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Abstract

We consider a predator-prey model with the Beddington-DeAngelis functional re-

sponse in a deterministic framework. Further, we include harvesting, and finally,

we introduce stochasticity. First, we analyze key findings for the deterministic

framework, including the system’s equilibria and their stability. For the stochas-

tic version, we use appropriate Lyapunov functions and integrate the knowledge

of stochastic differential equations to establish the conditions under which both

the prey and predator will become extinct. Subsequently, we determine the con-

dition for the predator extinction while the prey continues to exist. Moreover, we

explore the existence of unique positive global solutions for this model. Finally,

we present some numerical simulations for time responses for the population.

iv



Contents

1 Intoduction 1

1.1 Single species models . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Basic predator-prey model . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Generalisation of predator-prey model . . . . . . . . . . . . . . . 3

1.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Predator prey model with Beddington-DeAngelis functional re-

sponse 7

2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Simulation results for stability analysis . . . . . . . . . . . . . . . 10

3 Stochastic version of the Beddington-DeAngelis model 13

3.1 Extinction and persistence . . . . . . . . . . . . . . . . . . . . . . 14

3.1.1 Extinction . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.2 Persistent in mean . . . . . . . . . . . . . . . . . . . . . . 15

v



3.2 Global positive solution . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Future plans and conclusion 26

4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Future plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Bedington-DeAngelis model with white noise and Lévy jumps 27
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CHAPTER 1

Intoduction

1.1 Single species models

The study of population dynamics often begins with basic models that describe

the growth or decline of a single species over time. One of the foundational

models in this area is the exponential growth model. The exponential growth

model [8] describes the population growth of a single species in an environment

with unlimited resources. The model is expressed with the following differential

equation
du(t)

dt
= ru(t),

where u(t) represents the population size at time t, r signifies the intrinsic growth

rate. Since in the case of a real ecosystem resources are limited, Pierre François

Verhulst [12] proposed a modified model- called the logistic model, which is rep-

resented by the differential equation

du(t)

dt
= ru(t)

(
1− u(t)

K

)
.
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Here, K denotes the environment’s carrying capacity. This model has the follow-

ing properties:

(i) When the population is small, the growth rate is directly proportional to

the population size.

(ii) However, as the population approaches a certain limit, the growth rate

becomes smaller.

1.2 Basic predator-prey model

At the heart of ecological research lies the intricate relationship between predators

and their prey, a dynamic interplay that fundamentally shapes ecosystems. Un-

derstanding this interaction is crucial for deciphering the complexities of natural

systems and predicting their responses to environmental pressures. Predator-prey

models provide a robust framework for simulating and analyzing the population

dynamics of these key species. Through mathematical formulations and compu-

tational simulations, researchers can explore the nuances of predator-prey inter-

actions, investigating how variables such as population densities, predation rates,

and resource availability impact ecosystem stability and resilience. By delving

into this captivating domain, we uncover insights into the mechanisms driving

ecological dynamics and develop strategies for conservation and management vi-

tal to preserving biodiversity and ecosystem health.

We now introduce a predator-prey model to include interactions between

two different species. This model considers the dynamics of two interacting pop-

ulations: predators and prey. A classic example of a predator-prey model is the

Lotka-Volterra model, proposed independently by Alfred J. Lotka [11] in 1925

and Vito Volterra [13] in 1926.
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
du(t)

dt
= ru(t)− au(t)v(t),

dv(t)

dt
= sau(t)v(t)−mv(t),

(1.1)

(1.2)

Here, u(t) and v(t) are the density at time t of prey and predator, respectively. a

is the predation rate (the rate at which predators consume prey), s signifies the

conversion coefficient and m denotes the specific mortality rate of the predator.

A predator-prey model provides insights into the complex interactions between

species in an ecosystem, illustrating how changes in one population affect the

dynamics of the other. This model has been widely studied and has important

implications for ecological theory and conservation biology.

1.3 Generalisation of predator-prey model

The most general differential equation of predator-prey models is,
du(t)

dt
= ru(t)

(
1− u(t)

K

)
− f(u(t), v(t))v(t),

dv(t)

dt
= sf(u(t), v(t))v(t)−mv(t).

(1.3)

(1.4)

Here, f(u(t), v(t)) is some function of u(t) and v(t) known as functional response

and based on that we can formulate several models. There are several types of

functional response,

(i) In the Rosenzweig-MacArthur model

f(u(t), v(t)) =
au(t)

1 + ahu(t)
.

where h is handling time per prey item.

(ii) In the Beddington-DeAngelis functional response [3, 7]

f(u(t), v(t)) =
au(t)

1 + ahu(t) + bτv(t)
.
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Here, b is a parameter representing the level of interference among predators

and τ represents the time scale associated with predator interference.

(iii) In the Cosner functional response [6]

f(u(t), v(t)) =
ae0u(t)

1 + ae0u(t)v(t)
.

Here e0 is the total encounter coefficient between the predator and the prey.

(iv) In ratio-dependent functional response model [2]

f(u, v) =
au(t)

qu(t) + v(t)
,

where q is a parameter that modifies the effect of prey density on the func-

tional response.

(v) In the hunting cooperation model [1, 4]

f(u(t), v(t)) = (a+ λv(t)).

As the predator density v(t) increases, the predation rate increases linearly

due to the term λv(t).

This thesis focuses on and derives results from the Beddington-DeAngelis func-

tional response for the predator-prey model.

1.4 Preliminaries

We now present some preliminary information from references [5, 10].

Definitions

1. Stopping Time: A random variable τ with values in N ∪ {∞} is termed

a stopping time (with respect to a filtration F) if for each n = 1, 2, . . .,

{τ = n} ∈ Fn.
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2. M2: Denoted byM2, this class encompasses stochastic processes f(t), t ≥ 0,

such that

E

(∫ ∞

0

|f(t)|2dt

)
< ∞.

3. M2
T : For any T > 0, M2

T represents the space of stochastic processes f(t),

t ≥ 0, such that

1[0,T )f ∈ M2.

4. Probability Space: The triplet (Ω,F ,P) is referred to as a probability

space, where

(i) Ω denotes the sample space,

(ii) F is the σ-field on Ω,

(iii) P is the probability measure.

5. Complete Filtered Probability Space: Represented by A = (Ω,F ,F,P),

it consists of a complete probability space with filtration F = (Ft)t≥0 sat-

isfying:

(i) P is complete on (Ω,F ),

(ii) For each t ≥ 0, Ft contains all (F ,P)-null sets,

(iii) The filtration F is right-continuous.

Theorem 1.1. Let ξ(t) be an Itô process. Suppose F (t, x) is a real-valued function

with continuous partial derivatives Ft(t, x), Fx(t, x), Fxx(t, x) for all t ≥ 0 and

x ∈ R. Additionally, assume b(t)Fx(t, ξ(t)) ∈ M2
T for all T ≥ 0. Then F (t, ξ(t))

is an Itô process such that:

dF (t, ξ(t)) =

(
Ft(t, ξ(t))+Fx(t, ξ(t))a(t)+

1

2
Fxx(t, ξ(t))b(t)

2

)
dt+Fx(t, ξ(t))b(t)dB(t).

Here, ξ(t) is any Itô process satisfying:

dξ(t) = a(t)dt+ b(t)dB(t).
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Theorem 1.2. Suppose f and g are Lipschitz continuous functions from R to R,

i.e., there exists a constant C > 0 such that for any x, y ∈ R:

|f(x)− f(y)| ≤ C|x− y|

|g(x)− g(y)| ≤ C|x− y|

Furthermore, let ξ0 be F0-measurable and square-integrable random variable.

Then the initial value problem (I.V.P):d(ξ(t)) = f(ξ(t))dt+ g(ξ(t))dB(t)

ξ(0) = ξ0

has a solution ξ(t), t ≥ 0, within the class of Itô processes.

The solution is unique in the sense that if η(t), t ≥ 0, is another Itô process, then

ξ(t) and η(t) are identical almost surely.
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CHAPTER 2

Predator prey model with Beddington-DeAngelis functional

response

2.1 The model

The Beddington-DeAngelis model is a fundamental system in the realm of predator-

prey dynamics, offering a sophisticated framework to understand the intricacies

of these ecological relationships. Proposed by Peter J. Beddington and Donald L.

DeAngelis, this model introduces a refined approach to capturing the dynamics

of predator-prey interactions by integrating factors such as predator functional

response and prey density-dependent mortality. Through its elegant mathemati-

cal formulations, the Beddington-DeAngelis model provides a nuanced depiction

of how predator and prey populations coexist and fluctuate in response to chang-

ing environmental conditions. Studying the mechanisms revealed by this model

provides researchers with valuable insights into ecosystem stability and resilience.

This knowledge informs conservation and management strategies aimed at pre-
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serving biodiversity and ecosystem integrity. The Beddington-DeAngelis model

is


du(t)

dt
= ru(t)

(
1− u(t)

K

)
− au(t)v(t)

1 + ahu(t) + bτv(t)
.

dv(t)

dt
=

sau(t)v(t)

1 + ahu(t) + bτv(t)
−mv(t)− γv2(t).

(2.1)

(2.2)

Here, γ represents the inter-specific competition rate of predators.

Including the concept of harvesting in ecological models is crucial for gain-

ing a more complete understanding of natural ecosystems. When extending the

Beddington-DeAngelis model to account for harvesting, we enrich its applica-

bility to a broader range of ecological scenarios. By introducing harvesting, we

acknowledge the human impact on natural systems, as many ecosystems are sub-

ject to the exploitation of resources. This extension allows us to explore the

dynamic interplay between predator-prey interactions and human activities such

as fishing or hunting, shedding light on the complex dynamics that emerge when

natural and Anthropocene forces intersect. Ultimately, this refined model not

only enhances our theoretical understanding of ecological systems but also pro-

vides valuable insights for sustainable management and conservation practices in

the face of increasing human pressures on the environment. The model under

harvesting reads as,


du(t)

dt
= ru(t)

(
1− u(t)

K

)
− au(t)v(t)

1 + ahu(t) + bτv(t)
− q1e1u(t),

dv(t)

dt
=

sau(t)v(t)

1 + ahu(t) + bτv(t)
−mv(t)− γv2(t)− q2e2v(t).

(2.3)

(2.4)

Here, q1 and q2 represent the catchability coefficients of prey and predator species,

respectively, while e1 and e2 denote the harvesting efforts applied to prey and

predator species, respectively.
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2.2 Equilibrium

If f(t) is a solution of a differential equation and is constant, it is called an

equilibrium.

We can say a system of prey-predator model is in equilibrium if there is no change

in their density(number). We can obtain it by taking du(t)
dt

= du(t)
dt

= 0 i.e.


u(t)

(
r

(
1− u(t)

K

)
− av(t)

1 + ahu(t) + bτv(t)
− q1e1

)
= 0,

v(t)

(
sau(t)

1 + ahu(t) + bτv(t)
−m− γv(t)− q2e2

)
= 0.

(2.5)

(2.6)

The model has the following equilibrium

(i) (0, 0) is trivial equilibrium.

(ii) There is only one boundary equilibrium(
K

r

(
r − q1e1

)
, 0

)
only if r > q1e1

(iii) Due to the highly non-linear nature of the system (2.5)-(2.6), determining

the equilibrium in terms of parameters is challenging. We’ll compute the

co-existing equilibrium numerically in the subsequent paragraphs.

2.3 Stability analysis

Assume,

f(u, v) = ru(t)

(
1− u(t)

K

)
− au(t)v(t)

1 + ahu(t) + bτv(t)
− q1e1u(t), (2.7)

g(u, v) =
sau(t)v(t)

1 + ahu(t) + bτv(t)
−mv(t)− γv2(t)− q2e2v(t). (2.8)
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Then Jacobian matrix is defined as

J(u, v) =

∂f(u,v)
∂u

∂f(u,v)
∂v

∂g(u,v)
∂u

∂g(u,v)
∂v

 ,

where

∂f(u, v)

∂u
= r

(
1− 2u(t)

K

)
− av(t)(1 + ahu(t) + bτv(t)− ahu2(t))

(1 + ahu(t) + bτv(t))2
− q1e1,

∂f(u, v)

∂v
= −au(t)(1 + ahu(t) + bτv(t)− bτv2(t))

(1 + ahu(t) + bτv(t))2
,

∂g(u, v)

∂u
=

asv(t)(1 + ahu(t) + bτv(t)− ahu2(t))

(1 + ahu(t) + bτv(t))2
,

∂g(u, v)

∂v
=

asu(t)(1 + ahu(t) + bτv(t)− bτv2(t))

(1 + ahu(t) + bτv(t))2
−m− 2γv(t)− q2e2.

Local stability of equilibrium points

If we have an equilibrium point (u∗, v∗).The point (u∗, v∗) is stable if both the

eigenvalue of J(u∗, v∗) is less than 0.

If both the eigenvalue of J(u∗, v∗) is greater than 0 then the equilibrium is locally

unstable.

If one of the eigenvalues of J(u∗, v∗) is greater than 0 and the other is less than

0, it is a saddle point.

2.4 Simulation results for stability analysis

This section will graphically analyze the stability model under different condi-

tions. By varying key parameters and initial conditions, we will explore the

dynamic behaviour of the system through numerical simulations and phase plane

diagrams.

Example 2.1: Suppose the parameter in (2.3)-(2.4) as r = 5, K = 43, b =

10



Figure 2.1: Subplot (a) show that changes in prey concerning time. Subplot (b)

shows the change in predators concerning time. Subplot (c) is a phase portrait

of prey and predator.

0, a = 0.4, h = 0.3, τ = 0.5, q1 = 0.1, e1 = 0.2, s = 0.3,m = 0.15, γ = 0.01, q2 =

0.05, e2 = 0.04, with initial conditions u(0) = 32.77 and v(0) = 16.51. We will

now determine the co-existing equilibrium and evaluate its stability using the

eigenvalue approach. The co-existing equilibrium is (0.0013, 13.4005), with the

eigenvalues of its Jacobian matrix being 0.4111 ± 0.8056i. Hence the equilib-

rium is unstable. In Figure 2.1, we notice oscillations in the prey and predator

populations.

Example 2.2: Consider the parameter as r = 5, K = 43, b = 0.3, a = 0.4, h =

11



0.3, τ = 0.5, q1 = 0.1, e1 = 0.2, s = 0.3,m = 0.15, γ = 0.01, q2 = 0.05, e2 = 0.04,

with initial conditions u(0) = 23.8 and v(0) = 2.6. Then for this example equilib-

rium point is (32.2732, 27.6991) and the eigenvalues of its Jacobian matrix, which

are −0.0051±0.7502i. By varying the value of b from 0 to 0.3, a different solution

is obtained also the nature of equilibrium is changed. Figure 2.2 illustrates this

observation, where the real parts of the eigenvalues are negative and the eigen-

values are complex, indicating a stable equilibrium.

Figure 2.2: Subplot (a) show that changes in prey concerning time. Subplot (b)

shows the change in predators concerning time. Subplot (c) is a phase portrait

of prey and predator.
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CHAPTER 3

Stochastic version of the Beddington-DeAngelis model

Various random disturbances are ubiquitous in real ecosystems, causing birth

rates, carrying capacities, competition coefficients, death rates, and other param-

eters within the system to exhibit random fluctuations to some extent. Conse-

quently, researchers have investigated the effects of environmental stochasticity

on population dynamics. Understanding how ecosystems evolve in response to

stochastic influences is particularly significant when compared to deterministic

models. The impact of white noise on population dynamics underscores the need

for comprehensive studies that account for stochasticity in ecological modelling.
du(t) =

(
ru(t)

(
1− u(t)

K

)
− au(t)v(t)

1 + ahu(t) + bτv(t)
− q1e1u(t)

)
dt+ σ1u(t)dB1(t),

dv(t) =

(
sau(t)v(t)

1 + ahu(t) + bτv(t)
−mv(t)− γv2(t)− q2e2v(t)

)
dt+ σ2v(t)dB2(t).

(3.1)

(3.2)

Here, B1(t) and B2(t) are Brownian motions defined on complete probability

space (Ω,F ,F,P) and σ1 and σ2 are intensity of white noise.

This chapter is structured as follows: Firstly, we shall find conditions so

that the prey and predator are extinct and persistent for system (3.1)-(3.2) for

any given initial conditions. Subsequently, we demonstrate the existence of a
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unique global positive solution and finally, we will see some examples based on

these results.

3.1 Extinction and persistence

In this section, we will present sufficient conditions for the extinction and persis-

tence of prey and predator as described by equations (3.1)-(3.2).

Definition 1[14]

(1) The species u(t) and v(t) are considered extinct if limt→∞ u(t) = 0 and

limt→∞ v(t) = 0 almost surely (a.s.).

(2) The species u(t) and v(t) are considered persistent in the mean if lim inft→∞ u(t) >

0 and lim inft→∞ v(t) > 0 almost surely (a.s.).

3.1.1 Extinction

Theorem 3.1. Suppose (u(t), v(t)) be the solution of (3.1) − (3.2) with given

initial condition (u(0), v(0)) ∈ R2
+ then the following are true.

(i) If r < q1e1 +
1
2
σ2
1 then, prey will extinct.

(ii) If s < h(m+ q2e2 +
1
2
σ2
2) then, the predator will extinct.

Proof (i) By letting the Lyapunov function as lnu applying Itô formula we get,

d lnu =

(
r

(
1− u

K

)
− av

1 + ahu+ bτv
− q1e1 −

1

2
σ2

)
dt+ σ1dB1(t).

By performing the integration from 0 to t on both sides, we obtain,

lnu(t) = lnu(0)+rt−
∫ t

0

ru(p)

K
dp−

∫ t

0

av(p)

1 + ahu(p) + bτv(p)
dp−q1e1t−

1

2
σ2
1t+σ1B1(t)

≤ lnu(0) + (r − q1e1 −
1

2
σ2)t+ σ1B1(t).

Note that,

limt→∞
B1(t)

t
= 0.
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So we get,

lim supt→∞
ln(u(t)

t
≤ r − q1e1 −

1

2
σ2
1.

Therefore by the given condition

lim supt→∞
ln(u(t))

t
≤ r − q1e1 −

1

2
σ2
1 < 0.

So,

limt→∞u(t) = 0 a.s.

(ii) Let us consider the Lyapunov function as lnv and apply Itô formula,

d lnv =

(
sau

1 + ahu+ bτv
−m− q2e2 − γv − 1

2
σ2
2

)
dt+ σ2dB2(t).

By performing the integration from 0 to t on both sides, we obtain,

lnv(t) = lnv(0)+

∫ t

0

sau(p)

1 + ahu(p) + bτv(p)
dp−mt−q2e2t−

∫ t

0

γv(p)dp−1

2
σ2
2t+σ2B2(t)

lnv(t) ≤ lnv(0) +

(
s

h
−m− q2e2 −

1

2
σ2

)
t+ σ2B2(t)

which implies

lim supt→∞
ln(v(t))

t
≤ s

h
−m− q2e2 −

1

2
σ2
2 < 0 a.s.

From here we get,

limt→∞v(t) = 0 a.s.

This proves part (ii) of Theorem 3.1.

3.1.2 Persistent in mean

Lemma 3.2. [9] Suppose a S.D.E

{
dY (t) = Y (t)[α− βY (t)]dt+ σY (t)dB(t)

Y (0) = Y0 > 0

(3.3)

(3.4)
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with α, β and σ are positive and α − 1
2
σ2 ≥ 0. Assume Y (t) be solution of

(3.3)− (3.4) then,

(i)limsupt→∞
lnY (t)

t
= 0, a.s.

(ii)limt→∞
1

t

∫ t

0

Y (s)ds =
α− 1

2
σ2

β
a.s.

Lemma 3.3. The species u(t) is said to be persistent in the mean if

limt→∞
1

t

∫ t

0

u(s)ds = c,

where c is some positive constant.

Proof On contrary suppose u(t) is not persistent then limt→∞u(t) = 0. By

definition of limit, there exists a time T such that

u(t) < ϵ for all t ≥ T

Then,

limt→∞
1

t

∫ t

0

u(s)ds ≤ limt→∞
1

t

∫ t

0

ϵ ds = limt→∞
1

t
(ϵ t) = ϵ.

This is a contradiction to the given condition because ϵ is arbitrarily small. Which

proves our required result.

Theorem 3.4. Let (u(t), v(t)) be the solution of system (3.1)− (3.2) with initial

condition (u(0), v(0)) with s
h
< m+ 1

2
σ2
2 + q2e2 and r > 1

2
σ2
1 then the predator will

extinct but prey will be persistent.

Proof If s
h
< m+ 1

2
σ2
2+q2e2 holds then, by Theorem 3.1 we can conclude predator

will extinct. So for every ϵ > 0 there exists a time T such that v(t) < ϵ, for all

t > T . For t > T equation 3.1 become,
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du(t) = u(t)

(
r

(
1− u(t)

K

)
− av(t)

1 + ahu(t) + bτv(t)

)
+ σ1u(t)dB1(t)

≥ u(t)

(
r

(
1− u(t)

K

)
− aϵ

1 + ahu(t) + bτv(t)

)
+ σ1u(t)dB1(t)

≥ u(t)

(
r − ru(t)

K
− aϵ

1

)
+ σ1u(t)dB1(t).

Letting, α = r − aϵ and β =
r

K
in Lemma 3.2 we get,

limt→∞
1

t

∫ t

0

u(s)ds ≥
K
(
r − aϵ− 1

2
σ2
1

)
r

.

As ϵ is arbitrarily small, letting ϵ → 0 we get,

limt→∞
1

t

∫ t

0

u(s)ds ≥
K
(
r − 1

2
σ2
1

)
r

. (3.5)

Again, from equation (3.1)

du(t) = u(t)

(
r

(
1− u(t)

K

)
− av(t)

1 + ahu(t) + bτv(t)

)
+ σ1u(t)dB1(t)

≤ u(t)

(
r

(
1− u(t)

K

))
+ σ1u(t)dB1(t)

= u(t)

(
r − ru(t)

K

)
+ σ1u(t)dB1(t).

Letting, α = r and β = r
K

in Lemma 3.2 we get,

limt→∞
1

t

∫ t

0

u(s)ds ≤
K
(
r − 1

2
σ2
1

)
r

. (3.6)

By equation (3.7)− (3.8)

limt→∞
1

t

∫ t

0

u(s)ds =
K
(
r − 1

2
σ2
1

)
r

.

By Lemma 3.3 we can say u(t) is persistent in the mean.
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3.2 Global positive solution

In the population growth model existence of a positive solution is widely acknowl-

edged as a foundational element for exploring various dynamic behaviours within

any model. This section aims to prove that the system described in equations

(3.1)-(3.2) possesses a unique global solution.

Lemma 3.5. Let a, s, b, τ, u, v and be any non-negative number and h is positive

then,

(i)
asuv

1 + ahu+ bτv
≤ u+

sv

h
,

(ii)
av

1 + ahu+ bτv
≤ av.

Proof (i) If a, s, u or v are zero then it is trivial. Suppose these are non-zero

then, we have
asuv

1 + ahu+ bτv
≤ asuv

ahu+ bτv
.

If we can show
asuv

ahu+ bτv
≤ u+

sv

h

then we are done. Let us proceed with the proof. Note that, as a, s, b, τ are non

negative then

as ≤ as+ bτ

Now, multiply by uv adding the positive quantity ahu2+ bτ s
h
v2 in the right hand

side of the above inequality,

asuv ≤ (as
h

h
+ bτ)uv + ahu2 + bτ

s

h
v2.

By re-arranging the above terms,

asuv ≤ ahu(u+ s
v

h
) + bτv(u+ s

v

h
).

Now, dividing both sides by ahu+ bτv, We get,

asuv

ahu+ bτv
≤ u+

sv

h
.
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This is our required result.

(ii) As (1 + ahu+ bτv) ≥ 1 we have,

av

1 + ahu+ bτv
≤ av

1 + ahu+ bτv
(1 + ahu+ bτv) = av.

This proves the second part of the Lemma.

Now, we will prove the main theorem of this section, with the help of Lemma 3.5.

Theorem 3.6. System (3.1)-(3.2) possesses a unique solution (u(t), v(t)) ∈ R2
+

for t ≥ 0 for any initial value (u(0), v(0)) ∈ R2
+. Furthermore, it is guaranteed

that (u(t), v(t)) will always remain within R2
+ with a probability of one.

Proof The system satisfies all the prerequisites of the existence and uniqueness

theorem. Hence, for any given initial condition (u(0), v(0)) ∈ R2
+, our system

possesses a unique local solution (u(t), v(t)) ∈ R2
+ on the interval [0, τe), where τe

denotes the explosion time. To prove this theorem, it is essential to demonstrate

τe = ∞ almost surely. Let n0 be a sufficiently large non-negative number such

that (u(0), v(0)) ∈ [ 1
n0
, n0]

2. For n ∈ N with n > n0, we define the stopping time

τn as:

τn = inf

{
t ∈ [0, τe) : u(t) /∈

(
1

n
, n

)
or v(t) /∈

(
1

n
, n

)}
.

Clearly, {τn} is an increasing sequence. Denote limn→∞ τn = τ∞, and we

know that τ∞ ≤ τe. To achieve our aim, we must show τ∞ = ∞ almost surely.

We can prove this by the contradiction method. If τ∞ = ∞ a.s. does not

hold. Then there must exists a positive number T and a very small positive

constant ϵ such that P{τ∞ ≤ T} ≥ ϵ. Therefore, there exists an integer n1 ≥ n0

such that P{τn ≤ T} ≥ ϵ. Next, let us consider the Lyapunov function F : R2
+ →

R+ as follows:

F (u, v) = (u− 1− lnu) + (v − 1− ln v).

Applying Itô formula we get the non-Brownian motion part as,
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LF = u

(
1− 1

u

)(
r

(
1− u

K

)
− av

1 + ahu+ bτv
− q1e1

)
+

σ2
1

2

+v

(
1− 1

v

)(
sau

1 + ahu+ bτv
−m− γv − q2e2

)
+

σ2
2

2

= (u− 1)

(
r

K
(K − u)− av

1 + ahu+ bτv
− q1e1 +

σ2
1

2

+(v − 1)

(
sau

1 + ahu+ bτv
− γv −m− q2e2

)
+

σ2
2

2

=
−r

K
u2+

a

1 + ahu+ bτv

(
su(v−1)−a(u−1)

)
−q1e1(u−1)−(m+q2e2)(v−1)−γv2

+(r +
r

K
− q1e1)u+ (γ −m− q2e2)v − r + q1e1 +m+ q2e2 +

σ2
1

2
+

σ2
2

2

≤ asuv

1 + ahu+ bτv
+

av

1 + ahu+ bτv
− r

K
u2+

r

K
u−γv2+γv+q1e1+m+q2e2+

σ2
1

2
+
σ2
2

2
.

By Lemma 3.5, we conclude that

LF ≤ u+
sv

h
+ av +− r

K
u2 +

r

K
u− γv2 + γv + q1e1 +m+ q2e2 +

σ2
1

2
+

σ2
2

2

= − r

K
u2 +

(
r

K
+ 1

)
u− γv2 +

(
γ +

s

h
+ a

)
v + c0,

where c0 = q1e1 +m+ q2e2 +
σ2
1

2
+

σ2
2

2
.

Let c1 = sup

(
− r

K
u2 +

(
r
K
+ 1

)
u− γv2 +

(
γ + s

h
+ a

)
v + c0

)
. It follows that

LF ≤ c1. Therefore by Itô formula,

dF ≤ c1dt+ σ1(u− 1)dB1(t) + σ1(v − 1)dB2(t).

Now integrating from 0 to (T ∧ τe) and taking expectation we get,

E
(
F (u(T ∧ τe), v(T ∧ τe))

)
≤ F

(
u(0), v(0)

)
+ c1(T ∧ τe). (3.7)

Define Ωn = {τn ≤ T} for n ≥ n1 then for every ω ∈ Ωn, there is an

observation that either u(τn, ω) or v(τn, ω) must be equal to 1
n
or n. Therefore,

we get:

F (u(τn, ω), v(τn, ω)) ≥ (n− 1− lnn) ∧ (
1

n
− 1− ln

1

n
)
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If n → ∞, we get,

F (u(τn, ω), v(τn, ω)) ≥ ∞ (3.8)

By equation (3.9)− (3.10) we get,

∞ > F
(
u(0), v(0)

)
+ c1(T ∧ τe) ≥ F (u(τn, ω), (v(τn, ω))) ≥ ∞, (3.9)

which is a contradiction. Thus τ∞ = ∞ must be true, this proved the theorem.

3.3 Numerical simulation

We have derived some theoretical results in the previous sections, such as sufficient

conditions for the extinction of prey and predators. We will see some examples

of conditions for the persistence of prey and extinction of predators to show how

it works. By numerical simulation, we will see how it goes concerning time.

Example 3.1 Fix the parameters r = 0.5, K = 20, b = 0.05, a = 0.4, h = 0.3, τ =

0.5, q1 = 0.1, e1 = 0.1, s = 0.03,m = 0.15, γ = 0.01, q2 = 0.05, e2 = 0.1, σ1 =

0.5, σ2 = 0.3 with initial conditions u(0) = 5 and v(0) = 5. Here s
h
= 0.1 and

m + q2e2 +
1
2
σ2
2 = 0.2 which means s

h
< m + q2e2 +

1
2
σ2
2 and 1

2
σ2
1 = 0.125 so,

r > 1
2
σ2
1. So, Theorem 3.4 implies predators will be extinct but prey will persist.
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(a) Nature of prey with and without

white noise in example 3.1

(b) Nature of predator with and with-

out white noise in example 3.1

Figure 3.1: Time series comparison chart of Example 3.1

Example 3.2 Fix the parameters r = 5, K = 20, b = 0.05, a = 0.4, h = 0.3, τ =

0.5, q1 = 0.1, e1 = 0.1, s = 0.3,m = 0.15, γ = 0.01, q2 = 0.05, e2 = 0.1, σ1 =

0.5, σ2 = 0.3 with initial conditions u(0) = 5 and v(0) = 5. Here s
h
= 1 and

m + q2e2 +
1
2
σ2
2 = 0.2 which means s

h
≮ m + q2e2 +

1
2
σ2
2.Also q1e1 +

1
2
σ2
1 = 0.135

that’s why r ≮ q1e1 +
1
2
σ2
1. Which does not satisfy the condition for Theorem 3.1

and both prey and predator are in persistence.
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(a) Nature of prey with and without white

noise in example 3.2

(b) Nature of predator with and without

white noise in example 3.2

Figure 3.2: Time series comparison chart of Example 3.2
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Example 3.3 Fix the parameters r = 0.1, K = 20, b = 0.05, a = 0.4, h = 0.3, τ =

0.5, q1 = 0.1, e1 = 0.1, s = 0.3,m = 0.15, γ = 0.01, q2 = 0.05, e2 = 0.1, σ1 =

0.5, σ2 = 0.3 with initial conditions u(0) = 5 and v(0) = 5. Here s
h
= 1 and

m+ q2e2 +
1
2
σ2
2 = 0.2 which means s

h
≮ m+ q2e2 +

1
2
σ2
2. Also q1e1 +

1
2
σ2
1 = 0.135

that’s why r < q1e1 +
1
2
σ2
1. This satisfies the condition for Theorem 3.1 for the

extinction of prey. But both prey and predators are both extinct.

(a) Nature of prey with and without white

noise in example 3.3

(b) Nature of predator with and without

white noise in example 3.3

Figure 3.3: Time series comparison chart of Example 3.3

Example 3.4 Fix the parameters r = 0.2, K = 20, b = 0.05, a = 0.4, h = 0.3, τ =
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0.5, q1 = 0.1, e1 = 0.1, s = 0.3,m = 0.04, γ = 0.01, q2 = 0.05, e2 = 0.1, σ1 =

0.5, σ2 = 0.3 with initial conditions u(0) = 5 and v(0) = 5. Here s
h
= 1 and

m+ q2e2 +
1
2
σ2
2 = 0.09 which means s

h
≮ m+ q2e2 +

1
2
σ2
2. Also q1e1 +

1
2
σ2
1 = 0.135

that’s why ≮ q1e1 +
1
2
σ2
1. This does not satisfy the condition for Theorem 3.1

regarding the extinction of prey and predators. Even after that, both prey and

predators are still extinct.

(a) Nature of prey with and without white

noise in example 3.4

(b) Nature of predator with and without

white noise in example 3.4

Figure 3.4: Time series comparison chart of Example 3.4
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CHAPTER 4

Future plans and conclusion

4.1 Conclusion

The thesis concludes with the following results:

1. For any given initial condition, the system (3.1)-(3.2) has a unique solution

(u(t), v(t)) ∈ R2
+, and this solution belongs to R2

+ with probability one.

2. There exists a condition under which the prey will go extinct.

3. There exists a condition under which the predator will go extinct.

4. Additionally we get a condition where the predator will go extinct but the

prey will persist.
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4.2 Future plans

4.2.1 Bedington-DeAngelis model with white noise and

Lévy jumps

In this thesis, we study we studied the model that includes only white noise but

in future, we aim to find results on the model that also includes Lévy jumps the

SDE for such model is

du(t) =

(
ru(t)

(
1− u(t)

K

)
− au(t)v(t)

1 + ahu(t) + bτv(t)
− q1e1u(t)

)
dt+ σ1u(t)dB1(t)

+

∫
Z

F1(u(t
−), z)Ñ1(dt, dz),

dv(t) =

(
sau(t)v(t)

1 + ahu(t) + bτv(t)
−mv(t)− γv2(t)− q2e2v(t)

)
dt+ σ2v(t)dB2(t)

+

∫
Z

F2(v(t
−), z)Ñ2(dt, dz).

Here, u(t−) and v(t−) represents the left limit of u(t) and v(t), respectively. Here

Ñi; i = 1, 2 represent time-homogeneous compensated Poisson random measure

on Z, a measurable subspace of R2

4.2.2 To study large deviation principle

The large deviations principle delves into the probabilities of infrequent occur-

rences that are exceedingly unlikely, often characterized by exponential rarity,

with respect to specific parameters. These parameters could encompass factors

like the number of random elements within a system, the duration of observation

for a stochastic system, the intensity of noise impacting a dynamic system, or

the temperature within a chemical reaction. This theoretical framework finds

applications across a spectrum of scientific disciplines, including queuing theory,

statistics, finance, and engineering. Particularly within statistical physics, it is

gaining prominence for analyzing systems in both equilibrium and nonequilibrium

states. Within this domain, parallels can be drawn between well-established con-

cepts like entropy and free energy in statistical physics and the more technically
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named concepts within large deviation theory, such as the rate function and the

scaled cumulant generating function.

Our objective is to investigate large deviations in the context of the stochas-

tic two-species predator-prey model. We will consider Gaussian randomness, en-

compassing both additive and multiplicative noise types. Our approach involves

employing the contraction principle argument and leveraging weak convergence to

establish a Freidlin-Wentzell type large deviation principle for both the additive

and multiplicative noise scenarios.
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