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Abstract

The presence and characteristics of Dark Matter (DM) are inferred in-

directly through observed gravitational e↵ects in astronomy and cosmol-

ogy. These e↵ects include the direct observation of weak gravitational

lensing near clusters, the study of missing mass in clusters and galaxies,

the structure of galactic rotation curves, and the correlation between cos-

mic microwave background anisotropies and the large-scale structure of the

universe. These phenomena collectively suggest the existence of DM as a

plausible explanation.

The Standard Model of particle physics (SMPP) is currently the lead-

ing theory for describing all known fundamental particles, except gravity.

While the SMPP successfully incorporates three of the four fundamental

forces, it lacks a suitable candidate for Dark Matter.

Therefore, the shortcomings of the SMPP necessitate the development

of new physics models capable of addressing these limitations. Such models

may have significant implications for understanding the early history of the

universe.

This thesis focuses on exploring interactions between neutrinos and

DM. If neutrinos interacted with dark matter in the early universe, it could

have a↵ected the evolution and distribution of neutrinos over cosmic time.

Such interactions might have led to changes in the neutrino abundance

that persist to this day. Consequently, if the number density of neutrinos

is di↵erent from what is predicted solely by standard cosmological models,

this could a↵ect the expected rate of neutrino capture events in detectors

like PTOLEMY.
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Chapter 1

Prelude

Every civilization crafts an origin narrative, and we believe we have crafted

the most accurate one yet.

Our narrative, known as the Big Bang theory, carries a captivating

name that can initially mislead. Contrary to common perception, the

theory does not propose that the universe began with a literal “bang”. In

truth, the Big Bang theory does not address the inception of the universe

at all. The straightforward response to the question “how did the universe

begin?” remains “we don’t know.”

Instead, our narrative modestly describes the early universe’s character-

istics. It begins with a fundamental observation: the universe is expanding.

This expansion implies that in earlier epochs, all matter was in closer prox-

imity, resulting in higher temperatures. The Big Bang theory suggests that

in the past, the universe was extraordinarily hot—so much so that matter,

atoms, and nuclei were liquefied, filling space with a searing fireball. The

Big Bang theory comprises a set of concepts, computations, and forecasts

that elucidate events within this fireball and its subsequent evolution into

the universe we observe today.

The term “theory” within the Big Bang theory may imply uncertainty,

which is misleading. This theory is akin to the theory of evolution—it is

a factual occurrence. We have observed the remnants of the fiery early
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universe in the form of cosmic microwave background radiation, captured

in a photograph (see Figure. 1.1), which contains abundant insights into

the universe’s earlier state.

Figure 1.1: Cosmic Microwave Background (CMB)

As we approach the “t = 0” moment colloquially referred to as “the Big

Bang,” the universe becomes hotter, with energies escalating. Cosmology

endeavors to trace back as close as feasible to this enigmatic moment.

Remarkable strides have been made in this pursuit.

Our understanding extends to approximately a minute post-Big Bang,

with meticulous calculations aligning perfectly with observations of ele-

mental formation in the early universe. Further back in time, observational

data becomes scarcer, but our grasp of particle physics instills confidence

up to t = 10�12 seconds post-Big Bang. Moreover, there are compelling

indications of a rapid cosmic expansion phase termed inflation occurring

even earlier.

Discussing the universe’s infancy, particularly moments mere minutes

or fractions of seconds old, might seem surreal. Nevertheless, numerous

surviving clues from those eras can be elucidated with remarkable precision

by applying basic, well-established physical principles to these extreme

conditions.
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Chapter 2

Introduction

The ⇤CDM model, the standard framework of cosmology, has been firmly

established through cosmological observations, particularly the precise map-

ping of Cosmic Microwave Background (CMB) anisotropies. This model

provides a straightforward yet e↵ective explanation for several key aspects:

• The presence and characteristics of the cosmic microwave background

• The large-scale distribution of galaxies across the universe

• The observed ratios of hydrogen, helium, and lithium in the universe

• The observed accelerated expansion of the universe, as evidenced by

distant galaxy and supernova light.

Furthermore, the ⇤CDM predicts the existence of a cosmic neutrino

background (CNB) analogous to the cosmic microwave background (CMB).

According to ⇤CDM model, neutrinos decoupled from other standar model

particles at an earlier epoch (around ⇠ 1 second after the Big Bang) com-

pared to CMB photons (around ⇠ 4 ⇥ 105 years) and formed the CNB.

Detecting these neutrinos can provide crucial insights into the universe’s

earliest moments following the Big Bang.

The energy density contribution of CNB neutrinos influences the abun-

dance of light elements during nucleosynthesis and leaves discernible im-

prints on CMB anisotropies and structure formation. These e↵ects serve
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as indirect indicators of the CNB’s presence. However, directly measur-

ing CNB neutrinos poses substantial challenges due to their minuscule

masses, weak interaction cross-sections, and low temperatures (approxi-

mately ⇠ 1.95 Kelvin).

From Cosmological observation, we find that in our universe 85% of

all matter is dark matter (DM). Dark matter is the composition of two

words dark and matter, it is named “dark” because it does not interact

with electromagnetic radiation (EMR) by reflecting, absorbing, or emit-

ting it, so astronomers are still unable to observe it and therefore can only

study its consequences on visible stu↵ and “matter” as it behaves like mat-

ter. Swiss astrophysicist Fritz Zwicky in 1933, studied the motion of the

galaxies in the Coma cluster, during his research work at the California

Institute of Technology, and summarized that DM exists. Following that,

measurements of whirling spiral galaxies, the implications of gravitational

lensing on background objects demonstrated the presence of DM, and nu-

merous pieces of evidence such as the Bullet cluster and the PLANCK

satellite were recorded. Furthermore, DM is an imperative ingredient in

modelling and simulation of the early universe, the evolution of structures

and galaxies, as well as having a detectable impact on CMB anisotropies.

The evolution of our universe is well described by the Standard Model

of Cosmology (SMC), often known as the Hot Big Bang Model. The SMC,

also known as the ⇤CDM, is based on two key theoretical frameworks: the

Standard Model of particle physics (SMPP), which covers physics at the

quantum level, and the General Theory of Relativity (GTR), which covers

physics at the classical level. It is based on the following assumptions:

• The universe evolved from pure energy in the Big Bang,

• The universe is made up of about 5% ordinary matter, 27% dark

matter, and 68% percent dark energy,

• The universe is isotropic and homogeneous on a cosmological scale,

4



CHAPTER 2. INTRODUCTION

and

• DM is assumed to be cold dark matter(CDM).

However, there are issues when comparing SMC to SMPP, one of which

is that no feasible candidate in particle physics (PP) satisfies all of the DM

requirements. As a result, cosmology suggests that beyond the SMPP,

new physics is required. This thesis aims to enlighten one part of the DM

problem: DM interaction beyond gravity, i.e., DM-⌫ interaction. We wish

to understand if such interactions are conceivable, what their impact would

be, and how we may improve the accuracy of such models by applying

cosmological constraints. Before going into a detailed study of the DM-⌫

interaction, we go through the Big Bang’s underlying principles in section

and its three major epochs that provide a piece of evidence for the presence

of dark matter and predict its nature: Big Bang Nucleosynthesis (BBN),

Cosmic Microwave Background (CMB), and Structure Formation. And we

address various other pieces of evidence like the galactic rotational curve,

and gravitational lensing that predicts the existence of dark matter. Then

we mention briefly all of the suggested alternatives for DM candidate. We

look for current DM status from collider search, direct search, and indirect

search.

2.1 Motivation

For the past four decades, Collisionless Dark Matter (DM) has stood as the

predominant paradigm. However, at a minimum, DM must have had in-

teractions to be produced in the early Universe. Among these interactions,

those involving neutrinos are particularly intriguing, given that neutrinos

are among the few particles o↵ering evidence of physics beyond the Stan-

dard Model (SM) to date. Naturally, this prompts the question of whether

DM and neutrino properties are interconnected and whether direct inter-

actions between these two species are possible.
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The existence of non-vanishing DM-neutrino (DM-⌫) interactions carries

significant cosmological and astrophysical implications. [12]

• These interactions can potentially account for the observed DM relic

density if DM was thermally produced and annihilations into neutri-

nos represent the dominant channel.

• They may also generate signatures of DM in indirect detection sce-

narios, either through DM annihilating or decaying into neutrinos

within the galaxy or via cosmic neutrino signals.

• Furthermore, DM-⌫ interactions might erase primordial DM fluctu-

ations, thereby suppressing large-scale structures (LSS) in the Uni-

verse and reducing the number of satellites around Milky Way-like

galaxies, potentially addressing the “too-big-to-fail” problem associ-

ated with cold DM.

• DM-⌫ interactions could play a role in generating neutrino masses

within radiative models.

• Novel neutrino interactions can impede their free streaming even af-

ter the freeze-out of weak interactions. This leads to a phase shift

in the acoustic peaks of the cosmic microwave background (CMB),

potentially mitigating the Hubble tension.

These diverse implications underscore the importance of exploring DM-⌫

interactions and their potential ramifications for understanding the nature

and behavior of both Dark Matter and neutrinos in the cosmic landscape.
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Chapter 3

The Standard Model of

cosmology

3.1 Expansion of Universe

According to Edwin Hubble in 1929, all galaxies are moving away from our

galaxy at a rate which is proportional to their separation. The Doppler

shift of spectral lines may be used to calculate the speed. The Big Bang

model came into the picture as a result of this.

Let’s look at how the universe has evolved with time, from the Big

Bang to the present.

The universe will either grow or contract if it is thought to be isotropic

and homogeneous. We consider two galaxies at r(t) and R(t) distances

from our own. For isotropic and homogeneous expansion, the ratio

� =
r(t)

R(t)
(3.1.1)

is constant in time. As a result, when we di↵erentiate in terms of time, we

obtain

H =
Ṙ

R
(3.1.2)
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where, H is called the Hubble parameter that measures how rapidly the

cosmos expands at various distances from a given location in space and R

is the scale factor that has value 1 for the present universe. The wavelength

of light (�s) emitted by the source galaxy has been stretched out due to

the expansion of the cosmos. So in terms of scale factor, the magnitude of

the redshift (z) is expressed as,

1 + z =
�0

�s

=
1

R(t)
(3.1.3)

The wavelength of light that we detect is �0. If the recession speed (v)

of the galaxy is substantially slower than the speed of light then, z ⇡ v/c.

Because a photon’s energy is inversely related to its wavelength, we may

express temperature in terms of scale factor as

T (t) =
T0

R(t)
(3.1.4)

where T0 is today’s temperature of photons.

Figure 3.1: The universe is expanding, causing the physical distance be-
tween stationary co-moving coordinates to grow over time.

8



CHAPTER 3. THE STANDARD MODEL OF COSMOLOGY

3.2 Einstein equations

Einstein equations are

Rµ⌫ �
1

2
gµ⌫R� ⇤gµ⌫ = 8⇡GTµ⌫ (3.2.1)

On the left-hand side, we have the Einstein tensor (Gµ⌫) with an addi-

tional term incorporating the cosmological constant, which becomes par-

ticularly significant in cosmological contexts.

On the right-hand side, G represents the universal gravitational con-

stant, and Tµ⌫ denotes the energy-momentum tensor, defined explicitly as

Tµ⌫ = (⇢+ p)uµu⌫ � pgµ⌫ (3.2.2)

The metric gµ⌫ characterizes the geometry of the manifold to which

the equations pertain, and u↵ represents the macroscopic velocity of the

medium within this context.

3.3 Robertson-Walker metric

Consider the Einstein tensor (Gµ⌫), which comprises a Ricci tensor and a

Ricci scalar. To compute these tensors, we require a metric that specifi-

cally suits our final expressions for the homogeneous and isotropic universe.

Therefore, we need to identify a metric (gµ⌫) that encompasses all facets

of the cosmological principle. The solution to this requirement is provided

by the Robertson-Walker metric.

ds2 = dt2 � a2(t)

 
1

1� r2

K2

dr2 + r2d✓2 + r2 sin2 ✓d'2

!
(3.3.1)

The Robertson-Walker metric characterizes an isotropic universe by

lacking crossed terms between time and space, thus avoiding any privileged

direction. Additionally, it describes a homogeneous universe due to its

9



spherical symmetry.

The quantity a(t), known as the scale factor, represents the temporal

variation in the relative distance between two points in the universe. The

scale factor is set to 1 at the present time. Henceforth, the time dependence

of the scale factor can be understood implicitly, simplifying to a(t) ⌘ a.

3.4 Ricci tensor and Ricci scalar

To specialize Einstein’s equations for a homogeneous and isotropic universe,

we require the Ricci tensor and the Ricci scalar.

The first step is to compute the Christo↵el symbols of the Robertson-

Walker metric using the following formula:

�l

ji
=

1

2
glm (@jgmi + @igmj � @mgij) (3.4.1)

The Robertson-Walker metric is beneficial for this calculation because

it is diagonal and possesses a symmetric connection. Consequently, most

of the Christo↵el symbols will either be symmetric or zero. The non-zero

Christo↵el symbols are given by:

• �t

rr
= aȧ

1� r2

K2

• �t

✓✓
= r2aȧ

• �t

''
= r2aȧ sin2 ✓

• �r

tr
= �r

rt
= �✓

t✓
= �✓

✓t
= �'

t'
= �'

't
= ȧ

a

• �r

rr
= r

K2(1� r2

K2 )

• �r

✓✓
= �r

⇣
1� r

2

K2

⌘

• �r

''
= �r

⇣
1� r

2

K2

⌘
sin2 ✓

• �✓

r✓
= �✓

✓r
= �'

r'
= �'

'r
= 1

r

10



CHAPTER 3. THE STANDARD MODEL OF COSMOLOGY

• �✓

''
= � sin ✓ cos ✓

• �'

'✓
= �'

✓'
= 1

tan ✓

Once the Christo↵el symbols have been computed, we can proceed to

calculate the Riemann tensor

Rl

kji
= @i�

l

kj
� @j�

l

ki
+ �m

kj
�l

mi
� �m

ki
�l

mj
(3.4.2)

In fact, our focus lies solely on the components of the Riemann tensor

where the top index matches the middle bottom index. These specific

components are essential for computing the Ricci tensor
�
Rm

imj

�
. The non-

zero components of the Ricci tensor are

• Rtt = Rm

tmt
= Rr

trt
+R✓

t✓t
+R'

t't
= �3 ä

a

• Rrr = Rm

rmr
= aä

1� r2

K2

+ 2ȧ2

1� r2

K2

+ 2

K2(1� r2

K2 )

• R✓✓ = Rm

✓m✓
= r2aä+ 2r2ȧ2 + 2 r

2

K2

• R'' = Rm

'm'
= r2aä sin2 ✓ + 2r2ȧ2 sin2 ✓+ 2 r

2

K2 sin
2 ✓

Observing the diagonal nature of the Ricci tensor, we can summarize the

findings by stating

Rtt = �3
ä

a
(3.4.3)

Rii =
�gii
a2
�
aä+ 2ȧ2 + 2K�2

�
(3.4.4)

Ultimately, we obtain the Ricci scalar:

R = gikRik = �6
ä

a
� 6

✓
ȧ

a

◆2

� 6
1

K2a2
(3.4.5)
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3.5 Energy-momentum tensor

By definition, a perfect fluid is isotropic, meaning it appears uniform re-

gardless of the direction of observation. Therefore, the macroscopic veloc-

ity of the fluid lacks a preferred direction and consists solely of a temporal

component: u↵ = (1, 0, 0, 0).

It’s important to note that ut = 1 due to the constraints of special

relativity.

(u↵)2 = g↵�u
↵u� = c2 = 1) gtt

�
ut
�2

= c2 , ut = 1 (3.5.1)

The energy-momentum tensor for a perfect fluid exhibits a diagonal

form, and its components are

Ttt = ⇢gtt (3.5.2)

Tii = �pgii (3.5.3)

In our derivation, we consider the universe as being filled with a perfect

fluid, which adheres to the cosmological principle.

3.6 Friedmann Equations

In preceding sections, we have computed and derived all necessary ele-

ments to achieve our objective. Now, we are prepared to incorporate these

elements into Einstein’s equations.

The equations that will deviate from zero are specifically those with

matching indices, given the diagonal nature of our metric.

Thus, we commence with the temporal component:

Rtt �
1

2
Rgtt � ⇤gtt = 8⇡G⇢utut (3.6.1)

12



CHAPTER 3. THE STANDARD MODEL OF COSMOLOGY

�3 ä
a
+ 3

ä

a
+ 3

✓
ȧ

a

◆2

+ 3
1

K2a2
� ⇤ = 8⇡G⇢(t) (3.6.2)

We arrive at

✓
ȧ(t)

a(t)

◆2

=
8⇡G

3
⇢(t) +

⇤

3
� 1

K2a2(t)
(3.6.3)

Now we can examine the spatial part. For each spatial component, we

arrive at the identical equation

�gii
a2(t)

✓
aä+ 2ȧ2 +

2

K2

◆
� 1

2
Rgii � ⇤gii = 8⇡G(�p)gii (3.6.4)

By eliminating the metric from both sides, we derive

� ä
a
� 2

✓
ȧ

a

◆2

� 2

K2a2
+ 3

ä

a
+ 3

✓
ȧ

a

◆2

+
3

K2a2
� ⇤ = �8⇡Gp (3.6.5)

ä(t)

a(t)
+

1

2

✓
ȧ(t)

a(t)

◆2

= �4⇡Gp+
⇤

2
� 1

2

1

K2a2(t)
(3.6.6)

By carefully combining equations (3.6.3) and (3.6.6), we can derive an equa-

tion that excludes the term
�
ȧ

a

�2
, making its interpretation more straight-

forward. Specifically, by performing the operation 2 · (3.6.6) � (3.6.3), we

arrive at:

ä(t)

a(t)
= �4⇡G

3
(⇢(t) + 3p) +

⇤

3
(3.6.7)

It is noteworthy that there exist only two independent Friedmann equa-

tions, with equations (3.6.3) and (3.6.7) serving as our chosen references.
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In summary, the Friedmann equations a�rm that under general circum-

stances, the universe is not static.

3.7 Number density, Energy density, and Pres-

sure

To understand n, ⇢, and P for various particles in the early universe, we

need to know their distribution in phase space. For a homogeneous and

isotropic distribution, phase space depends only on absolute value of mo-

mentum.

For relativistic particles, the distribution function is given by Bose-

Einstein statistics for bosons (-) and Fermi-Dirac statistics for fermions

(+). Both can be written as

f±(p) =
1

exp
⇣
E�µ
T

⌘
± 1

(3.7.1)

At an early time, all particles were in thermal equilibrium with each

other i.e., at the same temperature. The chemical potential (µ)1 was small

so can be neglected (used µ = 0)2.

If the internal degree of freedom is g, particle density in phase space is

given by g/(2⇡)3f(p).

To find number density n, we integrate particle density over momentum

as

n =
g

(2⇡)3

Z
f(p)d3p (3.7.2)

and

1The chemical potential of a species represents the energy change associated with a variation in the
particle number of that species,µ = �G/ �N |

T
.

2Setting µ = 0 implies that the number of particles and antiparticles are equal, which is not reflective
of reality. Therefore, introducing a non-zero µ enables us to address the baryon asymmetry. For simplicity
in calculations, we adopt µ = 0.

14



CHAPTER 3. THE STANDARD MODEL OF COSMOLOGY

⇢ =
g

(2⇡)3

Z
E(p)f(p)d3p (3.7.3)

also

P =
g

(2⇡)3

Z
p2

3E(p)
f(p)d3p (3.7.4)

For relativistic case E(p) =
p
p2 +m2 ⇡ p as p >> m.

For bosons

nb =
⇠(3)

⇡2
gT 3 (3.7.5)

⇢b =
⇡2

30
gT 4 (3.7.6)

For fermions,

nf =
3

4

⇠(3)

⇡2
gT 3 (3.7.7)

⇢f =
7

8

⇡2

30
gT 4 (3.7.8)

For a gas filled in container, change in momentum of particle due to

collision with walls in x-direction is, �p = 2px and total number of particles

N(p) with momentum space = n(p)A�x. So,

P =
g

3(2⇡)3

Z
d3pf(p)E(p) =

1

3
⇢ (3.7.9)

For non-relativistic particles

E(p) =
p

p2 +m2 ⇡ m+
p2

2m
(3.7.10)
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So

n = g

✓
mT

2⇡

◆ 3
2

exp
⇣
�m
T

⌘
(3.7.11)

also ⇢ = mn and P = nT . Since T << m. So,

P ⇠ 0 (3.7.12)

and pressure due to vacuum energy density is,

P = �⇢⌫ (3.7.13)

So, using equations (3.33), (3.36) and (3.37), we can write a general form

for pressure as,

P = !⇢ (3.7.14)

Here, ! = 1/3 for relativistic particles, ! = 0 for non-relativistic particles

and ! = �1 for vacuum energy. We get total energy density as

⇢ =
X

i

⇡2

30
giT

4 +
7

8

X

j

⇡2

30
gjT

4 =
X ⇡2

30
g⇤T

4 (3.7.15)

Here,

g⇤ =
X

i

gi +
7

8

X

j

gj (3.7.16)

and T is the temperature of the photon, which was measured from cos-

mic microwave background radiation (CMBR) as T ⇡ 2.73 K. However
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because some particle types are no longer in thermal interaction with pho-

tons, they may have a di↵erent temperature. Neutrinos, for example, es-

sentially separated from other particles before the annihilation of most

positrons and electrons into photons. So, at present, neutrino temperature

is roughly 1.95 K.

As a result, we can write,

g⇤ =
X

i

gi

✓
Ti

T

◆4

+
7

8

X

j

gj

✓
Tj

T

◆4

(3.7.17)

For the relativistic case we get,

3
Ṙ

R

⇣
⇢+

⇢

3

⌘
+ ⇢̇ = 0 (3.7.18)

On rearranging and integrating, we get

⇢ / 1

R4
(3.7.19)

Ṙ2

R
⇠ 8⇡G

3R4
⇠ 1

R4
(3.7.20)

On solving we get, R ⇠ t
1
2 . Hence,

H =
Ṙ

R
=

1

2t
(3.7.21)

For the non-relativistic case, we get

3
Ṙ

R
⇢+ ⇢̇ = 0 (3.7.22)

On rearranging and integrating, we get
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⇢ / 1

R3
(3.7.23)

For non-relativistic case, the Friedmann equation can be reduced as

R ⇠ t
2
3 (3.7.24)

So

H =
Ṙ

R
=

2

3t
(3.7.25)

Event Time Temperature

Neutrino decoupling ⇡ 1 s ⇡ 1MeV

BBN 101 � 103 s 100keV � 1keV

Recombination ⇡ 300kyr ⇡ 0.4eV

Baryon acoustic oscillation ⇡ 50kyr� 350kyr ⇡ 0.75eV � 0.26eV

Present ⇡ 13.8Gyr ⇡ 10�4eV

Table 3.2: Timeline of the expanding universe

Let us go over some of the major epochs one by one.

3.8 Entropy

The universe contains significantly more photons than baryons, resulting

in the entropy of a uniform universe being predominantly influenced by

relativistic particles.

dE = TdS � PdV (3.8.1)

Here, the change in energy (dE) equals the work done changing the

volume plus the product of temperature and the change in entropy. In
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cosmological terms, where energy (E) within a volume (V ) is represented

by ⇢V , we derive:

V d⇢+ ⇢dV = TdS � PdV (3.8.2)

Since V / a3, the energy conservation equation is

d⇢

dt
= �3H(⇢+ P ) = � 1

V

dV

dt
(⇢+ P ) (3.8.3)

so substituting in we have

� dV

dt
(⇢+ P ) + ⇢

dV

dt
(3.8.4)

=)= T
dS

dt
� P

dV

dt
(3.8.5)

=) dS

dt
= 0 (3.8.6)

Therefore, the overall entropy within a comoving volume remains con-

stant, as one would anticipate for a closed system where there are no outlets

for heat transfer. Another valuable perspective is to examine the entropy

density s, defined as s = S/V .

T (sdV + V ds) = V d⇢+ ⇢dV + PdV (3.8.7)

=) d⇢� Tds = (Ts� ⇢� P )
dV

V
(3.8.8)

Within the framework of an equilibrium system, ⇢ = ⇢(T ), s = s(T ),

and P = P (T ). Given that ds and d⇢ are intensive quantities that vary

proportionally with dT , the coe�cients associated with the dT and dV

terms must individually be zero. This condition implies that during a
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volume change at constant temperature, the coe�cient of the dV term

must be zero.

To derive an expression for the entropy density (s) with respect to

volume (V ), we examine the coe�cient associated with the dV term.

s =
1

T
(⇢+ P ) (3.8.9)

The coe�cient dT becomes zero based on the energy conservation equation

⇢̇.

Consequently, we anticipate that S / a3s remains conserved across var-

ious time periods when a uniform universe is in thermodynamic equilib-

rium. This principle also holds true for distinct decoupled (non-interacting)

components, provided each component individually maintains a thermal

distribution with its own temperature.

In the case of a relativistic species A existing in thermal equilibrium at

temperature TA, we have previously observed that:

⇢A = ge↵
A

⇡2

30
T 4
A
= 3pA (3.8.10)

where ge↵
a

= gA for bosons, and ge↵
a

= 7gA/8 for fermions. The total

entropy density s is given by:

s =
X

F,B

sA (TA) =
⇡2

30

✓
1 +

1

3

◆
T 3
�

"
X

B

✓
TA

T�

◆3

+
7

8

X

F

✓
TA

T�

◆3
#

(3.8.11)

=
2⇡2

45
g⇤ST

3
�
, (3.8.12)

In the context where T� represents the temperature of photons, the e↵ective

number of degrees of freedom in entropy is defined by:
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g⇤S =
X

B

✓
TA

T�

◆3

+
7

8

X

F

✓
TA

T�

◆3

(3.8.13)

It’s important to highlight that g⇤S equals g⇤ only under the condition that

all relativistic species are in equilibrium at the same temperature.

Applying the conservation of entropy, we can express this relationship as

follows:

d
�
g⇤Sa

3T 3
�
= 0) T / g�1/3⇤S a�1 (3.8.14)

Decoupling

To achieve equilibrium within a system, the constituent particles must en-

gage in frequent interactions, exchanging energy and momentum. For any

given particle species (or pair of species), we can quantify the interaction

rate �. The characteristic time for a particle to interact with another is

defined as tint = 1/�. It becomes meaningful to discuss equilibrium as

long as the universe remains relatively unchanged within the timescale tint.

Considering the universe’s expansion governed by the Hubble parameter

H, we can establish equilibrium under the condition:

�� H (3.8.15)

Conversely, if � ⌧ H, significant expansion of the universe occurs by

the time particles interact, leading to an inability to maintain thermal

equilibrium.

For many processes, the interaction rate and Hubble rate scale pro-

portionally with T (temperature), albeit in distinct manners. As a conse-

quence, particles can remain in equilibrium during early times but eventu-
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ally decouple from the thermal bath as time progresses. This decoupling

phase, occurring when � ⇡ H, is called freeze-out.

Interaction and Hubble rates are given by

� = nh�vi and H =

r
8⇡G

3c2
⇢ (3.8.16)

where h�vi is the thermally averaged cross section, n is the number density

of the DM and ⇢ is the energy density of the DM.

3.9 Neutrino decoupling

At temperatures below T ' 1012 K ' O(100)MeV, the dominant energy

density in the universe is primarily attributed to relativistic particles such

as e±, ⌫, ⌫̄, and photons. Given that these particles are in thermal equi-

librium at this temperature, the e↵ective no. of degrees of freedom is

g⇤ = 10.75. During this radiation-dominated epoch, the rate of expansion

is described by:

H(T ) =

p
8⇡⇢1/2

Rp
3mP

' 5.44
T 2

mP

(3.9.1)

Neutrinos remains in equilibrium through weak interaction (⌫̄⌫ $ e+e�, . . .),

with a cross section:

�F ' G2
F
E2 ' G2

F
T 2 (3.9.2)

where GF is the Fermi constant which equals to 1.1664⇥ 10�5GeV�2. The

interaction rate per (massless) neutrino is:
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�F =' 1.3G2
F
T 5 (3.9.3)

and

�F

H(T )
' 0.24T 3G2

F
mP '

✓
T

1MeV

◆3

(3.9.4)

Therefore, neutrinos cease to interact significantly with other matter at a

temperature approximately around TD ' 1MeV. Below 1MeV, the tem-

perature of neutrinos decreases with the scale factor a�1. Shortly after

neutrino decoupling, when the temperature falls below the electron mass

(T < 0.5MeV), the entropy stored in electron-positron pairs is transferred

to photons, but not to neutrinos. This scenario can be described by the

following equations:

g⇤ = 2 +
7

8
4 =

11

2
, g⇤ (T < me) = 2 (3.9.5)

The principle of entropy conservation, given by S = g⇤S(aT )3 for parti-

cles in equilibrium with radiation, indicates that the quantity g⇤S(T�a)3 =

g⇤(T�a)3 remains unchanged during expansion. As g⇤ decreases following

T < me, the value of (aT�)3 becomes larger after electron-positron (e�e+)

annihilation compared to its value prior to this event.

(aT�)
3
after

(aT�)
3
before

=
(g⇤)before
(g⇤)after

=
11

4
(3.9.6)

Neutrinos do not participate in this process, and their entropy is inde-

pendently preserved. However, prior to the initiation of eē annihilation,

photons and neutrinos shared the same temperature. Therefore

(aT�)after =

✓
11

4

◆1/3

(aT⌫)after (3.9.7)
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Today, the temperature of photons (T�0 = 2.726 K) is higher than that of

neutrinos by a factor of (11/4)1/3 ⇠ 1.4 (thus, T⌫0 ⇠ 1.92 K). Because T� 6=
T⌫, the e↵ective number of relativistic degrees of freedom today, denoted

as g⇤, di↵ers from the number of entropy degrees of freedom, denoted as

g⇤S. Specifically, we have g⇤ ' 3.36 and g⇤S ' 3.91.

3.10 Big Bang Nucleosynthesis

One of the most comprehensively understood phenomena within the Big

Bang fireball is the process by which deuterium, helium, and heavier nuclei

are formed from the thermal pool of protons and neutrons. Referred to as

Big Bang nucleosynthesis, this intricate calculation draws upon various

branches of physics. Despite the potential for discrepancies, the outcome

aligns seamlessly with the observed abundance of light elements. This

success stands as a notable achievement of the Big Bang theory.

3.10.1 Neutrons and Protons

The narrative begins in the early universe, at times much less than one

second (t ⌧ 1 second), when the temperature soared to values where

kBT � 1 MeV. The mass of the electron is

mec
2 ⇡ 0.5MeV (3.10.1)

At this juncture, the thermal environment consists of numerous relativistic

electron-positron pairs. These pairs are in a state of equilibrium with pho-

tons and neutrinos, all of which are relativistic, alongside non-relativistic

protons and neutrons. This equilibrium is sustained by interactions facili-

tated by the weak nuclear force.
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n+ ⌫e $ p+ e�, n+ e+ $ p+ ⌫̄e (3.10.2)

The chemical potentials of electrons and neutrinos are extremely small. In

order to maintain chemical equilibrium, it follows that µn = µp, allowing

us to calculate the ratio of neutron to proton densities in a non-relativistic

gas.

nn

np

=

✓
mn

mp

◆3/2

e��(mn�mp)c2 (3.10.3)

The proton and neutron exhibit an extremely slight disparity in mass,

mnc
2 ⇡ 939.6Mev

mpc
2 ⇡ 938.3MeV

(3.10.4)

The di↵erence in mass can be disregarded in the prefactor, yet it plays

a critical role in the exponent. This determines the ratio of protons to

neutrons during equilibrium.

nn

np

⇡ e���mc
2

with �mc2 ⇡ 1.3MeV (3.10.5)

When the temperature kBT is significantly greater than the mass di↵erence

�mc2, the numbers of protons and neutrons are roughly equal. However,

as the temperature decreases, the number of neutrons also decreases.

The exponential decline in the neutron count does not continue indef-

initely. Eventually, the rate of weak interactions will decrease to a point

where � ⇠ H, leading to neutron freeze-out and a constant neutron num-

ber. Neutrons are predicted to decouple at a specific temperature.

kBTdec ⇡ 0.8MeV (3.10.6)
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Utilizing g? ⇡ 3.4, it is determined that neutrons decouple at

tdec ⇡ 2 seconds (3.10.7)

At the point of freeze-out, we are consequently left with a neutron-to-

proton ratio of
nn

np

⇡ exp

✓
�1.3
0.8

◆
⇡ 1

5
(3.10.8)

Indeed, the narrative doesn’t conclude here. Neutrons, if left undisturbed,

exhibit instability through beta decay with a half-life slightly exceeding

10 minutes. Consequently, following freeze-out, the number density of

neutrons undergoes decay according to the equation

nn(t) ⇡
1

5
np (tdec) e

�t/⌧n (3.10.9)

where ⌧n ⇡ 880 second.

3.10.2 Deuterium

Ultimately, our goal is to synthesize elements heavier than hydrogen. How-

ever, these heavier nuclei typically contain more than two nucleons. For

instance, the lightest of these nuclei is 3He, composed of two protons and

one neutron. The probability of three particles simultaneously colliding to

form such a nucleus is exceedingly low. Therefore, we must proceed incre-

mentally, gradually building up these nuclei through pairwise collisions.

The initial step in this process happens to be the most challenging. This

step involves the formation of deuterium, also known as heavy hydrogen,

which is a bound state of a proton and a neutron. This state is achieved

through the reaction
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p+ n$ D + � (3.10.10)

The binding energy is

Ebind ⇡ 2.2MeV (3.10.11)

Both the proton and neutron possess a spin of 1/2, resulting in identical

gyromagnetic ratios: gn = gp = 2. Within deuterium, the spins align

to create a composite spin-1 particle, leading to a gyromagnetic ratio of

gD = 3. The proportion of deuterium can subsequently be calculated

using the Saha equation, employing similar principles to those utilized in

recombination.

nD

nnnp

=
3

4

✓
mD

mnmp

2⇡~2
kBT

◆3/2

e�Ebind (3.10.12)

Approximating mn ⇡ mp ⇡ 1
2mD

nD

np

⇡ 3

4
nn

✓
4⇡~2

mpkBT

◆3/2

e�Ebind (3.10.13)

We will make a straightforward estimation of the number of neutrons using

the following approximation:

nn ⇡ np ⇡ ⌘n� (3.10.14)

The ratio of baryons to photons, ⌘, has remained approximately constant

since nucleosynthesis up to the present day, with ⌘ ⇡ 10�9. The last signif-

icant change occurred during the annihilation of electrons and positrons,

represented by the reaction e� + e+ ! � + �. Utilizing the expression for
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the number density of photons, n� ⇡ (kBT/c)3, we can then express

nD

np

⇡ ⌘

✓
kBT

mpc2

◆3/2

e�Ebind (3.10.15)

We observe that a significant number of deuterium atoms only form when

the temperature decreases to a su�ciently low level. This delay in deu-

terium formation is primarily attributed to the abundance of photons, as

indicated by the factor ⌘. These photons, which are numerous at this stage,

also contribute to the delayed formation of hydrogen 300,000 years later.

In both scenarios, any potential bound state is quickly disrupted by the

bombardment of high-energy photons from the tail end of the blackbody

distribution.

Solving the equation, we find that nD/np ⇠ 1 only when �Ebind ⇡ 35,

or

kBT . 0.06MeV (3.10.16)

Significantly, this occurs following the decoupling of neutrinos. Once more,

with g? ⇡ 3.4, we observe the initiation of deuterium formation at

t ⇡ 360 seconds (3.10.17)

Approximately six minutes after the Big Bang, a crucial window of time

opens up. Fortunately, this timeframe is still within the 10.5 minutes

required for neutrons to decay. However, the situation becomes increasingly

precarious. If the specifics were altered such that, for instance, it took 12

minutes instead of 6 for deuterium to form, our existence today would be

in jeopardy. The creation of a universe, it appears, demands precision and

delicacy.
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3.10.3 Helium and Heavier Nuclei

The binding energy for 3He is 7.7MeV, whereas for 4He it is 28MeV. Once

deuterium is present, however, there are no obstacles to the formation of

helium. This occurs almost instantaneously through

D + p$ 3He + � , 3He +D $ 4He + p (3.10.18)

Due to the significantly higher binding energy, all remaining neutrons

quickly combine to form 4He nuclei.

nn

np

=
1

5
e�360/880 ⇡ 0.13 (3.10.19)

Figure 3.2: The presence of light nuclei in the early universe

Given that each 4He atom consists of two neutrons, the ratio of helium

to hydrogen is expressed as

nHe

nH
=

nn/2

np � nn

⇡ 0.07 (3.10.20)
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A helium atom is approximately four times more massive than a hydrogen

atom, indicating that roughly 25% of the baryonic mass is composed of he-

lium, with the remainder being hydrogen. This proportion closely matches

the observed abundance in the universe. Even smaller quantities of 7Li and
7Be are present, all consistent with observational data. [6]

Figure 3.23 illustrates the time-dependent abundance of various ele-

ments. The red neutron curve demonstrates a decline as neutrons decay,

while the abundance of other elements rises, indicating the resolution of

the deuterium bottleneck over time.

3.11 Recombination

We are interested in studying a system of electrons and protons in thermal

equilibrium at a certain temperature. These particles have the capability to

combine and produce hydrogen, a process we will liken to atomic reactions

similar to chemical reactions.

e� + p+ $ H + � (3.11.1)

The inquiry we wish to pose is: what fraction of the particles consist of

hydrogen, and what fraction consist of electron-proton pairs?

We will hypothesize that the hydrogen atom is formed in its lowest

energy state, characterized by a binding energy

Ebind ⇡ 13.6eV (3.11.2)

At first glance, one might expect hydrogen to ionize once temperatures

reach around kBT ⇡ Ebind. Indeed, at temperatures where kBT � Ebind,

3This figure is taken from Burles, Nollett and Turner, Big-Bang Nucleosynthesis, astro-ph/99033.
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electrons cannot e↵ectively remain bound to protons, resulting in the breakup

of hydrogen atoms. However, it turns out that hydrogen formation occurs

at temperatures significantly lower than Ebind.

To analyze this scenario, we approach each massive particle - the elec-

tron, proton, and hydrogen atom - similarly to a non-relativistic gas. Ini-

tially, we consider the rest mass energy of these particles, ensuring that

each particle possesses energy.

Ep = mc2 +
p2

2m
(3.11.3)

This will be valuable because we can consider the binding energy Ebind as

equivalent to the mass di↵erence

Ebind ⇡ 13.6eV (3.11.4)

Next, each of the particle is associated with a number g representing its

internal states. Both electron and proton possess ge = gp = 2, correspond-

ing to two spin states known as “spin up” and “spin down.” This concept

is akin to the two polarization states of the photon discussed earlier in the

context of blackbody radiation. For hydrogen (H), the value is gH = 4;

the alignment of electron and proton spins can result in a spin-0 particle

or three distinct spin-1 states.

Incorporating these adjustments, the expression for the number density

of various particle species is as follows:

ni = gi

✓
mikBT

2⇡~2

◆3/2

e��(mic
2�µi) (3.11.5)

It is essential that these particles maintain chemical equilibrium, indi-

cating a steady state where rapid transitions between e� + p+ pairs and
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hydrogen do not occur. This equilibrium is maintained by ensuring that

the chemical potentials are interconnected according to

µe + µp = µH (3.11.6)

Photons do not possess a chemical potential because they are not con-

served particles. Specifically, in addition to the reaction e�+ p+ $ H + �,

there are reactions where the resulting binding involves two photons, such

as e�+p+ $ H+�+�. This illustrates why discussing a chemical potential

for photons is nonsensical.

To eliminate the chemical potentials and establish equilibrium condi-

tions, we can apply the following equation:

nH

nenp

=
gH
gegp

✓
mH

memp

2⇡~2
kBT

◆3/2

e��(mH�me�mp)c2 (3.11.7)

In the pre-factor, it is reasonable to approximate mH ⇡ mp. However,

in the exponent, the distinction between these masses is critical; it repre-

sents the binding energy of hydrogen. Lastly, we incorporate the observed

condition that the universe is electrically neutral, thus

ne = np (3.11.8)

We have

nH

n2
e

=

✓
2⇡~2

mekBT

◆3/2

e�Ebind (3.11.9)

This is the Saha equation. Here we introduce the ionization fraction

Xe =
ne

nB

⇡ ne

np + nH

(3.11.10)
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in the second equality of the equation, we are excluding neutrons and

heavier elements. When ne = np, a value of Xe = 1 signifies that all

electrons are unbound. Conversely, if Xe = 0.1, it indicates that only 10%

of the electrons are not bounded within the hydrogen , while the rest are

bound within hydrogen.

Utilizing the condition ne = np, we derive 1 � Xe = nH/nB, thereby

obtaining

1�Xe

X2
e

=
nH

n2
e

nB (3.11.11)

To convert this into the fraction Xe, we also require knowledge of the

total number of baryons, which we derive from observational data.

⌘ =
nB

n�

⇡ 10�9 (3.11.12)

Here we utilize the constant value of ⌘ ⇡ 10�9 since recombination. Fol-

lowing this, we leverage the equilibrium condition where photons share the

same temperature as electrons, protons, and hydrogen. Consequently, we

can apply our previously derived expression for the number of photons.

n� =
2⇣(3)

⇡2~3c3 (kBT )
3 (3.11.13)

Combining these gives our final answer

1�Xe

X2
e

= ⌘
2⇣(3)

⇡2

✓
2⇡kBT

mec2

◆3/2

e�Ebind (3.11.14)

Let’s consider the temperature kBT ⇠ Ebind , which is typically where we

might expect recombination to occur. In this scenario, we encounter two

very small quantities at play: the factor ⌘ ⇠ 10�9 and kBT/mec2, where

the electron mass mec2 ⇡ 0.5MeV = 5 ⇥ 105eV. These factors ensure
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that at kBT ⇠ Ebind , the ionization fraction Xe remains very close to

unity. Essentially, this implies that almost all electrons remain free and

unbound, primarily due to the abundance of photons. Even when a proton

and electron combine, there are still enough high-energy photons in the

blackbody distribution tail to break them apart.

Recombination occurs when the factor e�Ebind is su�cient to counter-

balance both ⌘ and kBT/mec2. Recombination is not a singular event; it

happens continuously as the temperature changes. As an illustrative ex-

ample, let’s calculate the temperature at which Xe = 0.1, indicating that

90% of electrons have combined with protons to form hydrogen. We find

that this occurs when �Ebind ⇡ 45, or

kBTrec ⇡ 0.3eV ) Trec ⇡ 3600 K (3.11.15)

This corresponds to a redshift of

zrec =
Trec

T0
⇡ 1300 (3.11.16)

This occurs much later than matter-radiation equality, which happens at

zeq ⇡ 3400. Consequently, during recombination, the universe is dominated

by matter, where a(t) ⇠ (t/t0)2/3. Therefore, we can assign the time of

recombination to

trec ⇡
t0

(1 + zrec)
3/2
⇡ 300, 000 years (3.11.17)

Following recombination, the components of the universe primarily con-

sist of neutral atoms. In simple terms, this indicates that the universe has

become transparent, allowing photons to propagate freely.

34



CHAPTER 3. THE STANDARD MODEL OF COSMOLOGY

3.12 Baryon acoustic oscillations

In the early universe, there exists a period delineated by redshifts[3]

1100 . z . 3400 (3.12.1)

when cosmic expansion was mostly dominated by matter, but before hy-

drogen had formed, protons, electrons, and photons existed in a state of

thermal equilibrium. In the photon-baryon fluid described here, the speed

of sound is predominantly governed by photons rather than matter, result-

ing in cs ⇡ c/
p
3.

As a result, dark matter and baryonic matter exhibit distinct behaviors

during this epoch. Density perturbations in dark matter, having decou-

pled from photons long ago, begin to grow as � ⇠ a. Meanwhile, density

perturbations in baryonic matter are influenced by photon pressure and,

particularly on subhorizon scales, undergo oscillations. These oscillations

within the baryon-photon fluid are commonly referred to as baryonic acous-

tic oscillations.

Two significant consequences arise from this scenario. Firstly, dark

matter gains an early advantage in structure formation, initiating den-

sity perturbations that commence growth around z ⇡ 3400. By the time

baryons decouple at z = 1100, gravitational wells have already formed,

serving as seeds that accelerate the formation of baryonic structures, in-

cluding galaxies.

The second consequence is more nuanced. During recombination, pho-

tons disperse away from the sound waves they previously influenced. Mean-

while, the baryons remain fixed in position, retaining a snapshot of their

earlier state. These sound waves exhibit areas of baryonic compression

and rarefaction, with their wavelengths determined by the horizon at de-

coupling.
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Figure 3.3: Baryonic acoustic oscillations observed in the galaxy distribu-
tion. [7]

dH ⇠
cH�10

(1 + z)3/2
⇡ 0.1Mpc (3.12.2)

Employing cH�10 ⇡ 4⇥ 103Mpc and z ⇡ 1100, these waves underwent sig-

nificant stretching during the subsequent evolution of the universe, scaling

up by a factor of z ⇡ 1100. This stretching left a subtle mark on the clus-

tering of matter observed today, notably reflected in an excess of galaxies

spaced approximately ⇠ 150 Mpc apart. The presence of these baryonic

acoustic oscillations in the galaxy distribution was initially detected in

2005; the correlation function is shown in Figure 3.34.

4This data is taken from D. J. Eisenstein et al. [SDSS Collaboration], “Detection of the Baryon
Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies” Astrophys. J.
633, 560 (2005), astro-ph/0501171.
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Chapter 4

Detection prospects of

CNB at PTOLEMY

The current temperature of relic neutrinos from the Cosmic Neutrino Back-

ground (CNB) is T⌫,0 = 1.945 Kelvin, rendering them highly non-relativistic

and lacking su�cient energy to be detected by conventional neutrino ex-

periments. A compelling approach to detect these relic neutrinos involves

neutrino capture on �-unstable nuclei. This method o↵ers a significant ad-

vantage in that it does not require a threshold energy for the initial state

neutrinos.

Building upon this concept, the PTOLEMY [2] experiment is proposed

to utilize tritium (3H) as the target element, o↵ering optimal conditions

for CNB detection due to its favorable lifetime, availability, low Q value,

and high neutrino capture cross-section. The process of neutrino capture

on 3H is described by the equation:

⌫e +
3H ! 3He+ e� (4.0.1)
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4.1 Neutrino capture by neutron

We begin by examining the scenario involving the fundamental process

of neutrino scattering with a neutron, and then extend our discussion to

encompass the case involving tritium.

⌫j + n! p+ e� (4.1.1)

Given the modest energy scales involved, we can confidently operate within

the framework of the four-fermion interaction approximation, enabling us

to derive the following equations: [1]

iMj = �i
GFp
2
VudU

⇤
ej
[ūe�

↵(1� �5)u⌫j ][ūp�
�(f(0)� g(0)�5)un]⌘↵� (4.1.2)

In the context provided, where ux represents the Dirac spinor for x and

Vud = 0.97425 is an element of CKM matrix, the presence of the element

Uej within the PMNS matrix is due to the involvement of only the electron

component from each mass eigenstate in the process. The functions f(q)

and g(q) denote nuclear form factors, with f ⌘ f(0) ⇡ 1 and g ⌘ g(0) ⇡
1.2695 in the limit of small transfer of momentum.

The next step involves calculating the cross section by squaring the

amplitude and performing the necessary spin sums, as detailed in Appendix

A.

|Mj|2(s⌫) = 8G2
F
|Vud|2|Uej|2mnmpEeE⌫[A(s⌫)(f

2 + 3g2) + B(s⌫)(f
2 � g2)

vecos✓]

(4.1.3)

38



CHAPTER 4. DETECTION PROSPECTS OF CNB AT PTOLEMY

The spin-dependent factors are:

A(s⌫) ⌘ 1� 2s⌫v⌫j =

8
<

:
1� v⌫j, s⌫ = +1/2 right helical

1 + v⌫j, s⌫ = �1/2 left helical,
(4.1.4)

B(s⌫) ⌘ v⌫j � 2s⌫ =

8
<

:
v⌫j � 1, s⌫ = +1/2 right helical

v⌫j + 1, s⌫ = �1/2 left helical
(4.1.5)

If the neutrinos were moving at relativistic speeds, denoted by v⌫j ' 1,

then we would determine that A = B = 0 for right-helical neutrinos, indi-

cating that these particles cannot be captured. Conversely, for left-helical

neutrinos, we find A = B = 2. This outcome reflects the well-known re-

sult that in the relativistic limit, helicity aligns with chirality, and only

left-chiral neutrinos interact via the weak force.

In the non-relativistic regime, pertinent to this context, we observe

A(±1/2) = ⌥B(±1/2) = 1, which implies that both left- and right-helical

neutrinos can potentially be captured.

We compute the di↵erential cross section by evaluating the squared ampli-

tude using conventional methods.

d�

d cos ✓
=

1

32⇡

1

m2
n

|pe|
|p⌫|

|M |2 (4.1.6)

d�j(s⌫)

d cos ✓
=

G2
F

4⇡
|Vud|2|Uej|2F (Z,Ee)

mpEepe
mnv⌫j

[A(s⌫)(f
2 + 3g2) + B(s⌫)(f

2 � g2)

vecos✓]

(4.1.7)

The Fermi function F (Z,Ee) accounts for the enhancement of the cross sec-

tion resulting from the Coulombic attraction between the outgoing electron
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and proton. This function can be expressed as

FZ(Ee) =
2⇡Z↵Ee/pe

1� exp(�2⇡Z↵Ee/pe)
. (4.1.8)

Z, representing the atomic number of the daughter nucleus (where Z = 1

in this context), and ↵ ⇡ 1/137.036, denoting the fine structure constant,

are essential parameters in this scenario.

Given that the incoming neutrino is nearly stationary (p⌫ ⌧ pe), the kine-

matics permit isotropic emission of the electron. Consequently, integrating

over ✓ becomes straightforward, yielding the total capture cross section

multiplied by the neutrino velocity. This quantity is crucial for determin-

ing the capture rate. [4]

�j(s⌫)v⌫j =
G2

F

2⇡
|Vud|2|Uej|2F (Z,Ee)

mp

mn

EepeA(s⌫)(f
2 + 3g2) (4.1.9)

Given that A(±1/2) = 1 under the approximation v⌫j ⌧ 1, the cross sec-

tion remains the same for both spin states. Consequently, any variations

in the capture rate among di↵erent spin states must originate from their

respective abundances in the present era.

4.2 Neutrino absorption by tritium

Finally, let us extend our findings to the process

⌫j +
3H ! 3He+ e� (4.2.1)

The computation of the cross section follows a similar process to the deriva-
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CHAPTER 4. DETECTION PROSPECTS OF CNB AT PTOLEMY

tion of Eq. 4.1.9, with the substitution of n ! 3H and p ! 3He.

Instead of using the masses of neutrons and protons, we utilize the nu-

clear masses of the respective isotopes: mn ! m3H ⇡ 2808.92 MeV and

mp ! m3He ⇡ 2808.39 MeV.

Instead of using the form factors f(q) and g(q), the focus shifts to nu-

clear matrix elements. This involves substituting f 2 with hfF i2 ⇡ 0.9987

and 3g2 with (gA/gV )2hgGT i2, where hgGT i2 ⇡ 2.788, gA ⇡ 1.2695, and

gV ⇡ 1.[15].

Upon implementing the substitutions as detailed earlier, we derive the

capture cross section times velocity for the mass eigenstate j:

�j(s⌫)v⌫j = A(s⌫)|Uej|2�̄, (4.2.2)

where1

�̄ ⌘ G2
F

2⇡
|Vud|2F (Z,Ee)

m3He

m3H

Eepe(hfF i2 + (gA/gV )
2hgGT i2) ' 3.834⇥ 10�45

cm2

(4.2.3)

Moving forward, we can now compute the total capture rate anticipated

in tritium with mass MT . In Equation 4.2.2, the capture cross section is

specified for a given neutrino mass and helicity eigenstate. This involves

summing the cross section over each of the six initial states, weighted by

the corresponding flux:

�C⌫B =
3X

j=1

[�j(+1/2)v⌫jnj(⌫hR) + �j(�1/2)v⌫jnj(⌫hL)NT ], (4.2.4)

1The calculation is in the mathematica file here: https://shorturl.at/fixAO
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The quantity NT = MT/m3H represents the approximate number of nuclei

in the sample. Utilizing Equation 4.2.2, we can express the capture rate as:

�C⌫B =
3X

j=1

|Uej|2�̄[nj(⌫hR) + nj(⌫hL)NT ] = �̄[n(⌫hR) + n(⌫hL)]NT (4.2.5)

In this context, the value of �̄ was determined by the equation referenced

as eq. 4.1.13. Additionally, under the non-relativistic approximation, we

approximated A(�1/2) ⇡ A(+1/2) ⇡ 1.

If the neutrinos are Dirac particles, we saw that n(⌫hL) = n0 and n(⌫hR) =

0, and the capture rate becomes[10]

�D

C⌫B
= �̄n0NT . (4.2.6)

and for Majorana case we get n(⌫hL) = n(⌫hR) = n0, and the capture rate

becomes

�M

C⌫B
= 2�̄n0NT (4.2.7)

The capture rate in the Majorana case is twice that in the Dirac case:

�M

C⌫B
= 2�D

C⌫B
. (4.2.8)

The concept can be elucidated as follows. In the case of Dirac neutrinos,

it is determined that the Cosmic Neutrino Background (C⌫B) comprises

solely of left-handed neutrinos and right-handed anti-neutrinos. In the rel-

ativistic limit, where helicity and chirality coincide, only the left-handed

states can participate in weak interactions. The right-handed states be-

come sterile, resulting in only half of the background neutrinos being

available for capture. However, given that the C⌫B is non-relativistic,
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both left-handed and right-handed states possess some left-chiral compo-

nent, allowing for interaction with weak forces. The right-handed anti-

neutrinos remain uncapturable due to the kinematical restriction of the

process ⌫̄ + p! n+ e+, as outlined by Lazauskas et al. (2007) [8]. Conse-

quently, in the Dirac scenario, only half of the C⌫B abundance is accessible

for capture. Conversely, in the Majorana case, no distinction is made be-

tween neutrinos and anti-neutrinos. Instead, it is established that the C⌫B

comprises left-handed neutrinos and right-handed neutrinos, both of which

interact weakly and therefore are available for capture.

4.3 Results

Considering a tritium mass of 100gm, as is proposed for PTOLEMY, eqs.

4.2.6 and 4.2.7 evaluate to

�D

C⌫B
⇡ 4.06yr�1 and �M

C⌫B
⇡ 8.12yr�1 (4.3.1)

for Dirac and Majorana neutrino cases, respectively. These rates are con-

strained solely by the size of the sample, as they are una↵ected by the

neutrino mass (assuming the neutrinos are non-relativistic), and the flux

of Cosmic Neutrino Background (C⌫B) neutrinos remains constant.
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Chapter 5

Dark matter particle

5.1 WIMP Dark Matter

WIMP, short for Weakly Interactive Massive Particle, represents the pri-

mary contemporary model for elucidating the universe’s dark matter. The

concept of WIMP is straightforward: it denotes a relatively heavy ele-

mentary particle denoted by �, beyond the reach of current accelerator

experiments due to its mass exceeding 102 GeV. However, during the early

stages of the Big Bang, su�cient energy existed to generate these particles.

Let’s trace back to the epoch when the temperature T surpassed the

mass of the WIMP, denoted as m�. At this juncture, WIMPs were gen-

erated alongside other particles. As the temperature dropped below m�,

the universe ceased producing them. Assuming WIMPs are stable, any

initially produced particles persisted, with annihilation among themselves

into standard particles (e.g., quarks, leptons, gauge bosons) serving as the

sole means of diminishing their numbers. However, with the universe’s

expansion, the density of WIMPs per unit volume steadily declined. Con-

sequently, WIMPs eventually became too sparse to encounter one another,

halting their annihilation and fixing their abundance through a process

known as “freeze out”. This thermal relic mechanism thus accounts for

the residual presence of dark matter in the universe. [11]
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CHAPTER 5. DARK MATTER PARTICLE

5.1.1 Boltzmann Equation

We postulate kinetic equilibrium, meaning that each particle species con-

forms to a Boltzmann distribution in momentum space, with the exception

of the overall normalization determined by its number density. Considering

the process �1�2 $ �3�4, where �i represents a specific elementary parti-

cle, the Boltzmann equation governing the number density n1 of particle

�1 is [9]

a�3
d
�
n1a3

�

dt
= h�vineq.

1 neq.
2

✓
n3n4

neq.
3 neq.

4

� n1n2

neq.
1 neq.

2

◆
(5.1.1)

In this context, the cross section �v is shared between the process

�1�2 ! �3�4 and its time-reversed counterpart �3�4 ! �1�2, assuming

time reversal invariance. The number densities denoted with the super-

script eq. correspond to those in thermal equilibrium.

In our scenario, �3,4 represent typical light (relativistic) particles in

the thermal bath, making n3,4 = neq.
3,4. Additionally, we account for the

annihilation process ��$ (mundane) 2, leading to n1 = n2. Consequently,

the Boltzmann equation is significantly simplified to

a�3
dn�a3

dt
= h�annvi

h�
neq.
�

�2 � (n�)
2
i

(5.1.2)

We use

Y =
n�

s
(5.1.3)

s = g⇤T
3

✓
2⇡2

45

◆
(5.1.4)

H2 =
8⇡

3
GNg⇤

⇡2

30
T 4 = g⇤

⇡2

90

T 4

M 2
Pl

(5.1.5)

x =
m�

T
(5.1.6)
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Despite beginning at temperatures T > m� when � particles are relativis-

tic, as the temperature decreases below m�, we transition to using non-

relativistic approximations. At this point, the equilibrium number density

can be straightforwardly determined as

neq.
�

=

Z
d3p

(2⇡)3
e�E/T

✓
E = m� +

~p2

2m�

◆
(5.1.7)

= e�m�/T

✓
m�T

2⇡

◆3/2

= e�x
m3

�

(2⇡x)3/2
(5.1.8)

Therefore

Yeq. =
neq.
�

s
=

1

g⇤

45

2⇡2

⇣ x

2⇡

⌘3/2
e�x = 0.145x3/2e�x (5.1.9)

By substituting the variables n� with Y and t with x, the Boltzmann

equation transforms as follows:

dY

dx
= � 1

x2
s (m�)

H (m�)
h�annvi

�
Y 2 � Y 2

eq.

�
(5.1.10)

Here, s(T ) = s (m�) /x3 and

dt = � 1

H(T )

dT

T
= �

m2
�

H (m�)T 3
dT =

1

H (m�)
xdx (5.1.11)

It is useful to work out

s (m�)

H (m�)
=

2⇡2

45

✓
90

⇡2

◆1/2

g1/2⇤ m�MPl = 1.32g1/2⇤ m�MPl (5.1.12)
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Note that the annihilation cross section h�annvi remains insensitive to tem-

perature once the particle becomes non-relativistic (T ⌧ m�). Therefore,

the entire combination s(m�)
H(m�)

h�annvi is merely a dimensionless number.

The main complication arises from the strong dependence of Yeq. on x. To

streamline the equation, we introduce the quantity

y =
s (m�)

H (m�)
h�annviY (5.1.13)

We obtain

dy

dx
= � 1

x2
�
y2 � y2eq.

�
(5.1.14)

with

yeq. = 0.192g�1/2⇤ MPlm� h�annvi x3/2e�x (5.1.15)

5.1.2 Numerical Integration

Next, we proceed with the numerical integration of the Boltzmann equa-

tion1. Figure 5.1 illustrates the evolution of y with respect to x. Initially,

we observe that it closely follows the equilibrium value; however, after

reaching an x value of approximately 20, significant deviations begin to

appear, eventually stabilizing at a constant value. This behavior precisely

mirrors the expected outcomes from our analytic approximations.

Putting everything back,

⇢� = m�n� = m�Y s = m�

H (m�)

s (m�)

xf
h�annvi

s (5.1.16)

1The numerical solution is in the mathematica file here: https://shorturl.at/fGTY0
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Figure 5.1: A numerical solution to the Boltzmann equation is applied
for parameters where m = 100GeV, g⇤ = 100, and h�annvi = 10�9GeV�2.
Overlaid on this solution is the equilibrium value yeq..

We use s0 = 2890 cm�3 and ⇢c = 1.05⇥10�5h2GeVcm�3, where the current

Hubble constant is H0 = 100h km/sec/Mpc with h ⇡ 0.65. To obtain

⌦Mh2 ⇠ 0.12 [11], we find h�annvi = 1.6⇥ 10�9GeV�2.

This phenomenon is commonly known as the “WIMP miracle”: as-

suming a dark matter particle with a mass at the electroweak scale and an

annihilation process mediated by the weak interaction, the predicted relic

density matches the observed value precisely.

5.2 DM-⌫ decoupling

Now, our objective is to determine the temperature at which neutrinos

decouple from dark matter (DM), utilizing the cross-section data from [14].

To achieve this, we will equate the interaction rate between neutrinos and
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dark matter to the Hubble rate. Interaction and Hubble rates are given by

� = nh�vi and H =

r
8⇡G

3
⇢ (5.2.1)

where h�vi is the thermally averaged annihilation cross section, n and ⇢

are the number and energy density of neutrino respectively.

Figure 5.2: The decoupling of neutrino from DM

We observed that for DM mass of 0.5MeV, neutrino decouples around

⇡ 2.5MeV and that means neutrino decouple from DM when it was still

relativistic and considered as a hot relic.2

5.3 E↵ective number of neutrinos: Ne↵

In standard cosmology, neutrinos undergo decoupling from the rest of the

Standard Model (SM) particles at a temperature Tdec ⇡ 2.3 MeV, with the

e↵ective number of neutrinos evaluated to be Ne↵ = 3.045. In scenarios

involving thermal Dark Matter (DM) that remains in equilibrium with

2The calculation has been done in Mathematica which can be found here: https://shorturl.at/uzGVW
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neutrinos even below Tdec, there is an entropy transfer from the dark sector

to the neutrinos [13].

When considering only relativistic neutrinos and photons, with their

distribution functions characterized by their respective temperatures, the

e↵ective number of neutrinos Ne↵ is expressed as:

Ne↵ = 3

✓
11

4

◆4/3✓T⌫

T�

◆4

(5.3.1)

The Planck satellite has provided exceptionally precise measurements

of Ne↵. In the Planck 2018 analysis, di↵erent combinations of data sets

were examined within the ⇤CDM framework. For our investigation, we

will utilize the Planck 2018 Ne↵ constraints derived from the combination

of TT+TE+EE+lowE+lensing+BAO: [5]

Ne↵ = 2.99+0.34
�0.33 (95%CL,TT + TE + EE + lowE + lensing + BAO)

(5.3.2)

Using the bounds on Ne↵, we can set the bounds on current neutrino tem-

perature:

T⌫ = 1.945K+0.207
�0.126 (5.3.3)

Considering neutrinos massless, their number density as a function of tem-

perature is given by

n =
3

4⇡2

g⇣(3)

~3c3 (kBT⌫)
3 (5.3.4)

The standard number density of neutrinos is n0 ⇡ 56cm�3. After plugging
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in T⌫ = 1.945K+0.207
�0.126, we get

n+ ⇡ 70cm�3 (5.3.5)

n� ⇡ 46cm�3 (5.3.6)

where n+ represent the enhancement case for number density with T⌫ =

(1.945+0.207)K and n� represent the suppression case for number density

with T⌫ = (1.945� 0.126)K.

5.4 Evidence of DM-⌫ interaction on PTOLEMY

If the interaction of a species freezes out (i.e., � < H) at a temperature

where m/T ⌧ 1, then the species can exhibit a substantial relic abun-

dance today. Now, we will compute the relic abundance for neutrinos in

the scenario of their interaction with Dark Matter (DM) during the early

universe.

Only annihilation and inverse annihilation processes, such as

⌫ + ⌫̄  ! DM+DM (5.4.1)

can change the number of ⌫’s and ⌫̄’s in a comoving volume. We will also

assume that DM have thermal distributions with zero chemical potential.

We have the Boltzmann eq. in Eq. 5.1.10

dY

dx
= � 1

x2
s (m�)

H (m�)
h�annvi

�
Y 2 � Y 2

eq.

�
(5.4.2)

In the highly relativistic regime (x⌧ 1), the equilibrium number density of

neutrinos per comoving volume can be described by the following simplified
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limiting form:

Yeq.(x) =
neq.
⌫

s
(5.4.3)

Yeq.(x) =
ge↵⇣(3)

⇡2
T 3 /

2⇡2

45
g⇤T

3 (5.4.4)

Yeq.(x) = 0.278
ge↵
g⇤

(5.4.5)

where ge↵ = g (bosons) and ge↵ = 3g/4 (fermions).

The Boltzmann equation governing the evolution of species abundance rep-

resents a specific form of the Riccati equation, lacking general closed-form

solutions. The annihilation rate � is proportional to neq., the equilibrium

number density, multiplied by the thermally averaged annihilation cross

section. In the relativistic regime, neq. ⇠ T 3, and in the non-relativistic

regime, neq. ⇠ (mT )3/2 exp(�m/T ), causing � to decrease exponentially

with decreasing temperature T . Ultimately, as T decreases, � diminishes to

a point where annihilations become negligible, approximately when � ⇡ H

at x = xf (referred to as “freeze-out”).

Consequently, we anticipate that for x  xf , the abundance Y approaches

Yeq., while for x � xf , the abundance “freezes-in” to Y (x � xf) = Yeq.(xf).

For neutrinos, when xf ⌧ 1, freeze-out occurs while the neutrinos are still

relativistic and the quantity Yeq. remains constant. In such a scenario, the

final value of Y is not strongly dependent on the specifics of the freeze-out

process. The asymptotic value of Y , denoted as Y0, simply corresponds to

the equilibrium value at freeze-out,

Y0 = Yeq.(xf) = 0.278
ge↵

g⇤(xf)
(5.4.6)

where we take g=1 (not considering anti-neutrino) and g⇤(xf) = 1 + 2 +

7/8(6 + 4) (where 1 is for scalar DM, 2 for photons, 6 for neutrinos and 4

for electron-positron pair) at the time of neutrino decoupling with DM.

Assuming the constant entropy per comoving volume, the abundance of
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neutrino’s today would be

n00 = s0Y0 ⇡ 51cm�3 (5.4.7)

where n00 represent the suppressed number density of neutrinos and s0 is

the current entropy density, s0 = 2890 cm�3 [11].

Now we can calculate the capture rate of neutrinos in PTOLEMY in case

of suppression of number density of neutrinos which is given by

� = �̄n00NT c (5.4.8)

where �̄ = �v = 3.834⇥ 10�45cm2 is the neutrino capture cross-section on

tritium, NT is the total number of tritium nuclei and c is the speed of light

For 100gm of tritium

NT =
100

3⇥ 1.66⇥ 1024
= 2⇥ 1025 (5.4.9)

The suppressed capture rate would be

�D
0

C⌫B
⇡ 3.70 yr�1 and �M

0

C⌫B
⇡ 7.40 yr�1 (5.4.10)

where �D
0

C⌫B
and �M

0

C⌫B
are the suppressed capture rate for Dirac and Ma-

jorana neutrino cases, respectively.
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Chapter 6

Results and Discussion

The interactions between dark matter (DM) and neutrinos, particularly

around the time of neutrino decoupling from the Standard Model (SM),

play a significant role in altering the e↵ective number of neutrino species

(Ne↵) by exchanging entropy with the neutrino bath. Our investigation re-

veals that these interactions have implications for understanding the evolu-

tion of neutrino properties and their impact on experimental observations.

The constraints on Ne↵ derived from the Planck 2018 data have signif-

icant implications for our understanding of neutrino properties and cos-

mological models. By considering the bounds on Ne↵, we can explore how

variations in the e↵ective number of neutrino species impact the temper-

ature of the neutrino background. This investigation reveals the potential

for altering the neutrino number density, which is typically estimated at

around 70 neutrinos per cubic centimeter under enhanced conditions and

46 neutrinos per cubic centimeter under suppressed conditions. This range

is exploitable from the perspective of DM-⌫ interactions.

Our analysis suggest that the interaction between a scalar dark mat-

ter (which remains relativistic around Neutrino decoupling) and neutrinos

during the early universe results in a notable 9% alteration in the current

number density of neutrinos. Further it implies that these interactions
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CHAPTER 6. RESULTS AND DISCUSSION

could lead to a reduction in the capture rate of neutrinos. Specifically,

after 10 years of operation, PTOLEMY could potentially observe 3 fewer

events in the case of Dirac neutrinos and 7 fewer events in the case of Ma-

jorana neutrinos due to these interactions.

A reduction in the capture rate of neutrinos at PTOLEMY would pro-

vide a tangible observation reflecting the impact of scalar DM-neutrino

interactions on neutrino behavior. This result highlights the potential influ-

ence of dark matter on neutrino properties and underscores the importance

of further investigating such interactions to deepen our understanding of

fundamental particle dynamics in the cosmos.

These findings suggest intriguing observations, and we intend to submit

them for publication in a research journal in the future.
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Appendix A

Cross section for neutrino

capture on tritium

In the neutrino capture experiment under consideration, the spins of the fi-

nal state electron and nucleus are not observed or measured. Consequently,

it becomes necessary to sum over all potential final states. Likewise, since

the initial nucleus is not initially prepared with a definite spin, we must

also sum over its two potential spin states.

Unlike Dirac neutrinos, which are prepared in a definite spin state

(specifically left-helical), Majorana neutrinos exhibit both helicities. We

will maintain a general approach to the calculation for now. The neu-

trino helicity, denoted by s⌫, takes values where s⌫ = +1/2 corresponds to

right-handed helicity and s⌫ = �1/2 corresponds to left-handed helicity.

|M |2 = G2
F

2
|Vud|2|U ⇤ej|2T

↵�

1 T ��

2 ⌘↵�⌘�� (A.0.1)

where

T ↵�

1 = Tr[�↵(1� �5)u⌫ū⌫�
�(1� �5)ueūe] (A.0.2)

T ��

2 = Tr[��(f � g�5)unūn�
�(f � g�5)upūp] (A.0.3)
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APPENDIX A. CROSS SECTION FOR NEUTRINO CAPTURE ON TRITIUM

To simplify the presentation, we have omitted the index j that specifies

the neutrino mass eigenstate.

|M |2 = 1

2

X

sn,se,sp=±1/2

|M |2 = G2
F

4
|Vud|2|U ⇤ej|2T

↵�

1 T ��

2 ⌘↵�⌘�� (A.0.4)

where

T ↵�

1 =
X

se=±1/2

Tr[�↵(1� �5)u⌫ū⌫�
�(1� �5)ueūe] (A.0.5)

T ��

2 =
X

sn,sp=±1/2

Tr[��(f � g�5)unūn�
�(f � g�5)upūp] (A.0.6)

We now need to use the completeness relations.

X

si=±1/2

uiūi = (pi +Mi) (A.0.7)

for i=n,p,e

u⌫ū⌫ = 1/2(p⌫ +M⌫)(1 + 2s⌫�
5S⌫) (A.0.8)

where

(S⌫)
↵ =

✓
|p⌫|
m⌫

,
E⌫

m⌫

p̂⌫

◆
(A.0.9)

is the neutrino spin vector. Inserting these yields
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T ↵�

1 =
1

2
Tr[�↵(1��5)(p⌫+m⌫)(1+2s⌫�

5S⌫)�
�(1��5)(pe+me)] (A.0.10)

T ��

2 = Tr[��(f � g�5)(pn +mn)�
�(f � g�5)(pp +mp)] (A.0.11)

The evaluations of the traces are performed using the Mathematica package

”FeynCalc,” leading to the following results:1

T ↵�

1 T ��

2 ⌘↵�⌘�� = 32((f + g)2(pe.pp)(pn.p⌫ � 2m⌫s⌫(pn.S⌫)) (A.0.12)

+(f � g)((f � g)(pe.pn)(pp.p⌫ � 2m⌫s⌫(pp.S⌫)) (A.0.13)

�(f + g)mnmp(pe.p⌫ � 2m⌫s⌫(pe.S⌫)))) (A.0.14)

T ↵�

1 T ��

2 ⌘↵�⌘�� = 32
⇥
(f + g)2[(pe.pp)(p⌫.pn)] + (g � f)2[(pe.pn)(p⌫.pp)]

+(g2 � f 2)[mnmp(pe.p⌫)]� 2s⌫m⌫

⇥
(g + f)2[(pe.pp)(S⌫.pn)]

+(g � f)2[(pe.pn)(S⌫.pp)] + (g2 � f 2)[mnmp(pe.S⌫)]]]

(A.0.15)

We proceed by defining the rest frame of the neutron

(pn)µ = (mn, 0), (p⌫)µ = (E⌫, p⌫), (pp)µ = (Ep, pp), (pe)µ = (Ee, pe)

Ignoring the proton recoil (pp � mp), we derive

1This is the mathematica file for the evaluation of traces: https://shorturl.at/lvBO8
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APPENDIX A. CROSS SECTION FOR NEUTRINO CAPTURE ON TRITIUM

|M |2 = 8G2
F
|Vud|2|U ⇤ej|2mnmpEeE⌫

✓
2(g2 + f 2) + (g2 � f 2)[1� pe

Ee

.
p⌫
E⌫

]

◆

�2s⌫mnmpEe|p⌫|
✓
2(g2 + f 2) + (g2 � f 2)[1� E⌫

|p⌫|
pe
Ee

.
p⌫
|p⌫|

]

◆

(A.0.16)

Defining cos✓ = pe.p⌫

|pe||p⌫ | and vi =
|pi|
Ei

, we get

|M |2 = 8G2
F
|Vud|2|Uej|2mnmpEeE⌫

⇥
(f 2 + 3g2)(1� 2s⌫v⌫)

+(f 2 � g2)(v⌫ � 2s⌫)vecos✓
(A.0.17)

In this context, ✓ represents the angle between the momenta of the neu-

trino and electron, while vi denotes the velocity of the species i.

Now we can write

|Mj|2(s⌫) = 8G2
F
|Vud|2|Uej|2mnmpEeE⌫[A(s⌫)(f

2 + 3g2) + B(s⌫)(f
2 � g2)ve

cos✓]

(A.0.18)
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