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Abstract

The global bulk reconstruction procedure in the context of the AdS/CFT correspon-
dence was accomplished during the first decade of the 21st century. This global reconstruc-
tion technique can be utilized to perform entanglement wedge reconstruction in Rindler
coordinates, where access is limited to the entanglement wedge within the Cauchy slice and
the corresponding boundary sub-region. Recently, entanglement wedge reconstruction has
been achieved using a universal quantum recovery channel, but only for true free fields. We
have observed that the recovery channel for a maximally mixed reference state corresponds
to a first-order change in the excited state modular Hamiltonian, accompanied by a scaling
factor dimension of code space.
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Chapter 1

Introduction

The AdS/CFT correspondence, a pioneering concept in theoretical physics, provides a
fundamental synthesis of ideas from two dissimilar domains: gravity and quantum field
theory. At its root, it is a remarkable idea that unites our understanding of the cosmos on
both the smallest and largest sizes. Conceived by Juan Maldacena in 1997, this correspon-
dence states that a theory of gravity in Anti-de Sitter space (AdS), a negatively curved
spacetime, is mathematically equivalent to a quantum field theory residing on the frontier
of that space. This extreme duality has attracted the attention of mathematicians and
physicists alike, providing insights into the holographic principle, the quantum nature of
gravity, and even the inner workings of fundamental particles.

In this paper, Chapter 1 and Chapter 2 provided a brief overview of Anti-de Sitter space,
conformal field theory, and the AdS/CFT correspondence, followed by a discussion on bulk
reconstruction. The primary objective was to understand how bulk reconstruction has been
achieved using quantum channels, as proposed by Cotlar et al [1]. To grasp this concept, an
understanding of the functioning of quantum channels was necessary, which was covered in
Chapter 3. Chapters 4 and Chapter 5 delved into the entanglement wedge reconstruction,
achieved through the Petz map and the twirled Petz map. Subsequently, the research
question addressed the connection between the recovery channel and the Sarosi-Ugajin [2]
formula for the first-order change in the excited state modular Hamiltonian. Ultimately,
the conclusion drawn was that a new definition of the ground state modular Hamiltonian
could be formulated based on this connection.
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1.1 Anti-de-Sitter Space

The maximally symmetric spacetime with negative cosmological constant is Anti-de Sitter
spacetime or AdS spacetime for short. (d+1) dimensional Anti-de Sitter space, AdSd+1 for
short, may be embedded into (d+2) dimensional Minkowski spacetime (X0, X1, . . . , Xd, Xd+1) ∈
Rd,2 , with metric η̄ = diag(−,+,+, . . . ,+,−), i.e.

ds2 = −(dX0)2 + (dX1)2 + · · ·+ (dXd)2 − (dXd+1)2 = η̄MNdX
MdXN

where M,N ∈ {0, . . . , d+ 1}. In particular, AdSd+1 is given by the hypersurface

η̄MNdX
MdXN = −(dX0)2 +

d∑
i=1

(dX i)2 − (dXd+1)2 = −L2, (1.1)

inside Rd,2. The Anti-de Sitter space’s radius of curvature is represented by L in 1.1.
Note that the hypersurface represented by 1.1 is invariant under O(d, 2) transformations
performed on Rd,2 in the normal way. Stated otherwise, AdSd+1 has an isometry group of
O(d, 2). Like (d + 1)-dimensional Minkowski spacetime, O(d, 2) contain (d + 1)(d + 2)/2
Killing generators. As a result, Anti-de Sitter space has maximal symmetry as well.

Anti-de Sitter space has a conformal boundary. For large XM , the hyperboloid given
by 1.1 approaches the light-cone in Rd,2 given by

η̄MNdX
MdXN = −(dX0)2 +

d∑
i=1

(dX i)2 − (dXd+1)2 = 0 (1.2)

Therefore, we may define a ‘boundary’ of Anti-de Sitter space by the set of all lines on the
light-cone 1.2 originating from 0 ∈ Rd,2. In a more fancy notation, the conformal boundary
of AdSd+1, denoted by ∂AdSd+1, is given by the set of points

∂AdSd+1 = {[X]|X ∈ Rd,2, X ̸= 0, η̄MNdX
MdXN = 0}, (1.3)

where we identify [X] with [X̃] if (X0, X1, . . . , Xd+1) = λ(X̃0, X̃1, . . . , X̃d+1) for a real
number λ. To see the topology of conformal boundary ∂AdSd+1 , we can represent any
element [X] of ∂AdSd+1 by the points X satisfying

d∑
i=1

(X i)2 = 1 (1.4)
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Since X also has to satisfy 1.2, we further obtain

(X0)2 + (Xd+1)2 = 1 (1.5)

How should we consider the space ∂AdSd+1? It turns out that ∂AdSd+1 is a compact-
ification of d-dimensional Minkowski space-time. To verify this, consider a point X ̸= 0
satisfying 1.2. Introducing coordinates (u, v) by

u = Xd+1 +Xd

v = Xd+1 −Xd

we may rewrite 1.2 as
uv = ηµνX

µXν (1.6)

where the values of µ and ν are taken from 0, . . . , d− 1, and the diagonal matrix ηµν
has entries diag(−1, 1, . . . , 1). We can re-scale the X whenever ν ̸= 0, ensuring that
ν ̸= 0. Solving 1.6 for u requires knowing Xµ and µ ∈ 0, . . . , d− 1. Minkowski spacetime
with dimension d is thus obtained for ν ̸= 0. In d-dimensional Minkowski spacetime, we
introduced infinities to the points with ν = 0. Upon examining 1.6, we can observe that our
Minkowski spacetime has a light cone added to it. To define conformal transformations,
this is required. This also clarifies why d-dimensional Minkowski spacetime is a conformal
compactification of ∂AdSd+1. In the next section, we will study Conformal Field Theory.

1.2 Conformal Field Theory

Conformal field theory (CFTs) are actually relativistic quantum field theory with Poincaré
symmetry and some scaling symmetry[3]

x′µ = λxµ

and special conformal transformations

xµ
′
=

xµ + aµx2

1 + 2aνxν + a2x2

In conformal field theory, primary operators, which are local operators transforming as

eiDαO(x)e−iDα = eα∆(eαx)
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eiKµaµO(0)e−iKµaµ = O(0)

The quantity ∆ is known as the scaling dimension of O. By iteratively applying
derivatives to a primary operator O, we can obtain its descendant operators. The scaling
dimensions of these operators are determined by adding ∆ to the number of derivatives
applied. Descendants are never themselves primary unless they vanish.

A fundamental characteristic of CFTs is the state-operator correspondence, which is
the set of primary operators and their progeny at any given point x being in one-to-one
correspondence with a full basis of the Hilbert space of the CFT quantized on Sd−1. By
calculating the route integral on a Euclidean solid ball centred on the operator, the map
from operators to states is defined. It is invertible because, given a state on the ball’s
boundary, we can dilate the ball to a point by defining an operator that, when we scale
the ball back up, would create that state. Moreover, if the operator we are interested in
has dimension ∆, the state on Sd−1 will have energy ∆ + E0. The ground state energy is
denoted by E0. Depending on the dimension, we may or may not be able to use a local
counter term to establish E0 = 0. The derivation of this relation involves the observation
that if polar coordinates in the Euclidean origin region are taken and then transformed
into ρ = eτ , we have

ds2 = dρ2 + ρ2dΩ2
d−1 = e2τ (dτ 2 + dΩ2

d−1), (1.7)

so dilations ρ′ = eαρ are equivalent to Euclidean cylinder time translations τ ′ = τ + α.

1.3 AdS/CFT correspondence

The AdS/CFT correspondence, proposed by Juan Maldacena [4] in 1997, is a remarkable
duality that relates a quantum theory of gravity in Anti-de Sitter (AdS) space to a confor-
mal field theory (CFT) living on the boundary of that space. This correspondence provides
a remarkable connection between two seemingly disparate theories, allowing insights from
one side to be translated to the other. It not only provides insights into the behavior of
strongly coupled quantum systems via classical gravitational descriptions but also sheds
light on fundamental aspects of quantum gravity itself. Moreover, the correspondence has
found applications in various areas of physics, from condensed matter systems to black
hole physics and quantum information theory, continuing to inspire new avenues of re-
search and exploration. As previously observed, a conformal boundary is located at the
boundary of AdS (or bulk). When considering a cylinder, the volume inside represents a
three-dimensional space, while the boundary represents a two-dimensional space. If the
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AdS is located within the volume or bulk of the cylinder, the CFT is situated on its bound-
ary. It remains unchanged regardless of the resizing of grid dimensions. The introduction
of duality causes the two-dimensional border space to transform into a three-dimensional
space. The original space is flat, while the new space has negative curvature, namely a
hyperbolic, anti-de Sitter, or AdS space. The conformal field theory in the initial space
without gravity, but it transforms into a comprehensive quantum theory of gravity when
extended to higher-dimensional space. This refers to the AdS/CFT duality.

The authors of the paper [5] assert that there exists a correspondence between any
conformal field theory on R⊗ Sd−1 and a theory of quantum gravity in an asymptotically
AdSd+1 spacetime. This takes us to how the observable on both sides (border and bulk) are
mapped. The solution is in the AdS/CFT dictionary. It can be viewed as an isomorphism
between the Hilbert spaces:

ϕ : HAdS −→ HCFT

where ϕ is the map between the bulk and the boundary. We obtain the extrapolate
dictionary by evaluating the limit as r approaches infinity of r∆ϕi(r, t,Ω), which equals
Oi(t,Ω). where r is the radial bulk direction, ∆ is the scaling dimension of conformal
primary Oi. This might be understood as we are nearing the boundary from the bulk limit,
which is the extrapolate dictionary formalism. One such extended dictionary formalism is
the HKLL prescription in which a bulk field is equal to a boundary operator being smeared
over a causal diamond using a kernel. We shall explore more about HKLL in the coming
sections.
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Chapter 2

Bulk reconstruction

Bulk reconstruction in the AdS/CFT correspondence is the process of extracting informa-
tion about the dynamics of spacetime and gravity within the Anti-de Sitter (AdS) bulk from
the behavior of a conformal field theory (CFT) residing on its boundary. In other words,
it’s the procedure of reconstructing what’s happening in the “bulk” gravitational theory
from observations made solely in the “boundary” CFT. Bulk reconstruction was developed
by Alex Hamilton, Danial Kabat, Gilad Lifschytz and David A. Lowe in [6, 7, 8, 9], in their
name Bulk reconstruction is often called as HKLL reconstruction or HKLL procedure. In
this chapter, We will study HKLL reconstruction.

2.1 HKLL reconstruction

We will work in AdSD in Poincaré coordinates, with metric

ds2 =
R2

Z2
(−dT 2 + |dX|2 + dZ2), (2.1)

here R is the AdS radius. The coordinate range over 0 < Z < ∞, −∞ < T < ∞, and
X ∈ Rd−1 where d = D − 1.

We consider a free scalar field of mass m in this background. Normalizable solutions to
the free wave equation (−□+m2)ϕ = 0 can be expanded in a complete set of modes

ϕ(T,X,Z) =

∫
|ω|>|k|

dωdd−1kaωe
−iωT eik.TZd/2Jν(

√
ω2 − k2Z) (2.2)
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The Bessel function has order ν = ∆−d/2 where ∆ = d
2
+
√

d2

4
+m2R2 is the conformal

dimension of the corresponding operator. In Poincaré coordinates, we define the boundary
field by

ϕPoincare
0 (T,X) = lim

Z→0

1

Z∆
ϕ(T,X,Z)

=
1

2νΓ(ν + 1)

∫
|ω|>|k|

dωdd−1kaωe
−iωT eik.X(ω2 − k2)ν/2 (2.3)

Note that

aωK =
2νΓ(ν + 1)

(2π)d(ω2 − k2)ν/2

∫
dTdd−1XeiωT e−ik.XϕPoincare

0 (T,X). (2.4)

Substituting this back into the bulk mode expansion 2.2, we obtain an expression for the
bulk field in terms of the boundary field, namely

ϕ(T,X,Z) =

∫
dT ′dd−1X ′k(T ′, X ′|T,X,Z)ϕPoincare

0 (T ′, X ′) (2.5)

where

k(T ′, X ′|T,X,Z) = 2νΓ(ν + 1)

(2π)d(ω2 − k2)ν/2

∫
|ω|>|k|

dωdd−1ke−iω(T−T ′)eik.(X−X′)

Zd/2Jν(
√
ω2 − k2Z)/(ω2 − k2)ν/2 (2.6)

one generically obtains a smearing function with support on the entire boundary of the
Poincaré patch. In the following, we will improve on this by constructing smearing func-
tions that manifest the property that local bulk operators go over to local boundary oper-
ators as the bulk point approaches the boundary.

2.1.1 Poincare mode sum

Consider a field in AdS3. The Poincaré mode sum 2.5 reads.

ϕ(T,X,Z) =
2νΓ(ν + 1)

4π2

∫
|ω|>|k|

dωdk
ZJν(

√
ω2 − k2Z)

(ω2 − k2)ν/2

×
(∫

dT ′dX ′e−iω(T−T ′)eik(X−X′)ϕPoincare
0 (T ′, X ′)

)
7



The Poincaré boundary field has no Fourier components with |ω| < |k|, so provided we
perform the T ′ and X ′ integrals first, we can subsequently integrate over ω and k without
restriction. Thus

ϕ(T,X,Z) = 2νΓ(ν + 1)

∫
dωdke−iωT eikX

ZJν(
√
ω2 − k2Z)

(ω2 − k2)ν/2
ϕPoincare
0 (ω, k) (2.7)

where ϕPoincare
0 (ω, k) is the Fourier transform of the boundary field. We now use the two

integrals ∫ 2π

0

dθe−irω sin θ−kr cos θ = 2πJ0(r
√
ω2 − k2) (2.8)∫ 1

0

rdr(1− r2)ν−1J0(br) = 2ν−1Γ(ν)b−νJν(b) (2.9)

to obtain

Jν(
√
ω2 − k2Z)

(ω2 − k2)ν/2
=

1

π(2Z)νΓ(ν)

∫
T ′2+Y ′2<Z2

dT ′dY ′(Z2 − T ′2 − Y ′2)ν−1e−iωT ′
e−kY ′

(2.10)

Inserting this into 2.7, one gets

ϕ(T,X,Z) =
ν

π

∫
T ′2+Y ′2<Z2

(Z2 − T ′2 − Y ′2

Z

)ν−1

×
∫
dωdke−iω(T+T ′)eiK(X+iY ′)ϕPoincare

0 (ω, k) (2.11)

We identify the second line of 2.11 as ϕPoincare
0 (T + T ′, X + iY ′), so we can write (recall

ν = ∆− 1)

ϕ(T,X,Z) =
∆− 1

π

∫
T ′2+Y ′2<Z2

(Z2 − T ′2 − Y ′2

Z

)ν−2

ϕPoincare
0 (T + T ′, X + iY ′) (2.12)

We have managed to represent the bulk field in the (real T , imaginary X) plane as an
integral over a disc with radius Z. This is a bulk reconstruction equation, where ϕ is
a bulk field and ϕPoincare

0 is the boundary field in Poincaré coordinates. Our primary
objective is to comprehend the bulk reconstruction using recovery channel technique used
by Cotler et al [1]. In the following chapter what is recovery channel and how it works.
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Chapter 3

Quantum recovery channel

The Petz transpose map or Petz recovery channel has been a ubiquitous tool in quantum
information theory and has been at the forefront of research within this field. Originally
discovered by D. Petz in the 1980s [10, 11, 12], it was further rediscovered within a different
context in quantum error correction [13] and within quantum statistical mechanics [14].

3.1 Petz recovery channel

A von Neumann algebra is a algebra of bounded operators on a Hilbert space. Let N :
M → M0 be a channel between the von Neumann algebras M and M0. M acts on
Hilbert space H and M0 acts on Hilbert space H0. Assume that the input state σ is
normal and corresponding output state N (σ) is faithful and normal. Then there exists a
unique channel Pσ,N : M0 → M characterized by the relation,

⟨⟨A,N †(B0)⟩⟩σ = ⟨⟨P†
σ,N (A), B0⟩⟩N (σ) (3.1)

In above relation in the left hand side all quantity belongs to M and in the right hand
side all quantity belongs to M0. Dagger of a channel changes the direction of the channel.

A,N †(B0), σ ∈ M and P†
σ,N (A), B0,N (σ) ∈ M0

N : M → M0

N † : M0 → M
Pσ,N : M0 → M

9



P†
σ,N : M → M0

So the relation 3.1 is connecting to different Hilbert space H and H0. Weighted Hilbert-
Schmidt inner product is defined for bounded operators a and b and state ζ as

⟨⟨a, b⟩⟩ζ ≡ ⟨Tr[a†ζ1/2bζ1/2]⟩ (3.2)

Using 3.2, we can expand the inner product in 3.1

A†σ1/2N †(B0)σ
1/2 = [P†

σ,N (A)]†N (σ)1/2B0N (σ)1/2 (3.3)

Now, we apply B0 → N (σ)−1/2B0N (σ)−1/2, we get

[P†
σ,N (A)]†B0 = A†σ1/2N †(N (σ)−1/2B0N (σ)−1/2)σ1/2 (3.4)

In the left hand side [P†
σ,N (A)]†B0 can be written in the following way

[P†
σ,N (A)]†B0 = [P†

σ,N · A]† ·B0 = A† · [P†
σ,N ]† ·B0 = A† · Pσ,N ·B0 = A†Pσ,N (B0) (3.5)

In the above relation, [P†
σ,N (A)]†B0 belongs to M0 but A†Pσ,N (B0) belongs to M

[P†
σ,N (A)]†B0 ∈ M0 but A†Pσ,N (B0) ∈ M (3.6)

So, 3.4 becomes

A†Pσ,N (B0) = A†σ1/2N †(N (σ)−1/2B0N (σ)−1/2)σ1/2 (3.7)

In last 3.7, all quantities in both sides belongs to M and we can compare both sides and
see Pσ,N (·) has the form

Pσ,N (·) = σ1/2N †(N (σ)−1/2(·)N (σ)−1/2)σ1/2 (3.8)

Here Pσ,N is Petz recovery map. Here we can see in the form of Petz map Pσ,N (·) there is
only one operation that is N †(∗). Pσ,N (·) and N †(∗) both maps M0 to M.

Pσ,N : M0 → M

N † : M0 → M
This implies Petz map form is correct and works as exact recovery channel. The map Pσ,N
is unique if N (σ) is a faithful operators. If σ is on a finite-dimensional Hilbert space and
N is a quantum channel with finite-dimensional inputs and outputs, then the Petz map
takes the following explicit form,

Pσ,N (·) ≡ σ1/2N †(N (σ)−1/2(·)N (σ)−1/2)σ1/2 (3.9)

10



3.2 Approximate recovery channel

Now consider two states ρ and σ as an input states belongs to the set of density operators
on Hilbert space H

ρ, σ ∈ S(H) (3.10)

we apply channel N : S(H) → S(H0) on input states and get N (ρ) and N (σ) respec-
tively.

N (ρ),N (σ) ∈ S(H0) (3.11)

For special case we get Petz recovery channel P which can recover the action of channel
N ,

(P ◦ N )(ρ) = ρ and (P ◦ N )(σ) = σ (3.12)

Now the special case is the relative entropy of two input states and the output states is
equal.

D(ρ||σ) = D(N [ρ]||N [σ]) (3.13)

where D(ρ||σ) := Tr(ρ log ρ)− Tr(ρ log σ) is the relative entropy between ρ, σ. This is
called the saturation of monotonicity of relative entropy.

If equality does not holds or we can say it failure to saturate then exact reversal map P
cannot exist but there is still the possibility of an approximate reversal map which would
behave well in cases of near saturation. Indeed, an approximate version of the recovery
channel was developed by Junge et al. [15] , who show that, for any ρ, σ ∈ S(H) and any
quantum chennel N , there exists a recovery channel Rσ,N such that

D(ρ||σ)−D(N [ρ]||N [σ]) ≥ −2 logF (ρ,Rσ,N ◦ N (ρ)) (3.14)

where F (ρ, σ) ≡ ||√ρ
√
σ||1 and Schatten p-norm ||L||p = (Tr(|L|p))1/p. The inequality

says that the fidelity between the recovered state and the original is controlled by the
saturation gap in D(ρ||σ)−D(N [ρ]||N [σ]), with perfect fidelity in the case of saturation.
Junge et al. [15] gave a concrete expression for the channel Rσ,N , called approximate Petz
recovery channel or twirled Petz map and given by

Rσ,N (·) :=
∫
R
dtβ0(t)σ

− it
2 Pσ,N [N (σ)

it
2 (·)N (σ)

−it
2 ]σ

it
2

=

∫
R
dtβ0(t)σ

1−it
2 N †[N (σ)

−1+it
2 (·)N (σ)

−1−it
2 ]σ

1+it
2

(3.15)

where Pσ,N is so-called Petz map of 3.9 and β0 is the probability density β0(t) :=
π
2
(cosh(πt)+

1)−1. Derivation of Rσ,N can be found in Appendix A.1.
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Chapter 4

Entanglement wedge reconstruction
using Petz recovery channel

To tackle the entanglement wedge reconstruction problem using information-theoretic
methods, we must first reinterpret our objective in terms of quantum information.

In the AdS/CFT correspondence, a bulk quantum gravity theory and a boundary con-
formal field theory are dual to one another. A true duality of theories should be represented
by AdS/CFT if the “bulk” Hilbert space and the boundary Hilbert space HCFT are isomor-
phic. However, a complete, non-perturbative, microscopic description of the entire Hilbert
space from a purely bulk perspective, if one exists, remains unknown. Moreover, any such
Hilbert space would be dominated by huge black holes. Usually, we limit our attention to
a small subset of states having a smooth semiclassical bulk geometry, which we refer to
as the “code subspace” Hcode. Tiny bulk perturbations concerning the vacuum state may
be included in this. As a consequence, we establish an isometry J : Hcode → HCFT . One
may consider an equivalent to be the quantum channel J (·) = J(·)J†, which converts bulk
density matrices to boundary density one. Rather than being a more generic isometry, it
turns out that none of our results depend on J being a quantum channel.

The algebra of observables for the Hilbert space Hcode is denoted by B(Hcode), and
B(HCFT ) for the algebra of observables on HCFT . When we consider the entanglement
wedge a, we assume that it has an associated von Neumann subalgebra Ma ↪→ B(HCFT ),
composed of bulk observables that act only on a, just as the boundary area A is associated
with one.

The question of whether the channel N = TrĀ[J (·)] forms an approximation error-
correcting code for the algebra Ma can be reformulated as the question of entanglement
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wedge reconstruction. In this case, the restriction channel TrĀ[·] merely projects the
density matrix onto the algebra MA. Stated differently, the possibility of reconstructing
an entanglement wedge is depends upon the existence of a decoding channel D : S(MA) →
S(Ma)

D ◦ N (ρ) ≈ ρa (4.1)

for all states ρ ∈ S(Hcode); the restriction ρa is the projection of ρ onto Ma.

Theorem 1. Let Ma ↪→ B(Hcode) be a von Neumann subalgebra acting on the code
space Kcode with dimention dcode, let N be a quantum channel, and suppose that there exists
a channel D′ such that

||D′ ◦ N (ρ)− ρa||1 < δ. (4.2)

Let

Pτ,N :=
1

dcode
N †[N (τ)−1/2(·)N (τ)−1/2

]
(4.3)

be the Petz map with maximally mixed reference state τ . Then

||Pτ,N ◦ N (ρ)|a − ρa||1 < dcode
√
8δ. (4.4)

Proof of theorem 1 can be found in [16].

As we can see from theorem 1, if the error utilising the original decoding channel D′

is non-perturbatively small, then the Petz map error will also be non-perturbatively small
providing that the dimension of the code space does not expand superpolynomially in N .
For most code spaces of interest, such as perturbations about the vacuum, for which the
code space dimension will be O(1), this aspect of the code space size is not a problem. The
Petz map may always be relied upon, provided that we limit our analysis to perturbative
excitations of quantum fields inside a specific gravitational backdrop. There is no need
of universal recovery channel. As a result, entanglement wedge reconstruction is feasible
with the Petz map, provided that the size of the code space that we expect to be able
to reconstruct is manageable. Specifically, if the code space dimension does not grow
superpolynomially in the limit of large N , the Petz map offers a strong recovery map.

No effort is made to assess the Petz map in specific situations. Even though the Petz
map is much easier to record and examine than the twisted Petz map, there are still a lot
of barriers to overcome. Let’s talk about the difficulties at hand. We wish to explicitly
evaluate

OA =
1

dcode
τ
−1/2
A [JϕJ†]Aτ

−1/2
A . (4.5)
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Projecting the global HKLL boundary reconstruction OHKLL into the coding space yields
the operator JϕaJ

†,
JϕaJ

† = PcodeOHKLLPcode. (4.6)

Thus, the main things is in identifying the operator’s restriction to region A. To keep things
simple, we’ll assume that the CFT Hilbert space factorises as HCFT ≊ HA ⊗HĀ, and that
MA ≊ B(HA). In that case, the restriction map is merely a partial trace over HĀ. As a
matter of convention, this assumption is made for simplicity (although not with reality).
One problem is that the operator O generated by the HKLL technique is not time-confined.
We must recast OA in terms of operators at time zero using the Heisenberg equations of
motion in order to obtain the partial trace over region Ā. These operators are typically
very complex and challenging to analyse. The problem is essentially the standard problem
to the evaluation of quantities that cannot be protected by symmetry on the boundary
side of AdS/CFT. Strongly coupled quantum field theories are just challenging to work
with; luckily, there is also a weakly coupled bulk. The entanglement wedge reconstruction
for the extremely rare scenario of real free fields and low dimensional code space will be
discussed in the upcoming chapter.
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Chapter 5

Entanglement wedge reconstruction
using approximate recovery channel

We suppose Hcode is a code space Hilbert space with the set of density operators S(Hcode),
while HCFT represents the Hilbert space associated with the set of density operators
S(HCFT ). States in S(Hcode) are connected to states in S(HCFT ) by the AdS/CFT corre-
spondence. Cotler et al. frame a relationship between the code space and the CFT Hilbert
space by an isometry J : Hcode −→ HCFT . We now bipartite the CFT into two sections
A and Ā, and the bulk into a and ā, where a is maintained solely on the entanglement
wedge of A, as shown in Fig. 5.1. We factorize HCFT and Hcode into HCFT = HA ⊗ HĀ

and Hcode = Ha ⊗Hā.

The challenge of entanglement wedge reconstruction can be described as generating a
boundary observable OA supported solely on A, such that, for every bulk operator ϕa on

Figure 5.1: The boundary is divided into two parts: Ā and A, which are entangled with
each other. Here, A part’s causal wedge, indicated by a in the figure, and the entanglement
wedge of A coincide. In such case, ā is a’s complement.

15



the entanglement wedge of A

|⟨OA⟩JρJ† − ⟨ϕa⟩ρ| ≤ δ||ϕa||, (5.1)

for all ρ ∈ S(Hcode) and for very small δ > 0. If we write like the monotonicity relation,
3.13, for all ρ, σ ∈ S(Hcode),

|D(ρa||σa)−D((JρJ†)A||(JσJ†)A)| ≤ ϵ, (5.2)

where ϵ is for 1/N , and the notation (·)A := TrĀ(·) is a shorthand. ρa and σa are bulk states
on entanglement wedge a. (JρJ†)A and (JσJ†)A are the corresponding boundary states
of ρa and σa respectively. The channel applied here to get boundary state on boundary
sub-region A from bulk states is N (·) = (J(·)J†)A = TrĀ(J(·)J†).

We can obtain a recovery channel that would reverse the partial trace over Ā as the
respective entropies are roughly equal. However, there is a problem: Not only does (JρJ†)A
depend on the reduced state on the entanglement wedge, ρa, but it also depends on the
state ρ, which is suppported on the entire bulk. In this form, the principle of recovery
channels can not be used. To get rid of this obstacle, at first we will limit the recovery
problem to particular code states which takes the form ρ = ρa ⊗ 1ā. Consequently, we
obtain a quantum channel ρa → (JρJ†)A, which maps the states on the boundary region
to the states on the entanglement wedge.

With only a small amount of error added, we will see that the recovery channel R ob-
tained for this channel truly functions for all code states ρ. The CFT states corresponding
to any ρ and (ρa ⊗ 1ā) are almost similar on the boundary area A, according to 5.2.

Entanglement wedge reconstruction is possible because the adjoint of the recovery chan-
nel R† maps bulk operators ϕa on the entanglement wedge to boundary operators OA on
boundary sub-region A and satisfies 5.1.

We specify the local channel N : S(Ha) → S(HA) by

N [ρa] := TrĀ[J(ρa ⊗ 1ā)J
†] = (J(ρa ⊗ 1ā)J

†)A (5.3)

for all states ρa ∈ S(Ha). 3.14 can be used to obtain a recovery channel R = Rσa,N such
that, for all ρa ∈ S(Ha),

D(ρa||σa)−D(N [ρa]||N [σa]) ≥ −2 logF (ρa,Rσa,N ◦ N (ρa)) (5.4)

However, from 5.2, we have

|D(ρa||σa)−D(N [ρa]||N [σa])| ≤ ϵ, (5.5)
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and hence we may state that there will be good fidelity in the recovery channel R. The
reduced state supported by the entanglement wedge is recovered via the channel R for all
code states ρ, not simply those with form ρ = ρa ⊗ 1ā, as may be shown. This shows that
using one of the Fuchs-van de Graaf inequalities [17]

||ρa −R[N [ρa]]||1 ≤ 2
√
ϵ := δ1 (5.6)

for all ρa ∈ S(Ha).

||N [ρa]− (JρJ†)A||21 = ||(J(ρa ⊗ 1ā)J
†)A − (JρJ†)A||21

≤ (2 ln 2)D((J(ρa ⊗ 1ā)J
†)A||(JρJ†)A)

≤ (2 ln 2)ϵ =: δ22,

(5.7)

here we used Pinsker’s inequality in first inequality and 5.2 in second inequality, with the
one state ρ and the other state to ρa ⊗ 1ā. Therefore, we get that, for all ρ ∈ S(Hcode),

||ρa −R[(JρJ†)A]||1
≤||ρa −R[N [ρa]]||1 + ||R[N [ρa]]−R[(JρJ†)A]||1
≤||ρa −R[N [ρa]]||1 + ||N [ρa]− (JρJ†)A||1
≤δ1 + δ2 =: δ

(5.8)

As anticipated, we can observe that R accurately retrieves any bulk states that are sup-
ported on the entanglement wedge.

It is now evident that the entanglement wedge reconstruction problem can be solved by
R†, as expressed in 5.1. Define OA = R†[ϕa], for any bulk operator ϕa on the entanglement
wedge of A. Then, for every ρ ∈ S(Hcode), we obtain,

|⟨OA⟩JρJ† − ⟨ϕa⟩ρ|
=|TrR†[ϕa](JρJ

†)A − Trϕaρa|
=|TrϕaR(JρJ†)A − Trϕaρa|
=|Trϕa(R(JρJ†)A − ρa)|
≤||R(JρJ†)A − ρa||1||ϕa|| ≤ δ||ϕa||

(5.9)

Here, we employ 5.8 for the second inequality and Hölder’s inequality for the first. There-
fore, R†, which has an explicit form, can be used to achieve entanglement wedge recon-
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struction,

OA = R†(ϕa) =
1

dcode

∫
dtβ0(t)e

1−it
2

HAN (ϕa)e
1+it
2

HA

=
1

dcode

∫
R
dtβ0(t)e

1−it
2

HATrĀ[J(ϕa ⊗ 1ā)J
†]e

1+it
2

HA

(5.10)

where dcode is the dimension of code space, HA = − log(N (τcode)) = − log(JτcodeJ
†)A and

τcode is maximally mixed code space state. Derivation of R† can be found in Appendix A.2.

5.1 Recovery channel for 2-dimensional code space

To keep things simple, we take the AdS3 situation into consideration and utilise Poincaré
patch coordinates,

ds2 =
l2

z2
(−dt2 + dx2 + dz2), (5.11)

and we designate Y = (t, x, z) for bulk coordinates. where y = (t, x) for the border
coordinates.

First, let us rebuild a bulk operator ϕ(Y ) for Y ∈ a that is supported on the Rindler
wedge A’s boundary. The ground state is excited by |1̃⟩ = ϕ(Y )|0̃⟩, which we have taken
to be normalised, and the vacuum state is represented by |0̃⟩ in our notation. Our two-
dimensional code space will be Hcode = span|0̃⟩, |1̃⟩ in this case. Reconstructing the impact
of the operator ϕ(Y ) on the code space within the boundary interval A is our goal. In
this case, τ = 1

2
(|0̃⟩⟨0̃|+ |1̃⟩⟨1̃|, represents the maximally mixed code space state. Observe

that since there are no degrees of freedom in ā, we will assume for simplicity’s sake that
Ha = Hcode.

In the code space, any operator ϕ(Y ) translates the vacuum state to the excited state
and vice versa. It will behave as follows: X := |1̃⟩⟨0̃|+ |0̃⟩⟨1̃|. We currently possess every
tool, the operator, and the maximally mixed state, and we can write 5.10 as

R†(X) =
1

2

∫
R
dtβ0(t)N (τ)

−1+it
2 N [1̃⟩⟨0̃|+ |0̃⟩⟨1̃|]N (τ)−

1+it
2

HA (5.12)

where we used N (x) = TrĀ[JxJ
†] as a shorthand.

If we try to evaluate 5.12, we need to compute the below term

N [|x̃⟩⟨ỹ|] = TrĀ[|x⟩⟨y|], (5.13)
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where x, y ∈ 0, 1, and the states are mapped like |x⟩ := J |x̃⟩. The vacuum AdS |0̃⟩ is
mapped via J |0̃⟩ = |0⟩ to the CFT vacuum state. The operation N is a linear operation,
so,

N [1̃⟩⟨0̃|+ |0̃⟩⟨1̃|] = N [1̃⟩⟨0̃|] +N [|0̃⟩⟨1̃|] (5.14)

HKLL maps the excited state |1̃⟩ to

J |1̃⟩ =: |1⟩ =
∫
y′∈D

dy′Kg(Y, y
′)Φ(y′)|0⟩ (5.15)

where Φ(y) is a boundary operator, D is a boundary spacetime domain, and Kg is a
bulk-to-boundary kernel (g stands for “global”).

In 1/N , Φ(y) behaves as a generalised free field to leading order. Unfortunately, the
breakdown into Rindler modes is usually not obeyed by generalised free fields. Therefore,
we expanded the boundary field in terms of Rindler modes al, bl on A and Ā, respectively,
treating it as a real free field:

Φ(y) =
∑
l

fa,l(y)al + f ∗
a,l(y)a

†
l + fb,l(y)bl + f ∗

b,l(y)b
†
l . (5.16)

We indecate ground state density matrix ρA,0 = TrĀ[|0⟩⟨0|] for A.

N [|1̃⟩⟨0̃|] = TrĀ[|1⟩⟨0|]

= TrĀ[

∫
y′∈D

dy′Kg(Y, y
′)Φ(y′)|0⟩⟨0|]

=

∫
y′∈D

dy′Kg(Y, y
′)TrĀ

[(∑
l

fa,l(y)al + f ∗
a,l(y)a

†
l + fb,l(y)bl + f ∗

b,l(y)b
†
l

)
|0⟩⟨0|

]
(5.17)

To perform trace out operation, we use “transpose trick”, using which the operators on
the complement of set A, denoted as Ā, can be expressed in terms of operators on set A. :

bl|0⟩ = ρ
1/2
A,0a

†
lρ

−1/2
A,0 |0⟩

b†l |0⟩ = ρ
1/2
A,0alρ

−1/2
A,0 |0⟩,

(5.18)

we denote

f̂a,l =

∫
y∈D

dyKg(Y, y)fa,l(y)

f̂b,l =

∫
y∈D

dyKg(Y, y)fb,l(y),

(5.19)
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so, N [|1̃⟩⟨0̃|] becomes,

N [|1̃⟩⟨0̃|] =
∫
y′∈D

dy′Kg(Y, y
′)TrĀ

[(∑
fa,l(y)al + f ∗

a,l(y)a
†
l + fb,l(y)bl + f ∗

b,l(y)b
†
l

)
|0⟩⟨0|

]
=

(∑
f̂a,l(y)al + f̂ ∗

a,l(y)a
†
l + f̂b,l(y)ρ

1/2
A,0a

†
lρ

−1/2
A,0 + f̂ ∗

b,l(y)ρ
1/2
A,0alρ

−1/2
A,0

)
|0⟩⟨0|

= QA|0⟩⟨0|
(5.20)

where we write QA as

QA =
∑

f̂a,l(y)al + f̂ ∗
a,l(y)a

†
l + f̂b,l(y)ρ

1/2
A,0a

†
lρ

−1/2
A,0 + f̂ ∗

b,l(y)ρ
1/2
A,0alρ

−1/2
A,0 (5.21)

In similar way, we can calculate for N [|0̃⟩⟨1̃|], we will get,

N [|0̃⟩⟨1̃|] = |0⟩⟨0|Q†
A (5.22)

and eventually, N (X) becomes

N [1̃⟩⟨0̃|+ |0̃⟩⟨1̃|] = N [1̃⟩⟨0̃|] +N [|0̃⟩⟨1̃|]
= QA|0⟩⟨0|+ |0⟩⟨0|Q†

A

(5.23)

The recovery channel will be, see appendix in [1],

R†[|1̃⟩⟨0̃|] =
∫
β0(t)ρ

it/2
A,0

(
ρ
−1/2
A,0 QAρ

1/2
A,0

)
ρ
−it/2
A,0

=
∑
l

f̂a,lale
−πEl+iπElt + f̂ ∗

a,la
†
l e

πEl−iπElt + f̂b,la
†
l e

−iπElt + f̂ ∗
b,l(y)ale

iπElt
(5.24)

and R†(X) is

R†[1̃⟩⟨0̃|+ |0̃⟩⟨1̃|] = R†[1̃⟩⟨0̃|] +R†[|0̃⟩⟨1̃|]

=

∫
β0(t)

[
ρ
it/2
A,0

(
ρ
−1/2
A,0 QAρ

1/2
A,0

)
ρ
−it/2
A,0 + ρ

it/2
A,0

(
ρ
1/2
A,0Q

†
Aρ

−1/2
A,0

)
ρ
−it/2
A,0

]
.

(5.25)

We are mainly interested on N (X) because in the next chapter we will see this term is
actually δρ term in Sarosi Ugajin [2] formula for first order change in excited state modular
Hamiltonian in [2].
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Chapter 6

Excited state modular Hamiltonian

The modular Hamiltonian of a density matrix is defined as,

H = − log ρ (6.1)

where ρ is the density matrix and H is the corresponding modular Hamiltonian. If we
excite a ground state density matrix ρ0, we will get an excited state density matrix ρex.
The ground state density matrix and excited state density matrix will have corresponding
ground state modular Hamiltonian H0 and excited state modular Hamiltonian Hex, respec-
tively. In [2], Sarosi, Ugajin have given an expression of excited state modular Hamiltonian
where we get a relation between the first order change of excited state modular Hamilto-
nian δH and the first order change of excited state density matrix δρ. This relation is
exactly matched with the explicit formula 5.10.

Let us have a ground state density matrix on boundary sub-region A,

ρ0,A = TrĀ|0⟩⟨0| (6.2)

corresponding modular Hamiltonian is,

H0,A = − log ρ0,A = − log[TrĀ|0⟩⟨0|] (6.3)

and we get excited state density matrix by

ρex,A = TrĀ[e
ϵQ|0⟩⟨0|eϵQ†

]

= TrĀ[|0⟩⟨0|+ ϵQ|0⟩⟨0|+ |0⟩⟨0|ϵQ†] +O(ϵ2)

= ρ0,A + ϵQA|0⟩⟨0|+ |0⟩⟨0|ϵQ†
A +O(ϵ2).

(6.4)
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Corresponding excited state modular Hamiltonian is,

Hex,A = H0,A + ϵδH1,A +O(ϵ2)

= − log(ρ0,A + ϵQA|0⟩⟨0|+ |0⟩⟨0|ϵQ†
A +O(ϵ2))

= − log(ρ0,A + ϵδρ1,A +O(ϵ2)),

(6.5)

here, the first-order change in the reduced density matrix is

δρ1,A = QA|0⟩⟨0|+ |0⟩⟨0|Q†
A (6.6)

6.1 Connection with universal recovery channel

In [2], Sarosi, Ugajin gave the expression between first order δH and first order δρ,

δH1,A = −1

2

∫
R

ds

cosh (s) + 1
ρ
− 1

2
− is

2π
0,A (δρ1,A)ρ

− 1
2
+ is

2π
0,A . (6.7)

We can derive 6.7 from the universal recovery channel that Cotler et al.[1] has given,

OA = R†(ϕa) =
1

dcode

∫
R
dtβ0(t)e

1−it
2

H0,ATrĀ[J(ϕa ⊗ 1ā)J
†]e

1+it
2

H0,A (6.8)

and

OA = − 1

dcode

d

dϵ

∣∣∣
ϵ=0
H0,A

[
TrĀ[τCFT ] + ϵ

(
TrĀ[J(ϕa ⊗ 1ā)J

†]
)]

(6.9)

where, H0,A[ρ] = − log(ρ).

We consider TrĀ[τCFT ] as ρ0,A and TrĀ[J(ϕa ⊗ 1ā)J
†] as δρ1,A. We will prove this

statement later. So, 6.8 becomes

OA = R†(ϕa) =
1

dcode

∫
R
dtβ0(t)e

1−it
2

H0,A(δρ1,A)e
1+it
2

H0,A (6.10)

and 6.9 becomes

OA = − 1

dcode

d

dϵ

∣∣∣
ϵ=0
H0,A [ρ0,A + ϵ (δρ1,A)]

=
1

dcode

d

dϵ

∣∣∣
ϵ=0

log(ρ0,A + ϵδρ1,A)

=
1

dcode
δH1,A

(6.11)
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From 6.10 and 6.11, we can write

δH1,A =

∫
R
dtβ0(t)e

1−it
2

H0,A(δρ1,A)e
1+it
2

H0,A (6.12)

here H0,A = − log(ρ0,A) and β0(t) =
π

2(cosh(πt)+1)
.

Now we do transform of t = −s/π and δH1,A becomes

δH1,A = −1

2

∫
R

ds

cosh(s) + 1
e(

1
2
+ is

2π
)H0,A(δρ1,A)e

( 1
2
− is

2π
)H0,A . (6.13)

We know H0,A = − log(ρ0,A), so we can replace e−H0,A by ρ0,A and δH1,A becomes

δH1,A = −1

2

∫
R

ds

cosh(s) + 1
ρ
− 1

2
− is

2π
0,A (δρ1,A)ρ

− 1
2
+ is

2π
0,A . (6.14)

Now, we are going to see how TrĀ[J(ϕa ⊗ 1ā)J
†] can be δρ1,A. We have considered

TrĀ[J(ϕa⊗1ā)J
†] as δρ1,A and both quantities is boundary quantities. If we take (ϕa⊗1ā)

bulk field as (ϕa ⊗ 1ā) = |1̃⟩⟨0̃| + |0̃⟩⟨1̃| for two dimensional code space, where |0̃⟩ is bulk
vacuum state and |0⟩ is boundary vacuum state. Then TrĀ[J(ϕa ⊗ 1ā)J

†] becomes

TrĀ[J(ϕa ⊗ 1ā)J
†] = TrĀ

(
J |1̃⟩⟨0̃|J† + J |0̃⟩⟨1̃|J†) . (6.15)

Here, J and J† are defined so that J and J† applied on bulk state give boundary states.

J |0̃⟩ = |0⟩ and ⟨0̃|J† = ⟨0|. (6.16)

So TrĀ[J(ϕa ⊗ 1ā)J
†] becomes

TrĀ[J(ϕa ⊗ 1ā)J
†] = TrĀ[|1⟩⟨0|+ |0⟩⟨1|]. (6.17)

Now let’s say the excitation is happening due to an operator Q which excites a boundary
vacuum state to a boundary excited state,

Q|0⟩ = |1⟩ and ⟨0|Q† = ⟨1|. (6.18)

So we can write
TrĀ[|1⟩⟨0|+ |0⟩⟨1|] = TrĀ[Q|0⟩⟨0|+ |0⟩⟨0|Q†]. (6.19)

Here, (Q|0⟩⟨0| + |0⟩⟨0|Q†) is a boundary state supported on the whole boundary. TrĀ(·)
operations remove or trace out the action of Q on Ā sub-region of the boundary and make
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Q as QA which acts on boundary vacuum state and give boundary excited state confined
in A sub-region of the boundary,

TrĀ[J(ϕa ⊗ 1ā)J
†] = TrĀ[Q|0⟩⟨0|+ |0⟩⟨0|Q†]

= QA|0⟩⟨0|+ |0⟩⟨0|Q†
A.

(6.20)

In our case of excited state modular Hamiltonian, from 6.6, δρ1,A is

δρ1,A = QA|0⟩⟨0|+ |0⟩⟨0|Q†
A, (6.21)

so, we can say TrĀ[J(ϕa⊗1ā)J
†] is a first-order change in the excited state reduced density

matrix in case of our excitation in 6.4.
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Discussion

We have derived the theoretical framework behind the Petz recovery map and establishes
its role in faithfully recovering quantum states after they undergo a quantum channel. It
explains the uniqueness of the Petz map under certain conditions, emphasizing its signif-
icance in quantum information processing. Furthermore, the exploration of approximate
recovery channels, as discussed by Junge et al., extends the utility of recovery maps beyond
ideal scenarios, offering a practical approach to recovering quantum states in cases where
exact reversal is not certainly possible. The concrete expression for the approximate Petz
recovery channel, referred to as the twirled Petz map, provides a mathematical tool to
quantify the fidelity of the recovered state with respect to the original.

The Petz recovery channel serves as a capable tool for entanglement wedge reconstruc-
tion, emphasizing its effectiveness in scenarios where perturbative excitations dominate and
the code space dimension remains manageable. Even evaluating Petz map is quite chal-
lenging, particularly in dealing with non-localized operators and the complexities arising
from the strong coupling regime.

By bridging the gap between bulk and boundary states through the isometric embedding
J : Hcode −→ HCFT , Cotler et al.[1] have shown the groundwork for recovering boundary
observables supported solely on region A from bulk operators residing in the entanglement
wedge. Through the formulation of a recovery channel R and its adjoint R†, Cotler et al.
demonstrates the high-fidelity reconstruction of arbitrary bulk states within the entangle-
ment wedge onto the boundary region A. In section 5.1, we have approached to calculate
the reconstruction formula 5.10. This example is comparable to Rindler wedge reconstruc-
tion, except it is only strictly valid for true free fields. We have taken a bulk operator ϕa

in AdS3, which is supported on the entanglement wedge of a boundary sub-region A, and
we have selected a two-dimensional code space defined by states |0̃⟩ and ϕa|0̃⟩, where |0̃⟩ is
the ground state. We find expression for reconstructed boundary operator OA = R†(ϕa).

We establishes a crucial link between the modular Hamiltonians for excited states and
the boundary oparator in entanglement wadge reconstruction. The formula of first order
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change of excited state modular hamiltoian δH1,A is adjoint of appriximate recovery channel
R†(ϕa) with ground state density matrix is maximally mixed reference state and first order
change of density matrix δρ1,A isN (ϕa). Cotler et al.[1] claimedOA = R†(ϕa). So, we claim
first order change of excited state modular hamiltoian δH1,A is reconstructed boundary
operator OA with some scailing factor of 1/dcode.

OA =
1

dcode
δH1,A (6.22)

Our definition of excited state modular Hamiltonian becomes

Hex,A

=H0,A + ϵδH1,A +O(ϵ2)

=H0,A + ϵdcodeOA +O(ϵ2) = −log([|0⟩⟨0|]A + ϵ(QA|0⟩⟨0|+ |0⟩⟨0|Q†
A) +O(ϵ2))

(6.23)

where

OA =
1

dcode

∫
dtβ0(t)e

1−it
2

H0,A(QA|0⟩⟨0|+ |0⟩⟨0|Q†
A)e

1+it
2

H0,A

From 6.23, one can find a new definition of ground state modular Hamiltonian H0,A

other than H0,A = −log([|0⟩⟨0|]A).
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Appendix A

A.1 Derivation of Junge et al. relation

Let P (A) is set of non-negative trace-class operators on a Hilbert space A. Let S(A) denote
the set of density operators on A. For a σ ∈ P (A), we define

Sσ(A) = {ρ ∈ S(A) : Supp(ρ) ⊆ Supp(σ)} (A.1)

Theorem A.1.1: Let A and B be separable Hilbert spaces. TPCP is Trace preserving
compleately positive channels which map A → B. For any σ ∈ P (A), any ρ ∈ Sσ(A) and
any N ∈ TPCP (A,B), we have

D(ρ||σ)−D(N [ρ]||N [σ]) ≥ −2

∫
R
dtβ0(t)logF (ρ,R

t
2
σ,N ◦ N (ρ)) (A.2)

where D(ρ||σ) is relative entropy defined as

D(ρ||σ) =
∑
i

⟨ϕi|ρ(logρ− logσ)|ϕi⟩

=
∑
i,j

|⟨ϕi|ψj⟩|2[p(i)logp(i)− p(i)logq(j)]
(A.3)

where ρ =
∑

i p(i)|ϕi⟩⟨ϕi| and σ =
∑

j q(j)|ψj⟩⟨ψj| are spectral decomposition of ρ and σ
respectively. The fidelity of ρ and σ is defined by

F (ρ, σ) := ||√ρ
√
σ||1 and ||L||p := (Tr|L|p)

1
p p ∈ [1,∞) (A.4)

The recovery map is given by

Rt
σ,N : X →

∫
R
β0(t)σ

1−it
2 N †[N (σ)

−1+it
2 (X)N (σ)

−1−it
2 ]σ

1+it
2 (A.5)
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and the probability density function β0(t) =
π
2
(cosh(πt) + 1)−1.

Proof of Theorem A.1.1: A Rényi generalization of a relative entropy difference is
defined as

∆̃α(ρ, σ,N ) =
2α

α− 1
log||(N (ρ)

1−α
2α N (σ)

α−1
2α ⊗ idE)UA→BEσ

1−α
2α ρ

1
2 ||2α (A.6)

where α ∈ ( 0, 1) ∪( 1,∞) and UA→BE is an isometric extension of the channel N . UA→BE

is a linear isometry satisfying TrE(UA→BE(·)U †
A→BE) = N (·) and U †

A→BEUA→BE = idA.
All isometric extensions of a channel are related by an isometry acting on the environment
system E, so that the definition in Eq.A.6 is invariant under any such choice. Adjoint of
channel N † is given as N †(·) = U †

A→BE((·)⊗ idE)UA→BE.

Lemma A.1.2: Let A and B be finite-dimensional Hilbert spaces. The following limit
holds for σ ∈ P (A), any ρ ∈ Sσ(A) and any N ∈ TPCP (A,B)

lim
α→1

∆̃α(ρ, σ,N ) = D(ρ||σ)−D(N [ρ]||N [σ]) (A.7)

For α = 1
2
, observe that

∆̃ 1
2
(ρ, σ,N ) = −2log||(N (ρ)

1
2N (σ)−

1
2 ⊗ idE)UA→BEσ

1
2ρ

1
2 ||1

= −2logF (ρ,Pσ,N ◦ N (ρ))
(A.8)

where Pσ,N denotes petz recovery map,

Pσ,N (·) ≡ σ1/2N †(N (σ)−1/2(·)N (σ)−1/2)σ1/2 (A.9)

Lemma A.1.3: Let θ ∈ ( 0, 1) and define Pθ by

1

Pθ

=
1− θ

P0

+
θ

P1

(A.10)

where P0, P1 ∈ [1,∞) . Then the following bound holds

log(||G(θ)||p(θ)) ≤
∫
R
dt(αθ(t)log(||G(it)||1−θ

p0
) + βθ(t)log(||G(1 + it)||θp1)) (A.11)

where αθ(t) and βθ(t) are defined by

αθ(t) =
sin(πθ

2(1− θ)(cosh(πt)− cos(πθ))
and βθ(t) =

sin(πθ)

2θ(cosh(πt) + cos(πθ))
(A.12)
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Remark A.1.4: Observe that αθ(t), βθ(t) ≥ 0 for all t ∈ R and we have∫
R
dtαθ(t) =

∫
R
dtβθ(t) = 1 (A.13)

So that αθ(t) and βθ(t) can be interpreted as probability density functions. Furthermore,
the following limit holds

lim
θ→0

βθ(t) =
π

2(cosh(πt) + 1)
= β0(t) (A.14)

where β0 is also a probability density function on R. The operator valued-function G(z) is
defined as

G(z) = (N (ρ)
z
2N (σ)−

z
2 ⊗ idE)Uσ

z
2ρ

1
2 (A.15)

Here we abbreviate the isometric extension UA→BE of the channelN as U in above equation.
we fix P0 = 2, P1 = 1 and θ ∈ ( 0, 1) which fix Pθ = 2

1+θ
. The operator valued function

G(z) satisfies inequality in lemma A.1.3.

For above choices,

||G(θ)|| 2
1+θ

= ||(N (ρ)
θ
2N (σ)−

θ
2 ⊗ idE)Uσ

θ
2ρ

1
2 || 2

1+θ
(A.16)

and

||G(it)||2 = ||(N (ρ)
it
2 N (σ)−

it
2 ⊗ idE)Uσ

it
2 ρ

1
2 ||2

||G(it)||2 ≤ ||ρ
1
2 ||2

||G(it)||2 ≤ 1

(A.17)

as well as

||G(1 + it)||1 = ||(N (ρ)
1+it
2 N (σ)−

1+it
2 ⊗ idE)Uσ

1+it
2 ρ

1
2 ||1

= ||(N (ρ)
1
2N (ρ)

it
2 N (σ)−

1
2N (σ)−

it
2 ⊗ idE)Uσ

1
2σ

it
2 ρ

1
2 ||1

= F (ρ,R
t
2
σ,N ◦ N (ρ))

(A.18)

Now from the inequality of lemma A.1.3 and applying the fact ||G(it)||2 ≤ 1, we conclude
the following

log||(N (ρ)
θ
2N (σ)−

θ
2 ⊗ idE)Uσ

θ
2ρ

1
2 || 2

1+θ
≤

∫
R
dtβθlog(F (ρ,R

t
2
σ,N ◦ N (ρ)))θ (A.19)
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which implies

−2

θ
log||(N (ρ)

θ
2N (σ)−

θ
2 ⊗ idE)Uσ

θ
2ρ

1
2 || 2

1+θ
≥ −2

∫
R
dtβθlogF (ρ,R

t
2
σ,N ◦ N (ρ)). (A.20)

Letting θ = 1−α
α

and from Eq.A.6 we get

∆̃α(ρ, σ,N ) ≥ −2

∫
R
dtβθ(t)logF (ρ,R

t
2
σ,N ◦ N (ρ)). (A.21)

We can take limit α → 1 to get Junge et al relation,

lim
α→1

∆̃α(ρ, σ,N ) = D(ρ||σ)−D(N [ρ]||N [σ]) (A.22)

and

lim
α→1

∆̃α(ρ, σ,N ) ≥ −2

∫
R
dtβ0(t)logF (ρ,R

t
2
σ,N ◦ N (ρ)) (A.23)

So, from above two relations

D(ρ||σ)−D(N [ρ]||N [σ]) ≥ −2

∫
R
dtβ0(t)logF (ρ,R

t
2
σ,N ◦ N (ρ)) (A.24)

Using the concavity of the logarithm and the fidelity, we can write,

D(ρ||σ)−D(N [ρ]||N [σ]) ≥ −2logF (ρ,Rσ,N ◦ N (ρ)) (A.25)

where

Rσ,N ◦ N (ρ) =

∫
R
dtβ0(t)ρ,R

t
2
σ,N ◦ N (ρ)

=

∫
R
dtβ0(t)σ

1−it
2 N †[N (σ)

−1+it
2 (·)N (σ)

−1−it
2 ]σ

1+it
2

(A.26)

In Appendix A.2, we will see how we can get the expression of adjoint of recovery channel
R†.

31



A.2 Derivation of adjoint of approximate recovery chan-

nel

From Junge et al. relation approximate recovery channel Rσ,N has the form

Rσ,N (·) =
∫
R
dtβ0(t)σ

1−it
2 N †[N (σ)

−1+it
2 (·)N (σ)

−1−it
2 ]σ

1+it
2 . (A.27)

We can break down above operation into three small operations. These three small
operations are the followings,

1. O1(·) = N (σ)
−1+it

2 (·)N (σ)
−1−it

2

2. O2(·) = N †(·)

3. O3(·) = σ
1−it
2 (·)σ 1+it

2 ,

so, our recovery channel can be written as,

Rσ,N (·) =
∫
R
dtβ0(t)O3(O2(O1(·))) (A.28)

Now adjoint of recovery channel can be found by operating the operators in reverse order
like the following,

R†
σ,N (·) =

∫
R
dtβ0(t)O1(O2(O3(·))). (A.29)

So, adjoint of recovery channel becomes,

R†
σ,N (·) =

∫
R
dtβ0(t)N (σ)

−1+it
2 N [σ

1−it
2 (·)σ

1+it
2 ]N (σ)

−1−it
2 . (A.30)

Now, we write above channel in terms of modular Hamiltonian,

R†
σ,N (·) =

∫
R
dtβ0(t)e

1−it
2

HAN [e
−1+it

2
Ha(·)e

−1−it
2

Ha ]e
1+it
2

HA . (A.31)

where Ha = −logσa and HA = −log(N (σa)). When σa is chosen to be maximally
mixed state the R† takes quite simple form. When R† is applied on bulk operator defined
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on whole code space (ϕa ⊗ 1ā), then recovery channel takes the explicit form,

R†
σ,N (ϕ) =

1

dcode

∫
R
dtβ0(t)e

1−it
2

HAN [(ϕa ⊗ 1ā)]e
1+it
2

HA

=
1

dcode

∫
R
dtβ0(t)e

1−it
2

HATrĀ[J(ϕa ⊗ 1ā)J
†]e

1+it
2

HA .

(A.32)

where HA = −log[TrĀ(JτJ†)] is the boundary modular Hamiltonian on subregion A as-
sociated with the maximally mixed state τ on code subspace. This is the explicit formula
that Cotler et al. [1] has found in their paper.
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