.

Proof.

1. Taking the Fourier transform

Ĥ(Hf) = −isgn(ξ)Ĥf(ξ)

= (−isgn(ξ))2f̂(ξ)

= −f̂(ξ)

Since the Fourier transform on L2(R) is an isometry, we have, H(Hf) = −f .

2. By definition,

H̃f(x) = Hf(−x)

=
1

π
lim
ϵ−→0

∫
|y|>ϵ

f(−x− y)

y
dy
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=
1

π
lim
ϵ−→0

∫
|y|>ϵ

f̃(x+ y)

y
dy

=
1

π
lim
ϵ−→0

∫
|z|>ϵ

f̃(x− z)

−z
dz

= −Hf̃(x).

3. Using the duality of Fourier transform, and the second part of this Lemma

we have the following.∫
R

Hf(x)g(x) dx =

∫
R

(̂Hf)(x)̂̃g(x) dx
=

∫
R

−isgn(ξ)f̂(ξ)̂̃g(ξ) dξ
=

∫
R

f̂(ξ)(̂Hg̃)(ξ) dξ

=

∫
R

ˆ̂
f(ξ)(Hg̃)(ξ) dξ

= −
∫
R

f(−ξ)H̃g)(ξ) dξ

= −
∫
R

f(ξ)(Hg)(ξ) dξ.

5.1.3 Lp − Lp boundedness of Hilbert transform

We have already seen that Hilbert transform is an isometry on L2(R). We now

ask whether it is bounded on Lp(R) for p ≥ 1.

Theorem 5.4. For f ∈ S(R), the following assertions are true:

1. H is weak (1, 1). That is, ∃C > 0such that ∀λ > 0.

|{x ∈ R : |Hf(x)| > λ}| ≤ C

λ
||f ||1.
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2. H is strong (p, p), for any 1 < p <∞. That is ∃Cp > 0 such that

||Hf ||p ≤ Cp||f ||p.

Proof.

1. Let λ > 0 be fixed and f ∈ S(R) be non-negative. We form the Calderón-

Zygmund decomposition of f at the height λ. This gives a sequence of

disjoint intervals {Ij}j∈N such that

f(x) ≤ λ for a.e. x ̸∈ Ω =
∞⋃
j=1

Ij, (5.4)

|Ω| ≤ 1

λ
||f ||1, (5.5)

λ <
1

|Ij|

∫
Ij

f(x)dx ≤ 2λ. (5.6)

Given this decomposition of R, we now decompose f = g + b, where g and

b are defined by

g(x) =


f(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

f(y)dy, if x ∈ Qj.

And,

b(x) =
∞∑
j=1

bj(x), (5.7)

where,

bj(x) =

(
f(x)− 1

|Ij|

∫
Ij

f(y)dy

)
χIj(x). (5.8)

Then g(x) ≤ 2λ almost everywhere, and bj is supported on Ij and has zero

integral : Since H is linear, we have {x ∈ R : |Hf(x)| > λ} ⊆ {x ∈ R :

|Hg(x)| > λ/2} ∪ {x ∈ R : |Hb(x)| > λ/2}. So, we have,

|{x ∈ R : |Hf(x)| > λ}| ≤ |{x ∈ R : |Hg(x)| > λ/2}|

+ |{x ∈ R : |Hb(x)| > λ/2}|. (5.9)

We estimate the first term of the above inequality in the following way:

|{x ∈ R : |Hg(x)| > λ/2}| ≤ (2/λ)2
∫
R
|Hg(x)|2dx
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Using the fact that ||Hg||2 = ||g||2 we can write

|{x ∈ R : |Hg(x)| > λ/2}| ≤ (2/λ)2
∫
R

|g(x)|2dx.

Since |g(x)| ≤ 2λ, almost everywhere, the above inequality becomes

|{x ∈ R : |Hg(x)| > λ/2}| ≤ 8

λ

∫
R

|g(x)| dx. (5.10)

As
∫
R
g(x)dx =

∫
R
f(x)dx and f is non-negative, we get

|{x ∈ R : |Hg(x)| > λ/2}| ≤ 8

λ

∫
R

f(x) dx =
8

λ
||f ||1. (5.11)

To estimate the “bad part” in Inequality (5.9), we consider the following.

Let 2Ij be the interval with the same center as Ij and twice the length, and

let Ω∗ =
∞⋃
j=1

2Ij. Then, from Inequality (5.5), we have

|Ω∗| ≤ 2

∣∣∣∣ ∞⋃
j=1

Ij

∣∣∣∣ = 2|Ω| ≤ 2

λ
||f ||1 (5.12)

Now, we see that,

|{x ∈ R : |Hb(x)| > λ/2}| ≤ |{x ∈ Ω∗ : |Hb(x)| > λ/2}|

+ |{x ̸∈ Ω∗ : |Hb(x)| > λ/2}|

≤ |Ω∗|+ |{x ̸∈ Ω∗ : |Hb(x)| > λ/2}|

From Inequality (5.12), we get

|{x ∈ R : |Hb(x)| > λ/2}| ≤ 2

λ
||f ||1 + |{x ̸∈ Ω∗ : |Hb(x)| > λ/2}|

≤ 2

λ
||f ||1 +

2

λ

∫
R\Ω∗

|Hb(x)|dx.

We know that
∞∑
j=1

bj and
∞∑
j=1

Hbj converge to b and Hb in L2.Thus, there

is a subsequence Tnk
=

nk∑
j=1

Hbj such that Tnk
−→ Hb pointwise almost

everywhere. Therefore, for almost every x ∈ R, we have

|Hb(x)| =
∣∣∣∣ lim
k−→∞

nk∑
j=1

Hbj(x)

∣∣∣∣
= lim

k−→∞

∣∣∣∣ nk∑
j=1

Hbj(x)

∣∣∣∣
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≤ lim
k−→∞

nk∑
j=1

|Hbj(x)|

≤
∞∑
j=1

|Hbj(x)|.

Therefore, ∫
R\Ω∗

|Hb(x)| ≤
∫
R\Ω∗

∞∑
j=1

|Hbj(x)| dx.

Now we have

|{x ∈ R : |Hb(x)| > λ/2}| ≤ 2

λ
||f ||1 +

2

λ

∫
R\Ω∗

∞∑
j=1

|Hbj(x)| dx. (5.13)

Since 2Ij ⊆ Ω∗. We have∫
R\Ω∗

|Hbj(x)| dx ≤
∫

R\2Ij

|Hbj(x)| dx,

for every j ∈ N. Therefore to complete the proof of the weak (1, 1) inequal-

ity it suffices to show that
∞∑
j=1

∫
R\2Ij

|Hbj(x)|dx ≤ C||f ||1.

Note that, Since x ̸∈ 2Ij and supp(bj) ⊆ Ij, we have

Hbj(x) =

∫
Ij

bj(y)

x− y
dy.

Suppose the center of Ij is cj. Then,∫
R\2Ij

|Hbj(x)|dx =

∫
R\2Ij

∣∣∣∣ ∫
Ij

bj(y)

x− y
dy

∣∣∣∣ dx.
Since bj has zero integral, we have

∫
Ij

bj(y)

x−cj
dy = 0, and we can write∫

R\2Ij
|Hbj(x)|dx =

∫
R\2Ij

∣∣∣∣ ∫
Ij

bj(y)

(
1

x− y
− 1

x− cj

)
dy

∣∣∣∣ dx
≤
∫
R\2Ij

∫
Ij

|bj(y)|
|y − cj|

|x− y||x− cj|
dy dx.

Now, by applying Fubini’s theorem, we arrive at∫
R\2Ij

|Hbj(x)|dx ≤
∫
Ij

|bj(y)|

(∫
R\2Ij

|y − cj|
|x− y||x− cj|

dx

)
dy.

As y ∈ Ij and x ∈ 2Ij, we have |y− cj| < |Ij |
2

and |x−y| > |x−cj |
2

. Therefore
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|y−cj |
|x−y||x−cj | <

|Ij |
|x−cj |2 . we have∫

R\2Ij
|Hbj(x)|dx ≤

∫
Ij

|bj(y)|

(∫
R\2Ij

|Ij|
|x− cj|2

dx

)
dy. (5.14)

Let 2Ij = (a, b) where a, b ∈ R with a < b. Then∫
R\2Ij

|Ij|
|x− cj|2

dx =

a∫
−∞

|Ij|
|cj − x|2

dx+

∞∫
b

|Ij|
|x− cj|2

=
|Ij|
cj − a

+
|Ij|
b− cj

=
|Ij|(b− a)

(cj − a)(b− cj)

= 2,

∫
R\2Ij

|Ij|
|x− cj|2

dx = 2. (5.15)

where the last inequality follows from the fact that (b − a) = 2|Ij| and

(cj − a) = (b− cj) = |Ij|. Therefore from Inequality (5.14), we get∫
R\2Ij

|Hbj(x)|dx ≤ 2

∫
Ij

|bj(y)|dy. (5.16)

Now note that∫
Ij

|bj(y)|dy =

∫
Ij

∣∣∣∣
(
f(y)− 1

|Ij|

∫
Ij

f(x)dx

)
χIj(y)

∣∣∣∣dy
≤
∫
Ij

|f(y)|dy +
∫
Ij

|f(y)|dy

= 2

∫
Ij

|f(y)|dy.

That is, using the above observation in Inequality (5.16) we get∫
R\2Ij

|Hbj(x)|dx ≤ 4

∫
Ij

|f(y)|dy.

Therefore
∞∑
j

∫
R\2Ij

|Hbj(x)|dx ≤ 4
∞∑
j=1

∫
Ij

|f(y)|dy

= 4

∫
∞⋃
j=1

Ij

|f(y)|dy
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≤ 4

∫
R

|f(y)|dy

= 4||f ||1.

So from (5.13)

|{x ∈ R : |Hb(x)| > λ/2}| ≤ 2

λ
||f ||1 +

8

λ
||f ||1 =

10

λ
||f ||1. (5.17)

Now by using Inequalities (5.9), (5.10) and (5.17) we have,

|{x ∈ R : |Hf(x)| > λ| ≤
(
8

λ
+

10

λ

)
||f ||1 =

18

λ
||f ||1.

This completes the proof of weak (1, 1) boundedness of the Hilbert Trans-

form.

2. We have shown that H is weak (1, 1) and strong (2, 2). Therefore by

Marcinkiewicz interpolation theorem we have strong (p, p) inequality for

1 < p < 2. Immediately we see that H can be extended to Lp(R) for

1 < p ≤ 2, and is in fact bounded. If p > 2, then p′ < 2 and we have

||Hf ||p = sup

{∣∣∣∣ ∫
R
Hf(x) · g(x)dx

∣∣∣∣ : ||g||p′ ≤ 1

}
.

Now by using part (3) of Lemma (5.3) we have

||Hf ||p = sup

{∣∣∣∣ ∫
R
f(x) ·Hg(x)dx

∣∣∣∣ : ||g||p′ ≤ 1

}
≤ ||f ||p sup{||Hg||p′ : ||g||p′ ≤ 1}

≤ Cp′ ||f ||p.

in the last inequality we have used the fact that H : Lp(R) −→ Lp(R) is

bounded for 1 < p ≤ 2.

Remark 5.2. Due to the strong (p, p) inequalities of the Hilbert transform ∀1 <

p < ∞ we can continuously extend H to Lp(R). We now see that it is also

possible when p = 1.

Let f ∈ L1(R) and (fn)n∈N be a sequence of functions in S(R) that converges
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to f in L1(R). By using weak (1, 1) inequality of H, we have for any ϵ > 0,

|{x ∈ R : |(Hfn −Hfm)(x)| > ϵ}| ≤ 1

ϵ
||fn − fm||1.

Since (fn)n∈N is Cauchy in L1(R), |{x ∈ R : |(Hfn − Hfm)(x)| > ϵ}| −→ 0 as

m,n −→ ∞. So, (Hfn)n∈N is Cauchy sequence in measure. Therefore (Hfn)n∈N

converges to a measurable function in measure which we define to be the Hilbert

transform of f . However, we do not claim that Hf ∈ L1(R) for f ∈ L1(R).

5.1.4 Pointwise convergence of truncated integrals

We have already seen that the definition of Hilbert transform can be extended

to the functions in Lp(R). However, this extension gives us no idea of point

evaluation of Hf as a function. Here we see that Equation (5.2) is true for

almost every x ∈ R for any f ∈ Lp(R). To this end, we notice that the function

1
y
χ{|y|>ϵ} ∈ Lq(R), for any 1 < q ≤ ∞. Hence the function

Hϵf(x) =
1

π

∫
|y|>ϵ

f(x− y)

y
dy, (5.18)

is well defined for any f ∈ Lp(R), when 1 ≤ p <∞. Now we see that(
1

y
χ{|y|>ϵ}

)̂
(ξ) = lim

N−→∞

∫
ϵ<|y|<N

e−2πiyξ

y
dy

= lim
N−→∞

∫
ϵ<|y|<N

sin(2πyξ)

y
dy

= −2isgn(ξ) lim
N−→∞

∫ 2πN |ξ|

2πϵ|ξ|

sin(t)

t
dt.

The last integral is uniformly bounded. We know that Hϵf =
(

1
y
χ{|y|>ϵ}

)
∗ f .

Hence using Plancheral theorem, strong (2, 2) inequality for Hϵ holds with the

constant independent of ϵ. We can also prove the weak (1, 1) inequality essentially

to the proof of Theorem 5.4.

Now we see that when f ∈ Lp(R), is fixed then the family (Hϵf) converges

to Hf in Lp(R) if p > 1 and in measure if p = 1. Indeed, if we fix a sequence
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(fn)n∈N ⊆ S(R) converging to f in Lp, then we have

||Hϵf −Hf ||p ≤ ||Hϵf −Hϵfn||p + ||Hϵfn −Hfn||p + ||Hfn −Hf ||p

≤ C||fn − f ||p + ||Hϵfn −Hfn||p + C||fn − f ||p.

Now, since fn ∈ S(R), we have,

Hfn −Hϵfn = lim
η−→0

∫
|y|>η

f(x− y)

y
dy −

∫
|y|>ϵ

f(x− y)

y
dy

= lim
η−→0

∫
η<|y|<ϵ

f(x− y)

y
dy

= lim
η−→0

∫
η<|y|<ϵ

f(x− y)− f(x)

|y|
dy,

where the last equality follows from the fact that∫
η<|y|<ϵ

1

y
dy = 0,∀η > 0.

∴ |Hfn −Hϵfn| ≤ lim
η−→0

∫
η<|y|<ϵ

|f(x− y)− f(x)|
|y|

dy

lim
η−→0

∫
η<|y|<ϵ

|y| sup
z∈(x−ϵ,x+ϵ)

|f ′(x)|

|y|
dy

= 2ϵ sup
z∈(x−ϵ,x+ϵ)

|f ′(z)|.

Particularly, for ϵ < 1, we have

sup
z∈(x−ϵ,x+ϵ)

|f ′(z)| ≤ sup
z∈(x−1,x+1)

|f ′(z)| ∈ S(R).

∴ ||Hfn −Hϵfn||pp =
∫
Rn

(2ϵ)p

(
sup

z∈(x−ϵ,x+ϵ)

|f ′(z)|

)p

dx

= (αϵ)p
∣∣∣∣∣∣∣∣ sup

z∈(x−ϵ,x+ϵ)

|f ′(z)|
∣∣∣∣∣∣∣∣p
p

.

That is

||Hϵf −Hf ||p ≤ C (||fn − f ||p + ϵ) .

Now, given η > 0, choose n0 ∈ N such that ||fn0 − f ||p < η
2(1+C)

and ϵ0 =
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1
1+C

min{1, η
2
}. Then, ∀0 < ϵ < ϵ0,

||Hϵf −Hf ||p < C

(
η

2(1 + C)
+

η

2(1 + C)

)
< η.

∴ lim
ϵ−→0

Hϵf = Hf in the Lp-norm.

Definition 5.2. Let f ∈ Lp(R). We define a maximal operator H∗ as

H∗f(x) = sup
ϵ>0

|Hϵf(x)|.

We want to show that H∗ is strong (p, p) for any ,1 < p <∞. To that end,

we need the following results.

Lemma 5.5. If f ∈ S(R) then H∗f(x) ≤ M(Hf)(x) + CMf(x) for some con-

stant C > 0, independent of f .

Proof. We show that for each ϵ > 0, Hϵ satisfies the inequality with a constant

independent of ϵ. Let φ ∈ S(R) be non-negative, even, decreasing on (0,∞),

supported on {x ∈ R : |x| ≤ 1
2
} with ||φ||1 = 1. Let φϵ(x) = ϵ−nφ(x/ϵ). Then,

1

y
χ{|y|>ϵ}(y) =

(
p.v.

1

x
∗ φϵ

)
(y) +

[
1

y
χ{|y|>ϵ}(y)−

(
p.v.

1

x
∗ φϵ

)
(y)

]
. (5.19)

Let us find a pointwise estimate for the term

[
1
y
χ{|y|>ϵ} −

(
p.v. 1

x
∗ φϵ

)
(y)

]
. It is

sufficient to find the estimate when ϵ = 1 since it is follows for any other ϵ by

dilation.

If |y| > 1, then,∣∣∣∣1y −
(
p.v.

1

x
∗ φ
)
(y)

∣∣∣∣ = ∣∣∣∣1y − lim
δ−→0

∫
|x|>δ

φ(x)

y − x
dx

∣∣∣∣.
Since φ is supported on {x ∈ R : |x| ≤ 1

2
}, we have∣∣∣∣1y −

(
p.v.

1

x
∗ φ
)
(y)

∣∣∣∣ = ∣∣∣∣1y −
∫
|x|< 1

2

φ(x)

y − x
dx

∣∣∣∣
=

∣∣∣∣ ∫
|x|< 1

2

(
1

y
− φ(x)

y − x

)
dx

∣∣∣∣
≤
∫
|x|< 1

2

φ(x)|x|
|y||y − x|

dx.

As |x| < 1
2
, we have∣∣∣∣1y −

(
p.v.

1

x
∗ φ
)
(y)

∣∣∣∣ ≤ 1

2y2

∫
|x|< 1

2

φ(x)

|1− x/y|
dx.
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Also since |x| < 1
2
, and |y| > 1, we have |x

y
| < 1

2
so |1− x/y| > 1

2
. Therefore,∣∣∣∣1y −

(
p.v.

1

x
∗ φ
)
(y)

∣∣∣∣ ≤ 2

2y2

∫
|x|< 1

2

φ(x)dx =
1

y2
,

since ||φ||1 = 1. That is, in this case,∣∣∣∣1yχ{|y|>ϵ} −
(
p.v.

1

x
∗ φϵ

)
(y)

∣∣∣∣ ≤ C

1 + y2
, (5.20)

for some different constant C. If |y| < 1, then,∣∣∣∣1yχ{|y|>1} − (p.v.
1

x
∗ φ)(y)

∣∣∣∣ = ∣∣∣∣− lim
δ−→0

∫
δ<|x|<2

φ(y − x)

x
dx+

∫
|x|>2

φ(y − x)

x

∣∣∣∣.
For |y| < 1 and |x| > 2 we have |y − x| > 1. Therefore φ(y − x) = 0. So,∫
|x|>2

φ(y−x)
x

= 0. Also
∫
|x|<2

1
x
dx = 0. Hence, using the mean value theorem, we

get ∣∣∣∣1yχ{|y|>1} − (p.v.
1

x
∗ φ)(y)

∣∣∣∣ = ∣∣∣∣ limδ−→0

∫
δ<|x|<2

φ(y − x)− φ(y)

x
dx

∣∣∣∣
=

∣∣∣∣ limδ−→0

∫
δ<|x|<2

φ
′
(ξ(x))dx

∣∣∣∣
=

∣∣∣∣ ∫
|x|<2

φ
′
(ξ(x))dx

∣∣∣∣
≤
∫
|x|<2

|φ′
(ξ(x))|dx

≤ C||φ′ ||∞.

Hence, in this case, we have∣∣∣∣1yχ{|y|>ϵ} −
(
p.v.

1

x
∗ ϕϵ

)
(y)

∣∣∣∣ ≤ C. (5.21)

Note that if |y| > 1 then 1
2
< y2

1+y2
< 1. Therefore we have C

y2
< 2C

1+y2
. For |y| < 1

we have 1 < 1 + y2 < 2 therefore 1
2
< 1

1+y2
. So, C < 2C

1+y2
. Therefore from

Inequality (5.21), we have,∣∣∣∣1yχ{|y|>ϵ} −
(
p.v.

1

x
∗ φϵ

)
(y)

∣∣∣∣ ≤ C

1 + y2
.

Now, from Equation (5.19), we arrive at

1

y
χ{|y|>ϵ} ≤

(
p.v.

1

x
∗ φϵ

)
(y) +

C

1 + y2
.

Now taking convolution with f , we get(
1

y
χ{|y|>ϵ} ∗ f

)
(x) ≤

((
p.v.

1

x
∗ φϵ

)
∗ f
)
(x) +

(
C

1 + y2
∗ f
)
(x). (5.22)
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Now, ((
p.v.

1

x
∗ φϵ

)
∗ f
)
(x) =

(
p.v.

1

x
∗ f ∗ φϵ

)
(x) = (Hf ∗ φϵ)(x).

By using Proposition 3.1, we have conclude∣∣∣∣ ((ϕϵ ∗ p.v.
1

x

)
∗ f
)
(x)

∣∣∣∣ ≤M(Hf(x)).

Also, we have, ∣∣∣∣ ( C

1 + y2
∗ f
)
(x)

∣∣∣∣ ≤ CMf(x).

Therefore from Inequality (5.22), we get

|Hϵf(x)| =
∣∣∣∣ (1

y
χ{|y|>ϵ} ∗ f

)
(x)

∣∣∣∣ ≤M(Hf(x)) + CMf(x).

This completes the proof.

We now ready to show that H∗ is bounded on Lp(R), for 1 < p <∞.

Theorem 5.6. The operator H∗ is strong (p, p) and weak (1, 1).

Proof. From Lemma 5.5, we get for 1 < p <∞,

||H∗f ||p ≤ ||M(Hf)||p + C||Mf ||p.

By using strong (p, p) boundedness of M and H, we get,

||H∗f ||p ≤ C||f ||p.

That is, H∗ is strong (p, p) where 1 < p <∞.

Now we show that H∗ is weak (1, 1). It is enough to consider f ≥ 0. For a fix

λ > 0, form the Calderón-Zygmund decomposition of f at height λ. Then we can

write f as

f = g + b = g +
∞∑
j=1

bj.

Where g and bj are as mentioned in Theorem 5.4. Now H∗f ≤ H∗g + H∗b.

Therefore we have

|{x ∈ R : H∗f(x) > λ}| ≤
∣∣∣∣{x ∈ R : H∗g(x) >

λ

2

}∣∣∣∣+ ∣∣∣∣{x ∈ R : H∗b(x) >
λ

2

}∣∣∣∣.
(5.23)

As H∗ is strong (2, 2), using an argument similar to that in the Theorem 5.4, we
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get ∣∣∣∣{x ∈ R : H∗g(x) >
λ

2

}∣∣∣∣ ≤ C
8

λ
||f ||1. (5.24)

Let Ij, 2Ij, Ω and Ω∗ are as in the Theorem 5.4. We get a similar inequality as

before from the Theorem 5.4. That is,

|{x ∈ R : |H∗b(x)| > λ/2}| ≤ 2

λ
||f ||1 + |{x ̸∈ Ω∗ : |H∗b(x)| > λ/2}| (5.25)

Now we estimate the second term of Inequality (5.25). To make the notation less

cumbersome, we replace λ
2
by λ and show that

|{x ̸∈ Ω∗ : |H∗b(x)| > λ}| ≤ C

λ
||f ||1. (5.26)

Let x ̸∈ Ω∗ be fixed and ϵ > 0. Then one of the following holds:

1. (x− ϵ, x+ ϵ) ∩ Ij = Ij;

2. (x− ϵ, x+ ϵ) ∩ Ij = ∅;

3. x− ϵ ∈ Ij or x+ ϵ ∈ Ij.

For case (1), if |y| > ϵ, then x − y > x + ϵ or x − y < x − ϵ. Therefore,

x− y ̸∈ (x− ϵ, x + ϵ). So x− y ̸∈ Ij. Since bj is supported on Ij, we must have

bj(x− y) = 0 on |y| > ϵ. Therefore

Hϵbj(x) =

∫
|y|>ϵ

bj(x− y)

y
dy = 0.

Now for the second case we show that Hbj = Hϵbj. If this is not true, then ∃η > 0

such that for any τ > 0, ∃ 0 < δ < τ ,∣∣∣∣Hϵbj −
∫
|y|>δ

bj(x− y)

y
dy

∣∣∣∣ > η.

Choosing τ = ϵ, we have∣∣∣∣Hϵbj −
∫
|y|>δ

bj(x− y)

y
dy

∣∣∣∣ = 0,

which is a contradiction! Therefore Hbj = Hϵbj, when (x − ϵ, x + ϵ) ∩ Ij = ∅.

Now we have

Hϵbj(x) =

∫
|y|>ϵ

bj(x− y)

y
dy.
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As |y| > ϵ and is supported on Ij, we have

Hϵbj(x) =

∫
Ij

bj(y)

x− y
dy.

Also,
∫
Ij
bj(y)dy = 0. So

Hϵbj(x) =

∫
Ij

(
bj(y)

x− y
− bj(y)

x− cj

)
dy.

Therefore,

|Hϵbj(x)| ≤
∫
Ij

∣∣∣∣ 1

x− y
− 1

x− cj

∣∣∣∣|bj(y)|dy. (5.27)

As |y − cj| < |Ij |
2

and |x− y| > |x−cj |
2

,

|Hϵbj(x)| ≤
∫
Ij

|Ij|
|x− cj|2

|bj(y)|dy =
|Ij|

|x− cj|2
||bj||1. (5.28)

For case (3), as x ̸∈ Ω∗, Ij ⊂ (x − 3ϵ, x + 3ϵ) can be shown with a figure, (see

above) and for all y ∈ Ij, |x− y| > ϵ
3
. Therefore,

|Hϵbj(x)| ≤
∫
Ij

|bj(y)|
|x− y|

dy ≤ 3

ϵ

∫ x+3ϵ

x−3ϵ

|bj(y)|dy. (5.29)

If we sum over all j′s , using Inequalities (5.28) and (5.29) we have,

|Hϵb(x)| ≤
∞∑
j=1

|Hϵbj(x)|

≤
∞∑
j=1

|Ij|
|x− cj|2

||bj||1 +
3

ϵ

∞∑
j=1

∫ x+3ϵ

x−3ϵ

|bj(y)| dy

For the first term of the above inequality, the sum runs over all j′s for which case

(2) holds. For the second term, sum is running over j′s for which case (3) holds.

Now by Equation (5.7) and the fact that (Ij)j∈N is a pairwise disjoint collection,

we have

|Hϵb(x)| ≤
∞∑
j=1

|Ij|
|x− cj|2

||bj||1 +
3

ϵ

∫ x+3ϵ

x−3ϵ

|b(y)| dy

Note that 1
6ϵ

∫ x+3ϵ

x−3ϵ
|b(y)|dy ≤ CMb(x) we have

|Hϵb(x)| ≤
∞∑
j=1

|Ij|
|x− cj|2

||bj||1 + CMb(x).

It follows from this that,

|{x ̸∈ Ω∗ : H∗b(x) > λ}|
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≤
∣∣∣∣{x ̸∈ Ω∗ :

∞∑
j=1

|Ij|
|x− cj|2

||bj||1 >
λ

2

}∣∣∣∣+ ∣∣∣∣{x ∈ R :Mb(x) >
λ

2C

}∣∣∣∣
≤ 2

λ

∫
R\Ω∗

∞∑
j=1

|Ij|
|x− cj|2

||bj||1 dx+
C

′

λ
||b||1.

The last inequality follows from the fact thatM is weak (1, 1). As R\Ω∗ ⊂ R\2Ij
we have,

|{x ̸∈ Ω∗ : H∗b(x) > λ}| ≤
∞∑
j=1

∫
R\2Ij

|Ij|
|x− cj|2

||bj||1 +
C

′

λ
||b||1.

From Equation (5.15) we get

|{x ̸∈ Ω∗ : H∗b(x) > λ}| ≤ 4

λ

∞∑
j=1

||bj||1 +
C

′

λ

∞∑
j=1

||bj||1

≤ C”

λ
||b||1 ≤

C

λ
||f ||1.

Therefore, ∣∣∣∣{x ̸∈ Ω∗ : H∗b(x) >
λ

2

}∣∣∣∣ ≤ C1

λ
||f ||1.

This completes the proof.

We have seen that if f ∈ Lp(R) then Hϵf converges to Hf in Lp norm. The

following theorem shows that, we also have pointwise convergence.

Theorem 5.7. Given f ∈ Lp(R), for 1 ≤ p <∞, we have

Hf(x) = lim
ϵ−→0

Hϵf(x) a.e x ∈ R. (5.30)

Proof. Since Hϵf converges to Hf in Lp(R), there exists a subsequence {Hϵkf}

such that Equation(5.30) holds. We only need to show that lim
ϵ−→0

Hϵf(x) ex-

ists for almost every x ∈ R. From Theorem 5.6, H∗ is weak (p, p) for 1 ≤

p < ∞. Therefore by using the Theorem 2.7 we have the set {f ∈ Lp(R) :

lim
ϵ−→0

Hϵf(x) exists a.e} is closed. For the functions in S(R) this limit exists al-

most everywhere. Therefore S(R) ⊆ {f ∈ Lp(R) : lim
ϵ−→0

Hϵf(x) exists a.e}. Since

S(R) is dense in Lp(R), we must have {f ∈ Lp(R) : lim
ϵ−→0

Hϵf(x) exists a.e } =

Lp(R).



CHAPTER 5. CALDERÓN-ZYGMUND THEORY 127

5.2 Calderón-Zygmund operator

Let us now observe a few things from our study of Hilbert transform. To show Lp

boundedness, it was enough to show L2 boundedness and weak (1, 1) inequality.

The desired result then followed by interpolation argument. For the L2 bounded-

ness of Hilbert transform, all that was needed was an observation about its Fourier

transform. On the other hand, for weak (1, 1) bound, Calderón-Zygmuund decom-

position together with certain properties of the function 1
x
, played an important

role.

In this section we pick up the study of general convolution type operator,

Tf = K ∗ f . Again our goal is to see if T is bounded on Lp(Rn). To this end,

we try to mimic the proof of boundedness of Hilbert transform. The conditions

required to do so are given in the next theorem.

Theorem 5.8 (Calderön-Zygmund). Let K be locally integrable function on Rn \

{0} such that its Fourier transform is a function on Rn, and

|K̂(ξ)| ≤ A.

Moreover, assume that there is some B > 0 such that for all y ∈ Rn, we have,∫
|x|>2|y|

|K(x− y)−K(x)| dx ≤ B. (5.31)

Then for any 1 < p <∞, we have a constant Cp > 0 such that ∀f ∈ Lp(Rn),

||K ∗ f ||p ≤ Cp||f ||p.

Further, we also have a constant C > 0 such that ∀f ∈ L1(Rn),

|{x ∈ Rn : |K ∗ f(x)| > λ}| ≤ C

λ
||f ||1.

Proof. Let f ∈ S(Rn), and let Tf = K ∗ f . First we show that T is bounded on

L2(Rn). Note that, since K̂(ξ) is bounded, using the Plancheral theorem, we get,

||Tf ||2 = ||K ∗ f ||2 = ||K̂ ∗ f ||2 = ||K̂(ξ)f̂(ξ)||2 ≤ A||f̂ ||2 = A||f ||2.

Next, we prove weak (1, 1) boundedness of T . As before we employ the Calderón-

Zygmund decomposition. Let λ > 0 be fixed and f ∈ L1(Rn) be positive. This
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gives a sequence of disjoint dyadic cubes {Qj}j∈N such that

f(x) ≤ λ for a.e. x ̸∈ Ω =
∞⋃
j=1

Qj,

|Ω| ≤ 1

λ
||f ||1, (5.32)

and

λ <
1

|Qj|

∫
Qj

f(x) dx ≤ 2nλ. (5.33)

Given this decomposition of Rn, we write f = g + b, where,

g(x) =


f(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

f(y)dy, if x ∈ Qj.

And,

b(x) =
∞∑
j=1

bj(x), (5.34)

where,

bj(x) =

(
f(x)− 1

|Qj|

∫
Qj

f(y)dy

)
χQj

(x).

We know that for almost every x ∈ Rn, we have

g(x) ≤ 2nλ. (5.35)

Also, we have that bj is supported on Qj and has zero integral. Using the linearity

of T we get,∣∣∣∣{x ∈ Rn : |Tf(x)| > λ

}∣∣∣∣ ≤ ∣∣∣∣{x ∈ Rn : |Tg(x)| > λ

2

}∣∣∣∣
+

∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣. (5.36)

From the L2-boundedness of T , we have∣∣∣∣{x ∈ Rn : |Tg(x)| > λ

2

}∣∣∣∣ ≤ (2

λ

)2 ∫
Rn

|Tg(x)|2 dx ≤ 4A

λ2

∫
Rn

|g(x)|2 dx

Using Inequality (5.35) we have∣∣∣∣{x ∈ Rn : |Tg(x)| > λ

2

}∣∣∣∣ ≤ 2n+2Aλ

λ2

∫
Rn

|g(x)| dx

≤ 2n+2A

λ

∫
Rn

|f(x)| dx.
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Last inequality follows from the fact that ||g||1 = ||f ||1. So we have

|{x ∈ Rn : |Tg(x)| > λ

2
}| ≤ 2n+2A

λ

∫
Rn

|f(x)| dx. (5.37)

Now let Q∗
j be the same center as Qj where sides are 2

√
n times larger and let

Ω∗ =
⋃
j∈N

Q∗
j .

Then,

|Ω∗| ≤ 2nnn/2|Ω| ≤ 2nnn/2

λ
||f ||1.

Now, ∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣
≤
∣∣∣∣{x ∈ Ω∗ : |Tb(x)| > λ

2
}|+ |{x ̸∈ Ω∗ : |Tb(x)| > λ

2

}∣∣∣∣
≤ |Ω∗|+

∣∣∣∣{x ̸∈ Ω∗ : |Tb(x)| > λ

2

}∣∣∣∣
≤ 2nnn/2

λ
||f ||1 +

2

λ

∫
Rn\Ω∗

|Tb(x)| dx

≤ 2nnn/2

λ
||f ||1 +

2

λ

∫
Rn\Ω∗

∞∑
j=1

|Tbj(x)| dx

≤ 2nnn/2

λ
||f ||1 +

2

λ

∞∑
j=1

∫
Rn\Ω∗

|Tbj(x)| dx

≤ 2nnn/2

λ
||f ||1 +

2

λ

∞∑
j=1

∫
Rn\Q∗

j

|Tbj(x)| dx

That is we get∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣ ≤ 2nnn/2

λ
||f ||1 +

2

λ

∞∑
j=1

∫
Rn\Q∗

j

|Tbj(x)| dx (5.38)

Now, we observe that

Tbj(x) = K ∗ bj(x) =
∫
Rn

K(x− y)bj(y) dy =

∫
Qj

K(x− y)bj(y) dy.

Here the last inequality follows from the fact that bj is supported on Qj. Now,

because bj has zero integral, we have∫
Qj

K(x− cj)bj(y) dy = 0,
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where cj is the center of the cube Qj. Therefore,

Tbj(x) =

∫
Qj

[K(x− y)−K(x− cj)]bj(y) dy.

This implies

|Tbj(x)| ≤
∫
Qj

|K(x− y)−K(x− cj)||bj(y)| dy.

Therefore,∫
Rn\Q∗

j

|Tbj(x)| dx ≤
∫
Rn\Q∗

j

∫
Qj

|K(x− y)−K(x− cj)||bj(y)| dy

 dx

=

∫
Qj

(∫
Rn\Qj

|K(x− y)−K(x− cj)| dx

)
|bj(y)| dy. (5.39)

It is easily seen that

Rn \Q∗
j ⊆ {x ∈ Rn : |x− cj| > 2|y − cj|}.

Hence, ∫
Rn\Qj

|K(x− y)−K(x− cj)| dx

≤
∫

|x−cj |>2|y−cj |

|K(x− y)−K(x− cj)| dx

≤
∫

|x−cj |>2|y−cj |

|K((x− cj)− (y − cj))−K(x− cj)| dx

≤ B

The last inequality follows from the Condition (5.31) in the hypothesis of the

theorem and a simple change of variable. Now from Inequality (5.39) we have,∫
Rn\Q∗

j

|Tbj(x)| dx ≤ B

∫
Qj

|bj(y)| dy.

Therefore from Inequality (5.38) we get∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣ ≤ 2nnn/2

λ
||f ||1 +

2B

λ

∞∑
j=1

∫
Qj

|bj(y)| dy. (5.40)
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Now, we see that∫
Qj

|bj(x)| dx ≤
∫
Qj

∣∣∣∣
f(x)− 1

|Qj|

∫
Qj

f(y) dy

χQj
(x)

∣∣∣∣ dx
≤
∫
Qj

|f(x)| dx+

 1

|Qj|

∫
Qj

|f(y)| dy

 |Qj|

≤ 2

∫
Qj

|f(y)| dy.

Using above observations in Inequality (5.40) we get∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣ ≤ 2nnn/2

λ
||f ||1 +

4B

λ

∞∑
j=1

∫
Qj

|f(y)| dy

≤
(
2nnn/2

λ
+

4B

λ

)
||f ||1.

Using the above inequality and Inequality (5.37) in Inequality (5.36) we conclude

that T is weak (1, 1). Note that we already proved that T is strong (2, 2). There-

fore by using Marcinkiewicz interpolation theorem, T is bounded on Lp(Rn), for

any 1 < p ≤ 2. To prove the result for p ≥ 2 we use a duality arguments. For

the same, let us first study the transpose of T. For f, g ∈ S(R), whence we can

use Fubini’s theorem, we have,∫
Rn

Tf(x)g(x) dx =

∫
Rn

∫
Rn

K(x− y)f(y) dy

 g(x) dx

=

∫
Rn

∫
Rn

K(x− y)g(x) dx

 f(y) dy

=

∫
Rn

∫
Rn

K̃(y − x)g(x) dx

 f(y) dy

=

∫
Rn

(
K̃ ∗ g

)
(y)f(y) dy,

where K̃(x) = K(−x). Therefore transpose of the operator T is T tg = K̃ ∗ g.

We show that K̃ satisfies the hypothesis given in the theorem. Since
̂̃
K =

˜̂
K, we
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have for all ξ ∈ Rn,

| ̂̃K(ξ)| = |K̂(−ξ)| ≤ A.

Also, ∫
|x|>2|y|

|K̃(x− y)− K̃(x)| dx =

∫
|x|>2|y|

|K(y − x)−K(−x)| dx

=

∫
|x|>2|y|

|K(x+ y)−K(x)| dx ≤ B.

Therefore from the observation above, T t is also bounded on Lp(Rn), for any

1 < p ≤ 2. Thus for p > 2, we have

||Tf ||p = sup

{∣∣∣∣ ∫
Rn

Tf(x)g(x) dx

∣∣∣∣ : ||g||p′ ≤ 1

}

= sup

{∣∣∣∣ ∫
Rn

f(x)T tg(x) dx

∣∣∣∣ : ||g||p′ ≤ 1

}
.

Using Hölder’s inequality, we get,

||Tf ||p ≤ sup

{
||f ||p||T tg||p′ : ||g||p′ ≤ 1

}
≤ ||f ||p sup

{
||T ||||g||p′ : ||g||p′ ≤ 1

}
≤ C||f ||p.

This completes the proof.

The Condition (5.31) known as Hörmander condition . It is to be noticed that

Hörmander condition is crucial to the proof of Theorem 5.8, while the condition

on Fourier transform of K for our boundedness result. It is the Hörmander

condition that gives way to the proof. This generalises the idea! If a convolution

type operator is known to be bounded, then the only condition we require is

the Hörmander condition. However, we observe that it has nothing to do with

convolution kernel! In fact, it can be written for function K(x, y) of two variables.

This observation motivates us to generalize convolution-type operator satisfying

the hypothesis of Theorem 5.8. Let us begin by formally defining a kernel. We

denote

∆ := {(x, x) ∈ (Rn × Rn)|x ∈ Rn}



CHAPTER 5. CALDERÓN-ZYGMUND THEORY 133

.

Definition 5.3 (Standard Kernel). A function K : (Rn × Rn) \ ∆ −→ C is a

standard kernel if there exists δ > 0 and C > 0 such that ∀(x, y) ∈ (Rn×Rn)\∆,

we have

|K(x, y)| ≤ C

|x− y|n
, (5.41)

|K(x, y)−K(x, z)| ≤ C
|y − z|δ

|x− y|n+δ
if |x− y| > 2|y − z|, (5.42)

|K(x, y)−K(w, y)| ≤ C
|x− w|δ

|x− y|n+δ
if |x− y| > 2|x− w|. (5.43)

Now we can define generalized Calderón-Zygmund operator in the following

way.

Definition 5.4 (Generalized Calderón-Zygmund Operator). An operator T is

generalized Calderón-Zygmund operator if

1. T is bounded on L2(Rn), and

2. there exists a standard kernel K such that for f ∈ L2(Rn) with compact

support, whenever x ̸∈ supp (f),

Tf(x) =

∫
Rn

K(x, y)f(y) dy.

Before we start studying the Lp-boundedness of Generalized Caldeón-

Zygmund operators, we consider the following easy result about their transpose.

It is helpful for the duality argument we wish to employ.

Lemma 5.9. Let T be a generalized Calderón-Zygmund operator with kernel

K. Then, its transpose T t is also a generalized Calderón-Zygmund operator with

kernel K̃. Here, we define K̃ (x, y) = K (y, x).

Proof. Since T is a Calderón-Zygmund operator, T is bounded on L2 (Rn). It is,

therefore, clear that T t is bounded on L2 (Rn). Now, suppose f, g ∈ L2 (Rn) are
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of compact supports such that supp (f) ∩ supp (g) = ∅. Then, we have,∫
Rn

f (x)T tg (x) dx =

∫
Rn

Tf (x) g (x) dx

=

∫
supp(g)

Tf (x) g (x) dx

=

∫
supp(g)

∫
Rn

K (x, y) f (y) dy

 g (x) dx

=

∫
Rn

f (y)

∫
Rn

K̃ (y, x) g (x) dx

 dy.

Now, fix g ∈ L2 (Rn) with compact support and x /∈ supp (g). We wish to show

that

T tg (x) =

∫
Rn

K̃ (x, y) g (y) dy.

For this, consider an approximation to identity {φϵ}ϵ>0, where supp (φϵ) ⊆

B (0, ϵ). For instance, one may consider the family defined in Example 2.1.

It is then clear that supp (τxφ̃ϵ) ⊆ B (x, ϵ), where τx is the translation by x

and φ̃ (z) = φ (−z). Since supp (g) is compact, there is some ϵ > 0 such that

supp (φϵ) ∩ supp (g) = ∅. Consequently, we have

T tg (x) = lim
ϵ→0

∫
Rn

φϵ (x− y)T tg (z) dz

= lim
ϵ→0

∫
Rn

φϵ (x− z)

∫
Rn

K̃ (z, y) g (y) dy

 dz

=

∫
Rn

K̃ (x, y) g (y) dy.

We now generalize Theorem 5.8 to certain operators.

Theorem 5.10. Let T be bounded operator on L2(Rn), and let K be a function on
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(Rn×Rn)\∆ such that if f ∈ L2(Rn) has compact support, then for x ̸∈ supp(f),

Tf(x) =

∫
Rn

K(x, y)f(y) dy.

Further, suppose K also satisfies∫
|x−y|>2|y−z|

|K(x, y)−K(x, z)| ≤ C (5.44)

and, ∫
|x−y|>2|x−w|

|K(x, y)−K(w, y)| ≤ C. (5.45)

Then T is weak (1, 1) and strong (p, p), for any 1 < p <∞.

Proof. With the help of similar arguments, as those used in the proof of Theorem

5.8, forming Calderön-Zygmund decomposition for function f at a height λ and

using the fact that T is bounded on L2(Rn), it can be proved that for the good

part we have ∣∣∣∣{x ∈ Rn : |Tg(x)| > λ

2

}∣∣∣∣ ≤ C

λ

∫
Rn

|f(x)| dx.

Similarly for the bad part, we have,∣∣∣∣{x ∈ Rn : |Tb(x)| > λ

2

}∣∣∣∣ ≤ 2nnn/2

λ
||f ||1 +

2

λ

∞∑
j=1

∫
Rn\Q∗

j

|Tbj(x)| dx.

Now we note that if x ̸∈ supp(bj) = Qj, we have

Tbj(x) =

∫
Rn

K(x, y)bj(y) dy =

∫
Qj

K(x, y)bj(y) dy.

Since bj has zero integral, we can write

Tbj(x) =

∫
Qj

(K(x, y)−K(x, cj))bj(y) dy.

Therefore,∫
Rn\Q∗

j

|Tbj(x)| dx =

∫
Rn\Q∗

j

∣∣∣∣ ∫
Qj

(K(x, y)−K(x, cj))bj(y) dy

∣∣∣∣ dx
≤
∫
Rn\Q∗

j

∫
Qj

|K(x, y)−K(x, cj)||bj(y)| dy dx

=

∫
Qj

|bj(y)|

(∫
Rn\Q∗

j

|K(x, y)−K(x, cj)|dx

)
dy.

Now, we know from the proof of the Theorem 5.8 that Rn \ Q∗
j ⊆ {x ∈ Rn :
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|x− cj| > 2|y − cj|}. Therefore, using condition (5.44), we have∫
Rn\Q∗

j

|K(x, y)−K(x, cj)|dx ≤ C.

Hence, ∫
Rn\Q∗

j

|Tbj(x)| dx ≤ C

∫
Qj

|bj(y)| dy.

The rest of the arguments to prove T is weak (1, 1) are verbatim to the proof of

Theorem 5.8.

It is given that T is strong (2, 2). Therefore by Marcinkeicz Interpolation theorem

T is strong (p, p) for 1 < p ≤ 2. To prove T is strong (p, p) for p > 2, we use the

duality argument. From Lemma 5.9, we know that T t is a generalized Calderón-

Zygmund operator with kernel K̃. From Condition (5.45), we have,∫
|x−y|>2|x−w|

|K̃(y, x)− K̃(y, w)| dy =

∫
|x−y|>2|x−w|

|K(x, y)−K(w, y)| dy ≤ C.

Therefore K̃ satisfies the condition (5.44) and hence T t is weak (1, 1). As T

is bounded on L2(Rn), T t is also bounded L2(Rn). Therefore by Marcinkeicz

Interpolation theorem T t is bounded on Lp(Rn), for 1 < p ≤ 2. Now the fact

that T is bounded on Lp(Rn) for p > 2 follows from duality arguments, used in

Theorem 5.8.

We now see that a standard kernel satisfies the hypotheses of Theorem 5.10.

Consequently generalized Calderon̈-Zygmund operator are weak (1, 1) and strong

(p, p) for any 1 < p <∞.

Lemma 5.11. A standard kernel K satisfies conditions (5.44) and (5.45).

Proof. We note that∫
|x−y|>2|y−z|

|K(x, y)−K(x, z)| dx ≤ C

∫
|x−y|>2|y−z|

|y − z|δ

|x− y|n+δ
dx

≤ C|y − z|δ
∫
Sn−1

∫
r>2|y−z|

rn−1dr

rn+δ
dσ

≤ C|y − z|δ|Sn−1|
∫
r>2|y−z|

dr

r1+δ
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= C.

Condition (5.45) is proved similarly.

Now we can prove the following important result.

Theorem 5.12. A generalized Calderón-Zygmund operator T is bounded on

Lp(Rn), for 1 < p <∞ and is weak (1, 1).

Proof. Note that, with the help of Lemma 5.11, it is clear that T satisfies all the

hypothesis of Theorem 5.10. That completes the proof.

5.3 Weighted inequalities for Calderón-

Zygmund operators

In this section we study the boundedness of (generalized) Calderön-Zygmund

operators on weighted Lp spaces. We keep our focus on Muckenhoupt weights,

which we have studied in Chapter 4. The following Lemma is crucial to us.

Lemma 5.13. If T is a Calderón-Zygmund operator, then for each s > 1, we

have,

M#(Tf)(x) ≤ CsM(|f |s)(x)1/s.

Proof. Fix s > 1 and x ∈ Rn. Let g be an arbitrary cube Q containing x. If we

can find a0 ∈ C, such that

1

|Q|

∫
Q

|Tf(y)− a0| dy ≤ CM(|f |s)(x)1/s, (5.46)

then by Proposition 3.11, we would have

1

2
||Tf ||∗ ≤ sup

Q
inf
a∈C

1

|Q|

∫
Q

|Tf(y)− a| dy ≤ CM(|f |s)(x)1/s.
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Now for such a cube let f1 = fχQ∗ . Where Q∗ = (4
√
n + 1)Q. We write f as

f = f1 + f2, and let a0 = Tf2(x). Then

1

|Q|

∫
Q

|Tf(y)− a0| dy =
1

|Q|

∫
Q

|Tf(y)− Tf2(x)| dy

=
1

|Q|

∫
Q

|Tf1(y) + Tf2(y)− Tf2(x)| dy

≤ 1

|Q|

∫
Q

|Tf1(y)| dy +
1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy.

Using Hölder inequality for exponent s and s′, we have

1

|Q|

∫
Q

|Tf1(y)| dy ≤

 1

|Q|

∫
Q

|Tf1(y)|s dy

1/s 1

|Q|

∫
Q

1s
′
dy

1/s′

=

 1

|Q|

∫
Q

|Tf1(y)|s dy

1/s

.

Since T is a Calderön-Zygmund operator, it is bounded on Ls(Rn). Therefore we

get

1

|Q|

∫
Q

|Tf1(y)| dy ≤ C

 1

|Q|

∫
Q

|f1(y)|s
1/s

≤ C

(4
√
n+ 1)n

|Q∗|

∫
Q∗

|f(y)|s dy

1/s

.

The last inequality follows from the fact that f1 = fχQ∗ . We also have

1

|Q∗|

∫
Q∗

|f(y)|s dy ≤M(|f |s)(x).

That is,
1

|Q|

∫
Q

|Tf1(y)| dy ≤ C(4
√
n+ 1)n/sM(|f |s)(x)1/s. (5.47)

Also because T is a Calderón-Zygmund operator there is some standard kernel

K such that

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy
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=
1

|Q|

∫
Q

∣∣∣∣ ∫
Rn

K(y, z)f2(z) dz −
∫
Rn

K(x, z)f2(z) dz

∣∣∣∣ dy.
Since f2 is supported on Rn \Q∗, we have,

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy ≤ 1

|Q|

∫
Q

(∫
Rn\Q∗

|K(y, z)−K(x, z)|f2(z) dz
)

dy.

Using the fact that K is a standard kernel, we get some δ > 0 such that, for

|x− z| > 2|x− y|,

|K(y, z)−K(x, z)| ≤ C
|y − x|δ

|x− z|n+δ
. (5.48)

We claim that Rn \Q∗ ⊆ {z ∈ Rn : |x− z| > 2|x− y|, for x, y ∈ Q}.

Suppose l be the length of each side of the cube Q. As x, y ∈ Q, 2|x−y| ≤ 2l
√
n.

Now if z ∈ Rn \Q∗ then 2l
√
n ≤ |x− z|. Hence for all x, y ∈ Q and z ∈ Rn \Q∗,

2|x− y| ≤ |x− z| (See Figure 5.1 ). This proves our claim.

Now, we get

1

|Q|

∫
Q

|Tf2(y)−Tf2(x)| dy ≤ C
1

|Q|

∫
Q

(∫
Rn\Q∗

|y − x|δ

|x− z|n+δ
|f(z)| dz

)
dy. (5.49)

Note that Rn\Q∗ ⊆
∞⋃
k=0

Ak where Ak := {z ∈ Rn : 2k2
√
nl < |x−z| < 2k+12

√
nl }.

Note that the sets Ak’s are disjoint. (See Figure 5.2 for the case when x is at one

of the corner point of Q.)

Therefore from Inequality(5.49), we arrive at

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy ≤ C
1

|Q|

∫
Q

 ∞∑
k=0

∫
Ak

|y − x|δ

|x− z|n+δ
|f(z)| dz

 dy.

For each k ∈ N ∪ {0}, we have Ak ⊆ Bk, where Bk = B(x, 2k+12l
√
n). As for

z ∈ Ak, |x− z| > 2k2l
√
n we have

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy ≤ C
1

|Q|

∫
Q

 ∞∑
k=0

∫
Bk

|y − x|δ

(2k2l
√
n)n+δ

|f(z)| dz

 dy.

Further, since x, y ∈ Q, |x− y| ≤ l
√
n < 2l

√
n. We have

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy
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x

y

z

2l
√
n

Q∗

Q

2l
√
n

Figure 5.1: Rn \Q∗ ⊆ {z ∈ Rn : |x− z| > 2|x− y|, for x, y ∈ Q}.

≤ C
1

|Q|

∫
Q

 ∞∑
k=0

∫
Bk

(2l
√
n)δ

(2k2l
√
n)n+δ

|f(z)| dz

 dy

= C
1

|Q|

∫
Q

 ∞∑
k=0

2n

(2k+12l
√
n)n2kδ

∫
Bk

|f(z)| dz

 dy

≤ C
2n

|Q|

∫
Q

 ∞∑
k=0

1

2kδ|Bk|

∫
Bk

|f(z)|dz

 dy
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Q

Q∗

x
2l
√
n

4l
√
n

Figure 5.2: A0 = {z ∈ Rn : 2l
√
n < |x− z| < 4l

√
n}

≤ C
2n

|Q|

∫
Q

Mf(x)

(
∞∑
k=0

1

2kδ

)
dy.

Here we have used that Hardy-Littlewood maximal function and non-centered

cubic maximal function are equivalent. We know the series
∞∑
k=0

1
2kδ

converges. So

we have

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy ≤ C
2n

|Q|

∫
Q

Mf(x) dy ≤ C2nMf(x). (5.50)

Using Hölder’s inequality, we get

Mf(x) = sup
Q∋x

1

|Q|

∫
Q

|f(y)| dy ≤M(|f |s)(x)1/s.
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Therefore from (5.50) we have

1

|Q|

∫
Q

|Tf2(y)− Tf2(x)| dy ≤ 2nCM(|f |s)(x)1/s. (5.51)

This completes the proof.

Lemma 5.14. Let w ∈ Ap, and 1 ≤ p0 ≤ p < ∞, and f ∈ Lp0(w) then for all

γ > 0 and λ > 0, there exists δ > 0, such that

w({x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}) ≤ Cγδw({x ∈ Rn :Mdf(x) > λ}).

Proof. We recall from Theorem 3.3 that {x ∈ Rn :Mdf(x) > λ} can be written

as disjoint union of dyadic cubes Q. Because of a similar argument, used in the

proof of Lemma 3.12, it is enough to show

w({x ∈ Q :Mdf(x) > 2λ,M#f(x) ≤ γλ}) ≤ Cγδw({x ∈ Q :Mdf(x) > λ}).

As w ∈ Ap, then by using A∞ condition, there exists δ > 0 such that, for any

measurable subset S of the cube Q, we have

w(S)

w(Q)
≤ C

(
|S|
|Q|

)δ

. (5.52)

Let S := {x ∈ Q : Mdf(x) > 2λ,M#f(x) ≤ γλ}. From Lemma 3.12 |S| ≤

2nγ|Q|. That is |S|
|Q| ≤ 2nγ. Therefore, from Inequality (5.52) we have

w(S)

w(Q)
≤ C(2nγ)δ.

Lemma 5.15. Let w ∈ Ap, and 1 ≤ p0 ≤ p <∞. If f is such thatMdf ∈ Lp0(w),

then ∫
Rn

|Mdf(x)|pw(x) dx ≤ C

∫
Rn

|M#f(x)|pw(x) dx.

Proof. For N ∈ N, consider

IN :=

N∫
0

pλp−1w({x ∈ Rn :Mdf(x) > λ}) dλ.

Note that for each N ∈ N,

IN =
p

p0

N∫
0

p0λ
p0−p0+p−1w({x ∈ Rn :Mdf(x) > λ}) dλ
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≤ pNp−p0

p0

N∫
0

p0λ
p0−1w({x ∈ Rn :Mdf(x) > λ}) dλ

≤ pNp−p0

p0
||Mdf ||p0Lp0 (w) <∞.

By doing a change of variable (λ = 2λ′ and writing the expression in terms of λ),

we get

IN = 2p
N/2∫
0

pλp−1w({x ∈ Rn :Mdf(x) > 2λ}) dλ. (5.53)

Since

{x ∈ Rn :Mdf(x) > 2λ} ⊆ {x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}

∪ {x ∈ Rn :M#f(x) > γλ},

Equation (5.53) becomes

IN ≤ 2p
N/2∫
0

pλp−1w({x ∈ Rn :Mdf(x) > 2λ,M#f(x) ≤ γλ}) dλ

+ 2p
N/2∫
0

pλp−1w({x ∈ Rn :M#f(x) > γλ}) dλ.

Now using Lemma 5.14 and similar arguments as in Lemma 3.12, desired result

is proved.

We now see a few preliminary properties of Calderön-Zygmund operator on

weighted Lp space. The results that follow lead us to weighted boundedness

of Calderön-Zygmund operator.

Lemma 5.16. If T is a Calderón-Zygmund operator, then for any w ∈ Ap, with

1 < p <∞, Tf ∈ Lp(w) for any compactly supported bounded function f .

Proof. Let w ∈ Ap be fixed and supp(f) ⊆ B(0, R). We observe that,∫
Rn

|Tf(x)|pw(x) dx =

∫
|x|<2R

|Tf(x)|pw(x) dx+
∫
|x|≥2R

|Tf(x)|pw(x) dx. (5.54)

Now for any ϵ > 0, as 1
1+ϵ

+ ϵ
1+ϵ

= 1, using Hölder’s inequality∫
|x|<2R

|Tf(x)|pw(x) dx
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≤
(∫

|x|<2R

w(x)1+ϵ dx

)1/(1+ϵ)(∫
|x|<2R

|Tf(x)|p(1+ϵ)/ϵ dx

)ϵ/(1+ϵ)

. (5.55)

By using reverse Hölder inequality we can choose ϵ0 > 0, such that the first

integral in the right hand side of the above inequality is finite. Note that q =

p(1+ϵ0)
ϵ0

> 1. Hence Tf ∈ Lq(Rn). Therefore the last integral in the right hand

side of Inequality (5.55), is also finite. That is,∫
|x|<2R

|Tf(x)|pw(x) dx <∞. (5.56)

Now to complete the proof, we show that other integral in Equation (5.54) is also

finite. Since T is a Calderön-Zygmund operator, there exists a standard kernel

K such that

Tf(x) =

∫
Rn

K(x, y)f(y) dy,

whenever x ̸∈ supp(f). As supp(f) ⊆ B(0, R), for any x ∈ Rn with |x| > 2R, we

have

|Tf(x)| =
∣∣∣∣ ∫
Rn

K(x, y)f(y) dy

∣∣∣∣ ≤ ∫
Rn

|K(x, y)f(y)| dy.

Since K is a standard kernel, |K(x, y)| ≤ C
|x−y|n for some C independent of x, y ∈

Rn. Moreover, since f is supported inside B(0, R), we have

|Tf(x)| ≤ C

∫
|y|<R

|f(y)|
|x− y|n

dy ≤ C||f ||∞
∫
|y|<R

dy

|x− y|n
. (5.57)

Now note that if |x| > 2R and |y| < R then |y|
|x| <

1
2
. This implies 1 − |y|

|x| >
1
2
.

Therefore,

|x− y| > | |x| − |y| | = |x|
∣∣∣∣ 1− |y|

|x|

∣∣∣∣ > |x|
2
.

From Inequality (5.57), we get

|Tf(x)| ≤ 2nC||f ||∞
∫
|y|<R

dy

|x|n
=

2nC||f ||∞
|x|n

|B(0, R)| = C

|x|n
.

Now, ∫
|x|>2R

|Tf(x)|pw(x) dx ≤ C

∫
|x|>2R

w(x)

|x|np
dx

=
∞∑
k=1

∫
2kR<|x|<2k+1R

w(x)

|x|np
dx
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≤ C
∞∑
k=1

(2kR)−np

∫
|x|<2k+1R

w(x) dx

= C
∞∑
k=1

(2kR)−npw
(
B(0, 2k+1R)

)
.

As w ∈ Ap, there exists q < p such that w ∈ Aq. By the Aq condition for any

measurable subset S of a cube Q, we have

w(Q)

(
|S|
|Q|

)q

≤ Cw(S).

This is true for balls also. Hence,

w(B(0, 2k+1R))

(
|B(0, 2kR)|
|B(0, 2k+1R)|

)q

≤ Cw
(
B(0, 2kR)

)
,

which implies

w(B(0, 2k+1R)) ≤ 2nqw
(
B(0, 2kR)

)
.

Applying the same inequality for the ball B(0, 2kR) and continuing this we get

w(B(0, 2k+1R)) ≤ 2(k+1)nqw (B(0, R)) .

That is, with a new constant C depending on n,R,w we have

w
(
B(0, 2k+1R)

)
≤ C2knq.

From the above observation, we have,∫
|x|>2R

|Tf(x)|pw(x) dx ≤ C
∞∑
k=1

(2kR)−np2knq = CR−np

∞∑
k=1

1

2kn(p−q)
.

As p > q the series
∞∑
k=1

1
2kn(p−q) <∞. Therefore,∫

|x|>2R

|Tf(x)|pw(x) dx <∞.

We are now ready to prove the main result of this section.

Theorem 5.17. If T is a Calderón-Zygmund operator, then for any w ∈ Ap,

1 < p <∞, T is bounded on Lp(w).

Proof. Let w ∈ Ap be fixed. It is enough to prove this result for compactly

supported bounded function because these functions are dence in Lp(w). By
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Corollary 2.7 we can find an s > 1 such that w ∈ Ap/s. Now by the Lebesgue

differentiation theorem, Tf(x) ≤Md(Tf)(x) for a.e. x ∈ Rn. Therefore,∫
Rn

|Tf(x)|pw(x) dx ≤
∫
Rn

|Md(Tf(x))|pw(x) dx. (5.58)

Using Lemma 5.16, Tf ∈ Lp(w) and hence Md(Tf) ∈ Lp(w). Thus from Lemma

5.15, we get ∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

|M#(Tf(x))|pw(x) dx.

Now, by using Lemma 5.13, we obtain∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

M(|f |s)(x)p/sw(x) dx.

As w ∈ Ap/s and M is bounded on Lp/s(w) we have∫
Rn

|Tf(x)|pw(x) dx ≤ C

∫
Rn

|f(x)|pw(x) dx.

Theorem 5.17 gives strong weighted boundedness of Calderón-Zygmund op-

erators for 1 < p < ∞. We now see the weak (1, 1) boundedness of Calderón-

Zygmund operator with respect to A1 weights.

Theorem 5.18. Let T be a Calderón-Zygmund operator and let w ∈ A1. Then,

for every f ∈ L1(Rn),

w({x ∈ Rn : |Tf(x)| > λ}) ≤ C

λ

∫
Rn

|f(x)|w(x) dx.

Proof. We form the Calderón -Zygmund decomposition of f at the height λ > 0.

This gives a sequence of disjoint dyadic cubes {Qj}j∈N such that

f(x) ≤ λ for a.e. x ̸∈ Ω =
∞⋃
j=1

Qj, (5.59)

|Ω| ≤ 1

λ
||f ||1, (5.60)

λ <
1

|Qj|

∫
Qj

f(x) dx ≤ 2nλ. (5.61)
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Given this decomposition of R, We write f = g + b where

g(x) =


f(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

f(y)dy, if x ∈ Qj.

And

b(x) =
∞∑
j=1

bj(x), (5.62)

where,

bj(x) =

(
f(x)− 1

|Qj|

∫
Qj

f(y)dy

)
χQj

(x).

We recall for almost every x ∈ Rn, we have

g(x) ≤ 2nλ. (5.63)

Further, we also have,

w({x ∈ Rn : |Tf(x)| > λ}) ≤ w

({
x ∈ Rn : |Tg(x)| > λ

2

})
+w

({
x ∈ Rn : Tb(x) >

λ

2

})
. (5.64)

First, we estimate the “good part”. We notice that

w({x ∈ Rn : |Tg(x)| > λ}) ≤
∫
Rn

|Tg(x)|2

λ2
w(x) dx.

As A1 ⊆ A2, and T is strong (2, 2) with w as a weight, we have,

w({x ∈ Rn : |Tg(x)| > λ}) ≤ C

λ2

∫
Rn

|g(x)|2w(x) dx. (5.65)

Note that for a particular j ∈ N,∫
Qj

|g(x)|w(x) dx ≤
∫
Qj

 1

|Qj|

∫
Qj

|f(y)| dy

w(x) dx

=
1

|Qj|

∫
Qj

|f(y)| dy
∫
Qj

w(x) dx

=

∫
Qj

|f(y)|w(Qj)

|Qj|
dy

=

∫
Qj

|f(y)|w(Qj)

|Qj|
dy.
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As w ∈ A1, for almost every x ∈ Qj, we have

w(Qj)

|Qj|
≤ Cw(x).

That is, ∫
Qj

|g(x)|w(x) dx ≤
∫
Qj

|f(y)|w(y) dy.

Now, ∫
Rn

|g(x)|w(x) dx =

∫
Rn\

⋃
j∈N

Qj

|g(x)|w(x) dx+
∫

⋃
j∈N

Qj

|g(x)|w(x) dx

=

∫
Rn\

⋃
j∈N

Qj

|f(x)|w(x) dx+
∑
j∈N

∫
Qj

|g(x)|w(x) dx

≤
∫
Rn\

⋃
j∈N

Qj

|f(x)|w(x) dx+
∑
j∈N

∫
Qj

|f(x)|w(x) dx

=

∫
Rn

|f(x)|w(x) dx

Using the above observation in Inequality (5.65) we have

w({x ∈ Rn : |Tg(x)| > λ}) ≤ 2nC

λ

∫
Rn

|f(x)|w(x) dx. (5.66)

Now we estimate the “bad part”. We denote by Q∗
j the cube with the same

centre cj (as that of Qj) whose sides are 2
√
n times longer. Then,

w({x ∈ Rn : Tb(x) > λ}) ≤ w

({
x ̸∈

⋃
j∈N

Q∗
j : |Tb(x)| > λ

})

+ w

({
x ∈

⋃
j∈N

Q∗
j : |Tb(x)| > λ

})

≤ w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) + w(

⋃
j∈N

Q∗
j) (5.67)

We can find a constant depending on n such that

w

(⋃
j∈N

Q∗
j

)
≤ C

∑
j∈N

w(Qj) = C
∑
j∈N

w(Qj)

|Qj|
|Qj|

Using Inequality (5.61), we get,

|Qj| ≤
1

λ

∫
Qj

|f(y)| dy.
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Therefore, we have the following

w

(⋃
j∈N

Q∗
j

)
≤ C

λ

∑
j∈N

w(Qj)

|Qj|

∫
Qj

|f(y)| dy =
C

λ

∑
j∈N

∫
Qj

|f(y)|w(Qj)

|Qj|
dy.

As w ∈ A1 we have

w

(⋃
j∈N

Q∗
j

)
≤ C

λ

∑
j∈N

∫
Qj

|f(y)|w(y) dy ≤ C

λ

∫
Rn

|f(y)|w(y) dy. (5.68)

Now using Inequality(5.68) in Inequality (5.67), we get

w({x ∈ Rn : Tb(x) > λ}) ≤ w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) + C

λ

∫
Rn

|f(y)|w(y) dy.

(5.69)

To estimate w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}), we notice that

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) ≤ C

λ

∫
Rn\

⋃
j∈N

Q∗
j

|Tb(x)|w(x) dx

≤
∫
Rn\

⋃
j∈N

Q∗
j

∞∑
j=1

|Tbj(x)|w(x) dx

=
∞∑
j=1

∫
Rn\

⋃
j∈N

Q∗
j

|Tbj(x)| dx.

As Rn \
⋃
j∈N

Q∗
j ⊂ Rn \Q∗

j we have the following

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) ≤

∞∑
j=1

∫
Rn\Q∗

j

|Tbj(x)|w(x) dx.

Note that bj ∈ L2(Rn) and it is supported on Qj. Therefore, there exists a

standard kernel K such that

w

({
x ̸∈

⋃
j∈N

Q∗
j : |Tb(x)| > λ

})
≤ C

λ

∞∑
j=1

∫
Rn\Q∗

j

w(x)

∣∣∣∣ ∫
Qj

K(x, y)bj(y) dy

∣∣∣∣ dx.
(5.70)

As bj has zero integral on Qj, from Inequality (5.70) we arrive at,

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ})

≤ C

λ

∞∑
j=1

∫
Rn\Q∗

j

w(x)

∣∣∣∣ ∫
Qj

[K(x, y)−K(x, cj)]bj(y) dy

∣∣∣∣ dx
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≤ C

λ

∞∑
j=1

∫
Rn\Q∗

j

w(x)

∫
Qj

|K(x, y)−K(x, cj)||bj(y)| dy dx.

By the use of Fubini’s theorem, we get

w({x ̸∈
⋃
j∈N

Q∗
j :|Tb(x)| > λ})

≤ C

λ

∞∑
j=1

∫
Qj

(∫
Rn\Q∗

j

w(x)|K(x, y)−K(x, cj)| dx

)
|bj(y)| dy.

(5.71)

Since K is a standard kernel, there is some C > 0 and δ > 0 such that for all

x ∈ Rn satisfying |x− y| > 2|y − cj|, we have

|K(x, y)−K(x, cj)| ≤
|y − cj|δ

|x− cj|n+δ
.

Therefore from Inequality (5.71), we have

w

({
x ̸∈

⋃
j∈N

Q∗
j : |Tb(x)| > λ

})

≤ C

λ

∞∑
j=1

∫
Qj

(∫
Rn\Q∗

j

w(x)
|y − cj|δ

|x− cj|n+δ
dx

)
|bj(y)| dy. (5.72)

If a be the length of the cube Qj and y ∈ Qj then |y − cj| ≤ a
√
n.∫

Rn\Q∗
j

w(x)
|y − cj|δ

|x− cj|n+δ
dx ≤

∫
Rn\Q∗

j

(a
√
n)δ

|x− cj|n+δ
w(x) dx.

Now let Bk := B(x, 2ka
√
n) and Ak := {x ∈ Rn : 2ka

√
n < |x− cj| < 2k+1a

√
n}.

Then, ∫
Rn\Q∗

j

w(x)
|y − cj|δ

|x− cj|n+δ
dx ≤

∞∑
k=0

(a
√
n)δ
∫
Ak

w(x)

|x− cj|n+δ
dx

≤ (a
√
n)δ

∞∑
k=0

∫
Bk

w(x)

(2ka
√
n)n+δ

dx

≤
∞∑
k=0

2na
√
n

(2k+1a
√
n)n+δ

∫
Bk

w(x) dx

≤ C2n
∞∑
k=0

1

2kδ|Bk|

∫
Bk

w(x) dx

≤ C2nMw(y)
∞∑
k=0

1

2kδ
.
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Note that the series appearing in the last inequality is convergent. Therefore

there is a constant C depending on n such that∫
Rn\Q∗

j

w(x)
|y − cj|δ

|x− cj|n+δ
dx ≤ CMw(x). (5.73)

Using Inequality (5.73) in Inequality (5.71) we get

w

({
x ̸∈

⋃
j∈N

Q∗
j : |Tb(x)| > λ

})
≤ C

λ

∞∑
j=1

∫
Qj

Mw(y)|bj(y)| dy.

As w ∈ A1, Mw(y) ≤ Cw(y) for a.e. y ∈ Rn. So the above inequality becomes

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) ≤ C

λ

∞∑
j=1

∫
Qj

w(y)|bj(y)| dy

≤ C

λ

∞∑
j=1

∫
Qj

w(y)|b(y)| dy

≤ C

λ

∫
Rn

w(y)|b(y)| dy.

Therefore we get

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) ≤ C

λ

∫
Rn

|b(y)|w(y) dy (5.74)

Now note that f = g+b. Therefore |b| ≤ |f |+|g|, which further implies |b| ≤ 2|f |,

because |g| ≤ |f |. Therefore from Inequality (5.74), we have

w({x ̸∈
⋃
j∈N

Q∗
j : |Tb(x)| > λ}) ≤ 2C

λ

∫
Rn

|f(y)|w(y) dy. (5.75)

Now combining Inequalities (5.66) and (5.75) and using them in Inequality (5.64),

we complete the proof!



CHAPTER 6

Littlewood-Paley Theory and Multipliers

The main aim of this chapter is to study multipliers on Lp-spaces. As discussed

earlier, multipliers are translation invariant operators that are well-behaved with

Fourier transform. We see that the study becomes a lot easier when we have

tools due to Littlewood and Paley. The two authors wished to derive certain

boundedness results for not just one functions, but rather a sequence of functions.

In their paper (see [18]), they get the results for functions defined on R using

complex analysis techniques.

However, the techniques of complex analysis are of no help in higher dimen-

sions! Keeping this in mind, Calderón with Benedek and Panzone ([1]), derived

the results for functions that take values in a Banach space. This approach led the

authors to easily generalize Littlewood and Paley’s work to higher dimensions.

Apart from the study of boundedness of certain linear operators, Littlewood-

Paley theory is also useful in the study of some exotic function spaces. We refer

the reader to [10] for further details on this topic.

152
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We are interested only from the viewpoint of boundedness of certain oper-

ators. We describe Calderón’s approach in the chapter. We start by generalizing

the Calderón-Zygmund theorem to Banach-valued functions.

6.1 Calderón-Zygmund Theorem for Banach-

Valued Functions

We begin by giving a vector valued analogue of the Calderón-Zygmund Theorem

(Theorem 5.10 in chapter 5). Let A and B be two Banach spaces and L(A,B) be

the space of all bounded linear operators from A to B. LetK be a function defined

from the set (Rn × Rn) \ △ to the space L(A,B), where ∆ := {(x, x) : x ∈ Rn}

is the diagonal of Rn × Rn. Let T be an operator such that for a compactly

supported function f ∈ L∞(Rn, A), we have

Tf(x) =

∫
Rn

K(x, y)f(y) dy,

whenever x ̸∈ supp(f).

Theorem 6.1. Let A and B be reflexive Banach spaces and T be an operator as

defined above, Let T : Lr(Rn, A) −→ Lr(Rn, B) be bounded for some 1 < r < ∞,

and the above mentioned function K satisfies the following two conditions:∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(A,B) dx ≤ C. (6.1)∫
|x−y|>2|x−w|

||K(x, y)−K(w, y)||L(A,B) dy ≤ C. (6.2)

Then the operator T is bounded from Lp(Rn, A) to Lp(Rn, B) for all 1 < p < ∞

and for p = 1 it is weak (1, 1).

Proof. Given f : Rn −→ A, a function φ : Rn −→ R is defined as φ(x) =

||f(x)||A. Now, we form the Calderoń-Zygmund decomposition at the height

λ > 0 for φ. Then we get a collection of dyadic cubes {Qj}j∈N. Then we have

φ(x) = φg(x) + φb(x),
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where

φg(x) =


φ(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

φ(y)dy, if x ∈ Qj.

And

φb(x) =
∞∑
j=1

φbj(x),

where

φbj(x) =

φ(x)− 1

|Qj|

∫
Qj

φ(y) dy

χQj
.

Let Ω =
⋃
j∈N

Qj. We recall that the following properties hold

|Ω| ≤ 1

λ
||φ||1, (6.3)

|φg(x)| ≤ 2nλ a.e x ∈ Rn, (6.4)

λ <
1

|Qj|

∫
Qj

φ(x) dx ≤ 2nλ. (6.5)

Now we write the function f as f = g + b, where

g(x) =


f(x), if x ̸∈

⋃
j

Qj.

1
|Qj |

∫
Qj

f(y)dy, if x ∈ Qj.

b =
∞∑
j=1

bj,

where,

bj(x) =

f(x)− 1

|Qj|

∫
Qj

f(y) dy

χQj
(x).

Here the integrals are understood in the Bochner sense. Note that if x ̸∈ Ω, then

||g(x)||A = ||f(x)||A = φg(x) ≤ 2nλ.

If x ∈ Qj then

||g(x)||A ≤ 1

|Qj|

∫
Qj

||f(x)||A dx =
1

|Qj|

∫
Qj

φ(x) dx ≤ 2nλ.
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Therefore for any x ∈ Rn,

||g(x)||A ≤ 2nλ. (6.6)

Also, we have ∫
Rn

bj(x) dx = 0.

First, we prove that T is weak (1, 1). Note that Tf(x) = Tg(x) + Tb(x). Then,

we have,

|{x ∈ Rn : ||Tg(x)||B > λ}| ≤ |{x ∈ Rn : ||Tg(x)||B > λ/2}|

+ |{x ∈ Rn : ||Tb(x)||B > λ/2}|.

(6.7)

Since the operator T is bounded from Lr(Rn, A) to Lr(Rn, B),

|{x ∈ Rn : ||Tg(x)||B > λ/2}| ≤ C
2r

λr

∫
Rn

||g(x)||rA dx.

Using the Inequality (6.4) we obtain

|{x ∈ Rn : ||Tg(x)||B > λ/2}| ≤ C
2(2nλ)r−1

λr

∫
Rn

||g(x)||A dx ≤ C

λ

∫
Rn

||f(x)||A dx.

(6.8)

Now let Q∗
j be a cube with same center as Qj and whose sides are 2

√
n times

larger, and let

Ω∗ :=
⋃
j∈N

Q∗
j .

Then, it is easy to see that |Ω∗| ≤ C|Ω|. Also, we have ||φ||1 = ||f ||L1(Rn,A). So

that by using Inequality (6.3), we get

|Ω∗| ≤ C

λ
||f ||L1(Rn,A)

where C depends only on ‘n’. Now,

|{x ∈ Rn : ||Tb(x)||B > λ/2}| ≤ |{x ∈ Ω∗ : ||Tb(x)||B > λ/2}|

+ |{x ̸∈ Ω∗ : ||Tb(x)||B > λ/2}|

≤ |Ω∗|+ |{x ̸∈ Ω∗ : ||Tb(x)||B > λ/2}|

≤ C

λ
||f ||L1(A) +

2

λ

∫
Rn\Ω∗

||Tb(x)||B dx.
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So we have

|{x ∈ Rn : ||Tb(x)||B > λ/2}| ≤ C

λ
||f ||L1(A) +

2

λ

∫
Rn\Ω∗

||Tb(x)||B dx. (6.9)

Now, To estimate the second term in the R.H.S of Inequality (6.9), we consider

the following∫
Rn\Ω∗

||Tb(x)||B dx ≤
∫

Rn\Ω∗

∞∑
j=1

||Tbj(x)||B dx =
∞∑
j=1

∫
Rn\Ω∗

||Tbj(x)||B dx.

Last equality is an easy consequence of Fubini’s theorem for a non-negative inte-

grand. We know that supp(bj) ⊆ Qj ⊆ Ω∗. Hence, from the definition of T , we

recall that ∫
Rn\Ω∗

||Tb(x)||B dx ≤
∞∑
j=1

∫
Rn\Ω∗

∣∣∣∣∣∣∣∣ ∫
Rn

K(x, y)bj(y) dy

∣∣∣∣∣∣∣∣
B

dx

=
∞∑
j=1

∫
Rn\Ω∗

∣∣∣∣∣∣∣∣ ∫
Qj

K(x, y)bj(y) dy

∣∣∣∣∣∣∣∣
B

dx.

Now, since Rn \ Ω∗ ⊆ Rn \Qj, we get∫
Rn\Ω∗

||Tb(x)||B dx ≤
∞∑
j=1

∫
Rn\Q∗

j

∣∣∣∣∣∣∣∣ ∫
Qj

K(x, y)bj(y) dy

∣∣∣∣∣∣∣∣
B

dx.

For z ∈ Rn with z ̸= x, we have
∫
Qj

K(x, z)bj(y) dy = 0. So, we can write∫
Rn\Ω∗

||Tb(x)||B dx ≤
∞∑
j=1

∫
Rn\Q∗

j

∣∣∣∣∣∣∣∣ ∫
Qj

[K(x, y)−K(x, z)]bj(y) dy

∣∣∣∣∣∣∣∣
B

dx

≤
∞∑
j=1

∫
Rn\Q∗

j

∫
Qj

||[K(x, y)−K(x, z)]bj(y)||B dy dx

≤
∞∑
j=1

∫
Rn\Q∗

j

∫
Qj

||K(x, y)−K(x, z)||L(A,B)||bj(y)||A dy dx

≤
∞∑
j=1

∫
Qj

∫
Rn\Q∗

j

||K(x, y)−K(x, z)||L(A,B)||bj(y)||A dy dx.

Now recall (Theorem 5.8, chapter 5) that Rn \Q∗
j ⊆ {x ∈ Rn : |x−y| > 2|y−z|}.
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Therefore by using Condition (6.1), we get∫
Rn\Ω∗

||Tb(x)||B dx ≤ C

∞∑
j=1

∫
Qj

||bj(y)||A dy. (6.10)

Now, we observe that∫
Qj

||bj(y)||A dy =

∫
Qj

∣∣∣∣∣∣∣∣
f(x)− 1

|Qj|

∫
Qj

f(y) dy

χQj
(x)

∣∣∣∣∣∣∣∣
A

dx

≤ 2

∫
Qj

||f(x)||A dx.

Using the above in Inequality (6.10), we get∫
Rn\Ω∗

||Tb(x)||B dx ≤ C
∞∑
j=1

∫
Qj

||f(x)||A dx ≤ C

∫
Rn

||f(x)||A dx = C||f ||L1(Rn,A).

Therefore from Inequality (6.9), we have

|{x ∈ Rn : ||Tb(x)||B > λ/2}| ≤ C

λ
||f ||L1(Rn,A) +

2C

λ
||f ||L1(Rn,A) =

C

λ
||f ||L1(Rn,A).

(6.11)

Therefore using Inequalities (6.11) and (6.8) in Inequality (6.7), we obtain,

|{x ∈ Rn : ||Tg(x)||B > λ}| ≤ C

λ
||f ||L1(Rn,A).

This proves that the operator T is weak (1, 1). As T is bounded from Lr(Rn, A)

to Lr(B) for some r > 1 by using Marcinkiewicz interpolation T is bounded from

Lp(Rn, A) to Lp(Rn, B) for all 1 < p ≤ r. For all p > r we use a duality argument.

As A is reflexive Lr′(Rn, A′) and (Lr(Rn, A))′ are isomorphic to each other. Now

let T t be the transpose of the operator T , so for any F ∈ Lr′(B′) and g ∈ Lr(A),

(T tF )(g) = F (Tg) =

∫
Rn

⟨F (x), T g(x)⟩ dx.

Now suppose supp (f) ∩ supp (g) = ∅, then we have∫
Rn

⟨F (x), T g(x)⟩ dx =

∫
Rn

〈
F (x),

∫
Rn

K(x, y)g(y) dy

〉
dx

=

∫
Rn

∫
Rn

⟨F (x), K(x, y)g(y)⟩ dy dx.
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Let Kt(x, y) be the transpose of the operator K(x, y). Then,∫
Rn

⟨F (x), T g(x)⟩ dx =

∫
Rn

∫
Rn

⟨Kt(x, y)F (x), g(y)⟩ dy dx.

Let K̃(x, y) = Kt(x, y). Therefore,∫
Rn

⟨F (x), T g(x)⟩ dx =

∫
Rn

〈∫
Rn

K̃(y, x)F (x) dx, g(y)

〉
dy.

Now using similar arguments as that in Lemma 5.9, we have

T tF (x) =

∫
Rn

K̃(x, y)F (y) dy.

At once we get, ∫
|x−y|>2|y−z|

||K̃(x, y)− K̃(x, z)||L(B′,A′) dx

=

∫
|x−y|>2|y−z|

||Kt(y, x)−Kt(z, x)||L(B′ ,A′ )dx

=

∫
|x−y|>2|y−z|

||K(y, x)−K(z, x)||L(A,B)dx.

By using Condition (6.2), we have∫
|x−y|>2|y−z|

||K̃(x, y)− K̃(x, z)||L(B′,A′) dx ≤ C.

So the operator T t is also weak (1, 1). As the operator T is bounded from

Lr(Rn, A) to Lr(Rn, B), T t is bounded from Lr′(B′) to Lr′(A′). Therefore by

Marcinkiewicz interpolation theorem T t is bounded from Lp(B′) to Lp(A′) for

1 < p < r′. Now suppose p > r. Then p′ < r′, and

||Tf ||Lp(B) = sup

{∣∣∣∣ ∫
Rn

⟨G(x), T f(x)⟩ dx
∣∣∣∣ : ||G||Lp′ (Rn.B) ≤ 1

}
= sup

{∣∣∣∣ ∫
Rn

⟨T tG(x), f(x)⟩ dx
∣∣∣∣ : ||G||Lp′ (Rn,B) ≤ 1

}
= sup

{
||T tG||Lp′ (Rn,A′)||f ||Lp(Rn,A) : ||G||Lp′ (Rn,B′) ≤ 1

}
≤ ||f ||Lp(Rn,A) sup

{
||T t||||G||Lp′ (Rn,A′) : ||G||Lp′ (Rn,B′) ≤ 1

}
≤ C||f ||Lp(A).
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Hence the result.

Now we see a few applications of the vector valued analogue of the Calderón-

Zygmund theorem. In this section we mainly focus on some important inequalities

of some vector valued operators. These inequalities are often used in upcoming

sections.

Theorem 6.2. Let T be a convolution operator with kernel K, which is bounded

on L2(Rn). Assume that the kernel K satisfies the Hörmander condition,∫
|x|>2|y|

|K(x− y)−K(x)| dx ≤ C.

Then for any 1 < r, p <∞ we have,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

p

.

Moreover, for p = 1,∣∣∣∣{x ∈ Rn :

(
∞∑
j=1

|Tfj|r
)1/r

> λ

}∣∣∣∣ ≤ Cr

λ

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

1

.

Proof. To prove the result we show that the vector-valued operator which as-

sociates to each sequence (fj)j∈N the sequence (Tfj)j∈N satisfies the hypothesis

of Theorem 6.1 with A = B = ℓr. If we denote the operator by τ then, using

Corollary 2.24, we have,

τ ((fi)i∈N) = (K ∗ fi)i∈N =

∫
Rn

K(x− y)fi(y) dy


i∈N

=

∫
Rn

(K(x− y)fi(y))i∈N dy

=

∫
Rn

K(x, y) (fi(y))i∈N dy,

where, K(x, y) = K(x− y)I and I is the identity operator on ℓr. First we prove

that τ is bounded on Lp(Rn, ℓr) when p = r.

||τ((fj)j∈N)||rr =
∫
Rn

(
∞∑
j=1

|Tfj(x)|r
)r/r

dx
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=

∫
Rn

∞∑
j=1

|Tfj(x)|r dx

=
∞∑
j=1

∫
Rn

|Tfj(x)|r dx.

In the last equality, we have employed Fubini’s theorem. From the hypothesis on

T , it is evident from the Calderón-Zygmund Theorem (Theorem 5.10, in chapter

5) that T is bounded on Lp(Rn), ∀p satisfying 1 < p <∞. Hence, we have,

||τ((fj)j∈N)||rr ≤ C

∞∑
j=1

∫
Rn

|fj(x)|r dx = C||(fj)j∈N||rr.

Now we notice ∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(ℓr,ℓr) dx

=

∫
|x−y|>2|y−z|

|K(x− y)−K(x− z)|||I||L(ℓr,ℓr) dx.

Taking x = x′ + y and z − y = y′, we get∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(ℓr,ℓr) dx =

∫
|x′|>2|y′|

|K(x′)−K(x′ − y′)| dx′ ≤ C.

Similarly, it can be shown that∫
|x−y|>2|x−w|

||K(x, y)−K(w, y)||L(ℓr,ℓr) dy ≤ C.

Hence the desired result follows directly by using Theorem 6.1.

Now we prove a matrix analogue of Theorem 6.2.

Theorem 6.3. Let T be as defined in Theorem 6.2. Then for any 1 < r < ∞

and p, 1 < p <∞.∣∣∣∣∣∣∣∣
(

∞∑
j,k∈Z

|Tfj,k|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j,k∈Z

|fj,k|r
)1/r ∣∣∣∣∣∣∣∣

p

.

Moreover, for p = 1,∣∣∣∣{x ∈ Rn :

(
∞∑

j,k∈Z

|Tfj,k|r
)1/r

> λ

}∣∣∣∣ ≤ Cr

λ

∣∣∣∣∣∣∣∣
(

∞∑
j,k∈Z

|fj,k|r
)1/r ∣∣∣∣∣∣∣∣

1

.
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Proof. As in the previous theorem, the operator τ is defined in the following way

τ ((fj,k)j,k∈Z) =

∫
Rn

K(x, y) ((fj,k(y))j,k∈Z) dy.

Here K(x, y) = K(x− y)I, where I is the identity operator on ℓr(Z× Z). With

exactly the same reasoning as in Theorem 6.2, it can be shown that τ is bounded

on Lr (Rn, ℓr(Z× Z)). Again, using a similar argument as in Theorem 6.2, we see∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(ℓr(Z×Z),ℓr(Z×Z)) dx

=

∫
|x′|>2|y′|

|K(x′)−K(x′ − y′)| dx′ < C.

Finally, from Theorem 6.1, we conclude the result.

We now give a few applications of Theorem 6.2 and Theorem 6.3. The

results discussed below are useful in our study of Littlewood-Paley Theory.

Corollary 6.4. Let {Ij}j∈N be a sequence of intervals on the real line, finite

or infinite, and let {Sj}j∈N be the sequence of operators defined by (Sjf )̂(ξ) =

χIj(ξ)f̂(ξ). Then for any 1 < r, p <∞,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Sjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

p

.

Proof. We recall from Chapter 5 that if Ij is the interval (aj, bj) for some aj < bj,

Then the operator Sj can be written as

Sj =
i

2

(
MajHM−aj −MbjHM−bj

)
,

where for any a ∈ R, Maf(x) = e2πiaxf(x) and H is the Hilbert transform. We

Notice that |Maf(x)| = |f(x)|,∀x ∈ R. Therefore,

|Sjfj(x)| ≤
1

2

(
|MajHM−ajfj(x)|+ |MbjHM−bjfj(x)|

)
=

1

2

(
|HM−ajfj(x)|+ |HM−bjfj(x)|

)
.

We know that the Hilbert transform is a Calderón-Zygmund operator of convo-
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lution type. Hence, by Theorem (6.2) we have ∀1 < p, r <∞,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|HM−ajfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

p

. (6.12)

Similarly, ∣∣∣∣∣∣∣∣
(

∞∑
j=1

|HM−bjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

p

. (6.13)

As we have already seen that

|Sjfj(x)| ≤
1

2

(
|HM−ajfj(x)|+ |HM−bjfj(x)|

)
.

Therefore, we get,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Sjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤
∣∣∣∣∣∣∣∣
(

∞∑
j=1

(
|HM−ajfj|+ |HM−bjfj|

)r)1/r ∣∣∣∣∣∣∣∣
p

.

Using the triangle inequality of ℓr and Lp(Rn), we arrive at∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Sjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤
∣∣∣∣∣∣∣∣
(

∞∑
j=1

|HM−ajfj|r
)1/r ∣∣∣∣∣∣∣∣

p

+

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|HM−bjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

.

By using Inequalities (6.12) and (6.13) we conclude∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Sjfj|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|r
)1/r ∣∣∣∣∣∣∣∣

p

.

The matrix valued analogue of Corollary 6.4 follows easily from the tech-

niques discussed above and Theorem 6.3. We do not include the proof here since

it is essentially verbatim to that of Corollary 6.4.

Corollary 6.5. Let {Ij} be a sequence of intervals on the real line, finite or infi-

nite, and let {Sj} be the sequence of operators defined by (Sjf )̂(ξ) = χIj(ξ)f̂(ξ).

Then for 1 < r, p <∞,∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|Sjfj,k|r
)1/r ∣∣∣∣∣∣∣∣

p

≤ Cp,r

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|fj,k|r
)1/r ∣∣∣∣∣∣∣∣

p

.

Until now we have seen a sequence of operators or a matrix -valued operator

(τ), associated to a nice bounded linear operator T : L2(Rn) −→ L2(Rn). Next,

we consider the case when we have a sequence {Tj}j∈N of “nice” operator. In the

result that follows, the Muckenhoupt class A2 plays an important role.
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Theorem 6.6. Let {Tj}j∈N be a sequence of linear operators that are bounded

on L2(w) for any w ∈ A2 with constants that are uniform in j and which depend

only on the A2 constant of w. Then for all 1 < p <∞, we have,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ C

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Proof. When p = 2, we have∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

2

=

∫
Rn

∞∑
j=1

|Tjfj(x)|2dx.

Since the integrand is non-negative, we can use Fubini’s theorem and obtain∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

2

=
∞∑
j=1

∫
Rn

|Tjfj(x)|2dx.

From the hypothesis of the theorem, the operators Tj are bounded on L2(w) space

for any w ∈ A2 with the constant uniform in j and since constant function 1 is

in A2, we get by an application of Fubini’s theorem,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

2

≤ C
∞∑
j=1

∫
Rn

|fj(x)|2dx =

∫
Rn

∞∑
j=1

|fj(x)|2dx

= C

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣2

2

.

This prove the result when p = 2. For p > 2, we notice that∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

=

∫
Rn

(
∞∑
j=1

|Tjfj(x)|2
)p/2

dx

2/p

=

∣∣∣∣∣∣∣∣ ∞∑
j=1

|Tjfj|2
∣∣∣∣∣∣∣∣
p/2

.

By duality of Lp spaces, there exists a non-negative function u ∈ L(p/2)′(Rn) with

||u||L(p/2)′ (Rn) = 1 such that∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

=

∫
Rn

∞∑
j=1

|Tjfj(x)|2u(x) dx. (6.14)

Now if 0 < δ < 1 then M(u1/δ)δ ∈ A1, with the A1 constant depending only on δ.

As A1 ⊆ A2, M(u1/δ)δ ∈ A2. As u(x) ≤ (Mu1/δ(x))δ a.e x ∈ Rn, from Equation
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(6.14), we have∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

≤
∫
Rn

∞∑
j=1

|Tjfj(x)|2
(
Mu1/δ(x)

)δ
dx.

Now, using Fubini’s theorem, and the fact that all Tj’s are bounded on L2(w)

with constants uniform in j, we have∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

≤ C
∞∑
j=1

∫
Rn

|fj(x)|2
(
Mu1/δ(x)

)δ
dx

≤
∫
Rn

(
∞∑
j=1

|fj(x)|2
)(

Mu1/δ(x)
)δ

dx.

Now let us choose 0 < δ < 1 such that δ(p/2)′ > 1. Applying Hölder’s inequality

with exponents p/2 and (p/2)′ we have∫
Rn

(
∞∑
j=1

|fj(x)|2
)(

Mu1/δ(x)
)δ

dx

≤ C

∫
Rn

(
∞∑
j=1

|fj(x)|2
)p/2

dx

2/p∫
Rn

(
M(u1/δ)(x)

)δ(p/2)′
dx

1/(p/2)′

.

As M is bounded on Lδ(p/2)′(Rn),∫
Rn

(
∞∑
j=1

|fj|2
)(

Mu1/δ(x)
)δ

dx ≤ C

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

||u1/δ||δδ(p/2)′

=

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

· ||u||(p/2)′ .

Since ||u||δ(p/2)′ = 1, we have∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

≤ C

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

. (6.15)

This prove the theorem for p > 2. As Tj is bounded on L2(w), T t
j is also bounded

on L2(w). Therefore for p > 2, T t
j also satisfies Inequality 6.15. Using this fact

and Hölder’s inequality, we have for p < 2,∣∣∣∣∣∣∣∣
(

∞∑
j=1

|Tjfj|2
)1/2 ∣∣∣∣∣∣∣∣

p
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= sup

{∣∣∣∣ ∞∑
j=1

∫
Rn

Tjfj(x) · gj(x) dx
∣∣∣∣ : ∣∣∣∣∣∣∣∣

(
∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

= sup

{∣∣∣∣ ∞∑
j=1

∫
Rn

fj(x) · T t
j gj(x) dx

∣∣∣∣ : ∣∣∣∣∣∣∣∣
(

∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

≤ sup

{ ∞∑
j=1

∫
Rn

|fj(x)| · |T t
j gj(x)| dx :

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

≤ sup

{∫
Rn

∞∑
j=1

|fj(x)| · |T t
j gj(x)| dx :

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

≤ sup

{∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣

p

·
∣∣∣∣∣∣∣∣
(

∞∑
j=1

|T t
j gj|2

)1/2 ∣∣∣∣∣∣∣∣
p′
:

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

≤ Cp

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣

p

· sup
{∣∣∣∣∣∣∣∣

(
∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
:

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p′
≤ 1

}

≤ Cp

∣∣∣∣∣∣∣∣
(

∞∑
j=1

|fj|2
)1/2 ∣∣∣∣∣∣∣∣

p

.

This completes the proof!

6.2 Littlewood-Paley theory

Now we are ready to study boundedness results for certain vector-valued opera-

tors. The results so developed are of direct use in the study of multipliers. We

begin with the following construction.

For j ∈ Z, let ∆j = (−2j+1,−2j] ∪ [2j, 2j+1) and define an operator Sj as

(Sjf )̂(ξ) = χ∆j
(ξ)f̂(ξ),

where j ∈ Z. If f ∈ L2(R), then by using Plancharal theorem we have,∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣2

2

=

∫
R

∑
j∈Z

|Sjf(x)|2 dx

=
∑
j∈Z

∫
R

|Sjf(x)|2 dx
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=
∑
j∈Z

∫
R

|(Sjf )̂(ξ)|2 dξ

=
∑
j∈Z

∫
R

|χ∆j
(ξ)f̂(ξ)|2 dξ

=
∑
j∈Z

∫
∆j

|f̂(ξ)|2 dξ

=

∫
R

|f̂(ξ)|2 dξ

= ||f ||22.

So we have ∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

2

= ||f ||2. (6.16)

In this section our main aim is to prove Littlewood-Paley theorem which states

that

∣∣∣∣∣∣∣∣
(∑

j∈Z
|Sjf |2

)1/2 ∣∣∣∣∣∣∣∣
2

and ||f ||2 are comparable. We first consider the smooth

analogue of Sj. We start with ψ ∈ S(R), with 0 ≤ ψ ≤ 1, having support in

1/2 ≤ |ξ| ≤ 4, which is equal to 1 on 1 ≤ |ξ| ≤ 2. We define

ψj(ξ) = ψ(2−jξ)

and

(S̃jf )̂(ξ) = ψj(ξ)f̂(ξ). (6.17)

Note that by using the definitions of Sj and S̃j, we have

(SjS̃jf )̂(ξ) = χ∆j
(ξ)(S̃jf )̂(ξ) = χ∆j

(ξ)ψj(ξ)f̂(ξ)

Now, for ξ ∈ ∆j, ψj(ξ) = 1. Therefore

(SjS̃jf )̂(ξ) = χ∆j
(ξ)f̂(ξ) = (Sjf )̂(ξ).

That is, SjS̃j = Sj. Keeping the above construction in mind, we prove the

following result.

Theorem 6.7. For any 1 < p <∞, there exists a constant Cp > 0 such that for
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a f ∈ Lp(R), we have, ∣∣∣∣∣∣∣∣
(

∞∑
j=1

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp||f ||p. (6.18)

Proof. Let Φ ∈ S(R) be such that Φ̂ = ψ and let Φj(x) = 2jΦ(2jx). Then note

that

Φ̂j(ξ) = 2jΦ̂(2j·)(ξ) = Φ̂(ξ/2j) = ψ(ξ/2j) = ψj(ξ).

Therefore for f ∈ S(R)

(S̃jf )̂(ξ) = ψj(ξ)f̂(ξ) = Φ̂(ξ)f̂(ξ) = (Φj ∗ f )̂(ξ).

So, S̃jf = Φj ∗ f . To prove the theorem we have to show that the operator T

which maps a function f to the sequence
(
S̃jf
)
j∈Z

is bounded from Lp(R) to the

space Lp(R, ℓ2), for 1 < p <∞. Now

(Tf)(y) =
(
S̃jf
)
j∈Z

= (Φj ∗ f(y))j∈Z =

∫
R

Φj(x− y)fj(y) dy


j∈Z

=

∫
R

(Φj(x− y)f(y))j∈Z dy.

In the last equation, we have used Corollary 2.24. Let K : R×R −→ L(C, l2) be

the kernel of the operator T . Then K is defined in the following way

K(x, y)(z) = (Φj(x− y)z)j∈Z ,

where (x, y) ∈ R × R and z ∈ C. We show that the operator T satisfies all

the conditions of Theorem 6.2. First we note that T is bounded from L2(R) to

L2(R, ℓ2). Indeed,∣∣∣∣∣∣∣∣
(∑

j∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣2

2

=

∫
R

∑
j∈Z

|S̃jf(x)|2 dx

=

∫
R

∑
j∈Z

|(S̃jf )̂(ξ)|2 dξ

=

∫
R

∑
j∈Z

|ψj(ξ)|2|f̂(ξ)|2 dξ.

We claim that for any ξ ∈ R, at most three of ψj’s are non zero. To see this,

first we observe that for any ξ ∈ R there is a unique j(ξ) ∈ Z, such that |ξ| ∈
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[2j(ξ), 2j(ξ)+1). As for any j ∈ Z, support of ψj(ξ) is [2j−1, 2j+2), ψj(ξ) = 0 for

j < j(ξ)− 1 and j > j(ξ) + 1. Therefore,∣∣∣∣∣∣∣∣
(∑

j∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣2

2

=

∫
R

(
|ψj(ξ)−1(ξ)|2 + |ψj(ξ)(ξ)|2 + |ψj(ξ)+1(ξ)|2

)
|f̂(ξ)|2 dξ

≤ 3

∫
R

|f̂(ξ)|2 dξ = 3||f ||22.

Now we show that the kernel K satisfies Hörmander condition. That is,∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,ℓ2) dx ≤ C.

As ||K(x, y)||L(R,ℓ2) = || (Φj(x− y))j∈Z ||ℓ2 , we have the following.∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,ℓ2) dx

=

∫
|x−y|>2|y−z|

|| (Φj(x− y)− Φj(x− z))j∈Z ||ℓ2 dx.

Now doing a change of variable as we did in Theorem 6.2, we have∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,ℓ2) dx

≤
∫

|x|>2|y|

|| (Φj(x+ y)− Φj(x))j∈Z ||ℓ2 dx.

Hence, we observe that

||{Φj(x+ y)− Φj(x)}||l2 =

(∑
j∈Z

|Φj(x+ y)− Φj(x)|2
)1/2

≤

(∑
j∈Z

|y|2 sup
0≤t≤1

Φ′
j(x+ ty)|2

)1/2

≤ |y| sup
0≤t≤1

(∑
j∈Z

|Φj(x+ ty)|2
)1/2

.

So, we have∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,ℓ2) dx
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≤ |y|
∫

|x|>2|y|

sup
0≤t≤1

(∑
j∈Z

|Φj(x+ ty)|2
)1/2

dx. (6.19)

Now, since ℓ1 ⊆ ℓ2,(∑
j∈Z

|Φ′
j(x)|2

)1/2

≤
∑
j∈Z

|Φ′
j(x)| ≤

∑
j∈Z

22j|Φ′(2jx)|.

As Φ ∈ S(R), we have some C > 0 such that |Φ′(x)| ≤ C and |x|3|Φ′(x)| ≤

C, ∀x ∈ R. Therefore, we have,

|Φ′(x)| ≤ Cmin(1, |x|−3).

Now, for x ∈ R there is some i ∈ Z such that 2−i ≤ |x| < 2−i+1. Then,(∑
j∈Z

|Φ′
j(x)|2

)1/2

≤
∑
j<i

22j|Φ′(2jx)|+
∑
j≥i

22j|Φ′(2jx)|.

Note that when j < i we have |x| ≤ 2−i+1 ≤ 2−j. Therefore (2i|x|)−1 ≥ 1 and we

have ∑
j<i

22j|Φ′(2jx)| ≤ C
∑
j<i

22j = C22i ≤ C|x|−2.

Further when j ≥ i, then we have (2j|x|)−3 ≤ 1.∑
j≥i

22j|Φ′(2jx)| ≤ C
∑
j≥i

22j(2j|x|)−3 = C|x|−3
∑
j≥i

2−j = C2−i|x|−3 ≤ C|x|−2.

Therefore we can say that(∑
j∈Z

|Φ′
j(x)|2

)1/2

≤ C|x|−2.

From Inequality (6.19) we get∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,l2) dx ≤ C|y|
∫

|x|>2|y|

sup
0≤t≤1

1

|x+ ty|2
dx. (6.20)

For |x| > 2|y|, we have

|x+ ty| ≥ |x| − t|y| ≥ |x| − t
|x|
2

≥ |x| − |x|
2

=
|x|
2
.

Therefore,

sup
0≤t≤1

1

|x+ ty|2
≤ 4

|x|2
.
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So, from Inequality (6.20), we have∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)||L(R,l2) dx ≤ 4C|y|
∫

|x|>2|y|

1

|x|2
dx ≤ C.

The result now readily follows from Theorem 2.23.

Using the fact that SjS̃j = Sj, and using above theorem we can prove

Inequality (6.18), replacing S̃j by Sj. In fact, a stronger claim can be proved.

Theorem 6.8 (Littlewood-Paley). For any 1 < p < ∞, there exists positive

constants cp and Cp such that for all f ∈ Lp(R),

cp||f ||p ≤
∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp||f ||p.

Proof. From Equation (6.16) it is clear that the result holds for p = 2. Using

the identity SjS̃j = Sj and from Theorems 6.4 and 6.7 we get for 1 < p <∞,∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

=

∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjS̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp||f ||p.

Therefore, we have ∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp||f ||p. (6.21)

To prove the other inequality we first remark that, inner product on L2(R, ℓ2) is

defined as

⟨F,G⟩L2(R,ℓ2) =

∫
R

⟨F (x), G(x)⟩ℓ2 dx

Now, consider F = (Sjf)j∈Z and G = (Sjg)j∈Z, for f, g ∈ L2(R). Then from

Equation (6.16), and the Polarization identity, we have

⟨F,G⟩L2(R,ℓ2) =
1

4

(
||F +G||2L2(R,ℓ2) − ||F −G||2L2(R,ℓ2)

+i||F + iG||2L2(R,ℓ2) − i||F − iG||2L2(R,ℓ2)

)
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=
1

4

(
||f + g||22 − ||f − g||22 + i||f + ig||22 − i||f − ig||22

)
= ⟨f, g⟩L2(R).

That is, for any f, g ∈ L2(R), we have,∫
R

∑
j∈Z

Sjf(x)Sjg(x) dx =

∫
R

f(x)g(x) dx. (6.22)

Particularly, Equation (6.22) holds for all f, g ∈ S(R).

Now for p ̸= 2, we have the following for f ∈ S(R).

||f ||p = sup

{∣∣∣∣ ∫
R

f(x)g(x) dx

∣∣∣∣ : ||g||p′ ≤ 1, g ∈ S(R)
}

= sup

{∣∣∣∣ ∫
R

∑
j∈Z

Sjf(x)Sjg(x) dx

∣∣∣∣ : ||g||p′ ≤ 1, g ∈ S(R)
}

≤ sup

{∫
R

∑
j∈Z

|Sjf(x)||Sjg(x)| dx : ||g||p′ ≤ 1, g ∈ S(R)
}
.

By using Hölder’s inequality for the sum, we get

||f ||p

≤ sup

{∫
R

(∑
j∈Z

|Sjf(x)|2
)1/2(∑

j∈Z

|Sjg(x)|2
)1/2

dx : ||g||p′ ≤ 1, g ∈ S(R)
}

Further, from Hölder’s inequality for exponents p and p′ we have

||f ||p

≤ sup

{∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjg(x)|2
)1/2 ∣∣∣∣∣∣∣∣

p′
: ||g||p′ ≤ 1, g ∈ S(R)

}
.

Now by using Inequality (6.21), we have

||f ||p ≤
∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf(x)|2
)1/2 ∣∣∣∣∣∣∣∣

p

sup

{
C ′

p||g||p′ : ||g||p′ ≤ 1, g ∈ S(R)
}

≤ Cp

∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf(x)|2
)1/2 ∣∣∣∣∣∣∣∣

p

.

So, there is a constant cp such that∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≥ cp||f ||p. (6.23)
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We now wish to extend Theorems 6.7 and 6.8 to Rn. First we prove an analogue

of Theorem 6.7. Then we consider characteristic functions of products of dyadic

intervals on the coordinate axes and define an operator similar to Sj, but taking

functions defined on Rn as its input.

Theorem 6.9. Let ψ ∈ S(Rn) with ψ(0) = 0, let (Sjf )̂(ξ) = ψ(2−jξ)f̂(ξ). Then

for 1 < p <∞, there is a constant Cp > 0 such that ∀f ∈ Lp(Rn), we have∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp||f ||p. (6.24)

Furthermore if for all ξ ̸= 0 ∑
j∈Z

|ψ(2−jξ)|2 = C, (6.25)

then, we also have a constant C ′
p > 0 such that ∀f ∈ Lp(Rn).

||f ||p ≤ C ′
p

∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

. (6.26)

Proof. Note that as ψ ∈ S(Rn) and ψ(0) = 0,
∑
j∈Z

ψ(2−jξ) ≤ C. Therefore,

∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣2

2

=

∫
Rn

∑
j∈Z

|ψj(ξ)|2|f̂(ξ)|2 dξ

≤
∫
Rn

C|f̂(ξ)|2 dξ = C||f ||2.

Now following similar steps as in Theorem 6.7 we can prove Inequality (6.24). If

for all ξ ̸= 0 ∑
j∈Z

|ψ(2−jξ)|2 = C,

we have ∣∣∣∣∣∣∣∣
(∑

j∈Z

|Sjf |2
)1/2 ∣∣∣∣∣∣∣∣2

2

= C||f ||2.

Therefore with similar argument as in Theorem 6.8, we have for f, g ∈ S(Rn).∫
Rn

∑
j∈Z

Sjf(x)Sjg(x) dx = C

∫
Rn

f(x)g(x) dx.
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Now Inequality (6.26) follows from the last part stated in the last part of Theorem

6.8.

We now generalize Theorem 6.7 for functions in Lp(R, ℓ2). We keep the

same notations as in Theorem 6.7.

Lemma 6.10. For 1 < p < ∞, there exists a constant Cp > 0 such that for any

(fk)k∈Z ∈ Lp(R, ℓ2), we have,∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jfk|2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp

∣∣∣∣∣∣∣∣
(∑

k∈Z

|fk|2
)1/2 ∣∣∣∣∣∣∣∣

p

Proof. First we show that for p = 2, the operator (fk)k∈Z 7−→
(
S̃jfk

)
j,k∈Z

is

bounded. Using the Plancheral theorem, we have∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jfk|2
)1/2 ∣∣∣∣∣∣∣∣2

2

=
∑
j,k∈Z

∫
R

|S̃jfk(x)|2 dx

=

∫
R

∑
j,k∈Z

|(S̃jfk )̂(ξ)|2 dξ

=

∫
R

∑
j,k∈Z

|ψj(ξ)|2|f̂k(ξ)|2 dξ.

Now arguing as in Theorem 6.7, we get∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jfk|2
)1/2 ∣∣∣∣∣∣∣∣

2

≤ 3

∫
R

∑
k∈Z

|fk(ξ)|2 dξ = 3

∣∣∣∣∣∣∣∣
(∑

k∈Z

|fk|2
)1/2 ∣∣∣∣∣∣∣∣2

2

.

Let K : R × R −→ L (ℓ2, ℓ2(Z× Z)) be kernel of the operator (fk)k∈Z 7−→(
S̃jfk

)
j,k∈Z

. That is, for (x, y) ∈ R× R, we have

K(x, y) ((uk)k∈Z) = (Φj(x− y)uk)j,k∈Z .

Note that

||K(x, y) ((uk)k∈Z) ||2ℓ2(Z×Z) =
∑
j,k∈Z

|Φj(x− y)|2|uk|2

=
∑
j∈Z

|Φj(x− y)|2
∑
k∈Z

|uk|2

= || (Φj(x− y))j∈Z ||
2
ℓ2 || (uk)k∈Z ||

2
ℓ2 .
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Therefore

||K(x, y)|| = || (Φj(x− y))j∈Z ||ℓ2 .

By the exact same arguments as in Theorem 6.7, we see that K satisfies the

Hörmander condition ∫
|x−y|>2|y−z|

||K(x, y)−K(x, z)|| dx ≤ C.

The lemma now follows from Theorem 6.2.

We are now ready to state the Littlewood-Paley theorem for functions defined on

R2. To make the theorem less cumbersome, we make the following constructions

and notations here. Let f be a complex valued function defined on R2. Let us

define the operators (
S1
j f
)̂
(ξ1, ξ2) = χ∆j

(ξ1)f̂(ξ1, ξ2)

and (
S2
kf
)̂
(ξ1, ξ2) = χ∆k

(ξ2)f̂(ξ1, ξ2).

We use (f)x2(x1) = f(x1, x2) and fx1(x2) = f(x1, x2). If F1 is the one dimensional

Fourier transform, then

F1

(
S̃j(f)x2(·)

)
(ξ1) = ψ(2−jξ1)(̂f)x2(ξ1) = F1

(
S̃1
j f
)
(ξ1, x2).

Similar statement can be made about restriction of f to the second variable. We

now see that Lemma 6.10 also holds for functions of several variables where S̃j

acts only on one of the variables.

Lemma 6.11. There is a constant Cp > 0 such that ∀(fk)k∈Z ∈ Lp(R, ℓ2), we

have ∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp

∣∣∣∣∣∣∣∣
(∑

k∈Z

|fk|2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Proof. We notice that,∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp

∣∣∣∣∣∣∣∣
∫

R2

(∑
j,k∈Z

|S̃jf(x)|2
)p/2

dx

1/p
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=

∫
R

[ ∫
R

(∑
j,k∈Z

|S̃jf(x1, x2)|2
)p/2

dx1

]p/p
dx2

1/p

=

∫
R

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|(S̃jfk)x2(·)|2
)1/2 ∣∣∣∣∣∣∣∣p

p

dx2

1/p

=

∫
R

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃j(fk)x2(·)|2
)1/2 ∣∣∣∣∣∣∣∣p

p

dx2

1/p

.

As (fk)x2 is a one variable function, using Lemma 6.10 we have∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ Cp

∫
R

∣∣∣∣∣∣∣∣
(∑

k∈Z

|(fk)x2(·)|2
)1/2 ∣∣∣∣∣∣∣∣p

p

dx2

1/p

= Cp

∫
R2

(∑
k∈Z

|fk(x)|2
)p/2

1/p

dx

= Cp

∣∣∣∣∣∣∣∣
(∑

k∈Z

|fk|2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Theorem 6.12 (Littlewood-Paley in R2). Let 1 < p < ∞. Then there exist

positive constants cp and Cp such that ∀f ∈ Lp(R2), we have,

cp||f ||p ≤
∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ Cp||f ||p.

Proof. Note that S1
j = S1

j S̃
1
j . Therefore∣∣∣∣∣∣∣∣

(∑
j,k∈Z

|S1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

=

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S1
j S̃

1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

.

By using Theorem 6.5, we have∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S1
j S̃

1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ C

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

.

From Lemma 6.11 we obtain∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S̃1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ Cp

∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

.
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Finally, using Theorem 6.8 we arrive at∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ Cp||f ||p,

which proves ∣∣∣∣∣∣∣∣
(∑

j,k∈Z

|S1
jS

2
kf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ Cp||f ||p.

Now to prove other inequality we use the fact that∫
R2

f(x)g(x) dx =

∫
R2

∑
j,k∈Z

S1
jS

2
kf(x) · S1

jS
2
kg(x) dx,

for all f, g ∈ S(R2). Indeed this follows from the L2-estimate and the Polarization

identities of L2(R2) and L2(R2, ℓ2(Z×Z)). The result now follows from the duality

argument given in the proof of Theorem 6.8.

6.3 Multipliers

Suppose m ∈ L∞(Rn). We define an operator Tm on L2(Rn) by

T̂mf(ξ) = m(ξ)f̂(ξ). (6.27)

By Plancherel theorem, Tmf is well defined and bounded on L2(Rn). In fact we

have the following result.

Theorem 6.13. The operator Tm : L2(Rn) −→ L2(Rn) is bounded with operator

norm ||m||∞.

Proof. We notice that,

||Tmf ||2 = ||T̂mf ||2 = ||m(ξ)f̂(ξ)||2 = |m(ξ)|||f̂(ξ)||2 ≤ ||m||∞||f ||2.

Therefore Tm is bounded on L2(Rn) and ||Tm||2 ≤ ||m||∞. Now let ϵ > 0 and

let A be a subset of {x ∈ Rn : |m(x)| > ||m||∞ − ϵ} whose measure is finite and

positive. Let f ∈ L2(Rn) such that f̂ = χA. Now,

||Tmf ||22 = ||m(ξ)f̂(ξ)||22 =
∫
Rn

|m(ξ)|2|f̂(ξ)|2 dξ
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=

∫
A

|m(ξ)|2 dξ

≥ (||m||∞ − ϵ)2|A|

= (||m||∞ − ϵ)2||f ||22.

Since ϵ > 0 is arbitrary, we have ||Tm||2 ≥ ||m||∞. Therefore, ||Tm||2 = ||m||∞.

Definition 6.1. A function m ∈ L∞(Rn) is an Lp-multiplier if the operator Tm

is bounded on Lp(Rn).

Now let us see some examples of multipliers.

Example 6.1. We have seen that the Hilbert transform has the following ex-

pression

Ĥf(ξ) = −i sgn(ξ)f̂(ξ),

So, for f ∈ L2(R), m(ξ) = −i sgn(ξ) is a multiplier for the operator H. As we

have also seen that H is bounded on Lp(R) for 1 < p < ∞, m is a multiplier on

Lp(R) as well.

Definition 6.2. Let −∞ ≤ a < b ≤ ∞, we define ma,b(ξ) = χ(a,b)(ξ). We define

an operator Sa,b associated with this multiplier as

Ŝa,bf(ξ) = χ(a,b)(ξ)f̂(ξ).

We see that χ(a,b) is a multiplier on Lp(R) for any 1 ≤ p ≤ ∞. For the

same, let us first define modulations.

Definition 6.3 (Modulation). For a ∈ R, modulation by ‘a’ is the operator Ma

is defined as

Maf(x) = e2πiaxf(x).

Lemma 6.14. The multiplier of the operator iMaHM−a is sgn(ξ − a).

Proof. Using the definition of the operator Ma and the definition of Hilbert

transform we have the following

(MaHM−af )̂ (ξ) =
(
e2πia·HM−af

)̂
(ξ)
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= (HM−af(x))̂ (ξ − a)

= −i sgn(ξ − a)M̂−af(ξ − a)

= −i sgn(ξ − a)f̂(ξ).

Therefore the multiplier of the operator iMaHM−a is sgn(ξ − a).

Using Lemma 6.14 we get an equivalent expression for the operator Sa,b in terms

of Hilbert transform.

Theorem 6.15. On L2(R) the operator Sa,b can be written as

Sa,b =
i

2
(MaHM−a −MbHM−b) ,

provided −∞ < a < b <∞. In the other cases, we have,

S−∞,b = I +
i

2
MbHM−b, for b <∞.

Sa,∞ =
i

2
MaHM−a + I, for a > −∞.

S−∞,∞ = I.

Here, I is the identity operator on L2 (Rn).

Proof. We notice from Lemma 6.14 that

Ŝa,bf(ξ) = χ(a,b)(ξ)f̂(ξ)

=
1

2
(sgn(ξ − a)− sgn(ξ − b)) f̂(ξ)

=
i

2
(MaHM−af −MbHM−bf )̂ (ξ).

Now, let us assume that b = ∞. We notice that

χa,∞(ξ)f̂(ξ) =

0 if ξ ≤ a.

f̂(ξ) if ξ > a.

Therefore we can write the following

̂(Sa,∞f)(ξ) = χa,∞(ξ)f̂(ξ)

=
1

2

(
sgn(ξ − a)f̂(ξ) + f̂(ξ)

)
=
i

2
(MaHM−af)

∧ + f̂(ξ).
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Therefore we have

Sa,∞ =
i

2
MaHM−a + I.

The proof for the case S−∞,b is similar. The last case when a = −∞ and b = −∞,

since χ(−∞,∞) ≡ 1.

Theorem 6.16. The operator Sa,b is bounded on Lp(R), where 1 < p <∞.

Proof. First we see that Ma is an isometry on Lp(R). Indeed, we have

||Maf(x)||pp =
∫
R

|e2πiaxf(x)|p dx =

∫
R

|f(x)|p dx = ||f ||pp.

Therefore ||Ma|| = 1. Now using Theorem 6.15 and the fact that H is strong

(p, p) we have the following

||Sa,bf ||p ≤
1

2
(||MaH−af ||p + ||MbHM−b||p)

≤ 1

2
(||HM−af ||p + ||HM−b||p)

≤ Cp

2
(||M−af ||p + ||M−b||p)

≤ Cp||f ||p.

We have proved the case when −∞ < a < b < ∞. As the operators MaHM−a

and I are bounded, Sa,∞ is also bounded.

We next look at some consequence of the definition of multipliers. The

following result gives a way to generate “new” multipliers from a given multiplier.

Proposition 6.17. If m is a multiplier on Lp(Rn), then the functions defined by

1. m(ξ + a), for a ∈ Rn;

2. m(λξ), for λ > 0; and

3. m(ρξ), for ρ ∈ O(n) (orthogonal group),

are multipliers on Lp(Rn) with the same norm as that of m.
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Proof. We begin by studying translation of m.

Let m
′
(ξ) = m(ξ − a). It is clear that m′ ∈ L∞(Rn), for a fixed a ∈ Rn.

Then, by definition of a multipliers we have

(̂Tm′f)(ξ) = m
′
(ξ)f̂(ξ).

Therefore (̂Tm′f)(ξ + a) = m
′
(ξ + a)f̂(ξ + a) = m(ξ)f̂(ξ + a). As ê2πia·f(ξ) =

f̂(ξ + a), we have

(̂Tm′f)(ξ + a) = m(ξ) ̂(e2πia·f)(ξ)

= m(ξ) ̂(Maf(x))(ξ)

= (Tm(Maf))̂ (ξ).

Therefore, (̂Tm′f)(ξ) = (Tm(Maf))̂ (ξ − a). Now using the properties of Fourier

transform we get

(̂Tm′f)(ξ) = ((M−aTmMa) (f))̂ (ξ).

Taking the inverse Fourier transform, we have

Tm′ =M−aTmMa. (6.28)

Similarly,

Tm =MaTm′M−a. (6.29)

As ||Ma|| = ||M−a|| = 1, on any Lp(Rn), we have from Equitation (6.28) and

(6.29) that ||Tm′ || ≤ ||Tm|| and ||Tm|| ≤ ||Tm′ ||. That is, m′ is an Lp-multiplier

with ||Tm′ || = ||Tm||.

Next, we consider dilations, m1(ξ) = m(λξ) for λ > 0. Again it is easy to see

that m1 ∈ L∞(Rn). Then, by definition, we have,

(̂Tm1f)(ξ) = m1(ξ)f̂(ξ).

Therefore,

(̂Tm1f)(ξ/λ) = m(ξ)f̂(ξ/λ)

We know that (λnf(λ·))̂ (ξ) = f̂(ξ/λ). Hence, we must have

(̂Tm1f)(ξ/λ) = m(ξ) (λnf(λ·))̂ (ξ).
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Let g(x) = λnf(λx). Then,

(̂Tm1f)(ξ/λ) = m(ξ)(̂g(x))(ξ) = (̂Tmg)(ξ).

Therefore,

(̂Tm1f)(ξ) = (̂Tmg)(λξ)

=
(
λ−nTmg(λ

−1·)
)̂

=
(
λ−nTm

(
λnf(λ−1λ·)

))̂
(ξ)

= (̂Tmf)(ξ).

Therefore we have Tm1f = Tmf . Clearly, m is an multiplier with ||Tm1||p =

||Tm||p.

Lastly we look at the action of the orthogonal group on multipliers. Let ρ ∈ O(n),

and m2(ξ) = m(ρξ). We have that m2 ∈ L∞(Rn) and

(̂Tm2f)(ξ) = m2(ξ)f̂(ξ).

Therefore,

(̂Tm2f)(ρ
−1ξ) = m(ξ)f̂(ρ−1·)(ξ)

= (̂Tmg)(ξ),

where g(x) = f(ρ−1x). Consider the map φ : O −→ GL(Lp(Rn)) defined by

φ(ρ)f(x) = f(ρ−1x). We wish that ∀ρ ∈ O(n), φ(ρ) : Lp(Rn) −→ Lp(Rn) is an

isometry. Indeed, we have

||φ(ρ)f ||pp =
∫
Rn

|f(ρ−1x)|p dx

=

∫
Rn

|f(x)|p dx = ||f ||pp.

That is for all ρ ∈ O(n), the operator norm ||φ(ρ)|| = 1, on any Lp(Rn).

Now, we have

(̂Tm2f)(ξ) = (̂Tmg)(ρξ)

= (Tmg(ρ·))̂ (ξ)

=
(
ϕ(ρ−1)Tmg(·)

)̂
(ξ)
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=
((
ϕ(ρ−1)Tmϕ(ρ)

)
f
)̂
(ξ).

Therefore Tm2 = ϕ(ρ−1)Tmϕ(ρ). This also gives Tm = (φ(ρ−1))−1Tm2(φ(ρ))
−1.

As φ(ρ) is an isometry on Lp(Rn), we have ||Tm|| ≤ ||Tm2 || and ||Tm2|| ≤ ||Tm||.

Hence m2 is an Lp-multiplier with ||Tm||p = ||Tm2||p.

6.3.1 The Hörmander multiplier theorem

In this section we deal with the space

L2
a(R2) := {g ∈ L2(R) : (1 + | · |2)a/2ĝ ∈ L2(Rn) ∈ L2(Rn)}.

This space is known as the Sobolev space of regularity ‘a’. The origin of Sobolev

spaces lies with the distribution theory, where we generalize the notion of classical

derivatives to functions that might not be continuous. For details on distribution

we refer to [23]. We would like to remark here that if g ∈ L2(Rn) is smooth and

a ∈ N is an even number, then we notice that (1 + || · ||2)a/2ĝ = ((I + ∆)a/2g)a,

where ∆ =
n∑

i=1

∂2

∂x2
i
is the Laplacian on Rn. Essentially, the Sobolev space L2

a(Rn)

consists of functions in L2(Rn) that are a times “differentiable” in some sense.

Similarly, we can define Sobolev spaces of Lp(Rn)-functions. However that is out

of scope of this thesis. For more details we refer the readers to [11]. The Sobolev

norm of the function g is defined by

||g||L2
a
=

∫
Rn

|(1 + |ξ|2)a/2ĝ(ξ)|2 dξ

1/2

.

We have the following easy result for Sobolev functions.

Proposition 6.18. If a > n/2 and g ∈ L2
a(Rn) then ĝ ∈ L1(Rn).

Proof. We have,∫
Rn

|ĝ(ξ)| dξ =
∫
Rn

(1 + |ξ|2)a/2ĝ(ξ)(1 + |ξ|2)−a/2 dξ

≤

∫
Rn

|(1 + |ξ|2)a/2ĝ(ξ)|2 d(ξ)

1/2∫
Rn

(1 + |ξ|2)−a dξ

1/2
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≤ Ca||g||L2
a
.

We see from the polar decomposition of Rn that∫
Rn

(1 + ||ξ||2)−a dξ = C

∞∫
0

rn−1

(1 + r2)a
dr <∞,

since the total power of r towards ∞ is n− 1− a < −1.

To prove the main result of this section we need to prove a weighted norm

inequality.

Lemma 6.19. Let m ∈ L2
a(Rn), a > n/2, and let λ > 0. Define the operator

(Tλf )̂(ξ) = m(λξ)f̂(ξ). Then for a positive function u defined in Rn, we have∫
Rn

|Tλf(x)|2u(x) dx ≤ C

∫
Rn

|f(x)|2Mu(x) dx,

where the constant C is independent of u and λ and M is the Hardy-Littlewood

maximal operator.

Proof. Let K ∈ L2(Rn) be such that K̂ = m then note that (1 + |x|2)a/2K(x) =

R(x) ∈ L2(Rn). We have (λ−nK(λ−1·))̂ = K̂(λ·) = m(λ·). Let K1 be such that

K1(x) = λ−nK(λ−1x). Therefore

(Tλf )̂(ξ) = K̂(λξ)f̂(ξ) = (K1 ∗ f )̂(ξ).

Therefore, we have,∫
Rn

|Tλf(x)|2u(x) dx

=

∫
Rn

|K1 ∗ f(x)|2u(x) dx

=

∫
Rn

∣∣∣∣ ∫
Rn

λ−nR(λ−1(x− y))

(1 + |λ−1(x− y)|2)a/2
f(y) dy

∣∣∣∣2u(x) dx
≤
∫
Rn

∫
Rn

|λ−nR(λ−1(x− y))|2 dy

∫
Rn

|f(y)|2

(1 + |λ−1(x− y)|2)a
dy

u(x) dx.

In the last Inequality, we have employed the Hölder inequality with p = p′ = 2.

||m||2L2
a
= λn

∫
Rn

|R(λ−1x)|2 dx.
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Therefore∫
Rn

|Tλf(x)|2u(x) dx ≤ λ−n||m||2L2
a

∫
Rn

∫
Rn

|f(y)|2

(1 + |λ−1(x− y)|2)a
dy

u(x) dx.

Since the integrand is non-negative by applying Fubini’s theorem, we obtain∫
Rn

|Tλf(x)|2u(x) dx ≤ λ−n||m||2L2
a

∫
Rn

∫
Rn

u(x)

(1 + |λ−1(x− y)|2)a
dx

 |f(y)|2 dy.

(6.30)

The inner integration can be written as∫
Rn

u(x)

(1 + |λ−1(x− y)|)a
dx = (φλ ∗ u)(y).

where, φ(x) = 1
1+|x|2 and φλ(x) = λ−nφ(λ−1x). Note the φ is positive, radial,

and decreasing (as a function on (0,∞)), and integrable. Therefore we have

|φ ∗ u(x)| ≤ ||φ||1Mu(x)

for a.e x ∈ Rn. Now, Inequality (6.30) gives∫
Rn

|Tλf(x)|2u(x) dx ≤ ||m||2L2
a

∫
Rn

||φ||1Mu(y)|f(y)|2 dy

≤ Ca||m||2L2
a

∫
Rn

|f(y)|2Mu(y) dy

= C

∫
Rn

|f(y)|2Mu(y) dy.

To prove Hörmander’s multiplier theorem, we require the following construction.

let ψ ∈ C∞(Rn) be a function which is radial and supported on the annulus

1/2 ≤ |ξ| ≤ 2 such that ∑
j∈Z

|ψ(2jξ)|2 = 1,

when ξ ̸= 0.

We now prove the main result of this section due to Hörmander (see [15]).

Theorem 6.20 (Hörmander). Let ψ be as defined above and let m be such that
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for some a > n/2,

sup
j∈Z

||m(2j·)ψ||L2
a
<∞.

Then the operator T associated with the multiplier m is bounded on Lp(Rn), for

any 1 < p <∞.

Proof. First define the family of operators {Sj}j∈Z by (Sjf )̂(ξ) = ψ(2−jξ)f̂(ξ).

Then by our choice of ψ, Inequality (6.26) holds. Now let ψ̃ ∈ C∞
c (Rn) be

supported on 1/4 ≤ |ξ| ≤ 4 and equal to 1 on 1/2 ≤ |ξ| ≤ 2. Now, let us define

S̃j by (S̃jf )̂(ξ) = ψ̃(2−jξ)f̂(ξ). Then note that

(SjS̃jf )̂(ξ) = ψ(2−jξ)ψ̃(2−jξ)f̂(ξ) = ψ(2−jξ)f̂(ξ) = (Sjf )̂(ξ).

Therefore SjS̃j = Sj. Note that the family
(
S̃j

)
j∈Z

satisfies Inequality (6.24).

Since (Sj)j∈Z satisfies Inequality (6.26), we have

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTf |2
)1/2 ∣∣∣∣∣∣∣∣

p

= C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjS̃jTf |2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Now we observe that

(S̃jTf )̂(ξ) = ψ̃(2−jξ)(Tf )̂(ξ) = ψ̃(2−jξ)m(ξ)f̂(ξ) = m(ξ)(S̃jf )̂(ξ) = (T S̃jf )̂(ξ).

Therefore we have,

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjT S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

. (6.31)

Let S̃jf = gj. Since the multiplier of the operator SjT is ψ(2−jξ)m(ξ), by the hy-

pothesis of this theorem and Lemma 6.19, there exists a constant C independent

of j such that for any positive u defined on Rn, we have,∫
Rn

|SjTgj(x)|2u(x) dx ≤ C

∫
Rn

|gj(x)|2Mu(x) dx. (6.32)

Now, for p > 2, we see that∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTgj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

=

∣∣∣∣∣∣∣∣∑
j∈Z

|SjTgj|2
∣∣∣∣∣∣∣∣
p/2

.

So there exists u ∈ L(p/2)′(Rn) with u ≥ 0 and ||u||(p/2)′ = 1, such that∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTgj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

=

∫
Rn

∑
j∈Z

|SjTgj(x)|u(x) dx.
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Using Inequality (6.32), we obtain∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTgj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

≤ C

∫
Rn

|gj(x)|2Mu(x) dx.

Now, applying Hölder’s Inequality for exponents p/2 and (p/2)′ and using the

fact that M is bounded on L(p/2)′(Rn), we have∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTgj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|gj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

||u||(p/2)′ ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|gj|2
)1/2 ∣∣∣∣∣∣∣∣2

p

.

From Inequality(6.31), we get,

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|gj|2
)1/2 ∣∣∣∣∣∣∣∣

p

= C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|S̃jf |2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Since the family
(
S̃j

)
j∈N

, satisfies Inequality (6.24) we have ||Tf ||p ≤ C||f ||p.

This completes the proof for p > 2. When p < 2, we use a duality argument. We

want to see the transpose of operator T . Notice that, for f, g ∈ S(Rn), using

duality of Fourier transform, we get,∫
Rn

Tf(x)g(x) d =

∫
Rn

Tf(x)ˆ̂g(−x) dx

=

∫
Rn

T̂ f(x)ĝ(−x) dx

=

∫
Rn

m(x)f̂(x)ĝ(−x) dx

=

∫
Rn

f̂(−x)m(−x)ĝ(x) dx

=

∫
Rn

f̂(−x)T̂ tg(x) dx

=

∫
Rn

ˆ̂
f(−x)T tg(x) dx

=

∫
Rn

f(x)T tg(x) dx.

Here transpose of operator T , is defined by

T̂ tg(x) = m(−x)ĝ(x).
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Therefore T t is also bounded for p > 2. Now for p < 2,

||Tf ||p = sup

{∣∣∣∣ ∫
Rn

Tf(x)g(x) dx

∣∣∣∣ : ||g||p′ ≤ 1

}
≤ sup{||f ||p||T tg||p′ : ||g||p′ ≤ 1}

≤ Cp||f ||p{||g||p′ : ||g||p′ ≤ 1}

≤ Cp||f ||p.

6.3.2 The Marcinkiewicz multiplier theorem

In this section, we study multipliers associated to dyadic intervals on R. The

theorem was originally due to Marcinkiewicz. Here, we follow the ideas of

Duoandikoetxea ([7]).

Theorem 6.21. Let m be a bounded function which has uniformly bounded vari-

ation on each dyadic interval in R. Then m is a multiplier on Lp(R), 1 < p <∞.

Proof. Let T be the operator associated with the multiplier m, i.e, (Tf )̂(ξ) =

m(ξ)f̂(ξ). Let Tj be the operator associated with the multiplier mχIj . We con-

sider the case Ij = (2j, 2j+1); The case when Ij = (−2j+1, 2j) can be handled in

exactly the same way. We do not provide the details of the latter case here. Note

that for ξ ∈ Ij, we have,

m(2j) +

ξ∫
2j

dm(t) = m(2j) +m(ξ)−m(2j) = m(ξ).

Therefore,

(mχIj)(ξ) = m(2j) +

ξ∫
2j

dm(t).

This gives

(mχIj)(ξ)f̂(ξ) = m(2j)χIj(ξ)f̂(ξ) +

ξ∫
2j

f̂(ξ) dm(t). (6.33)
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We claim that

Tjf(x) = m(2j)Sjf(x) +

2j+1∫
2j

St,2j+1f(x) dm(t), (6.34)

where (St,2j+1f )̂(ξ) = χ(t,2j+1)(ξ)f̂(ξ). To this end, we observe that
ξ∫

2j

f̂(ξ) dm(t) =

2j+1∫
2j

χ(2j ,ξ)(t)f̂(ξ) dm(t)

=

2j+1∫
2j

χ(t,2j+1)(ξ)f̂(ξ) dm(t)

=

2j+1∫
2j

(St,2j+1f )̂(ξ) dm(t).

We denote

(τf )̂(ξ) =

2j+1∫
2j

(St,2j+1f )̂(ξ) dm(t).

Now, considering f ∈ S(R), we can use Fubini’s theorem to get,

τf(x) =

∫
R

2j+1∫
2j

(St,2j+1f )̂(ξ) dm(t)eixξ dξ

=

2j+1∫
2j

∫
R

χ(t,2j+1)(ξ)f̂(ξ)e
ixξ dξdm(t)

=

2j+1∫
2j

∫
R

(St,2j+1f )̂(ξ)eixξ dξ dm(t)

=

2j+1∫
2j

St,2j+1f(x) dm(t).

Therefore by taking inverse Fourier transform both side in Equation (6.33) and

from the definition of Sj, Equation (6.34) is proved. Now we show that for any

w ∈ A2, Sj and St,2j+1 are bounded on L2(w). The operator Sj can be written as

Sj =
i

2
(M2jHM−2j −M2j+1HM−2j+1)

where for any a ∈ R, Maf(x) = e2πiaxf(x). We recall that the Hilbert Transform
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H, is a Calderón-Zygmund operator, and hence is bounded on L2(w), for any

w ∈ A2. Since ||Ma||L2(w) = 1, for any a ∈ R, the operator Sj is bounded on

L2(w), for any w ∈ A2. Similarly, St,2j+1 can be written as

St,2j+1 =
i

2
(MtHM−t −M2j+1HM−2j+1) .

Hence St,2j+1 is also bounded on L2(w) ∀w ∈ A2. Now, we have,∣∣∣∣∣∣∣∣
2j+1∫
2j

St,2j+1f dm(t)

∣∣∣∣∣∣∣∣
L2(w)

=

∫
R

∣∣∣∣
2j+1∫
2j

St,2j+1f(ξ)dm(t)

∣∣∣∣2w(ξ) dξ
1/2

.

Using Minkowski’s integral inequality, we have,∣∣∣∣∣∣∣∣
2j+1∫
2j

St,2j+1f(ξ) dm(t)

∣∣∣∣∣∣∣∣
L2(w)

≤
2j+1∫
2j

∫
R

|St,2j+1f(ξ)|2w(ξ) dξ

1/2

dm(t)

=

2j+1∫
2j

||St,2j+1f ||L2(w) dm(t).

As the operator St,2j+1 is bounded on L2(w) we obtain∣∣∣∣∣∣∣∣
2j+1∫
2j

St,2j+1f(ξ) dm(t)

∣∣∣∣∣∣∣∣
L2(w)

≤ C||f ||L2(w)

2j+1∫
2j

dm(t)

≤ CV (m)||f ||L2(w),

where V (m) is the total variation of m. Combining the above observations, we

get

||Tjf ||L2(w) ≤ |m(2j)|||Sjf ||L2(w) +

∣∣∣∣∣∣∣∣
2j+1∫
2j

St,2j+1f(ξ) dm(t)

∣∣∣∣∣∣∣∣
L2(w)

≤ C||m||∞||f ||L2(w) + CV (m)||f ||L2(w)

≤ C||f ||L2(w).

From Theorem 6.8, we have

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|SjTf |2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Hence, we observe that

(SjTf )̂(ξ) = χIj(ξ)m(ξ)f̂(ξ) = χIj(ξ)m(ξ)χIj(ξ)f̂(ξ)
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= χIj(ξ)m(ξ)(Sjf )̂(ξ) = (TjSjf )̂(ξ).

That is, SjT = TjSj. Therefore

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

j∈Z

|TjSjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

.

Since Tj is bounded on L2(w) for any w ∈ A2, from Theorem 6.6, we get∣∣∣∣∣∣∣∣
(∑

j∈Z

|TjSjf |2
)1/2 ∣∣∣∣∣∣∣∣

p

≤ C||f ||p.

This completes the proof.

We now generalize Theorem 6.21 to higher dimensions. We state the result only

for R2, where the notations are bit less cumbersome. The general case of Rn

follows in a similar fashion. For details, we refer the reader to [12] and [7].

Theorem 6.22. Suppose m is a bounded function on R2, twice differentiable in

each quadrant, such that

sup
j∈Z

∫
Ij

∣∣∣∣∂m∂t1 (t1, t2)
∣∣∣∣ dt1 <∞,

sup
j∈Z

∫
Ij

∣∣∣∣∂m∂t2 (t1, t2)
∣∣∣∣ dt2 <∞,

sup
j∈Z

∫
Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣dt1dt2 <∞,

where Ij is dyadic interval in R. Then m is a multiplier on Lp(R2), for any

1 < p <∞.

Proof. We restrict our attention to dyadic intervals in R+. That is we only

analyse the first quadrant of Rn. Other cases can be handled exactly similar way.

We take Ii = (2i, 2i+1) and Ij = (2j, 2j+1). Now, for a fixed (ξ1, ξ2) ∈ Ii × Ij. We

claim that

m(ξ1, ξ2) =

ξ1∫
2i

ξ2∫
2j

∂2m

∂t1∂t2
dt1 dt2 +

ξ1∫
2i

∂m

∂t1
(t1, 2

j) dt1
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+

ξ2∫
2j

∂m

∂t2
(2i, t2) dt2 +m(2i, 2j). (6.35)

Indeed, if (ξ1, ξ2) ∈ Ii × Ij, then
ξ1∫

2i

ξ2∫
2j

∂2m

∂2t1∂2t2
dt1 dt2 = m(ξ1, ξ2)−m(ξ1, 2

j)−
ξ2∫

2j

∂m

∂t2
(2i, t2) dt2,

and

ξ1∫
2i

∂m

∂t1
(t1, 2

j) dt1 = m(ξ, 2j)−m(2i, 2j).

By substituting the above observations in the RHS of (6.35) our claim is proved.

Now we consider the operators

(S1
Ii
f )̂(ξ) = χIj(ξ1)f̂(ξ),

(S2
Ij
)̂(ξ) = χIj(ξ2)f̂(ξ).

Then

(S1
Ii
S2
Ij
f )̂(ξ) = χIiξ1χIj(ξ2)f̂(ξ) = χIiχIj(ξ1, ξ2)f̂(ξ).

Now multiplying both sides of Equation (6.35) by χIi×Ij(ξ1, ξ2), we have

m(ξ1, ξ2)χIi×Ij =

∫
Ii

∫
Ij

χ(2i,ξ1)(t1)χ(2j ,ξ2)(t2)
∂2m

∂t1∂t2
dt1 dt2

+

∫
Ii

χ(2i,ξ1)(t1)
∂m

∂t1
(t1, 2

j) dt1 +

∫
Ij

χ(2j ,ξ2)(t2)
∂m

∂t2
(2i, t2) dt2

+m(2i, 2j)χIi×Ij(ξ1, ξ2).

Now multiplying both sides by f̂(ξ), we have

(Ti,jf )̂(ξ) =

∫
Ii×Ij

(
S1
t1,2i+1S2

t2,2j+1f
)̂
(ξ)

∂2m

∂t1∂t2
(t1, t2) dt1 dt2

+

∫
Ii

(
S1
t1,2i+1f

)̂
(ξ1)

∂m

∂t1
(t1, 2

i+1) dt1

+

∫
Ij

(
S1
t2,2i+1f

)̂
(ξ2)

∂m

∂t2
(t2j , 2

j+1) dtt2

+ (S1
i S

2
j f )̂(ξ)m(2i, 2j).
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Now taking inverse Fourier transform and arguing as in Theorem 6.21 we get,

(Ti,jf)(x) =

∫
Ii×Ij

(
S1
t1,2i+1S2

t2,2j+1f
)
(x)

∂2m

∂t1∂t2
(t1, t2) dt1 dt2

+

∫
Ii

(
S1
t1,2i+1f

)
(x)

∂m

∂t1
(t1, 2

i+1) dt1

+

∫
Ij

(
S1
t2,2i+1f

)
(x)

∂m

∂t2
(t2j , 2

j+1) dt2

+ (S1
i S

2
j f)(x)m(2i, 2j).

Now we want to show that the operator Ti,j is bounded on L2(w) space for any

w ∈ A∗
2. First we notice that(

S1
t,2i+1f

)̂
(ξ) = χt,2i+1(ξ1)f̂(ξ).

Therefore we can write∫
R2

S1
t,2i+1f(x)e−ixξ dx = χt,2i+1(ξ1)

∫
R2

f(x)e−ixξ dx.

This can be written as∫
R

∫
R

S1
t,2i+1f(x)e−ix1ξ1dx1e

−ix2ξ2dx2 = χt,2i+1(ξ1)

∫
R

∫
R

f(x)e−ix1ξ1dx1e
−ix2ξ2 dx2.

Equivalently,

F1

(
F1

(
S1
t,2i+1f(·, x2)(ξ1)

))
(ξ2) = F1

(
F1

(
χ(t,2i+1)(ξ1)f(·, x2)

)
(ξ1)

)
(ξ2),

where F1 denote the one dimensional Fourier transform. Equivalently,

F1

(
S1
t,2i+1f(·, x2)(ξ1)

)
= F1

(
χ(t1,2i+1)(ξ1)f(·, x2)

)
(ξ1).

We know that the one dimensional operator S1
t,2i+1 operator is bounded on L2(w)

space for any w ∈ A2(R). Now suppose w ∈ A∗
2. Then w(·, x2) ∈ A2(R) and

w(x1, ·) ∈ A2(R). Therefore,

||S1
t1,2i+1f ||L2(w) =

∫
R2

|S1
t1,2i+1f(x1, x2)|2w(x1, x2) dx

1/2

=

∫
R

∫
R

|S1
t1,2
f(x1, x2)|2w(x1, x2) dx1 dx2

1/2
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≤ C

∫
R

∫
R

|f(x1, x2)|2w(x1, x2) dx1 dx2

1/2

= C||f ||L2(w).

Similarly, S2
t2,2j+1 , S1

j and S
2
k operators are also bounded on L2(w), for any w ∈ A∗

2.

Using these facts we show that Ti,j is bounded on L2(w), for any w ∈ A∗
2. First

note that, using Minkowski’s integral inequality, we obtain,∣∣∣∣∣∣∣∣ ∫
Ii×Ij

(
S1
t1,2i+1S2

t2,2j+1f
)
(x)

∂2m

∂t1∂t2
(t1, t2) dt1 dt2

∣∣∣∣∣∣∣∣
L2(w)

=

∫
R2

∣∣∣∣ ∫
Ii×Ij

(
S1
t1,2i+1S2

t2,2j+1f
)
(x)

∂2m

∂t1∂t2
dt1 dt2

∣∣∣∣2w(x) dx


1/2

≤
∫

Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣
∫

R2

∣∣∣∣S1
t1,2i+1S2

t2,2j+1f(x)

∣∣∣∣2w(x) dx
1/2

dt1 dt2

=

∫
Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣
∫

R2

∣∣∣∣S1
t1,2i+1S2

t2,2j+1f(x)

∣∣∣∣2w(x1, x2) dx1 dx2

1/2

dt1 dt2

=

∫
Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣
∫

R2

∣∣∣∣S2
t2,2j+1f(x)

∣∣∣∣2w(x1, x2) dx1 dx2

1/2

dt1 dt2

=

∫
Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣
∫

R2

|f(x)|2w(x) dx

1/2

dt1 dt2.

From the above hypothesis of this theorem,

sup
j∈Z

∫
Ii×Ij

∣∣∣∣ ∂2m∂t1∂t2
(t1, t2)

∣∣∣∣dt1dt2 <∞.

We have∣∣∣∣∣∣∣∣ ∫
Ii×Ij

(
S1
t1,2i+1S2

t2,2j+1f
)
(x)

∂2m

∂t1∂t2
(t1, t2) dt1 dt2

∣∣∣∣∣∣∣∣
L2(w)

≤ C||f ||L2(w).

Similarly, we can show that,∣∣∣∣∣∣∣∣ ∫
Ii

(
S1
t1,2i+1f

)
(x)

∂m

∂t1
(t1, 2

i+1) dt1

∣∣∣∣∣∣∣∣
L2(w)

≤ C||f ||L2(w),
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Ij

(
S1
t2,2i+1f

)
(x)

∂m

∂t2
(t2j , 2

j+1) dt2

∣∣∣∣∣∣∣∣
L2(w)

≤ C||f ||L2(w).

and ∣∣∣∣∣∣∣∣(S1
i S

2
j f)(x)m(2i, 2j)

∣∣∣∣∣∣∣∣ ≤ C||m||∞||f ||L2(w).

Using all these facts it is easy to see that Ti,j is bounded on L2(w), for any w ∈ A∗
2.

Now using the Littlewood Paley theory on R2 we have

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

i,j

|S1
i S

2
jTf |2

)1/2 ∣∣∣∣∣∣∣∣
p

.

Also, from the definition of S1
j , S

2
j , T and Tj, we can show that

S1
i S

2
jTf = Ti,jS

1
i S

2
j f.

Therefore

||Tf ||p ≤ C

∣∣∣∣∣∣∣∣
(∑

i,j

|S1
i S

2
jTf |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ C

∣∣∣∣∣∣∣∣
(∑

i,j

|Ti,jS1
i S

2
j f |2

)1/2 ∣∣∣∣∣∣∣∣
p

.

Now by using Theorem 6.6 with an obvious change for A∗
2 weights we can say

that ∣∣∣∣∣∣∣∣
(∑

i,j

|Ti,jS1
i S

2
j f |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤
∣∣∣∣∣∣∣∣
(∑

i,j

|S1
i S

2
j f |2

)1/2 ∣∣∣∣∣∣∣∣
p

.

Lastly, by using Theorem 6.4, we have∣∣∣∣∣∣∣∣
(∑

i,j

|S1
i S

2
j f |2

)1/2 ∣∣∣∣∣∣∣∣
p

≤ ||f ||p.

This completes the proof!

6.3.3 Bochner-Riesz multipliers

In this section we discuss about the operator

(T af )̂(ξ) = (1− |ξ|2)a+f̂(ξ),

where a > 0 and A+ = max(A, 0). Such operators were first introduced by

Bochner in [3] and arise naturally in the study of multipliers associated to balls

in Rn. For details we refer the reader to [12]. We start with the following

construction. Let us choose functions φk ∈ C∞
c (R) which are supported on [1 −
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2k+1, 1−2−k−1) such that 0 ≤ φk ≤ 1 and |Dβφk| ≤ Cβ2
kβ for β ∈ N∪{0} (where

Cβ is independent of k), and for 1/2 ≤ t ≤ 1, we have
∞∑
k=1

φk(t) = 1.

We also define φ0 by

φ0(t) = 1−
∞∑
k=1

φk(t),

for 0 ≤ t < 1
2
and ϕ0(t) = 0 for t ≥ 1/2. For 0 ≤ |ξ| ≤ 1, we have

∞∑
k=0

φk(|ξ|) = 1.

Since (1− |ξ|2)a+ survives exactly when 0 ≤ |ξ| ≤ 1, we have

(1− |ξ|2)a+ =
∞∑
k=0

(1− |ξ|2)aφk(|ξ|).

Now we define another sequence of functions by

φ̃k(|ξ|) = 2ka(1− |ξ|2)aφk(|ξ|).

So, we can write

(1− |ξ|2)a+ =
∞∑
k=0

2−kaφ̃k(|ξ|).

Therefore we can decompose the operator T a as

T af =
∞∑
k=0

2−kaTkf,

where,

(Tkf )̂(ξ) = ϕ̃k(|ξ|)f̂(ξ).

The behaviour of the operator Tk is discussed in the following lemma.

Lemma 6.23. Given 0 < δ < 1, let φ be a function on R which is supported on

(1− 4δ, 1− δ) such that 0 ≤ φ ≤ 1 and |Dβϕ| ≤ Cδ−|β| for any β ∈ N. Then for

any ϵ > 0 the operator Tδ associated with the multiplier φ(|ξ|), satisfies

||Tδf ||p ≤ Cϵδ
−(n−1

2
+ϵ)

∣∣∣∣ 2p−1

∣∣∣∣
||f ||p.

Proof. Let K be such that K̂(ξ) = φ(|ξ|). Let a ∈ N be even. We claim that

||(1 + | · |a)K||2 ≤ Cδ
1
2
−a. (6.36)
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Note that

||(1 + |x|a)K||2 = ||((1 + | · |)K )̂||2.

As for any polynomial P , (Pf )̂(ξ) = P (−D)f̂(ξ),

||((1 + | · |a)K )̂||2 = C||(I + (−∆)a/2)(Q(|| · ||))||2.

It is easy to verify using binomial expansion that

1 + |x|a = C

1 +
∑
|β|=a

xβ

 .

We have,

||((1 + | · |a)K )̂||2 ≤ C

||φ(| · |)||2 +
∑
|β|=a

||Dβ(φ(| · |))||2

 .

Now we notice that

||φ(| · |)||22 =
∫
1−4δ<|ξ|<1−δ

|φ(|ξ|)|2 dξ ≤
∫
1−4δ<|ξ|<1−δ

1 dξ.

depending on the value of delta there are two cases. First let us consider 1−4δ ≥

0. That is δ ≤ 1
4
. Then using polar decomposition of Rn, we have∫
1−4δ<|ξ|<1−δ

1 dξ

=

∫
Sn−1

∫
1−4δ<r<1−δ

rn−1 dr du

=
|Sn−1|
n

{(1− δ)n − (1− 4δ)n}

≤ |Sn−1|
n

(1− δ − 1 + 4δ)
n−1∑
i=1

(1− δ)n−1−i(1− 4δ)i

≤ C(3δ),

where the second last inequality follows from that fact that (1 − δ) ≤ 1 and

(1− 4δ) ≤ 1. In the other case when 1− 4δ < 0, we have∫
1−4δ<|ξ|<1−δ

1 dξ =

∫
Sn−1

∫
0<r<1−δ

rn−1 dr du = |Sn−1|(1− δ)n

n
.

We observe that for d
dδ
( (1−δ)n

δ
) < 0,and hence (1−δ)n

δ
is decreasing on (1

4
, 1). There-

fore,

(1− δ)n

δ
≤

(1− 1
4
)n

1
4

= C.
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So (1− δ)n ≤ Cδ. This gives,∫
1−4δ<|ξ|<1−δ

1 dξ ≤ Cδ.

Hence we get ||φ||2 ≤ Cδ1/2. Now,

||Dβϕ(| · |)||22 =
∫
1−4δ<|ξ|<1−δ

|Dβφ(|ξ|)|2 dξ

≤ C

∫
1−4δ<|ξ|<1−δ

δ−2|β| dξ

= Cδ−2a

∫
1−4δ<|ξ|<1−δ

1 dξ

≤ Cδ1−2a.

Therefore, ∑
|β|=a

||D−βϕ(| · |)||2 ≤ Cδ
1
2
−a.

Therefore we have

||(1 + | · |2)K||2 ≤ C
(
δ1/2 + δ−a+ 1

2

)
= Cδ1/2

(
1 + δ−a

)
≤ Cδ1/22δ−a = Cδ−a+ 1

2 .

Here we use the fact that δ−a > 1. This proves our claim. Now we prove that

Inequality (6.36) is true for any a > 0. Let s > 1 be such that as ∈ N is even.

Now using the concavity of the function x 7−→ x1/s, we have,

(1 + |x|a) ≤ C (1 + |x|as)1/s .

Therefore,

||(1 + |x|a)K||2 ≤ C||(1 + |x|as)1/sK||2

≤ C||(1 + | · |as)K||1/s2 ||K||1/s
′

2 .

Since as is an even positive integer, we know from Inequality (6.36) that

||(1 + | · |as)K||1/s2 ≤ Cδ
1
2s

−a.

As ||K||2 = ||ϕ(| · |)||2 ≤ Cδ1/2, we have,

||(1 + | · |as)K||1/s2 ||K||1/s
′

2 ≤ Cδ−a+ 1
2s δ

1
2s′ ≤ Cδ−a+ 1

2 .

Taking a = n
2
+ ϵ, we obtain by using Hölder’s inequality,

||K||1 = ||K(1 + |x|a)(1 + |x|a)−1||1 ≤ ||K(1 + |x|a)||2||(1 + |x|a)−1||2.
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Since ||(I + |x|a)−1||2 ≤ Cϵ, we have

||K||1 ≤ Cϵδ
−a+ 1

2 ≤ Cϵδ
−(n−1

2
+ϵ).

We also have (Tδf )̂(ξ) = φ(|ξ|)f̂(ξ) = K̂(ξ)f̂(ξ) = (K ∗ f )̂(ξ). That is,

Tδf = K ∗ f.

Therefore ||Tδf ||2 = ||(Tδf )̂||2 = ||ϕ(| · |)f̂ ||2 ≤ C||f ||2. Also, using Young’s

convolution inequality we get

||Tδf ||1 ≤ C||K||1||f ||1 ≤ Cϵδ
−(n−1

2
+ϵ),

and

||Tδf ||∞ ≤ C||K||1||f ||∞ ≤ Cϵδ
−(n−1

2
+ϵ)||f ||∞.

The result now follows from Riesz-Thorin interpolation for p = 1 and p = 2

together with p = 2 and p = ∞.

Lemma 6.24. If m is a function with compact support which is a multiplier on

Lp(Rn) for some p then m̂ ∈ Lp(Rn).

Proof. Let f ∈ S(Rn) with f̂(x) = 1 for x ∈ supp(m). Now

(Tmf )̂(ξ) = m(ξ)f̂(ξ) = m(ξ).

Note that

m̂(ξ) = (T̃mf)(ξ) = Tmf(−ξ).

As Tmf ∈ Lp(Rn), m̂ ∈ Lp(Rn).

Lemma 6.25. The Fourier transform of (1− |ξ|2)a+ is

Ka(x) = π−aΓ(a+ 1)|x|−
n
2
−aJn

2
+a(2π|x|),

where

Jν(t) =
( t
2
)ν

Γ(ν + 1
2
)Γ(1

2
)

1∫
−1

eits(1− s2)ν−
1
2 ds,

is the Bessel function of the first kind.
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Proof. First note that∫
Rn

(1− |ξ|2)a+ dξ =

∫
0≤|ξ|≤1

(1− |ξ|2)a dξ = |Sn−1|
∫

0≤s≤1

(1− s2)asn−1 ds <∞.

That is, (1− |ξ|2)a+ ∈ L1(Rn).

Therefore,(
(1− | · |2)a

)̂
(x) =

∫
0≤|ξ|≤1

(1− |ξ|2)a+e−2πi⟨x,ξ⟩ dξ

=

∫
Sn−1

∫
0≤s≤1

(1− s2)ae−2πi⟨x,su⟩sn−1 ds du

=

∫
0≤s≤1

(1− s2)asn−1

∫
Sn−1

e−2πi⟨x,su⟩ du ds

=

∫
0≤s≤1

sn−1(1− s2)a2π(|x|s)−(n−1
2

)Jn−2
2
(2π|x|s) ds

= 2π|x|(1−
n
2
)

∫
0≤s≤1

(1− s2)asn/2Jn−2
2
(2π|x|s) ds

= 2π|x|(1−
n
2
)2

aΓ(a+ 1)

(2π|x|)a+1
Jn−2

2
(2π|x|).

Here we used the following. If r = |x| and x′ = x
|x| and u

′ = u
|u| we have∫

Sn−1

e−2πixu du′ =

∫
Sn−1

e−2πi|x||u|⟨x′,u′⟩ du′ = 2π(|x||u|)−
n−2
2 Jn−2

2
(2π|x||u|).

We are now in a position to give the main result of this section.

Theorem 6.26. The Bochner-Riesz multipliers T a satisfy the following:

1. If a > n−1
2

then T a is bounded on Lp(Rn), for any 1 ≤ p ≤ ∞.

2. If 0 < a ≤ n−1
2

then T a is bounded on Lp(Rn) if∣∣∣∣1p − 1

2

∣∣∣∣ < a

n− 1
,

and is not bounded if ∣∣∣∣1p − 1

2

∣∣∣∣ ≥ 2a+ 1

2n
.
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Proof. First note that using Lemma 6.23 for any ϵ > 0, we have

||Tkf ||p ≤ Cϵ2
−(k+1){−(n−1

2
+ϵ)}| 2

p
−1|||f ||p ≤ Cϵ2

k(n−1
2

+ϵ)| 2
p
−1|||f ||p.

||T af ||p ≤
∞∑
k=0

||Tkf ||p2−ka ≤ Cϵ

∞∑
k=0

2k(
n−1
2

+ϵ)| 2
p
−1|−ka||f ||p.

T a is bounded if k(n−1
2

+ ϵ)|2
p
− 1| − ka < 0, which implies(
n− 1

2
+ ϵ

) ∣∣∣∣1p − 1

2

∣∣∣∣ < a

2
.

As ϵ > 0 is arbitrary, we have(
n− 1

2

) ∣∣∣∣1p − 1

2

∣∣∣∣ < a

2
.

That is T a is bounded if
∣∣1
p
− 1

2

∣∣ < a
n−1

. This proves the first part of (2). We

observe that if a > n−1
2
, then a

n−1
> 1

2
< a

n−1
. Hence (1) is proved. Now we recall

a few asymptotic properties of Bessel function. As t −→ 0, we have Jν(t) ≤Mtν ,

for some constant M , and as t −→ ∞, we have

M1t
− 1

2 ≤ Jν(t) ≤M2t
− 1

2 ,

for constants M1, M2 > 0.

Using these facts, we have for |x| −→ 0,

|Ka(x)| ≤ C.

And for |x| −→ ∞, we have,

C1|x|−(n+1
2

+a) ≤ |Ka(x)| ≤ C2|x|−(n−1
2

+a).

Now,

||Ka||pp =
∫
Rn

|Ka(x)|p dx

=

∫
0≤|x|≤1

|Ka(x)|p dx+

∫
|x|>1

|Ka(x)|p dx

≥
∫

0≤|x|≤1

|Ka(x)|p dx+ C

∫
|x|>1

|x|−(n−1
2

+a)p dx

≥
∫

0≤|x|≤1

|Ka(x)|p dx+ C|Sn−1|
∫

r>1

r−(n+1
2

+a)prn−1 dr
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=

∫
0≤|x|≤1

|Ka(x)|p dx+ C

∫
r>1

r−(n+1
2

+a)p+n−1 dr.

Therefore ||Ka||pp <∞ only if (n+1
2

+ a)p− n+ 1 > 1 that is if p > 2n
n+1+2a

.

Now by using Lemma 6.24, T a can be bounded on Lp(Rn), only if p >

2n
n+1+2a

. Suppose on the contrary that T a is bounded on Lp(Rn), for∣∣∣∣1p − 1

2

∣∣∣∣ ≥ 2a+ 1

2n
. (6.37)

There are two possibilities. When 1
p
− 1

2
> 0, Inequality (6.37) implies

1

p
≤ 2n

n+ 1 + 2a
.

This is clearly a contradiction!

In the other case when 1
p
− 1

2
< 0, we have p′ ≤ 2n

n+1+2a
. We note that ifK(x)

is the kernel of T a, then transpose (T a)∗ has kernel K̃, where K̃(x) = K(−x).

So the multiplier of (T a)∗ is
̂̃
K(ξ). Fourier transform of the multiplier of (T a)∗,

is
ˆ̃̂
K(x) = K(x) = Ka(−x). Note that by our assumption (T a)∗ is bounded for

p′ ≤ 2n
n+1+2a

. But Ka(·) ∈ Lp(Rn) only when p > 2n
n+1+2a

. This gives contradiction

and completes the proof.



CHAPTER 7

Conclusion

This thesis is a brief survey of a few techniques commonly used in Harmonic Anal-

ysis. We have seen the importance of averaging operators, and their techniques

in understanding the Lp-boundedness of certain translation-invariant operators.

The techniques presented open the doors for a graduate level study as well as

research. Now, we mention few of those directions one can pursue.

We have seen in Chapter 6 three types of multiplier operators. In Section

6.3.3, we commented that the study of multipliers associated to the characteristic

functions of balls is difficult. This is one of the directions of study one can take

up. Indeed, the study of multipliers is a vast subject in itself.

In Chapter 5, we have seen singular integral operators. The Calderón-

Zygmund theory answers most of the questions that may arise in the study of

singular integrals of convolution type. Therefore, the next step would be to see

singular integrals of non-convolution type. These are typically difficult to study,

since we no longer have translation-invariance at hand. Nonetheless, much devel-

202
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opment is done in this direction. One often starts by defining a special tempered

distribution, called the T (1)-distribution, and studies its boundedness. The the-

ory so developed, what is called the “T (1)-theory”, answers certain questions on

the boundedness of singular integrals of non-convolution type. A more general

theory, called the “T (b)-theory” is also developed in accordance to this. We refer

the reader to [11] for preliminary details on the topic.

Speaking of the theory of boundedness of translation-invariant operators,

we notice that the Muckenhoupt class (Ap) of weights have been more than helpful

in deriving a variety of weighted and unweighted results. We believe that this

class finds its use in the study of several other exotic operators. For instance

Duoandikoetxea et al. in [8] have used Ap weights in the study of a maximal

function associated to the k-plane transform. The k-plane transform is a natural

integral transform that comes in the study of densities using only the average

values along k-dimensional planes. It is interesting to see the use of Ap weights

in the study of boundedness of similar kind of operators.

Another branch of study one may pursue is the multilinear Harmonic anal-

ysis, where, as the name suggests, we look at multilinear operators (taking more

than one input) and ask similar questions about boundedness. Several theories

about such operators has been developed till date. We refer the reader to [11]

for a brief introduction to the topic. Some of the interpolation results are also

known for multilinear operators (see for instance, [13] and the references therein).

However, we believe much work can be done here.

Before closing the thesis, we would like to mention one last direction of

work. Our study only deals with operators defined on the Euclidean space. It is

natural to ask whether similar theory can be developed on non-Euclidean spaces.

There are several challenges that one may face if one tries to develop this theory

verbatim. First, to talk about (Hardy-Littlewood) averaging operators, one would

require “balls”. So, one must work with a metric structure that has a compatible
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measure. Riemannian manifolds are easy examples of such spaces. Apart from

this, the major difficulty that one faces is that on general non-Euclidean spaces,

one may not have the notion of “cubes”. Consequently, the Calderón-Zygmund

decomposition, that has been the main ingredient of many proofs, no longer holds.

This forces one to work only with metric balls. However, the non-Euclidean metric

balls might not be as well-behaved as the Euclidean ones. For instance, in the

Euclidean space Rn, we have, what we call the “measure-doubling” phenomenon.

That is, the measure of the ball of radius 2r (centered at any point) in the

Euclidean space is a constant (2n) times that of the ball of radius r. Such a

phenomenon is not expected in other non-Euclidean spaces. For instance, in

the hyperbolic space, the volume of a ball increases exponentially, while in the

sphere, it increases like sine. Due to the troublesome nature of these spaces,

similar theory on these spaces has not been developed yet. One would like to see

if new techniques can be developed for these spaces that give analogous results.
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