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Abstract

The aim of our work is to estimate the drift and diffusion coefficients of stochastic

differential equations (SDE) nonparametrically using n i.i.d replicates, {Xi(t) :

t ∈ [0, 1]}1≤i≤n, which are prone to additive noise corruption and are observed

sparsely and erratically on the interval [0,1]. The word ”sparse” suggests that

the number of measurements per path is arbitrary, possibly as low as two, and

that they stay constant with respect to n. For the estimation problem, impos-

ing the assumption of smoothness to use smoothing techniques that further an-

nihilate noise leads to the exclusion of a range of stochastic processes includ-

ing the diffusion process. However, the estimators used in this thesis allow the

functional data analysis of the processes that have nowhere differentiable sample

paths, even if the observations are discrete and include noise. We talk about,

dX(t) = µ(t)(X(t))αdt + σ(t)(X(t))βdB(t) where α ∈ {0, 1} and β ∈ {0, 1/2, 1}.

The time-inhomogeneous SDE is one way to represent this. Using systems of

PDEs, the estimators have been built by connecting the local diffusion param-

eters to the global parameters. This approach is entirely nonparametric and is

motivated by functional data analysis. The given estimators’ uniform asymp-
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totic convergence demonstrates how the sample frequency influences the rate of

convergence.
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CHAPTER 1

Introduction

“Some things will drop out of the public eye and will go away, but there will al-

ways be science, engineering, and technology. And there will always, always be

mathematics.”

-Katherine Johnson

In this chapter, we delve into the reasons why Stochastic Differential Equations

(SDEs) have garnered significant interest among mathematicians, exploring the

theoretical and practical importance of SDEs and highlighting their applications.

Furthermore, we discuss the various approaches to inference for SDEs, empha-

sizing the challenges and techniques involved in parameter estimation and model

validation. Finally, we detail the specific methodology used in our study which

includes a step-by-step explanation of our analytical framework.
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1.1 Why Stochastic Differential Equations?

Stochastic differential equations (SDEs), despite being fairly new to the world

of mathematics, have proved their importance. They are useful in the realistic

modeling of various real-life problems since they permit the addition of random-

ness in the system. The ideal conditions required for solving ordinary or partial

differential equations can barely be observed in real-life scenarios and hence one

needs to add noise or randomness in the system to obtain better results.

In [3] the authors construct a nonparametric estimator for state-price density

implicit for option prices and further get its asymptotic sampling theory. The es-

timator allows us to price new or complex securities without any arbitrage while

being able to observe the attributes of the data that are important from an asset-

pricing perspective, like, skewness, kurtosis for asset returns, and volatility for

option prices. They further perform the Monte Carlo simulations and derive the

option prices.

In [10] the authors introduce a nonparametric method for estimatimating the

drift and diffusion coefficients of SDEs by the use of a densely observed discrete

time series. By using Gaussian processes as priors, they can work in a function-

space view allowing the inference to also happen in the same space directly. For

the computational complexities that come with the use of Gaussian processes, an

approximation of sparse Gaussian processes is given which allows efficient com-

putation employing the distribution on a small subset of pseudosamples. The

method is used for real data thus proving its capability to capture the demeanor

of complex systems.

The stochastic volatility (SV) models, despite having an inherent insight have

limited applications because of the hurdles involved in their estimation with the

primary problem being the evaluation of likelihood. In recent times though, many
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new estimation methods have been introduced and thus the literature of SV mod-

els is being studied a lot more. In [5] the authors review some of the literature

and describe the main estimators along with their advantages as well as the limi-

tations that come with each one of them. Lately, the use of SV models, Stochastic

Differential Equations(SDEs), and Diffusion Processes has increased significantly

to model the dynamic evolution in various systems including the phenomena oc-

curring in domains such as finance, biology, engineering, physics, and many more.

Many authors have conducted studies and proposed a new class of SV models

where the volatility is transformed according to the Box-Cox power function. In

the context of stochastic differential equations, asymptotic theory of nonparamet-

ric estimation for SDEs with small noise has gained increasing attention since

Kutoyants (1994) discussed consistency and asymptotic normality of a nonpara-

metric estimator for SDEs motivated by a wiener process with small noise. Other

researchers such as [10] have also conducted studies using Gaussian and small

noise respectively.

Through the above examples, it is not hard to see how SDEs have gained ample

importance in the field of mathematics and are being rigorously studied. Intu-

itively, Stochastic Differential Equations blend a deterministic equation of motion

with erratic fluctuations that disrupt its dynamic evolution. In the sense of an

SDE, the Diffusion Process can be understood as the equation given below,

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dB(t), t ∈ [0, T ], (1.1)

where B(t) is the standard Brownian Motion. The above integral is supposed to

be construed as an Ito integral. Hence we can observe that any diffusion process

consists of two elements. The (infinitesimal) conditional variance, or diffusion σ,

is the second component, and the (infinitesimal) conditional mean, or drift µ, is

the first. These parameters represent the probabilistic nature of the solutions.
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[9] gave a nonparametric method to perform functional data analysis for sparse

longitudinal data. In the method proposed, the number of measurements at hand

is small in number and repeated. This method allows us to predict individual

smooth trajectories despite only a few measurements being available.

In statistical inference, the estimation of drift and diffusion coefficients has been

largely studied in parametric as well as nonparametric cases. For this inference

problem, an interesting fact to be considered is that diffusions are discovered

discretely thus leading to disparate estimation regimens pivoted on the type of

asymptotics.

1.2 Inference for SDEs

This section discusses the development of inference for SDEs. The theory de-

veloped earlier for the estimation of drift in SDEs can be observed in the time-

homogeneous case. The estimation was done using one sample solution and de-

rived from Kernel methods for parametric as well as nonparametric cases. Path

observations were done either continuously (see [4] and [19] among others) or

discretely (see [1] and [17] among others), using the asymptotic theory of estima-

tors for the latter case. When considering the diffusion processes, for the sake of

mathematical simplification, the authors imposed the conditions of ergodicity and

stationarity along with the standard asymptotic theory. In the past few years, the

kernel-based approach has been broadened to a multidimensional (see [2], [18] and

[15] among others) setting for the drift coefficient keeping stationarity within the

setting.

Another approach used for estimation is based on using a fixed estimation set

along with the group of finite dimensional subspaces of L2(A, dx) and choosing es-

timators based on the minimum least square difference from each subspace (see [7]
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and [11] among others). However, in this approach, there is a support constraint.

These time-homogeneous cases can not be further extended for the study of time-

varying cases. While ideally, one would prefer having a framework that is free

from any restrictions, such models, in a statistical sense are seldom recognized.

Thus for time-varying SDE, we require the imposition of some semiparametric

form for drift and/or diffusion coefficient.

1.3 Our Methodology

We study inferences for the continuous time stochastic process by gathering n

replicates of the stochastic process {Xi(t)}ni=1. We consider them to be samples

of random elements of size n that are separable in the Hilbert space of functions.

Due to this global view, we can make nonparametric inferences using the mean

function and kernel of X. As we have n replications, also called panels or lon-

gitudinal settings, this allows the inferences to be nonparametric. For discrete

observations made for {Xi(t)}ni=1 we use smoothing techniques which often come

with C2 assumptions.

We follow the steps mentioned below to conclude our results.

• Step 1: Consider the system Yij = Xi(Tij) + Uij, i = 1 · · ·n, j = 1 · · · r.

To estimate the local latent covariance surface along with its partial deriva-

tives, local linear smoothing techniques are commonly employed (see [8]).

The advantage is that this approach is completely nonparametric. However,

the methodology used by [9] demands the smooth covariance surface for

consistent estimation. This requirement presents a challenge for Stochastic

Differential Equations (SDEs), as the covariance function exhibits singular-

ity along the diagonal.

To address this issue, [13] propose a modification that involves defining the

smoothing covariance on a closed lower (or upper) triangle △ := {(s, t) :
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0 ≤ s ≤ t ≤ 1}. Then by imposing some regularity conditions, we can apply

the proposed methodology to estimate the covariance function consistently

from sparse, i.i.d. samples having noise corruption with uniform convergence

rates.

• Step 2: Though, it is not immediately obvious how global information like

mean and covariance can be deciphered into the local information such as

drift and diffusion. The Fokker Planck equation (see [16]) exhibits that

the probability distribution of its solution is fully determined by the drift

and diffusion coefficients. However, this is not true for all the cases. For the

estimation, two systems of PDE have been provided that relate the drift and

diffusion functionals to mean, covariance, and their derivatives explicitly.

• Step 3: The global or pooled information can be converted into local infor-

mation by plugging the estimators into systems of PDEs.

In the following chapters, this has been discussed in detail.
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CHAPTER 2

Preliminaries

“It’s fine to work on any problem, so long as it generates interesting mathematics

along the way - even if you don’t solve it at the end of the day.”

-Andrew Wiles

In this chapter, we have outlined the necessary background information for the

problem, providing a comprehensive foundation for understanding the context and

significance of the study. Along with this, we have presented key propositions and

a significant theorem that are essential for advancing the study of the proposed

estimators.

2.1 Basic Definitions and Results

In this section, we discuss Brownian Motion, Stochastic processes, Stochastic Dif-

ferential Equations, and some of their properties along with Ito’s lemma (refer [6]

and [12]). Further, we have the existence and uniqueness theorem.
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Definition 2.1. Let (Ω,F , P ) be a probability space. A stochastic process is a

measurable function X(t, ω) defined on product space [0,∞)× Ω. In particular,

(i) for each t, X(t,.) is a random variable,

(ii) for each ω,X(., ω) is a measurable function (called sample path).

Definition 2.2. A stochastic process B(t, ω) is called a Brownian motion if it

satisfies the following conditions

(i) P{ω : B(0, ω) = 0} = 1.

(ii) Almost all sample paths of B(t, ω) are continuous functions i.e.,

P{ω : B(., ω) is continuous}=1.

(iii) For any 0 ≤ s < t, the random variable B(t)-B(s) is normally distributed

with mean 0 and variance t-s, i.e., for any a < b,

P{a ≤ B(t)−B(s) ≤ b} =
1√

2π(t− s)

∫ b

a

e
−x2

2(t−s) .

(iv) B(t, ω) has independent increments, i.e., for any 0 ≤ t1 < t2 < ... < tn the

random variables

B(t1), B(t2)−B(t1), ...., B(tn)−B(tn−1).

are independent.

Remark 2.1. A Brownian motion has the following properties,

a) E[B(t)2]=t at any time t.

b) For any s, t ≥ 0, E[B(s)B(t)]=min{s,t}.

c) For fixed t0 ≥ 0, the process B(t0 + t)−B(t0) is also a Brownian motion.

d) Brownian motion is nowhere differentiable.

Definition 2.3. Let P :=
(
Ω,F ,F = {Ft}t≥0, P

)
be a filtered probability space

satisfying the usual conditions i.e.,

10



(i) P is complete on (Ω,F),

(ii) for each t ≥ 0, Ft contains all measurable null sets,

(iii) the filtration F is right-continuous.

Definition 2.4. A differential equation of the form

dX(t) = b(t,X(t)) dt+ σ(t,X(t))dB(t), (2.1)

where B(t) is one-dimensional standard Brownian motion and the functions b and

σ are real functions is known as stochastic differential equation.

Definition 2.5. An n-dimensional stochastic process {Mt}t≥0 on a filtered prob-

ability space (ω,F , P ) is called a martingale with respect to a filteration {Mt}t≥0

(and with respect to P) if

(i) {Mt} is {Mt}-measurable for all t,

(ii) E[|Mt|] ≤ ∞ for all t and,

(iii) E[Ms|Mt] = Mt for all s ≥ t.

Theorem 2.1 (Existence and Uniqueness [16]). Let T > 0 and b(., .) : [0, T ] ×

Rn → Rn, σ(., .) : [0, T ]× Rn → Rn×m be measurable functions satisfying

|b(t, x)|+ |σ(t, x)| ≤ C(1 + |x|);x ∈ Rn, t ∈ [0, T ]

for some constant C, (where|σ|2 =
∑

|σij|2) and such that

|b(t, x)− b(t, y)|+ |σ(t, x)− σ(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]

for some constant D. Let Z=X(0) be the random variable which is independent of

the σ-algebra generated by Bs(.), s ≥ 0 and such that

E[|Z|2] < ∞.

Then the stochastic differential equation

dX(t) = b(t,X(t)) dt+ σ(t,X(t))dB(t), 0 ≤ t ≤ T,X(0) = Z

has a unique t-continuous solution X(t, ω).
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Theorem 2.2 (Dominated Convergence Theorem). Let (fn) be a sequence of

complex-valued measurable functions on a measure space (Ω,F , P ). If the sequence

converges pointwise to a function f and is dominated by some Lebesgue integrable

function g in a sense that,

|fn(x)| ≤ g(x)

for all numbers n in the index and all points x ∈ Ω. Then, f is integrable and

lim
n→∞

∫
Ω

|fn − f | dP = 0.

Theorem 2.3 (Fubini Theorem). Suppose A and B are complete measurable

spaces and f(x,y) is A×B measurable. If∫
A×B

|f(x, y)| d(x, y) < ∞,

where the integral is taken with respect to product measure on the space over A×B,

then ∫
A

(∫
B

f(x, y) dy
)
dx =

∫
B

(∫
A

f(x, y) dx
)
dy =

∫
A×B

f(x, y) d(x, y)

the first two integrals being iterated integrals with respect to two measures, re-

spectively, and the third being an integral with respect to a product of these two

measures.

In 1944, Kiyosi Itô published a six-page paper introducing Itô calculus in

which he gave the parallel for the chain rule of the Newton-Leibniz calculus for

random functions like Brownian motion. Since the Brownian motion moves so

rapidly that it is nowhere differentiable, we cannot apply the chain rule. Itô

formula also has an additional term which comes because of the Brownian motion’s

quadratic variation that is nonzero. The formula is stated below.

Lemma 2.4 (Itô Lemma). Consider the SDE

dX(t) = b(t,X(t)) dt+ σ(t,X(t))dB(t)

where X(t) is an Itô process and B(t) is Brownian motion. Let F (t, x) be a real-

valued function with continuous partial derivatives F ′
t(t, x), F

′
x(t, x) and F ′′

xx(t, x)

12



for all t ≥ 0 and x ∈ R. Then F (t, x) is an Itô process such that

dF (t,X(t)) =
(
F ′
t(t,X(t)) + F ′

x(t,X(t))µ(t) +
F ′′
xx(t,X(t))σ2(t)

2

)
dt

+F ′
x(t,X(t))σ(t)dB(t). (2.2)

2.2 Basics of Inference

In this subpart, we talk about Local Polynomial smoothing (see [8]) which is a

type of estimation technique. Examine the regression function ‘m’, which may be

locally estimated using Taylor’s expansion for z in the vicinity of x as follows.

m(z) ≈
n∑

i=1

m(z) = m(j)(x)(z − x)j/j! ≡
p∑

j=0

βj(z − x)j. (2.3)

Hence we use the locally weighted polynomial regression

n∑
i=1

(Yi −
p∑

j=0

βj(Xi − x)j)2Kh(Xi − x) (2.4)

where K(.) denotes a kernel function and h is the bandwidth.

This method has various advantages over other methods such as Nadaraya-Watson

and Gasser-Miller estimators as it requires a small degree of local polynomial thus

avoiding over-parametrization. It can also be easily fused with global parametric

fir to reduce the bias. Let β̂j be the minimizer of (2.4) ∀j = 0, 1, 2, ... then the

estimator of mν(x) is

m̂ν(x) = ν!β̂ν . (2.5)

Xi in the above equation are response variables and Yi are covariate. K(.) is the

kernel function which is a unimodal nonnegative function used to assign weight

K{(Xi − x)/h} to (Xi, Yi) and h is the bandwidth which is the smallest number

among |Xk −Xj| ∀j = 1, 2, ..n. We perform the estimation following the method

explained.

From the n i.i.d. observations consider the ith observation (Xi, Yi). Now, to each

13



Xi assign the weight

Ki(Xk) = K{h−1
k (Xi −Xk)}. (2.6)

Use them in the initial locally weighted polynomial regression

n∑
i=1

(Yi −
p∑

j=0

βj(Xi − x)j)2Kh(Xi − x). (2.7)

Denote the fitted value of Yk as Ŷk which is
∑n

i=1wi(Xk)Yi. We define the residuals

rk as Yk − Ŷk, k=1,2,..,n and robustness weights as δi = B(ri/6M) where B(t) =

(1− |t|2)2I[−1,1](t) and M is the median of |r1|, ..., |rn|.

Perform the second iteration and compute the new fitted value for (̂Yk) using the

weight δiKi(Xk).

After N iterations, we get the locally weighted regression estimator.

2.2.1 Framework for Local Polynomial Regression

For the bivariate data (X1, Y1), ..., (Xn, Yn), i.i.d. sample, we wish to estimate

regression function m(x0) = E(Y |X = x0) and its derivatives. The model used is

Y = m(X) + σ(X)ϵ (2.8)

where E(ϵ) = 0, V ar(ϵ) = 1.

Take the Taylor’s expansion of m(x) at x0,

m(x) ≈ m(x0)+m′(x0)(x−x0)+m′′(x0)(x−x0)/2!+...+mp(x0)(x−x0)/p!. (2.9)

This polynomial is fitted locally by weighted least square regression problem where

we wish to minimize

n∑
i=1

(Yi −
p∑

j=0

βj(Xi − x)j)2Kh(Xi − x) (2.10)

and let ˆβ(j) be the solution of the above equation called the minimizer. From

Taylor’s expansion we can see that ˆmν(x) = ν!β̂ν . Now we can solve the above

14



equation for all x0 in the domain of interest.

Converting everything to matrix notation gives us the following
1 (X1 − x0) . . . (X1 − x0)

p

. . . . . .

. . . . . .

1 (Xn − x0) . . . (Xn − x0)
p

 denoted by X. And let y and β̂ be


Y1

.

.

Yn

 and


β̂0

.

.

β̂p

 respectively.

Let W be n×n diagonal matrix of weights, W=diag{Kh(Xi−x0)} then equation

(2.10) becomes

min(y −Xβ)T ×W (y −Xβ) ∀β = (β0, ..., βp)
T (2.11)

and the solution is given by β̂ = (XT ×W ×X)−1×XT ×Wy.

There are, however, some drawbacks to using this technique. Firstly, a large

bandwidth value under-parametrizes the regression causing large modeling bias,

whereas a small bandwidth value over-parametrizes the unknown function causing

noise in the estimate. It is recommended to use a polynomial of lowest odd order;

p=ν + 1 or p=ν + 3. And lastly, the choice of kernel function also matters as no

negative weight K should be assigned to the random variables.
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CHAPTER 3

Nonparametric Estimation for Stochastic Differential

Equations

“It seems to me that the poet must see what others do not see, must see more

deeply than other people. And the mathematician must do the same.”

-Sofia Kovalevskaya

In this chapter, we have outlined the necessary background information for the

problem, along with key propositions and a significant theorem essential for ad-

vancing the study of the proposed estimators.

3.1 Background

Here, we will be engaging with the solutions of the linear SDE:

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dB(t), t ∈ [0, 1], (3.1)

or

X(t) = X(0) +

∫ t

0

µ(s)X(s) ds+

∫ t

0

σ(s)X(s)dB(s), t ∈ [0, 1], (3.2)
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equivalently.

The methods used can be broadened to the diffusion process configured as

dX(t) = µ(t)(X(t))αdt+ σ(t)(X(t))βdB(t), t ∈ [0, 1], (3.3)

to cover a wider class of diffusion processes.

The following statements are being made under the assumption that µ(t) and σ(t)

are continuously differentiable in the unit interval. Then consider the SDEs,

dXi(t) = µ(t)Xi(t) dt+ σ(t)Xi(t) dBi(t). (3.4)

where {Xi(t), t ∈ [0, T ]}, are n iid diffusions conforming to the SDEs, i = 1, · · · , n

and {Bi}1≤i≤n is a sequence of totally independent Brownian motions andX1(0), · · ·

, Xn(0) are random initial points.

Further, we have n observations as

Yi(Tij) = Xi(Tij) + Uij i = 1, · · · , n, j = 1, · · · , r(n), (3.5)

where

• {Tij} is the triangular arrangement of randomly chosen design points.

• {Uij} is an array of i.i.d. centred measurement errors with finite variance

ν2.

• {r(n)} is the sequence of grid sizes, which gives the denseness of the sampling

scheme. The sequence of grid sizes must be at least 2.

• {Xi}, {Tij} and {Uij} are totally independent across all indices i and j.

We are interested in estimating the drift and diffusion coefficients as they dictate

the local behavior of processes. One can understand them as conditional mean and

conditional variance respectively. For the stochastic differential equations that are

time-invariant featuring drift and diffusion that remain constant over time, this

becomes readily apparent. We have,
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µ(x) = lim
h→0

E[X(t+h) − x|X(t) = x]/h, (3.6)

σ2(x) = lim
h→0

E[(X(t+h) − x)2|X(t) = x]/h. (3.7)

The method for estimation followed further comes from [13].

3.2 Other Technical Proofs

In this section, we discuss some propositions and their proofs which provide us

with the systems of PDE to globally estimate the drift and diffusion coefficients.

Proposition 3.1. For α = 1 and β = 0. Let µ, σ ∈ Cd([0, 1]), d ≥ 1. Then

m,D ∈ Cd+1([0, 1]) satisfies the differential equations

d

dt
m(t) = µ(t)m(t), m(0) = m0, (3.8)

d

dt
D(t) = 2µ(t)D(t) + σ2(t), D(0) = E[X2(0)]. (3.9)

Proof. The considered linear SDE is given by

dX(t) = µ(t)X(t) dt+ σ(t) dW (t) (3.10)

or equivalently,

X(t) = X0 +

∫ t

0

µ(s)X(s) ds+

∫ t

0

σ(s) dW (s), t ∈ [0, 1]. (3.11)

We now apply Itô formula to Φ(x, t) = x for the process (3.11). Then by taking

expectation on both sides, we get

E[X(t)] = E[X(0)] + E
[ ∫ t

0

µ(s)X(s) ds
]
+ E

[ ∫ t

0

σ(s)dB(s)
]
.

Using the martingale property of Brownian motion, {B(t)}t≥0 we have

E
[ ∫ t

0

σ(s)dB(s)
]
= 0.

Using the Fubini Theorem, one can achieve

m(t) = m0 +

∫ t

0

µ(s)m(s) ds (3.12)
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which implies

dm

dt
(t) = µ(t)m(t), m(0) = m0. (3.13)

Now, for the second equation, apply Itô formula to ϕ(x, t) = x2 for the process

(3.11), then for t ∈ [0, T ] we have,

X2(t) = X2(0) + 2

∫ t

0

X(s)
(
µ(s)X(s) ds+ σ(s) dB(s)

)
+

1

2

∫ t

0

2σ2(s) ds.

(3.14)

It can be written as,

X2(t) = X2(0) + 2

∫ t

0

X(s)X(s)µ(s) ds+ 2

∫ t

0

X(s)σ(s) dB(s)
)
+

∫ t

0

σ2(s) ds.

(3.15)

Again, taking expectation on both sides and using the martingale property of

Brownian motion {B(t)}t≥0 we have

E
[
X2(t)

]
= E

[
X2(0)

]
+ 2

∫ t

0

µ(s)E
[
X(s−)X(s)

]
ds+ 2 E

[ ∫ t

0

X(s)σ(s) dB(s)
]

︸ ︷︷ ︸
=0

+

∫ t

0

σ2(s) ds. (3.16)

This yields

D(t) = D(0) + 2

∫ t

0

µ(s)D(s) ds+

∫ t

0

σ2(s) ds.

which gives,

d

dt
D(t) = 2µ(t)D(t) + σ2(t), D(0) = E[X2(0)]. (3.17)

The above proof is for a particular case of equation (3.2) where α = 1 and

β = 0. For α ∈ {0, 1} and β ∈ {0, 1/2, 1} the results are listed below.

• For α = 1 and β = 1/2, we get

d

dt
m(t) = µ(t)m(t), m(0) = m0,

d

dt
D(t) = 2µ(t)D(t) + σ2(t)m(t), D(0) = E[X2(0)].
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• For α = 1 and β = 1,

d

dt
m(t) = µ(t)m(t), m(0) = m0,

d

dt
D(t) = 2µ(t)D(t) + σ2(t)D(t), D(0) = E[X2(0)].

• For α = 0 and β = 0,

d

dt
m(t) = µ(t), m(0) = m0,

d

dt
D(t) = 2µ(t)m(t) + σ2(t), D(0) = E[X2(0)].

• For α = 0 and β = 1/2,

d

dt
m(t) = µ(t), m(0) = m0,

d

dt
D(t) = 2µ(t)m(t) + +σ2(t)m(t), D(0) = E[X2(0)].

• For α = 0 and β = 1,

d

dt
m(t) = µ(t), m(0) = m0,

d

dt
D(t) = 2µ(t)m(t) + +σ2(t)D(t), D(0) = E[X2(0)].

Proposition 3.2. Let µ, σ ∈ Cd([0, 1]) for some d ≥ 1. Let H : ∆ → R be

given by H(s, t) = E[X(s)X(t)] for (s, t) ∈ ∆ = {(s, t) : 0 ≤ s ≤ t ≤ 1}. Then,

H ∈ Cd+1(∆;R). Furthermore, for 0 ≤ s ≤ t ≤ 1,

H(s, t) = H(0, 0) + 2

∫ s

0

H(r, r)µ(r) dr +

∫ t

s

H(s, r)µ(r) dr +

∫ s

0

σ2(r) dr.

(3.18)

In particular, for 0 ≤ s ≤ t ≤ 1,

∂sH(s, t) = µ(s)H(s, s) +

∫ t

s

µ(r)∂sH(s, r) dr + σ2(s) (3.19)

and the following system of PDE holds,

∂m(s) = m(s)µ(s) (3.20)

σ2(s) =
1

1− s

∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)

−
∫ t

s

µ(r)∂sH(s, r) dr
]
dt. (3.21)
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Proof. The process {X(t)}t∈[0,1] satisfies

X(t) = X(s) +

∫ t

s

µ(r)X(r) dr +

∫ t

s

σ(r) dW (r). (3.22)

The random variables X(t) − X(s) and X(s) are independent for 0 ≤ s ≤ t.

Hence, with D(s) = E[X2(s)] and m(s) = E[X(s)] we achieve

H(s, t) = E[X(s)X(t)] = E
[
X(s)

(
X(t)−X(s)

)]
+ E[X2(s)]

= m(s)E
[
X(t)−X(s)

]
+D(s). (3.23)

Taking expectation on (3.22) we achieve

E
[
X(t)−X(s)

]
=

∫ t

s

µ(r)E[X(R)] dr. (3.24)

The random variables X(s)−X(0) and X(r) are independent for 0 ≤ s ≤ r ≤ t.

Also, the random variables X(0) and X(r) are independent for 0 ≤ r. Thus, we

get

E[X(s)]E[X(r)] = E
[
X(s)−X(0)

]
E[X(r)] + E[X(0)]E[X(r)]

= E
[
(X(s)−X(0))X(r)

]
+ E[X(0)X(r)]

= E
[
X(s)X(r)−X(0)X(r) +X(0)X(r)

]
= E

[
X(s)X(r)

]
= H(s, r). (3.25)

Using Proposition 3.1 and the above equation, (3.25) we have

H(s, t) = E[X(s)]
(∫ t

s

µ(r)E[X(r)] dr
)
+D(s)

=

∫ t

s

µ(r)E[X(s)]E[X(r)] dr +D(0) + 2

∫ s

0

µ(r)D(r) dr +

∫ s

0

σ2(r) dr

= H(0, 0) + 2

∫ s

0

µ(r)H(r, r) dr +

∫ t

s

µ(r)H(s, r) dr

= H(0, 0) + 2

∫ s

0

µ(r)H(r, r) dr +

∫ t

s

µ(r)H(s, r) dr +

∫ s

0

σ2(r) dr.

(3.26)

Differentiating (3.26) with respect to s and using the Dominated Convergence

theorem, we get

∂sH(s, t) = 2µ(s)H(s, s) +

∫ t

s

µ(r)∂sH(s, r) dr − µ(s)H(s, s) + σ2(s). (3.27)
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Now integrating (3.27) with respect to t variable in [s, 1], we obtain∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)−

∫ t

s

µ(r)∂sH(s, r) dr
]
dt = (1− s)

(
σ2(s)

)
. (3.28)

That is, for 0 ≤ s ≤ 1, we obtain

σ2(s) =
1

1− s

∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)−

∫ t

s

µ(r)∂sH(s, r) dr
]
dt. (3.29)

This completes the proof.

The above proof is for a particular case of equation (5) where α = 1 and β = 0.

For α ∈ {0, 1} and β ∈ {0, 1/2, 1} the results are listed below.

• For α = 1 and β = 1/2, we get

∂sH(s, t) = µ(s)H(s, s) +

∫ t

s

µ(r)∂sH(s, r) dr + σ2(s)m(s),

and we get the system of PDE,

∂m(s) = m(s)µ(s)

σ2(s) =
1

(1− s)m(s)

∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)−

∫ t

s

µ(r)∂sH(s, r) dr
]
dt.

• For α = 1 and β = 1,

∂sH(s, t) = µ(s)H(s, s) +

∫ t

s

µ(r)∂sH(s, r) dr + σ2(s)H(s, s),

and we get the system of PDE,

∂m(s) = m(s)µ(s)

σ2(s) =
1

(1− s)H(s, s)

∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)

−
∫ t

s

µ(r)∂sH(s, r) dr
]
dt.

• For α = 0 and β = 0,

∂sH(s, t) = µ(s)m(s) +

∫ t

s

µ(r)∂sm(s) dr + σ2(s),

and we get the system of PDE,

∂m(s) = µ(s)
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σ2(s) =
1

1− s

∫ 1

s

[
∂sH(s, t)− µ(s)H(s, s)−

∫ t

s

µ(r)∂sH(s, r) dr
]
dt.

• For α = 0 and β = 1/2,

∂sH(s, t) = µ(s)m(s) +

∫ t

s

µ(r)∂sm(s) dr + σ2(s)m(s),

and we get the system of PDE,

∂m(s) = µ(s)

σ2(s) =
1

(1− s)m(s)

∫ 1

s

[
∂sH(s, t)− µ(s)m(s)−

∫ t

s

µ(r)∂sm(s) dr
]
dt.

• For α = 0 and β = 1,

∂sH(s, t) = µ(s)m(s) +

∫ t

s

µ(r)∂sm(s) dr + σ2(s)H(s, s),

and we get the system of PDE,

∂m(s) = µ(s)

σ2(s) =
1

(1− s)H(s, s)

∫ 1

s

[
∂sH(s, t)− µ(s)m(s)−

∫ t

s

µ(r)∂sm(s) dr
]
dt.

3.3 Estimators

We want to estimate the mean and the second-moment function, m and G re-

spectively, and their derivatives using local polynomial smoothing. Using all the

observations, we can perform estimation by pooling second moments on the tri-

angle,

△ := {(s, t) : 0 ≤ s ≤ t ≤ 1} (3.30)

Using this information, one can see that for any t such that 0 ≤ t ≤ 1 the pointwise

estimator of order d obtained using local polynomial for m(t) and its derivative

∂m(t) are:(
m̂(t), hm∂̂m(t)

)T
=

(
(1, 0, ..., 0︸ ︷︷ ︸

=d times

)T
(
β̂p

)
0≤p≤d

, (0, 1, 0, .., 0︸ ︷︷ ︸
=d-1 times

)T
(
β̂p

)
0≤p≤d

)T

(3.31)
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where the vector
(
β̂p

)
0≤p≤d

is the solution of

argmin
(βp)0≤p≤d

n∑
i=1

r(n)∑
j=1

(Yij −
d∑

p=0

βp(Tij − t)p)2Kh2
m
(Tij − t)︸ ︷︷ ︸

=A

, (3.32)

hm is a one-dimensional bandwidth parameter that depends on n and Kh2
m

=

hm
−1Km(hm

−1) for some kernel Km that is univariate and integrable. Similarly,

for estimating G(s,t) constrained to the lower triangle,

∆ = {(s, t) : 0 ≤ s ≤ t ≤ 1}, we use local surface regression approach on a 2D

scatter plot given below:

{((Tik, Tij), YijYik) : i = 1 · · ·n, k < j}. (3.33)

The diagonal points have been excluded as the measurement error causes the

diagonal observations to be biased.

For function G(s,t) and its partial derivative ∂sG(s, t) for s ≤ t, we have the local

smoothing of order d as follows,(
Ĝ(s, t), hG∂̂sG(s, t)

)T
=

(
(1, 0, ..., 0)T

(
γ̂p,q

)
0≤p+q≤d

, (0, 1, 0, .., 0)T
(
γ̂p,q

)
0≤p+q≤d

)T

(3.34)

where the vector (γ̂p,q)
T
0≤p+q≤d is the minimizer of

argmin
γp,q

∑
i≤n

∑
k≤j

YikYij −
∑

0≤(p+q)≤d

γp,qh
p+q

G

(
Tij − s

hG

)p (
Tik − t

hG

)q


2

×KhG
((Tij − s), (Tik − t)) (3.35)

where HG
1/2 is 2× 2 bandwidth matrix which is symmetric positive definite and

KhG
= |HG|1/2KhG

for some bivariate kernel KG.

Hence, by combining these estimators of m, G, and their derivatives, obtain two

simultaneous pairs of estimators (µ̂, σ̂2
D) and (µ̂, σ̂2

T ) for the drift and diffusion

functions (subscript D and T denote the diagonal and triangular domain respec-

tively) : µ̂(t) = (m̂(t))−1 ∂̂m(t) I(m̂(t) ̸= 0),

σ̂2
D(t) = ∂̂D(t)− 2µ̂(t)D̂(t), t ∈ [0, 1]

(3.36)
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
µ̂(s) = (m̂(s))−1 ∂̂m(s) I(m̂(s) ̸= 0),

σ̂2
T (s) =

1

1− s

∫ 1

s

[
∂̂sG(s, t)− µ̂(s)Ĝ(s, s)−

∫ t

s
µ̂(u)∂̂sG(s, u) du

]
dt, s ∈ [0, 1]

(3.37)

for some t ∈ A where A is some subset of [0,1].

3.4 Main Theorems

Now, we discuss the main theorems and their proofs which complete the estimation

theory (refer [14]). The theorems given below hold under the assumptions:

• C(0) The drift and diffusion coefficients are d-times continuously differen-

tiable on the unit interval, i.e. µ(.), σ(.) ∈ Cd([0, 1],R) for some d ≥ 1.

• C(1) ∃M ≥ 0 which gives 0 < P(Tij ∈ [a, b]) ≤ M(b − a) for all i,j and

0 ≤ a < b ≤ 1.

• C(2) E|Uij
ρ| < ∞ and E|X(0)ρ| < ∞.

Theorem 3.3. Assume the conditions C(0), C(1) and C(2) hold for ρ > 2 and

let m̂(.) and ∂̂m(.) be the estimator defined in (3.31). Then with probability 1.

sup |m̂(t)−m(t)| = O(R(n)) (3.38)

sup |∂̂m(t)− ∂m(t)| = hm
−1O(R(n)) (3.39)

where R(n) =
[
hm

−2 logn
n

(
hm

2 + hm

r

)]1/2
+ hm

d+1. Additionally if C(2) holds for

ρ > 4 and let Ĝ(.) and ∂̂sG(.) be the estimator defined in (3.34) satisfies with

probability 1.

sup |Ĝ(s, t)−G(s, t)| = O(Q(n)) (3.40)

sup |∂̂sG(s, t)− ∂sG(s, t)| = hG
−1O(Q(n)) (3.41)

where Q(n) =
[
hG

−4 logn
n

(
hG

4 + hG
3

r
hG

2

r2

)]1/2
+ hG

d+1.
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Proof. Consider the equation (3.32) For simplicity, let us take d=2. Further, we

need to minimize only A. Therefore, we have
n∑

i=1

r(n)∑
j=1

[{Yij − β0(Tij − t)0 − β1(Tij − t)1 − β2(Tij − t)2}2Kh2
m
(Tij − t)]. (3.42)

Here three parameters are to be estimated, β0, β1, β2.

Note that S=Yi− Ŷi= Actual value-Predicted value. Thus, in our case, the normal

equations are obtained by partially differentiating S with respect to β0, β1 and β2.

The equation, ∂S
∂β0

= 0, will give an expression for β̂0. Similarly, for β̂1 and β̂2 we

have the expression ∂S
∂β1

= 0 and ∂S
∂β2

= 0 respectively, where β̂0, β̂1 and β̂2 are the

solutions of these PDE.

Differentiating (3.42) with respect to β̂0 yields ∂(3.42)
∂β0

= 0, we get

2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}(−1)Kh2
m
(Tij − t)] = 0,

which is nothing but,

−2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}Kh2
m
(Tij − t)] = 0.

Further simplification gives

β̂0

n∑
i=1

r(n)∑
j=1

Kh2
m
(Tij − t) =

n∑
i=1

r(n)∑
j=1

YijKh2
m
(Tij − t)− β̂1

n∑
i=1

r(n)∑
j=1

(Tij − t)

×Kh2
m
(Tij − t)− β̂2

n∑
i=1

r(n)∑
j=1

(Tij − t)2Kh2
m
(Tij − t).

Hence we get the expression,

β̂0 =
1∑n

i=1

∑r(n)
j=1 Kh2

m
(Tij − t)

[ n∑
i=1

r(n)∑
j=1

YijKh2
m
(Tij − t)

−β̂1

n∑
i=1

r(n)∑
j=1

(Tij − t)Kh2
m
(Tij − t)

−β̂2

n∑
i=1

r(n)∑
j=1

(Tij − t)2Kh2
m
(Tij − t)

]
.
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Similarly, partially differentiating (3.42) with respect to β1 (∂(3.42)
∂β1

= 0) gives us

2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}(−1)(Tij − t)Kh2
m
(Tij − t)] = 0,

which gives

−2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}(Tij − t)Kh2
m
(Tij − t)] = 0.

Then, clearly

β̂1

n∑
i=1

r(n)∑
j=1

(Tij − t)2Kh2
m
(Tij − t) =

n∑
i=1

r(n)∑
j=1

Yij(Tij − t)Kh2
m
(Tij − t)

−β̂0

n∑
i=1

r(n)∑
j=1

(Tij − t)Kh2
m
(Tij − t)

−β̂2

n∑
i=1

r(n)∑
j=1

(Tij − t)3Kh2
m
(Tij − t).

Thus, we obtain

β̂1 =
1∑n

i=1

∑r(n)
j=1 (Tij − t)2Kh2

m
(Tij − t)

[ n∑
i=1

r(n)∑
j=1

Yij(Tij − t)Kh2
m
(Tij − t)

−β̂0

n∑
i=1

r(n)∑
j=1

(Tij − t)Kh2
m
(Tij − t)

−β̂2

n∑
i=1

r(n)∑
j=1

(Tij − t)3Kh2
m
(Tij − t)

]
.

Lastly, we differentiate (3.42) with respect to β2 (∂(3.42)
∂β2

= 0), to obtain

2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}(−1)(Tij − t)2Kh2
m
(Tij − t)] = 0,

which is

−2
n∑

i=1

r(n)∑
j=1

[{Yij − β̂0 − β̂1(Tij − t)− β̂2(Tij − t)2}(Tij − t)2Kh2
m
(Tij − t)] = 0.

28



By simplifying, we have

β̂2

n∑
i=1

r(n)∑
j=1

(Tij − t)4Kh2
m
(Tij − t) =

n∑
i=1

r(n)∑
j=1

Yij(Tij − t)2Kh2
m
(Tij − t)

−β̂0

n∑
i=1

r(n)∑
j=1

(Tij − t)2Kh2
m
(Tij − t)

−β̂1

n∑
i=1

r(n)∑
j=1

(Tij − t)3Kh2
m
(Tij − t).

Thus, we get the expression,

=⇒ β̂2 =
1∑n

i=1

∑r(n)
j=1 (Tij − t)4Kh2

m
(Tij − t)

[ n∑
i=1

r(n)∑
j=1

Yij(Tij − t)2Kh2
m
(Tij − t)

−β̂0

n∑
i=1

r(n)∑
j=1

(Tij − t)2Kh2
m
(Tij − t)

−β̂1

n∑
i=1

r(n)∑
j=1

(Tij − t)3Kh2
m
(Tij − t)

]
.

This gives us the solution for (3.32) for d=2 and hence the result follows. Now,

consider the equation (3.35) For the sake of simplicity, let us take d=1. Then we

will have the following cases.

(i) p=0, q=0

(ii) p=1, q=0

(iii) p=0, q=1

We have the expression,∑
i≤n

∑
k≤j

[{YikYij − γ0,0hG
0
(Tij − s

hG

)0(Tik − t

hG

)0

− γ1,0hG
1
(Tij − s

hG

)1(Tik − t

hG

)0

−γ0,1hG
1
(Tij − s

hG

)0(Tik − t

hG

)1

}2KhG
((Tij − s), (Tik − t))].

(3.43)

Here we have three parameters to be estimated, ˆY0,0, ˆY1,0, and ˆY0,1. Continuing in

a similar manner as for the previous proof, we partially differentiate (3.43) with
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respect to γ0,0 (∂(3.43)
∂γ0,0

= 0), which gives

2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}

×(−1)KhG
((Tij − s), (Tik − t))] = 0,

which can be written as

−2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}

×KhG
((Tij − s), (Tik − t))] = 0.

Hence we have the equation

γ̂0,0
∑
i≤n

∑
k≤j

KhG
((Tij − s), (Tik − t)) =

∑
i≤n

∑
k≤j

YikYijKhG
((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂1,0hG

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂0,1hG

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t)),

which can be simplified to obtain

γ̂0,0 =
1∑

i≤n

∑
k≤j KhG

((Tij − s), (Tik − t))

[∑
i≤n

∑
k≤j

YikYijKhG
((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂1,0hG

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂0,1hG

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t))
]
.

(3.44)

Proceeding similarly by differentiating (3.43) with respect to γ1,0 (∂(3.43)
∂γ1,0

= 0)

yields

2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}(−1)hG

(Tij − s

hG

)
×KhG

((Tij − s), (Tik − t))] = 0,
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which is

−2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}hG

(Tij − s

hG

)
×KhG

((Tij − s), (Tik − t))] = 0.

We can write this as

γ̂1,0hG
2
∑
i≤n

∑
k≤j

(Tij − s

hG

)2

KhG
((Tij − s), (Tik − t)) =

∑
i≤n

∑
k≤j

YikYijhG

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))−

∑
i≤n

∑
k≤j

γ̂0,0hG

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))−

∑
i≤n

∑
k≤j

γ̂0,1hG
2
(Tik − t

hG

)(Tij − s

hG

)
KhG

((Tij − s), (Tik − t)),

and consequently,

γ̂1,0 =
1

hG
2∑

i≤n

∑
k≤j

(
Tij−s

hG

)2

KhG
((Tij − s), (Tik − t))

(3.45)

[∑
i≤n

∑
k≤j

YikYij

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂0,0hG

(Tij − s

hG

)
KhG

((Tij − s), (Tik − t)) (3.46)

−
∑
i≤n

∑
k≤j

γ̂0,1hG
2
(Tij − s

hG

)(Tik − t

hG

)
KhG

((Tij − s), (Tik − t))
]
.

Further the partial differentiation of (3.43) with respect to γ0,1 (∂(3.43)
∂γ0,1

= 0), we

have

2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}(−1)hG

(Tik − t

hG

)
×KhG

((Tij − s), (Tik − t))] = 0,

which gives

−2
∑
i≤n

∑
k≤j

[{YikYij − γ̂0,0 − γ̂1,0hG

(Tij − s

hG

)
− γ̂0,1hG

(Tik − t

hG

)
}hG

(Tik − t

hG

)
×KhG

((Tij − s), (Tik − t))] = 0.
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Simplify the above equation to get

γ̂0,1hG
2
∑
i≤n

∑
k≤j

(Tik − t

hG

)2

KhG
((Tij − s), (Tik − t)) =

∑
i≤n

∑
k≤j

YikYijhG

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂0,0hG

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t))−

∑
i≤n

∑
k≤j

γ̂1,0hG
2
(Tik − t

hG

)(Tij − s

hG

)
KhG

((Tij − s), (Tik − t)),

Thus we obtain the value

γ̂0,1 =
1

hG
2∑

i≤n

∑
k≤j

(
Tik−t
hG

)2

KhG
((Tij − s), (Tik − t))

(3.47)

[∑
i≤n

∑
k≤j

YikYij

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t))

−
∑
i≤n

∑
k≤j

γ̂0,0hG

(Tik − t

hG

)
KhG

((Tij − s), (Tik − t)) (3.48)

−
∑
i≤n

∑
k≤j

γ̂1,0hG
2
(Tik − t

hG

)(Tij − s

hG

)
KhG

((Tij − s), (Tik − t))
]
.

This gives us the solution of (3.35) for d = 1

Now for the equation (3.34). We have,

(γ̂0,0, γ̂1,0, γ̂0,1)
T = (γ̂p,q)

T
0≤p+q≤1

which is the same as

(γ̂0,0, γ̂1,0, γ̂0,1) = (γ̂p,q)0≤p+q≤1.

Thus we can see that the least square problem (3.35) has the solution,

(γ̂p,q)
T
0≤p+q≤1 =

(
hG

p+q ̂(∂p
s tp)p+qG(s, t)

)T
0≤p+q≤1

. (3.49)

Substituting the value p=0 and q=0 in the above equation, we get

(γ̂0,0)
T =

(
hG

0Ĝ(s, t)
)T

that is

(γ̂0,0) = (Ĝ(s, t))
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and hence we obtain,

(γ̂0,0)Ĝ(s, t) = (γ̂0,0). (3.50)

Further proceeding using the general formula,

β̂ = (XTX)−1Xy (3.51)

which is nothing but

(XTX)−2Xy =


β̂0

β̂1

β̂2

 . (3.52)

Then, the equation (3.49) can be written as

(T(s,t)
TW(s,t)T(s,t))

−1T(s,t)
TW(s,t)y =


Ĝ(s, t)

hG∂̂sG(s, t)

hG∂̂tG(s, t)

 . (3.53)

Comparing (3.52) and (3.53), we conclude

Ĝ(s, t) = β̂0 (3.54)

In our case, β̂0 = γ̂0,0 as has been shown above.

similarly, we can get,

hG∂̂sG(s, t) = γ̂1,0. (3.55)

Now, we have the equation,

sup
0≤s≤t≤1

|Ĝ(s,t) −G(s,t)|. (3.56)

By replacing Ĝ(s,t) by (γ̂(0,0)), the above equation becomes,

sup
0≤s≤t≤1

|γ̂(0,0) − γ(0,0)|. (3.57)

Hence the proof.
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CHAPTER 4

Numerical Simulations

“There is no branch of mathematics, however abstract, which may not someday

be applied to phenomena of the real world.”

-Nikolăı Ivanovich Lobachevskĭı

In this chapter we have provided some insights along with the graph into the

numerical simulations run for the analysis of results obtained. Here we have

discussed the simulation of n i.i.d. paths of diffusions {Xi}i=1···n using Euler

Maruyama numerical approximation technique having step size, dt = 10−3. To do

this we chose r random points {Tij}j=1···r in unit interval in increasing order for

each Xi. The mathematical model that we have used for further calculation is

Yij = Xi(Tij) + Uij i = 1 · · ·n, j = 1 · · · r (4.1)

where Uij is i.i.d. Gaussian measurement with mean zero and finite variance ν2.

The performance was explored for values of n ranging from 100 to 1000, values

of r ranging from 2 to 10, and for ν ∈ {0, 0.05, 0.1}. We have used Epanech-

nikov kernel along with bandwidth h = (n.r)(−1/5) for both, surface and linear
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smoothing. For all (n, r, ν), 100 Monte Carlo simulations were performed, and

the performance of estimators was checked by calculating the average square root

of integrated square error obtained over these runs. This means that from every

run we get ||µ − µ̂||L2([0,1]), ||σ2 − σ̂2
T ||L2([0,1]), ||σ2 − σ̂2

D||L2([0,1]) and we evaluated

the distribution followed by these errors over 100 iterations.

We discuss two examples of time-varying SDEs. The first one is a Brownian

bridge where the drift is time-varying and the diffusion is constant. The second

one is the time-inhomogeneous Ornstein Uhlenbeck process which has a drift that

is sinusoidal time-varying and diffusion that is negative exponential time-varying.

These two examples showcase the efficiency of the proposed estimators and also

provide a comparison about how the performance changes based on the values

chosen for n and r.

4.1 Brownian-Bridge

For this example, we have a Brownian-Bridge starting at 2 with time-varying drift

i.e., µ(t) = −1
1−t

, and a constant diffusion where σ = 1. That is, we have,dX(t) = −1
1−t

X(t)dt+ dB(t), t ∈ [0, 1]

X(0) = 2.

(4.2)

As we can see, µ(t) is not well defined at t=1, hence the equation does not satisfy

our assumptions. However, the proposed method can still deal with such cases as

well which can be deduced from the first and second moments of the Brownian-

Bridge. An important feature required for the local linear (surface) regression to

fulfill the convergence rates in (3.3) is for the functions m and G to be smooth.
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Figure 4.1: Drift and diffusion functions for Brownian Bridge process

The behavior of drift and diffusion estimators µ̂, σ̂D and σ̂T is studied across

the number of points observed per curve, r taking the values 2, 3, 5 and 10 and

number of curves, n taking the values 100, 200, 500 and 1000. Given below are

the heatmap and boxplot for the average RISE of proposed estimators over 100

experiments for different values of n and r which are independent, with a variance

of 0.05. In the heatmaps, the pink shades show a low average rise whereas the dark

Figure 4.2: Heatmap illustration of average RISE for the estimators µ̂(t), σ̂D(t),

and σ̂T (t)

purple shades show a high average rise. We can observe that for fixed values of r,

increment in n gives more accurate estimates and as we increase r, we can notice

much faster convergence rates. Even though the estimators’ average RISE is given

on the same scale, performance comparisons should be avoided. In fact, diffusion

estimation necessitates knowledge of the covariance structure, whereas the nature

of the functional object (a conditional average vs. a conditional variance) and the
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estimation process are fundamentally different.

Figure 4.3: Boxplot of the average RISE for different values of (n,r)

4.2 Time-Inhomogeneous Ornstein Uhlenbeck

In this example, we have a time-varying SDE with sinusoidal drift and negative

exponential diffusion,dX(t) = −1
5
(1 + sin(2πt))X(t)dt+

√
e(1−t2)dB(t), t ∈ [0, 1]

X(0) = 2,

(4.3)

to demonstrate the ability of this method to recover complex time-varying drift

and diffusion coefficients. The rest of the discussions are the same as that of the

above example.

The figures given thus are the heatmaps and boxplots for time-inhomogeneous

Ornstein Uhlenbeck. For this case we have similar conclusions as that of the first

example hence we have only provided the graphs.
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Figure 4.4: Drift and diffusion functions for Time-Inhomogeneous Ornstein Uh-

lenbeck

Figure 4.5: Heatmap illustration of average RISE for the estimators µ̂(t), σ̂D(t),

and σ̂T (t)

Figure 4.6: Boxplot of the average RISE for different values of (n,r)
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CHAPTER 5

Conclusion and Future Scope

“The mathematician’s patterns ... must be beautiful... beauty is the first test; there

is no permanent place in the world for ugly mathematics”.

-G. H. Hardy

In our study, we have worked with the stochastic differential equation of the form,

dX(t) = µ(t)(X(t))αdt + σ(t)(X(t))βdB(t) where α ∈ {0, 1} and β ∈ {0, 1/2, 1}.

We have provided all the definitions and theorems required to understand the

work presented. In this thesis, we have given the proof of theorem (3.3) in a much

simpler manner in order to make it easier for the reader to grasp and follow along.

Further, we have given two examples in which we estimated the drift and diffusion

coefficients and put forth the RISE assessed with respect to the Monte Carlo sim-

ulations. These examples showed that the local polynomial estimators perform

better when the values for n and r are increased and the RISE obtained for them

is m=significantly lesser. For the estimators σ̂T and σ̂D, some more analysis shows

that σT gets a much lower RISE as it is tied to the complete covariance surface
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whereas, σD only takes the diagonal values.

The work given in this thesis can be extended to do the nonparametric estimation

of the drift and diffusion coefficients of Stochastic Differential Equations (SDEs),

subject to Lévy noise corruption. These areas are still open to researchers and

offer a lot of scope for further research. A mathematical setting that anyone in-

terested in taking this work further may consider is as follows.

Suppose that the Lévy noise is observed at discrete time points and that P :=(
Ω,F ,F = {F}t≥0, P

)
is a filtered probability space satisfying the usual hypothe-

ses. The following class of linear, time-dependent stochastic differential equations

that are affected by additive Lévy noise can be studied.

dX(t) = µ(t)X(t) dt+ σ(t) dW (t) +

∫
Z

G(X(t−), z) Ñ(dt, dz), (5.1)

where W (t) is an one-dimensional standard Brownian motion, µ(t) and σ(t) are

the drift and the diffusion coefficients defined on R. Here, Z is a locally compact

Polish space, and N is a Poisson random measure on [0,∞) × Z with a σ-finite

intensity measure λ∞⊗ν on P. Moreover, λ∞ is the Lebesgue measure on [0,∞),

and ν is a σ-finite measure on Y , and Ñ([0, t] × O) is the compensated Poisson

random measure. The research on this is being conducted already but the area of

study of SDEs with replications having noise corruption and estimation of drift,

diffusion, and jump coefficients which are prone to Lévy noise are still wide open.
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