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Abstract

This report delves into the Arnowitt-Deser-Misner (ADM) formalism, focusing on its
application in deriving the time evolution equation. By exploring the dynamics of gravi-
tational fields within the framework of general relativity, particular attention is given to
calculating the expectation value for the stress-energy tensor. Notably, this tensor en-
capsulates the Riemannian curvature tensor, necessitating the determination of Christoffel
symbols for the Schwarzschild metric. Additionally, the report delves into the computation
of the scalar curvature and extrinsic curvature tensor, energy density, and momentum den-
sity for the Schwarzschild metric. Our primary objective lies in determining the change in
the metric tensor using the time evolution equation, shedding light on the dynamical eval-
uation of spacetime curvature. Through these analyses, a comprehensive understanding
of the gravitational field dynamics is synthesized, offering valuable insights into Hawking
radiation.
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Chapter 1

Introduction

General Relativity has proved to be one of the most elegant and successful physical theories
since its first appearance in the paper The Field Equations of Gravitation on November
25, 1907 [1]. Albert Einstein’s theory is based on the Equivalence Principle, which holds
that all bodies are affected by gravity similarly and that physical laws are independent of
reference frames, making it impossible to distinguish between the effects of a gravitational
field and those of a uniform accelerating frame. These presumptions led to the distribution
of matter being attributed to the geometry of spacetime itself, along with the premise that
spacetime is a curved manifold structure defined by a metric tensor gµν . The Einstein Field
Equations in particular, specify this relation:

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν (1.1)

where G is the gravitational constant, c is the speed of light, Λ is the cosmological constant,
R is the scalar curvature, and Tµν is the stress-energy tensor. We now use the geometrized
unit system, with G = c = 1, and we set Λ = 0 to ignore the influence of the cosmological
constant.

1.1 Einstein-Hilbert action

Given a region V of the spacetime manifold and a scalar function L (ψ, ∂αψ), known as the
Lagrangian density, which depends on the field variables ψ and their first derivatives ∂αψ,
the field equations of a field theory can be inferred using the Lagrangian formulation. We
will only consider generic tensors of type ( r, s ) (omitting the indices for brevity), even
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if the fields ψ could be of any type. Similar to how Newtonian mechanics is expressed in
Lagrangian form, the action functional S[ψ] is defined as the integral [2]

S[ψ] =
∫
V
L (ψ, ∂αψ)

√
−g d4x (1.2)

where
√
−g d4x is the appropriate volume element and g is the (negative) determinant

of the metric gµν . Then, by ensuring that S[ψ] is stationary under an arbitrary variation
δψ about the actual fields ψ0, the field equations are recovered. A natural definition of
variation for a smooth one-parameter family of field configurations ψλ arises from the
derivative

δψ =
dψλ
dλ

∣∣∣∣
λ=0

(1.3)

This is what we require to vanish on the ∂V boundary of our spacetime region

δψ|∂V = 0 (1.4)

We now assume that the action functional is associated with a smooth tensor field χ of
type (s, r) (thus dual to ψ).

S =

∫
V
d4xχψ (1.5)

When it is implied that the indices of χ and ψ are contracted. The relation can be obtained
by taking the derivative of S with regard to the parameter λ.

δS .
=

dS
dλ

∣∣∣∣
λ=0

=

∫
V
d4xχδψ (1.6)

Consequently, the functional derivative is defined as the variation of S with regard to ψ
about ψ0.

χ =
δS
δψ

∣∣∣∣
ψ0

(1.7)

Which, given the action’s stationarity, must disappear in the same way:

χ = 0 (1.8)
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These relationships guarantee that the field equations included in identity 1.8 have a so-
lution in ψ0. Hilbert and Einstein originally examined the variational approach to general
relativity in 1915, when they postulated the basic gravitational action:

SH =
1

16π

∫
V
R
√
−g d4x (1.9)

The Hilbert term is denoted by SH . Since the scalar curvature R is the only nontrivial
scalar function that can be formed from the metric and its derivatives up to the second
order, this is, in fact, the simplest gravitational action that can be imagined. The decision

LH
.
=

1

16π
R
√
−g (1.10)

given the complexity of the other options, this proves to be quite persuasive. However,
it also establishes a simple relationship between the Newtonian theory of gravitation and
weak field limits. We will also include the contributions from the matter fields, indicated
by ϕ, in the term in addition to SH .

SM =

∫
V
LM (ϕ, ∂αϕ; gµν)

√
−g d4x (1.11)

To keep things simple, we’ll suppose that LM only depends on the field ϕ and its first
derivatives, as well as the metric coefficients gµν . The whole matter and Hilbert terms add
up to the total action functional.

S = SH + SM (1.12)

Thus, we can show that the Einstein field equation 1.1 stems from the stationarity of S
under arbitrary variations of gµν .

1.2 Variation of the action

Let’s start by focusing just on the Hilbert term. Using the variant of the inverse metric
δgµν rather than δgµν will show to be more handy. This has no bearing whatsoever on the
outcomes because the two variables are connected by

gαλgλβ = δαβ =⇒ δgµν = −gµαgνβδgαβ (1.13)
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As the variation may be brought under the integral sign, we can execute the variation of
SH (according to definition 1.6) by concentrating on the integrand, that is, the Hilbert
Lagrangian density LH .

(16π)δLH = δ
(
gµνRµν

√
−g
)

= − δg

2
√
−g

gµνRµν + (δgµνRµν + gµνδRµν)
√
−g (1.14)

The variation of the metric determinant δg is provided by Jacobi’s formula:

δg = ggµνδgµν = −ggµνδgµν (1.15)

We can substitute δg in 1.14 by using the second form of this identity and remembering
that g < 0.

(16π)δLH =

[(
Rµν −

1

2
gµνR

)
δgµν + gµνδRµν

]√
−g (1.16)

It is now evident that if δRµν vanishes, the field equations’ solely gravitational compo-
nent is regained. In the broader situation, however, this assumption need not hold since
additional boundary terms result from the first derivatives of δgµν entering the variation
δRµν . In fact, we find that if we turn to the Palatini identity (as demonstrated in section
A.2.3 of the Appendix).

δRµν = ∇ρ (δΓ
ρ
µν)−∇µ (δΓ

ρ
ρν) (1.17)

The contravariant vector V ρ .
= gµνδΓ is introduced.The last term of equation 1.16 can be

recast as a divergence utilizing ∇ρgµν = 0 of Levi-Civita connections and ρ
µν − gρνδΓµµν

(whose explicit expressions are covered in Appendix, section A.2.2).

√
−ggµνδRµν =

√
−ggµν [∇ρδΓ

ρ
µν −∇µΓ

ρ
ρν ] (1.18)

=
√
−g∇ρ [g

µνδΓρµν − gρνδΓµµν ]
.
= ∂ρ

(√
−gV ρ

)
With the replacement of these results in action integral 1.9 and the reintroduction of
the multiplicative constant (16π), the variation δSH splits into the volume and boundary
components using Stokes’ theorem.
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δSH =
1

16π

∫
V

(
Rµν −

1

2
gµνR

)√
−gδgµνd4x+

1

16π

∮
∂V
V µdσµd

3x (1.19)

where the oriented volume element of the hypersurface ∂V is dσµ. We proceed as though
the surface terms can be safely ignored, ignoring the second integral. The matter action
1.11 variation is now under consideration. Its dependence on gµν and the matter fields ϕ
are as follows:

δSM =

∫
V

[
δLM
δgµν

δgµν
√
−g + LMδ

√
−g
]
d4x

=

∫
V

[
δLM
δgµν

− 1

2
LMgµν

]√
−gδgµνd4x (1.20)

The stress-energy tensor Tµν can be defined as follows:

Tµν
.
= −2

δLM
δgµν

+ LMgµν (1.21)

We observe that the variation of S as a whole is as follows:

δS =

∫
V

[
1

16π

(
Rµν −

1

2
gµνR

)
+
δLM
δgµν

− 1

2
LMgµν

]√
−gδgµνd4x

=
1

16π

∫
V

[
Rµν −

1

2
gµνR− 8πTµν

]√
−gδgµνd4x (1.22)

The stationarity of S necessitates the integrand to be identically zero due to the arbitrari-
ness of δgµν , ultimately leading to the Einstein field equations.

Rµν −
1

2
gµνR = 8πTµν (1.23)

This, in accordance with the left side of 1.23, maybe rewritten in an equivalent form using
the Einstein tensor Gµν :

Gµν = 8πTµν (1.24)

The fourdivergence represents the intended conservation of the stress-energy tensor Tµν .
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∇µT
µν = 0 (1.25)

The Riemann curvature tensor Rρ
σµν symmetries guarantee this, as do the Bianchi identi-

ties ∇µG
µν = 0. The invariance of the action under an infinitesimal translation of coordi-

nates (see section A.1.8) can also be used to demonstrate this result.
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Chapter 2

ADM Hamiltonian formulation of
General Relativity

This section covers the Arnowitt, Deser, and Misner Hamiltonian formulation of general
relativity [3], which is based on the gravitational action functional 2.59. Two main char-
acteristics of the canonical formulation are significant:

• Time holds a privileged position among the coordinates (xµ). In particular, the
original four-dimensional description is replaced by the evolution of tensor fields on
a spacelike three-dimensional hypersurface Σ.

• The system’s time evolution is defined by Hamilton’s equations, which are first-order
differential equations in the time derivatives.

The problems arising from the redundancy of variables gµν are also clarified by the canonical
form of general relativity. In fact, while this guarantees the theory’s general covariance,
it complicates the process of determining the bare minimum of information required to
produce a consistent beginning value formulation. Since it is a requirement of the general
relativity quantization program, this reduction to the independent dynamical modes of
the gravitational field is extremely desirable. Actually, it is only possible to examine the
relationship between the commutators in quantum mechanics and the Poisson brackets of
the Hamiltonian theory when the unconstrained canonical variables are extracted from the
corresponding total set.
We give a thorough derivation of Hamilton’s equations and find the basic Poisson brackets
between the limited variables in the sections that follow. The reader may consult ADM’s
1962 article[5] for a formal discussion of the system’s independent variable isolation.
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2.1 Einstein-Hilbert action in 3 + 1 formalism

Let us go back to the Hilbert Lagrangian density LH = 4R
√
−g, leaving out the unnecessary

multiplication factor (16π)−1 for the time being. The four-dimensional quantities R4 and√
−g will be swapped out for their three-dimensional equivalents [3],

LH =

[
R3 +K2 +KijKij − 2∇nK − 2

N
DiDiN

]
N
√
γ (2.1)

The action functional SH was presented in Chapter 1 and is defined as the integral of LH
over a region V of the spacetime manifold. The 3 + 1 dimensional decomposition divides
this region into a family of hypersurfaces Σt, designated by the time t, allowing us continue
the integration on V :

SH =

∫ t2

t1

dt

∫
Σt

[
R3 +K2 +KijKij − 2∇nK − 2

N
DiDiN

]
N
√
γd3x (2.2)

where t1 and t2 are generic lower and upper time limits. Before proceeding with our
analysis, we shall unveil the divergences hidden in the last two terms of LH by rewriting
them in the following form:

√
γDiDiN =

√
γDi

(
∂iN

)
= ∂i

(√
γ∂iN

)
(2.3)

N
√
γ∇nK = N

√
γnα∇αK = ∂α (

√
γNKnα) +

√
γNK2 (2.4)

When we substitute in the Lagrangian density LH , the sign of the termK2 changes, leading
us to

LH =
(
R3 −K2 +KijKij

)
N
√
γ

− 2
[
∂i
(√

γ∂iN
)
+ ∂α (

√
γNKnα)

]√
γ (2.5)

Temporarily recasting the two divergences in four-dimensional notation will prove to be
more enlightening. To do this, we take a look at the generalized equation

R4 = R3 +K2 −KµνK
µν − 24Rµνn

µnν

Then, use the contracted Ricci identity to substitute a commutator of spacetime connec-
tions for the final term:
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R4 = R3 +K2 −KµνK
µν − 2nµ [∇α,∇µ]n

α

Now, we use these equations and the orthogonality relation to rewrite the commutator in
the form,

nµ [∇α,∇µ]n
α = nµ (∇α∇µ −∇µ∇α)n

α

= ∇α (n
µ∇µn

α − nα∇µn
µ)− (∇αn

µ)∇µn
α + (∇αn

α)2

= ∇α (n
µ∇µn

α − nα∇µn
µ)−KαµKαµ +K2

When this result is substituted in the Lagrangian density LH , the contraction KµνK
µν =

KijK
ij is obtained by adopting the Latin indices.

LH =
(
R3 −K2 +KijK

ij
)
N
√
γ − 2

√
−g∇α (n

µ∇µn
α − nα∇µn

µ) (2.6)

The “divergence-free” components of the two expressions 2.5 and 2.6 are the same, which
suggests that the later words must be comparable. The next section will focus on examining
the four-dimensional divergence portion in particular.

2.1.1 Boundary terms in the 3 + 1 Lagrangian density

The contribution of SH , which needs to be added to the gravitational action’s boundary
term SB, will now be discussed. Reintroducing the multiplicative constant (16π)−1 and
applying Stokes’ theorem, we obtain

− 1

8π

∫
V

√
−g∇α (n

µ∇µn
α − nα∇µn

µ) d4x =

= − 1

8π

∮
∂V
ε (nµ∇µn

α − nα∇µn
µ)
√
|h|rαd3x

where dσα = εrα
√
|h|d3x is the oriented volume element on ∂V , and rα indicates the unit

normal to ∂V . Assuming ∂V to represent the union of two spacelike hypersurfaces Σt1

and Σt2 (where t2 > t1) connected by a timelike hypersurface T will allow us to proceed
further. Given that nα and ε = nαn

α = −1 are the unit normals on Σt2 , the surface
integral’s contribution from Σt2 is

− 1

8π

∫
Σt2

ε (nµ∇µn
α − nα∇µn

µ)
√

|h|rαd3x =
1

8π

∫
Σt2

K
√

|h|d3x (2.7)
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where K = −∇αn
α and h > 0 denote the determinant of the induced metric on ∂V . In a

similar vein, Σt1 contributes

− 1

8π

∫
Σt1

ε (nµ∇µn
α − nα∇µn

µ)
√
|h|rαd3x = − 1

8π

∫
Σt1

K
√

|h|d3x (2.8)

where the negative orientation of Σt1 with regard to the future-directed normal, rα = −nα,
is represented by the minus sign. The related integrals over Σt1 and Σt2 contained in SB are
seen to be cancelled out by 2.7 and 2.8. However, the remainder of SB is not neutralized
by the contribution from T . Actually, it provides

− 1

8π

∫
T
ε (nµ∇µn

α − nα∇µn
µ)
√

|h|rαd3x (2.9)

= − 1

8π

∫
T
(nµ∇µn

α) rα
√
|h|d3x =

1

8π

∫
T
nµnα (∇µrα)

√
|h|d3x

Because rα has a spacelike nature, we have employed the orthogonality relation nαrα = 0
in the second line. Given that ε = 1 on T , we obtain SB by combining the integral 2.9
with the last term.

1
8π

∫
T n

µnα (∇µrα)
√
|h|d3x− 1

8π

∫
T K

√
|h|d3x

= 1
8π

∫
T (nµnν + gµν)∇µrν

√
|h|d3x

(2.10)

The last integral of 2.9 can be made simpler by introducing a foliation of T by the two
surfaces St, each of which corresponds to the Σt boundary:

St = ∂Σt

The extrinsic curvature tensor of St can be defined as follows by viewing St as a two-
hypersurface contained in the three-dimensional space Σt.

κij
.
= −Dirj + riDrrj (2.11)

where ri is the normal to St and i, j denote the coordinates of Σt. The only difference
between this and the defining relation of Kµν is a sign caused by ε = 1. The scalar
curvature is obtained by contracting κij with the induced metric hij:

κ
.
= κijh

ij = −hijDirj = −Dir
i (2.12)
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where ri is the normal to St and i, j denote the coordinates of Σt. The only difference
between this and the defining relation of Kµν is a sign caused by ε = 1. The scalar
curvature is obtained by contracting κij with the induced metric hij:

κ = −Dµr
µ = −gµν (δαµ + nαnµ)

(
δβν + nβnν

)
∇αrβ

= −∇αr
α − nαnβ∇αrβ = −

(
gαβ + nαnβ

)
∇αrβ (2.13)

We observe that exactly κ with the opposite sign is contained in the integral 2.10. Similarly,
the relationship between the determinants γ and g can also be used to rewrite h as the
product of the determinant σ of the induced metric on St and the lapse function N :

√
|h| = N

√
σ (2.14)

These findings put us in a position to recast S’s total boundary term as a surface integral
on St:

SB = − 1

8π

∫ t2

t1

dt

∮
St

κN
√
σd2x (2.15)

It is possible to rewrite the nondynamical term S0 in terms of κ0, which is the extrinsic
curvature of St contained in flat space. Consequently, in 3+1 formalism, the gravitational
action becomes

SG =
1

16π

∫ t2

t1

dt

[∫
Σt

(
R−K2 +KijKij

)
N
√
γd3x

−2

∮
St

(κ− κ0)N
√
σd2x

]
(2.16)

2.2 The Hamiltonian formalism

Now that most of the theory’s mathematical foundation has been established, the opportu-
nity to work on the Hamiltonian formalism dissertation has presented itself. In particular,
we will investigate the action S = SG and ignore the matter contribution SM , concentrat-
ing on the vacuum situation. We will now conceal the immaterial multiplicative constant
(16π)−1 found in action 2.16 in accordance with the ADM notation. The first basic finding
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is that S is dependent on the shift and lapse functions N,N i, γij, γ̇ij, and their spatial
derivatives. Given that the action integral does not contain the time derivatives of N,N i,
the lapse and shift functions,
They are not included in the collection of dynamic variables, even though they are four
configuration variables. We will, in fact, demonstrate that N and N i function as four
Lagrange multipliers, each of which generates a constraint equation. Let’s indicate the
gravitational Lagrangian with L:

L =

∫
Σt

(
R3 −K2 +KijKij

)
N
√
γd3x− 2

∮
St

(κ− κ0)N
√
σd2x (2.17)

The first integral is the volume part of L, which we label as L0. The corresponding
Lagrangian density is:

L0 =
(
R3 −K2 +KijKij

)
N
√
γ (2.18)

The partial derivative of the Lagrangian with regard to q̇ represents the canonically con-
jugate momentum p for each configuration variable q in Hamiltonian mechanics. In the
same way, π, the canonical momentum density, is defined as

π
.
=
∂L
∂q̇

(2.19)

The Hamiltonian density H is then recovered by performing the Legendre transformation
of L, with π as the dual variables:

H .
=
∑
q

πq̇ − L

Due to the aforementioned absence of Ṅ and Ṅ i in 2.17, the corresponding momenta πN
and πN i vanish:

πN
.
=
∂L
∂Ṅ

= 0 πN i
.
=

∂L
∂Ṅ i

= 0 (2.20)

Therefore, we are left with the six independent momenta πij conjugate to the components
of γij :

πij
.
=

∂L
∂γ̇ij

(2.21)
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We first note that the boundary term of the Lagrangian (2.17) is independent of the time
derivative γ̇ij before attempting to determine the explicit expression of πij. As a result,
we simply need to assess the subsequent partial derivatives.

∂R

∂γ̇ij
= 0

∂Krs

∂γ̇ij
= − 1

2N
δirδ

j
s (2.22)

which follow from the absence of γ̇ij in the three-dimensional scalar curvature R and from
the explicit form of Kij, given by equation 3.57 . Combining these results, we obtain:

πij = −
√
γ

2

(
γrkγsl − γrsγkl

) (
δirδ

j
sKkl + δikδ

j
lKrs

)
= −

√
γ

2

(
2Kij − 2γijK

)
=

√
γ
(
Kγij −Kij

)
(2.23)

Observe that when
√
γW enters the expression with W = 1, πij is a contravariant tensor

density of weight 1. By using the metric γij to reduce the indices of πij, the covariant
version πij can be obtained. The momenta πij are given in another equivalent form in the
1962 work by Arnowitt, Deser, and Misner [5]. In our case, this form comes from equation
2.17 and the connection

√
−g = N

√
γ :

πij =
√
−g
(
4Γ0

pq − 4Γ0
klγ

klγpq
)
γipγjq (2.24)

We may also dispense with Kij and K and raising the indices:

πij =

√
γ

2N

[
2γijDkN

k −DiN j −DjN i +
(
γikγjl − γijγkl

)
γ̇kl
]

(2.25)

On the other hand, we will rewrite the extrinsic curvature tensor and γ̇ij as functions of
γij and πij since the Hamiltonian is a functional of the configuration variables and their
conjugate momenta. Let’s calculate the trace of πij to do this:

π
.
= γijπ

ij = 2
√
γK (2.26)

We then combine 2.23 and 2.26 to obtain the desired inversion:
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Kij =
1

2
√
γ

(
πγij − 2πij

)
(2.27)

K =
π

2
√
γ

(2.28)

γ̇ij = DiNj +DjNi −
N
√
γ
(πγij − 2πij) (2.29)

This allows us to rewrite the volume part L0 of the Lagrangian density as a function of
the canonical variables:

L0 = N
√
γR +

N
√
γ

(
πijπij −

1

2
π2

)
(2.30)

We denote by H0 the Hamiltonian density corresponding to L0, namely H0
.
= πij γ̇ij −L0.

By means of equations 2.29 and 2.30 we can replace γ̇ij and L0, thus arriving at

H0 = 2πijDiNj −N
√
γR +

N
√
γ

(
πijπ

ij − π2

2

)
(2.31)

= 2Di

(
πijNj

)
− 2NjDiπ

ij −N
√
γR +

N
√
γ

(
πijπ

ij − π2

2

)
where the covariant derivative of a tensor density, defined in Appendix (section A.1.2), is
denoted by Diπ

ij. The integral of H0 over Σt and the contribution of κ − κ0, which was
computed in the previous section, are combined to derive the entire Hamiltonian H.

H =

∫
Σt

H0 d3x+ 2

∮
St

(κ− κ0)N
√
σd2x (2.32)

Let HΣ and HS denote respectively the volume and boundary parts of H, such that H
.
=

HΣ+HS. Since the divergence 2Di (π
ijNj) contained in H0 gives rise to a surface integral,

it must be added to HS, leaving only the true volume
terms in HΣ :

HΣ =

∫
Σt

[
−2NjDiπ

ij −N
√
γR +

N
√
γ

(
πijπ

ij − π2

2

)]
d3x (2.33)

HS = 2

∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σd2x (2.34)
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Following the ADM notation, we shall rewrite HΣ to emphasize the role of N and N i. If
we define the quantities

R0 = −√
γR− 1

√
γ

(
π2

2
− πijπij

)
Ri = −2Djπ

ij (2.36)

we immediately see that the volume term takes on the simple form:

HΣ =

∫
Σt

[
NR0 +NiR

i
]
d3x (2.37)

or equivalently

HΣ =

∫
Σt

NµR
µd3x (2.38)

when the notation N = N0 was chosen. It appears from the strange equation of HΣ that
the shift and lapse functions act as Lagrangian multipliers. We will demonstrate this and
the identical vanishing of HΣ in the ensuing sections. In fact, four constraint equations
that require SG to be stationary lead to the requirement that R0 and Ri be zero.

2.3 Parametric form of the canonical equations

As we continue our study, we will first introduce the idea of the canonical equations’
parametric form [4]. To keep things simple, let’s look at how a system with a finite
number M of degrees of freedom acts:

S =

∫ t2

t1

dtL(q, q̇, t) =

∫ t2

t1

dt

(
M∑
k=1

pkq̇k −H(p, q, t)

)
(2.39)

Since the time t is the only coordinate for which there is no definition of a conjugate
momentum, it is distinguished from the other configuration variables of the system. To
overcome this asymmetry, a new arbitrary parameter τ can be introduced, allowing t and
its conjugate momentum pt to be promoted to the set of dynamical variables. The so-
called action in the parameterized form can be obtained by directly substituting 2.39 with
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the notational change t = qM+1 and letting the configuration variables {qk}M+1
k=1 become

functions of τ .

S̃ =

∫ τ2

τ1

dτL̃
(
q1, . . . , qM+1; q

′
1, . . . , q

′
M+1

)
(2.40)

where the derivative with respect to τ is denoted by a prime. The modified Lagrangian L̃
is related to L through the equation

L̃
(
q1, . . . , qM+1; q

′
1, . . . , q

′
M+1

)
= L

(
q1, . . . , qM+1;

q′1
q′M+1

, . . . ,
q′M
q′M+1

)
q′M+1

Thus, using the conventional technique, the momentum pt = pM+1 associated with the
time t = qM+1 can be defined. It turns out to be just minus the Hamiltonian H:

pM+1
.
=

∂L̃

∂q′M+1

= L−

(
M∑
k=1

∂L

∂q̇k

q′k(
q′M+1

)2
)
q′M+1

= L−
M∑
k=1

pkq̇k = −H (2.41)

As a result, the new 2M + 2-dimensional phase space contains qM+1 and pM+1. The
Lagrangian L̃ has an interesting quality that we will now concentrate on it is a homogeneous
function of the first order in the variables q′1, . . . , q

′
M+1. If we calculate L̃’s partial derivatives

in relation to q′k, that is

∂L̃

∂q′k
=
∂L

∂q̇k

∂L̃

∂q′M+1

= L̃− q̇k
∂L

∂q̇k

then we see that the following relation holds:

M+1∑
k=1

∂L̃

∂q′k
q′k = L̃ (2.42)

Euler’s theorem on homogeneous functions can then be used to demonstrate our point.
We can demonstrate that the action in parameterized form becomes after substituting the
M + 1 momenta pk for the partial derivatives in equation 2.42.
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S̃ =

∫ τ2

τ1

dτ

(
M+1∑
k=1

pkq
′
k

)
(2.43)

while the Hamiltonian H̃ of the extended system vanishes identically:

H̃
.
=

M+1∑
k=1

pkq
′
k − L̃ = 0 (2.44)

This remarkable characteristic, which the volume term HΣ (equation 2.38) falls into, in-
spires our digression on the parameterized form. Specifically, we may use the Lagrangian
multiplier method to recast the parameterized action 2.43 in an insightful manner. Given
that pM+1 is constrained by the equation pM+1 = −H (2.41), a relationship between the
M +1 conjugate momenta must exist that compromises the independence of the canonical
variables. This constraint can be expressed clearly by employing an auxiliary function in
the action integral.

C (q1, . . . , qM+1; p1, . . . , pM+1) = pM+1 +H (2.45)

and a Lagrangian multiplier λ = λ(τ), which remains unspecified due to the arbitrariness
of τ . Hence, the parameterized action becomes

S̃ =

∫ τ2

τ1

dτ

(
M+1∑
k=1

pkq
′
k − λC

)
(2.46)

The constraint equation C = 0 (corresponding to the identity 2.41) and theM+1 canonical
equations of motion are obtained, respectively, from independent variations of λ and qk.
This indicates that action 2.46 preserves all of the original system’s informational content.
Furthermore, regardless of the nature of L, the extended system is conservative since L̃
and C do not directly depend on τ . By introducing four new external parameters τµ

and the same number of configuration variables qM+1+µ = xµ (τα), together with their
corresponding momenta pM+1+µ, the above procedure may be extended to the case of a field
theory with M degrees of freedom. To connect pM+1, . . . , pM+4 with the Hamiltonian and
momentum densities of the field, the extra four constraint equations Cµ = 0 and Lagrangian
multipliers λµ (τα) are needed. The parameter formalism is relevant because it may be
used to ”reduce” the parameterized action S̃ to its canonical form, thus reversing this
process. This involves inserting the constraint equations into S̃ after specifying coordinate
conditions, which fix the arbitrary parameters τµ. The system’s intrinsic degrees of freedom
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will then become visible due to the lessened action. In fact, the Lagrangian’s volume term
LΣ (derived from the Hamiltonian HΣ, equation 2.38) manifests as a parameterized form
Lagrangian, wherebyNµ andR

µ serve as Lagrange multipliers and restrictions, respectively.

LΣ
.
= πij γ̇ij −HΣ = πij γ̇ij −NµR

µ (2.47)

By implication, we aim to prove that Nµ truly behaves as Lagrange multipliers when the
action variation is considered.

2.3.1 Variation of the lapse function

Let us return to the gravitational action 2.16 (ignoring the constant factor (16π)−1), here
reproduced for convenience:

SG =

∫ t2

t1

dt

[∫
Σt

(
R−K2 +KijKij

)
N
√
γd3x− 2

∮
St

(κ− κ0)N
√
σd2x

]
We require the variation δN to vanish on the boundary, keeping in mind the definitions
from section 1.1. This suggests that since there are no derivatives of N , we can safely
ignore the surface integral over St. The volume term variation is simple to understand:

δS
δN

=
√
γ
(
R−K2 +KijKij

)
+N

√
γ

(
− 2

N

)(
−K2 +KijKij

)
=

√
γ
(
R +K2 −KijKij

)
(2.48)

Next, we extreme the activity by setting the value of equation 2.48 to zero. This provides
the vacuum case Hamiltonian constraint, which is when E = 0. The relation is obtained
by substituting the conjugate momenta (using 2.26 and 2.27 ) for Kij.

R0 = 0 (2.49)

which shows that N is truly a Lagrangian multiplier, as R0 is not affected by the variation
of N .
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2.3.2 Variation of the shift functions

Because of the covariant derivatives DiNj in the extrinsic curvature tensor, there are
some nuances in the subsequent variation with regard to the shift functions. Thus, we
explicitly examine a smooth one-parameter family (Ni)λ of shift functions to start this
proof. Upon computing the derivative of the volume term of SG with respect to λ, we
derive the following:

dS

dλ

∣∣∣∣
λ=0

=
d

dλ

∣∣∣∣
λ=0

∫ t2

t1

dt

∫
Σt

[
R−K2 +KijKij

]
N
√
γd3x

= 2

∫ t2

t1

dt

∫
Σt

N
√
γ
(
−Kγij +Kij

) dKij

dλ

∣∣∣∣
λ=0

d3x

= −2

∫ t2

t1

dt

∫
Σt

πijDi

(
dNj

dλ

∣∣∣∣
λ=0

)
d3x

Using the symmetry of Kij, we identified the equation 2.23 of the conjugate momenta πij

in the passage from the second to the third line. We rewrite the integrand after recalling
the notion of the covariant derivative of a tensor density.

πijDi

(
dNj

dλ

∣∣∣∣
λ=0

)
= Di

(
πij

dNj

dλ

∣∣∣∣
λ=0

)
−
(
Diπ

ij
) dNj

dλ

∣∣∣∣
λ=0

Upon substitution in the integral (resorting to the definition of δNi ), the divergence can
be reduced to a boundary term:

dS

dλ

∣∣∣∣
λ=0

=2

∫ t2

t1

dt

∫
Σt

(
Diπ

ij
)
δNj d

3x

− 2

∫ t2

t1

dt

∮
St

πij
√
γ
riδNj

√
σd2x

The surface integral vanishes as δNi = 0 on the boundary. Hence, we can discard this term
and demand SG to be stationary, using the notion of functional derivative 1.7

δS
δNj

= 2Diπ
ij = 0

thereby leading to the three constraint equations:
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Ri = 0 (2.50)

These match the pi = 0 momentum restrictions 3.53 in the vacuum. They make up the
four constraint equations of the system stated before, together with 2.49. This outcome
completes the evidence and suggests that when the restrictions are applied, the volume
term HΣ(2.38) vanishes in the same way:

HΣ = 0 (2.51)

It should be noted that these requirements do not entail the disappearance of HS. The
relationship between the value of HS in asymptotically flat spacetime and the idea of the
system’s energy—which is, generally speaking, distinct from zero—will actually be covered
in the section that follows.

2.4 Hamilton’s equations

The twelve Hamilton equations that represent the time development of the canonical vari-
ables γij and π

ij may now be found:

γ̇ij =
δH

δπij
(2.52)

π̇ij = − δH

δγij
(2.53)

To this end, we rewrite the total gravitational action SG (equation 2.16) in terms of the
canonical variables, preserving only the term πij γ̇ij :

SG =

∫ t2

t1

dt

∫
Σt

(
πij ˙̇γij −H

)
d3x

=

∫ t2

t1

dt

∫
Σt

[
πij γ̇ij + 2NjDiπ

ij +N
√
γR− N

√
γ

(
πijπ

ij − π2

2

)]
d3x

− 2

∫ t2

t1

dt

∮
St

[
N (κ− κ0) +Ni

πij
√
γ
rj

]√
σd2x (2.54)
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We require that the variation of the configuration variables vanishes on the boundary
St = ∂Σt, namely:

δN |St
= δNi|St

= δγij|St
= 0 (2.55)

The conjugate momenta, which are handled as independent variables, won’t be constrained,
though. Accordingly, the variation of H with respect to N and Ni is identical to the
variation of the Lagrangian carried out in sections 2.3.1 and 2.3.2, resulting in the four
constraint equations 2.49 and 2.50, up to an inconsequential overall sign. Rather, the
variants of γij and π

ij necessitate a more involved analysis, which we continue in turn in
the ensuing paragraphs.

2.4.1 Variation of the conjugate momenta

Starting with the second set of equations 2.53, we recover them by setting the variation of
SG with respect to πij to zero. Specifically, we start by looking at the second term from
the 2.54 volume integral:

P .
=

∫ t2

t1

dt

∫
Σt

(
2NjDiπ

ij
)
d3x

= 2

∫ t2

t1

dt

∫
Σt

[
Di

(
Njπ

ij
)
− πijDiNj

]
d3x (2.56)

We now transform the total covariant derivative in a divergence and then apply Stokes’
theorem:

P = 2

∫ t2

t1

dt

∮
St

Ni
πij
√
γ
rj
√
σd2x− 2

∫ t2

t1

dt

∫
Σt

πijDiNj d
3x

The final portion of the boundary term of SG is eliminated by the first integral of P , leaving
only a surface integral that is independent of πij. As a result, SG variation decreases to:

δπSG =

∫ t2

t1

dt

∫
Σt

δπij
[
γ̇ij − 2DiNj −

N
√
γ
(2πij − πγij)

]
d3x

Because of the stationarity of SG and the arbitrariness of δπij, the argument of the first
integral vanishes. In order to do the functional derivative and suppress δπij, we will replace
2DiNj with its symmetrization, DiNj +DjNi. This leads us to the relationship:
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δSG
δπij

= γ̇ij −DiNj −DjNi −
N
√
γ
(2πij − πγij) = 0 (2.57)

or equivalently

γ̇ij =
δH

δπij
= DiNj +DjNi −

N
√
γ
(2πij − πγij) (2.58)

Equation 2.58 is obtained by substituting the extrinsic curvature Kij for π
ij and its trace.

γ̇ij = DiNj +DjNi − 2NKij

As we can see, the change of πij yields the relation 2.57, which uses the shift and lapse
functions to fix the temporal evolution of the three-dimensional metric.

2.4.2 Variation of the metric

Since this variation entails more than the previous one, we will move cautiously. First, we
look at how the Hamiltonian density HΣ varies in terms of the volume term:

δγHΣ = δγ

[
−2NjDiπ

ij −N
√
γR +

N
√
γ

(
πijπ

ij − π2

2

)]
(2.59)

Note that Jacobi’s formula yields the variation of γ.

δγ = γγabδγab (2.60)

whereas it is simple to calculate the last term included in parenthesis:

δγ

(
πijπ

ij − π2

2

)
=
(
2πaiπ

ib − ππab
)
δγab (2.61)

The relations given in sections A.2.2 and A.2.3 of the Appendix, which we previously met
in Chapter 1, are required for the variation of N

√
γR. By using Gab to represent the

three-dimensional contravariant Einstein tensor, we may get

δ[−N√
γR] = N

√
γ

(
Rab − 1

2
γabR

)
δγab −N

√
γDaδV

a
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= N
√
γGabδγab +

√
γδV aDaN −√

γDa (NδV
a) (2.62)

In order to simplify the calculations, we present the two variables.

δB1
.
= −2δγDi

(
πijNj

)
δB2

.
= −Da

(
2πabN cδγbc − πbcNaδγbc

)
As a result, we can now express the variation of the 2.59 first term as

δγ
(
−2NjDiπ

ij
)
= 2δγ

(
πijDiNj

)
+ δB1 (2.63)

We can express 2δγ (π
ijDiNj) in terms of δγij and δB2 by using the relation A.21 from the

Appendix:

δγ
(
2πijDiNj

)
= −2πijNaδΓ

a
ij = −2πijNa

(
γabDiδγjb −

1

2
γabDbδγij

)
= Da

(
2πabN c − πbcNa

)
δγbc + δB2 (2.64)

The preceding equation becomes Diπ
ij = 0 because to the three restrictions 2.50.

δγ
(
2πijDiNj

)
=
(
2πabDaN

c − πbcDaN
a
)
δγbc + δB2 (2.65)

Equations 2.60 to 2.65, when combined, yield the variation δγHΣ.

δγHΣ =
(
2πabDaN

c − πbcDaN
a
)
δγbc +N

√
γGabδγab

+
N
√
γ

[
−1

2

(
πcdπ

cd − π2

2

)
γab + 2πacπ

bc − ππab
]
δγab

+ δB1 + δB2 +
√
γδV aDaN (2.66)

By integrating δγHΣ over the hypersurface Σt, the variation of HΣ is obtained. Specifically,
the final three terms in equation 2.66 result in a surface integral, which we represent by
δB. But since there is no derivative of δγab and δγab|St

= 0 in the integral of δB1 + δB2,
the sole non-vanishing boundary contribution is provided by

δB
.
=

∫
Σt

(δB1 + δB2 +
√
γδV aDaN) d3x = −

∮
St

NδV ara
√
σd2x (2.67)
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Using the logic from section 2.4.1 and the relation 6.25 applied to the three-dimensional
case simplifies the contraction δV ara in 2.67.

δV ara = −σbcδγbc,ara = −2σbcDbrc = 2κ (2.68)

where the induced metric on St extended to Σt is σ
ab = rarb+γab. Equation 2.34’s variation

of HS shows that δB + δγHS vanishes when compared to 2.67.

δγHS = 2

∮
St

Nδκ
√
σd2x = −δB (2.69)

This suggests that we may safely ignore HS and that the variation of H is limited to the
remaining terms of HΣ. Now, using the relation A.26 from the Appendix, we can easily
recast the product δV aDaN found in the first line of equation 2.66:

δV aDaN = γabγcd (Daδγbc −Dcδγab)DdN

= Da

[(
γabDcN − γbcDaN

)
δγbc

]
−
(
DaDbN − γabDcD

cN
)
δγab

A further division by components enables the displacement of the divergence resulting from
the constraint δγab|St

= 0. Consequently, we obtain

δV aDaN = −
(
DaDbN − γabDcD

cN
)
δγab (2.70)

In the end, the combination of equations 2.66 to 2.70 results in 2πbcNa following the
symmetrization of the indices a and b.

δH
δγab

=Dc

(
πacN b + πbcNa − πabN c

)
+N

√
γ

(
Rab − 1

2
γabR

)
−√

γ
(
DaDbN − γabDcD

cN
)
− N

2
√
γ

(
πcdπ

cd − 1

2
π2

)
γab

+
2N
√
γ

(
πacπ

bc − 1

2
ππab

)
(2.71)

By definition, requiring the action to remain stationary recovers the equations of motion.
When the product πij γ̇ij is integrated by parts with regard to the time coordinate, the
outcome is
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δSG = δγ

∫ t2

t1

dt

∫
Σt

(
πij γ̇ij −H

)
d3x

= −
∫ t2

t1

dt

[∫
Σt

δγij

(
π̇ij +

δH
δγij

)
d3x

]
= 0 (2.72)

The second set of Hamilton equations is provided by this variant because of the arbitrary
nature of δγij:

π̇ij = − δH
δγij

(2.73)

The important findings from the previous chapters, specifically the explicit form of 2.73 and
the four constraints 2.49, 2.50, and Hamilton’s equations 2.58 for γ̇ij, should be summarized
as follows:

R0 = −√
γR− 1

√
γ

(
π2

2
− πijπij

)
= 0 (2.74)

Ri = −2Djπ
ij = 0 (2.75)

γ̇ij = DiNj +DjNi −
N
√
γ
(2πij − πγij) (2.76)

π̇ij = −N√
γ

(
Rij − 1

2
γijR

)
+

N

2
√
γ

(
πcdπ

cd − π2

2

)
γij

−2N
√
γ

(
πicπc

j − 1

2
ππij

)
+
√
γ
(
DiDjN − γijDcD

cN
)

+Dc

(
πijN c

)
− πicDcN

j − πjcDcN
i (2.77)

2.5 Poisson brackets

Given two differentiable functions f (qk, pk, t) and g (qk, pk, t) in classical Hamiltonian me-
chanicsThe Poisson bracket of f and g, of the canonical variables qk, pk, with k ∈ {1, . . . ,M},
is defined as the function

{f, g} =
M∑
k=1

(
∂f

∂qk

∂g

∂pk
− ∂f

∂pk

∂g

∂qk

)
(2.78)
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Consequently, the Poisson bracket can be viewed as an anticommutative, bilinear binary
operation operating on the space of functions that are dependent on time and phase space.
Additionally, it fulfils the equations for any three functions of this kind, f, g, andh.

{fg, h} = f{g, h}+ {f, h}g (2.79)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (2.80)

known as the Jacobi identity and Leibniz’s rule, respectively. Hamilton’s equations of
motion can be rewritten as follows using this definition:

q̇k =
∂H

∂pk
= {qk, H} (2.81)

ṗk = −∂H
∂qk

= {pk, H} (2.82)

Therefore, generally speaking, any function f (qk, pk, t) has its time evolution determined
by

df

dt
= {f,H}+ ∂f

∂t
(2.83)

By analogy with equation 2.83, the Poisson bracket for a field theory can be defined.
Specifically, we obtain the following by taking into account the whole time derivative of a
differentiable function f = f (γij, π

ij, t).

df

dt
=

δf

δγij
γ̇ij +

δf

δπij
π̇ij +

∂f

∂t

=
δf

δγij

δH
δπij

− δf

δπij
δH
δγij

+
∂f

∂t
(2.84)

Thus, if the Poisson bracket is introduced, it can be recast in the well-known form 2.83.

{f, g} .
=

δf

δγij

δg

δπij
− δf

δπij
δg

δγij
(2.85)

By using this concept, we can determine the system’s fundamental Poisson brackets among
its canonical variables:
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{γij, γkl} = 0{
πij, πkl

}
= 0 (2.86){

γij, π
kl
}
= δi

kδj
l

They bear a strong resemblance to those that surface in classical mechanics. But since the
limitations apply to the canonical coordinates γij and π

ij.

2.6 General relativity as initial-value problem

The formulation of the constrained initial-value problem, which is commonly employed in
numerical general relativity calculations, is reviewed briefly in this section. From this, a
set of evolution equations for the gravitational variables is derived, where the source is the
classical matter stress tensor. With a shift vector βi and a general metric expressed in
terms of the lapse N [4],

ds2 = gµνdx
µdxν = −N2dt2 + γij

(
dxi + βidt

) (
dxj + βjdt

)
, (2.87)

where the spatial indices are i, j = 1, 2, 3, and the spacetime indices are µ, ν = 0, · · · , 3.
Σ is a spacelike hypersurface with a fixed t slice. The intrinsic Riemann tensor on Σ and
terms involving the extrinsic curvature Kij of Σ contained in spacetime can be separated
out from the Riemann tensor. The timelike unit normal to Σ, which we define as nµ, is

nµ = −N ∂t

∂xµ
(2.88)

It is possible to define an orthogonal projector that projects into Σ’s tangent space.

γαβ = δαβ + nαnβ. (2.89)

The custom of using a minus sign to define the extrinsic curvature

Kαβ = −γµαγνβ∇µnν (2.90)
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There exists a special Levi-Civita connection Di linked with the induced metric. Con-
sequently, the hypersurface’s intrinsic curvature tensor is defined and denoted by Rk

lij.
Another name for the comparable Ricci scalar is the surface’s Gaussian curvature.

Similarly, using nµ and the orthogonal projector, the stress-energy tensor can be broken
down into components tangent to Σ and components normal to Σ.

E = Tµνn
µnν , pα = Tµνn

µγνα, Sαβ = Tµνγ
µ
αγ

ν
β (2.91)

It is customary to create a rescaled timelike normal before expressing the Einstein equations
as an initial-value problem.

mµ = Nnµ (2.92)

which is dt’s dual. The new time coordinate has the value t + δt if we translate each
point on Σ by mµδt. Then, employing Lie derivatives with respect to time, the Einstein
equations (in trace-reversed form) can be expressed as [3].

∂thij = −2NKij +∇iβ
j +∇jβ

i (2.93)

∂tKij = −DiDjN +N
(
Rij +KKij − 2KikK

k
j + 4πGN ((S − E)γij − 2Sij)

)
(2.94)

R = Ricci Scalar for 3D spatial dimention

K = Trace of the extrinsic curvature

Kij = extrinsic curvature tensor

N = lapse function

h = determinant of the spatial metric

S = Trace of momentum density tensor

E = Energy density

together with the constraints
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R +K2 −KijK
ij = 16πGNE

DjK
j
i −DiK = 8πGNpi

The Bianchi identities ensure that the restrictions are met on succeeding timeslices if the
stress-energy tensor satisfies ∇µT

µν = 0.

In order to find a semiclassical stress tensor ⟨Tµν⟩ that we can subsequently put into these
equations, we will attempt to define an initial-value problem in the following sections.

2.7 Summary of ADM formalism

.

In the following, our goal will be to formulate an initial-value problem to determine a
semiclassical stress tensor ⟨Tµν⟩ which we can then insert into these equations.M formalism
The ADM method decomposes spacetime into space and time, splitting the metric into
spatial and temporal components, facilitating a Hamiltonian description of gravity.

LG =

[
R3 +K2 +KijKij − 2∇iK − 2

N
∇i∇iN

]
N
√
h

R3 = Ricci scalar for 3D spatial dimension

K2 = Trace of the scalar extrinsic curvature squared

KijKij = Trace of the extrinsic curvature tensor squared

N = Lapse function

h = Determinant of the spatial metric

S = Trace of momentum density tensor

E = Energy density

As Ricci scalar in 3+1 dimension has the form of

R4 = R3 +K2 −KµνK
µν − 2nµ [∇α,∇µ]n

α
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Now let us construct the Hamiltonian of 3+1 D spacetime.

H .
=
∑
q

πq̇ − LG

Here the conjugate variables are spatial 3D metric hij and πij In Hamiltonian mechanics,
each configuration variable q is associated with a canonically conjugate momentum p, given
by the partial derivative of the Lagrangian with respect to q̇. Similarly, the canonical
momentum density πij is defined as

πij
.
=
∂LG
∂ḣij

We are now in the position to determine the twelve Hamilton equations that describe the
time evolution of the canonical variables

ḣij =
δH

δπij

π̇ij = − δH

δγij

πij =
√
h
(
Khij −Kij

)
After long calculations, we end up with these time evaluation equations

∂thij = −2NKij +∇iβ
j +∇jβ

i

∂tKij = −∇i∇jN +N
(
Rij +KKij − 2KikK

k
j + 4πG ((S − E)hij − 2Sij)

)
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Chapter 3

Semiclassical expansion

We will find that the Einstein equations are modified by terms up to fourth order in time
derivatives due to quantum fluctuations of scalar fields. Treating Einstein’s gravity as
effective field theory also leads to higher-derivative corrections, where we anticipate terms
like R2 and RµνR

µν to occur in the effective action, with coefficients to be matched to
experiment. Unphysical solutions to field equations are generally introduced by terms
of high derivative order. Concurrently, there exist limitations on the physical solutions
arising from expanding the equations of motion through a derivative expansion for a more
comprehensive theory. The stress-energy tensor’s expectation value is expressed as follows:
[4, 5, 6, 7].

⟨Tµν⟩ → ⟨Tµν⟩

+
logM2

2(2π)2

(
gµν

(
1

8
m4 +

1

4

(
ξ − 1

6

)
m2R− 1

2

(
ξ2 − 1

3
ξ +

1

40

)
□R +

1

8

(
ξ − 1

6

)2

R2

− 1

720
RλρR

λρ +
1

720
RστλρR

στλρ

)
− 1

2

(
ξ − 1

6

)
m2Rµν +

1

2

(
ξ2 − 1

3
ξ +

1

30

)
R;µν

− 1

120
□Rµν −

1

2

(
ξ − 1

6

)2

RRµν +
1

90
Rλ

µRλν −
1

180
RλρRλµρν −

1

180
Rλστ

µRλστν

)
.

(3.1)

We note this shift ambiguity has a vanishing trace in the conformally coupled case, m2 = 0
and ξ = 1/6, so it does not change the expression for the trace anomaly.
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3.1 Schwarzschild spacetime with Standard coordi-

nates

gµνdx
µdxν = −

(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2dΩ (3.2)

where dΩ = dθ2+sin2 θdϕ2 is the metric on the two-sphere. Using (r, θ, ϕ) as the coordinates
of each hypersurface Σt, the three-dimensional metric γij becomes

γij = diag

[(
1− 2m

r

)−1

, r2, r2 sin2 θ

]
(3.3)

We’ve seen that the Christoffel symbols in terms of the metric are given by

Γmij =
1

2
gml (∂jgil + ∂iglj − ∂lgji) (3.4)

This expression involves calculating the inverse metric tensor gml and doing a lot of sums
to find each Christoffel symbol. Often, an easier way is to exploit the relation between
the Christoffel symbols and the geodesic equation. The geodesic equation is (where a dot
above a symbol means the derivative with respect to τ):

gajẍ
j +

(
∂igaj −

1

2
∂agij

)
ẋjẋi = 0 (3.5)

The following equation is formally equivalent to this:

ẍm + Γmijẋ
jẋi = 0 (3.6)

The method for calculating the Christoffel symbols is to work out the terms above, divide
them by gaj, and then compare the result term by term with the following terms. By doing
this we are able to read off the Γmij as the coefficients of ẋjẋi. We can use this technique
to work out the Γmij for the Schwarzschild metric, which is

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dθ2 + r2 sin2 θdϕ2 (3.7)
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First, take a = ϕ in geodesic equation. Since the Schwarzschild metric doesn’t depend on
ϕ, ∂ϕgij = 0 for all elements. Further, since the Schwarzschild metric is diagonal, gϕj is
restricted to gϕϕ, so the equation becomes

gϕϕϕ̈+ ∂igϕϕϕ̇ẋ
i = 0 (3.8)

Since gϕϕ = r2 sin2 θ there are 2 non-zero derivatives, so this equation expands to

r2 sin2 θϕ̈+ 2r sin2 θϕ̇ṙ + 2r2 sin θ cos θϕ̇θ̇ = 0

ϕ̈+
2

r
ϕ̇ṙ + 2 cot θϕ̇θ̇ = 0

(3.9)

By comparing this with the previous equation, we can read off the Christoffel symbols to
have the following relations:

Γϕrϕ + Γϕϕr =
2

r

Γϕrϕ = Γϕϕr =
1

r

Γϕθϕ + Γϕϕθ = 2 cot θ

Γϕθϕ = Γϕϕθ = cot θ

(3.10)

Here, we’ve used the symmetry of the Christoffel symbols. Because no other terms appear
in the equation, all the other Γϕij are zero, so the complete set is where the rows are
labelled t, r, θ and ϕ from top to bottom, and the columns the same order from left to
right:

Γϕij =


0 0 0 0
0 0 0 1

r

0 0 0 cot θ
0 1

r
cot θ 0

 (3.11)

Now consider a = θ in the geodesic equation. This time, one of the gij does depend on θ,
so we will get a contribution from the ∂θgϕϕ term. We get

r2θ̈ + 2rṙθ̇ − 1

2
r2(2 sin θ cos θ)ϕ̇2 = 0

θ̈ +
2

r
ṙθ̇ − sin θ cos θϕ̇2 = 0

(3.12)
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Again, we can read off the symbols to get

Γθij =


0 0 0 0
0 0 1

r
0

0 1
r

0 0
0 0 0 − sin θ cos θ

 (3.13)

For a = r in the geodesic equation. We get

0 =

(
1− 2GM

r

)−1

r̈ − 2GM

r2

(
1− 2GM

r

)−2

ṙ2−

1

2

[
−2GM

r2
ṫ2 − 2GM

r2

(
1− 2GM

r

)−2

ṙ2 + 2rθ̇2 + 2r sin2 θϕ̇2

]

0 =r̈ +
GM

r2

(
1− 2GM

r

)
ṫ2 − GM

r2

(
1− 2GM

r

)−1

ṙ2−

r

(
1− 2GM

r

)
θ̇2 − r sin2 θ

(
1− 2GM

r

)
ϕ̇2

(3.14)

Comparing terms, we get

Γrij =


GM
r2

(
1− 2GM

r

)
0 0 0

0 −GM
r2

(
1− 2GM

r

)−1
0 0

0 0 −r
(
1− 2GM

r

)
0

0 0 0 −r sin2 θ
(
1− 2GM

r

)


(3.15)

Finally, for a = t the metric is again independent of t so the situation is a lot simpler:

−
(
1− 2GM

r

)
ẗ− 2GM

r2
ṙṫ = 0

ẗ+ 2GM
r2

(
1− 2GM

r

)−1
ṙṫ = 0

(3.16)

Let’s employ Natural units where G equals 1.

Consequently, the six non-vanishing Christoffel symbols Γijk related to γij are

Γrrr = − M
r(r−2M)

Γrθθ = −(r − 2M)

Γrϕϕ = −(r − 2M) sin2 θ Γθrθ =
1
r

Γϕrϕ =
1
r

Γϕθϕ = cot θ
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The Riemann curvature tensor is given by the following expression

Rλ
µνσ = ∂µΓ

λ
νσ − ∂νΓ

λ
µσ + ΓλµαΓ

α
νσ − ΓλναΓ

α
µσ

This formula relates the components of the Riemann curvature tensor to the first and
second derivatives of the Christoffel symbols.

The non-zero terms of the Stress Energy Tensor for Schwarschild metric is

⟨Tµγ⟩ = logM2
n

2(2π)2

(
gµν

1
8
m4

0 + gµγ
1

720
RστλρR

στλρ + 1
180
Rστλ
µ Rστλγ

)
Let’s find the expression of each term for Schwarzschild metric,

RστλρR
στλρ

= 8

(
4M2

r6

)
+ 16

(
M2

r6

)
=

48M2

r6

Rλστ
µ Rλστγ

=
−4M2(M − r)

r7
− M2(2M − r)

r7
+

4M2(2M − r)

r7

+
M2(2M − r)

r7
+
M2(2M − r)

r7
− M2(2M − r)

r7

= 0

3.2 Symmetries of Riemannian curvature tensor

The Riemannian curvature tensor is a mathematical object that describes the curvature of
a Riemannian manifold. It has the following symmetries:

- Skew-symmetry in the first two and the last two indices:

Rijkl = −Rjikl = −Rijlk

- Symmetry in the pair of pairs of indices:

Rijkl = Rklij
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- Cyclic relation or first Bianchi identity:

Rijkl +Rjkil +Rkijl = 0

These symmetries reduce the number of independent components of the curvature tensor
from n4 to 1

12
n2(n2 − 1), where n is the dimension of the manifold.

The geometric meaning of these symmetries can be summarized as follows:

The skew-symmetry reflects the failure of parallel transport to be commutative.
The symmetry in the pair of pairs of indices reflects the curvature tensor’s invariance under
the parallelogram’s change of orientation.
The cyclic relation reflects the Jacobi identity for the Lie bracket of vector fields.

3.3 Dynamical equations for Schwarzschild metric

1. Lapse Function (N): - The lapse function represents the local rate of proper time
experienced by observers following the coordinate lines of the chosen time coordinate. It
measures the ”stretching” or ”compression” of proper time between nearby spatial hyper-
surfaces. In the Schwarzschild metric, the lapse function is given by:

N =

√
1− 2GM

c2r

This function ensures that time coordinates are chosen such that they are orthogonal to
the spatial hypersurfaces, and it determines the proper time experienced by stationary
observers.

2. Shift Vector (βi): - The shift vector describes how the spatial coordinates evolve
from one hypersurface to the next in a foliation of spacetime. It represents the spatial
part of the change in coordinates between consecutive spatial slices. In the Schwarzschild
metric, the shift vector components are zero in all spatial directions:

βr = 0, βθ = 0, βϕ = 0

This indicates that there is no ”drift” or displacement of spatial coordinates as we move
from one spatial slice to another in Schwarzschild spacetime. These functions are essential
in defining the slicing of spacetime into spatial hypersurfaces and formulating the Hamil-
tonian formalism of General Relativity in the ADM framework. They play a crucial role
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in understanding the dynamics of the gravitational field and matter distributions. The
dynamical equations for Schwarchild metric is given by

∂thij = −2NKij +∇iβ
j +∇jβ

i

∂tKij = −DiDjN +N
(
Rij +KKij − 2KikK

k
j + 4πGN ((S − E)γij − 2Sij)

) (3.17)

We have found all the terms required for evaluating the coupled ADM equations. The
expression of the expectation value of Stress Energy Tensor of Schwarzschild metric is
given by,

⟨T11⟩ =
logM2

n

8π2n

((
1− 2GM

r

)(
1

8
m4

0 +
46M2

720 (r6)

))
⟨T22⟩ =

logM2
n

8π2

(
1(

1− 2GM
r

) (1

8
m4

0 +
46M2

720r6

))

⟨T33⟩ =
logM2

n

8π2

(
r2
(
1

8
m4

0 +
46M2

720r6

))
⟨T44⟩ =

logM2
n

8π2

(
r2 sin2 θ

(
1

8
m4

0 +
46M2

720r6

))
Where M2

n is the normalization factor. As we have got the expression of the Stress Energy
Tensor, we can derive the Energy and Momentum flux density Tensor using projection
operators,
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S = S11 + S22 + S33 + S44

S11 = Tµrγ
µ
1 γ

ν
1

S11 = 4T11

S11 = 4
logM2

n

8π2

((
1− 2M

r

)(
1

8
m4 +

46M2

720 (r6)

))
S22 = T11γ

2
2γ

2
2

S22 = T22

S22 =
logM2

n

8π2

(
1(

1− 2M
r

) (1

8
m4 +

46M2

720r6

))
S33 = T33γ

3
3γ

3
3

S33 = T33

S33 =
logM2

n

8π2

(
r2
(
1

8
m4 +

46M2

720r6

))
S44 = T44γ

4
4γ

4
4

S44 =
logM2

n

8π2

(
r2 sin2 θ

(
1

8
m4 +

46M2

720r6

))
S = 4T11 + T22 + T33 + T44

S =
logM2

n

8π2

(
1

8
m4

0 +
46M

720r6

)(
4

(
1− M

r

)
+

1(
1− 2M

r

) + r2 + r2 sin θ

)

The value of Energy density tensor is calculated as follows,

E = Tµνn
µnν

E = T11n
11 + T12n

1n2 + T21n
2n1 + Tnn

2n2

E = T11n
1n1

E =
(
n1
)2 logM2

n

8π2

(
1− 2M

r

(
1

8
m4

0 +
46M2

(720) (r6) .

)
E =

logM2
n

8π2

(
1

8
m4

0 +
46M2

720 (r6)

)
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3.4 Evaluation of extrinsic curvature tensor and scalar

curvature tensor

Let us evaluate the scalar extrinsic curvature K, embedded in the three-dimensional hy-
persurface Σt, using K = −Din

i (we write ni instead of ri to avoid confusion) since the
components of the normal unit vector ni pointing outside 3D spacetime.

ni =

(√
r

r − 2M
, 0, 0

)
i

=⇒ ni =

(√
r − 2M

r
, 0, 0

)i

(3.18)

we obtain

K = −γij (∂inj − Γaijna)

= −r − 2M

r
∂r

(√
r

r − 2M

)
+

√
r

r − 2M

[
−M
r2

− 2
r − 2M

r2

]
= −2

r

√
r − 2M

r

The scalar curvature K0 referred to the embedding in a flat spacetime can be effortlessly
recovered by the relation K0 = K|M=0 (or equivalently by using the Christoffel symbols
associated to the background metric ). Hence we have

K0 = −2

r
(3.19)

Let us use a two-sphere of radius r to identify the boundary St. This suggests that σ =
r2 sin θ is the only possible value for the determinant σ of the induced metric on St. Now
that we have substituted these quantities in the integral and calculated the limit, we may
evaluate MADM :

MADM =
1

8π
lim
St→∞

∮
St

(K −K0)
√
σd2x

= − 1

4π
lim
r→∞

∫ π

0

dθ

∫ 2π

0

dϕ
1

r

(√
r − 2M

r
− 1

)
r2 sin θ

= − lim
r→∞

r

(√
r − 2M

r
− 1

)
=M
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For a body of mass m that is spherically symmetric, this is the anticipated outcome. The
standard coordinates of the Schwarzschild spacetime result in a negligible result concerning
the ADM momentum.

PADM
i = 0 (3.20)

We take into consideration the extrinsic curvature tensor to demonstrate this:

Kij = −∇jni =
4Γµijnµ = −N4Γ0

ij (3.21)

The extrinsic curvature tensor values that are non zero are

K11 = −∇1n1

= ∂t

√
r − 2M(t)

r

=
1

2

(
r − 2M

r

)−1/2(
−2dM

dt

)
1

r

K11 = −
(
r − 2M

r

)−1/2( ℏc4

M215360πG2

)
1

r

The expression of first coupled ADM equation,

∂th11 = −2

r

(
ℏc4

15360πG2

)(
1

M2
i

)
− 2N (∂tK11) t

∂tK11 = −∇1∇1

√
1− 2M

r
−
√
1− 2M

r

(
4πG(S − E)

(
−
(
1− 2M

r

)
+ S11

)
The second set of coupled ADM equations are,

∂th22 = −2

√
1− 2M

r
∇2(0) = 0

∂tK22 = ∇2∇2

√
1− 2M

r
−
√

1− 2M

r

(
−4πG(S − E)

(
1

1− 2M
r

)
− 8πGS22

)
The last coupled ADM equations are,

∂th21 =
2M

r2
− 2

√
1− 2M

r
(∂tK21) t

∂tK21 = −∇2∇1

√
1− 2M

r
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Finally, we ended up with the dynamical equation of the Schwarzschild metric, which, when
solved, can give the time evolution of the metric. The three non-zero components in the
time evolution expression show only the radial and time components of the Schwarzschild
metric changes, which is well known to us by Hawking Radiation.

3.5 Discussion

After calculating how black holes work, We figured out a special equation that tells us
how the space around a black hole changes over time. We used something called ADM
formalism to find this equation. It’s like a key that helps us understand how gravity and
matter interact in the space around black holes. The expectation value of stress-energy
tensor is found in the paper Semiclassical Dynamics of Hawking Radiation by Lowe, David
A. and Thorlacius [7].

This equation is super important because it helps us see how the shape of space near
a black hole evolves as time goes on. By solving this equation, we better understand how
the black hole’s surroundings change and what that means for how black holes behave.
We have three parts that don’t stay the same as time evolves. These parts tell us how the
distance from the centre of the black hole and time itself changes over time. This point is
important, especially when we think about something called Hawking radiation.

Hawking radiation is a big idea in physics that says black holes can give off energy and
get smaller over time. Our equation helps us understand this by showing how space and
time near the black hole change over time.

So, by figuring out this equation, we’ve learned how black holes evolve through ADM
equations. It’s like solving a puzzle piece by piece to see the big picture of the universe.
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Chapter 4

Mathematica File

All the terms that are found for the Schwarschild metric are verified using Mathematica
software named RTGC. The following pages contain the result of it.
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In[ ]:= Quit

In[ ]:= << EDCRGTCcode.m

SetDelayed: Tag Laplacian in ∇UpList_:{}
2 x_ is Protected.

SetDelayed: Tag Classify in Classify[x_] is Protected.

In[ ]:= Coordinates = {t, r, θ, ϕ}

Out[ ]= {t, r, θ, ϕ}

In[ ]:= Metric = DiagonalMatrix- 1 -
2 G M

r
, 1 -

2 G M

r

-1

, r2, r2 Sin[θ]2

Out[ ]= -1 +
2 G M

r
, 0, 0, 0, 0,

1

1 - 2 G M

r

, 0, 0, 0, 0, r2, 0, 0, 0, 0, r2 Sin[θ]2

In[ ]:= RGtensors[Metric, Coordinates]

gdd =

-1 + 2 G M

r
0 0 0

0 1

1-
2 G M

r

0 0

0 0 r2 0

0 0 0 r2 Sin[θ]2

LineElement = -
r d[r]2

2 G M - r
+
(2 G M - r) d[t]2

r
+ r2 d[θ]2 + r2 d[ϕ]2 Sin[θ]2

gUU =

r

2 G M-r
0 0 0

0 - 2 G M-r

r
0 0

0 0 1

r2
0

0 0 0 Csc[θ]2

r2

gUU computed in 0.004432 sec

Gamma computed in 0.001311 sec

Riemann(dddd) computed in 0.001763 sec

Riemann(Uddd) computed in 0.001445 sec

Ricci computed in 0.000088 sec

Weyl computed in 7.×10-6 sec

Ricci Flat
Out[ ]= All tasks completed in 0.011598 seconds

In[ ]:= R

Out[ ]= 0
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In[ ]:= Rdddd

Out[ ]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

0, -
2 G M

r3
, 0, 0, 

2 G M

r3
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

0, 0, -
G M (2 G M - r)

r2
, 0, {0, 0, 0, 0}, 

G M (2 G M - r)

r2
, 0, 0, 0, {0, 0, 0, 0},

0, 0, 0, -
G M (2 G M - r) Sin[θ]2

r2
, {0, 0, 0, 0},

{0, 0, 0, 0}, 
G M (2 G M - r) Sin[θ]2

r2
, 0, 0, 0,

0,
2 G M

r3
, 0, 0, -

2 G M

r3
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, 0, 0,
G M

2 G M - r
, 0, 0, -

G M

2 G M - r
, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, 0,
G M Sin[θ]2

2 G M - r
, {0, 0, 0, 0}, 0, -

G M Sin[θ]2

2 G M - r
, 0, 0,

0, 0,
G M (2 G M - r)

r2
, 0, {0, 0, 0, 0}, -

G M (2 G M - r)

r2
, 0, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, -
G M

2 G M - r
, 0, 0,

G M

2 G M - r
, 0, 0, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0, 2 G M r Sin[θ]2, 0, 0, -2 G M r Sin[θ]2, 0,

0, 0, 0,
G M (2 G M - r) Sin[θ]2

r2
, {0, 0, 0, 0},

{0, 0, 0, 0}, -
G M (2 G M - r) Sin[θ]2

r2
, 0, 0, 0,

{0, 0, 0, 0}, 0, 0, 0, -
G M Sin[θ]2

2 G M - r
, {0, 0, 0, 0}, 0,

G M Sin[θ]2

2 G M - r
, 0, 0,

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0, -2 G M r Sin[θ]2, 0, 0, 2 G M r Sin[θ]2, 0,

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}
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In[ ]:= RUUUU = Raise[RUddd, 2, 3, 4]

Out[ ]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

0, -
2 G M

r3
, 0, 0, 

2 G M

r3
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

0, 0, -
G M

(2 G M - r) r4
, 0, {0, 0, 0, 0}, 

G M

(2 G M - r) r4
, 0, 0, 0, {0, 0, 0, 0},

0, 0, 0, -
G M Csc[θ]2

(2 G M - r) r4
, {0, 0, 0, 0}, {0, 0, 0, 0}, 

G M Csc[θ]2

(2 G M - r) r4
, 0, 0, 0,

0,
2 G M

r3
, 0, 0, -

2 G M

r3
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, 0, 0,
G M (2 G M - r)

r6
, 0, 0, -

G M (2 G M - r)

r6
, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, 0,
G M (2 G M - r) Csc[θ]2

r6
,

{0, 0, 0, 0}, 0, -
G M (2 G M - r) Csc[θ]2

r6
, 0, 0,

0, 0,
G M

(2 G M - r) r4
, 0, {0, 0, 0, 0}, -

G M

(2 G M - r) r4
, 0, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, -
G M (2 G M - r)

r6
, 0, 0,

G M (2 G M - r)

r6
, 0, 0, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0,
2 G M Csc[θ]2

r7
, 0, 0, -

2 G M Csc[θ]2

r7
, 0,

0, 0, 0,
G M Csc[θ]2

(2 G M - r) r4
, {0, 0, 0, 0}, {0, 0, 0, 0}, -

G M Csc[θ]2

(2 G M - r) r4
, 0, 0, 0,

{0, 0, 0, 0}, 0, 0, 0, -
G M (2 G M - r) Csc[θ]2

r6
,

{0, 0, 0, 0}, 0,
G M (2 G M - r) Csc[θ]2

r6
, 0, 0,

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0, -
2 G M Csc[θ]2

r7
, 0, 0,

2 G M Csc[θ]2

r7
, 0,

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

In[ ]:= Contract[Outer[Times, Rdddd, RUUUU], {1, 5}, {2, 6}, {3, 7}, {4, 8}]

Out[ ]=

48 G2 M2

r6

gauri_schwarzschild.nb    3
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In[ ]:= RUUUd = Lower[RUUUU, 4]

Out[ ]= {{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

0,
2 G M

(2 G M - r) r2
, 0, 0, 

2 G M (2 G M - r)

r4
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

0, 0, -
G M

(2 G M - r) r2
, 0, {0, 0, 0, 0}, 

G M

r5
, 0, 0, 0, {0, 0, 0, 0},

0, 0, 0, -
G M

(2 G M - r) r2
, {0, 0, 0, 0}, {0, 0, 0, 0}, 

G M Csc[θ]2

r5
, 0, 0, 0,

0, -
2 G M

(2 G M - r) r2
, 0, 0, -

2 G M (2 G M - r)

r4
, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, 0, 0,
G M (2 G M - r)

r4
, 0, 0,

G M

r5
, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, 0,
G M (2 G M - r)

r4
, {0, 0, 0, 0}, 0,

G M Csc[θ]2

r5
, 0, 0,

0, 0,
G M

(2 G M - r) r2
, 0, {0, 0, 0, 0}, -

G M

r5
, 0, 0, 0, {0, 0, 0, 0},

{0, 0, 0, 0}, 0, 0, -
G M (2 G M - r)

r4
, 0, 0, -

G M

r5
, 0, 0, {0, 0, 0, 0},

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0,
2 G M

r5
, 0, 0, -

2 G M Csc[θ]2

r5
, 0,

0, 0, 0,
G M

(2 G M - r) r2
, {0, 0, 0, 0}, {0, 0, 0, 0}, -

G M Csc[θ]2

r5
, 0, 0, 0,

{0, 0, 0, 0}, 0, 0, 0, -
G M (2 G M - r)

r4
, {0, 0, 0, 0}, 0, -

G M Csc[θ]2

r5
, 0, 0,

{0, 0, 0, 0}, {0, 0, 0, 0}, 0, 0, 0, -
2 G M

r5
, 0, 0,

2 G M Csc[θ]2

r5
, 0,

{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}}

In[ ]:= Contract[Outer[Times, RUUUd, Rdddd], {1, 5}, {2, 6}, {3, 7}]

Out[ ]= 
12 G2 M2 (2 G M - r)

r7
, 0, 0, 0, 0, -

12 G2 M2

(2 G M - r) r5
, 0, 0,

0, 0,
12 G2 M2

r4
, 0, 0, 0, 0,

12 G2 M2 Sin[θ]2

r4

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In[ ]:= hdd = {0, 0, 0, 0}, 0,
1

1 - 2 G M

r

, 0, 0, 0, 0, r2, 0, 0, 0, 0, r2 Sin[θ]2

Out[ ]= {0, 0, 0, 0}, 0,
1

1 - 2 G M

r

, 0, 0, 0, 0, r2, 0, 0, 0, 0, r2 Sin[θ]2

In[ ]:= nU = 
-1

Sqrt1 - 2 G M

r

, 0, 0, 0

Out[ ]= -
1

1 - 2 G M

r

, 0, 0, 0

In[ ]:= nd = Contract[Outer[Times, nU, gdd], {1, 2}]

Out[ ]= 
-2 G M + r

r -2 G M+r
r

, 0, 0, 0

In[ ]:= γdU = {{2, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

Out[ ]= {{2, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0}, {0, 0, 0, 1}}

In[ ]:= covD[nd]

Out[ ]= {0, 0, 0, 0}, -
G M

r2 -2 G M+r

r

, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0}

In[ ]:= KKdd = -Contract[Outer[Times, γdU, γdU, covD[nd]], {2, 5}, {4, 6}]

Out[ ]= {0, 0, 0, 0}, 
2 G M

r2 -2 G M+r

r

, 0, 0, 0, {0, 0, 0, 0}, {0, 0, 0, 0}

gauri_schwarzschild.nb    5
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Appendix

A.1 Definitions

A.1.1 Covariant derivative or connection

Assume that the manifold M is differentiable. A map from the tensor fields of rank(r, s)
to the tensor fields (r, s+ 1) such that: is known as a covariant derivative (or connection)
∇.

1. ∇ is linear, that is, ∇(T + S) = ∇T + ∇S, where T, S are the same-rank tensor
fields.

2. ∇(fT ) = df ⊗ T + f∇T , where f is scalar field and df is the (0, 1) tensor with
components ∂µf .

3. given the bases {eµ} and {θµ} of the tangent and cotangent spaces Tp(M), T ∗
p (M),

it satisfies

∇eµ = Γαβµθ
β ⊗ eα (A.1)

Here Γλµν are representing connection coefficients. Specifically, ∇ is considered a metric
connection if the following relation holds for a given metric gµν on M:

∇gµν = 0 (A.2)

The Christoffel symbols in this instance are the connection coefficients Γλµν , which are
ascertained by the equation

Γλµν =
1

2
gλα (gαν,µ + gµα,ν − gµν,α) (A.3)

A.1.2 Tensor density

In the last section, we presented the covariant derivative ∇, which is a map from tensors of
rank (r, s) to (r, s + 1) tensors. Nonetheless, we can broaden its applicability to the class
of tensor densities, which are defined to streamline the computations.
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T α1...αr
β1...βs =

√
|g|

W
Tα1...αr

β1...βs (A.4)

Where W is a real number, which is known as the weight of the tensor density, and
Tα1...αr

β1...βs is a tensor of type (r, s), g is the determinant of the metric gµν . The conven-
tional derivation is thus simply generalized to the covariant derivative of T α1...αr

β1...βs .

A.1.3 Curvature tensors

The Riemann curvature tensor Rρ
σµν determines the curvature of a manifold in its entirety.

As per the sign convention, we define it as follows:

Rρ
σµν = Γρσν,µ − Γρσ,ν + ΓρσλµλΓ

λ
σν − ΓρνλΓ

λ
σµ (A.5)

The contraction of the first and third indices in A.4 yields the Ricci tensor:

Rµν = Rλ
µλν =

1√
|g|
∂λ

[√
|g|Γλµν

]
− ΓρµλΓ

λ
ρν − ∂µ∂ν ln

√
|g| (A.7)

Ultimately, the scalar curvature can be obtained by contracting Rµν using the inverse
metric gµν .

R = gµνRµν (A.8)

A.1.4 Lie derivative

Assume that the manifold M is differentiable. Given an open subset I ⊂ R and a regular
vector field X = Xµ∂µ on M, we define the integral curve of X as

αp : I −→ M
s 7−→ αp(s) (A.10)

such that
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αp(0) = p (A.11)

∀s0 ∈ I
dαp
ds

∣∣∣∣
s0

= α̇p (s0) = Xs0 (αp) (A.12)

An open subset is U ⊂ M. Every integral curve has a natural relationship with the map.

ϕXs : U −→ M (A.13)

p 7−→ αp(s) (A.14)

called the flow along X, such that

∀s0 ∈ I
dαp
ds

∣∣∣∣
s0

= α̇p (s0) = Xs0 (αp) (A.15)

The flow ϕXs has the following properties:

1. ϕX0 (p) = αp(0) = p =⇒ ϕX0 = I

2. ϕXs ◦ ϕXt = ϕXs+t ∀s, t ∈ R

3. ϕXs is a diffeomorphism and
[
ϕXs
]−1

= ϕX−s

This map allows us to define, at a point p, the Lie derivative of a differentiable tensor field
T of rank (m,n) along X.

[LX(T )]p =
d

ds

∣∣∣∣
s=0

[(
ϕX−s
)
∗ TϕXs (p)

]
(A.14)

Which in components reads

[LX(T )]µ1...µm ν1...νn = Xλ∂λT
µ1...µm

ν1...νn (A.17)

− T λ...µmν1...νn∂λX
µ1 − . . .− T µ1...λν1...νn∂λX

µn

+ T µ1...µmλ...νn∂ν1X
λ + . . .+ T µ1...µmν1...λ∂νnX

λ
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In the event that the connection ∇ is torsion-free, that is, if the Christoffel symbols in the
final two indices exhibit symmetry

Γλµν = Γλνµ (A.18)

It is possible to rewrite equation A.17 by substituting the covariant counterparts ∇µ for
the partial derivatives ∂µ

[LX(T )]µ1...µmν1...νn
=Xλ∇λT

µ1...µm
ν1...νn (A.19)

− T λ...µmν1...νn∇λX
µ1 − . . .− T µ1...λν1...νn∇λX

µm

+ T µ1...µmλ...νn∇ν1X
λ + . . .+ T µ1...µmν1...λ∇νnX

λ

From the definition and the component relation A.17, the primary characteristics of the
Lie derivative are readily ascertained:

1. the Lie derivative of a tensor field T of rank(m,n) is a tensor field of rank (m,n).

2. LX(T ) is linear both in X and in T .

3. the Lie derivative satisfies the Leibniz rule

LX(T ⊗ S) = LX(T )⊗ S + T ⊗ LX(S)

4. If f is a scalar field, LX(f) = X(f).

A.2 Variation with respect to the metric

A.2.1 Christoffel symbols

To keep things brief, we will refer to the fluctuation of the metric gµν in some of the
intermediary sections as θµν = δgµν .
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δΓλµν =
1

2
(δgλν,µ + δgµλ,ν − δgµν,λ)

=
1

2
(∇µθλν +∇νθµλ −∇λθµν)

+
1

2
[Γσµλθσν + Γσµνθλσ + Γσνµθσλ + Γσνλθµσ − Γσλµθσν − Γσλνθµσ]

=
1

2
(∇µδgλν +∇νδgµλ −∇λδgµν) + Γσµνδgσλ (A.20)

It follows that

δΓρµν = δgρλΓλµν + gρλδΓλµν

= −gρλΓσµνθσλ +
1

2
gρλ (∇µθλν +∇νθµλ −∇λθµν) + gρλΓσµνθσλ

=
1

2
gρλ (∇µδgλν +∇νδgµλ −∇λδgµν) (A.21)

We shall also consider the contracted version of A.21 :

δΓµµν = δgµλΓλµν + gµλδΓλµν

= −gαµgβλθαβΓλµν + gµλ
[
1

2
(∇µθλν +∇νθµλ −∇λθµν) + Γσµνθσλ

]
= −Γβµνg

αµθαβ +
1

2
gλµ∇νθλµ + Γβµνg

αµθαβ

=
1

2
gλµ∇νδgλµ (A.22)

A.2.2 The vector δV ρ

Let us consider the vector

δV ρ .
= gµνδΓρµν − gρνδΓµµν (A.23)

Which appears in the variation of R. This is the same as
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δV ρ =
(
gµνδgρλ − gρνδgµλ

)
Γλµν +

(
gµνgρλ − gρνgµλ

)
δΓλµν (A.24)

With the variation δΓλµν , we concentrate on the second product and use the notation
θµν,λ = δgµν,λ:

(
gµνgρλ − gρνgµλ

)
δΓλµν =

1

2

[(
gµνgρλ − gρνgµλ

)
(δgλν,µ + δgµλ,ν − δgµν,λ)

]
= gµνgρλδgλµ,ν − gµνgρλδgµν,λ

It follows that

δV ρ =
(
gµνδgρλ − gρνδgµλ

)
Γλµν + gµνgρλ (δgλµ,ν − δgµν,λ) (A.25)

We may rewrite δV ρ by introducing the covariant derivatives of δgµν using equations A.21
and A.22:

δV ρ =
1

2
gµνgρλ (∇µδgλν +∇νδgµλ −∇λδgµν)−

1

2
gρνgλµ∇νδgλµ

= gµνgρλ (∇µδgλν −∇λδgµν) (A.26)

A.2.3 Curvature

Let us examine the δΓλµν fluctuation of the Christoffel symbols caused by a metric varia-
tion. δΓλµν is a tensor of rank (1, 2) since it represents the difference of two connections.
Selecting the local inertial frame will cause the Christoffel symbols to disappear.

Γλµν
∗
= 0 (A.27)

It is highlighted that the equality holds in a Lorentz frame by the sign
∗
=. We can now

describe the variation of the Riemann curvature tensor Rρ
σµν by using equation A.27 and

substituting ∇µ for the partial derivatives ∂µ.

δRρ
σµν

∗
= δ [Γρσν,µ − Γρσµ,ν ]

∗
= ∇µδΓ

ρ
σν −∇νδΓ

ρ
σµ (A.28)

Since the quantity on the left is tensorial, the equality must hold true regardless of the
reference frame. Thus, = can be substituted for

∗
= to obtain the Palatini identity:
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δRρ
σµν = ∇µδΓ

ρ
σν −∇νδΓ

ρ
σµ (A.29)

Moreover, the Ricci curvature tensor is used in its contracted version:

δRµν = ∇λδΓ
λ
µν −∇µδΓ

λ
λν (A.30)

The computation of the variation δR can be easily accomplished thanks to the Palatini
identity:

δR = −Rµνδgµν + gµνδRµν

= −Rµνδgµν + gµν
[
∇λδΓ

λ
µν −∇µδΓ

λ
λν

]
= −Rµνδgµν +∇λδV

λ (A.31)

where δV λ was defined in equation A.23. Substituting the relation A.26 we obtain:

∇λδV
λ = gµνgρλ∇ρ (∇µδgλν −∇λδgµν)

= ∇µ∇νδgµν −∇λ∇λδ ln |g| (A.32)

Therefore we have

δR = −Rµνδgµν +∇µ∇νδgµν −∇λ∇λδ ln |g| (A.33)

The Riemann curvature tensor is given by the following expression

Rλ
µνσ = ∂µΓ

λ
νσ − ∂νΓ

λ
µσ + ΓλµαΓ

α
νσ − ΓλναΓ

α
µσ

We already know that the formula relates the components of the Riemann curvature tensor
to the first and second derivatives of the Christoffel symbols, so the values of Riemann
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curvature tensor are,

R1
212 =

2M

r2 (r − 2M)

∣∣∣∣ R1
221 =

2M

r2 (r − 2M)

R1
313 = −M

r

∣∣∣∣ R1
331 = +

M

r

R1
414 = −M(sin θ)2

r

∣∣∣∣ R1
441 =

M(sin θ)2

r

R2
112 = −2M (2M − r)

r4

∣∣∣∣ R2
121 =

2M (2M − r)

r4

R2
323 = −M

r

∣∣∣∣ R2
332 =

M

r

R2
424 = −M(sin θ)2

r

∣∣∣∣ R2
442 =

M(sin θ)2

r

R3
113 =

M (2M − r)

r4

∣∣∣∣ R3
131 =

M (r − 2M)

r4

R3
223 =

M

r2 (r − 2GM)

∣∣∣∣ R3
232 =

M

r2 (2M − r)

R3
434 =

2M(sin θ)2

r

∣∣∣∣ R3
443 =

2M(sin θ)2

r

R4
114 =

M (2M − r)

r4

∣∣∣∣ R4
141 =

M (r − 2M)

r4

R4
224 =

M

r2 (r − 2M)

∣∣∣∣ R4
242 =

M

r2 (2M − r)

R4
334 = −2GM

r

∣∣∣∣ R4
343 =

2M

r

By lowering the first index of Riemann curvature tensor, we arrive at the following
expressions,

55



R1212 =
2M

r3

R1313 =
M(2M − r)

r2

R1221 = −2M

r3

R1414 =
M(2M − r)(sin θ)2

r2

∣∣∣∣ R1331 =
−M(2M − r)

r2

R2112 =
−2M

r3

∣∣∣∣ R1441 =
−M(2M − r)(sin θ)2

r2

R2121 =
2M

r3

R2323 = − M

2M − r

R2442 =
−M(sin θ)2

2M − r

∣∣∣∣ R2332 =
M

2M − r

R3113 =
−M(2M − r)

r2

∣∣∣∣ R2442 =
M(sin θ)2

2M − r

R3131 =
M(2M − r)

r2
.

R3223 =
+M

2M − r

∣∣∣∣ R3232 =
−M

2M − r

R3434 = −2Mr(sin θ)2 | R3443 = 2Mr(sin θ)2

R4114 = −M(2m− r)(sin θ)2

r2

∣∣∣∣ R4141 =
M(2M − r)(sin θ)2

r2

R4224 =
M(sin θ)2

2M − r

∣∣∣∣ R4242 =
−M(sin θ)2

2M − r

R4334 = 2Mr(sin θ)2 | R4343 = −2Mr(sin θ)2
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By raising all the indices, we end up with the following expressions,

R1212 =
2M

r3

∣∣∣∣ R1221 = −2M

r3

R1313 =
M

(2M − r)r4

∣∣∣∣ R1331 =
−M

(2M − r)r4

R1414 =
M(cosec θ)2

(2M − r)r4

∣∣∣∣ R1441 = −M(cosec θ)2

(2M − r)r4

R2112 = −2M

r3

∣∣∣∣ R2121 =
2M

r3

R2323 =
−M(2M − r)

r6

R2332 =
M(2M − r)

r6

R2424 =
−M(2M − r)(cosec θ)2

r6

∣∣∣∣R2442 =
M(2M − r)(cosec θ)2

r6

R3113 =
−M

(2M − r)r4

∣∣∣∣ R3131 =
M

(2M − r)r4

R3223 =
M(2M − r)

r6

∣∣∣∣R3232 =
−M(2M − r)

r6

R3434 = −2M(cosec θ)2

r7

∣∣∣∣R3443 =
2M(cosec θ)2

r7

R4114 =
−M(cosec θ)2

(2M − r)r4

∣∣∣∣ R4141 =
M(cosec θ)2

(2M − r)r4

R4224 =
M(2M − r)(cosec θ)2

r6

∣∣∣∣ R4242 = −M(2M − r)(cosec θ)2

r6

R4334 =
2M(cosec θ)2

r7

∣∣∣∣R4343 = −2M(cosec θ)2

r7
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A.2.3 Calculation and Expression of ADM equations

The expression of the first set of ADM equations becomes,

∂th11 = −2N (K11)

=
−2

r

(
r − 2M

r

)1/2(
r − 2M

r

)−1/2( ℏc9

15360πG2

)(
1

M2

)
∂th11 = −2

r

(
ℏc4

15360πG2

)(
1

M2
i

)
− 2N (∂tK11) t

The expression of second set ADM equations becomes

∂tK11 = −∇1∇1

√
1− 2M

r
−
√

1− 2M

r

(
4πG(S − E)

(
−
(
1− 2M

r

)
+ S11

)
∇1

√
1− 2M

r
= +

1

2

(
r − 2M

r

)−1/2(
2 · dM

dt

)
1

r

∇1∇1

√
1− 2M

r
=

1

r
∂t

 1√
1− 2M

r

 dM

dt
+
d2M

dt2

 1√
1− 2M

r


∇1∇1

√
1− 2M

r
=

1

r

(
−1

2

1(
1− 2M

r

)3/2 (dMdt
)2
)

+
d2M

dt2

 1√
1− 2m

r


and

S =
logM2

8π2

(
1

8
m4

0 +
46M

720r6

)(
4

(
1− M

r

)
+

1(
1− 2GM

r

) + r2 + r2 sin θ

)

E =
logM2

8π2

(
1

8
m4

0 +
46M2

720 (4r6)

)
S11 = 4

logM2

8π2

((
1− 2M

r

)(
1

8
m4

0 +
46M2

720 (4r6)

))
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The second set of coupled ADM equations are

∂th22 = −2

√
1− 2M

r
∇2(0) = 0

∂tK22 = ∇2∇2

√
1− 2M

r
−
√

1− 2M

r

(
−4πG(S − E)

(
1

1− 2M
r

)
− 8πGS22

)
where,

∇2∇2

√
1− 2M

r
=

1

2

(
1− 2M

r

)−1/2

+
4M

r3
− 4M2

r4
− 1

4

(
1− 2M

r

)−3/2

S22 =
logM2

8π2

(
1(

1− 2M
r

) (1

8
m4

0 +
46M2

720r6

))

The last coupled ADM equations are

∂th21 = −2

√
1− 2M

r
∇2

√
1− 2M

r

∂th21 =
2M

r2
− 2

√
1− 2M

r
(∂tK21) t

∂tK21 = −∇2∇1

√
1− 2M

r
+

√
1− 2M

r
(4π) ((S − E)(0)− 2S21)

where,

∇2∇1

√
1− 2M

r
=
dM

dt

((
1− 2M

r

)−3/2
M

r2
−
(
1− 2M

r

)−1/2
1

r2

)
, S21 = 0

∂tK21 =
dM

dt

((
1− 2M

r

)−3/2
M

r2
−
(
1− 2M

r

)−1/2
1

r2

)
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