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Abstract

The present work focuses on one of the most important external parameter of the solar cell the open-
circuit voltage(V,.), It is confirmed by performing simulations on various single junction photovoltaic
technologies such as homojunction solar cells based on GaAs and Ge absorber material, heterojunction
solar cells based on CdTe absorber material, perovskite solar cells based on CsGels absorber material,
that the open-circuit voltage(V,.) is determined by the extent to which the quasi-fermi level Ep,
and Ep,, are able to split. The splitting of the quasi-fermi level is limited by the recombination
mechanism due to the presence of the defect in the solar cell, which leads to a deficit in open-circuit
voltage which is reflected in terms of the Urbach energy (E;; ), However, the exact explicit quantitative
analysis is not available yet so by using numerical simulation methodology on thin-film CdTe
photovoltaic (PV) solar cell we picturize the effect of the Urbach energy (Ey) in the open-circuit
voltage(V,.), and observe the power conversion efficiency (PCE) of the solar cell. which makes the
strong argument that Urbach energy (Ey) become an important diagnostic parameter to study the loss

mechanism associated with the solar cell.

In addition to investigating the loss mechanism, there has been an exploration into the
generation mechanism of the single junction solar cell as well. This exploration falls under the section
of device optimization, a simulation-based optimization technique proves highly effective, significantly
reducing both time and labor-intensive tasks, the optimization procedure begins by optimizing the
thickness of the ETL (Electron Transport Layer), HTL (Hole Transport Layer), and absorber layer.
Surprisingly, the thickness of the HTL does not impact device performance. However, the thickness of
the ETL and absorber material significantly affects performance. Finally, optimization of the absorber
acceptor concentration is conducted. Initially, an unoptimized device have an efficiency of 16.47%.
After optimization, the efficiency increases to 22.49%. As far as single-junction solar cells are
concerned, even the extremely fine-tuned(optimized) device has a limit of maximum attainable
efficiency, limited spectral utilization by the single-junction solar cell restricts the maximum theoretical
conversion limit well known as the Shockley Quieeser limit, this can be overcome by exploiting the
much part of the solar spectrum using multiple junctions. Simulating multijunction solar cells with the
SCAPS-1D tool is more complex rather than simulating single-junction cells. The process involves
simulating individual subcells, and then connecting them in series using SCAPS-1D script support.
This procedure is more time-consuming compared to single-junction cell simulation. A task of

simulating a two-junction solar cell has been performed, In the first step top cell GaAs ( a higher band



gap material) is designed individually and a complete AM 1.5 spectrum is made to incident on it, the
second step involves designing the bottom cell Ge(a low band gap material) a filtered AM 1.5
spectrum(solar radiation that is not utilized by the top cell) is made to incident on it, finally using Scaps-
1D script support connect them in the series and extract the external parameters of the two -junction
solar cell, the resultant efficiency of the simulated two-junction solar cell comes out to be 28.10%,
which is far higher than the efficiency produces by the individual top cell(23%) and individual bottom
cell(7.36%) at standard test condition.
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Chapter 1 -Fundamentals of Solar Cell

1.1 Introduction

The solar cell is a photovoltaic device whose electrical response (conductivity, resistivity, etc.) varies
with the radiation exposure, Which is employed to harness energy from the sun spectrum, present as an
abundant source of energy. Starting with the solar cell working and its characteristics J-V curve,
equivalent circuit, external parameters which are used to characterize the performance of different
technology-based solar cells and differentiating between practical and ideal solar cells will be enveloped
in this chapter with a simulation-guided approach using simulator tool SCAPS-1D. A brief description
of the simulator will be provided in chapter2.

1.2 Working and J-V characteristics of Solar cell
The functionality of a solar cell can be divided into three basic attributes as follows

e Optical excitation results in the production of electron-hole pair and/or Exciton[1](an electronic
entity which is the bound state of electron and hole due to columbic interaction).

e These optically generated entities are separated with the help of an internal built-in electric
field.

e And the extraction of those charge carriers to the back and the front contact.

Solar cell device performance is governed by the external parameters which can be extracted by making
use of characteristics J-V curve. For illustration purposes, a GaAs-based solar cell structure has been
simulated(For detailed information, please refer to Section 2.4) in the dark as well as in an illuminated
condition reflected by red and blue curves respectively Figurel.1. The downward shift in an illuminated
J-V curve with respect to dark can be understood by making an argument that illumination results
significant increase in minority charge carriers leading to large drift current, overall diode current
density is given by the equation.1[1].

] =Jpu — Ipark

J = Jou =Jo (exv (,fB—VT) - 1) 1

Where Jpy stand for the photo-generated current density and J is the reverse saturation current density
in the dark, all notations have usual meaning and can be found elsewhere.
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Figure 1.1 Simulated J-V curve of the GaAs solar cell in dark and illuminated condition reflected by red and blue curves respectively



1.3 Equivalent circuit of ideal Solar cell

The equivalent circuit of a solar cell is a theoretical representation that is employed to study the
electrical behavior of a solar cell, in the upcoming section, this model can also be exploited to
characterize the solar cell, that deviated from ideality[2].

i3

Figure 1.2 Equivalent Circuit

From Figurel.2 one can observe that I,is dark current, due to diffusion of charge carrier in forward
bias, and when the junction is illuminated due to a significant increase in minority charge carrier a large
drift current is established which is opposite to the dark current which is indicated as Ipy(photo
generated current).

1.4 External parameters of ideal Solar cell

These are the parameters that are used to compare the performance of different technologies of solar
cells and how efficiently they convert light energy into electrical energy.

1.4.1 Open-circuit voltage

Electrical properties of semiconductors are governed by charge carrier concentration in the material
which obeys Fermi-Dirac distribution[3]. In dark equilibrium condition (with no bias) there is only a
single Fermi level (Er) Throughout the device which gives the significance of electron-hole
concentration throughout the device, when the equilibrium is disturbed on exposure to radiation, and
allowed to reach quasi-equilibrium, obviously now concentration will no longer be the same as earlier,
to state electron and hole concentration throughout the device two separate fermi level
Ep, and Ep,Were taken which are termed a quasi-fermi level[3].

Band Diagram Band Diagram
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Figure 1.3 Energy versus position band diagram of GaAs solar cell (a) in dark and (b)illuminated condition



For illustration purposes again simulation on GaAs based solar cell has been performed in Figurel.3(a)
energy band diagram of a GaAs-based solar cell in the dark at equilibrium, one can see that there is only
a single fermi level which is reflected by the red colour straight line, on the other hand in Figurel.3(b)
energy band diagram of the same cell at illuminated condition, there are two fermi level
Ep, and Eg,reflected by blue and red colour respectively.

The open-circuit voltage (V) is determined by the extent to which quasi fermi level is able to split,
which is further limited by the recombination mechanisms associated within the solar cell[4]. The
higher the splitting in the quasi-fermi level higher will be the open-circuit voltage.
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Figure 1.4 (a) High splitting in quasi fermi level when defect concentration is low (b)Less splitting in quasi fermi level when
defect concentration is high
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Figure 1.5 (i) J-V curve when splitting is low (ii) J-V concentration when splitting is high

Simulation has been performed again on a GaAs-based solar cell structure. Figurel.4(a) energy band
diagram when defect concentration is low, results in less recombination of optically generated charge
carriers as a consequence higher splitting in quasi fermi-level, Figurel.4(b) reflects the energy band
diagram when defect concentration is high, which results in high recombination of optically generated
charge carriers as a consequence lesser splitting in quasi-fermi level.

Figurel.5 (i) J-V curve when defect concentration is high and (ii) when defect concentration is low,
comparatively open-circuit voltage (in the open circuit the solar cell does not produce any current i.e.
current density is zero) is high when defect concentration is low, which leads to less recombination and



higher splitting in quasi fermi level. The mathematical form of open-circuit voltage can be derived from
equation 1.1.

J = Jou = Jo (exp (,f’B—VT) - 1) 11

Putting J = 0 and V = V. because in open-circuit voltage solar cells do not produce any current. The
above expression can be reduced to

kgT PH
Vor = —1n (—+ 1) . 1.2
o¢ q Jo

Factors on which V. depends
e Depend on photocurrent density (Jpy) i.e. by increasing the irradiance or shining more

and more light on the solar cell, the V. can be increased.
e Higher the temperature the larger the leakage current density (J,) and smaller the V.

1.4.2  Short circuit current density(Js¢)

It is the current density generated by the solar cell under a short circuit (voltage across the output
terminal should be zero) condition.

The mathematical expression of the - can be obtained by using equation 1.1.

] =Jpu —Jo (exp (lzg_‘;) - 1)

Putting V = 0and ] = Jg we get;

Jsc = JpH
Hence, Jgc is equivalent to Jpy (photo-generated current density).
1.4.3 Power density

The term power density is defined as the product of current density and voltage, the green colour curve
in Figure 1.6 corresponds to the power density curve and the red colour curve corresponds to the J-V
curve of the solar cell. using the power density curve, we can find the maximum operating power point
further which can used to calculate the FF and the PCE of the solar cell.
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Figure 1.6 J-V and power density curve

Some important arguments can be made regarding the power density curve as follows: -

When the power density is negative, it indicates that the solar cell is producing power.
When the power density is positive, it indicates that the solar cell is dissipation power.

On the J-V curve shown where power density is maximum called maximum power point
(Pmax)-

Where voltage is smaller than zero, which is reverse bias, the illuminated solar cell does not
generate power but consumes power.

Also, when if voltage of the solar cell is greater than the V. the illuminated solar cell
dissipates power as well.

The solar cell will have the best performance at its maximum power point at

V =Vyppand ] = Jypp

This means

Prax = VuppJuprp .. 1.3

1.4.4 Fill Factor(FF)

The term fill factor can be defined as the ratio of, the ratio of the product of the maximum operating
point to the product of /5. and V.

FF = Prax _ Jupp Vupp

= = .. 1.4
JscVoc JscVoc



It implies that it is impossible for a solar cell to have a FF equal to 1.

Another empirical relation of the FF proposed by Martin A. Green, when the diode ideality factor(n)[5]
is known under the assumption of series resistance to be zero and shunt resistance to be infinite [6].

FF = Ve — In(v,. + 0.72) s
Ve +1

Where,

v =qV0c
¢ nkgT

1.45 Power Conversion Efficiency(PEC)

This is the ratio of B4, (maximum power density coming out of the solar cell) and the P, (light
power density) of light incident on the solar cell.

_ Bnax _ Vupp/upp

= ..1.6
p; P;

1.4.6 Quantum efficiency(QE)

The term Quantum efficiency is used to measure the Spectral utilization of solar cells, it gives the
significance of which part of the solar spectrum is utilized efficiently, (the detailed analysis is provided
in section 4.2).

The QE(A) is the ratio of the number of carriers collected at the terminals per incoming photon at a
certain wavelength[7]. QE is the function of wavelength

The mathematical expression is given by.

]Sc/q

o .. 1.7

QEQ) =

Where,

@() is photon flux at a certain wavelength.

If all the photons participated in charge collection, then QE=1.

The reduced quantum efficiency is attributed to various electrical and optical loss mechanisms.

» Photons can be reflected back from the front entrance of the cell, the Figurel.7(a) below
illustrates the effect of reflection in QE.



» Photons do not absorb as they have energy less than the band gap.

» The absorber layer is excessively thin.

» The recombination of light-excited charge carriers, Figure 1.7 (b) below illustrates the effect
of recombination in QE when defect density is increased resulting in the recombination of
charge carrier.

Quantum Efficiency Quantum Efficiency

100 | 100
| |
90— 90~
i —
80— 80~

70| 70| |
Increalsing Reflection

60— . .
. Increaging Defect density
< 50— 1
40— | 40-|
30— 30-

20— 20

> B I " "~ ,
300 400 500 600 700 800 900 1000 1100 1200 1300 1400 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
wavelength (nm) wavelength (nm)

(a) (b)

Figure 1.7 Variation of QE with (a) reflection of photons and (b) increasing defect density

From equationl1.7 one can also find the maximum limiting value of the /5. (short circuit
current density) of the various technologies of solar based on its spectral response[8].

A
Isc = qf @am1.5(A) EQEQQ) dA .18
0

1.5 Practical or non-ideal Solar cell

Solar cells consist of several layers of semiconductor, back contact, and front contact, and the interface
forming between contact and semiconductor has inherent resistance which is responsible for the series
resistance in solar cells represented by Rg [9], while processing cells some manufacturing defects that
are capable of providing alternative paths to flow photogenerated current within the solar is responsible
for shunt resistance denoted by Rgy. A good-quality cell must have a high Rgy (shunt resistance) and
lowRs (series resistance). To analyze the effect of R and Rgy again simulation has been performed
on GaAs-based solar cell.

1.5.1 Series Resistance(Ry)

Performing simulation on GaAs-based solar cell, Rs varied from 0 ohm cm™ to 10 ohm cm?, the
influence of series resistance on open-circuit voltage(Vy ) is very little but has a significant impact on
Jsc(short-circuit current density), which leads to a decrease in device performance.

According to simulated data on varying series resistance form (0-10) ohm cm short circuit current
density reduced from 25.9134 mAcm to 25.9082 mAcm which leads to a significant decrease in FF
from 87.78% to 64.46% and PCE reduced from 23.24% to 17.07%. The variation of PCE and FF with
respect to series resistance has been plotted in Figure 1.8 (a) and Figure 1.8 (b) respectively.
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Figure 1.9 Impact of series resistance on (a) PCE and (b) FF

1.5.2  Shunt Resistance(Rgy)

Performing simulation on GaAs-based solar cell, shunt resistance varies from 1000 ohm c¢cm? to 100
ohm cm?, the influence of shunt resistance on short circuit current density (Jsc) is very less but has a
significant impact on open-circuit voltage (V,), which leads to degradation in the performance of the
device.

According to simulated data on varying shunt resistance from (1000-100) ohm cm V,(open-circuit
voltage) reduced from 1.02 volt to 1.00 volt which led to a significant decrease in fill factor from 84.66%
to 56.98% and PCE reduced from 22.39% to 14.93%. The variation of PCE and FF concerning series
resistance has been plotted in Figurel.11(a) and Figurel.11(b) respectively.
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Figure 1.11 Impact of shunt resistance on (a) PCE and (b) FF

1.6 Summary

This chapter covers the operation of solar cells and explains how the current-voltage (J-V) curve shifts
downward under illumination compared to dark conditions due to the dominance of the large drift
current. To compare the performance of different solar cell technologies, we use external parameters.
For non-ideal solar cells, their behaviour can be studied by adding series and shunt resistance to the
equivalent circuit.
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Chapter 2 -Simulation of various photovoltaic technology based
on single junction solar cell using Scaps-1D

2.1 Introduction to Scaps-1D Simulator Tool

Solar cell research has made significant advancements in recent years, but it still faces several
challenges and problems that researchers are actively working to address. Some of the key problems
are[10].

I)- Efficiency Improvement IV)- Environmental Impact
II)- Cost Reduction V)- Scalability
[IT)- Energy Storage VI)- Durability and reliability

etc. some other factors like Government policies, incentives, and regulations can significantly impact
the solar industry.[11].

Researchers in the field of solar cells are actively working on these challenges to make solar energy
more accessible, efficient, and sustainable. Collaboration between scientists, engineers, policymakers,
and industry stakeholders is vital to overcoming these obstacles and advancing the adoption of solar
energy worldwide. In order to overcome these challenges without doing much laborious work or we
can hand over our work to machine(computer). There is a requirement for some simulation software,
which can help us to give our work to the computer.

Solar cell simulation can significantly reduce research and development costs as well as time. Instead
of building and testing multiple physical prototypes, researchers can use simulation to explore various
design options and parameter settings at a fraction of the cost and time. In this wonderful journey of
research and development, there is one most widely and commonly used simulation tool “SCAPS-1D”.

SCAPS-1D is a well-known simulator tool widely for the simulation of CdTe-based photovoltaic
cell[12], [13] and perovskite photovoltaic cells[14], which was refined at the University of Gent,
Belgium. SCAPS (Solar Cell Capacitance Simulation in 1D) is a specialized software tool designed for
simulating and analyzing the electrical characteristics of semiconductor solar cells, particularly
photovoltaic (PV) devices. SCAPS-1D focuses on one-dimensional simulations, effectively modeling
the behaviour of solar cells based on their depth profile within the device structure.

This is a thorough description of the tool, which is thought to be useful for photovoltaic research,
numerical design, and modeling of solar cells. Tools like SCAPS-1D give a mathematical overview of
the drift and diffusion model, enabling one to comprehend how devices work and forecast their physical
behaviour. Without requiring significant financial, human, or time commitments, this computational
tool facilitates the exploration of several critical parameters, thickness, electron affinity, carrier
concentration, band gap, defects density, surface recombination velocity, shunt and series resistances,
work function, and temperature. Essentially, SCAPS-1D is a collection of several fundamental
equations, which are represented as follows: the Poisson equation, the electron continuity and hole
continuity equations, and the hole and electron current density equation.[1], [3], [15], [16].

?¥Y ¢

W‘Fg[p(x)_n(x)'l_ND_NA-l_pp_pn]=0 2.1
1dJ,
aa = Gop(x) —_ R(x) 22
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1dj,

a F —Gop(x) + R(x) .23

Jn = qnuyE + ana .24
dp

Jp = qnupE — qua ..2.5

where Nj, and N, represent the donor and acceptor concentration; Jpand J,, stands for the current density
of the hole and electron; n and p represent the electron and hole concentration in conduction and valence
band respectively and p,and p,, are the trapped electron and trapped hole concentrations, respectively.
R indicates the total losses from direct and indirect recombination; however, Gop signifies the optical
generation rate; 'V is the electrostatic potential [17].

2.2 Simulation of lead-free CsGel3-based perovskite Solar cell

Perovskite solar cell based on organic-inorganic halides such as MAPbI; and FAPbI; has a record
efficiency of above 23%][ 18], but the major obstacle in large-scale commercialization is the presence of
harmful toxic element lead[19]. With this motivation, there is a requirement for alternate lead-free
perovskite solar cells.

2.2.1 Device Structure

The Figure2.1(a) below illustrates the device structure based on CsGel3[20] and a screenshot of the
window panel of Scaps-1D in Figure2.1(b) reflects the different layers of the solar cell.
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Figure 2.1 (a) Cell structure (b) Screenshot of the simulator pannel confuguring the same structure

In the above cell solar radiation enters from the front layer FTO and on top of that TiO, layer is
deposited, due to the presence of TiO; percolating network the generated electron can be rapidly
transferred to the FTO, above it absorber layer CsGels were deposited, on top of it a hole transport
layer(HTL) Spiro-OMeTAD is deposited which rapidly collect hole and transferred to back contact of
the solar cell(Ag) work function of back contact is taken to be 4.46eV.
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2.2.2  Methodology for Scaps-1D simulation

Simulation of the devices required various input parameters that are gathered from diverse theoretical
and experimental investigations and are arranged in Table2-1[16], [17], [20], [21], [22], [23].

Table 2-1 Electrical parameters corresponding to different layers regarding simulation of CsGel3 solar cell

Parameters Spiro- CsGels TiO, FTO
OMeTAD
Thickness(nm) 200 400 30 500
Bandgap(eV) 2.88 1.6 3.2 3.2
Dielectric Constant 3.00 18 9 9
Electron affinity(eV) 2.050 3.520 3.9 4.00
N¢(1/emd) 2.200E+18 1.00E+18 2.200E+18 2.200E+18
Ny (1/cm?) 1.800E+19 1.00E+19 1.00E+19 1.800E+19
V.(cm/s) 1.00E+7 1.00E+7 1.00E+7 1.00E+7
V,(cmis) 1.00E+7 1.00E+7 1.00E+7 1.00E+7
te (CM?/VS) 2.100E-3 2.00E+1 2.00E+1 2.00E+1
iy, (CM?/Vs) 2.600E-3 2.00E+1 1.00E+1 1.00E+1
No(1/cm?) 0.00E+0 0.00E+0 1.00E+18 1.00E+19
Na(1/cm?) 2.00E+19 2.00E+16 0.00E+0 0.00E+0
To(NS) 100 100 5 1000
7, (ns) 100 100 5 1000
Neutral defect density(1/cm?®) 1.00E+15 1.00E+15 1.00E+15 1.00E+14

The notations that are used above can be easily found elsewhere.

Here we are dealing with a thin film technology involving various layers with the thickness of the order
of nanometre(nm), apart from the bulk recombination surface recombination becomes dominant, so the
interface forming between two layers becomes a channel for the recombination of optically generated
charge carriers [24]. The screenshot of the introduced defect between the interface forming between
absorber material and electron transport material (CsGels/TiO; interface) and absorber material and
hole transport layer(Spiro-OMeTAD/CsGelsinterface) are depicted in Figure2.2(a) and Figure2.2(b)

respectively.
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SCAPS 3.3.10 Interface Defect Properties Pane - o X SCAPS 3.3.10 Interface Defect Properties Pane! - [m} X

Defect 1 of CsGel3d [ TiO2 interface Defect 1 of Spiro-OMe TAD [ CsGel3 interface
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Figure 2.2 Screenshot of the simulator panel representing the defect between the interface (a)CsGels/Tio, and (b)
HTL/CsGels

2.2.3 Result of simulation of CsGels

Initially, energy versus position band diagrams were simulated under both dark and illuminated
conditions and are depicted in Figure2.3(a) and Figure2.3(b), respectively. In the dark, no external bias
is applied, and there is only a single Fermi level throughout the device, which gives the concentration
of electrons and holes, represented by the red straight line, after exposure to radiation charge
concentration will no longer remain the same; a fermi level has been split into two quasi fermi levels,
Ep, and Ep, which signifies the concentration of electrons and holes throughout the device,
respectively.
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Figure 2.3 Energy versus position band diagram at (a) dark equilibrium (b) illuminated condition

With the help of the energy versus position band diagram, we can also explain the movement and
collection of charge carriers(electrons and holes). As soon as the device is exposed to the radiation the
generation of electron and hole pair will take place(specifically focusing on the absorber material
CsGels), those generated charge carriers will diffuse randomly, and the electron which diffuses towards
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ETL will easily collect at the front contact FTO because there is no potential barrier, but the electrons
which diffuse towards HTL layer will encounter high potential barrier so, reflected back and get
collected at FTO which is the front contact. Similarly, the holes that diffuse towards HTL will easily
get collected at back contact because there is no potential barrier on the other hand the holes that diffuse
towards ETL will encounter a high energy barrier, so they will be reflected back and get collected at
the back contact.

External parameters and QE of the above simulated solar cell have been extracted and are summarized
in Table2-2 along with the comparison of experimental work.

Table 2-2 Comparing the experimental and simulated work on CsGel3 solar cells

Experimental[20] 0.51 18.78 51 4.94
Simulated 0.5050 17.89 54.76 4.95
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Figure 2.4 comparison of the experimental and simulated work (a) J-V curve and (b) QE curve

The rollover effect in the simulated J-V curve is due to the opposite bias of the back contact in
comparison to the solar cell, this effect can be explained by using two diode model[25], in addition, one
can use flat band condition instead of using the working function for the back contact which results in
no rollover of J-V curve. Deviation in the Quantum efficiency curve is while simulating we didn’t
consider any reflection and transmission(optical losses) that is why QE is higher in simulated work.

2.3 Simulation of CdTe heterostructure Solar cell
The Simulated structure of a CdTe solar cell is represented in Figure2.5(a)[26] and Figure2.5(b).

Again, the device parameters corresponding to various layers were collected from several research
papers, and the following has been arranged in Table2-3[26], [27], [28], [29], [30], [31].
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Figure 2.5 (a) Cell structure (b) Screenshot of the simulator panel configuring the same CdTe structure

Table 2-3 Electrical parameters corresponding to different layers regarding simulation of CdTe solar cell

Parameters CdTe CdS SnO, FTO
Thickness(um) 6.00 0.10 0.10 0.400
Bandgap(eV) 1.5 2.42 3.6 3.6

Dielectric constant 9.40 10.00 9.00 9.00
Electron affinity(eV) 4.28 4.30 4.50 4.50
N, (1/cm?) 8.00E+17 2.20E+18 2.200E+18 2.200E+18
Ny (1/cm®) 1.800E+19 1.80E+19 1.80E+19 1.800E+19
V,(cm/s) 1.00E+7 1.00E+7 1.00E+7 1.00E+7
V,(cm/s) 1.00E+7 1.00E+7 1.00E+7 1.00E+7
e (CM?/V/S) 3.200E+2 1.00E+2 1.00E+2 1.00E+2
1, (cm?/Vs) 6.00E+1 2.50E+1 2.50E+1 2.50E+1
No(1/cm®) 0.00E+0 1.10E+18 1.00E+18 1.00E+19
Na(1/cm?®) 2.00E+14 0.00E+00 0.00E+0 0.00E+0
To(NS) 1 0.1 100 100
Tp(NS) 1 1 0.1 0.1
Neutral defect density(1/cm?®) 1.00E+15 1.00E+15 1.00E+15 1.00E+15
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2.3.1 Result of simulation of CdTe heterostructure solar cell
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Figure 2.6 Energy versus position band diagram of the CdTe cell at (a) dark and (b) illuminated condition

Figure2.6(a) and Figure2.6(b) represent the energy versus position band diagram in dark illuminated
equilibrium conditions respectively, the movement and collection of the charge carrier process is similar
to the above explained in section 2.2.3.

The external parameters and QE of the simulated solar cell mentioned above have been extracted and
are presented in Table 2-4, alongside a comparative analysis of experimental findings.

Table 2-4 Comparing the experimental and the simulated work on CdTe solar cells

Experimental[26] 0.82 25.60 66.40 14
Simulated 0.81 23.95 69.98 13.64
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Figure 2.7 comparison of the experimental and the simulated work (a) J-V curve and (b) QE curve

Figure2.7(a) and Figure2.17(b) correspond to the J-V curve and the QE curve of the simulated CdTe
solar cell Fill factor of the simulated cell is much greater in magnitude as compared to the experimental
one which can be further reduced by adding some series and shunt resistance, the divergence in QE
below 850nm wavelength is due no reflection considered from the front surface, deviation after §50nm
to 900nm is due to that in real sample electronic defect in semiconductor leads to the formation of
Urbach tails near the valence and the conduction band which results in shifting the absorption towards
higher wavelength region.
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2.4 Simulation of GaAs-based Solar Cell

The structure that has been opted for the simulation is taken from the reference[32], a schematic diagram
is depicted in Figure 2.8. Losses associated with the solar cell are such as radiative recombination, the
radiative recombination coefficient of 1.00E-10(cm?/s) introduced in the emitter, base, BSF layer, and
of 1.20E-10(cm’/s) introduced at the window layer, neutral defect at 0.71eV above valance band has
been introduced with a defect density of 5.00E+14 cm™ and 5.00E+13 cm™ in the emitter and base layer

respectively.
v A l l

Al0.5In0.5P:n++ Window
GaAs:n Emitter
GaAs:p Base
Al0.3Ga0.7As:p++ BSF

Figure 2.8 GaAs simulated solar cell structure

According to the simulation methodology using SCAPS-1D there are various required parameters that
can be extracted from various literature surveys and are tabulated in the table5[32], [33], [34], [35].

Table 2-5 Electrical parameters corresponding to different layers regarding simulation of GaAs solar cell

Parameters Alo;GapsAs  GaAs:p GaAs:n AloslngsP

Thickness(um) 2.00 3.50 0.12 0.02
Bandgap(eV) 1.8 1.42 1.42 2.4
Dielectric constant 11.56 13.18 13.18 10.00
Electron affinity(eV) 3.74 4.07 4.07 4.50

N.(1/cm?®) 1.00E+19 4.70E+17  4.700E+17 1.00E+19

Ny (1/cm?) 1.00E+19 7.00E+18 7.00E+18 1.00E+19

. (cm/s) 1.00E+7 1.00E+7 1.00E+7 1.00E+7

Vi, (cm/s) 1.00E+7 1.00E+7 1.00E+7 1.00E+7

te(CM?/Vs) 5.00E+2 4.70E+3 8.60E+2 1.00E+2

e (CM?/Vs) 6.00E+1 3.00E+2 1.50E+2 1.00E+1

No(1/cm®) 1.00E+15 0.00E+00  2.00E+18  8.00E+18

Na(1/cm?®) 2.00E+18 9.00E+16 0.00E+0 1.00E+15
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2.4.1 Result of simulation of GaAs solar cell

Band Diagram
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Figure 2.9 Energy versus position band diagram of the GaAs cell at (a) dark and (b) illuminated condition

A reference fermi level is at 0.00eV and a defect state highlighted with green colour is at 0.71eV above
the reference valence band in dark equilibrium at no bias, in illuminated conditions V. is given by the
splitting between quasi-fermi levels.

The spectral utilization of the solar cell that is measured in terms of QE is depicted in Figure 2.10(b)
and the characteristics J-V curve of the simulated solar cell have been depicted in Figure 2.10(a).
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Figure 2.10 (a) J-V curve of the GaAs cell (b) Spectral utilization of the GaAs cell

The derived external parameters are presented in Table 2-6.

Table 2-6 Extracted external parameters of GaAs solar cells

Simulated result 1.0218 25.91 87.78 23.24

2.5 Simulation of Ge-based Solar Cell

The structure that has been opted for the simulation is taken from the reference[36], a schematic diagram
is depicted in Figure 2.11. The technique of the simulation is very similar to what we have done
previously, the study of various parameters of different layers has been tabulated in Table2-7. Losses
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associated with the device are radiative recombination coefficient 1.00E-10(cm?/s). As far as optical
losses are concerned the reflection of 10% from the front surface has been taken into consideration.

I

|

InGaP window
Ge:n emitter

Figure 2.11 Ge cell structure

Table 2-7 Electrical parameters corresponding to different layers regarding simulation of Ge solar cell[36]

Parameters Ge:p Ge:n InGaP
Thickness(um) 180 0.180 0.98
Bandgap(eV) 0.664 0.664 1.82
Dielectric constant 16.00 16.00 10.00
Electron affinity(eV) 4.00 4.00 4.50
Nc(1/em?®) 1.040E+19 1.040E+19 1.00E+19
Ny (1/cm?) 6.00E+18 6.00E+18 1.00E+19
V,(cm/s) 1.00E+7 1.00E+7 1.00E+7
V,(cmis) 1.00E+7 1.00E+7 1.00E+7
te (CM?/VS) 2.60E+3 1.00E+3 8.03E+2
tr (cm?/Vs) 7.00E+2 1.00E+2 4.00E+1
Np(1/cm®) 0.00E+00 8.50E+18 3.00E+18
Na(1/cm®) 1.50E+17 0.00E+00 0.00E+0

2.5.1 Result of simulation of Ge solar cell

Looking at the J-V curve, a high short circuit current nearly 40mA/cm? is obtained due to the absorption
of low as well as high energetic photons because Ge has a smaller band gap. At the same time, we have
a small open-circuit voltage of around 0.26 volts because the extent of splitting between quasi-fermi

levels is much less due to the smaller band gap.
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Figure 2.12 (a) J-V curve of the GaAs cell (b) Spectral utilization of the Ge cell

Table 2-8 Extracted external parameters of GaAs solar cells

Simulated result 40.88 69.17

2.6 Summary

It is confirmed by performing simulations on various single junction photovoltaic technologies such as
homojunction solar cells based on GaAs and Ge absorber material, heterojunction solar cells based on
CdTe absorber material, perovskite solar cells based on CsGels absorber material, that the open-circuit
voltage(V,) is determined by the extent to which the quasi-fermi level Ery, and E,, are able to split.
The splitting of the quasi-fermi level is limited by the recombination mechanism due to the presence of
the defect in the solar cell, which leads to a deficit in open-circuit voltage.
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Chapter 3 -Influence of midgap states on the photovoltaic
performance: A case study with numerical simulation

3.1 Introduction

In this chapter reader's attention is brought towards the serious loss mechanism(recombination of
optically generated charge carrier) occurring in the device, which categorizes into two, first one is
unavoidable and cannot be controlled includes spontaneous radiative recombination and Aguer
recombination, unlike radiative recombination is dominant in direct band gap material, Auger
recombination is dominant in both direct as well as indirect band gap material because it is a three-
particle process which conserves both energy and momentum, e.g. auger recombination is still dominant
loss occur in high grade pure single crystalline solar cell. Another one is avoidable i.e. that can be
controlled by the manufacturing process, like defects present in the solar cell can be further reduced by
applying different synthesis approaches. The presence of this electronic defect definitely obstructs the
carrier transport mechanism which results in a decrease in device performance. It is widely recognized
that the overall structural disorder present in the semiconductor is measured in terms of Urbach
energy(Ey) which reflects in the formation of tail states near the band edges in the forbidden band gap
of the semiconductor[1], [37], [38], [39], [40]. Since the Urbach energy is a measure of the electronic
disorder and can impart information of the cell performance[41]. one of the approaches for investigating
loss mechanism in solar cells involves the study of Urbach energy (Ey) as a diagnostic parameter[42].
One of the main external parameter that directly affects the others is open-circuit voltage(Vy ), Hence,
using simulation methodology, investigations into the variation of open-circuit voltage with Urbach
energy have been performed. In this study, we restrict ourselves to the variation in defect concentration
only and show how this affects the external parameters of the solar cell. Hence by using an alternative
numerical simulation methodology, we will demonstrate the bijective correspondence between open-
circuit voltage(V,.) and Urbach energy(Ey). Such a study can contribute to the fundamental
understanding of the solar cell materials. In this study, we take the support of thin-film technology
cadmium telluride (CdTe) because thin-film photovoltaic solar cells are seen to be among the most
promising solar cells because of their high energy conversion efficiency, affordability, and ease of large-
scale manufacturing.

3.2 Method

The presence of defects in semiconductors leads to the formation of defect energy levels within the
forbidden region which facilitates a non-radiative SRH(Shockley Read Hall) recombination. Depending
upon their position in the forbidden region these defect states may act as trap or recombination
centers[1]. Mathematical expression for the recombination rate(Uszy ) is given by[43].

Uer = np —n? 21
SkH Tnsru (@ + P) + Tpsur(n + 1) o

Where n and p are electron and hole concentrations in conduction and valance bands respectively, n; is
intrinsic charge carrier density, 7, syg and T, sgy are the lifetimes of holes and electrons which are

inversely proportional to defect concentration, n; and p, are the value of the electron density and hole
density respectively when the electron Fermi level is equal to the trap level given by the expression.

n, = n;eEeEd/ksT ..3.2

p; = n;e EimE)/keT ..3.3
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Here E;, E; and kg are intrinsic energy level, trap energy level, and Boltzmann constant respectively.
From equation 3.1 one can observe that recombination depends on defect concentration and from
equations 3.2 and 3.3 it should be important to note that the quantities n, and p; are parameters
that introduce the dependency of the recombination rate on the trapping energy level E;. It is
known that the signature of total structural disorder within the system including the information of the
defects can be drawn in terms of the evolution of Urbach energy of the system[44]. Therefore, an
explicit quantitative analysis between Urbach energy (Ey;), defect concentration in the active layer and
open-circuit voltage(V,.) can provide a useful insight into solar cell materials which can be helpful in
comprehending the overall performance based on the initial optical characterizations. In that view, the
numerical simulation methods have been helpful for researchers; although such tools are primarily
utilized to optimize a cell structure knowing the internal parameters of various layers, however, its
potential to comprehend the role of the Urbach energy on the midgap states in the cell performance
should not be ignored. Therefore, in the current, we consider a cell device structure using the SCAPS-
1D software and perform numerical simulation for the defect concentrations in the active layer thereby
connecting it with the evolution of the Urbach energy and ultimately with the output parameters of the
photovoltaic cell. In the scenario of nearly consistent reflectance from the solar cells, EQE in longer-

wavelength edges can be expressed as [45], [46].

In(EQE) = Z—: +C 3.4

Where hv is the photon energy and Cis constant whereas the inverse slope of equation17 quantifies
the Urbach energy(Ey). As above explained loss of charge carriers via non-radiative recombination
(SRH) depends on two factors the defect concentration and the position of the defect level in the

forbidden zone of the band gap.

The procedure that we follow keeps the defect level at a fixed position and varies defect density for
absorber layer CdTe and observes the effect of bulk recombination current(J_ SRH), along with the
external parameters of the solar cell and finally shows that there is one to one correspondence between

Open-circuit voltage(V,.) and Urbach energy(Ey).

3.3 Result and Discussion

3.3.1 Variation of external parameters with respect to defect density

The solar cell structure that we simulated for this study is CdTe/CdS the details of simulated parameters
and the result of the simulation are presented in chapter2 in the section2.3.

We will observe the effect on external parameters of the solar cell with an increase in the neutral defect
density of the absorber material which varied in the range from 1.00 x 10*” ¢m™3 to 1.00 X 10*%cm ™3
which is consistent with the literature[47].

Before proceeding with the external parameters plot, it is essential to plot the Shockley-Read-Hall
recombination current density (J_SRH) against the voltage across the solar cell for each specific defect
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density. This preliminary step will allow us to observe and analyze the extent of variation in J SRH

corresponding to different defect densities.
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Figure 3.1 SRH recombination current density vs Bais voltage across solar cell when the defect density are varied from
1.00x10717 cm3 to 1.00x10719 cm™3

From Figure3.1 one can observe that the photo-generated current is constant and does not vary with
change in defect density and voltage across the solar cell, as defect density increased from 1.00 X
10%7cm™ to 1.00 x 10*° cm™ the value J_SRH recombination current increases irrespective of the
value of voltage across the solar cell. The voltage where J_SRH recombination current density exceeds
the photo-generated current density, the solar cell instead of generating power, starts consuming the

power.
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Figure 3.2 (a) Vog, (b) Js, (c) FF, and (d) PEC variation with respect to defect density.

Here we observe that the Voc decreases with an increase in the defect density starting with defect density
1.00 X 107 ¢cm™ when Voc is 0.5001 volt it diminishes to 0.2884 volts when defect density is1.00 X
10° cm™. This reduction in Voc is due to the fact that with a continuous increase in the defect density
the recombination of charge carriers increases due to this the lifetime of optically generated charge
carriers reduces hence diffusion length, reducing the probability of collection of charges at the front and
the back contacts. Which results decline in Voc. Jsc also decreases with increases in the defect density,
because the defects provide an alternative recombination path within the solar cell, which means a
significant amount of optically generated charge carriers recombine before getting collected to the back
and front contact. The FF increases due to the increase in the “squareness” of the J-V curve, the power
conversion efficiency(eta) should also decrease due to the loss of optically generated charge carrier via
recombination.

3.3.2 Effect on Urbach Energy due to increase in the defect density

The reciprocal of the slope of Equation 3.4 yields the Urbach Energy. It is noteworthy that this
expression is applicable within the longer wavelength region. Consequently, to determine the Urbach

energy, consideration is given to the EQE points situated below the bandgap.
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Figure 3.3 Plots of In(EQE) v/s Photon Energy(eV) at various defect concentration

With a similar approach Urbach energy can be found for each defect concentration, the outcomes are
tabulated in Table3-1.

Table 3-1 Variation of Urbach energy and open-circuit voltage with defect density.

Defect Density(cm™) Urbach Open-circuit
Energy(meV) voltage(volt)
1.00 x 1017 20.8006 0.50011
5.00 x 1017 20.8507 0.40897
1.00 x 1018 21.1278 0.37512
5.00 x 1018 23.0994 0.31153
1.00 x 10%° 24.5415 0.28842

Graphical representations depicting the relationship between Urbach energy and open-circuit voltage

with respect to defect density are illustrated below.
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Figure 3.4 (a) Drop in Voc with respect to Urbach energy (b) Variation in Urbach energy with an increase in defect
concentration

Open-circuit voltage decreases rapidly with an increase in Urbach energy, according to Figure3.4(a)
value of open-circuit voltage decreases from 0.5 volt to 0.28 volt with an increase in Urbach from 20.80
meV to 24.5 meV. From Figure 3.4 (b) Urbach energy increases with an increase in defect density a

significant increase in Urbach energy has been observed when defect density increases beyond 1E+18
3
cm”.

3.4 Summary
This chapter explores how external parameters change with varying defect densities in solar cells.

Further, employing an empirical mathematical relationship demonstrates that as the defect
concentration increases, the Urbach energy also rises.
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Chapter 4 -Device Optimization

4.1 Introduction

In the previous chapter we have dealt with the loss mechanism occurring within the solar cell, now apart
from the loss mechanism, a study has been performed towards optimizing the generation mechanism,
in the ever-changing world of renewable energy, Fine-tuning the fabricated solar cell device becomes
important to use the full potential of renewable energy, optimizing the solar cell is not an easy task as
the performance of the device is affected by the several parameters, to do optimization we have to take
the support of the computation method and to make computation easy there are various extraordinary
simulator tools which enveloped with numerous mathematical models where numerical simulations can
be performed with enhanced accuracy help to understand device response under several initial
conditions, Scaps-1D has potential to filter out best-optimized device. In this section refinement of the
perovskite solar cell (CsSnCl; absorber material) has been carried out by varying absorber doping
strength, HTL, ETL, and absorber thickness.

4.2 Cell Description

The design of the cell is depicted in Figure 4.1, fullerene is used as ETL, and Cu,BaSnS4 works as HTL.
The electrical parameters of the various sandwiched layers are illustrated in Table 4-1, back contact
work function is taken to be 5.1eV. The result of the simulation has been illustrated in Table 4-2, a V.
of 1.00 volt, J¢c of 21.16 mA/cm?, FF of 77.69% and PCE of 16.47% were reported initially before
optimization.

Figure 4.1 Schematic Cell Structure
4.3 Optimizing ETL

ETL plays a crucial role in enhancing the PEC of the device by facilitating the extraction and
transportation of electrons from the light-absorbing layer to the electrode, minimizing losses due to
recombination. Initially, an ETL thickness of 100nm is introduced, to optimize, ETL thickness ranging
from 25nm to 450nm is taken into consideration. From Figure 4-2(b), an Increment in the value of Jg.
has been observed from 21.16 mA/cm? to 25.74mA/cm? with the decrease in the ETL thickness starting
from 100nm to 30 nm(not visible in Figure 4-2 due to higher scale of the x-axis for convenience the
data will be provided in Appindix1) and a small increment in voltage has also been observed, which
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overall increases the PCE of the device, the decrease in the device performance with increase the
thickness of ETL is due to the exponential decay of the injected excess electron in the ETL, even this
could be visualized in more quantitative approach by solving differential diffusion equation for the
electron under a steady condition which simplifies to Equation 4.1(see Appindix2).

6,(x) = Ane(_x/Ln) 41

Where, 6, (x) the concentration of electrons measured at any position x, An is the concentration of
injected electron at position x = 0, L,, is the diffusion length. The optimized thickness of the ETL comes
out to be 30nm.

Table 4-1 Initial material parameter for Scaps 1-D

Parameter ITO ETL Absorber HTL
Thickness(nm) 500 100 700 100
Eg(eV) 3.5 1.7 1.52 1.9
Xe(eV) 4 39 3.90 3.6
&, 9 4.2 29.4 54
Nc(em™3) 2.2x10® 8.0 x10"° 1.0 x 10*° 2.2 x 108
Ny(cm™3) 1.8 x 10 8.0 x 10*° 1.0 x 10*° 1.8 x 10*°
He(cm?/Vs) 20 8.0 x 1072 2 30
uh(cmz/Vs) 10 3.5x 1073 2 10
NA(cm_?’) 0 0 1.0 x 1014 1.0 x 1018
Np(em™3) 1.0 x 10* 1.0 x 10Y7 0 0
Nt(cm_?’) 1.0 x 101° 1.0 x 101 1.0 x 101 1.0 x 101
Table 4-2 Extracted external parameters
External Voe(V) Jsc(mA/cm?) FF(%) 1(%)
Parameter
Simulated result 1.00 21.16 77.69 16.47

0.0 01 02 03 04 05 0.0 01 02 03 04 05
ETL Thickness(um)
(a) variation of V. with ETL Thickness

ETL Thickness(um)
(b) variation of J . with ETL Thickness
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4.4 Optimizing HTL
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Figure 4.3 Variation of (a) Voc, (b) Jsc, (c) FF, and (d) PEC with HTL thickness

HTL facilitates the movement of holes within the solar cell, how HTL works in the collection of holes
from the absorber layer and exporting to the contact can be explained with the help of the energy versus
position band diagram, the same has been done in the section 2.2.3, initially, the thickness of the HTL
was taken to be 100nm, to optimize, HTL thickness ranging from 50nm to 500nm is taken into
consideration. All the external parameters remain almost unchanged with the variation in HTL
thickness, this means that there is negligible recombination or we can say that there is no decay of the
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injected hole in the HTL because HTL is highly acceptor dopped which increases the lifetime of the
hole and hence the diffusion length which leads to negligible recombination(see Equation 4.1). Overall
the HTL thickness does not affect the performance of the device, hence taking an initial value of HTL
as optimized.

4.5 Optimizing Absorber

The absorber layer plays a very crucial role in converting sunlight directly into electricity by absorbing
photons, Researchers continually putting efforts to enhance absorber materials to improve efficiency,
reduce costs, and make solar energy more competitive with other forms of electricity generation.
Initially, the thickness of the absorber layer of 700nm was introduced, to optimize further, the absorber
thickness ranging from 500nm to 2000nm was taken into consideration.
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Figure 4.4 Variation of (a) Voc, (b)Jsc, (c) FF, and (d) PEC with absorber thickness

A continuous decrement in the V., Starting from 1.01 volt to 0.95 volt has noticed with increase in the
thickness of the absorber layer from 500nm to 2000nm. Variation of other three external parameters
with absorber thickness is same, first increases continuously and then attain maximum at some point
and then decreases gradually. The Jsc attains its maximum value at 1200nm, The FF attains its maximum
value at 700nm, and the PEC attains its maximum value at 800nm, the optimized thickness of the
absorber layer is 800nm.

Initially, with an increase in the thickness of the absorbing material, the absorption of photons increases
resulting in a significant increase in generated charge carriers as a consequence the Jsc increases
significantly this trend will follow up to some extinct, after the further increase in the thickness of the
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absorbing material the value of the Jsc decreases significantly due to recombination of generated
minority charge carrier because now the diffusion length of the minority carrier is much less than the
thickness of absorbing material. Increasing the thickness beyond the limit gives two more negative
factors which include an increase in series resistance and a lower band gap of the absorber material.

4.6 Optimizing Absorber acceptor concentration

Doping, in the context of the absorber layer, involves intentionally introducing specific impurities into
the semiconductor material to modify its electrical properties. This process plays a crucial role in
enhancing the performance and efficiency of the solar cell. initially, the acceptor concentration of 1.0 X
10* cm™ is introduced in the absorber layer. To optimize, a simulation ranging from 0.0 x 10°° ¢m?
to 1.0 X 108 ¢cm™ is performed. The result of the simulation is illustrated in Figure 4-5.
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Figure 4.5 Variation of (a)Voc, (b) Jsc, (c) FF, and (d) PEC with absorber acceptor density

The Voc remains constant up to variation in doping density 1.0 x 10**cm™ and, increases significantly
as doping concentration increased beyond 1.0 X 10°>cm™ due to change in band alignment with doping,
the FF remains almost constant up to defect concentration of the 1.0 X 10*3cm™ beyond this it starts
increasing and attains maximum value of 77.94% at doping of the level 1.0 X 10'5cm™ after that FF
drops rapidly with increase in the defect concentration and finally it reduces to 72% when the doping
concentration is 1.0 X 108 cm>, in the case of Jsc and PCE a similar trend was observed, Jsc and PCE
remains constant up to the doping concentration of 1.0 x 10**cm™ and further increases significantly,
the Jsc attains maximum value of 22.91 mA/cm* when doping density was 1.0 X 10*¢cm™, and shows
a nearly constant behaviour up to doping density 1.0 X 1017 cm™, and after that it drops rapidly to 19.56
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mA/cm* when doping density was 1.0 X 10*°cm™, in similar fashion PEC attains the maximum value
of 18.24% when the doping density was 1.0 X 1017 cm™ and after that it drops rapidly to 16.06% when
the doping density was 1.0 x 10*°cm™, keeping in mind that we have a high Voc, Jsc and at the same
time we do not lose FF much, the optimized value of the absorber acceptor doping is 1.0 X 10*¢cm™.

To understand the reason behind the behaviour of PEC with doping density, Initially, let’s consider that
our absorber material is undoped, then in this situation we found that the PEC is minimum(see data
provided in Appindixl) because in undoped material the non-radiative recombination(SRH
recombination) is maximum, when the concentration of the holes and electrons are equal, this can be
visualized from the Equation 4.2, Usgy(rate of recombination) will be maximum when n = p.

np —n?
Tnsru (D + P) + Tpsur(n + 1)

U SRH — 4.2

Hence, the doping, of the absorber layer, will reduce non-radiative losses(SRH recombination) as well
as increase the conductivity of the material, but high doping levels result in the reduction of the device
performance because as the doping level increases the lifetime of the minority carrier decreases which
results in the significant loss of the generated charge carriers.

4.7 Summary

After implementing the optimization techniques, significant enhancements were observed in several
critical aspects of the solar cell's performance. The optimized design resulted in a Voc of 1.04 volt, Jsc
of 26.12 mA/cm?, FF of 82.28% and PEC of 22.49% same has been tabulated in Table4-3. The
corresponding J-V curve is depicted in Figure 4-6.

Table 4-3 Result of Optimized solar cell

External Voc(V) Jsc(mA/cm?) FF(%) 1n(%)
Parameter
Simulated result 1.04 26.12 82.28 22.49
e J(mAIcm2)§
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Figure 4.6 J-V curve of optimized Cell
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Chapter 5 -Simulation of multi-junction solar cell

5.1 Introduction

Scaps-1D is a well-known simulator tool as far as the simulation of single junction solar cells is
concerned, however, its latest version is equipped with software script support. This new update enables
users to simulate multijunction and tandem solar cells, the procedure is not as straightforward as
experienced in single junction, first, you have to explicitly architect individual single junction solar
cells and last you have to connect them in series using script support. Starting with Shockley Quisser-
limit for single junction solar cells we step towards multijunction solar cells which is a way to overcome
this limit. The importance of different layers such as the window layer, back surface field, and tunnel
junction has been enveloped in this chapter.

5.2 Shockley-Queisser limit

As far as single junction solar cell is concerned the two main external parameters of the solar
cell i.e. Vo and Jgo their maximum theoretical limit is influenced by the band gap of the
material, Thus, within the realm of single-junction solar cells, the question arises, what is the optimal
band gap for the absorber semiconductor to achieve the highest conversion efficiency under the A.M.
1.5 solar spectrum?

5.3 Spectral Utilization

QE is a parameter that quantifies the spectral utilization in solar cells, The device converts different
portions of the solar spectrum, primarily sunlight, into electricity depending on the band gap of absorber
material. Solar cells are designed to capture photons and convert their energy into electrical current. In
order to get better efficiency, we have exploited as much as possible part of the solar spectrum. Now
will see the spectral utilization by two different absorber materials whose band gap is comparatively
small and comparatively large.

5.3.1 Effect of spectral utilization on the material whose band gap is comparatively large

To analyze the impact of spectral utilization in high band gap materials, a simulation was conducted on
gallium arsenide (GaAs) based solar cells whose band gap is 1.42 eV. The simulated cell structure is
illustrated in Figure 5.1.

v \d \ J

Al0.5In0.5P:n++ Window
GaAs:n. Emitter
GaAs:p Base
Al0.3Ga0.7As:p++ BSF

Figure 5.1 Schematic representation of GaAs cell
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This solar cell structure has been already simulated in chapter2 the result of the simulation has been
directly used. From Figure 5.2 (a) it should be noted that an open circuit voltage of 1.02 volts has been
obtained with the short circuit current density of 25.91mA/cm?. The Spectral utilization of solar cell can
be predicted from Figure 5.2 (b) photons having energy higher than band gap energy participate in
electron-hole pair generation.

Predominantly shorter wavelength part i.e. below 850nm spectrum has been utilized successfully. Due
to again recombination of optically generated charge carrier’s quantum efficiency has been reduced
below 85%, and a slightly lower QE has been figured out below 520nm this is due to the absorption of
higher energy photons takes place in the window layer(front layer) and due to low mobility of hole,
generated minority charge carrier(hole) recombine again.
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Figure 5.2 (a) J-V curve of GaAs cell (b) Spectral Utilization of the GaAs cell
5.3.2 Effect of spectral utilization on the material whose band gap is relatively low

Investigating the impact of spectral utilization in low band gap materials, a simulation was conducted
on germanium-based solar cells with a band gap of 0.66 eV. The simulated cell structure is illustrated

I N B

InGaP window
Ge:n emitter

Figure 5.3 Simulated Ge cell

The result of the simulation directly imported from chapter2, an open-circuit voltage of around 0.26
volt and a short-circuit current density of 40mA/cm?® has been obtained, spectral response can be
interpreted from Figure5.4(b), since the band gap of absorber material is relatively small so the
absorption spectrum will shift towards higher wavelength region, which reflected very well in QE curve
(lower energy photons efficiently participate in electron-hole pair generation). It is noteworthy that the
QE for lower wavelength regions below680nm is significantly lower because higher energy photons
have low penetration depth and get absorbed within the window layer (front layer), most of the
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generated minority charge carrier(hole) will again recombine due to its low mobility as a result
generated carrier do not get collected at the back contact responsible for lower QE for higher energy
photons.
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Figure 5.4 (a) J-V curve of Ge cell (b) Spectral utilization of the Ge solar cell

5.4 A comparative study of materials having a relatively higher and lower band gap

54.1 J-V curve

The characteristic J-V curve of both GaAs solar cell and the Ge solar cell has been illustrated in
Figure5.5.
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Figure 5.5 J-V curve of both materials (a) blue curve reflects the J-V curve of Ge solar cell which has a lower band gap (b) red
curve reflects the J-V curve of GaAs solar cell which has a higher band gap
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R/

% J-V curve of GaAs solar cell: -
> ngh Voc.

» Relatively low Jgc is obtained.
% J-V curve of Ge solar cell: -

> Low VOC .

» Relatively high Js.is obtained.

A high V. in the case of GaAs solar cell is a consequence of its high band gap which leads to splitting
in quasi fermi level to higher extinct, on the other hand, having low short circuit current density because
only  higher  energy  photon  participates in  electron-hole  pair  generation.
In the case of Ge solar cell smaller band gap is responsible for having low V¢ due to less splitting in
quasi-fermi level and high short circuit current density.

5.4.2 spectral utilisation
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Figure 5.6 QE curve of both materials (a) red curve reflects the QE curve of Ge solar cell which has a lower band gap (b) blue
curve reflects the QE curve of GaAs solar cell which has a relatively large band gap

¢ Spectral Utilization of GaAs solar cell relatively high band gap material: -

» From Figure 5.6 it is clear that the photons that are below the band gap do not
participate in the generation of electron-hole pair.

» The EQE is negligible for the wavelength larger than 880 nm.
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» The part of the spectrum that is beyond 880nm is not utilized.

¢+ Spectral Utilization of Ge solar cell relatively low band gap material: -

» The part of the spectrum that is beyond 1880nm is not utilized.

» Ge solar cells efficiently harness the solar spectrum from 680nm to 1880nm.

Higher band gap material uses only the lower wavelength part of the spectrum and lower band gap
material uses only the higher wavelength part of the spectrum much more efficiently. This puts the
upper limit on the power conversion efficiency of the single junction solar cell, well known as the
Shockley-Queisser limit[43]. To exploit as much as possible part of the solar spectrum one has to go
with the multijunction solar cell.

5.5 Multijunction Solar cell

In a multijunction solar cell/Tandem, there is the stacking of 2-3 different junctions of solar cell one
over another to exploit the much more part of the solar spectrum, The typical configuration of a

multijunction solar cell is presented below in Figure 5.7.
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n+

P+

Al Metal contact
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|
n++GaAs AR COATING GaAs
AllnP Window
InGaP Emitter
InGaP Base
AlGalnP BSF
TUNNEL JUNCTION
InGaP Window
GaAs Emitter
GaAs Base
InGaP BSF
TUNNEL JUNCTION
InGaAs Buffer
Ge Emitter
Ge Base
Ge BSF

Top cell
InGaP 1.86eV

Middle cell
GaAs l.42eV

Bottom Cell
Ge 0.664eV

Back Contact

Figure 5.7 Schematic representation of Multijunction solar cell
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The architecture of a multijunction solar cell depends on the penetration depth of the wavelength, The
spectral portion corresponding to the most energetic photons, such as blue light, exhibits the shortest
penetration depth within materials, consequently, the highest band gap junction always functions as the
top cell, similarly the spectral segment corresponding to the less energetic photon, such as near-infrared,
exhibits the larger penetration depth within the materials, as a consequence the smallest band gap
junction always functions as the bottom cell, the same has been illustrated in Figure5.7.

Now, we will explore the significance of the various layers used in the cell structure.

5.5.1  Window layer

Surface termination leads, to unsatisfactory bonding to the exposing atom, resulting formation of
dangling bonds, and as a consequence leads to the formation of defect levels in position versus the
energy band diagram near the surface which facilitates optically generated charge carriers to recombine
via transferring heat to the lattice. Growing a window layer on top of it will partially restore the bonding
environment, and reduce the loss of generated carrier, to prevent optical losses due to absorption within
the window layer it is practiced to select material with a high band gap and at the same time its lattice
parameter should also be matched with the layer on top of that we want to grow. Further, the function
of the window layer can be summarised in two points.
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Figure 5.8 Energy v/s position band diagram of the first cell

* Provides good passivation to prevent Surface recombination.

* Provide selective contact, from Figure 5.8 the generated charge carrier electron will tunnel
through a small barrier due to the formation of heterostructure between the absorber and the
window layer at the same time hole encounters a high barrier and reflects back which prevents
the recombination of generated charge carrier.
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5.5.2 Back Surface Field

In reference to Figure5.8 AlGalnP works as a back surface field which is highly p dopped, similar to
the window layer BSF also provides surface passivation and selective contact, the generated charge
carrier hole gets easily collected to the back contact as it does not face any potential barrier, but at the
same time, electron encounters a huge potential barrier and reflected back which prevent recombination
of generated charge carrier.

5.5.3 Tunnel Junction

Tunnel junction plays a crucial role in the operation of multijunction solar cells by providing electrical
connection and current matching between the subcells. The absence of tunnel junction causes electrical
resistance and voltage drop this can be easily understood by considering the simple assumption of
stacking consecutively three p-n junctions one another illustrated in Figure 5.9.

N Junction
»1
»2
»3

L

-
L

T |3 |T |33 |T |3

Figure 5.9 Stacking of the p-n junction without tunnel junction

Considering the flow of current in the vertically upward direction, junctions 1,3 and 5 are in forward
bias but at the same time junctions 2 and 4 are in reverse bias, hence junctions 2 and 4 limit the
magnitude of current flowing through the device because in reverse bias current flow due to drift of
minority charge carrier, which is limited by the thermally generated minority charge carrier, which is
main cause for electrical resistance and voltage drop.

By adding a tunnel junction, it is possible to stop the development of this kind of reverse
bias junction.
= |t offers minimal electrical resistance.

= Additionally, it has a large band gap to stop losses from parasitic absorption.

Before exploring the operation of multijunction solar cells, let’s discuss the properties of tunnel junction
that make tunnelling favourable, degenerate semiconductor materials are used i.e. in n-type material
fermi level lies above the conduction band, and in p-type material, fermi level lies below the valence
band this can be clearly pointed out in Figure 5.10 in the region of the tunnel junction. High doping also
responsible for a narrow depletion zone which increases the probability of tunnelling because tunnelling
probability depends on the width (not height) of the potential barrier, the higher the potential width
lower will be the tunnelling probability.
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Figure 5.10 Energy v/s position band diagram of the first cell with tunnel Junction

In order to explain the operation of a multijunction solar cell with tunnel junction energy versus position
band diagram has been simulated and illustrated in Figure 5.10, at the right of the tunnel junction energy
versus position band diagram corresponds to the top cell, and the left of the tunnel junction energy
versus position band diagram corresponds to the middle cell, generated electrons in the middle cell will
recombine with the generated holes of the top cell, similarly generated electrons of the bottom cell will
recombine with the generated holes of the middle cell, this demonstrates that recombination current at
the tunnel junction represents the current density of the triple junction solar cells. That’s why, the cell
which is producing the lower current will determine the current density of the cell. keeping all the
aforementioned discussed ideas about multijunction solar cells now we are stepping towards the
simulation of a simple two-junction solar cell using Scaps-1D by using script support.

5.6 Method of Simulation

Here we use the GaAs solar cell (structure represented in Figure 2.8) as the top cell and the Ge solar
cell (structure represented in Figure 2.11) as the bottom cell. The strategy that we use to simulate the
two junction Tandem cell using SCAPS-1D is that first we separately design the top cell (GaAs) and
separately bottom solar cell (Ge), to combine them in series connection followed by the extraction of
the resultant J-V curve of the tandem solar cell along with external parameters we use SCAPS-1D script.

Assumption: -

* Ideal tunnel junction.
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*  The spectrum that is utilized by the top cell will correspond to that region for which photon
energy is higher than the band gap of the top cell.

*  The spectrum that is utilized by the bottom cell will correspond to the part of the spectrum that
is unabsorbed by the upper absorber layer and also, we considered that some part of the
spectrum is transmitted without absorption (20%).

lA.M 1.5 spectrum l
v

Al0.5In0.5P:n++ Window

GaAs:n Emitter  |Top cell
GaAs:p Base
Al0.3Ga0.7As:p++ . BSF

InGaP window

9355!, emitter _

Figure 5.11 Two Junction Tandem cell

5.7 Scaps-1D script execution procedure

Step 1: write your script in any platform such as Notepad and save the file in the provided Scaps-1D
library script folder with the file extension(.script).

Step 2: Set working conditions such as temperature, upload spectrum file according to requirement,
stop voltage, and select the action that you want to perform.
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Figure 5.12 Screenshot of the setting working condition

Step 3: Click on the Script set-up button, a window will pop up, click on the load button and select the
script file you want to upload, and click on OK.

t Editor Pane

X

SCAPS script (new line with ENTER) Final Tendem Connection.script
/I SCAPS script

clearall
load definitionfile GaAs Topcell.def/f or your deffile ofthe top cell (need to be in the scaps/deffolde

calculate singleshot ¥
getiv xy // fortop cell: v is stored in xvector, i in yvector _
get characteristics jsc yvalue Jf jsc is stored in yvalue

set scriptvariable yvalue yvector[0] // the first calculated J value is iny

math scalarabs yy Jf the first calculated |J| value is iny

[ show scriptvariables

load definitionfile Ge Bottom Solar cell.def /f or your deffile ofthe top cell (need to be in the scaps/d:
calculate singleshaot . Cancel }
OK }

.

getiv zu // for bottom cell: v is stored in uvector, 1 in vvector
get characteristics jsc uvalue /f jsc is stored in uvalue

set seriptvariable vvalue 0.002 jf start varying Jtandem from Jsc(top) + this increment (in majem?2) (st 7 ~.

Insert Script parts: accept first proposed with F3 or select by double-clicking below

Command Argument 1 Argument 2 Argument 3 Argument4 WValue
A F| e E |

L

L
L

Figure 5.13 Process of loading tandem script

Step 4: Finally click on the Execute script button and get a result.
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SCAPS 3.3.10 Action Panel - ] X
—Working point——————————————— Series resistance Shunt resistance—; —— Action list All SCAPS settings —
Temperature (K) gSI}D 00 yes yes
no no
Vaoltage (V) gDDDDD Load Action List l ‘ Load all seftings l
1.00E+0 Rs Ohm.cm”2 Rsh 1.00E+3
IREgErE(id) 1.000E+6 ‘ Save Action List l ‘ Save all settings l
Number of points gS S/cm”2 Gsh g 1.00E-3

lllumination: Dark -:D Light Specify illumination spectrum. then calculate Gix) I:l:- Directly specify Gix)
Analytical model for spectrum -_U Spectrum from file ] - 5 — Analytical model for Gix) [ Il G(x) from file: —
ncident (or bias
Spectrum file name: iIIummaLedfrcm\eﬂ.]:lwllummatedﬁ'umright |ightp0wef(w,m2§
Select . I AM1_5G 1 sun.spe sun orlamp  1000.00 G(x) model | Constant generation G |T|
=peclaim file Shortwavel. (nm) ﬁ 2000
Spectrum cut off ? ggs - S afier cut-off ||1000.00 Ideal Light Currentin G(x) (mAfem2) 20.0000
Long wavel. (nm) = 4000.0 Transmission of attenuation filter (%) ﬁ 100.00
Neutral Density ﬁ 0.0000 Transmission (%) -3 100.000 afier ND 1000.00 Ideal Light Current in cell (mAjcm2) 0.0000
Action———————— -Pause at each step number
of points
= V1 (V) % 0.0000 V2(v) 215000 [ Stopafiervoc =176 | 20.0200 increment (V)
— Ccv Vi(V) ﬁ -0.8000 V2 (V) ﬁ 0.8000 ﬁ 81 ﬁ 0.0200 increment (V)
— cf f1 {Hz) §1 DOOE+2 2 (Hz) ﬁw D00E+6 §21 gs points per decade
= QE(IPCE) WLT (nm) ﬁBDD 00 WL2 (nm) ﬁZDDD 00 ﬁﬁ‘\ ﬁ‘ll} 00 increment (nm)
Set problem ] loaded definition file: I Problem file: new problem | |SetProblem

Caloulats: singls shot Continue ] Stop ] Results of calculations ] Save all simulations ]
N Batch set-up EB | GR| AC I -V I CV| Cf| QE Clear all simulations ]
N Record setup Recorder results ] SCAPS info

Curvefitting results

Curve fitsetup )
.
Script setup
S

Script graphs ] Script variables ]

Figure 5.14 Script Execution

5.8 Scaps-1D Script used for simulation of multijunction solar cell
The script that is used for the simulation of multijunction solar cell is provided below

load definitionfile GaAs Topcell.def //top cell file stored in
definition folder with the file extinction type (.def)

calculate singleshot // this code will simulate individually top cell
get iv ab // extracting j-v curve of top cell and placing i in b vector
and v in a vector

get characteristics.jsc bvalue // store value of J sc corresponding to
top cell in b vector.
set scriptvariable.bvalue yvector[0] // stoting J sc in b-vector

math scalarabs bb

load definitionfile Ge Bottom Solar cell.def // bottom cell file stored
in definition folder with the file extinction type(.def)

calculate singleshot// this code will simulate individually bottom cell
get iv cd // extracting j-v curve of bottom cell and placing i in d
vector and v in c vector

get characteristics.jsc uvalue

set scriptvariable.vvalue 0.003 // Begin changing Jtandem from
Jsc(top) + this increase (in mA/cm2)

math scalarsubtract vvy // The beginning value for Jtandem

set scriptvariable.wvalue 0 // Jtandem's stop value
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set scriptvariable.bvalue vvector[loopcounter]
math interpolate xXyY

/I[Determine the bottom cell's voltage at this junction (via
interpolation); set its inzuvalue

set scriptvariable.uvalue vvector[loopcounter]

math interpolate zZuU

// Perform the series connection: When the top and bottom cell voltages
are added, the result is in xvalue.

math scalaradd xxz
set scriptvariable.wvector[loopcounter] xvalue // and enter this
value (x) in the vector w

loop stop
// Give the vectors appropriate names, then plot them

set scriptvariable.xname Vtop

set scriptvariable.yname Jtop

set scriptvariable.zname Vbottom

set scriptvariable.uname Jbottom

set scriptvariable.wname Vtandem

set scriptvariable.vname Jtandem

show scriptvariables

plot draw wv // plot j-v of tandem cell
plot draw xy // plot j-v of top sub cell
plot draw zu // plot j-v of bottom sub cell
// obtaining the tandem's efficiency metrics and placing it in the

scalars x vector, y vector, z vector, u vector, v vector, w vector

math characteristics.voc xwv
math characteristics.jsc ywv
math characteristics.ff zwv
math characteristics.eta uwv
math characteristics.vmpp vwv
math characteristics.jmpp wwv
show scriptvariables

46



5.9 Result of simulation

J-V curves of individual top and bottom cells are illustrated below.
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Figure 5.15 J-V curve of the top (GaAs) solar cell (b) J-V curve of the bottom (Ge) solar cell (c) J-V curve of the tandem Cell

The J-V curve of the resultant two-junction tandem cell is illustrated in Figure 5.15(c) by the plot in red
colour. According to our assumption ideality of tunnel junction, the short circuit current density
regarding to multijunction solar cell is equal to the current density of the cell that produces the lowest
short circuit current density. Subcells were connected in series so the resultant V. will the sum of
individual Vy. produced by the subcell. A screenshot of extracted external parameters is depicted in

Figure 5.16.
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S 3.10 Script Vanables Pane

mode 0

filename: defaultfilename

loopcounter 99

max. nr. ofiterations 100

looperror 1.000000e+30

maxeror 1.000000e-03

£l

uvalue vvalue wvalue
2.8090E+1 1.1176E+0 25134E+1
Jbottom Jtandem (mA/cm2) Vtandem (V)

0-2.85136e+01 4 0-259114e+01 4 = 0 2.90522e-01
1-2.85114e+01 1-2.56497e+01 1 1.08060e+00
2-2.85069e+1 2-253879e+01 2 1.10368e+00
3-2.84970e+01 3-251262e+01 3 1.11793e+00
4-2 84757e+01 4-2.48645e+01 4 1.12811e+00
5-2.84296e+01 5-2.46028e+01 5 1.13828e+00
6-2.83299e+01 6-2.43410e+01 6 1.14401e+00
7-2.81143e+01 7-2.40793e+01 7 1.14882e+00
8-276478e+01 | 8-2.38176e+01 8 1.15363e+00
9-2 66393e+01 9-2 35558e+01 9 1.15844e+00
10-2.44613e+01 10-232947e+1 10 1.16326e+00
11-1.97693e+01

Fl il M

General SCAPS scriptvariables

xvalue

1.2705E+0

]

Viop (V)

0 0.00000e+00
1 2.00000e-02
2 4.00000e-02
3 6.00000e-02
4 8.00000e-02
5 1.00000e-07
6 1.20000e-01
7 1.40000e-01
8 1.60000e-01
9 1.80000e-01
10 2.00000e-01

Continue ~ }
e

]

yvalue
2.6008E+1

Jtop (mAfcm2)

0-259134e+01
1-2.59130e+01
2-259126e+01
3-259123e+01
4-259119e+01
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6-2.59111e+01
7-259107e+01
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9-2.59099e+01
10-2.59095e+01

]

zvalue
8.5007E+1

Vbottom (V)

0 0.00000e+00
1 2.00000e-02
2 4.00000e-02
3 6.00000e-02
4 8.00000e-02
5 1.00000e-01
6 1.20000e-01
7 1.40000e-01
& 1.60000e-01
9 1.80000e-01
10 2.00000e-01
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Figure 5.16 Screenshot of the extracted external parameters

here the different vector value holds different external parameters such as

x vector—holds the V. of the tandem solar cell.
y vector—holds the J¢. of the tandem solar cell.
z vector—holds the FF of the tandem solar cell.

u vector—holds PEC of the tandem solar cell.

v vector—holds the maximum operating voltage.

w vector—hold maximum operating current density.

The Vycof 1.27 volts has been obtained with a Jscof 26.00mA/cm? and a FF of 85% with a PCE of

28.10%.

Now will see the spectral utilization of a multijunction solar cell illustrated in Figure 5.17, red curve
reflects the spectral utilization of high band gap material(GaAs top cell) which uses the lower
wavelength part of the spectrum and on the other side blue curve reflects the spectral utilization of low
band gap material(Ge bottom cell) which uses higher wavelength part much more efficiently, hence by

using two junctions solar cell we are able to exploit much part of the solar spectrum.
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Chapter 6 -Conclusion and Feature Scope

6.1 Conclusion

In this, I set out to investigate the loss and the generation mechanisms occurring within the solar cell,
the domain of the study of the loss mechanism is concise to variation in defect concentration, and finally,
by using some mathematical empirical relations we practices to connect Urbach energy with one of the
external parameter the Open-circuit voltage. To utilize the full potential of the fabricated device, a
generation mechanism has also been explored, where we optimize the single junction solar cell by
optimizing various parameters independently which are ETL thickness, HTL thickness, absorber
material thickness, and the acceptor doping density, to an extreme level so that finally we have a best
fine-tuned device. As far as single junction solar cells are concerned there is a maximum theoretical
limit up to which the device can transform light energy into electrical energy so, called the Shockley
Quiesser limit, which the band gap of the material can determine, this upper limit is due to restriction
in the spectral utilization by the single junction solar cells. The way to overcome this limit is to remove
the restriction of the spectral utilization which can be achieved by using multi-junction solar cells. The
major findings of the research work reported in this thesis are sequentially summarised.

6.1.1 Major findings related to loss mechanism

v Open-circuit voltage of the solar cells, depends on the splitting in the quasi-fermi level which
is further limited by the recombination mechanism.

v’ The greater the splitting between quasi-Fermi levels, the higher the open-circuit voltage. This
results in better utilization of the band gap of the absorber material.

v" Higher recombination leads to a lower open-circuit voltage, due to less splitting in quasi-fermi
level. As a result, the band gap is not utilized efficiently.

v One-to-one correspondence between Open-circuit voltage(Vy) and Urbach energy(Ey).

v" Hence, Urbach energy becomes an important diagnostic parameter in studying the loss
mechanism originating due to structural disorder.

6.1.2 Major findings related to the generation mechanism

v While optimizing the device, it has been figured out that ETL thickness should be kept as thin
as possible.

v' 1t s crucial to note that the thickness of the HTL does not significantly affect the performance
of the device.
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v Absorber thickness should be optimized to the limit until the generation mechanisms are
dominant as compared to the loss mechanism.

v' Absorber material should be doped to reduce SRH recombination losses and up to some extent
it also modifies the band alignment which leads to the changes in splitting in quasi-fermi
levels.

v’ Before optimizing the device, the efficiency we achieved was around 16.47% and after fine-
tuning the device, the efficiency increased to around 22.49%.

v' In the case of the multijunction solar cell, a simulation is performed by keeping two junctions
one over the other, where GaAs work as the cell and Ge acts as the bottom cell, the PCE of
the device is 28.10%. Which is much higher than the PCE achieved by the individual top cell
(GaAs-23.24%) and bottom cell (Ge-7.36%).

6.2 Feature Scope
6.2.1 Capacitance-Voltage(C-V) analysis

Using capacitance-voltage analysis one predicts important information about the structure of the p-n
junction, such as the height of the potential barrier.

Two factors are responsible for the capacitance in p-n junction the first one is Junction capacitance
(dominant under reverse bias) and the second is diffusion capacitance (dominant under forward bias).

In the context of solar cell diffusion-capacitance provides very useful information on whether the device
that we have fabricated and how efficiently the transportation of the charge carrier will take place.

6.2.2 Capacitance-frequency(C-f) analysis/admittance spectroscopy

Admittance spectroscopy allows us to accurately characterize the energy distribution of the defect
within the absorption layer of a solar cell.

By analyzing the c-f characteristics of the device, we can extract information about the defect activation
energy and concentration.

Changes in the defect properties before and after a process like annealing can be studied using
admittance spectroscopy.
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Appindix1

Data related to the ETL
S.No. ETL eta(%) Voc (volt) Jsc(mA/cm?) FF (%)
Thickness(inum)
1 0.03 21.16097 1.00881 25.73495 81.50847
2 0.05 20.17124 1.00771 25.12009 79.68512
3 0.07 18.69283 1.00547 23.78188 78.17318
4 0.09 17.17894 1.00302 22.04043 77.70784
5 0.11 15.80357 1.00062 20.31811 77.73254
6 0.13 14.5887 0.99805 18.76355 77.90244
7 0.15 13.51808 0.99553 17.38882 78.08879
8 0.17 12.56233 0.99318 16.17402 78.20316
9 0.19 11.72342 0.99097 15.09701 78.36185
10 0.21 10.97707 0.98888 14.13878 78.51088
11 0.25 9.71567 0.98506 12.51851 78.78751
12 0.3 8.48029 0.98085 10.93073 79.09708
13 0.35 7.52798 0.97676 9.70638 79.40219
14 0.4 6.77993 0.97318 8.75135 79.60844
15 0.45 6.19462 0.97012 7.99807 79.83724
16 0.5 5.72813 0.9675 7.39755 80.03402
Data related to the doping concentration of the absorber material
S.No. Absorber Acceptor eta(%) Voc(olt) | Jsc(mA/cm?) FF (%)
concentration(cm”-3)
1 0 16.43692 1.0014 21.14125 77.63977
2 1E+10 16.43692 1.0014 21.14125 77.63977
3 1E+11 16.43695 1.0014 21.14127 77.63983
4 1E+12 16.43725 1.0014 21.14146 77.64027
5 1E+13 16.44036 1.00144 21.14336 77.64509
6 1E+14 16.47089 1.00181 21.16235 77.69044
7 1E+15 16.74418 1.00613 21.35226 77.94133
8 1E+16 17.93078 1.04298 22.91253 75.03248
9 1E+17 18.24425 1.09429 22.78748 73.16373
10 1E+18 16.06491 1.13299 19.56181 72.48444
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Appindix2

Exponential decay of the excess charge carriers

The diffusion equation for the electron is given by[3]

at " oax? 1,

08, _ 90, by

At steady state condition

a5,
= 2
at 0

Equation 1 will be simplified to

928, &,

"oxz 1T,

0%8, Oy
ax2  D,1,

We know that the relation between diffusion coefficient, lifetime, and diffusion length is given by

L, = /Dptn "

Putting this value in Equation 3 we get

028, 6,
ax2 13

Let us assume that excess electrons are somehow injected into a semi-infinite semiconductor bar at
x=0, and steady-state electron injection maintains a constant excess hole concentration at the injection
point,

Sp(x=0) =4n .6
Solving, second-order linear homogenous differential equation 5. We get,
Sp(x) = Ae(_x/Ln> + Be(x/Ln)
Subjecting boundary condition, at x — 0, §,(x) = 0
=B=0

Hence, equation 7 will become

8n(x) = Ae(_x/Ln) ..8
Again subjecting boundary condition, at x = 0, §,(x) = 4n
= A= An
Now, equation 8 will become,

6, (x) = Ane (_x/Ln) ..9
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Equation 9, gives the significance of the exponential decay of the injected excess carrier electrons.
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