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Abstract

Feature selection, extraction, and clustering techniques play crucial roles in var-

ious fields such as healthcare, bioinformatics, finance, and environment monitoring

etc. Despite their potential to address significant issues like the time-consuming na-

ture of alignment-based methodologies, their application in plant genomics remains

limited. To overcome these challenges, researchers are delving into machine learn-

ing and parallel computing techniques. Clustering emerges as a promising approach,

aiding in organizing and categorizing genomic sequences to uncover patterns and func-

tional elements. However, the large-scale and high-dimensional nature of data in plant

genomics complicates the clustering process and reduces accuracy. Additionally, the

time-consuming nature of alignment-based approaches presents obstacles to real-time

analysis, particularly in applications like clinical diagnostics. This necessitates the

development of e�cient dimensionality reduction methods such as feature selection,

scalable feature extraction methods using Big Data frameworks, and incremental clus-

tering techniques to enhance computational e�ciency and model e�cacy.

In this thesis work, we proposed to develop novel feature selection, scalable

alignment-free feature extraction, and incremental clustering algorithms to address

plant genomics challenges. First, we proposed a novel clustering-based hybrid fea-

ture selection approach using Ant Colony Optimization to address the dimensionality

problem in plant genomics data. This method selects features randomly and evaluates

their quality using K-means clustering based on the Silhouette Index and Laplacian

score. By allowing random feature selection, it enables better exploration of the feature

space, avoiding local optima and generating global optimal solutions. The proposed

feature selection approach demonstrates excellent performance when evaluated on the

benchmark datasets. However, to evaluate its e↵ectiveness on plant genome data, we

collected the massive real-life plant genome data from Indian Council of Agricultural

Research-Indian Institute of Soybean Research (ICAR-IISR), Indore, India.

To test the proposed feature selection approach on the huge genome data there is

a need to transform genomics sequences into feature vectors. So, we introduced two

i



scalable feature extraction approaches using Apache Spark. The first approach em-

ploys a 14-dimensional scalable feature extraction method, which captures sequence

length, nucleotide base frequency, pattern organization, distribution, and entropy to

generate fixed-length numeric vectors. This method e�ciently extracts context-based

features and mitigates the extraction of identical features for dissimilar sequences.

The features extracted through this approach are clustered using K-means and Fuzzy

c-means, after that the quality of the resulting clusters is measured to assess the ef-

fectiveness of this approach. However, this method does not extract features based

on the chemical properties of nucleotides, which would provide important information

about genome functionality. So, to further improve the performance, we proposed

another 13-dimensional scalable feature extraction method that extracts the signifi-

cantly important features based on the classification of nucleotides using their chemical

properties in terms of entropy and the length of the sequence. The performance of

this approach is evaluated by providing the extracted feature vector as input to the

K-means clustering and results are evaluated in terms of cluster quality. However, the

clustering methods (K-means and Fuzzy c-means) used in these methods are not able

to handle the real-time dynamic data, which is required for rapid processing of plant

genomics data.

To handle the real-time dynamic data, we proposed a multi-objective incremental

clustering method for processing dynamic data that generates and updates clusters in

real-time. To improve the dynamic clustering process, the proposed method employed

Euclidean distance to calculate the similarity between data points and constructs a

fitness function with three primary clustering objective functions: inter-cluster dis-

tance, intra-cluster distance, and cluster density. The proposed method employed the

concept of objective weighting, which allocates weight to each objective to generate a

single Pareto-optimal solution for the constructed fitness function. The proposed in-

cremental clustering performs well when tested on the benchmark datasets. Finally, we

investigated the real-life plant genomics and protein data obtained from ICAR-IISR,

Indore, using our developed feature selection and incremental clustering approaches.
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Chapter 1

Introduction

Feature selection, extraction, and clustering are pivotal techniques in machine

learning, data mining, and pattern recognition with applications across diverse do-

mains such as healthcare and medicine [2], bioinformatics [3], finance [4], image and

signal processing [5], environmental monitoring [6], social media analysis [7], and many

more [8, 9]. They play crucial roles in identifying pertinent features and uncovering

meaningful patterns. However, despite their widespread utility, the utilization of these

approaches in bioinformatics, particularly in the field of plant genomics [10], remains

limited. Various issues persist in plant genomics that could be addressed by employ-

ing these techniques. For instance, plant genomics often relies on alignment-based

sequence matching methodologies [11] to facilitate the comparison of nucleotide or

amino acid sequences, allowing for the understanding of evolutionary connections,

similarities, and di↵erences among genomes and genes. However, the major disadvan-

tage of alignment-based approaches in plant genomics is their time-consuming nature.

As the size and complexity of plant genomes increase with advances in sequencing

technologies, the computational demands of alignment-based methods pose significant

time and resource challenges. Furthermore, the time-consuming nature of alignment-

based approaches can hamper real-time analysis and decision-making, especially in

applications that require rapid processing of genomic data, such as clinical diagnos-

tics or field-based research. Furthermore, the scalability of alignment-based methods

may be limited when analyzing diverse plant species with di↵erent genome sizes and
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structures.

To address these challenges, researchers are investigating alternative machine learn-

ing approaches, such as clustering [12], alignment-free feature extraction methods [13],

feature selection approaches [14], and parallel computing strategies [15], to speed up

sequence analysis and improve the e�ciency of plant genomic studies, while maintain-

ing genomic accuracy and reliability.

In plant genomics, clustering [16] is a popular machine learning technique to han-

dle these challenges. Clustering is used for organizing and categorizing similar genome

sequences. Researchers can use clustering algorithms on genomic data to group se-

quences that share common characteristics such as sequence homology, structural fea-

tures, or evolutionary relationships. This enables the identification of genomic pat-

terns, genetic variants, and functional elements in plant genomes. Since, the majority

of the data generated by plant genomics and other sources is on a large scale and

has high dimensionality, which makes the clustering process more complex, result-

ing in higher computing time and reduced clustering accuracy. Dealing with high-

dimensional data presents new problems for data processing e�ciency and e↵ective-

ness. To address such challenges, feature selection is one of the most commonly used

dimensionality reduction methods, which is useful in reducing the high dimensionality

of large-scale data by selecting a small subset of non-redundant and significant fea-

tures and thus eliminating redundant features in order to construct e↵ective prediction

models.

There are four main categories of feature selection methods for unlabeled data:

filter method, wrapper method, embedded method, and hybrid method. Among these

approaches, in most of the cases, hybrid method performs well because it can capitalize

on the strengths of each approach (filter and wrapper), leading to enhanced feature

selection accuracy and model performance. In addition, it gives more generalized

results in comparison to the wrapper method and adopts the characteristics of filter

and wrapper simultaneously. Di↵erent types of hybrid feature selection approaches

have been proposed by several researchers [17, 18, 19, 20, 1].

As the research increases in this area, various researchers [21, 22, 23, 24] used

2



Ant Colony Optimization (ACO) to select the important features, because it provides

increased accuracy due to its adaptability and discrete representation. An ACO is a

bio-inspired algorithm proposed by Dorigo et al. [25] in 1990. This approach simulates

the social behaviour of ants seeking food. The ACO may simply use the filter measure

along with the wrapper measure to accelerate the search for an optimal feature subset

since it has additional parameters that control the search direction. Consequently,

ACO may be more suited for high dimensional feature subsets.

Nowadays, a lots of feature selection approaches [21, 22, 23, 24] use ACO solely

for labeled data. Conversely, the usage of ACO for unlabeled data has been relatively

unexplored. Since most genomic data is unlabeled, designing an e�cient hybrid feature

selection method for unlabeled data is still an exciting open problem calling for further

investigation.

Another issue in domain of plant genomics is handling of large-scale genome data.

The extensive volume of data generated within the domain of genomics establishes

it as a substantial source of Big Data. In bioinformatics, the application of high-

throughput sequencing technologies generates considerable datasets that consist of

Single Nucleotide Polymorphisms (SNP) [26], protein [27], and Deoxyribonucleic Acid

(DNA) [28] sequences. In the past, scientists grouped large-scale genome sequences

by observing similarity using alignment-based methods such as Basic Local Alignment

Search Tool (BLAST) [29]. This provided crucial information regarding the evolution-

ary relationships between genes. However, this method is very time consuming, more

computationally extensive and demands high memory. To address these challenges,

various clustering techniques such as K-means [30] and Fuzzy c-means [31] are used,

which require significantly less time than alignment-based approaches without com-

promising the accuracy. Since, the genomics data have high dimensionality [32, 33, 34]

and huge size, clustering of these high-dimensional genome sequences using these ap-

proaches leads the prerequisite of creating an e�cient feature selection approach which

selects the relevant and non-redundant features from the complete set and reduces the

dimensionlity by eliminating unnecessary features. However, to apply the feature selec-

tion and clustering on the genome data, there is a need to develop novel alignment-free
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feature extraction methods which transforms the genome data into feature vectors (nu-

meric values). Alignment-free feature extraction methods are an e�cient alternative

to traditional alignment-based techniques because they extract relevant features from

genomic data without requiring sequence alignment. These techniques include k-mer

counting [35], frequency-based methods [36], and compression-based algorithms [37].

By avoiding alignment, these methods reduce computational complexity and allow for

faster analysis of large genomic datasets. Nowadays a lot of alignment-free feature

extraction approaches [38, 39] has been developed but most of it are not scalable,

i.e., unable to handle the large-scale data. This leads to the poor e�ciency [40]. Re-

searchers also addressed this issue by developing scalable feature extraction methods

for genome data [41, 42] using Big Data frameworks. Due to the massive generation

of genome data day by day, there is a need to innovate advancements in the present

method/technology to handle such exponentially growing data. Another challenge

is that such huge amounts of data keep on generating regularly from geographically

various sources such as Google, Facebook, Twitter, bioinformatics and many more

[43, 44]. This data, characterized as online or dynamic, presents the need for real-time

analytical methodologies. The analysis of the dynamic data stream can be helpful to

derive various conclusions by using the data mining approaches.

One method for dealing with real-time dynamic data is incremental clustering [45].

In the above discussed scenario, the generated dataset is dynamic in nature, so it is not

possible to get all data objects at the starting of clustering process. In real-time envi-

ronment, when new data is coming non-incremental clustering will have to re-cluster

all the data, which is highly ine�cient and waste lots of computing resources. On

the other hand, in incremental clustering whenever new data is coming only clustering

needs to be performed on the new data and compare the newly generated clusters with

the results of earlier clustering. The method optimizes the clustering process and is

particularly suited for applications where time is a crucial component in usability.

One of the biggest problems with incremental clustering is that most of it only

uses a similarity-based measure and a single objective to cluster the dynamic data

points together [46]. Because of this, most of the clustering algorithms are not strong
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against changes in the shape, size, dimensionality, and other properties of the clusters.

Multi-objective clustering is used to deal with this problem. So, there is a need of

an incremental clustering approach which optimizes the multiple important clustering

objectives and e�ciently handle the dynamic data.

Based on the above discussion, we can say that there is a need to innovate ad-

vancements in the present method or technology to handle various challenges of plant

genomics. Motivated by the success of feature selection techniques, Big Data frame-

works, and incremental clustering approaches, this thesis investigated the hybrid fea-

ture selection, scalable alignment-free feature extraction techniques for genome data

and clustering of real-time genome sequences by proposing the multi-objective based

incremental clustering. However, the proposed feature selection and incremental clus-

tering models are general purpose which can be applied to any problem.

1.1 Motivation

This dissertation is a study of the design and analysis of a novel feature selection,

scalable alignment-free feature extraction techniques, and incremental clustering for

handing various issues of plant genomics.

Clustering in plant genomics aids in organizing genomics data [47], revealing ge-

netic patterns and relationships across plant species. Due to the high-dimensional

characteristics of genomics data, the clustering procedure is ine�cient. As a result,

there is a need to design an e↵ective feature selection method for dealing with high-

dimensional unlabeled data. Furthermore, in the case of large scale genomics data,

it is necessary to employ a scalable alignment-free feature extraction methodology in

order to transform biological data into a novel format that is compatible with various

data mining techniques. Nowadays, the majority of feature extraction strategies lack

scalability, which results in an exorbitant processing time for the vast quantities of

genomics data. As a result, it is essential to devise scalable and e↵ective methods

for extracting features from genome sequences. In order to analyze massive genome

data and implement feature extraction techniques, Big Data analytic frameworks are
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applied. In addition, incremental clustering is a viable option for clustering real-time

dynamic data generated from various sources in plant genomics. Since, majority of

incremental clustering methods rely on a solitary objective to group the dynamic data

points together [46]. Consequently, the majority of clustering algorithms exhibit lim-

ited robustness when confronted with alterations in the shape, size, dimensionality,

and other characteristics of the clusters. Therefore, it is necessary to suggest the

approach of multi-objective based incremental clustering.

This thesis investigates the feature selection, scalable feature extraction and incre-

mental clustering approaches to solve various problems of plant genomics. The first

problem solved is the high dimensionality problem of genome data. To overcome this

problem, we proposed a novel clustering-based hybrid feature selection approach based

on ACO which uses K-means clustering to assign the fitness of features in terms of Sil-

houette Index (SI) along with the Laplacian score in the feature selection process, and

to evaluate the performance of the proposed feature selection algorithm. The proposed

feature selection approach can be applicable for both labeled and unlabeled data and

provides improved clustering performance on a variety of benchmark datasets. More-

over, in order to assess the e�cacy of the proposed feature selection algorithm on plant

genome data, we obtained massive genome, SNP and protein datasets comprising com-

plex plant genomes from the Indian Council of Agricultural Research-Indian Institute

of Soybean Research (ICAR-IISR), Indore, India. These datasets were utilized to ex-

tract, select features, and cluster genome sequences. The process of clustering enables

ICAR-IISR scientists to characterize genome, SNP, and protein sequences of various

plant species in an e�cient manner. To preprocess large-scale genome sequences, we

proposed novel scalable alignment-free feature extraction methods that yield fixed-

length numeric feature vectors for SNP and genome sequences. The proposed scalable

techniques are intended to manage Big Data using the Apache Spark cluster com-

puting architecture. In addition, to handle real-time dynamic data, we proposed

a multi-objective based incremental clustering method for processing dynamic data.

The proposed method enhances the dynamic clustering process by utilizing Euclidean

distance to measure the similarity between data points. It also establishes a fitness

6



function that incorporates three key clustering objective functions: inter-cluster dis-

tance, intra-cluster distance, and cluster density. The proposed method utilizes the

concept of objective weighting, where a weight is assigned to each objective to produce

a single Pareto-optimal solution for the fitness function that is constructed. We inves-

tigated the performance of proposed incremental clustering approach on the real-life

plant SNP datasets and evaluated results in terms of cluster quality.

1.2 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop an e�cient hybrid feature selection approach for labeled and unla-

beled data, which selects the highly relevant and non-redundant features from

the complete feature set.

(ii) To develop a novel scalable feature extraction approach i.e., Apache Spark based

14 dimensional feature extraction approach to extract the important features

based on the arrangement from the genome sequences. Further, the extracted

features are used as input to the K-means and Fuzzy c-means to cluster massive

genome sequences.

(iii) To develop another alignment-free scalable feature extraction method which ex-

tracts 13-dimensional feature vector based on the classification of nucleotides

using their chemical properties. Further the extracted features are used as input

to the K-means clustering to cluster the genome sequences.

(iv) To develop an incremental clustering approach based on multiple objectives,

which e�ciently handles the real-time dynamic data by optimizing the three

major clustering objectives, i.e., intra-cluster distance, inter-cluster distance, and

cluster density.

(v) To investigate the performance of proposed feature selection and incremental

clustering on the real-life SNP and protein datasets.
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1.3 Thesis Contributions

The work done in this field makes significant contributions by designing and de-

veloping novel feature selection, scalable alignment-free feature extraction, and incre-

mental clustering techniques for large genome data sets. These contributions fall into

three broad categories. First, an unsupervised feature selection approach based on

ACO is designed to select the most important and non-redundant features from the

entire feature set. Furthermore, the Apark Spark design focuses on developing scalable

alignment-free feature extraction approaches specifically tailored for managing large-

scale genomics data. The outputs of these feature extraction approaches are fed into

the clustering algorithm, which clusters genomic data. Furthermore, a novel incre-

mental clustering method is proposed, which utilizes multiple objectives to e↵ectively

cluster real-time dynamic data. In addition, we investigated real-life plant genomics

data using the proposed feature selection and incremental clustering approaches.

A succinct synopsis of our research contributions is as follows. The more compre-

hensive details are provided in subsequent chapters.

Contribution I:

To deal with high dimensionality of genome data, we proposed a novel clustering-

based hybrid feature selection approach using ACO that selects features randomly and

measures the qualities of features by K-means clustering in terms of SI and Laplacian

score. The proposed feature selection approach allows random selection of features,

which allows a better exploration of feature space and thus avoids the problem of

being trapped in a local optimal solution, and generates a global optimal solution. As

a result, when tested on ten benchmark datasets taken from UCI machine learning

repository [48], our proposed method is found to be superior compared to the existing

method in terms of SI and Jaccard Index (JI). The major contribution of the proposed

work is presented subsequently.

• The proposed feature selection approach allows random selection of features,

which allows a better exploration of feature space and thus avoids the problem

of being trapped in a local optimal solution, and generates a global optimal
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solution.

• We combined the Laplacian score as well as the SI to measure the relevancy

of a feature rather than using the Laplacian score in the filter stages and then

the SI in the wrapper stage separately. The combination of the Laplacian score

and the SI facilitates the selection of more relevant features by adopting the

characteristics of both measures at the same time.

• In the proposed method, we used an ACO with a tandem run strategy to select

the most promising features from the previous iteration, which preserves the

good feature throughout the computation without losing them. Hence, through

this, we improved power of proposed approach and gave better results.

• The proposed method also provides a facility to choose the di↵erent number

of optimal features rather than providing a feature subset with certain optimal

features.

Contribution II:

To extract features from the huge genome sequences, we proposed an e�cient

Apache Spark based scalable feature extraction approach that extracts significantly

important features from millions of genome sequences in less computational time.

The proposed approach extracts features in five stages i.e., based on the length of

the sequence, the frequency of nucleotide bases, the pattern organization of nucleotide

bases, distribution of nucleotide bases and the entropy of the sequence to generate

a fixed-length numeric vector consist of only 14 dimensions to describe each genome

sequence uniquely. The feature extracted with the proposed scalable feature extraction

approach is applied on K-means and Fuzzy c-means clustering techniques. We used

seven real-life unlabeled plant genome datasets of soybean crop [49] and two labeled

benchmark datasets, i.e., promoter [48] and splice [48]. To evaluate the performance

of the proposed method on unlabeled datasets, we employed two internal evaluation

measures, SI and Davies–Bouldin Index (DBI). On the other hand, to evaluate the

performance of the proposed approach on the labeled datasets, we used two external
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evaluation measures, JI and Rand Index (RI). The experimental results show that

the proposed method is highly successful and e�cient in terms of computing time in

comparison to other state-of-the-art approaches. The major contribution of this work

is as follows:-

• The proposed approach uses the alignment-free method for genome sequence

analysis.

• The proposed approach is scalable and uses distributed computing to process

the genome sequences to save computation time.

• The proposed approach removes the drawback of the total distance and distribu-

tion features identified in 12-dimensional feature extraction approach (12d-FET)

[50], using a novel power method.

• The proposed approach extracts most essential features i.e., the sequence length,

frequency of nucleotides, modified total distance, distribution and entropy of

sequences to represent the each genome sequence uniquely.

Contribution III:

In previous work, we proposed a 14-dimensional feature extraction approach for

obtaining features from genome sequences. This method extracts the most important

features based on the arrangement of nucleotides. However, this method does not

extract features based on nucleotide classification using chemical properties. So, to

further improve the performance, we proposed another scalable feature extraction

method which e�ciently handles large scale genome data by distributing the tasks on

various nodes and extract the significantly important features based on classification

of nucleotides using their chemical properties in terms of entropy and the length of the

sequence. We performed the experiments using five real-life plant genome datasets of

rice and wheat crops obtained from rice genome library [51] and from Han et al. [52],

respectively. The clustering of genome sequences is performed by taking extracted

features using K-means clustering. We measured the clustering results in terms of SI

and DBI. The major contribution of this work is as follows:-
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• The proposed approach uses the alignment-free method for genome sequence

analysis.

• The proposed approach is scalable and uses distributed computing to process

the genome sequences to save computation time.

• The proposed approach extracts features by classifying the nucleotides into three

classes, i.e, Pyrimidine and Purine group, Keto and Amino group, and strong

hydrogen bond and weak hydrogen bond group.

• The experimental finding shows that the proposed approach performs well when

compared with the other state-of-the-art approaches.

Contribution IV:

To handle real-time dynamic data, we proposed a multi-objective incremental clus-

tering approach. This method has three primary clustering objectives: inter-cluster

distance (distance between clusters), intra-cluster distance (mean distance between

each data point and the center of its cluster), and cluster density (to improve clus-

tering precision). The optimal clustering requires a high inter-cluster distance, a low

intra-cluster distance, and a high cluster density. To optimize the three objectives

mentioned above at the same time, the proposed approach combines all three ob-

jective functions with weight coe�cients to form a single fitness function. Hence,

facilitates a optimal clustering, which is strong against changes in the shape, size,

dimensionality, and other properties of the clusters. We used two evaluation measures

named RI and Normalized Mutual Information (NMI) to measure the e↵ectiveness

of the proposed approach. The proposed method outperforms other state-of-the-art

methods on five benchmark datasets taken from UCI machine learning repository [48].

The major contribution of the proposed work is as follows:

• The proposed approach simultaneously optimizes three major clustering objec-

tive functions i.e., intra-cluster distance, inter-cluster distance, and cluster den-

sity rather than optimizing each objective separately. Hence facilitates the better

clustering by adopting the characteristics of three objectives at the same time.
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• The proposed approach creates and updates the cluster in real-time during dy-

namic data processing, hence does not demand the various clustering parameters,

i.e., number of clusters, assignment of cluster center in advance.

• The proposed approach uses objective weighting concept, hence assigns almost

equal weight to each clustering objective and got rid of getting biased solution

towards a particular objective and facilitates better Pareto-optimal solution.

• The proposed approach e�ciently clustered the small, medium and huge size

datasets even if the number of dimensions are more.

Contribution V:

The research contributions described in I and IV pertain to benchmark datasets.

However, to investigate the performance of the proposed feature selection and multi-

objective based incremental clustering on real-life plant SNP and protein datasets,

we extracted features from these sequences. Specifically, we applied a 12d-FET [50]

to extract features from the SNPs and a 60-dimensional feature extraction technique

(60d-FET) [53] to extract features from the protein sequences. We evaluated the

performance of the proposed feature selection on both SNP and protein data in terms

of SI. Furthermore, we evaluated the performance of proposed incremental clustering

solely on the SNP data, and measured results in terms of both SI and the Calinski-

Harabasz Index (CH Index).

1.4 Organization of the Thesis

This thesis is divided into a total of eight chapters. Below, a synopsis of each

chapter is presented:

Chapter 1 (Introduction)

This chapter discusses the background knowledge of plant genomics, feature

selection, scalable feature extraction, and incremental clustering, the rationale for our

exertion, and the outcome of this thesis.
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Chapter 2 (Literature Survey)

This chapter discusses di↵erent methodologies for feature selection and its

functioning. Subsequently, the discussion shifts towards the techniques employed

for extracting features from genomic data and the subject of genome clustering.

Furthermore, it o↵ers a succinct summary of incremental clustering for the purpose

of analyzing dynamic data, as well as an evaluation of the most advanced incremental

clustering techniques. Subsequently, the study of Big Data processing frameworks

is elucidated, along with the parallel processing approaches employed for handling

Big Data. After that, it o↵ers a comprehensive evaluation of performance metrics.

Furthermore, this chapter includes comprehensive information regarding the specific

genome datasets employed in real-life scenarios.

Chapter 3 (A Novel Clustering-Based Hybrid Feature Selection Approach

Using Ant Colony Optimization)

In this chapter, we presented a hybrid feature selection algorithm based on ACO

that removes redundant and irrelevant features that have a negative impact on model

building and selects the more appropriate features from data with a large number

of features. This approach measures the relevancy of a feature using a combination

of Laplacian score and SI, rather than using Laplacian score in the filter stages

and SI in the wrapper stage. It also employs a tandem run strategy to choose the

most promising features from the leader subset. Furthermore, this chapter contains

an experimental evaluation that compares our proposed method to another feature

selection method proposed by Solorio et al. [1]. The results are compared on ten

benchmark datasets taken from the UCI machine learning repository in terms of SI

and JI.

Chapter 4 (A Novel Apache Spark Based 14-Dimensional Scalable Feature

Extraction Approach for the Clustering of Genomics Data)

The methods proposed in Chapters 3 and 6 do not take raw genome sequences

into account for feature selection and incremental clustering. To address this issue, in

this chapter, we proposed a novel 14-dimensional scalable feature extraction approach

based on Apache Spark that converts raw genome sequences into numerical features.
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This method extracts significant features, from thousands of genome sequences, by

distributing tasks across multiple cores. This method also overcomes the drawback

of another state-of-the-art method proposed by Preeti et al. [50]. The performance

of this approach is measured by clustering these feature vectors using K-means and

Fuzzy c-means. The proposed approach is tested on unlabeled genome sequences of

seven soybean crop varieties, as well as two benchmark labeled datasets from the

UCI machine learning repository. The experimental results are compared to three

cutting-edge approaches in terms of SI and DBI for the unlabeled dataset, and RI

and JI for the labeled dataset.

Chapter 5 (A Novel 13-Dimensional Alignment-Free Scalable Feature

Extraction Method for Genomic Data Clustering)

The method proposed in Chapter 4 extracts features based solely on sequence

order and length. However, this method does not extract features based on the

chemical properties of nucleotides, which would provide additional information about

genome function. In this chapter, we proposed a scalable 13-dimensional feature

extraction method that classifies nucleotides based on chemical properties to extract

key features. This method utilizes the Apache Spark cluster to preprocess large raw

genomes by distributing tasks across multiple cores. We tested the performance of

this approach on five unlabeled real-life plant genome datasets of rice and wheat

crops obtained from rice genome library [51] and Han et al. [52], respectively. After

extracting features, we clustered genome sequences with K-means and assessed

performance in terms of SI and DBI. The experimental results shows that proposed

approach performs well in comparison to the state-of-the-art approaches.

Chapter 6 (A Multi-Objective Based Incremental Clustering for Dynamic

Data Analysis)

In this chapter, we presented a multi-objective based incremental clustering

algorithm for real-time dynamic datasets. This method considers three primary

clustering objectives: inter-cluster distance, intra-cluster distance, and cluster density,

and then constructs a fitness function that combines these three to cluster the data

points. In this method, we used the concept of objective weighting and assigned
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nearly equal weight to each clustering objective in order to achieve optimal clustering

results that are not biased toward a specific objective. Furthermore, the proposed

approach creates and updates clusters in real-time, hence, eliminating the need for

multiple clustering parameters in advance. The proposed approach is tested on five

labeled benchmark datasets from the UCI machine learning repository, and the results

are evaluated using the RI and NMI Indexes. The proposed method outperforms two

cutting-edge methods proposed by Sivadi et al. [54] and Abernathy et al. [55].

Chapter 7 (Investigation of Massive Real-Life Plant SNP and Protein

Datasets on Developed Feature Selection and Multi-objective Based

Incremental Clustering)

This chapter presents the methodology of utilizing a 12d-FET [50] approach to

analyze real-world SNP datasets. Furthermore, we elucidated the utilization of a

60d-FET [53] methodology for the analysis of extensive protein dataset. In addition,

we examined the e↵ectiveness of the proposed feature selection (Chapter 3) and

multi-objective based incremental approach (Chapter 6) using the extracted features

as input. Additionally assessed the performance based on the quality of the clusters

in terms of internal evaluation measures.

Chapter 8 (Conclusions and Future Work)

This chapter presents a brief summary of the impact made by this thesis and

outlines possible future directions of our research.
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Chapter 2

Literature Survey

This thesis investigates the design of feature selection, scalable feature extraction,

and incremental clustering for handling various issues of plant genomics. Therefore,

this chapter o↵ers a comprehensive literature survey of these approaches. The survey

related to feature selection approaches and its type is presented in Section 2.1. Next,

the discussion turns to the existing feature extraction strategies used for genome data

in Section 2.2. In addition, Section 2.3 provides a concise overview of incremental

clustering for dynamic data analysis and a review of state-of-the-art incremental clus-

tering methods. The study pertaining to Big Data processing frameworks is described,

together with the parallel processing techniques for managing Big Data, in Section 2.4.

Furthermore, Section 2.5 provides an analysis of performance measures. The last sec-

tion (Section 2.6) covers the details of the real-life genome and protein datasets used

in this study.

2.1 Feature Selection

Feature selection refers to the procedure of picking a portion of original features

based on their significance and redundancy. According to Yu and Liu [56], the fea-

ture subsets can be categorized into four groups: (i) highly relevant feature subsets,

(ii) weakly relevant and non-redundant feature subsets, (iii) weakly relevant and re-

dundant feature subsets, and (iv) completely irrelevant and noisy feature subsets as
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Figure 2.1: Categories of feature subsets

shown in Figure 2.1. A feature is irrelevant if it does not contribute to the accuracy

of the prediction. To construct a decent prediction model, choosing all highly relevant

and some weakly relevant features is desirable while excluding irrelevant, redundant,

or noisy features. Sometimes, weakly relevant features that are non-redundant and

compatible with assessment methods can also help to improve the prediction accuracy.

During the feature selection process, redundant ones are usually thrown out because

they may have critical statistical relationships with other features, not because they

have information that isn’t useful. Sometimes, a feature may be unimportant as a

standalone entity, but it might be beneficial when paired with other features.

In machine learning, the experimental data may be unlabeled, labeled, or partially

labeled. This makes it possible to use unsupervised, supervised, and semisupervised

feature selection techniques to select the essential and relevant features. Usually, la-

beled data is a collection of samples that are annotated by meaningful labels. Super-

vised feature selection refers to the procedure of picking a group of features based on a

set of criteria for figuring out the value and importance of the features. On the other

hand, unlabeled data is made up of samples and things that can be seen without labels.

Unsupervised feature selection, in which we don’t know anything about the underlying

functional classes ahead of time uses data structures like data variance, separability,

and distribution to figure out the importance of each feature. In the semisupervised

feature selection, some portion of labeled data is added to unlabeled data as extra

information to make an unsupervised feature selection work better. Nowadays, a lot
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of literature is available within the scope of supervised and semisupervised feature

selection. However, the unsupervised feature selection is relatively less explored. So,

here, our primary focus is to explore unsupervised feature selection approaches [57].

In unsupervised learning, clustering or grouping is the primary operation per-

formed on the unlabeled data to identify the essential clusters. Clustering can be

negatively impacted by extraneous and redundant data features, which can deteri-

orate the cluster quality, leads to extensive computation cost, and increase memory

needs. Consequently, to improve the performance the unsupervised feature selection is

performed to get rid of of such redundant and unimportant features. To illustrate this

concept, we provided the Figure 2.2, Figure 2.3, and Figure 2.4 which demonstrate the

clustering of a dataset by taking di↵erent feature subsets. Figure 2.2 shows that f1 is

adequate for identifying distinct clusters. However, Figure 2.3 shows that f3 is redun-

dant and negatively a↵ects the homogeneity of clusters. In Figure 2.4, it is shown that

f2 is unimportant, has no e↵ect on the clustering process at all because f1 is alone

capable to identify the distinct cluster. In addition, various subsets of characteristics

including pertinent information may provide varying degrees of clustering. Therefore,

to investigate the various methodologies of unsupervised feature selection, we provided

an overview of unsupervised feature selection approaches, their development, and its

types in the following subsection.

Figure 2.2: Clustering by taking only f1
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Figure 2.3: Clustering by taking f1 and f3

Figure 2.4: Clustering by taking f1 and f2

2.1.1 Development of Feature Selection

The development of the feature selection process consists of five steps named search

direction, search strategy, evaluation criteria, stopping criterion, and result validation,

as shown in Figure 2.5. These steps are discussed in detail subsequently.

First step:

The first step of the feature selection procedure is to determine the starting point
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Figure 2.5: Development of feature selection process

and the search direction. Two ways are available for this process: forward search and

backward search. In the forward search, the construction of the feature subset begins

with a null subset, and then adding the features occurs in successive iterations. On

the other hand, in backward search, the process starts with a complete set of features,

and then the elimination of features happens in successive iterations.

Second step:

The second step of the feature selection process determines the search strategy. In

this step, a subset of features is selected using a predetermined search technique.

There are three categories for search techniques named as sequential, randomized,

and exponential. The sequential search strategy is also called “greedy hill-climbing

search”, in which the addition of one feature happens at a time. The typically used

sequential search approaches are sequential forward selection (SFS) and sequential

backward selection (SBS). These search strategies are easy to implement, and the

complexity of these strategies is proportional to the number of features. It can handle

problems with multiple features that are similar. However, these methods do not

work well with indices that aren’t monotonic, and they may produce the nesting e↵ect

because once a feature is inserted (or deleted), it can’t be deleted (or inserted) again.

Also, they are sensitive to how features interact, so it’s easy for them to get stuck in

local minima. To resolve this issue, sequential forward floating selection (SFFS) and

sequential backward floating selection (SBFS) were introduced by giving users ways

to re-select deleted features and remove already included features. A few examples of

the sequential search strategy are beam search, best-first search, improved version of
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best-first search, and the plus-l take-away r algorithm.

Another search technique is the randomized search method that select features at

random and then employs two distinct search methods. Firstly, it uses search methods

like simulated annealing and random hill-climbing that work in a sequential or two-

way manner. Secondly it uses search strategies that don’t follow a linear approach,

like the Genetic Algorithm (GA), the las vegas algorithm, and the tabu search.

The exponential search begins with the original features and finds the best solution.

But this strategy is hard to use and takes a lot of computing power, particularly for

high-dimensional datasets. An illustration of this technique is exhaustive search, which

looks at all possible subsets to find the best one.

Third step:

The third step of the feature selection process is the determination of evaluation

methods. In this step, the selected subset of features is examined based on specific

evaluation method. There are four types of evaluation methods for choosing features:

filter, wrapper, embedded, and hybrid, which are elaborated in detail in Section 2.1.2.

Fourth step:

The fourth step of the feature selection task is determining the stopping criteria. It

determines when the feature selection process should end. A selection of good stopping

criterion can avoid overfitting, making finding the best feature subset easier and more

e↵ective. Decisions taken in earlier phases a↵ect the choice of a termination criterion.

Common cuto↵s include reaching a certain number of features or iterations, getting

better by a certain percentage between iterations, or getting an ideal feature subset

formed on some evaluation function.

Fifth step:

The fifth step of the feature selection procedure is validation. Various validation

techniques have been proposed to test how well potential feature sets work for the

learning algorithm. In the supervised context, the most common ways to estimate

error are cross-validation and performance measurements based on a confusion matrix.

On the other hand, in the unsupervised context, the Rand Index and the Jaccard Index

are used to measure similarity. In previous studies [58, 59], some additional validation
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and analysis have also been done. For example, the Kuncheva Index is used to measure

stability, and analysis of variance is used to measure complexity. The various existing

feature selection approaches are discussed subsequently.

2.1.2 Types of Feature Selection

As previously mentioned, feature selection is categorized into four types based on

evaluation criteria, which are detailed next.

Filter method:

The first evaluation method is the filter method, where feature relevance is measured

using four distinct categories of evaluation measures: information, distance, consis-

tency, and dependency. Since the filter method doesn’t depend on any learning al-

gorithm, it can be used to find general solutions for di↵erent classifiers or clustering

techniques. The filter method is the oldest and is also called an open-loop method.

The working of the filter method is shown in Figure 2.6.

Figure 2.6: Filter method for feature selection

Various researchers [60, 21, 61] have proposed di↵erent approaches to filter feature

selection, which are discussed as follows. In 2014, Banerjee et al. [60] proposed a

filter method based on singular value decomposition entropy. In this method, they

selected features by evaluating the entropy of the initial data matrix by observing its

singular values. The entropy ranges from 0 to 1. When the entropy value is close
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to 0 (low), this means the spectrum of the data matrix is not consistently scattered,

and the well-formed cluster is generated. On the other hand, when the entropy value

is close to 1 (high), the spectrum of the data matrix is consistently scattered, and

clustering is not well-defined. Later, Tabakhi et al. [21] proposed an unsupervised

Ant Colony Optimization (ACO) based feature selection that uses cosine similarity

measures to measure the similarity between features. The number of artificial ants

used in this study was equal to the number of attributes in the dataset, so each

ant was responsible for constructing a feature subset of the dataset. If the selected

attributes appear in most of the subsets then the selected attributes are updated with

the higher pheromone value. Feature subsets with low similarity and high pheromone

values were iteratively considered and potentially added until the maximum number

of iterations were reached. They tested their approach on a variety of UCI machine

learning datasets [48], including the wine and breast cancer datasets, and received

an average classification error of 19.8 percent. In 2017, Solorio et al. [61] proposed a

feature selection method based on the Laplacian score for mixed data. In this method,

they evaluated features by assessing the changes in the spectrum distribution (spectral

gaps) of the first non-trivial eigenvalues of the normalized Laplacian matrix when each

feature is omitted from the entire collection of features individually. After that, they

arranged features in downward order according to their individual spectral gaps.

The main drawback of above filter based feature selection approaches is that the

chosen features may not perform well across all learning models. Features selected

based on specific criteria might not be universally e↵ective across di↵erent algorithms.

This limits their applicability and e↵ectiveness, highlighting the need to consider the

characteristics of individual models when selecting features. To overcome this draw-

back, researchers [62, 63, 64, 65] have explored wrapper based feature selection meth-

ods, which are discussed subsequently.

Wrapper method:

The second evaluation method is the wrapper method which binds the feature selection

process around the learning algorithm and makes use of performance accuracy or the

learning error rate as a criterion for evaluating feature quality. Unlike filter method,
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it chooses the most useful feature subset by reducing the error of a specific learning

approach. The wrapper method usually gives better results in comparison to the

filter method because it uses bias directly in the learning algorithm and considers the

feature dependency. The wrapper method gives less generalized features in contrast

to the filter method because it uses a learning algorithm to assign fitness to a feature.

So, no assurance can be given that the picked features are the best for other di↵erent

learning algorithms. The working of the wrapper method is shown in Figure 2.7.

Figure 2.7: Wrapper approach for feature selection

Next, we discussed wrapper feature selection methods proposed by di↵erent re-

searchers [62, 63, 64, 65, 66]. Kanan et al. [62] developed an ACO based wrapper

technique for feature selection to identify the human face images. The K-Nearest

Neighbors (K-NN) classifier used in this method to select the relevant feature subsets

on the basis of two factors, i.e, it combines the feature subset size and pheromone level

to identify the relevant feature subsets. This approach was tested on the Cambridge

University facial image dataset consisting of 400 images with an obtained accuracy

of 99.7% and 98.5% by considering two di↵erent sets of features. Later, Javani et al.

[63] introduced a new Particle Swarm Optimization (PSO) based simultaneous clus-

tering and feature selection approach that uses a probabilistic K-means clustering and

a new kernelized validity index to overcome the negative impact of the evolutionary

process initial condition. However, the main drawback of this method is that it hasn’t

been tested on high-dimensional datasets. Later, Swetha and Devi [64] proposed a
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two-stage PSO feature selection approach for clustering. In the beginning, they used

two-stage PSO to select features and then used clustering on those features. Prakash

et al. [65] proposed another feature selection method based on Binary PSO (BPSO),

in which each feature subset is encoded by 0 or 1. BPSO was used for feature selection,

and K-means clustering was used to measure the quality of possible feature subsets

in terms of Silhouette Index [67]. In 2019, Prakash and Singh [66] proposed another

simultaneous feature selection and clustering approach based on genetically inspired

multi-objective binary gravitational search. In this method, they used feature subset

size and Silhouette Index as objectives to search for possible solution spaces. They

also used an external archive to make the non-dominated set. Later on, K-means clus-

tering is applied to the segregated dataset according to the selected feature subset, and

then they measured F-score for each subset. The subset giving the best F-score was

selected as the final subset. Experimental results show that this approach performs

better than the elitist non-dominated sorting GA proposed by Deb et al. [68].

The main disadvantage of above discussed wrapper feature selection approaches

is that they produce results that are closely related to the specific learning model

used. While designed to improve performance within a specific model, this approach

may limit generalizability across di↵erent algorithms or datasets. Additionally, these

methods are often time-consuming. To overcome the time-consuming issue, embedded

method is introduced, which is given next.

Embedded method:

The third evaluation method is the embedded method. Unlike wrapper method, it is a

way to choose features built into the learning algorithm and utilizes the properties of

the algorithm, which help in deciding how to evaluate features. Even though the

performance is the same, the embedded method is more e�cacious and easier to

compute than the wrapper method. This is because the embedded method eliminates

the cost of running the learning algorithm and looking at each feature subset over and

over again. Also, this method is less likely to overfit than the wrapper method. Figure

2.8 illustrates the working of the embedded method.

Some approaches of embedded feature selection is discussed subsequently. In 2010,
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Figure 2.8: Embedded method for feature selection

Cai D et al. [69] proposed an embedded sparse learning feature selection method

named multi-cluster feature selection (MCFS) for the clustering task. In this approach,

they used three steps to perform the feature selection task. First, they used spectral

analysis to compute the correlation between features. In the second step, an L1-

regularized least square regression model is used to measure how well the features

fit. In the third step, the features with the greatest coe�cient values found earlier

in the process are chosen. Recent work has been done on sparse learning models

that use non-convex sparse regularizer functions and locally linear embedding (LLE).

Zechao Li et al. [70] introduced a non-negative discriminative feature selection (NDFS)

method for selecting discriminative features from data. In this strategy, they used

spectral clustering and feature selection to choose the most discriminative features.

Furthermore, they used a non-negative constraint to learn a more accurate cluster

label. They tested their method on several benchmark datasets, including UMIST,

AT&T [71], and JAFFE [72]. Luo et al. [73] came up with a new feature selection

method that models the data’s manifold structure with LLE. The objective is to

describe the intrinsic local geometry with an LLE graph in place of the usual pairwise

similarity matrix and a structure regularization term. A feature-level reconstruction

rating is set up for each feature using the LLE graph. This score is used to choose the

final subset of features.

Although embedded approaches reduce computation time, however, their reliance
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on the specific learning algorithm for feature selection may limit their generalizability

across various models or datasets. To overcome the limitations of individual methods,

a hybrid approach has been proposed. This method combines the strengths of filter

and wrapper techniques to achieve more robust and e↵ective feature selection. By

integrating both strategies, it aims to enhance performance and adaptability across

various learning scenarios. The details of hybrid method is followed next.

Hybrid method:

The fourth evaluation method is the hybrid method. A hybrid approach can be created

by fusing two distinct strategies (such as a filter and a wrapper) or two techniques

that share a common criterion or two feature selection methods. The objective of the

hybrid method is to take advantage of the best features of both methods. It employs

many evaluation criteria at various stages of the search to enhance the accuracy and

speed of predictions by making better use of faster computers. There are two di↵erent

hybridization methods now in use. One approach uses the filter method, which first

narrows down the feature set before passing it through the wrapper method to find

the optimal feature subset as shown in Figure 2.9. On the other hand, the second

strategy couples the filter and wrapper measures to allocate the relevance score to a

specific feature.

Figure 2.9: Hybrid method for feature selection

Numerous researchers [17, 74, 19, 75, 76, 77, 22, 23] have explored hybrid feature

selection approaches, which are discussed next. Dash and Liu [17] developed a hybrid

feature selection approach that derives entropy from data similarity and evaluates fea-
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tures in the filter stage using an entropy-based measure. The wrapper stage employs

scatter separability criteria and K-means clustering to select the relevant feature sub-

set. The disadvantage of this approach is that it is computationally intensive. Ahmed

Al-Ani [74] suggested an ACO based hybrid feature selection algorithm. In this ap-

proach, artificial ants were used to search feature space and to generate the feature

subsets. These subsets were evaluated by the neural network. After that, they used

mutual information to identify a predetermined number of best feature subsets, and

these feature subsets were considered for future iteration until the termination criteria

have achieved. They tested this approach on two datasets, namely, speech segment

and image texture, and earned an accuracy of 84.2% and 89.3%, respectively. Li et

al. [19] later proposed a hybrid feature selection algorithm based on Dash and Liu’s

concept. To improve performance, they used a fuzzy feature evaluation index (FFEI)

in conjunction with an exponential entropy index to evaluate the feature in the filter

stage. For the wrapper stage, they used a scatter separability criterion and a Fuzzy

c-means algorithm; however, this approach also has a high computational cost. Later

on, Sivagaminathan et al. [75], proposed a hybrid feature selection approach, in which

they used the ACO and neural network together. In ACO, artificial ants were used

to explore feature space and to generate feature subsets. Furthermore, a neural net-

work trained using the Levenberg-Marquard backpropagation algorithm was used to

evaluate the e�cacy of these feature sets by computing the classification error. This

method was tested on six datasets taken from the UCI machine learning repository

[48] and achieved an accuracy of 77.5 to 98%. Later on, Chen et al. [76] suggested

a hybrid feature selection approach based on ACO, which combines SVM classifier

and F-Score measure. They used SVM classification accuracy and feature subset size

to update the pheromone value of features. They tested this approach on 80 images

having 19 features and 4 class labels, and thus obtained the precision value of 97.08%.

Liu et al. [77] proposed a hybrid feature selection approach. They used a fisher

criterion with a genetic optimization algorithm to measure the fitness of features at

the filter stage. Later in the wrapper stage, feature subsets with fitness above a

threshold value will be passed to the K-NN classifier for evaluation. This method
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was tested on four di↵erent classifiers, namely K-NN, Naive Bayes, Support Vector

Machine (SVM), and Bagging classifier (BAG), and achieved an accuracy of 75.70%,

73.58%, 80.26%, and 77.88%, respectively. Solorio et al. [1] proposed a hybrid feature

selection technique that ranks features using a Laplacian score and measures a feature

subset using a modified Calinski-Harabasz Index. They compared their approach to

the one proposed by Dash and Liu [17] and Li et al. [19] on several benchmark datasets

taken from the UCI machine learning repository [48] as well as on synthetic datasets

and found it to be more e↵ective. Dhalia et al. [22] proposed an ACO based approach

that selects the relevant feature subset via a tandem run strategy. They used the

cosine similarity measure to compare features, and SVM to assign fitness to a feature.

They validated their method using lung computed tomography (CT) scan images

to diagnose bronchitis and achieved an accuracy of 81.66 percent. Joseph et al. [23]

proposed a feature selection approach using ACO and Artificial Neural Network (ANN)

for text classification. They used reuter’s dataset to test the accuracy. Wenping et al.

[24] proposed an ACO based hybrid feature selection method which uses an interval

strategy to identify the size of optimal feature subset. They tested their approach on

11 high-dimensional datasets and found that their method takes less execution time

and performed better than various state-of-the-art methods.

Based on the above discussion, it can be concluded that hybrid methods outperform

filter and wrapper methods. Additionally, ACO [62, 21, 74] is used in a variety of

tasks for feature selection and provides increased accuracy due to its adaptability and

discrete representation. Moreover, ACO [75, 22, 76] may simply use the filter measure

along with the wrapper measure to accelerate the search for an optimal feature subset

since it has additional parameters that control the search direction. Consequently,

ACO may be more suited for high-dimensional feature subsets. However, the majority

of the approaches in the preceding literature use ACO in feature selection for labeled

data; however, the use of ACO for unlabeled data in an unsupervised context has

received little attention. Plant genomics is one of the area where lot of genomics

data of various plants are unlabeled [49]. So, there is a need to handle such data

by applying clustering after feature selection to improve the clustering performance.
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Hence, we proposed a novel clustering based hybrid feature selection approach using

ACO, which will be presented in Chapter 3.

However, to utilize feature selection and clustering on genome data, novel feature

extraction approaches are required to transform the genome data into feature vectors

(numeric values). So, in the next section, we discussed the various feature extraction

approaches.

2.2 Feature Extraction Approaches

Feature extraction from genome sequences [50] transforms biological sequences into

numerical data, making them easier to analyze using data mining methods. This pre-

processing stage is critical for a reliable knowledge process because it directly influences

the final result. Several features can determine each genome sequence, resulting in a

vector of numerical values obtained by a description function that binds sequences

and features. Bandyopadhyay [78] proposed a 1-gram feature extraction approach

(1-gram) for the classification of protein sequences into known superfamilies. In this

approach, they counted the occurrence of each amino acid in a protein sequence. The

primary disadvantage of this method is that it does not extract context-based features

and requires a lot of time to process the huge amount of protein sequences. Subse-

quently, Terje et al. [79] proposed a sliding window-based feature extraction technique

for DNA sequences. They used window sizes of 2, 3, and 4 to extract the frequen-

cies of di-nucleotide, tri-nucleotide, and tetra-nucleotide patterns, respectively. They

tested their approach to classifying the eukaryotic and prokaryotic Deoxyribonucleic

Acid (DNA) sequences using a SVM and Multilayer Perceptron (MLP) classifier and

achieved an accuracy of 85% and 84.6%, respectively. The drawback of this approach

is that they used only frequency-based features to describe the DNA sequence. In

2014, Bao et al. [80] introduced an alignment-free feature extraction method for the

clustering of DNA sequences using K-means. They employed Shi et al.’s [81] method

to classify nucleotides into three categories: pyrimidine or purine, keto or amino, and

strong or weak hydrogen bonds. After converting the DNA sequences into three classes,
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they extracted features based on the word probability distribution rather than simply

matching the sequences. The primary shortcoming of this strategy is that they did not

extract features such as sequence length and did not test it on massive datasets. Later

on, in 2016, Nguyen et al. [82] proposed a Convolutional Neural Network (CNN) based

approach to classify the DNA sequences. They passed one hot vector representation

of a DNA sequence as an input to CNN. They tested their method on 10 histone,

splice, and promoter datasets. They achieved significantly higher accuracy than the

previous methods proposed by Towell et al. [83], Li et al. [84], and Higashihara et al.

[85]. The drawback of this approach is that, one-hot representation does not use any

contextual or semantic information of sequence, which is very important in DNA anal-

ysis. In 2017, Raid AL-Zubi et al. [86] suggested a hybrid feature selection method

for the complex disease Single Nucleotide Polymorphisms (SNP). In this work, they

used lossless transformation to convert the SNP sequence into numerical values. They

tested their approach on 5 SNP datasets, namely thyroid cancer, colorectal cancer,

breast cancer, autism, and mental retardation, and achieved accuracy up to 89.50%.

The disadvantage of this approach is that it does not use any semantic information of

the sequence.

Helaly et al. [87] suggested a deep learning approach for the taxonomy classifica-

tion of biological bacterial sequence. They used various representations like one-hot

encoding, inter-encoding, and k-mers-based representation to describe the biological

sequences. They tested their approach on the 16S rRNA (Ribonucleic Acid) dataset

using a deeper CNN and achieved an accuracy of 91.7% with more representative rep-

resentation and 90.6% with less figurative representation. After that, Jasbir Dhaliwal

and John Wanger [88] developed a new feature extraction method for highly expressed

SNPs. They used k-mers as features to describe the SNP sequence. They said that

optimal k-mers and feature size might di↵er for di↵erent research problems. They

evaluated their algorithm on 49 human tissues using a multinomial Naive Bayes and

got optimal k-mers of size 3. One major disadvantage of using k-mers is that large-

sized k-mers take a massive amount of memory to store an SNP sequence and also take

a lot of time for processing. To overcome this disadvantage, numerous Big Data pro-
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cessing frameworks are adopted to make the approaches scalable so that these scalable

approaches can process massive SNP data. In 2021, Jha et al. [50] proposed a novel

scalable 12-dimensional feature extraction approach (12d-FET) for the SNP sequence

analysis of unlabeled real-life plant genome datasets. To describe an SNP sequence,

they used three types of features, i.e., frequency, total distance, and arrangement of

nucleotides. They tested their approach using kernelized scalable random sampling

with iterative Fuzzy c-means and evaluated results in terms of Silhouette Index [67]

and Davies-Bouldin Index [89]. The drawback of this approach is that the total dis-

tance and distribution feature for each nucleotide may be the same for the non-similar

sequences. Due to this inability, this approach may be unable to distinguish between

the sequences. Also, this approach does not take the essential features in consideration

like the sequence length, which is di↵erent for the di↵erent organisms. Later, Bonidia

et al. [90] proposed a feature extraction package for the analysis of genome sequence

called mathfeature, which consists of several feature extraction approaches. In this

package, the authors presented a 17-dimensional feature extraction technique (17d-

FET) comprised of the di-nucleotide count (DNC) and tsallis entropy. The primary

drawback of this method is that it did not extract context-based characteristics.

Based on the preceding study, it can be stated that majority of feature extraction

strategies are not scalable due to this unable to process the huge amount of genomics

data e�ciently. In addition, several algorithms do not extract essential features like

the sequence length, entropy, and context-based characteristics. Moreover, some ap-

proaches are also su↵ering from the curse of dimensionality. In order to address the

deficiencies noted in this research, we proposed two feature extraction approaches, i.e,

14-dimensional feature extraction approach in Chapter 4 and 13-dimensional feature

extraction approach in Chapter 5. After feature extraction, the clustering of these

feature vectors is performed in order to cluster the similar genome sequences into one

group. Nowadays, di↵erent clustering algorithms, such as K-means [30] and Fuzzy c-

means [31], are available; nonetheless, these clustering approaches function best with

static data. These methods cannot conduct clustering on dynamic real-time data. To-

day, plant genomics generates a large volume of dynamic real-time data [91], driven by
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diverse plant developmental stages and inherent genetic diversity across species. The

analysis of this data provides a deeper understanding of genetic variations, mutations,

and evolutionary patterns. So, in order to perform the analysis of this dynamic data,

incremental clustering is a widely used technique [54, 92]. Hence, in the subsequent

section, we provided an exhaustive examination of the most recent advancements in

incremental clustering techniques.

2.3 Incremental Clustering for Dynamic Data

Analysis

Incremental clustering [45] is an e↵ective method for dynamically evaluating chang-

ing data streams. Unlike classic clustering approaches, incremental clustering responds

to incoming data in real-time, allowing for the smooth integration of new information

without having to reprocess the entire dataset. This method is very useful in dynamic

contexts where the data is continually changing. Incremental clustering enables imme-

diate insights by e↵ectively upgrading cluster structures as new data enters, making it

a suitable choice for applications for applications where time is an important factor in

usability, such as online streaming analytics, fraud detection, field-based research, and

continuous monitoring. Its capacity to manage changing datasets distinguishes it as a

flexible tool for dynamic data analysis. The working of incremental clustering is shown

in Figure 2.10. Some techniques of incremental clustering are presented subsequently.

In 2019, Peng Zhou et al. [93] proposed a scalable incremental multi-view cluster-

ing. In this approach, they integrated the views incrementally rather than ensemble

all views at once. They initially created a model with a small subset of views, and

when a new view comes incrementally, they just updated the created model. They

tested their method on four benchmark datasets: sun397, UCI digit, AwA (Animal

with Attributes), and corel. Also they tested their method on two time series datasets,

i.e., gas sensor and condition monitoring of hydraulic systems. They found that their

approach performed better than the other state-of-the-art approaches. In 2021, Ling
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Figure 2.10: Working of incremental clustering

Wang et al. [94] proposed an incremental clustering technique for the time series data.

In this approach, they divided the clustering process into two steps. In the first step,

they used a fuzzy cluster validity index to automatically figure out how many initial

clusters will be best for the clustering of the subset of data. Later, in the second step,

they added the new data points to the existing clusters in small steps. In 2021, Sirisup

et al. [95] came up with the idea of incremental density-based clustering that uses

fuzzy-based incremental clustering as the one-pass scheme. In this approach, they

used the modified version of the valley-seeking algorithm to improve the clustering

performance and simplify the parameter-choosing process. They tested their method

on static and dynamic data, and found that it outperformed the other state-of-the-

art methods. In 2022, Amber et al. [55] later came up with the incremental online

K-means clustering method for color quantization. This method fixed the problems

that other incremental K-means clustering methods had with speed and initializa-

tion without making the algorithm more complicated. For color quantization, they

used a binary splitting formulation of MacQueen’s online K-means clustering. They

tested their approach on various public image datasets and found that it was signifi-

cantly faster than the previously proposed K-means clustering approaches. However,

this approach yielded similar results to the previously proposed K-means clustering

approaches.

Most of the above-mentioned techniques use a similarity-based metric and a single
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objective to cluster dynamic data points together [46]. As a result, most clustering

methods are sensitive to changes in the shape, size, dimensionality, and other features

of clusters. Multi-objective clustering is utilized to address this issue. It partitions

a dataset into groups of comparable objects while optimizing many objectives at the

same time. Multi-objective clustering is a subset of multi-objective optimization [96]

that seeks optimal trade-o↵s between goals while adhering to restrictions. In 2019,

Tien et al. [97] came up with a fuzzy method that uses evolutionary multi-objective

optimization based fuzzy method to find overlapping clusters in real-time data. In

this method, they optimized the community centers by using a specially tailored multi-

objective evolutionary algorithm. They tested their approach on various synthetic and

real-time data, but not on dynamic data. In 2018, Zareizadeh et al. [98] came up with

a way to cluster genes using clonal selection and multiple objectives. In this method,

they combined the two cluster validity indices as the two conflicting objective functions

and used a new way to update the population and to quickly arrive at a solution. They

tested their approach on a variety of microarray datasets and found that their approach

performed better than the other gene clustering approaches. In 2022, Weimin Li et

al. [99] proposed a multi-objective optimization strategy by combining the three main

characteristics of a dynamic social network, namely continuity, temporal variability,

and stability, to detect the community structure. In the initial phase of the algorithm,

probability fusion was used to create the appropriate network partition and to assure

rapid convergence. Later, they proposed two neighbouring fusion methods, named

neighbour swarm and neighbour diversity. On numerous real-world and synthetic

datasets, they discovered that their method outperformed numerous state-of-the-art

methods. Later, Ye Tian et al. [100] proposed a novel evolutionary algorithm for super

large scale multi-objective optimization problems (SLMOPs) based on fast clustering.

In this technique, similar decision variables were grouped using the fast-clustering

method, and a single variable from each group was used to reduce the search space.

In a later phase, they proposed an evolutionary approach in which Graphics Processing

Unit (GPU) computations were utilised to accelerate the computations. On a variety

of benchmark and real-world problems with more than one million decision variables,

36



they found that their approach outperformed the numerous existing state-of-the-art

approaches. However, this method is incapable of handling incremental data.

Bejarano et al. [101] proposed a clustering-based technique for analyzing the

pareto-optimal front in multi-objective optimization problems. In this procedure,

K-means and Fuzzy c-means clustering were used to separate the optimal pareto op-

timal front to improve the quality of the solutions discovered. They employed eight

standard test functions, four of which have a continuous pareto optimal front and four

of which have a non-continuous pareto optimal front. The main disadvantage of this

strategy is that it necessitates the use of additional parameters and computations.

Later on, Sivadi Balakrishna [54] came up with a multi-objective based incremental

clustering by fast search (MOC-FS) technique to create and update clusters in real-

time. In this approach, they considered three objective functions, i.e., intra-cluster

distance, inter-cluster distance, and cluster density to be optimized for the purpose of

dynamic clustering. They tested their approach on the four IoT benchmark datasets:

CRAWAD, BWS-AS, minute-weather data, and linked sensor. They found that their

approach performed better than the MCFS [102], HCFS [103], and HOCFS [104]

approaches. The problem with this method is that in the optimization process, all

objective functions, whether they are meant to be maximized or minimized, are added

together with positive coe�cients.

Based on the above research, we can say that multi-objective optimization-based

approaches produce better clustering results because they optimize multiple goals at

the same time. Additionally, incremental clustering is the prominent approach for

dealing with dynamic data. Hence, we proposed a novel incremental clustering based

on multiple objectives in Chapter 6 in order to handle the real-time dynamic data

generated from various agricultural research institutions.

Genomics is inherently a Big Data domain, given the massive volumes of genetic

information it encompasses [105]. Therefore, there is a crucial need to adapt and

improve the developed algorithms using Big Data framework to deal with this massive

amount of data. Consequently, an extensive exploration of Big Data frameworks is

o↵ered in the subsequent section.
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2.4 Big Data Processing Framework

Big data [106] refers to huge amounts of data created from various sources at

rapid speeds and in diverse forms. It contains both structured and unstructured data,

such as text, photos, videos, sensor data, and social media interactions. Today, vast

amounts of data are generated on a daily basis from a variety of sources, such as health,

government, social networks, marketing, and finance. This is because of a number of

recent developments in technology, such as the explosion of cloud computing [107],

the Internet of Things (IoT) [108] and the widespread use of smart devices [109]. In

2012, The Internet Data Center (IDC) [110] predicted that digital data would rise

300 times between 2005 and 2020, from 130 exabytes to 20,000 exabytes [111]. In a

recent white paper, IDC forecasted that by 2025, digital data would expand by 175

zettabytes [112]. As the amount of Big Data increases from various sources, there is

a requirement for authentic research with thorough inquiry in Big Data analytics to

extract insights from the important information included inside Big Data.

Plant genomics is an important source of Big Data. The science of plant ge-

nomics creates huge amounts of data, mostly through high-throughput sequencing

methods like Next-Generation Sequencing (NGS) [113]. These technologies quickly

sequence DNA from plants, producing huge datasets of genomic sequences such as

entire genomes, transcriptomes, and epigenomes. Furthermore, progress in Genome-

Wide Association Studies (GWAS) and population genomics adds to large-scale ge-

nomic datasets by looking at genetic di↵erences in di↵erent plant groups. The amount

of genomic data is also increased by using methods like chromatin immunoprecipita-

tion [114] sequencing (ChIP-seq) and DNase-seq [115], which give useful information

about how chromatin is accessed and how DNA and proteins interact. The use of

multi-omics methods, such as genomics, Transcriptomics, and Epigenomics, increases

the complexity and amount of data in plant genomics research. Nowadays, biologists

aren’t using traditional labs to find new biomarkers for diseases. Instead, they now

rely on extremely large amounts of genomic data that are provided by various sources.

Plant genomics is entering into a new era of Big Data as technologies like automated
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genome sequencers and genome clustering become more a↵ordable and e�cient. Clus-

tering is a widely used data mining approach that is applied to analyse the genetic

data in the field of plant genomics. Clustering aids in the classification of genes, regu-

latory elements, and functional regions by categorizing similar sequences, as genomes

contain vast amounts of data. Determining the family to which a newly sequenced

genome belongs is of constant interest to biologists [116]. This will allow researchers

to learn how this genome evolved and what biological roles it plays. To analyze raw

genomic data using clustering, it is necessary to create multiple feature extraction al-

gorithms that convert raw genome sequences into feature vectors. The growing volume

of genetic data has exerted substantial strain on feature extraction methodologies. In

order to surpass constraints in both space and time, there is a requirement to expand

their ability to work beyond a solitary device. In order to accommodate the large-scale

genome data, it is necessary to employ Big Data management systems to optimize the

performance of feature extraction algorithms.

In recent times, numerous sophisticated processing frameworks such as, Map Re-

duce [117], Apache Flink [118], Apache Hadoop [119], Apache Storm [120], Apache

Samza [121], and Apache Spark [122, 123, 124] have been specifically developed for

the purpose of handling Big Data [125, 126, 127, 128]. These frameworks are typi-

cally classified based on their data processing approaches, such as batch processing

and stream processing. Batch processing involves processing large volumes of data in

discrete chunks or batches, on the other hand, stream processing analyzes data con-

tinuously in real-time as it arrives, enabling near-instantaneous insights and actions.

Classification of these framework according to data processing approach is shown in

Figure 2.11.

Apache Spark outperforms other big data frameworks due to its in-memory pro-

cessing, diverse APIs for batch, stream, and machine learning operations, and fault-

tolerant architecture, which make it easy to use and integrate into existing systems

while maintaining high performance. Spark is constructed based on Hadoop’s data

volume paradigm, specifically the Hadoop Distributed File System (HDFS). Apache

Spark is an ideal choice for delivering an application that utilizes the MapReduce ap-
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Figure 2.11: Classification of Big Data processing frameworks

proach. The development of this technology originated at the University of California

in 2009. Spark exhibits a performance that is up to 100 times swifter than Hadoop

MapReduce and notably quicker than other frameworks. It is made for developers to

perform complex tasks on large datasets quickly. With an API that is easy to use,

Spark can help the user in extensive data analysis and parallel computing by reducing

the grunt work. Many times during the handling of data, we tend to partition the data

into various parts to make the computation process easier. Spark follows the same

principle to distribute tasks across di↵erent worker nodes during data shu✏ing. If the

partitions are less in number, larger blocks of data are given to each node. Hence the

work will be divided e�ciently in parallel manner.

As previously mentioned in Section 1.2, it is proposed to design of scalable feature

extraction techniques to handle the huge amount of genomics data using Apache Spark.

Hence, the working of Apache Spark framework is detailed next.

Working of Apache Spark

Apache Spark employs a tiered design in which all Spark components and layers

are loosely coupled. It is organized into three main layers: upper-level libraries, Spark

core, and cluster management. It also contains a storage layer and other features, such

as Resilient Distributed Dataset. Apache Spark uses Hadoop to retrieve data from

Spark engines [129]. Figure 2.12 illustrates the layered architecture of Apache Spark

used in our experiment. The following explanation gives a comprehensive overview of
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its layers and features.

Figure 2.12: Layered architecture of Apache Spark

• Upper-level libraries: Spark o↵ers a number of upper-level libraries [53], includ-

ing MLlib, GraphX, Spark Streaming, SparkR, and Spark SQL, which add spe-

cialized functionality to the Spark core. These libraries are intended to simplify

and improve specific data processing tasks.

• Spark core: The Spark core is compatible with many cluster managers and al-

lows for seamless integration with Hadoop data sources. It provides an intuitive

programming interface known as Resilient Distributed Dataset for e�ciently pro-

cessing large datasets. The Spark core is integrated with the Scala programming

language, but it also supports APIs in R, Python, and Java. For our implemen-

tation, we used the Python API. Furthermore, the Spark core provides essential

functionalities for in-memory cluster computing, including job scheduling, data

shu✏ing, error recovery, and memory management [130].

• Cluster managers: The use of a cluster manager simplifies the acquisition of
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cluster resources required for job execution. The Spark engine is intended to

work with its native cluster manager, known as a standalone. This built-in clus-

ter manager is in charge of e�ciently managing resource allocation and sharing

across multiple Spark applications. It ensures that resources are e�ciently used

and distributed across clusters, resulting in peak performance and resource uti-

lization for Spark applications.

• Storage: Spark does not have its own storage mechanism. It works with any

Hadoop-compatible data source, including HBase, HDFS, Casandra, and Hive

[34].

• Resilient Distributed Dataset (RDD): The concept of RDD serves as the foun-

dation for Spark core. RDDs are read-only collections of distributed records.

They provide fault tolerance and function as a parallel data structure, allow-

ing for explicit data storage on disk or memory. RDDs give users control over

data partitioning and enable manipulation via a comprehensive set of operators.

This enables us to e�ciently distribute data across computations to meet vari-

ous workload requirements. There are two ways to create RDDs: parallelizing

an existing collection in the driver program or accessing a dataset in an ex-

ternal storage system, such as a shared filesystem, HDFS, HBase, or any data

source that supports a Hadoop input format [122]. Parallelized collections are

created by invoking SparkContext’s parallelize method on an existing collection

in the driver application. The pieces of the collection are duplicated to form a

distributed dataset that can be processed concurrently. PySpark can generate

distributed datasets from several Hadoop-compatible storage sources, including

the local file system, HDFS, Cassandra, HBase, Amazon S3, and others. Spark

supports a variety of file formats, including text files, sequence files, and any

other input format used in Hadoop. Text file RDDs can be created using Spark-

Context’s textFile method. This function takes a Uniform Resource Identifier

(URI) for the file, which can be a local file path on the machine or a URI like

hdfs://, s3a://, and so on. It reads the file and treats the contents as a series of
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Table 2.1: Operations performed in Apache Spark execution

Operation Description Spark code

Creation of
RDD

Parallelizing an
existing collection
in the driver
program

data = sc.parallelize([“a”, “b”, “c”])

Accessing a
dataset
in an external
storage system

data = sc.textFile(“data.txt”)

Transformations

Transforming
one RDD into
another RDD
using map( )

t data = data.map(lambda x: (x, 1))

Aggregations
Aggregating
the data using
reduceByKey( )

a data =
t data.reduceByKey(lambda a, b: a + b)

Action

Collecting the
final result to
the driver
program

result = a data.collect()

lines.

There are two categories of operations that can be executed on a RDD:

1 Transformations: Transformations are operations performed on a RDD that

yield another RDD.

– Map: A map is a function that performs a transformation operation in

Apache Spark. This operation is applied to every element of the RDD

and the result is returned as a new RDD. In Spark, the map function

operates on individual elements by applying custom code provided by

the developer, resulting in the generation of one element at a time. The

map function applies a transformation to each element of an RDD,

resulting in a new RDD of the same length. The input and output

RDDs will generally contain an equal amount of records.

– Aggregations: Aggregations include calculating statistics for a dataset

that contains key-value pairs, where the statistics are calculated for
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all elements that have the same key. Spark utilizes a reduceByKey

function to combine data with the same key as part of a set of opera-

tions. This process consolidates the values for each key by employing

a related reduction technique. This functionality is only applicable to

RDDs that consist of key-value pairs. In this process, an associative

function is provided as a parameter, which can be linked to the source

RDD and will generate a new RDD with the resulting key-value pairs.

Table 2.1 presents the operations involved in the execution of Apache

Spark.

2 Actions: Transfers all data from the RDD to the driver application, allow-

ing for computation and providing the result directly to the driver. The

“collect” is an action that retrieves all elements of an RDD from the worker

nodes to the master node and returns them as an array or list in the driver

program. It’s used for bringing the distributed data back to the driver

program for further processing or for displaying results.

Figure 2.13: Cluster application of Apache Spark

• Spark-application: In the context of running a Spark application, there are five

key components: a cluster administrator, a controller program, tasks, executors,
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and workers as shown in Figure 2.13. The driver program, which functions as

an application and uses Spark as a library, determines the highest-level flow of

control for the intended computation. On the other hand, a worker provides

memory, storage resources, and CPU to a Spark application. Spark creates a

Java Virtual Machine (JVM) process, known as an executor, on each worker

to complete tasks for the associated application. Meanwhile, program results

are obtained by running a set of computations, known as a job, on a cluster

managed by the Spark controller. Multiple jobs can be launched within a Spark

application. To e�ciently manage the workload, Spark divides it into stages of

a Directed Acyclic Graph (DAG), with each stage consisting of a set of tasks.

Spark assigns the smallest work units, known as tasks, to executors for execu-

tion. The Spark context is the primary interface for Spark functions, allowing

communication between the driver program and Spark. It connects to the com-

puting cluster, allowing the driver program to interact with Spark’s distributed

computing resources [53].

Based on the preceding discussion, it can be inferred that Big Data o↵ers an

e�cient solution for swiftly managing massive datasets. Furthermore, the Apache

Spark framework stands out for its capability of in-memory computation, rendering

it particularly notable. Consequently, to attain high performance while maintaining

accuracy, we expanded our feature extraction methodologies using the Apache Spark

framework to accommodate the substantial volume of genomic data. As a result, we

devised two scalable feature extraction methods based on Apache Spark, detailed in

Chapters 4 and 5.

This thesis explores the development of novel feature selection, scalable feature

extraction, and incremental clustering approaches. The performance evaluation mea-

sures used to assess the e�cacy of these approaches are detailed below.

45



2.5 Performance Evaluation Measures

Various research studies [1, 50, 53, 54] have employed both external and internal

evaluation measures to assess the performance of clustering-based feature selection,

feature extraction, and incremental clustering. So, in order to have the comparison,

we also evaluated the performance of our proposed approaches using the external and

internal evaluation indexes. External metrics evaluate the performance of clustering

based on how well it fits the ground truth or expert categorization. Therefore, to

evaluate the external evaluation metric, the labels of the dataset are required. Some

of external evaluation metrics are Rand index, Normalized Mutual Information, and

Jaccard Index. On the other hand, internal evaluation metrics, evaluate the clustering

performance based on the degree of fit between the formed clusters and the data itself.

These metrics do not utilise the labels of the dataset. Some of the internal evaluation

metrics are the Silhouette Index, the Calinski-Harabasz Index, and Davies-Bouldin

Index.

2.5.1 External Evaluation Measures

We used three external evaluation measures, i.e., Rand Index, Normalized Mutual

Information, and Jaccard Index to evaluate the performance of proposed approaches

on the labeled datasets. The details of these metrics are provided subsequently.

Rand Index (RI)

The RI [131] evaluates the proportion of accurate decisions. In clustering, an accurate

decision means, if two data points are similar, they should be clustered together; if

they are unlike, they should be clustered apart. The RI ranges from 0 to 1 and a high

value of RI represents better clustering. The RI is computed using Eq. (2.1).

Rand index =
Number of accurate decisions

Total number of decisions
. (2.1)

Normalized Mutual Information (NMI)

The idea of NMI [132] accounts for two distinct types of partitioning: (1) partitioning

according to clusters, and (2) partitioning according to classes. Next, it explains how
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much the two partitions are compatible with one another (how you know about one

of them if you know the other one). The NMI is calculated using Eq. (2.2).

NMI =
2 ⇤ I(Lclass;Lclus)

H(Lclass) +H(Lclus)
. (2.2)

Where Lclass and Lclus is the class labels, and cluster labels respectively. H() is a

function to calculate the entropy and I(Lclass;Lclus) represents the mutual information

between Lclass and Lclus.

Jaccard Index (JI)

JI [133] is a metric that can be used to assess the e↵ectiveness of any clustering

strategy. The e↵ectiveness of clustering strategy is measured on the basis that how

closely it matches to the ground truth or expert classification. No match between

clustering and ground truth is represented by a JI value of 0 and a perfect match is

shown by an index value of 1. JI is computed by Eq. (2.3).

JI =
n11

n11 + n01 + n10
. (2.3)

Where n11 is the number of pairs of instances classified together by the clustering

algorithm and expert classification, n01 is the number of pairs of instances classified

together by the clustering algorithm but in a di↵erent class by expert classification,

and n10 is the number of pairs of instances classified together by expert classification

but in di↵erent classes by clustering.

2.5.2 Internal Evaluation Measures

We used three internal evaluation measures, i.e., Silhouette Index, Calinski-

Harabasz Index, and Davies-Bouldin Index to evaluate the performance of proposed

approaches on the unlabeled datasets. The details of these metrics are provided sub-

sequently.

Silhouette Index

Silhouette index (SI) [67] is extensively used as a metric for measurement and analysis

in unsupervised learning. It is determined by data points cohesiveness with the other
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data points in that cluster and its separation from the cluster that is closest to it. It

ranges from -1 to 1. A high value of SI represents that well defined clusters are formed.

The SI is computed by calculating the average Silhouette coe�cient of all data points.

For a mth data point dm, the Silhouette coe�cient SCdm is computed using Eq.

(2.4).

SCdm =
odm � sdm

maximum(odm , sdm)
. (2.4)

Where odm denotes the mean distance of data point m to all other data points in

the nearest cluster and sdm denotes the mean distance of data point m to all other

data points in the same cluster.

Calinski-Harabasz Index (CH Index)

The CH Index [134] measures that how similar a data point to its own cluster known

as cohesion compared to other clusters known as separation. The higher value of CH

Index means the clusters are dense and well separated, although there is no acceptable

cut-o↵ value. The CH Index is calculated using Eq. (2.5).

CHindex =
trace(Sc)

trace(Sd)
⇤
N �K

K � 1
. (2.5)

Where trace() represents the trace of the scattering matrix. Sc is the average

covariance of each cluster and Sd represents the covariance of the data set whose

members are the cluster means. N and K are the number of data points and the

number of clusters, respectively.

Davies-Bouldin Index

The Davies-Bouldin Index (DBI) [89] is a measurement used to assess the accuracy

of clustering results. The DBI is calculated by calculating the dissimilarity between

data points within each cluster and the dissimilarity between the centroids of various

clusters. Its value ranges from 0 to infinity. A low DBI implies that the clusters are

compact and well-separated. The DBI value should be as low as possible for the best

clustering outcome. The DBI is computed by using Eq. (2.6).
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DBI =
1

m

mX

x=1

maximumb 6=a

⇥ Za + Zb

d(clusa, clusb)
]. (2.6)

Where m is the number of clusters, and d(clusa, clusb) represents the dissimilarity

between the centroids of cluster a and b. Za and Zb denotes the average dissimilarity

between the data points within cluster a and b, respectively. The SI, CH Index, and

DBI are used to assess the e↵ectiveness of proposed techniques on unlabeled datasets.

The next section describes the genome datasets used in our experiments.

2.6 Real-life Genome and Protein Data

In the field of plant genomics, there are primarily two types of data generated:

genome data [135, 136, 137] and protein data [138, 27]. Genome data encompasses the

entirety of genetic information that is encoded within an organism’s DNA. The genetic

material encompasses the essential directives required for the growth, maturation,

operation, and procreation of an organism. Genome data consists of the complete

arrangement of nucleotides, the fundamental units of DNA, in a specific order along

the chromosomes. The study of genome data has changed many areas of biology

and medicine by giving us new ideas about how traits, diseases, and the evolutionary

connections between species are based on genes [139]. The study of genome data entails

sequencing, assembling, and annotating DNA sequences to discover genes, regulatory

elements, and genetic variants. Genome data is used as a starting point for many

scientific projects, like studying the evolution of species, learning genetic diseases, and

making personalized medicine.

On the other hand, protein data [138], which is made up of amino acid patterns,

is the foundation of life and plays an important part in biological processes. Pro-

teins are essential macromolecules that perform a variety of functions within cells,

including speeding up chemical processes, supporting structure, allowing cells to com-

municate with one another, and transporting chemicals across cell membranes. The

sequence of amino acids in a protein determines its shape and function. Each amino
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acid contributes a distinct set of properties to the protein. The sequence of amino

acids in proteins determines how they fold into distinct three-dimensional forms [140].

This structure determines how proteins function biologically and interact with other

molecules. Protein data, particularly amino acid sequences, are essential for under-

standing how biological processes and circumstances operate at the molecular level.

Analyzing protein sequences allows scientists to learn more about how proteins work,

how species change, and how illnesses work. Protein data is also useful for discov-

ering and developing new medications, as many treatments target specific proteins

implicated in disease processes.

Advances in sequencing technology have resulted in exponential growth of plant

genomic and associated data. Annotating sequenced genomes yields many poten-

tial protein-coding sequences. Sequenced land plants have a range of 25,000 to over

90,000 putative genes. Additionally, large-scale sequencing projects generate mas-

sive amounts of protein and DNA sequence data. Currently, over 100 plant genomes

projects have been completed or are close to completion, with over 200 ongoing

projects, which leads to exponential growth of genetic data. As a result, it is projected

that during the next ten years, genomics will generate an annual data volume ranging

from 2 to 40 exabytes [141]. The utilization of computer databases is increasingly

prevalent in the organization of the extensive quantities of biological data presently

accessible, with the aim of facilitating researchers in locating pertinent information.

The advent of high-throughput sequencing technologies has led genome researchers

into the era of machine learning, where the research approach has transitioned from

hypothesis-driven to data-driven. The incorporation of machine learning and Big Data

techniques like feature selection, incremental clustering, and scalable feature extraction

in genomics o↵ers new avenues for research, fundamentally transforming how genome

data is analyzed and interpreted. The next section provides a comprehensive overview

of the genome, SNP, and protein dataset utilized in our experimental investigation.
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2.6.1 Wheat, Rice, and Soybean Genome Dataset Descrip-

tion

The set of instructions that make up an organism is called the genome, and it

is made of DNA. DNA is made up of four nucleotide bases: Adenine (A), Cytosine

(C), Guanine (G), and Thymine (T). We conducted the experiments using four plant

genome datasets of rice crop, seven datasets of soybean crop, and one dataset of wheat

crop obtained from rice genome library1 [51], soybase repository2 [49], and Han et al.

[52], respectively. The rice dataset includes the genome sequence of the Nipponbare

rice subspecies as well as annotations for the 12 rice chromosomes. To create four

datasets, we merged three sets of chromosomes (ch). In addition, we collected two

labeled benchmark gene sequence datasets from UCI machine learning repository [48]

named splice and promoter. The detailed description of these datasets are presented

subsequently.

Rice 1: To create the Rice 1 dataset, we combined the gene sequences from three

chromosomes (ch), namely ch1, ch2, and ch3. This dataset consists of 21,701 gene

sequences.

Rice 2: In this dataset, we integrated gene sequences from three chromosomes: ch4,

ch5, and ch6. This collection contains 17,116 gene sequences.

Rice 3: In this dataset, we combined gene sequences from three chromosomes: ch7,

ch8, and ch9. This collection includes 13,797 gene sequences.

Rice 4: In this dataset, we integrated gene sequences from three chromosomes: ch10,

ch11, and ch12. This collection contains 13,340 gene sequences.

Williams82: Williams 82 (Wm82), a type of soybean used to make the reference

genome sequence, was made by switching the Phytophthora root rot resistance locus

from the donor parent Kingwa to the recurrent parent Williams [142]. Wm82.a1,

Wm82.a2, andWm82.a4 are di↵erent versions of Williams82. The number of sequences

in Wm82.a1, Wm82.a2, and Wm82.a4 are 73,320, 88,647, and 88,256, respectively.

Lee.a1: In the southern United States and Brazil, the Lee.a1 strain is cultivar soy-

1http://rice.uga.edu/
2https://www.soybase.org/
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bean, which is a hybrid between the Chinese lines CNS and S-100, is employed as a

parent in numerous breeding programmes. The details about Lee.a1 can be found in

Wysmierski et al. [143]. The number of sequences in this dataset are 71,358.

ZH13.a1: The Glycine max ZH13.a1 is an assembly of high quality chinese cultivated

soybean. The details of ZH13.a1 are given by Shen et al. [144]. The number of

sequences in this dataset are 57,978.

PI483463.a1: The Glycine soja accession PI483463.a1 [145] contains Illumina se-

quence from NRGene. This line was chosen due of its high degree of genetic dissim-

ilarity to cultivated soybean. It comes from Shanxi Province, which is in the middle

of northern China. The number of sequence in this dataset are 55,161.

W05.a1: As a reference genome assembly, the genome of Glycine Soja accession

W05.a1 [146], a salt-tolerant wild soybean, was constructed. In genetic studies, the

W05.a1 a�liation has been utilised to examine a variety of characteristics, including

uncertainty, seed size, pod count per plant, and seed colour. The number of sequences

in this dataset are 89,477.

Splice: This dataset contains the primate splice-junction gene sequences [48] having

three types of labels, named EI, IE, and N. We converted these symbolic labels to the

numerical form of 0, 1, and 2.

Promoter: This dataset contains promoter gene sequences [48] having two types of

labels, positive and negative. We converted these symbolic labels to the numerical

form of 0 and 1.

The genome datasets discussed in this subsection are used for feature extraction

and clustering. Clustering plant genome sequences can help to identify unique and

new genes to improve crop production with higher yields, drought resistance, improved

crop quality, and provide better suggestions to find a cluster of diseases. In the next

subsection, we discussed about the SNP datasets used in our experiments.

2.6.2 Rice SNP Dataset Description

SNP [147] refers to a variation (deletion/addition) in a single nucleotide at a specific

position in the genome and is sometimes abbreviated as SNP, snip, or snips. The
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details of these datasets are discussed subsequently.

SNP-seek rice: SNP-seek rice data includes rice chromosomes from 1 to 123. In order

to perform clustering on a large SNP dataset, we integrated all of the rice chromosomes

from ch1-12 into a single file. Detailed analysis of the SNP-seek rice data is given by

Mansueto et al. [148]. The size of this dataset is 16.3 MB.

MAGIC-rice: The MAGIC-rice dataset is composed of SNP sequences4. The

MAGIC rice dataset contains 1,411 samples organized in 12 files (for each chromo-

some). To perform clustering on a massive SNP dataset, we integrated all chromo-

somes from 1 to 12 to create the MAGIC-rice dataset. The details of Magic-rice

dataset can be found in Bandillo et al. [149]. The size of this dataset is 1.03 GB.

248Entries rice: The 248Entries rice5 consists of 248 data samples composed of

indica and aus genotypes. The details of 248Entries rice dataset is given by Dilla-

Ermita et al. [150]. The size of this dataset is 30.8 MB. This dataset is made up of

40,840 SNPs of rice crop.

The SNP datasets discussed in this subsection are used for feature selection and

incremental clustering purpose. Moreover, to perform the analysis of the protein

datasets we collected the soybean amino acid sequences. The details of protein dataset

is as follows.

2.6.3 Soybean Protein Dataset Description

Protein sequence [151] is made up of twenty amino acids, which includes Ala-

nine (A), Cysteine (C), Aspartic acid (D), Glutamic acid (E), Phenylalanine (F),

Glycine (G), Histidine (H), Isoleucine (I), Lysine (K), Leucine (L), Methionine (M),

Asparagine (N), Proline (P), Glutamine (Q), Arginine (R), Serine (S), Threonine (T),

Valine(V), Tryptophan (W), and Tyrosine (Y). The amino acids inside a sequence

can be joined together in any arrangement, and the protein sequences can vary in

3https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/osnp_legacy/
diversity_rice31.oryzasnp.hapmap.tar.gz

4https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/
MAGIC-Raw-genotype-data-Raghavan-2017.zip

5https://s3-ap-southeast-1.amazonaws.com/oryzasnp-atcg-irri-org/pub-data/
248Entries_40840SNPs_inorder_21May2015_v2.zip
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length. The process of clustering protein sequences is crucial for the identification of

functional linkages, the grouping of proteins with comparable characteristics, and the

understanding of evolutionary trends. The description of the protein dataset used in

our experiments is as follows.

Glycine Soja accession W05 protein dataset: The genome of Glycine Soja ac-

cession W05, a salt-tolerant wild soybean, was created to serve as a reference genome

assembly. In genetic studies, the W05 a�liation has been used to study several qual-

ities like uncertainty, seed size, the count of pods per plant, and seed colour. The

details of W05 were given by Xie et al. [146]. The number of amino acid sequences

in this dataset are 66622. The protein data discussed in this section is used for the

feature selection.
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Chapter 3

A Novel Clustering-Based Hybrid Feature

Selection Approach using Ant Colony

Optimization

In this chapter, a novel clustering-based hybrid feature selection approach using

Ant Colony Optimization (NCHFS-ACO) to handle the high dimensionality issue of

unlabeled data is proposed. This novel approach selects features randomly and uses

K-means clustering to assign the fitness of features in terms of Silhouette Index (SI)

along with the Laplacian score in the feature selection process. The proposed feature

selection approach allows random selection of features, which allows a better explo-

ration of feature space and thus avoids the problem of being trapped in a local optimal

solution and generates a global optimal solution. Experimental results indicate that

the proposed method outperforms other state-of-the-art methods on ten benchmark

datasets extracted from the UCI machine learning repository in terms of SI (internal

evaluation measure) and Jaccard Index (JI) (external evaluation measure).

3.1 Introduction

In today’s world, various fields such as bioinformatics [3], medicine [2], finan-

cial studies [4], environmental monitoring [6], and many more [8, 9] generate high-

dimensional data. In these contexts, feature selection becomes indispensable for iden-
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tifying the most important and relevant features while discarding redundant and unim-

portant ones. Feature selection assists in enhancing prediction accuracy, reducing

computation time, and creating more comprehensible models. In feature selection,

each feature has two possibilities, either it would be taken for computation or not,

which implies for n number of features, there are 2n possible feature subsets. So,

identifying a relevant feature subset in a reasonable amount of time is an NP-hard

problem [152], but by using an approximation algorithm, a near-optimal solution can

be achieved. However, many of the feature selection algorithms use a sequential search

strategy to select relevant features, which adds or removes features from the dataset

sequentially and leads to being trapped into a local optimum solution. In addition,

many approaches in hybrid feature selection employ a filter measure during the ini-

tial filtering stage and a wrapper measure in subsequent stages. While this method

often yields satisfactory results, it may not always produce an optimal solution. Fur-

thermore, some approaches adopt a greedy strategy for feature selection, prioritizing

features based solely on their individual fitness without considering the broader con-

text. However, this myopic approach can lead to suboptimal solutions by prematurely

discarding potentially valuable features and converging to local optima without explor-

ing the full feature space. To overcome this lacunae, we proposed the novel approach

named NCHFS-ACO to select the important and relevant features. The proposed

approach combines the Laplacian score as well as the SI to measure the relevancy

of a feature rather than using the Laplacian score in the filter stages and then the

SI in the wrapper stage separately. The combination of the Laplacian score and the

SI facilitates the selection of more relevant features by adopting the characteristics

of both measures at the same time. In addition, proposed approach follows the be-

haviour of Temnothorax Albipennis ant species, which facilitates the preservation of

most promising features throughout the computation without losing them. Moreover,

the proposed approach introduces an element of randomness by selecting a subset of

features at random during each iteration. This strategic inclusion of random features

helps to prevent the algorithm from becoming ensnared in local optima, allowing it to

explore a wider range of feature combinations and potentially discover more globally
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optimal solutions. Since, the proposed approach selects features using clustering, it is

applicable to both labeled and unlabeled data. The detailed methodology of proposed

NCHFS-ACO is presented subsequently.

3.2 Proposed Clustering-Based Hybrid Feature Se-

lection Approach using Ant Colony Optimiza-

tion

The proposed approach is based on Ant Colony Optimization (ACO); hence, the

brief overview of ACO is presented first in preliminaries. After that, we discussed the

proposed approach.

3.2.1 Preliminaries

ACO [25] mimics the foraging behavior of ants when searching for a route between

a food source and an ant colony. It was initially designed to address the well-known

“travelling salesman” problem. Later, it was used to solve a variety of complex opti-

mization problems like feature selection [75].

In this algorithm, when ants find food, they spray a smelly substance called

pheromone on the ground to show where they are going. When other ants are on

the lookout for food, they detect the pheromone and decide to follow the same path.

A wandering ant also spreads pheromones along this path, which makes the path

stronger and draws other ants to follow it. If ants have to choose between multiple

routes, they choose the routes with high pheromones first. This means that more ants

have moved from that route. This is because ants prefer shorter routes to feed their

colonies and thus shorter routes receive more pheromones.

Another ant species, Temnothorax Albipennis [153], follows a tandem run tech-

nique in which an ant acts as a leader called a master, and other ants will be followers

known as slaves. The leader ant knows the location of food and thus it controls the

direction and speed of other slave ants. Using this approach, follower ant finds food
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more quickly than searching alone. While following the leader, slave ants also collect

surrounding information. If a follower ant explores a new path shorter than the leader

ant path by using surrounding information, then in the next iteration follower will act

as leader.

The simulation model is expressed by a completely connected undirected graph

G = (V, E) having a one-to-one mapping between vertices and features. Hence the

number of vertices (vn) equals the number of features (fn). V denotes the set of vertices

as v1, v2, v3....vn and E denotes the set of edges (e1, e2, e3....en(n�1)
2

) joining any two

vertices in the graph. In this model, the number of artificial ants (Nant) is taken the

same as the number of features (fn) to avoid being trapped in the local optimum,

so fn = vn = Nant. In ACO, each artificial ant i constructs a feature subset (Fi).

The N denotes the count of all feature subsets created by ants and nmax indicates the

maximum number of features possible in each subset, then Nant = N and 0  nmax 

n.

Each ant begins at a vertex and then proceeds to traverse di↵erent vertices to

create a feature subset. The initial pheromone value (�) for each feature is set to a

constant. The notation ntan represents the features selected by tandem run strategy.

3.2.2 Proposed Method

In this study, we proposed a novel clustering-based hybrid feature selection tech-

nique using ACO that uses the tandem run strategy to choose the best feature subset.

In this approach, the selection of nmax features is achieved in three steps. In the

first step, n feature subsets are created by choosing nmax features randomly, and then

on these subsets, we applied the K-means clustering. The e�cacy of these subsets

is evaluated in terms of SI value. The subset with the highest score is the leader

subset (gbestset). In the second step, n feature subsets are created di↵erently, and

the selection of nmax features is achieved in three parts. Some features are chosen

randomly (nrandom), whereas some features (narbitary) are selected with high pheromone

and low Laplacian scores. On the other hand, some features (ntan) are selected from

the leader subset having high pheromone and low Laplacian scores. Later, in the
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third step, these subsets are again applied to K-means clustering and the e�cacy of

these subsets is evaluated in terms of SI value. The subset with the highest SI value

is known as localbest (lbestset), and if localbest is greater than globalbest, then this

localbest becomes globalbest (gbestset) for the further iterations. Steps two to three

are repeated till max iteration (maxiter). After executing all iterations, the globalbest

set is the best subset generated that has the maximum SI value. The Pseudo-code for

proposed NCHFS-ACO approach is described in Algorithm 3.1. The block diagram

of the proposed algorithm is shown in Figure 3.1.

Figure 3.1: Flow diagram of NCHFS-ACO

The proposed NCHFS-ACO uses Laplacian score as filter measure. In terms of

local preservation, the Laplacian score [154] is a good indicator. Many feature selection

methods use a Laplacian score to rank features. A low Laplacian score indicates that

a feature is superior. The weight matrix W = {w11, w12, w13, ...wij, ....wmm} of size
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Algorithm 3.1 NCHFS-ACO
Input: Dataset, nmax, maxiter

Output: Leader subset (gbestset)
. Initialization

1: Equalize the number of ants with the number of features in the Dataset. So, Nant  n.
2: In ACO each artificial ant constructs a feature subset so N  Nant.
3: Initialize fitness of each feature with 0. So, fitnessfi = 0 where i 2 [1, n].
4: Start all Nant ants with N random solutions each with nmax features.
5: Initialize t = 1.
6: Initialize initial pheromone (�i) of each feature by 1/n, where i 2 [1, n].

. Calculation of heuristic value
7: Calculate the huristic value for each feature hi as given in Eq. (3.4). Where i 2 [1, n].

. Feature subset construction and fitness evaluation
8: while maxiter do
9: for p = 1 to Nant do
10: FitnessFp  SIp (SIp is SI value of subset Fp using K-means clustering.)
11: for q = 1 to n do
12: if fq 2 Fp then
13: Infitnessfq  fitnessFp/nmax. (Infitnessfq a variable corresponding to each fq.)
14: else
15: Infinessfq  0
16: end if
17: fitnessfq  fitnessfq + Infitnessfq
18: end for
19: end for

. Pheromone updation
20: Refresh the pheromone values for each of the n features by �i(t+ 1) = �i(t) + fitnessfi .

. Current best subset gbestset computation
21: Update the localbest set lbestset  Subset with max(SIp).
22: if SIlbestset > SIgbestset then
23: gbestset  lbestset
24: end if

. Tandem run Recruitment Strategy for Finding Features
25: Set nremain = nmax � ntan

26: for p = 1 to Nant do
27: Fp  NULL (Empty Subset)
28: for q = 1 to nrandom do
29: Randomly pick a feature fq from the n available features.
30: Fp = Fp [ fq
31: end for
32: for q = nrandom + 1 to nremain do
33: Select a feature fq that has the highest pheromone, the highest heuristic value, and hasn’t

yet been added to the subset Fp of features.
34: Fp = Fp [ fq
35: end for
36: Set uniquefeature features present in leader subset but not in partially constructed subset

Fp.
37: for q = nremain + 1 to nmax do
38: Select a feature fq from uniquefeature that has the highest pheromone, the highest heuris-

tic value.
39: Fp = Fp [ fq
40: end for
41: end for
42: t = t+ 1
43: end while
44: Return the best subset gbestset 60



m ⇤m is used to construct a similarity graph for a dataset with m instances, where

each edge connecting instances xi to xj represents similarity in the form of a weight

wij. The Laplacian matrix L is computed using Eq. (3.1).

L = D �W, (3.1)

where D and W are the diagonal and weight matrix, respectively.

Let’s fr is the rth feature in all m instances then fr =

(fr1, fr2, fr3, fr4, fr5, ........frm)T where r 2 [1, n]. Laplacian score of fr is calcu-

lated as given in Eq. (3.2).

Lr =
f̃r

T

Lf̃r

f̃r
T

Df̃r
, (3.2)

where f̃r denotes the fr vector’s deviation from the mean and calculated as defined

in Eq. (3.3).

f̃r = fr � (
fT

r
D1

1TD1
), (3.3)

where D is the diagonal matrix and 1 = [1, ....., 1]T . fT

r
is the transpose of fr.

After getting the Laplacian score, heuristic value (hr) is computed as given in Eq.

(3.4).

hr = 1/Lr. (3.4)

The proposed NCHFS-ACO approach is then experimented with various bench-

mark datasets. The Experimental findings of these datasets are discussed in detail in

subsequent section.

3.3 Experimental Evaluation

To perform experiments, we collected ten benchmark datasets from the UCI ma-

chine learning repository [48]. The details of these datasets are presented subsequently.
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3.3.1 Dataset Details

In the experimental study, we used ten benchmark datasets, i.e., Iris, Sonar, Vehi-

cle silhouettes, Ionosphere, Pima, Wine, Wdbc, Parkinsons, Pendigits, and Waveform

(noise). The preprocessing of these datasets involves removing missing values. Fol-

lowing that step, standard scaling is applied to scale the data (except for Iris) such

that each feature is normalized to achieve a mean of 0 and unit variance. The rea-

son for this scaling is that the results of feature selection and clustering algorithms

are a↵ected by the fact that these datasets (except Iris) have a range of values with

distinct scales. For all datasets, class labels are removed and not taken into account

during the feature selection and clustering process. After preprocessing, the details of

datasets are presented in Table 3.1.

Table 3.1: Benchmark datasets from UCI machine learning repository

Dataset Count of Count of Count of
name instances features classes

Iris 150 4 3
Sonar 208 60 2
Vehicle silhouettes 813 18 3
Ionosphere 351 33 2
Pima 768 8 2
Wine 178 13 3
Wdbc 569 30 2
Parkinsons 195 22 2
Pendigits 7494 16 10
Waveform (noise) 5000 40 3

3.3.2 Evaluation Measures

The performance of any feature selection approach is evaluated by using a cluster-

ing or classification method to determine how the feature selection improves clustering

or classification performance. Since, the proposed approach is a clustering based hy-

brid feature selection approach that deals with the labeled and unlabeled datasets

and uses K-means clustering to evaluate the qualities of features in terms of SI in the
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wrapper stage, the K-means clustering is applied to evaluate the performance of the

proposed feature selection approach. In the proposed approach, K-means clustering

performance is evaluated using the SI as an internal evaluation measure and JI as an

external evaluation measure. The reason behind taking these measures are they are

widely used evaluation measures in various unsupervised feature selection approaches.

The details of these measures are briefly discussed in Section 2.5. We also used one

visualizer to visualize the clustering performance. The details of the visualizer is as

follows:

Silhouette Visualizer:

The Silhouette Visualizer displays the silhouette coe�cient for each sample on a per-

cluster basis to show which clusters are dense and which are not. Additionally, it

displays the number of clusters achieving an average SI value.

3.3.3 Hyperparameter Settings for the Proposed Approach

In order to conduct experiments, di↵erent nmax values are taken for all datasets,

and the parameter settings for various variables are shown in Table 3.2.

Table 3.2: Hyperparameter settings for NCHFS-ACO

Variable Name Value

maxiter 50
nrandom 40% of nmax

narbitary 30% of nmax

ntan 30% of nmax

3.3.4 Experimental Analysis

Experiments are conducted on the datasets listed in Table 3.1, and the NCHFS-

ACO approach is compared to a hybrid feature selection approach developed by Solorio

et al. [1], because both approaches used a similar strategy to obtain the best feature

subset and quantified the results using the JI and SI. The NCHFS-ACO approach is

performed by taking di↵erent-di↵erent nmax values and results are presented only for
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a few best performing nmax values. In the experiment, to speed up the computation,

we took the number of clusters equal to the number of classes of a dataset.

Results on Iris dataset:

Table 3.3 shows the results of the NCHFS-ACO on the Iris dataset for various nmax

values. When one feature is getting selected, the NCHFS-ACO gives the same JI but a

higher SI than the Solorio et al. [1] approach. The Silhouette Visualizer obtained from

NCHFS-ACO presented in Figure 3.2(b) shows that all clusters have a better average

SI value than the Silhouette Visualizer shown in Figure 3.2(a) which is obtained from

Solorio et al. [1].

Table 3.3: Results on Iris dataset

Technique used No. of features selected JI SI

Solorio et al. 2 0.8575 0.6736
NCHFS-ACO 1 0.8575 0.7259
NCHFS-ACO 3 0.6418 0.5385
NCHFS-ACO 2 0.8575 0.6736

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.2: Results on Iris dataset

Results on Sonar dataset:

The NCHFS-ACO has been applied to Sonar dataset for di↵erent values of nmax and

the combined results are shown in Table 3.4. The NCHFS-ACO is performing better
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than Solorio et al. [1] approach when 1 and 3 number of features are getting selected

but with 5 number of features it is performing better only in terms of JI. The NCHFS-

ACO gives the highest SI values when 1 feature is getting selected. The Silhouette

Visualizer obtained from NCHFS-ACO is presented in Figure 3.3(b) which shows that

all clusters have a better average SI value than the Silhouette Visualizer shown in

Figure 3.3(a) which is obtained from Solorio et al. [1].

Table 3.4: Results on Sonar dataset

Technique No. of features JI SI
used selected

Solorio et al. 1 0.3448 0.6304
NCHFS-ACO 1 0.4273 0.7501
NCHFS-ACO 3 0.4473 0.6319
NCHFS-ACO 5 0.4287 0.5121

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.3: Results on Sonar dataset

Results on Vehicle silhouettes dataset:

The NCHFS-ACO has been applied to the Vehicle silhouettes dataset for di↵erent

values of nmax and combined results are presented in Table 3.5. The NCHFS-ACO

approach gives increased JI and SI values in comparison to Solorio et al. [1] approach

in all cases but it gives the highest SI value on 4 features. Also, the performance of

NCHFS-ACO and Solorio et al. [1] is investigated on 5 number of features. However,

65



it has been found that NCHFS-ACO selects more relevant features and thus it outper-

forms in comparison to Solorio et al. [1] approach. The Silhouette Visualizer obtained

from Solorio et al. [1] and NCHFS-ACO approach are also presented in Figure 3.4(a)

and Figure 3.4(b) to observe the clustering results.

Table 3.5: Results on Vehicle silhouettes dataset

Technique No. of features JI SI
used selected

Solorio et al. 5 0.2935 0.5635
NCHFS-ACO 5 0.3162 0.6603
NCHFS-ACO 4 0.3150 0.6650
NCHFS-ACO 3 0.3148 0.6562
NCHFS-ACO 1 0.3319 0.6516

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.4: Results on Vehicle silhouettes dataset

Results on Ionosphere dataset:

Table 3.6 shows the results of the NCHFS-ACO on the Ionosphere dataset for various

nmax values. The NCHFS-ACO approach gives increased JI and SI values in compari-

son to Solorio et al. [1] approach in all cases but it gives the highest SI and JI values on

1 feature. Also, the performance of NCHFS-ACO and Solorio et al. [1] is investigated

on 7 number of features. However, it has been found that NCHFS-ACO selects more

relevant features and thus it outperforms in comparison to Solorio et al. [1] approach.
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The Silhouette Visualizer presented in Figure 3.5(a) illustrates the results of Solorio

et al. [1]. It shows that within the blue-colored cluster, some data points have neg-

ative silhouette coe�cient values, which degrade the clustering result. On the other

hand, The Silhouette Visualizer presented in Figure 3.5(b) illustrates the results of the

NCHFS-ACO approach, showing that all clusters have positive silhouette coe�cients,

leading to an improved clustering result.

Table 3.6: Results on Ionosphere dataset

Technique No. of features JI SI
used selected

Solorio et al. 7 0.4376 0.5131
NCHFS-ACO 1 0.6132 0.7506
NCHFS-ACO 5 0.4486 0.5438
NCHFS-ACO 7 0.4589 0.5681

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.5: Results on Ionosphere dataset

Results on Pima dataset:

Table 3.7 shows the results of the NCHFS-ACO on the Pima dataset for various nmax

values. The NCHFS-ACO approach with one feature gives the far better JI and SI

values than the Solorio et al. [1] approach while with 2 and 3 features it gives better

result only in terms of JI but not in terms of SI. The Silhouette Visualizer obtained

from Solorio et al. [1] and NCHFS-ACO approach are also presented in Figure 3.6(a)
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and Figure 3.6(b) to observe the clustering results. The Silhouette Visualizer obtained

from NCHFS-ACO shows that all clusters have a better average SI value than the

Silhouette Visualizer obtained from Solorio et al. [1].

Table 3.7: Results on Pima dataset

Technique used No. of features selected JI SI

Solorio et al. 1 0.3620 0.6736
NCHFS-ACO 1 0.5200 0.8075
NCHFS-ACO 2 0.5200 0.6570
NCHFS-ACO 3 0.4155 0.4329

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.6: Results on Pima dataset

Results on Wine dataset:

Table 3.8 shows the results of the NCHFS-ACO on the Wine dataset for various nmax

values. The NCHFS-ACO approach is giving higher SI and JI values when one feature

is selected. While with 3 and 5 features it is performing better in terms of JI but not

in terms of SI. The Silhouette Visualizer obtained from Solorio et al. [1] and NCHFS-

ACO approach feature is also presented in Figure 3.7(a) and Figure 3.7(b) to observe

the clustering results. It can be seen from the Silhouette Visualizer obtained from

NCHFS-ACO that all clusters are having better average SI value than the Silhouette

Visualizer obtained from Solorio et al. [1] approach.
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Table 3.8: Results on Wine dataset

Technique used No. of features selected JI SI

Solorio et al. 1 0.4953 0.5795
NCHFS-ACO 1 0.5180 0.6386
NCHFS-ACO 3 0.7079 0.4940
NCHFS-ACO 5 0.8174 0.4553

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.7: Results on Wine dataset

Results on Wdbc dataset:

Table 3.9 shows the results of the NCHFS-ACO on the Wdbc dataset for various nmax

values. The NCHFS-ACO approach gives increased JI and SI values in comparison

to Solorio et al. [1] approach in all cases but it gives the highest SI value when 1

feature is getting selected. Also, the performance of NCHFS-ACO and Solorio et al.

[1] is investigated on 7 number of features. However, it has been found that NCHFS-

ACO selects more relevant features and thus it outperforms in comparison to Solorio

et al. [1] approach. The Silhouette Visualizer presented in Figure 3.8(a) displays the

results of Solorio et al. [1], indicating that within the blue-colored cluster, certain data

points exhibit negative silhouette coe�cient values, thereby degrading the clustering

result. On the other hand, the Silhouette Visualizer presented in Figure 3.8(b) displays

the results of NCHFS-ACO, indicating that all data points have positive silhouette
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coe�cients. As a result, it achieves a better clustering outcome.

Table 3.9: Results on Wdbc dataset

Technique used No. of features selected JI SI

Solorio et al. 7 0.5964 0.6040
NCHFS-ACO 1 0.6251 0.7698
NCHFS-ACO 3 0.6211 0.6857
NCHFS-ACO 5 0.6475 0.6672
NCHFS-ACO 7 0.6598 0.6539

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.8: Results on Wdbc dataset

Results on Parkinsons dataset:

Table 3.10 shows the results of the NCHFS-ACO on the Parkinsons dataset for various

nmax values. The NCHFS-ACO approach gives increased JI and SI values in compar-

ison to Solorio et al. [1] approach in all cases but the highest SI value is attained

when only 1 feature is selected. Also, the performance of NCHFS-ACO and Solorio

et al. [1] is investigated on 12 number of features. However, it has been found that

NCHFS-ACO selects more relevant features and thus it outperforms in comparison to

Solorio et al. [1] approach. The Silhouette Visualizer obtained from Solorio et al. [1]

and NCHFS-ACO approach is presented in Figure 3.9(a) and Figure 3.9(b) to observe

the clustering results. It can be seen from the Silhouette Visualizer shown in Figure
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Table 3.10: Results on Parkinsons dataset

Technique used No. of features selected JI SI

Solorio et al. 12 0.5014 0.6495
NCHFS-ACO 1 0.5758 0.8507
NCHFS-ACO 5 0.5531 0.7952
NCHFS-ACO 12 0.5479 0.6860

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.9: Results on Parkinsons dataset

3.9(a) that in the green-colored cluster some data points are having negative silhouette

coe�cients value, which is degrading the clustering result. On the other side in Figure

3.9(b) all data points are having positive silhouette coe�cient values due to this it

achieves the better clustering result.

Results on Pendigits dataset:

Table 3.11 shows the results of the NCHFS-ACO on the Pendigits dataset for various

nmax values. When one feature is selected, the NCHFS-ACO gives better JI and SI

than the Solorio et al. [1] approach. The Silhouette Visualizer obtained from Solorio

et al. [1] and NCHFS-ACO approach are also presented in Figure 3.10(a) and Figure

3.10(b) to observe the clustering results. It can be seen from the Silhouette Visualizer

obtained from NCHFS-ACO that all clusters are having better average SI value than

the Silhouette Visualizer obtained from Solorio et al. [1] approach.
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Table 3.11: Results on Pendigits Dataset

Technique used No. of features selected JI SI

Solorio et al. 1 0.1635 0.6319
NCHFS-ACO 1 0.1728 0.7707
NCHFS-ACO 8 0.4128 0.3892

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.10: Results on Pendigits dataset

Results on Waveform dataset:

Table 3.12 shows the results of the NCHFS-ACO on the Waveform dataset for various

nmax values. When one feature is selected, the NCHFS-ACO gives the better JI and

SI than the Solorio et al. [1] approach. Also, the performance of NCHFS-ACO and

Solorio et al. [1] is investigated on 15 number of features. However, it has been

found that NCHFS-ACO selects more relevant features and thus it outperforms in

comparison to Solorio et al. [1] approach. The Silhouette Visualizer obtained from

Solorio et al. [1] and NCHFS-ACO approach is presented in Figure 3.11(a) and Figure

3.11(b) to observe the clustering results. It can be observed from the Silhouette

Visualizer obtained from NCHFS-ACO that all clusters are having better average SI

value than the Silhouette Visualizer obtained from Solorio et al. [1] approach.
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Table 3.12: Results on Waveform dataset

Technique used No. of features selected JI SI

Solorio et al. 15 0.3354 0.2881
NCHFS-ACO 1 0.3554 0.5491
NCHFS-ACO 15 0.3359 0.2890

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 3.11: Results on Waveform dataset

3.3.5 Comparative Performance Analysis

The comparison between the proposed NCHFS-ACO and Solorio et.al. [1] in terms

of the SI, JI, and the number of features reduced is presented in Figure 3.12, Figure 3.13

and Table 3.13 respectively. From Figure 3.12, it can be seen that the NCHFS-ACO

provides significantly higher SI values across all datasets, whereas Figure 3.13 demon-

strates that NCHFS-ACO provides significantly higher JI values across all datasets,

except the Iris dataset. In the case of the Iris dataset, it provides the same JI as

Solorio et al. [1] approach. From the Table 3.13 it can be observed that in case of Iris,

Vehicle silhouettes, Ionosphere, Wdbc, Parkinsons and Waveform (noise) the proposed

NCHFS-ACO significantly reduced the features.

We performed another comparison in terms of SI, by taking the same number of

features as computed by the Solorio et al. [1] approach shown in Figure 3.14. The

figure indicates that the NCHFS-ACO provides superior SI values for all datasets
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except Iris.

Table 3.13: Number of features reduced by the proposed approach in comparison with
Solorio et al. [1] for the benchmark datasets

Dataset No. of features No. of features
name reduced by NCHFS-ACO reduced by Solorio et al.

Iris 3 2
Sonar 59 59
Vehicle silhouettes 14 13
Ionosphere 32 26
Pima 7 7
Wine 12 12
Wdbc 29 23
Parkinsons 21 10
Pendigits 15 15
Waveform (noise) 39 25

Figure 3.12: Comparison between Solorio et al. [1] and NCHFS-ACO in SI
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Figure 3.13: Comparison between Solorio et al. [1] and NCHFS-ACO in JI

Figure 3.14: Comparison between Solorio et al. [1] and NCHFS-ACO by taking the
same no. of features computed by Solorio et al. [1]

3.4 Summary

In this chapter, we proposed a novel clustering-based hybrid feature selection ap-

proach using Ant Colony Optimization abbreviated as “NCHFS-ACO”. The proposed

approach removes unnecessary or unimportant features which have a negative im-

pact on model construction and thus selects the most appropriate features from large

datasets. Rather than sequentially selecting features, the NCHFS-ACO selects fea-

tures in random order to avoid being trapped in the local optimum, which is verified
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when tested on the ten benchmark datasets. Another significant advantage of the

proposed NCHFS-ACO technique is that it uses a combination of the Laplacian score

and SI to measure feature relevance, making it easier to select more relevant features

by integrating the characteristics of both measures at the same time. Furthermore,

it simulates the behavior of the Temnothorax Albipennis ant species, employing a

tandem run strategy to select the most promising features from a leader subset. This

ensures that the proposed NCHFS-ACO method preserves the most promising fea-

tures throughout the computation without losing them. As a result, when tested on

ten benchmark datasets, it is found to be superior compared to the existing method

in terms of SI and JI. Further, it is observed that our proposed method works well

with small, medium, and large-sized benchmark datasets.

The proposed NCHFS-ACO is further tested on unlabeled real-life plant genome

and protein datasets, i.e., Single Nucleotide Polymorphisms (SNP) and Protein se-

quences of rice and soybean plant species. The detailed performance investigation of

these real-life plant genome datasets is reported in Chapter 7.

However, to apply feature selection to these genome datasets, there is a need to

develop the feature extraction methods to transform the genome data into feature

vectors (numeric values). So, we proposed two scalable feature extraction methods

based on Apache Spark, which are discussed in detail in Chapters 4 and 5.
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Chapter 4

A Novel Apache Spark Based

14-Dimensional Scalable Feature

Extraction Approach for the Clustering of

Genomics Data

The feature selection method proposed in Chapter 3 performs well for datasets with

numerical features. However, to apply feature selection to real-life genome datasets,

in this chapter, we presented a novel alignment-free, Apache Spark-based scalable fea-

ture extraction approach to transform the genome data into feature vectors consisting

of numerical values. This novel approach overcomes the time consuming nature of

alignment-based approaches and extracts significantly important features from mil-

lions of genome sequences in less computational time. It extracts features in five

stages, i.e., based on the length of the sequence, the frequency of nucleotide bases, the

pattern organization of nucleotide bases, the distribution of nucleotide bases, and the

entropy of the sequence, to generate a fixed-length numeric vector consisting of only

14 dimensions to describe each genome sequence uniquely. This approach e�ciently

extracts context based features in terms of pattern organization and distribution and

also removes the drawback of extracting the same features for dissimilar sequences

using a novel power method. The feature extracted with the proposed scalable feature

extraction approach is applied to K-means and Fuzzy c-means clustering techniques.
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The experimental results show that the proposed method is highly successful and e�-

cient in terms of computing time in comparison to other state-of-the-art approaches.

4.1 Introduction

Feature extraction plays a crucial role in bioinformatics by converting genome se-

quences into feature vectors (numeric values), thereby facilitating the clustering [155]

[156] of similar genome sequences. By facilitating clustering, it aids in the classification

of genes, regulatory elements, and functional regions by categorising similar sequences.

Traditionally, biologists relied on alignment-based methods to identify similarities and

homologies across sequences, enabling the classification of new biological sequences

into established families or classes [116]. However, this approach is time-consuming,

especially considering the vast amount of data present in genomics. One of the sig-

nificant challenges in applying such a method, for example, in metagenomics, is that

between 25% and 65% of the sequences have no homolog (orphan sequences) in the

databases, rendering these sequences useless [157]. In response to such challenges,

adopting alignment-free feature extraction techniques [50, 158] emerges as a viable

solution. These methods o↵er e�cient and scalable solutions for analyzing large-scale

genomic datasets without the need for computationally intensive pairwise sequence

alignments, reducing bias and enabling broad applicability to diverse genomic analy-

sis tasks.

In feature extraction, each genome sequence can be determined by several fea-

tures, yielding a vector of numerical values obtained by a description function that

binds sequences and features. However, designing of an appropriate feature extraction

method is crucial for a trustworthy knowledge process, as this stage directly impacts

the final result. Nowadays, numerous feature extraction approaches are available, yet

the majority lack scalability [86, 88, 90], hindering their e�ciency in handling vast

amounts of genomic data. Moreover, some approaches extract identical features from

dissimilar sequences [78, 88], leading to inappropriate clustering. Consequently, devel-

oping an appropriate and scalable strategy for feature extraction remains a challenging
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task, crucial for e�ciently processing thousands of sequences and addressing clustering

di�culties.

Based on the above discussion, we can say that feature extraction process directly

impacts the accuracy of clustering. In addition, the scalability saves a huge amount of

time in the processing of large scale genome sequences. So, in this chapter, we proposed

a novel Apache Spark based 14-dimensional scalable feature extraction technique (14d-

SFET) which extracts features based on length, frequency, modified total distance,

distribution, and entropy to describe the genome sequence uniquely. The detailed

methodology of proposed approach is presented subsequently.

4.2 Novel 14-Dimensional Scalable Feature Extrac-

tion Approach

The proposed 14d-SFET extracts five distinct types of sequence features in five

stages: sequence length, frequency-based features, modified total distance-based fea-

tures, distribution-based features, and sequence entropy. It extracts context-based

features in the form of modified total distance and distribution. Moreover, the pro-

posed 14d-SFET addresses the drawback of having the same total distance and same

distribution for a nucleotide in two dissimilar sequences by applying a novel power

mechanism. We used the Apache Spark framework to make the proposed approach

scalable. The architecture of the proposed approach is shown in Figure 4.1. The five

di↵erent types of features extracted in the proposed approach are discussed in details

subsequently.

Table 4.1: Example of genome sequence with a novel power method

40 41 42 43 44 45 46 47 48

1 2 3 4 5 6 7 8 9
Seq 1 A G T C T A T G C
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Figure 4.1: Proposed 14d-SFET architecture

(I) Sequence length:

Genome length varies from organism to organism, providing helpful information for

the purpose of clustering. So, we used sequence length as a feature in the proposed

method. In a genome sequence, sequence length (Seqlen) describes the total number

of nucleotide present in that sequence. For example, a genome sequence is presented

in Table 4.1. For this sequence, the value of Seqlen will be 9.

(II) Features based on the frequency:

In this type of feature, for each nucleotide n, the count of each nucleotide (lenn) is

calculated. In the sequence presented in Table 4.1, the total count of A, T, G, and

C are 2, 3, 2, and 2, so the value of lenA, lenT , lenG and lenC are 2, 3, 2, and 2,

respectively.

(III) Features based on modified total distance:

In this type of feature, we removed the lacunae of having same total distances for a

nucleotide n in non similar sequences by employing a novel power method, in which

we multiplied the distances (di) by its place values, and named these type of features
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as features based on the modified total distance. In order to comprehend the total

distance problem of 12d-FET [50], if A appears at positions 3 and 4 in one sequence

and positions 2 and 5 in another sequence, the total distance = 7 will be identical

for both sequences. Owing to this, the feature based on total distance cannot cor-

rectly di↵erentiate between two distinct genome sequences. So by using a novel power

method, for each nucleotide n, the modified total distance from the first nucleotide

(MTDn) is calculated using Eq. (4.1).

MTDn =
lennX

i=1

di ⇤ 4
(di�1), (4.1)

where di is the distance of the ith nucleotide from the first nucleotide. In this

technique, we selected four as a base number because, in any genome sequence, there

are only four characters, i.e., A, T, G, and C. For example, in the sequence represented

in Table 4.1, the nucleotide A appears at positions 1 and 6, so the modified total

distance of A will be MTDA = 1 ⇤ 40 + 6 ⇤ 45 = 6145. Using this approach, there

is very little probability that we will get the same MTDn for a nucleotide n in two

nonsimilar sequences.

(IV) Features based on the distribution:

In this type of feature, we extracted the features based on distribution, by using the

features based on frequency (lenn) and the features based on modified total distance

(MTDn). For a nucleotide n, the distribution (disn) is calculated by using using Eq.

(4.2) and (4.3).

Avgdn = MTDn/lenn, (4.2)

disn =
lennX

i=1

(di � Avgdn)2

lenn

, (4.3)

where Avgdn is the average of modified total distance of a nucleotide n.

(V) Entropy:

Entropy [159] is used to describe the degree of randomness in a given sequence. Let S

81



be a sequence of nucleotide bases such that S = B1, B2, B3....Bn and let B1, B2, B3...Bn

occurs in S with probabilities P (B1), P (B2), P (B3)....P (Bn) then the entropy of the

sequence (EnS) is calculated using Eq. (4.4).

EnS = �
nX

i=1

P (Bi)logP (Bi). (4.4)

So, by merging these five types of features, the feature vector consists of fourteen

features, like < seqlen, lenA, MTDA, disA, lenG, MTDG, disG, lenT , MTDT , disT ,

lenC , MTDC , disC , EnS >. The feature vector corresponding to genome sequence

shown in Table 4.1 will be < 9, 2, 6145, 9418767.25, 2, 131080, 4294836234, 3, 30000,

99900027.66, 2, 590080, 87044766128.5, 1.36 >. The implementation of the proposed

14d-SFET on Apache Spark cluster is discussed next.

Figure 4.2: Implementation of proposed 14d-SFET on Apache Spark cluster

Scalable 14d-SFET on Apache Spark cluster:

To implement the proposed 14d-SFET on the Apache Spark cluster, first the dataset

is made in Resilient Distributed Dataset (RDD) form so that it can be parallelized

on various nodes to perform distributed computing, as shown in steps 1 and 2 of

Algorithm 4.1. After that, in the third step, each sequence in RDD is mapped with

the feature extraction process to extract features from each sequence. The feature

extraction process contains the program for feature extraction. In the fourth step, the
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extracted features are collected from all worker nodes. Finally, in the last step, all

extracted features are saved in vector form to perform clustering of these sequences.

The implementation of the proposed algorithm in Apache Spark cluster is shown in

Figure 4.2. The pseudo code of proposed 14d-SFET is given in Algorithm 4.1.

Algorithm 4.1 14d-SFET

Input: raw genome.txt

Output: Extracted features vectors.txt

1: x1 = SparkContext.textFile(raw genome.txt)

2: x1= x1.map(lambda y : numpy.array(y))

3: x1= x1.map(lambda y : Feature Extraction Process(y))

4: x1 = x1.collect()

5: x1.saveAsTextF ile(Extracted features vectors.txt)

Algorithm 4.2 Feature Extraction Process()

Input: Grid of characters; x : [A, T,G,C]

Output: seqlen, lenn, MTDn, disn, Ens

1: Initialize the seqlen and lenn with 0, where n 2 {A, T,G,C}.

2: Let n is a input character.

3: for n in x do

seglen = seqlen + 1 ( Increase the seqlen by 1)

lenn = lenn + 1 (Increase the count of nucleotide n by 1)

4: end for

5: Calculate the MTDn for all nucleotides using Eq. (4.1).

6: Compute the disn for all nucleotides using Eq. (4.2) and (4.3).

7: Calculate the Ens using Eq. (4.4).

The feature extraction process is presented in Algorithm 4.2. In the first step of

Algorithm 4.2, we initialized the seqlen and frequency of each nucleotide (lenn) with 0.

In the second step, the input sequence characters are read one by one, and we assumed

that the character under process is denoted by n. From the third to the fourth step,

the sequence length (Seqlen) and the frequency-based features are calculated. The

modified total distance (MTDn) is calculated in the fifth step. Subsequently, the
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sixth and seventh steps compute the distribution-based features (disn) and Entropy

(EnS).

4.3 Experimental Evaluation

In this study, we collected nine genome datasets consisting of real-life plant genomes

and benchmark datasets. To evaluate the performance of proposed 14d-SFET, we used

two clustering techniques named K-means [160] and Fuzzy c-means [161]. The reason

for using two clustering models is to judge the performance of the proposed method

in general irrespective of any of the learning models used. To decide the number of

clusters (k) in all datasets, the experiments are performed by taking various k values.

The proposed approach performance is evaluated on a standalone Dell Workstation

consist of Intel Xeon W-2102 processor having RAM of 64 GB and 4 Cores. The

proposed approach implemented on Apache Spark and the scalability of the proposed

approach is checked by varying the number of cores i.e. by using one core, two cores,

three cores, and four cores. The detailed description of Apache Spark is presented in

Section 2.4.

This section is divided into four subsections. The first subsection briefs about

the dataset used for the experiments. The second subsection discusses the various

evaluation measures used in experiments to evaluate the performance of the proposed

method. The third subsection discusses the parameter settings for the K-means and

Fuzzy c-means clustering techniques used in the study. Finally, the fourth subsection

explains the experimental findings on various real-life plant genome and benchmark

datasets.

4.3.1 Dataset Details

We used seven real-life plant genome unlabeled datasets of soybean crop, i.e.,

Williams82(Wm82).a1, Wm82.a2, Wm82.a4, Lee.a1, ZH13.a1, PI483463.a1, and

W05.a1 taken from soybase repository1 [49] and two benchmark labeled datasets, i.e.,

1https://www.soybase.org/
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Splice and Promoter taken from UCI machine learning repository2 [48], to perform

the experiments. Details of these datasets are given in Section 2.6.1.

4.3.2 Evaluation Measures

To evaluate the performance of the proposed method on unlabeled datasets, we

employed two internal evaluation measures, Silhouette Index (SI) and Davies-Bouldin

Index (DBI). On the other hand, to evaluate the performance of the proposed approach

on the labeled datasets, we used two external evaluation measures, Jaccard Index (JI)

and Rand Index (RI). The details of these measures are as presented in Section 2.5.

4.3.3 Parameter Settings for Evaluation Models

Various parameters used in evaluation models to perform the experiments are listed

here, and their values are presented in Table 4.2.

Table 4.2: Parameter Settings for evaluation models

K-means n init 10
Maximum iteration 300

Fuzzy c-means error 0.005
Maximum iteration 1000

4.3.4 Experimental Analysis

We performed experiments on the datasets for di↵erent number of clusters (k) and

presented the experimental results only for few best-performing k values in comparison

with 1-gram [78], 12d-FET [50] and 17d-FET [90] in terms of SI and DBI for the

unlabeled datasets and in terms of JI and RI for the labeled datasets. To evaluate the

performance of distributed computing of proposed scalable approach, we conducted

trials on a single core, two cores, three cores, and four cores and reported the time

required to extract features presented in Table 4.12 for each configuration.

2https://archive.ics.uci.edu/
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Results on Wm82.a1:

The experimental findings of the proposed 14d-SFET on the Wm82.a1 using Fuzzy

c-means and K-means with k = [2, 10] are displayed in Table 4.3. In both clustering

methods, the proposed 14d-SFET gives better SI and DBI values than 12d-FET [50],

17d-FET [90], and 1-gram [78] for all values of k. In both the clustering methods, the

proposed 14d-SFET yields the maximum SI at k = 2 and the lowest DBI at k = 2.

The comparison on SI values between the proposed 14d-SFET, 12d-FET [50], 17d-FET

[90], and 1-gram [78] using K-means and Fuzzy c-means is shown in Figure 4.3(a) and

Figure 4.3(b), respectively. It can be observed that the proposed 14d-SFET produces

the higher SI values in comparison to all approaches for all k values. The comparison

on DBI between the proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram

[78] using K-means and Fuzzy c-means is shown in Figure 4.4(a) and Figure 4.4(b),

respectively. The proposed approach gives the lower DBI for all k in comparison to

all approaches.

(a) Using K-means (b) using Fuzzy c-means

Figure 4.3: SI on Wm82.a1

Results on Wm82.a2:

The experimental results of the proposed 14d-SFET on the Wm82.a2 using Fuzzy

c-means and K-means with k = [2, 10] are presented in Table 4.4. In both clustering

methods, the proposed 14d-SFET gives better SI and DBI values than 12d-FET [50],
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Table 4.3: Results on Wm82.a1

E
va
lu
at
io
n

m
ea
su
re
s

C
lu
st
er
s

A
lg
or
it
h
m
s

K
-m

ea
n
s

F
u
zz
y
c-
m
ea
n
s

P
ro
p
oo

se
d

14
d
-S
F
E
T

12
d
-F
E
T

[5
0]

17
d
-F
E
T

[9
0]

1-
gr
am

[7
8]

P
ro
p
oo

se
d

14
d
-S
F
E
T

12
d
-F
E
T

[5
0]

17
d
-F
E
T

[9
0]

1-
gr
am

[7
8]

S
I

2
0
.9
9
9
0

0.
99
69

0.
59
15

0.
36
06

0
.8
6
8
0

0.
61
6

0.
57
2

0.
27
51

3
0
.9
2
8
6

0.
64
45

0.
48
71

0.
24
23

0
.8
1
5
8

0.
52
34

0.
46
6

0.
23
48

4
0
.8
3
9
9

0.
58
67

0.
45
75

0.
22
11

0
.7
5
8
0

0.
51
09

0.
42
36

0.
17
04

5
0
.7
6
6
5

0.
54
06

0.
41
23

0.
21
75

0
.6
7
6
2

0.
47
84

0.
38
58

0.
17
02

6
0
.7
6
5
1

0.
51
45

0.
41
29

0.
22
75

0
.6
6
0
5

0.
45
43

0.
34
58

0.
17
41

7
0
.6
8
2
5

0.
48
79

0.
39
88

0.
21
25

0
.6
1
3
1

0.
42
78

0.
30
89

0.
16
96

8
0
.6
4
0
9

0.
45
81

0.
35
21

0.
21
20

0
.6
1
0
4

0.
42
12

0.
27
8

0.
14
9

9
0
.6
1
6
2

0.
45
58

0.
33
31

0.
20
24

0
.5
9
8
9

0.
39
15

0.
25
46

0.
14
66

10
0
.6
2
0
5

0.
43
37

0.
28
36

0.
20
41

0
.5
6
1
6

0.
37
7

0.
22
9

0.
14
88

D
B
I

2
0
.0
0
0
7

0.
00
21

0.
68
38

0.
55
28

0
.4
4
2
1

0.
68
88

0.
72
71

0.
65
61

3
0
.3
4
3
6

0.
44
02

0.
70
56

0.
56
14

0
.4
7
1
8

0.
69
90

0.
75
49

0.
66
06

4
0
.3
7
8
3

0.
47
24

0.
73
06

0.
59
50

0
.4
9
2
7

0.
70
37

0.
81
31

0.
68
02

5
0
.3
9
0
0

0.
48
31

0.
73
94

0.
62
58

0
.5
1
1
8

0.
71
58

0.
86
72

0.
68
03

6
0
.4
2
4
3

0.
50
04

0.
74
26

0.
64
18

0
.5
1
6
4

0.
75
22

0.
94
68

0.
71
26

7
0
.4
3
2
9

0.
53
49

0.
78
47

0.
64
67

0
.6
8
0
4

0.
79
37

1.
03
96

0.
75
62

8
0
.4
6
1
0

0.
57
64

0.
81
63

0.
65
00

0
.7
7
1
8

0.
79
54

1.
13
65

0.
79
71

9
0
.4
8
3
3

0.
59
90

0.
85
55

0.
65
95

0
.8
2
3
9

0.
87
14

1.
24
90

0.
84
77

10
0
.4
9
2
6

0.
63
32

0.
94
21

0.
68
14

0
.8
5
6
0

0.
90
13

1.
37
63

0.
91
41

87



(a) Using K-means (b) using Fuzzy c-means

Figure 4.4: DBI on Wm82.a1

17d-FET [90], and 1-gram [78] for all values of k. The proposed 14d-SFET yields

the highest SI and the lowest DBI at k = 2 among both clustering methods. Figure

4.5(a) and Figure 4.5(b) depict the comparison of SI values among the proposed 14d-

SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] using K-means and Fuzzy c-

means, respectively. Observably, the proposed 14d-SFET yields the highest SI values

compared to all other approaches for all k values. The comparison of the proposed 14d-

SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] on DBI using K-means and Fuzzy

c-means is depicted in Figures 4.6(a) and (b), respectively. The proposed method

yields the lowest DBI values compared to all other methods.

Results on Wm82.a4:

The experimental findings of the proposed 14d-SFET on the Wm82.a4 using Fuzzy

c-means and K-means with k = [2, 10] are shown in Table 4.5. The proposed 14d-

SFET outperformed 12d-FET [50], 17d-FET [90], and 1-gram [78] for all k values. In

both clustering methods, the proposed 14d-SFET produces the highest SI and lowest

DBI at k = 2. Using K-means and Fuzzy c-means, Figure 4.7(a) and Figure 4.7(b)

illustrate the comparison of SI values among the proposed 14d-SFET, 12d-FET [50],

17d-FET [90], and 1-gram [78]. For all k values, it can be seen that the proposed

14d-SFET yields higher SI values than all other approaches. The comparison of the
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Table 4.4: Results on Wm82.a2
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.5: SI on Wm82.a2

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.6: DBI on Wm82.a2

proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] on DBI using K-

means and Fuzzy c-means is illustrated in Figures 4.8(a) and (b), respectively. The

proposed method yields the lowest DBI values compared to all other methods.
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Table 4.5: Results on Wm82.a4
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.7: SI on Wm82.a4

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.8: DBI on Wm82.a4

Results on Lee.a1:

The experimental findings of the proposed 14d-SFET on the Lee.a1 using Fuzzy c-

means and K-means with k = [2, 10] are displayed in Table 4.6. The proposed 14d-

SFET outperformed 12d-FET [50], 17d-FET [90], and 1-gram [78] for all k values.

The proposed 14d-SFET gives the highest SI and the lowest DBI at k = 2 in both

clustering approaches. Figures 4.9(a) and (b) show a comparison of SI values for the

proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] using K-means
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and Fuzzy c-means, respectively. It can be seen that the proposed 14d-SFET delivers

greater SI values than all other techniques for all k values. The DBI comparison of

the proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] using K-means

and Fuzzy c-means is illustrated in Figures 4.10(a) and (b). In comparison to all other

approaches, the proposed 14d-SFET has the lowest DBI for all k.

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.9: SI on Lee.a1

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.10: DBI on Lee.a1
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Table 4.6: Results on Lee.a1
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Results on ZH13.a1:

The experimental results of the proposed 14d-SFET on the ZH13.a1 using Fuzzy

c-means and K-means with k = [2, 10] are presented in Table 4.7. The proposed 14d-

SFET outperformed 12d-FET [50], 17d-FET [90], and 1-gram [78] for all k values. The

proposed 14d-SFET yields the highest SI at k = 2 and the lowest DBI at k = 2 among

both clustering methods. Figure 4.11(a) and Figure 4.11(b) depict the comparison of

SI values between the proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram

[78] using K-means and Fuzzy c-means, respectively. Observably, the proposed 14d-

SFET yields the highest SI values compared to all other approaches for all k values.

The comparison of the proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram

[78] on DBI using K-means and Fuzzy c-means is depicted in Figures 4.12(a) and (b),

respectively. The proposed method yields the lowest DBI values compared to all other

methods.

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.11: SI on ZH13.a1

Results on PI483463.a1:

The experimental outcomes of the proposed 14d-SFET on the PI483463.a1 using Fuzzy

c-means and K-means with k = [2, 10] are shown in Table 4.8. For all k values, the

proposed 14d-SFET provides superior SI values than 12d-FET [50], 17d-FET [90],

and 1-gram [78] for both clustering approaches. In both clustering methods, the
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Table 4.7: Results on ZH13.a1
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.12: DBI on ZH13.a1

proposed 14d-SFET produces the highest SI and lowest DBI at k = 2. Using K-means

and Fuzzy c-means, Figure 4.13(a) and Figure 4.13(b) illustrate the comparison of SI

values among the proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78].

For all k values, it can be seen that the proposed 14d-SFET yields higher SI values

than all other approaches. The comparison of the proposed 14d-SFET, 12d-FET [50],

17d-FET [90], and 1-gram [78] on DBI using K-means and Fuzzy c-means is illustrated

in Figures 4.14(a) and (b), respectively. The proposed method yields the lowest DBI

values compared to all other methods.

Results on W05.a1:

The experimental results of the proposed 14d-SFET on the W05.a1 using Fuzzy c-

means and K-means with k = [2, 10] are displayed in Table 4.9. In both clustering

methods, the proposed 14d-SFET gives better SI values than 12d-FET [50], 17d-FET

[78], and 1-gram [78] for all values of k. The proposed 14d-SFET gives the highest

SI at k = 2 and the lowest DBI at k = 2 in both clustering approaches. Figures

4.15(a) and (b) show a comparison of SI values for the proposed 14d-SFET, 12d-FET

[50], 17d-FET [90], and 1-gram [78] using K-means and Fuzzy c-means, respectively.

It can be seen that the proposed 14d-SFET delivers greater SI values than all other

techniques for all k values. The DBI comparison of the proposed 14d-SFET, 12d-FET
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Table 4.8: Results on PI483463.a1
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.13: SI on PI483463.a1

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.14: DBI on PI483463.a1

[50], 17d-FET [90], and 1-gram [78] using K-means and Fuzzy c-means is illustrated

in Figures 4.16(a) and (b). In comparison to all other approaches, the proposed 14d-

SFET has the lowest DBI for all k.

Results on Splice dataset:

The experimental outcomes of the proposed 14d-SFET on the Splice dataset using

Fuzzy c-means and K-means with k = [2, 10] are shown in Table 4.10. The proposed

14d-SFET outperformed 12d-FET [50], 17d-FET [90], and 1-gram [78] for all k values.
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Table 4.9: Results on W05.a1
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.15: SI on W05.a1

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.16: DBI on W05.a1

Figure 4.17(a) and Figure 4.17(b) depict the comparison of JI values among the pro-

posed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] using K-means and

Fuzzy c-means, respectively. Observably, the proposed 14d-SFET yields the highest JI

values compared to all other approaches for all k values. The comparison of the pro-

posed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] on RI using K-means

and Fuzzy c-means is depicted in Figures 4.18(a) and (b), respectively. The proposed

method yields the highest RI values compared to all other methods.
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Table 4.10: Results on Splice dataset
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(a) Using K-means (b) Using Fuzzy c-means

Figure 4.17: JI on Splice

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.18: RI on Splice

Results on Promoter dataset:

The experimental results of the 14d-SFET on the Promoter dataset using Fuzzy c-

means and K-means with k = [2, 10] are displayed in Table 4.11. For all k values,

the proposed 14d-SFET provides superior JI values than 12d-FET [50], 17d-FET [90],

and 1-gram [78] for both clustering approaches. Figure 4.19(a) and Figure 4.19(b)

illustrate the comparison of JI values between the proposed 14d-SFET, 12d-FET [50],

17d-FET [90], and 1-gram [78]. For all k values, it can be seen that the proposed
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14d-SFET yields higher JI values than all other approaches. The comparison of the

proposed 14d-SFET, 12d-FET [50], 17d-FET [90], and 1-gram [78] on RI using K-

means and Fuzzy c-means is illustrated in Figures 4.20(a) and (b), respectively. The

proposed method yields the highest RI values compared to all other methods.

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.19: JI on Promoter

(a) Using K-means (b) Using Fuzzy c-means

Figure 4.20: RI on Promoter
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Table 4.11: Results on Promoter dataset
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Distributed analysis of datasets:

Since the proposed approach is scalable, to check its scalability, we calculated the

time required to extract features by varying the number of cores. We performed this

analysis only for unlabeled datasets because these datasets contain a large number

of sequences. The time required to extract features using proposed 14d-SFET on the

unlabeled datasets is shown Table 4.12. It can be observed that the scalability reduces

the enormous amount of time by processing the datasets on the higher number of cores.

In case of Wm82.a1 and PI483463.a1 the time required to extract features on 4 cores is

slightly higher than the 3 cores, this is due to because sometimes scalable approaches

takes more time for data partitioning on various cores than data processing.

Table 4.12: Distributed analysis of datasets

Dataset
Time required (Seconds)
1 core 2 core 3 core 4 core

Williams82.a1 396 249 150 153
Williams82.a2 473 295 205 156
Williams82.a4 540 297 221 162
Lee.a1 425 276 151 150
ZH13.a1 344 196 151 151
PI483463.a1 316 168 149 151
W05.a1 531 297 237 153

4.4 Summary

This chapter o↵ers a novel Apache Spark based 14-dimensional scalable feature

extraction technique for genomics data consisting of four nucleotide bases A, T, G,

and C, abbreviated as “14d-SFET”. The proposed 14d-SEFT extracts most impor-

tant features, i.e., the sequence length and entropy features, to increase the e�ciency

of the feature extraction process. In addition, it utilizes the distributed computing

architecture to compute the task in parallel and also save time. Moreover, by adopt-

ing the power formulation, the proposed approach solves the problem of total distance

and distribution features, which can sometimes be the same for dissimilar sequences
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as identified in the existing method. Experimental results demonstrate that the pro-

posed method generates the generalized strategy for feature extraction regardless of

the evaluation method employed. For both K-means and Fuzzy c-means clustering, the

proposed method performed better in terms of internal evaluation measures and exter-

nal evaluation measures compared to existing methods. For all real-life plant genome

datasets, the proposed method’s scalability saves a substantial amount of time by dis-

tributing the computation on a higher number of cores. Therefore, we can conclude

that the proposed method performs better than the other state-of-the-art methods in

both K-means and Fuzzy c-means clustering and generates 14-dimensional features

regardless of the evaluation model employed.

The proposed 14d-SFET extracts the most important features based solely on

sequence arrangement and length. However, this method does not extract features

based on nucleotide classification using chemical properties. Therefore, to further

enhance the performance, we introduced another scalable feature extraction method.

This method focuses on extracting important features based on the classification of

nucleotides using their chemical properties, as discussed in Chapter 5.
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Chapter 5

A Novel 13-Dimensional Alignment-Free

Scalable Feature Extraction Method for

Genomic Data Clustering

The method presented in Chapter 4 retrieves features depending on sequence lay-

out and length. However, this method does not retrieve features based on chemi-

cal properties, which would provide additional information about genome functional-

ity. Hence, in this chapter, we proposed a scalable, 13-dimensional feature extraction

method (13dim-SFA) that extracts key features based on the chemical properties of

nucleotides. The proposed method transforms the genome sequences into three novel

sequences using the chemical properties of nucleotides. Furthermore, it computes the

position distribution and local frequency distribution from these three novel sequences

to compute the context based features in terms of entropies. In addition, this method

utilizes Apache Spark to preprocess large raw genomes by distributing tasks across

multiple cores. After extracting features, we clustered genome sequences with K-

means and assessed performance in terms of the Silhouette Index and Davies-Bouldin

Index. This approach is tested on five unlabeled real-life plant genome datasets of

rice and wheat crops obtained from the rice genome library [51] and Han et al. [52],

respectively. The experimental results show that the proposed approach performs well

in comparison to state-of-the-art approaches.
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5.1 Introduction

The proposed 13dim-SFA provides a comprehensive methodology for analyzing

genome sequences by combining classification, feature extraction, and clustering tech-

niques. Sequences are initially classified into three groups based on the presence of

pyrimidine or purine classes, keto or amino groups, and strong or weak hydrogen bond

groups, resulting in a foundational framework. The spatial organization and variabil-

ity of nucleotides within the sequences are then captured by extracting position and

distribution-based features, and quantifying them in terms of entropy. Additionally,

the method includes extracting sequence length as an important feature. These fea-

tures, which include 13 distinct descriptors, provide a multidimensional representation

of sequence structure and distribution. Using this extensive feature set, clustering

analysis is used to group sequences based on their similarity in feature space. This

clustering approach sheds light on the complexity and diversity of genome sequences by

revealing common structural motifs, functional properties, and evolutionary relation-

ships. The proposed approach’s integrative methodology makes it easier to classify,

compare, and interpret sequence data, making it useful in genomics and bioinformatics

research. The proposed approach is discussed in detail in subsequent section.

5.2 Proposed 13-Dimensional Alignment-Free

Scalable Feature Extraction Method

The proposed 13dim-SFA extracts the features from genome sequences in terms of

sequence length and entropy values. The proposed approach performs feature extrac-

tion in six steps, which are discussed as follows. The flow diagram of the proposed

approach is presented in Figure 5.1.

First step:

In this step, we extracted the length of the sequence (L). The length of the sequence

varies from organism to organism and thus provides useful information for clustering.

Hence, we considered the length of the sequence as a feature. In the example presented
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Figure 5.1: Flow diagram of proposed approach

in Figure 5.1, the total number of nucleotides are 12. So, the value of L will be 12.

Second step:

In this step, we performed the classification and transformation of nucleotides [81] in

three categories using their chemical properties. In the first category, the nucleotides

are classified in pyrimidine or purine class. In the second category, the nucleotides are

classified in keto or amino class, and in the third category, the nucleotides are classified

on the basis of hydrogen bond, i.e., strong hydrogen bond group or weak hydrogen

bond group. The classification of these sequences are presented subsequently.

• Pyrimidine and purine class (class 1): The pyrimidine class (D) consists of

two nucleotides named “C” and “T”. On the other hand, the purine class (R)

consists of two nucleotides named “A” and “G”.

• Keto and amino class (class 2): The keto class (E) has two nucleotides
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Figure 5.2: Example of genome sequence

named “G” and “T” where as the amino class (M) consists of two nucleotides

“A” and “C”.

• Strong hydrogen bond and weak hydrogen bond class (class 3): The

strong hydrogen bond class (H) has “C” and “G”. On the other hand, weak

hydrogen bond group (W) consists of “A” and “T”.

After conversion of nucleotides into these three classes, we obtained the three

transformed sequences. After that, we created the words of length (k) = 2. So, for

each class, there will be 2k words. For example, class 1 produces the words RR,

RD, DD, DR. Similarly, the other two classes will also produce the four words each.

Therefore a total of 12 words are created by the three classes. An example sequence is

depicted in Figure 5.2. In this figure, the process of converting an example sequence

into three distinct classes is depicted in step 2.

Third step:

In this step, we calculated the position distribution sequence (PDS) for each word

within every class. With the help of this process, we obtained the positional infor-

mation for a particular word, enabling the provision of context-based information for

sequences. To derive the position distribution, we utilized a sliding window spanning

two characters, initially positioning it at the onset of the transformed sequence. If the

particular word appeared at that position, we denoted it as 1; otherwise, we marked
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the position as 0. Subsequently, we shifted the sliding window by one character and

reassessed the presence of the specific word. This process iterated until the sequence

concluded. For example, a sequence is presented in Figure 5.2, and its PDS is shown

in step 3.

Fourth step:

In this step, we created a new sequence by using the local frequency distribution (LFD)

with the help of the previously calculated PDS. Wei et al. [12] described that local

frequency considers both the position and density of a word in a text. They suggested

that, the single local frequency distribution may not provide the complete global

context of a word, but a sequence of these distributions gives a more accurate and

clear depiction of the word’s overall distribution when compared to a global frequency

analysis. The local frequency is calculated for every occurrence of a word by computing

the distance between positions using Eq. (5.1).

LF f

i
=

1

pf
i
� pf

i�1

, (5.1)

where LF f

i
is the local frequency, pf

i
is the position of the ith occurrence and pf

i�1

denotes the position of i� 1th occurrence of the word f . The value of pf0 is considered

to be 0. For example, consider the first PDS presented in step 3 in Figure 5.2. The

LFD sequence corresponding to that sequence is presented in the first sequence of step

4.

Fifth step:

In this step, the partial sum sequence (PSS) is computed with the help of LFD se-

quence. The procedure for computation of partial sum sequence is as follows. Let LFD

sequence be S = Z1, Z2, Z3, ......, Zn. So its PSS will be PSSS = Y1, Y2, Y3, ......, Yn =

(Z1), (Z1 + Z2), (Z1 + Z2 + Z3), ......,
P

n

k=1(Zk). For example, consider the first LFD

presented in step 4 in Figure 5.2. The PSS sequence corresponding to that sequence

is presented in the first sequence of step 5.

Sixth step:

In this step, the entropy (E) of a given PSS is computed using Eq. (5.2).
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E = �
nX

k=1

pklogpk, (5.2)

where pk denotes the discrete probability at position k and computed using Eq. (5.3).

pk =
Zk

T
, (5.3)

where k ranges from 1 to n. n represents the length of the PSS. T denotes the sum

of PSS sequence, and Zk represents the value at position k in PSS. For example, the

entropy values of an example sequence shown in Figure 5.2 are presented in step 6.

Finally, we make a feature vector by combing the entropy values of all 12 words and

the length of the sequence (L). So we get a feature vector having 13 dimensions. In

the following subsection, we will examine the implementation of proposed 13dim-SFA

on Apache Spark to make it scalable.

Scalable 13dim-SFA on Apache Spark cluster:

To deploy the proposed 13dim-SFA on the Apache Spark cluster, we initially converted

the dataset into Resilient Distributed Dataset (RDD) format, as shown in steps 1

and 2 of Algorithm 5.1. This conversion allows the dataset to be partitioned across

multiple nodes, facilitating parallel processing for distributed computing objectives.

After that, each sequence in the RDD is mapped to the feature extraction procedure

using the map() function in order to extract features from them. The procedure for

feature extraction includes the implementation of an algorithm designed to extract

features. In the third step, the extracted features are collocated from every worker

node using the collect() function. Finally, in the last stage, all the accumulated features

in a vectorized format are saved in an output file in order to facilitate the clustering

process of these sequences. Figure 5.3 depicts the execution of the proposed 13dim-

SFA within an Apache Spark cluster. The pseudo code of proposed 13dim-SFA is

presented in Algorithm 5.1.

In Algorithm 5.2, the pseudo code for the Feature Extraction Procedure() is

described. During the initial phase, the sequence length (L) is set to 0 and an empty

array of feature vector (V ) is generated. We measured the L in the second through
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Figure 5.3: Execution of proposed 13dim-SFA on Apache Spark

Algorithm 5.1 13dim-SFA

Input: Genome sequences.txt

Output: 13 dimensional feature vectors.txt

1: x1 = SparkContext.textFile(Genome sequences.txt)

2: x1= x1.map(lambda y : numpy.array(y))

3: x1= x1.map(lambda y : Feature Extraction Procedure(y))

4: x1 = x1.collect()

5: x1.saveAsTextF ile(13 dimensional feature vector.txt)

fifth steps. In the sixth and seventh steps, the sequence transforms into three classes.

In eighth to twelfth steps, we computed the PDS, LFD, PSS, and entropy for every

word. Finally, in the last stage, the 13-dimensional feature vector is obtained. The

proposed 13dim-SFA is applied on various real-life plant genome datasets and the

experimental findings are presented subsequently.

5.3 Experimental Evaluation

In order to assess the e↵ectiveness of the suggested 13dim-SFA, the K-means [162]

clustering method is employed. In order to determine the optimal number of clusters

(k) for every dataset, several experiments are conducted by considering alternative
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Algorithm 5.2 Feature Extraction Procedure()

Input: Genome sequence (G) having characters A, T , G, and C

Output: 13 dimensional feature vector

1: Initialize the length of the sequence (L) with 0 and an empty feature vector (V ).

2: for Each character in G do

3: L = L+ 1 ( Increment the length of the sequence by 1)

4: end for

5: Append L to feature vector V .

6: for Every class (C) do

7: C(G) Genomesequence(G) ( Transforming the G into class)

8: for Every word (w) 2 C(G) do

9: Create positional distribution sequence PDSw  C(G).

10: Create local frequency distribution sequence LFDw  PDSw.

11: Calculate partial sum sequence PSSw  LFDw.

12: Calculate entropy Ew of PSSw using Eq. (5.3).

13: Append Ew to feature vector V .

14: end for

15: end for

values of k. The performance of the suggested technique is assessed on a Dell Work-

station, which is equipped with an Intel Xeon W-2102 CPU, 64 GB of RAM, and

4 cores. The suggested methodology was executed on Apache Spark to assess its

scalability. The detailed description of Apache Spark is presented in Section 2.4.

This section comprises of four subsections. The initial subsection presents a com-

prehensive overview of the experimental datasets. The performance evaluation metrics

are described in the second subsection. The subsequent section provides an analysis of

the parameter configurations pertaining to the various parameters. The experimental

results for the real-life plant genome datasets are outlined in the fourth subsection.
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5.3.1 Dataset Details

We performed the experiments using five real-life plant genome datasets of rice

and wheat crops obtained from rice genome library [51] and from Han et al. [52],

respectively. In the rice dataset, there are 12 chromosomes (ch) present. We merged

three sets of chromosomes and created four datasets of rice named Rice 1, Rice 2, Rice

3, and Rice 4. The detailed description of these datasets are given in Section 2.6.1.

5.3.2 Evaluation Measures

To evaluate the performance of the proposed method, we employed two metrics,

Silhouette Index (SI), Davies-Bouldin Index (DBI). The details of these metrics are

given in Section 2.5.

5.3.3 Hyperparameter Settings for Evaluation Model

Table 5.1 presents a comprehensive list of the parameters utilized in the experi-

ments, together with their corresponding values.

Table 5.1: Hyperparameter settings for evaluation models

Evaluation Model Hyperparameter Parameter Value
K-means n init 10
K-means Maximum iteration 300

5.3.4 Experimental Analysis

We ran trials on the datasets with varying numbers of clusters (k) and only gave

the experimental findings for a few of the best-performing k values in terms of SI and

DBI in contrast to 1-gram [78], 17d-FET [90]. In order to assess the e�cacy of the

proposed scalable approach in distributed computing, we conducted experiments on

several configurations, including single core, two cores, three cores, and four cores.

The time taken to extract features for each configuration was recorded and displayed

in Table 5.7.
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Experimental findings on Wheat dataset:

Table 5.2 shows the experimental results on the Wheat data on k = 2 to 10. It can

be observed that the proposed 13dim-SFA gives a higher SI and lower DBI for all k

values in comparison to 17d-FET [90] and 1-gram [78]. The comparison graphs on SI

and DBI values among the proposed 13dim-SFA, 17d-FET, and 1-gram are presented

in Figures 5.4(a) and (b), respectively. It can be seen from the graphs that proposed

approach gives better results in comparison to other approaches.

Table 5.2: Results on Wheat Dataset

Count of
clusters

SI DBI
Proposed
13dim-SFA

17d-FET 1-gram
Proposed
13dim-SFA

17d-FET 1-gram

2 0.6575 0.3154 0.6090 0.5422 1.9048 0.6457
3 0.5873 0.2850 0.4939 0.5347 1.8045 0.7124
4 0.5698 0.2005 0.4376 0.5361 1.9328 0.7771
5 0.5614 0.1681 0.4042 0.5390 1.9888 0.8587
6 0.5553 0.1590 0.3796 0.5117 1.9401 0.9028
7 0.5441 0.1498 0.3266 0.5106 1.9352 0.9764
8 0.5407 0.1512 0.3300 0.5075 1.9156 1.0003
9 0.5345 0.1384 0.3182 0.5123 1.9139 1.0323
10 0.5312 0.1268 0.3036 0.5199 1.9806 1.0701

(a) SI (b) DBI

Figure 5.4: Results on Wheat dataset

Experimental findings on Rice 1:

The experimental findings on the Rice 1 data for values of k ranging from 2 to 10 are
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presented in Table 5.3. The results indicate that the 13dim-SFA method consistently

yields greater SI values and lower DBI values across all values of k, when compared

to the 17d-FET [90] and 1-gram [78] methods. Graphs comparing the SI and DBI

values of the 13dim-SFA, 17d-FET, and 1-gram are shown in Figures 5.5(a) and (b),

respectively. The graphs demonstrate that the proposed method yields superior results

in comparison to other methods.

Table 5.3: Results on Rice 1 Dataset

Count of
clusters

SI DBI
Proposed
13dim-SFA

17d-FET 1-gram
Proposed
13dim-SFA

17d-FET 1-gram

2 0.6813 0.4250 0.6416 0.5614 0.9398 0.6671
3 0.5995 0.2679 0.5253 0.5434 1.3226 0.7083
4 0.5891 0.2573 0.4712 0.5107 1.3776 0.7634
5 0.5727 0.1940 0.4306 0.5137 1.5248 0.8574
6 0.5669 0.1603 0.3991 0.5193 1.6336 0.9315
7 0.5573 0.1633 0.4015 0.5154 1.6363 0.9197
8 0.5594 0.1532 0.3672 0.4941 1.6651 0.9422
9 0.5550 0.1393 0.3852 0.4904 1.6394 0.8996
10 0.5512 0.1328 0.3865 0.4930 1.7072 0.8727

(a) SI (b) DBI

Figure 5.5: Results on Rice 1 dataset

Experimental findings on Rice 2:

Table 5.4 shows the results of experiments with Rice 2 data for k = 2–10. Compared
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to 17d-FET [90] and 1-gram [78], the proposed 13dim-SFA gives the highest SI and

the lowest DBI for all k values. Figures 5.6(a) and (b) depict comparisons of SI and

DBI values for the 13dim-SFA, 17d-FET, and 1-gram. It is evident from the graphs

that the proposed method yields superior results as compared to other methods.

Table 5.4: Results on Rice 2 Dataset

Count of
clusters

SI DBI
Proposed
13dim-SFA

17d-FET 1-gram
Proposed
13dim-SFA

17d-FET 1-gram

2 0.6886 0.4164 0.6473 0.5454 0.9728 0.6474
3 0.6219 0.2559 0.5547 0.5181 1.3524 0.6815
4 0.6007 0.2577 0.4808 0.4891 1.3211 0.7364
5 0.5876 0.1898 0.4495 0.5058 1.5342 0.8609
6 0.5734 0.1843 0.4078 0.5168 1.5548 0.9182
7 0.5688 0.1704 0.4115 0.5143 1.6259 0.9143
8 0.5518 0.1647 0.3930 0.5161 1.6687 0.9261
9 0.5516 0.1463 0.3984 0.5124 1.6156 0.8929
10 0.5535 0.1331 0.3948 0.5030 1.6972 0.8963

(a) SI (b) DBI

Figure 5.6: Results on Rice 2 dataset

Experimental findings on Rice 3:

Table 5.5 presents the results of the experiments conducted on Rice 3 data ranging

from k = 2 to 10. When compared to 17d-FET [90] and 1-gram [78], the suggested

13dim-SFA provides a greater SI and a lower DBI for all of the di↵erent k values.
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The comparison graphs on SI and DBI values among the proposed 13dim-SFA, 17d-

FET, and 1-gram are presented in Figures 5.7(a) and (b), respectively. It can be seen

from the graphs that proposed approach gives better results in comparison to other

approaches.

Table 5.5: Results on Rice 3 Dataset

Count of
clusters

SI DBI
Proposed
13dim-SFA

17d-FET 1-gram
Proposed
13dim-SFA

17d-FET 1-gram

2 0.6906 0.4053 0.6518 0.5424 1.0007 0.6402
3 0.6219 0.2565 0.5553 0.5199 1.3568 0.6754
4 0.5987 0.2566 0.4853 0.4943 1.3259 0.7400
5 0.5861 0.1826 0.4478 0.5007 1.5654 0.8444
6 0.5713 0.1804 0.4163 0.5226 1.5893 0.9134
7 0.5662 0.1691 0.4236 0.5130 1.6360 0.9032
8 0.5668 0.1699 0.3822 0.4823 1.6502 0.9346
9 0.5526 0.1414 0.3903 0.4902 1.6326 0.9058
10 0.5528 0.1306 0.3913 0.4880 1.6992 0.8807

(a) SI (b) DBI

Figure 5.7: Results on Rice 3 dataset

Experimental findings on Rice 4:

The experimental findings on the Rice 4 data for values of k ranging from 2 to 10 are

presented in Table 5.6. The results indicate that the 13dim-SFA method consistently

yields greater SI values and lower DBI values across all values of k, when compared
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to the 17d-FET [90] and 1-gram [78] methods. Graphs comparing the SI and DBI

values of the 13dim-SFA, 17d-FET, and 1-gram are shown in Figures 5.8(a) and (b),

respectively. The graphs demonstrate that the proposed method yields superior results

in comparison to other methods.

Table 5.6: Results on Rice 4 Dataset

Count of
clusters

SI DBI
Proposed
13dim-SFA

17d-FET 1-gram
Proposed
13dim-SFA

17d-FET 1-gram

2 0.6878 0.4021 0.6499 0.5327 1.0315 0.6207
3 0.6298 0.2551 0.5658 0.5125 1.3812 0.6636
4 0.6066 0.2450 0.4983 0.4899 1.3615 0.7191
5 0.5846 0.1830 0.4517 0.5077 1.5495 0.8348
6 0.5755 0.1832 0.4206 0.5223 1.5758 0.9094
7 0.5672 0.1698 0.3794 0.5211 1.6366 0.9955
8 0.5544 0.1682 0.3885 0.5267 1.6520 0.9296
9 0.5527 0.1418 0.3936 0.5160 1.6390 0.9209
10 0.5530 0.1325 0.3945 0.5098 1.6628 0.9151

(a) SI (b) DBI

Figure 5.8: Results on Rice 4 dataset

Run time performance:

To test the scalability of the proposed method, we calculated the time required to

extract features by altering the number of cores. Table 5.7 displays the time required

to extract features from unlabeled datasets using the proposed 13dim-SFA algorithm.
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It can be seen that by processing datasets on a greater number of cores, scalability

significantly reduces the amount of time required.

Table 5.7: Distributed analysis of datasets

Dataset
Time required (Seconds)
1 core 2 core 3 core 4 core

Wheat 1277 772 516 467
Rice 1 (ch1, 2, and 3) 1821 965 631 621
Rice 2 (ch4, 5, and 6) 1518 773 546 527
Rice 3 (ch7, 8, and 9) 1215 640 467 437
Rice 4 (ch10, 11, and 12) 1190 633 469 436

5.4 Summary

In this chapter, a novel 13-dimensional alignment-free scalable feature extraction

approach (13dim-SFA) for extracting features from genomic data containing the four

nucleotide bases A, T, G, and C has been presented. Using chemical property-based

features, the proposed 13dim-SFA is able to perform clustering e�ciently and generates

features that provide more information for sequence analysis. Moreover, the proposed

method makes use of local frequency instead of global frequency and thus provides a

more precise and clear representation of the word’s overall distribution. In addition, we

extracted the most important characteristic, namely the sequence length, to improve

the e�ciency of the proposed technique for feature extraction. The scalability of the

proposed method reduces the quantity of computing time by distributing the tasks

across multiple cores. The experimental results demonstrate that the proposed 13dim-

SFA yields a higher SI and a lower DBI in all real-world plant genome datasets of rice

and wheat crops, indicating that the proposed method outperforms other state-of-

the-art approaches and performs well in the clustering of similar genome sequences.

Therefore, it can be concluded that the proposed 13dim-SFA performs satisfactorily

for measuring sequence similarity and clustering.

However, the proposed 13dim-SFA employs K-means clustering to group similar

genome sequences. A significant drawback of K-means clustering is its inability to
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handle real-time dynamic data, which is abundant in the field of plant genomics, as

it generates a lot of dynamic data nowadays. Hence, to address this challenge and

enable clustering of real-time dynamic data, we introduced a multi-objective based

incremental clustering method in Chapter 6.
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Chapter 6

A Novel Multi-Objective Based

Incremental Clustering Method for

Dynamic Data Analysis

The clustering methods (K-means and Fuzzy c-means) employed in Chapters 4 and

5 perform well for handling the static data. However, these methods are unable to

handle the real-time dynamic data generated. To address this issue, in this chapter, we

proposed a multi-objective incremental clustering method for processing dynamic data

that generates and updates clusters in real-time. To improve the dynamic clustering

process, the proposed method employs Euclidean distance to calculate the similarity

between data points and constructs a fitness function with three primary clustering

objective functions: inter-cluster distance, intra-cluster distance, and cluster density.

The proposed method employs the concept of objective weighting, which allocates

a weight to each objective in order to generate a single Pareto-optimal solution for

the constructed fitness function. The proposed approach is tested on five labeled

benchmark datasets from the UCI machine learning repository to test its e�cacy.

6.1 Introduction

Nowadays, a lot of dynamic data is being generated; for example, every day, almost

a billion people conduct search on Google. It is estimated that daily email tra�c
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is around 300 billion. Every single day, people around the world compose about

230,000,000 tweets [43]. More than 30 petabytes of data created by Facebook users

are stored, accessed, and analyzed by the social media platform. The analysis of

the dynamic data stream can be helpful to derive various conclusions by using the

data mining approaches. Despite this, analyzing large dynamic data streams are also

challenging since the samples in a stream typically depend on time, and the underlying

pattern which may evolve with time. To extract knowledge from this large amount of

real-time data, this data should be processed using various data mining approaches

involves clustering for identifying patterns and structures. This study will be helpful

in generating scientific results and making the decisions.

One method for dealing with real-time dynamic data is incremental clustering

[45]. One of the biggest problems with incremental clustering is that most of it only

uses a similarity-based measure and a single objective to cluster the dynamic data

points together [46]. Because of this, most clustering algorithms are not strong against

changes in the shape, size, dimensionality, and other properties of the clusters. Multi-

objective clustering is used to deal with this problem. It breaks up a dataset into

groups of similar items, optimizing multiple goals at the same time. Multi-objective

clustering can be thought of as a special case of multi-objective optimization [96],

which tries to find the best trade-o↵s between di↵erent goals while taking into account

certain constraints.

In this study, we came up with a new multi-objective based incremental clustering

(MOB-IC) method for analyzing dynamic data points. This method uses the Euclidean

distance to find similarities between dynamic data points and simultaneously optimizes

three major clustering objective functions, i.e., the distance between clusters, the

distance within clusters, and the cluster density, by using objective weighting concept.

The proposed method groups the dynamic data points so that the distance between

the data points within each cluster is as small as possible, the distance between clusters

is as large as possible, and the cluster density is as large as possible within the cluster.

The detailed methodology of proposed MOB-IC is presented subsequently.
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6.2 Proposed Multi-Objective Based Incremental

Clustering

The proposed approach simultaneously optimizes the intra-cluster distance, inter-

cluster distance, and cluster density objective functions for the clustering of dynamic

data points. Hence, we provided a brief overview of these three key clustering objective

functions in preliminaries. After that, we discussed the proposed approach.

6.2.1 Preliminaries

In the proposed approach, we used three objective functions intra-cluster distance,

inter-cluster distance, and cluster density that needs to be optimized, which are dis-

cussed in detail subsequently.

Intra-cluster distance:

Each cluster has its own intra-cluster distance, which is found by taking the average

of the distances from each data point to the center of its cluster as given by Eq. (6.1).

obj1 =
1

|clusi|

X

a2clusi

dis(a, ceni), (6.1)

where clusi is the ith cluster and ceni is the center of cluster clusi. The dis(a, ceni)

is a function that computes the Euclidean distance between the data point a and ceni.

In a cluster, the distance between the data points and the center of the cluster should

be smaller for better clustering. As a result, the proposed method seeks to minimize

the intra-cluster distance as obj1.

Inter-cluster distance:

The inter-cluster distance represents the distance between one cluster and the other.

The inter-cluster distance is computed by using Eq. (6.2).

obj2 =
1

|clusi| |clusj|

X

a2clusi,b2clusj

dis(a, b), (6.2)

where clusi and clusj represents the ith and jth cluster respectively, a and b are any
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data point belonging to clusi and clusj, respectively. The dis(a, b) is the Euclidean

distance between the data point a and b. The clustering is optimal when the di↵erent

clusters are more separated. As a result, the proposed approach aims to maximize the

inter-cluster distance as obj2.

Cluster density:

To improve the cluster density, the distance of a data point from the other data points

in the same cluster should be smaller. This makes the clustering more crisp than

fuzzy. As given in Eq. (6.3), cluster density is formulated to be proportional to the

sum of these distances, so to maximize cluster density, the objective function aimed

to be minimized as obj3.

obj3 =
1

|clusi|

X

a,b2clusi

dis(a, b), (6.3)

where clusi is the ith cluster and a, b are two data points belonging to clusi. The

dis(a, b) is the Euclidean distance between the data point a and b.

6.2.2 Proposed Method

In the proposed MOB-IC method, the incoming data point is put into the clustering

process in three steps. In the first step, when a new data point arrives in the clustering

process, its similarity with all other clusters is evaluated by measuring its distance from

the cluster centers of all other existing clusters using Eq. (6.4). If no cluster exists

before a new data point arrives, then a new cluster is formed by containing that data

point. In the second step, the cluster with the greatest similarity to the arriving

data point is identified and the fitness function value for that cluster is calculated

using the Eq. (6.6). Finally, in the last step, the calculated fitness function value

is compared with an optimal maximum threshold (Maximumthershold) value. If the

calculated fitness value is less than or equal to the value of the maximum threshold,

then the arriving data point is assigned to the most similar cluster, and the cluster

center of that cluster is updated by taking the average of all data points; otherwise,

a new cluster is formed with the arriving data point. The working of the proposed
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approach is given in Algorithm 6.1. The flow diagram of the proposed work is shown

in Figure 6.1.

Figure 6.1: Flowchart of proposed approach

Calculation of similarity:

The similarity of a data point p from a cluster center (ceni) is computed by using Eq.

(6.4).

Similarity =
1

1 + dis(p, ceni)
, (6.4)

where dis(p, ceni) is the Euclidean distance between the data point p and ith cluster

center.
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Algorithm 6.1 Dynamic Data Clustering (MOB � IC)

Input: Dynamic data points

Output: Dynamic data clustering and their analysis

1: Let m is a new incoming data point.

2: clusnum = 0 (Initialization)

3: for m in Input data points do

4: clusi = Get Similar Cluster(m)

5: if clusi = 0 then

6: Create a new cluster for the first arriving data point.

7: ceni  Cluster Center Calculation(clusi). (calculation of cluster center of

newly created cluster).

8: clusnum = clusnum + 1

9: else

10: clusnum  Update cluster(m, clusi)

11: end if

12: end for

Algorithm 6.2 Get Similar Cluster()

Input: data point (m)

Output: Index of cluster (clusi) having greatest similarity with data point m.

1: clusi = 0 (Initialization)

2: Maximumsimilarity = -1 (Initialization)

3: for each of the cluster k do, (Where k denotes the total number of existed clusters)

4: Calculate similarity of data point m with an existing cluster using Eq. (6.4).

5: if Similarity > Maximumsimilarity then

6: Maximumsimilarity  Similarity

7: clusi  k (updating the cluster index)

8: end if

9: end for

10: return clusi
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Algorithm 6.3 Update cluster()

Input: m, clusi

Output: clusnum

1: ceni  Cluster Center Calculation(clusi)

2: Compute the fitness function value (FV ) for cluster clusi using Eq. 6.6.

3: if FV > Maximumthershold then

4: Create a new cluster for the data point m.

5: clusnum = clusnum + 1

6: else

7: Assign the data point m to the cluster with the highest similarity clusi.

8: ceni  Cluster Center Calculation(clusi) (Updating of cluster center after

including the data point m.)

9: end if

10: return clusnum

Algorithm 6.4 Cluster Center Calculation()

Input: clusi

Output: ceni

1: Let d1, d2, d3,. . . . . . dn are data points exists in cluster having index clusi.

2: The cluster center ceni =
d1+d2+d3+......dn

n

3: return ceni
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Calculation of fitness function value:

In the proposed approach, to simultaneously optimize the aforementioned three ob-

jectives, the fitness function is formed by combining all three objective functions with

weight coe�cients in a single fitness function. In this way, we converted the multi-

objective optimization problem into single-objective problem. However, in the pro-

posed approach the obj1 and obj3 are sought to be minimized and obj2 is sought to

be maximized, so instead of directly adding these objective functions, first we trans-

formed the obj2 in such a way that it has to be minimized as given in Eq. (6.5). We

assigned a weight coe�cient ↵ to the obj1, weight coe�cient � to obj2, and � to obj3.

After that, to form the fitness function, we directly added all the objective functions

with positive weight coe�cients as given in Eq. (6.6).

obj2new =
1

1 + obj2
. (6.5)

Fitnessfunction = ↵
obj1
Nobj1

+ �
obj2new
Nobj2new

+ �
obj3
Nobj3

, (6.6)

where the value of ↵ + � + � = 1. The factors Nobj1 , Nobj2new , and Nobj3 represent

the cluster centers containing the data points used to normalize the clustering results.

By optimizing the Eq. (6.6) we will generate a Pareto-optimal solution (optimized

clusters) that makes a balance between obj1, obj2, and obj3.

The proposed approach gives better results facing dynamic data because we con-

sidered all three major clustering objective functions, i.e., intra-cluster distance, inter-

cluster distance, and cluster density in the fitness function which helped to decide the

optimal maximum threshold value e�ciently. Also, the comparison of dynamic data

points with optimal maximum threshold allows the data points to be clustered in most

appropriate cluster such that the three major clustering objectives are optimized e�-

ciently, thus the use of multiple objectives makes the clustering strong against changes

in the shape, size, dimensionality, and other properties of the clusters. The proposed

approach is applied to five benchmark datasets and the experimental findings on these

datasets are presented in the subsequent section.
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6.3 Experimental Findings

This section briefs about the dataset used for the experimentation, performance

evaluation measures, parameter settings for the various parameters, and the results,

which are discussed in detail in the following subsections.

6.3.1 Dataset Details

To evaluate the e↵ectiveness of the proposed approach using external evaluation

metrics, we used five benchmark datasets taken from the UCI machine learning repos-

itory [48] named Iris, Glass, Wine, Sonar, and Parkinsons. The details of benchmark

datasets are presented in Table 6.1.

Table 6.1: Benchmark datasets

Dataset Number of data points Number of features

Iris 150 8
Glass 214 10
Wine 178 13
Sonar 208 60
Parkinsons 195 22

6.3.2 Performance Evaluation Measures

We used two external evaluation measures named Rand Index and Normalized

Mutual Information (NMI) to measure the e↵ectiveness of the proposed approach.

These evaluation metrics are discussed in detail in Section 2.5.

6.3.3 Parameter Settings

In this study, the experiments are conducted with ↵ = 0.3, � = 0.3, and � = 0.4 for

each dataset. To decide the parameterMaximumthershold value, extensive experiments

are performed by taking di↵erent Maximumthershold values for each dataset, and the

optimal Maximumthershold value for each dataset is presented in Table 6.2.
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Table 6.2: Parameter settings for the proposed MOB-IC

Dataset name Optimal Maximumthershold

Iris 1.40
Glass 1.39
Wine 1.35
Sonar 1.41
Parkinsons 1.46

6.3.4 Experimental Analysis

The proposed approach dynamically creates and updates clusters which is ex-

tremely beneficial for the constantly evolving datasets, however, to evaluate the per-

formance of the proposed approach in dynamic manner on the fixed-size datasets, first

we divided the datasets into 6 chunks of approximate sizes 50%, 10%, 10%, 10%, 10%,

10%, and then provided these chunks in incremental manner as input. The experi-

ments are performed on the datasets listed in Table 6.1 and results are compared with

the two state-of-the-art approches: MOC-FS [54] proposed by Sivadi et al. [54], and

online K-means proposed by Abernathy et al. [55], in terms of Rand Index and NMI.

Results on Iris dataset:

The proposed MOB-IC is applied to the Iris dataset and experimental findings for

the di↵erent chunks are presented in Table 6.3. It can be seen that the suggested

method performs much better than MOC-FS [54] and online K-means [55]. Also, in the

clustering phase for the first data chunk, the suggested method constructs an adequate

number of clusters (more than one). Thus the proposed MOB-IC outperforms the

MOC-FS method in terms of NMI. The comparison among the proposed method,

MOC-FS, and online K-means in terms of Rand Index and NMI are depicted in Figure

6.2(a) and Figure 6.2(b), respectively. It can be seen that the proposed MOB-IC

outperforms in comparison to MOC-FS and online K-means for all chunks of the Iris

dataset.
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Table 6.3: Results on Iris dataset

Data
Chunks (DC)

DC
Size

Rand Index (%) NMI (%)

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 75 54.95 64.36 87.39 0.00 53.40 67.92
2 15 55.58 66.71 89.39 18.05 54.55 73.91
3 15 59.08 67.36 87.18 32.46 54.22 69.61
4 15 66.19 77.00 83.80 40.45 64.13 65.54
5 15 68.83 77.53 83.85 40.77 63.59 65.36
6 15 69.14 77.31 83.38 39.49 60.71 65.65

(a) Rand Index (b) NMI

Figure 6.2: Comparison on Iris data

Results on Glass dataset:

The proposed MOB-IC is applied to the Glass dataset, and experimental results for

the various chunks are shown in Table 6.4. It is observed that during the clustering

of first two chunks, the proposed MOB-IC creates more than one cluster and that is

why it is giving better NMI than the MOC-FS [54]. Also for all chunks of data the

proposed approach outperforms the MOC-FS [54] and online K-means [55] in terms

of Rand Index and NMI. The comparison among proposed approach, MOC-FS, and

online K-means in terms of Rand Index and NMI is shown in Figure 6.3(a) and Figure

6.3(b), respectively.
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Table 6.4: Results on Glass dataset

Data
Chunks (DC)

DC
Size

Rand Index (%) NMI (%)

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 114 52.18 34.96 87.35 0.00 11.78 66.19
2 20 49.73 51.74 84.75 0.00 14.57 65.71
3 20 54.49 51.63 82.66 32.55 15.66 61.40
4 20 63.29 52.26 83.85 49.10 8.71 60.84
5 20 69.98 51.11 85.42 58.33 5.30 60.19
6 20 73.72 51.70 86.84 57.69 5.94 62.32

(a) Rand Index (b) NMI

Figure 6.3: Comparison on Glass data

Results on Wine dataset:

The proposed MOB-IC is applied to the Wine dataset, and experimental results for

the various chunks are shown in Table 6.5. It can be seen that proposed approach

significantly outperforms in comparison to MOC-FS [54] and online K-means [55] in

terms of Rand Index and NMI. The comparison graph of Rand Index and NMI are

shown in Figure 6.4(a) and Figure 6.4(b), respectively.

Results on Sonar dataset:

The proposed method is applied to the Sonar dataset, and the experimental outcomes

for the various chunks are presented in Table 6.6. The suggested technique greatly

outperforms MOC-FS [54] in terms of Rand Index and NMI, as evidenced by the

results. On the other hand, in comparison to online K-means [55], the proposed
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Table 6.5: Results on Wine dataset

Data
Chunks

DC
Size

Rand Index (%) NMI (%)

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 89 46.53 50.07 51.15 26.83 28.27 31.49
2 18 51.08 55.77 57.04 28.00 31.46 35.09
3 18 51.59 55.16 57.01 28.21 31.72 35.46
4 18 59.00 62.23 63.08 34.30 36.23 40.30
5 18 64.70 67.32 67.62 36.36 32.48 39.52
6 17 66.97 67.94 69.72 36.91 30.54 40.86

(a) Rand Index (b) NMI

Figure 6.4: Comparison on Wine dataset

MOB-IC performs better for all data chunks except the second data chunk in terms

of Rand Index. The Rand Index and NMI comparison graphs are displayed in Figure

6.5(a) and Figure 6.5(b), respectively.

Table 6.6: Results on Sonar dataset

Data
Chunks

DC
Size

Rand Index (%) NMI (%)

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 104 13.16 16.05 16.17 10.31 8.62 11.01
2 21 35.39 38.01 37.92 19.58 20.94 24.00
3 21 45.22 47.00 47.24 22.67 18.65 26.80
4 21 49.23 50.66 50.84 22.30 18.70 25.51
5 21 50.43 51.72 51.81 22.06 16.43 24.00
6 20 50.23 51.24 51.53 21.76 14.60 24.18
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(a) Rand Index (b) NMI

Figure 6.5: Comparison on Sonar dataset

Results on Parkinsons dataset:

The proposed MOB-IC is applied to the Parkinsons dataset and experimental findings

for the di↵erent chunks are presented in Table 6.7. The results show that the proposed

MOB-IC significantly outperforms the MOC-FS [54] and online K-means [55] in terms

of the Rand Index and the NMI. Figure 6.6(a) and Figure 6.6(b) depict a comparison

of the Rand Index and the NMI, respectively.

Table 6.7: Results on Parkinsons dataset

Data
Chunks (DC)

DC
Size

Rand Index (%) NMI (%)

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 97 52.66 49.46 60.27 23.01 24.62 30.72
2 20 50.46 46.33 57.26 21.86 21.69 31.28
3 20 47.41 42.06 54.23 20.86 19.53 30.53
4 20 44.19 40.60 50.82 19.81 16.50 29.02
5 19 41.21 41.61 47.81 18.72 10.08 28.09
6 19 38.61 43.71 44.50 17.82 7.37 26.35
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(a) Rand Index (b) NMI

Figure 6.6: Comparison on Parkinsons dataset

6.4 Time Complexity Analysis of the Proposed

Approach

Since the proposed MOB-IC is using three functions, i.e., Get Similar Cluster(),

Update cluster(), and Cluster Center Calculation() to perform the clustering of in-

coming data point as shown in Algorithm 6.1. So, to analyze the time complexity

of proposed MOB-IC, consider, that n data objects and k clusters have previously

been encountered and generated. Now that the (n + 1)th point has been reached, we

will evaluate the complexity of each function of the proposed MOB-IC algorithm as

follows:

The Get Similar Cluster() function contains a for loop that runs from 1 to k

(total number of clusters formed till now). Therefore, the time complexity of this

function is O(k).

The Update cluster() function has no loops and does only one comparison. How-

ever, it calculates the value of the fitness function, which consists of three computations

of distinct objectives: i.e., in obj1 (intra-cluster distance), we calculated the distance

of all the data points of the cluster to its cluster center. Therefore, the complexity of

obj1 is O(n). In the second objective obj2 (inter-cluster distance), we figured out the
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distance of the (n+ 1)th data point to the data points of all other clusters except the

one with which the (n+1)th point had the most similarity. Therefore, the complexity

of obj2 is also O(n). The obj3 (cluster density) computes the distance of one point to

other point with in one cluster so the time complexity of obj3 is O(n). So the overall

time complexity of Update cluster() is O(n+ n+ n) which can be reduced to O(n).

The Cluster Center Calculation() function computes the cluster center by taking

the mean of all data points, so its time complexity is constant, i.e., O(1).

So, the overall time complexity of the proposed approach is O(k + n + 1) which

can be simply reduced to O(k + n). Table 6.8 compares the time complexity of the

proposed MOB-IC with the MOC-FS and online K-means approaches.

Table 6.8: Comparison of the proposed MOB-IC time complexity with MOC-FS and
online K-means

Approach Time complexity

Get Similar Cluster() O(k)
Update cluster() O(n)
Cluster Center Calculation() O(1)
Overall time complexity of proposed MOB-IC O(k + n)
MOC-FS approach O(n2)
Online K-means O(nk)

As shown in Table 6.8, MOC-FS approach [54] has a time complexity of O(n2)

since they used two loops to calculate pair-wise distances to calculate cluster density.

The online K-means [55] have the time complexity of O(nk). Therefore, it can be

concluded that the proposed approach takes less time to cluster the dynamic data in

comparison to MOC-FS and online K-means.

6.5 Summary

In this chapter, we proposed a novel multi-objective based incremental cluster-

ing (MOB-IC) for the analysis of dynamic data. The proposed MOB-IC utilizes the

objective weighting concept to optimize the three objective functions of inter-cluster
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distance, intra-cluster distance, and cluster density simultaneously, enabling an e�-

cient determination of the optimal maximum threshold value. Furthermore, the com-

parison mechanism of the proposed MOB-IC evaluates dynamic data points against

the optimal maximum threshold value, allowing the data points to be clustered in

the most appropriate cluster. This ensures that the three major clustering objec-

tives are e�ciently optimized, making the clustering robust to changes in the shape,

size, dimensionality, and other properties of the clusters. Additionally, the proposed

method outperforms existing state-of-the-art methods in terms of external evaluation

measures when tested on five labeled benchmark datasets. Moreover, for the Iris and

Glass datasets, the proposed method creates many clusters in the first chunk of data

and surpasses the state-of-the-art existing method MOC-FS in terms of cluster quality.

Similarly, for high-dimensional Sonar and Parkinsons datasets, proposed MOB-IC also

performs well and produces superior results. Furthermore, in the terms of time com-

plexity, the proposed MOB-IC also demonstrates superior performance, requiring less

time to cluster dynamic data than existing state-of-the-art techniques. Consequently,

we can infer that the proposed MOB-IC performs well in terms of external evaluation

measures and time complexity for all types of datasets by simultaneously optimizing

the three essential clustering objectives.

The proposed MOB-IC is further evaluated on the unlabeled real-life plant Single

Nucleotide Polymorphisms (SNP) datasets of rice crop. A detailed analysis of its

performance on these datasets is presented in Chapter 7.
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Chapter 7

Investigation of Massive Real-Life Plant

SNP and Protein Datasets on Developed

Feature Selection and Multi-Objective

Based Incremental Clustering

In previous chapters (Chapter 3 and 6), the proposed clustering-based hybrid fea-

ture selection approach using Ant Colony Optimization (NCHFS-ACO) and multi-

objective based incremental clustering (MOB-IC) strategies were primarily tested on

labeled benchmark datasets taken from the UCI machine learning repository [48]. So,

in this chapter, we proposed to examine the performance of these approaches on the un-

labeled real-life plant Single Nucleotide Polymorphisms (SNP) and protein datasets of

rice and soybean crops obtained from Indian Council of Agricultural Research-Indian

Institute of Soybean Research (ICAR-IISR), Indore, India. We used a 12-dimensional

feature extraction approach to preprocess the SNP sequences and a 60-dimensional

feature extraction approach to preprocess the protein sequences. The performance

of proposed NCHFS-ACO and MOB-IC is evaluated in terms of internal evaluation

indexes.
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7.1 Introduction

A fundamental task in bioinformatics is the analysis of plant genome sequences

using machine learning techniques such as clustering [155] [156]. The use of cluster-

ing aids in the classification of genes, regulatory elements, and functional regions by

categorizing similar sequences. However, the high dimensionality of plant genomics

data poses a significant challenge to the e�ciency of clustering processes. Traditional

clustering methods may have trouble finding meaningful patterns in the data because

they have to look at a lot of di↵erent dimensions. Consequently, the implementation of

feature selection techniques becomes necessary to speed up the clustering process and

extract relevant features from high-dimensional plant genomics datasets. Feature se-

lection significantly improves the quality of clustering results by selecting only relevant

features and discarding redundant ones. This refined clustering not only provides more

accurate insights, but it also has enormous potential to advance plant genomics re-

search. By identifying the most influential features, feature selection enables scientists

to unravel complex biological mechanisms, identify key genetic traits, and accelerate

the development of innovative solutions to agricultural challenges. In essence, the

strategic selection of features increases the impact of clustering techniques, making

them invaluable tools for exploring and understanding plant genomes.

In addition, another challenge in plant genomics area is handling of dynamic data.

Plant genomics research produces a large amount of dynamic data as a result of en-

vironmental fluctuations, developmental stages, and genetic variations. This dynamic

data captures the complex interactions between genes, traits, and environmental fac-

tors over time. Moreover, many bioinformatics applications [163] generate dynamic

genomics data streams. To extract knowledge from this vast volume of real-time data,

it needs to be analyzed using a variety of data mining methodologies, including clus-

tering for pattern recognition. Analyzing this vast amount of dynamic data allows

researchers to gain valuable insights into plant biology, adaptation mechanisms, and

the e↵ects of genetic modifications, thereby promoting advances in agriculture and

crop breeding.
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Hence, to address the aforementioned challenges, in this chapter, we examined the

performance of our proposed NCHFS-ACO and MOB-IC on various real-life plant

genome and protein datasets. The detailed descriptions of NCHFS-ACO and MOB-

IC are presented in Chapters 3 and 6, respectively. The subsequent section provides

details of the real-life plant SNP and protein datasets used for experimentation.

7.2 Dataset Details

We collected two types of real-life plant data: SNP sequences and protein se-

quences, to evaluate the performance of proposed approaches. A SNP [147] denotes a

variation (deletion/addition) in a single nucleotide at a specific position in the genome,

composed of the four nucleotides, adenine (A), cytosine (C), guanine (G), and thymine

(T). It serves as a tool for investigating associations between genes and diseases or

traits [164]. Conversely, a protein sequence [151] consists of twenty amino acids: Ala-

nine (A), Cysteine (C), Aspartic acid (D), Glutamic acid (E), Phenylalanine (F),

Glycine (G), Histidine (H), Isoleucine (I), Lysine (K), Leucine (L), Methionine (M),

Asparagine (N), Proline (P), Glutamine (Q), Arginine (R), Serine (S), Threonine (T),

Valine(V), Tryptophan (W), and Tyrosine (Y). The amino acids inside a sequence

can be joined together in any arrangement, and the protein sequences can vary in

length. The process of clustering protein sequences is crucial for the identification of

functional linkages, the grouping of proteins with comparable characteristics, and the

understanding of evolutionary trends.

In SNP category, We collected three di↵erent SNP datasets of rice plant namely

MAGIC-rice [149], SNP-seek rice [148], and 248Entries rice [150]. For the protein

category, we collected a huge protein sequence dataset of soybean plant namely Glycine

Soja accession W05 [146]. The detailed description of SNP and protein datasets are

provided in Sections 2.6.2 and 2.6.3.

To apply the above proposed approaches on the real-life plant SNP and protein

data, first we need to apply the preprocessing step on this data. This preprocessing

enables the transformation of biological sequences into numerical data, hence facil-
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itating the analysis of such data by NCHFS-ACO and MOB-IC approaches. The

preprocessing steps applied on these datasets are discussed subsequently.

7.3 Preprocessing of Plant SNP and Protein

Datasets

We used an existing 12-dimensional feature extraction approach (12d-FET) for

preprocessing SNP datasets and a 60-dimensional feature extraction approach (60d-

FET) for processing protein datasets. The preprocessing steps for the SNP datasets

and protein dataset is presented in Section 7.3.1 and Section 7.3.2, respectively.

7.3.1 Preprocessing of SNP Datasets using 12d-FET

During the preprocessing of SNP datasets, we extracted 12 numerical features from

each SNP sequence using the 12d-FET approach proposed by Preeti et al. [50]. The

procedure for extracting numerical features is as follows:

Table 7.1: Example of SNP sequence

1 2 3 4 5 6 7 8 9
Seq 1 G A A T G C T G G

Step 1:

Count the length of each nucleotide (lnucleotide) present in the SNP sequence. For

example, we took one SNP sequence given in Table 7.1. In this sequence, total count

of A, T, G, and C are 2, 2, 4, and 1, respectively. So the value of lA, lT , lG, and lC

are 2, 2, 4, and 1, respectively.

Step 2:

Compute the sum of the distances of each nucleotide (snucleotide) to the first nucleotide.

In this feature, we add the position values of each nucleotide present in the sequence.

In seq 1, nucleotide A appears at positions 2 and 3, so the value of (sA) = 2 + 3 = 5.

Similarly, we calculated the value of sT , sG, sC .
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Step 3:

In this step, for each nucleotide, calculate the variance of distance (dnucleotide). To

extract this feature, firstly µnucleotide was computed using Eq. (7.1). For example, in

seq 1 the computation of (dG) is shown in Eq. (7.2).

µnucleotide = snucleotide/lnucleotide (7.1)

So, the µG = sG/lG = 23/4 = 5.75

dG = [(1� 5.75)2 + (5� 5.75)2

+ (8� 5.75)2 + (9� 5.75)2]/4
(7.2)

So, dG = 9.67

Similarly, the values of dA dC dT were calculated. So after collecting the features

from these three steps, the 12 dimensional feature vector is represented by

(lA, sA, dA, lG, sG, dG, lT , sT , dT , lC , sC , dC)

(2, 5, 0.25, 4, 23, 9.67, 2, 11, 2.25, 1, 6, 0).

7.3.2 Preprocessing of Protein Datasets using 60d-FET

For the preprocessing of the protein sequence, we followed the 60d-FET approach

proposed by Preeti et al. [165]. In protein sequence, there are twenty amino acids,

so, for each amino acid, we calculated 3 features. So there will be 60 features for each

protein sequence. The detailed description of 60d-FET is as follows:

Step 1:

In this step, for each amino acid z, the count of each amino acid (lenz) is calculated.

There are twenty amino acids present in protein sequence, i.e,
P

={A, C, D, E, F, G,

H, I, K, L, M, N, P, Q, R, S, T, V, W, Y}. The counts of these amino acids is defined

as lenA, lenC , lenD, lenE, lenF , lenG, lenH , lenI , lenK , lenL, lenM , lenN , lenP , lenQ,

lenR, lenS, lenT , lenV , lenW , lenY .
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Step 2:

In this step, for each amino acid z, the total distance from the first amino acid TDz

is calculated using Eq. (7.3).

TDn =
lenzX

i=1

di, (7.3)

where di is the distance of ith amino acid from the first amino acid. After com-

putation the total distances of all amino acids is defined as TDA, TDC , TDD, TDE,

TDF , TDG, TDH , TDI , TDK , TDL, TDM , TDN , TDP , TDQ, TDR, TDS, TDT ,

TDV , TDW , TDY .

Step 3:

In this step, features based on distribution are computed using the above two types

of features, i.e., count and total distance. In this feature, for each amino acid z, the

distribution of each nucleotide (disz) is calculated in two steps. In the first step, the

average of total distance is calculated using Eq. (7.4). Then, distribution is computed

using Eq. (7.5).

Avgdz = TDz/lenz, (7.4)

disz =
lenzX

i=1

(di � Avgdz)2

lenz

. (7.5)

After computation the distributions of all amino acids is defined as disA, disC ,

disD, disE, disF , disG, disH , disI , disK , disL, disM , disN , disP , disQ, disR, disS,

disT , disV , disW , disY . So, after collecting the features from these three steps, the

60 dimensional feature vector is represented by hlenA, lenC , lenD, lenE, lenF , lenG,

lenH , lenI , lenK , lenL, lenM , lenN , lenP , lenQ, lenR, lenS, lenT , lenV , lenW , lenY ,

TDA, TDC , TDD, TDE, TDF , TDG, TDH , TDI , TDK , TDL, TDM , TDN , TDP ,

TDQ, TDR, TDS, TDT , TDV , TDW , TDY , disA, disC , disD, disE, disF , disG, disH ,

disI , disK , disL, disM , disN , disP , disQ, disR, disS, disT , disV , disW , disY i.

After preprocessing, the details of SNP and protein datasets are shown in Table 7.2.
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The experimental analysis of proposed NCHFS-ACO and MOB-IC on these processed

datasets are presented subsequently.

Table 7.2: Real-life plant SNP and protein datasets

Dataset Count of Count of Data
name instances features type

MAGIC-rice 16932 12 SNP
SNP-seek rice 252 12 SNP
248Entries rice 248 12 SNP
W05 66622 60 Protein sequence

7.4 Experimental Analysis of Proposed Feature Se-

lection on SNP and Protein Datasets

The proposed NCHFS-ACO (discussed in Chapter 3) is applied on the real-life

plant SNP and protein datasets listed in Table 7.2, and the NCHFS-ACO approach is

compared to a hybrid feature selection approach developed by Solorio et al. [1]. Since

these SNP datasets are unlabeled, first of all the number of clusters are identified by K-

means clustering. To identify the number of clusters, K-means clustering is performed

by taking various k values and results are presented only on a few best-performing

k values. Due to the unavailability of class labels, results are quantified in terms of

Silhouette Index (SI) and Silhouette Visualizer only. The detailed descriptions of SI

and Silhouette Visualizer are presented in Sections 2.5 and 3.3.2, respectively.

Results on MAGIC-rice:

Table 7.3 shows the SI values corresponding to a few best-performing clusters (k) using

K-means clustering. It can be seen that k = 3 is giving the highest SI among various

k values. So further analysis is performed by taking k = 3.

Table 7.4 shows the results of the NCHFS-ACO on the MAGIC-rice dataset for

various nmax values by taking k = 3. When one feature is selected, the NCHFS-

ACO gives a better SI than the Solorio et al. [1] approach. The NCHFS-ACO also
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Table 7.3: Few best performing k values on MAGIC-rice

No. of clusters(k) SI

2 0.7333
3 0.7644
4 0.6273

Table 7.4: Results on MAGIC-rice

Technique used No. of features selected SI

Solorio et al. 4 0.7644
NCHFS-ACO 1 0.8487
NCHFS-ACO 2 0.8411
NCHFS-ACO 4 0.8329

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 7.1: Results on MAGIC-rice

performs better than Solorio et al. [1] in the case of 4 features by selecting another

set of 4 features. The Silhouette Visualizer obtained from Solorio et al. [1] and the

NCHFS-ACO approach is presented in Figure 7.1(a) and Figure 7.1(b) to observe the

clustering results. It can be observed from the Silhouette Visualizer obtained from

NCHFS-ACO that all clusters are having better average SI value than the Silhouette

Visualizer obtained from Solorio et al. [1] approach.
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Results on SNP-seek rice:

Table 7.5 shows the SI values corresponding to a few best-performing clusters (k) using

K-means clustering. It can be seen that k = 2 is giving the highest SI among various

k values. So further analysis is performed by taking k = 2.

Table 7.5: Few best performing k values on SNP-seek rice

No. of clusters(k) SI

2 0.8069
3 0.7296
4 0.6252

Table 7.6: Results on SNP-seek rice

Technique used No. of features selected SI

Solorio et al. 6 0.8069
NCHFS-ACO 1 0.8166
NCHFS-ACO 2 0.8458
NCHFS-ACO 6 0.8069

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 7.2: Results on SNP-seek rice

Table 7.6 shows the results of the NCHFS-ACO on the SNP-seek rice dataset for

various nmax values by taking k = 2. When one feature is selected, the NCHFS-ACO
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gives better SI than the Solorio et al. [1] approach. The Silhouette Visualizer obtained

from Solorio et al. [1] and NCHFS-ACO approach is presented in Figure 7.2(a) and

Figure 7.2(b) to observe the clustering results. It can be seen from the Silhouette

Visualizer obtained from the NCHFS-ACO that all clusters are having better average

SI value than the Silhouette Visualizer obtained from Solorio et al. [1] approach.

Results on 248Entries rice:

Table 7.7 shows the SI values corresponding to a few best-performing k values using

K-means clustering. It can be seen that k = 2 is giving the highest SI among various

k values. So further analysis is performed by taking k = 2.

Table 7.7: Few best performing k values on 248Entries rice

No. of clusters(k) SI

2 0.8208
3 0.6967
4 0.4411

Table 7.8: Results on 248Entries rice

Technique used No. of features selected SI

Solorio et al. 8 0.8208
NCHFS-ACO 1 0.8957
NCHFS-ACO 2 0.8954
NCHFS-ACO 8 0.8319

Table 7.8 shows the results of the NCHFS-ACO on the SNP-seek rice dataset for

various nmax values by taking k = 2. When one feature is selected, the NCHFS-ACO

gives better SI than the Solorio et al. [1] approach. The NCHFS-ACO also performs

better than Solorio et al. [1] in the case of 8 features by selecting another set of 8

features. It can be observed from the Silhouette Visualizer presented in Figure 7.3(b)

for the NCHFS-ACO approach, that all clusters are having better average SI value

than the Silhouette Visualizer shown in Figure 7.3(a) obtained from Solorio et al. [1]

approach.
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(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 7.3: Results on 248Entries rice

Results on W05 protein dataset:

Table 7.9 shows the SI values corresponding to a few best-performing k values by

K-means clustering. It can be seen that k = 2 is giving the highest SI among various

k values. So further analysis is performed by taking k = 2.

Table 7.9: Few best performing k on W05 Protein dataset

No. of clusters(k) SI

2 0.8847
3 0.7364
4 0.7230

Table 7.10: Results on W05 Protein dataset

Technique used No. of features selected SI

Solorio et al. 29 0.8847
NCHFS-ACO 1 0.9109
NCHFS-ACO 10 0.8956
NCHFS-ACO 29 0.8848

Table 7.10 shows the results of the NCHFS-ACO on the W05 Protein dataset for

various nmax values by taking k = 2. When one feature is selected, the NCHFS-ACO
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gives a better SI than the Solorio et al. [1] approach. The NCHFS-ACO also performs

slightly better than Solorio et al. [1] in the case of 29 features by selecting another

set of 29 features. The Silhouette Visualizer obtained from Solorio et al. [1] and

NCHFS-ACO approach is presented in Figure 7.4(a) and Figure 7.4(b) to observe the

clustering results. It can be observed from the Silhouette Visualizer obtained from

NCHFS-ACO that all clusters are having better average SI values than the Silhouette

Visualizer obtained from Solorio et al. [1] approach.

(a) Solorio et al. [1] approach (b) Proposed NCHFS-ACO

Figure 7.4: Results on W05 Protein dataset

Comparative performance analysis on SNP datasets:

The comparison between Solorio et.al. [1] and the NCHFS-ACO in terms of the

SI is presented in Figure 7.5. From the figure, it can be seen that the NCHFS-

ACO provides significantly higher SI values across all Real-life SNP datasets. We

performed another comparison in terms of SI, by taking the same number of features as

computed by Solorio et al. [1] approach and the corresponding results are highlighted

in sa↵ron color. Figure 7.5 also indicates that with the same number of features, the

NCHFS-ACO provides superior SI values for MAGIC-rice and 248Entries datasets but

it achieves the same SI value in the case of the SNP-seek rice dataset.

Comparative performance analysis on protein dataset:

The comparison between Solorio et.al. [1] and the NCHFS-ACO in terms of the SI is
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shown in Figure 7.6. From the figure, it can be seen that the NCHFS-ACO provides

significantly higher SI values than the Solorio et al. [1] approach. We performed

another comparison by taking the same number of features as computed by Solorio et

al. [1] approach and the corresponding results are highlighted in sa↵ron color. Figure

7.6 also indicates that with the same number of features, the NCHFS-ACO provides

a slightly higher SI value.

Figure 7.5: Comparison between Solorio et.al. [1] and NCHFS-ACO in SI on SNP
datasets

Figure 7.6: Comparison between Solorio et.al. [1] and NCHFS-ACO in SI on protein
dataset
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7.5 Experimental Analysis of Proposed Multi-

Objective Based Incremental Clustering on

SNP Datasets

We conducted experiments using the SNP datasets listed in Table 7.2 to assess the

e↵ectiveness of the proposed MOB-IC method (detailed in Chapter 6). To evaluate the

performance, we computed results in terms of SI and the Calinski-Harabasz Index (CH

Index). These metrics are discussed in detail in Section 2.5. In addition, we compared

the results of the proposed MOB-IC with the MOC-FS [54] and online K-means [55].

The results on the SNP datasets are discussed subsequently.

Results on MAGIC-rice:

The experimental findings for the MAGIC-rice dataset is presented in Table 7.11. It

can be noticed that all SI values for the suggested MOB-IC are positive and higher

than the MOC-FS [54] and online K-means [55], indicating that all data points are

more closely related with their own cluster than with the cluster that is closest to

them. In the case of CH Index, the proposed approach gives significantly higher

values than MOC-FS [54] and online K-means [55], due to this the proposed approach

performs superior than MOC-FS [54] and online K-means [55]. Figure 7.7(a) and

Figure 7.7(b) compare the SI and CH Index of the proposed approach, MOC-FS, and

online K-means.

Table 7.11: Results on MAGIC-rice dataset

Data
Chunks (DC)

DC
Size

SI CH Index

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 8466 -0.102 0.1547 0.536 9.3 3108 5186
2 1693 -0.111 0.1608 0.581 7.1 3804 6374
3 1693 -0.055 0.1657 0.615 9.7 4307 7734
4 1693 -0.027 0.1664 0.633 12.7 5208 8901
5 1693 -0.006 0.1721 0.650 11.9 7698 10404
6 1694 -0.077 0.1735 0.666 13.9 9142 11978
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(a) SI (b) CH Index

Figure 7.7: Comparison on MAGIC-rice

Results on SNP-seek rice:

The experimental findings for the SNP-seek rice dataset are presented in Table 7.12.

It can be observed that the proposed MOB-IC has all positive SI values, which shows

that all data points are tightly associated with their own cluster in comparison to

the nearest cluster. The proposed approach works better than the MOC-FS [54] and

online K-means [55] for all data chunks in both the SI and CH Index. In Figure 7.8(a)

and Figure 7.8(b), the SI and CH Index of the proposed MOB-IC, MOC-FS [54], and

online K-means [55] are compared.

Table 7.12: Results on SNP-seek rice dataset

Data
Chunks (DC)

DC
Size

SI CH Index

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 126 -0.203 0.2295 0.687 23.9 47.60 137.9
2 25 -0.027 0.1939 0.661 34.6 61.20 99.7
3 25 -0.065 0.2113 0.668 50.1 88.42 102.3
4 25 0.026 0.2085 0.682 67.8 89.36 108.4
5 25 -0.225 0.1982 0.700 59.9 108.6 120.5
6 26 -0.197 0.2094 0.719 57.4 116.52 135.2

155



(a) SI (b) CH Index

Figure 7.8: Comparison on SNP-seek rice

Results on 248Entries rice:

The experimental results for the 248Entries dataset are shown in Table 7.13. It can

be noted that all SI values for the proposed method are positive, indicating that all

data points are firmly related with their own cluster in comparison to the next cluster.

In case of both SI and CH Index, the performance of the suggested MOB-IC is also

superior to that of the MOC-FS [54] and online K-means [55] for all data chunks.

Figure 7.9(a) and Figure 7.9(b) provide a comparison of the proposed technique, MOC-

FS, and online K-means in terms of SI and CH Index, respectively.

Table 7.13: Results on 248Entries rice dataset

Data
Chunks (DC)

DC
Size

SI CH Index

MOC-FS Online K-means
Proposed
MOB-IC

MOC-FS Online K-means
Proposed
MOB-IC

1 124 -0.070 0.290 0.858 65.6 102.12 578.3
2 25 -0.051 0.260 0.875 81.8 211.63 807.2
3 25 -0.046 0.335 0.871 103.9 481.83 887.4
4 25 -0.098 0.232 0.875 97.5 262.53 1025.8
5 25 -0.088 0.265 0.887 88.2 340.035 1225.1
6 24 -0.097 0.330 0.896 80.2 529.33 1427.5
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(a) SI (b) CH Index

Figure 7.9: Comparison on 248Entries rice

7.6 Summary

In this chapter, we examined the performance of our proposed feature selection and

multi-objective based clustering on real-life plant Single Nucleotide Polymorphisms

(SNP) and protein sequences. We applied a 12-dimensional feature extraction ap-

proach to preprocess the SNP data and a 60-dimensional approach for the protein

data. Subsequently, we utilized the processed data as input for these methods. Our

proposed feature selection yielded significant improvements in SI across all real-life

SNP datasets. Notably, it also outperformed other state-of-the-art method, even on

large protein datasets. Furthermore, our incremental clustering method demonstrated

strong performance in terms of SI and CH Index across all SNP datasets. Particu-

larly, it consistently produced appropriate clustering with increased and positive SI

values, surpassing the cluster quality of the MOC-FS method. While we previously

evaluated the e�cacy of our algorithms on benchmark datasets, this chapter focuses

on their application to real-life plant SNP and protein datasets. The results revealed

that our proposed approaches performed exceptionally well in selecting appropriate

features and clustering incremental data compared to other state-of-the-art methods.

Therefore, we can conclude that our proposed approaches are general purpose and can

be e↵ectively applied to any data.
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Chapter 8

Conclusions and Future Work

This thesis focuses on the development of novel feature selection, scalable

alignment-free feature extraction, and incremental clustering algorithms to address

various plant genomics issues, such as the high dimensionality of genome data, the

time-consuming nature of alignment-based approaches, and the handling of real-time

dynamic data, among others. In particular, we created a novel clustering-based hybrid

feature selection strategy, two alignment-free scalable feature extraction approaches

using Apache Spark, and an incremental clustering based on multiple objectives.

To deal with the high dimensionality, initially, we devised a clustering-based hybrid

feature selection strategy based on Ant colony Optimization (NCHFS-ACO). The

NCHFS-ACO employs K-means clustering to assign the fitness of features in terms of

Silhouette Index (SI) along with the Laplacian score during the feature selection pro-

cess, as well as to assess the performance of the proposed feature selection algorithm.

The NCHFS-ACO is tested on a variety of benchmark datasets and compared against

the state-of-the-art technique. The results show that our proposed method outper-

forms the existing method in terms of the SI and the Jaccard Index (JI). Then, we de-

signed two alignment-free, Apache Spark based scalable feature extraction approaches

for the genome dataset to overcome the time-consuming nature of alignment-based

approaches. First, we proposed a 14-dimensional feature extraction approach for ob-

taining features from genome sequences. This method extracts the most important

features based on the arrangement of nucleotides. These extracted features are being
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clustered using K-means and Fuzzy c-means clustering algorithms, and the results are

evaluated in terms of SI and Davies-Bouldin Index (DBI) for the unlabeled datasets

and in terms of JI and Rand Index (RI) for the labeled datasets. However, this method

does not extract features based on nucleotide classification using chemical properties.

So, to further improve the performance, we proposed another alignment-free, scalable

feature extraction method that extracts the significantly important features based on

the classification of nucleotides using their chemical properties in terms of entropy

and the length of the sequence. Further, the clustering of these extracted features

is performed using K-means clustering, and the results are evaluated in terms of SI

and DBI. Also, the developed scalable feature extraction techniques are generalized

approaches that can be applied to any SNP (nucleotide form) and DNA sequences.

After that, to handle the real-time dynamic data, we developed a novel incremental

clustering method based on multiple objectives. The proposed incremental clustering

simultaneously optimized the three objective functions named inter-cluster distance,

intra-cluster distance, and cluster density using the objective weighting concept for

the dynamic data analysis and overcome the deficiency of disregarding extra crucial

cluster attributes including shape, size, and dimensionality. In addition, the proposed

method beats the existing state-of-the-art methods in terms of external evaluation

measures when tested on five labeled benchmark datasets.

Further, we tested the proposed feature selection and incremental clustering on

the unlabeled real-life SNP and protein datasets. We extracted features from these

sequences, and those feature vectors were used as inputs for feature selection and

incremental clustering algorithms. The results show that the proposed feature se-

lection and incremental clustering approaches performed well in comparison to other

state-of-the-art approaches. The proposed feature selection and incremental clustering

approaches are general-purpose and can be applied to any problem. A brief summary

of our research achievements are as follows:
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8.1 Summary of Research Achievements

The research objectives have been successfully fulfilled and summarized as follows:

(i) A Novel Clustering-Based Hybrid Feature Selection Approach Using

Ant Colony Optimization:

We proposed a novel clustering-based hybrid feature selection method named

“NCHFS-ACO” to tackle the high dimensionality issue in datasets. This ap-

proach draws inspiration from the social behavior of ants to select the most ap-

propriate features while eliminating redundant and irrelevant ones that impede

model construction. Unlike conventional methods that select features sequen-

tially, NCHFS-ACO adopts a random feature selection order to avoid becoming

trapped in local optima. Moreover, it employs a hybrid approach to evaluate

feature qualities using K-means clustering in terms of SI and Laplacian score.

Additionally, NCHFS-ACO mimics the behavior of Temnothorax Albipennis ant

species, employing a tandem run strategy to identify the most promising features

from a leader subset, ensuring their retention throughout computation and yield-

ing a global optimal solution. Since the proposed approach is clustering-based, it

is applicable to both labeled and unlabeled data. Consequently, when evaluated

on ten high-dimensional benchmark datasets, our proposed method outperforms

an existing method in terms of SI and JI.

(ii) A Novel Apache Spark Based 14-Dimensional Scalable Feature Ex-

traction Approach for the Clustering of Genomics Data:

To address the time-consuming nature of alignment-based approaches, we in-

troduced an alignment-free Apache Spark-based scalable 14-dimensional feature

extraction technique (14d-SFET) for converting genomics data into numeric fea-

ture vectors. Our proposed 14d-SFET method captures five distinct types of

features: sequence length, nucleotide frequencies, modified total distance, mod-

ified distribution, and entropy, culminating in a 14-dimensional feature vector.

Notably, our approach employs a novel power method that rectifies the issue of
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extracting identical features for dissimilar sequences. Moreover, we utilized the

extracted feature vectors as input for K-means and Fuzzy c-means clustering

algorithms to cluster vast genomic datasets. To evaluate our approach, we con-

ducted experiments using seven unlabeled real-life plant genomics datasets of the

soybean crop collected from Indian Council of Agricultural Research-Indian Insti-

tute of Soybean Research (ICAR-IISR), Indore, India and two labeled benchmark

genome sequence datasets collected from UCI machine learning repository [48].

The experimental results demonstrate the superior performance of our proposed

14d-SFET method in terms of both internal and external evaluation measures

when compared to existing methods.

(iii) A Novel 13-Dimensional Alignment-Free Scalable Feature Extraction

Method for Genomic Data Clustering:

The preceding 14d-SFET approach solely extracted features based on the ar-

rangement of nucleotides. However, this method failed to incorporate features de-

rived from the chemical properties of nucleotides, which could have o↵ered addi-

tional insights into genome functionality. Thus, we proposed another alignment-

free, scalable 13-dimensional feature extraction approach (13dim-SFA) utilizing

Apache Spark. The proposed 13dim-SFA method discerned 13 crucial features

based on both the length and the chemical properties of nucleotides. Initially, to

capture features based on chemical properties, 13dim-SFA categorized genome

sequences into three groups: pyrimidine or purine, keto or amino, and strong hy-

drogen bond or weak hydrogen bond groups. Subsequently, it extracted position

and frequency based features in terms of entropy values from these categorized se-

quences. The resulting 13-dimensional feature vector served as input for K-means

clustering to facilitate genome sequence clustering, and the clustering results are

measured in terms of SI and DBI. Experimental findings indicate that the pro-

posed 13dim-SFA outperforms other state-of-the-art approaches, demonstrating

its e�cacy in genome sequence clustering.

(iv) A Novel Multi-Objective Based Incremental Clustering Method for
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Dynamic Data Analysis

The continuous generation of extensive data from various sources emphasizes

the necessity for real-time analytical techniques. Hence, to address real-time

dynamic data, we introduced a novel multi-objective based incremental cluster-

ing (MOB-IC) approach. The Proposed MOB-IC e�ciently clusters incremen-

tal data points by simultaneously optimizing three major clustering objectives:

intra-cluster distance, inter-cluster distance, and cluster density. This approach

utilizes the concept of objective weighting, assigning approximate equal weight

to each objective to ensure an unbiased solution. An additional advantage is

its real-time cluster generation and updating, eliminating the need for prede-

termined clustering parameters like the number of clusters. To evaluate the

proposed approach’s dynamic performance on fixed-size datasets, we divided the

datasets into six chunks of approximate sizes 50%, 10%, 10%, 10%, 10%, 10%.

These chunks were provided incrementally as input, and results were measured

at the end of each chunk in terms of RI and Normalized Mutual Information

(NMI). The proposed method is evaluated on five benchmark datasets, and the

experimental results indicate that it surpasses other state-of-the-art approaches.

In terms of time complexity, it also exhibits better performance compared to

other state-of-the-art methods.

(v) Investigation of Massive Real-Life Plant SNP and Protein Datasets on

Developed Feature Selection and Multi-objective Based Incremental

Clustering

The proposed NCHFS-ACO and MOB-IC approaches have been tested with the

labeled benchmark datasets. However, to evaluate the performance of these

methods on the unlabeled real-life plant SNP and protein datasets of rice and

soybean crops, we applied them to these datasets. We used a 12-dimensional

feature extraction method to preprocess the SNP datasets, which creates a fixed-

length 12-dimensional feature vector for each SNP sequence. For the protein

sequence, we used a 60-dimensional feature extraction method, which creates a
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60-dimensional feature vector for each protein sequence. After preprocessing, we

examined the performance of NCHFS-ACO on the SNP and protein datasets

and measured the results in terms of SI. The experimental finding demonstrates

that the NCHFS-ACO performed well in comparison to other existing method

proposed by Solorio et al. [1]. Then we investigated the performance of MOB-

IC on the SNP datasets by supplying the processed SNP data in an incremental

manner and assessing the results in terms of SI and Calinski–Harabasz Index (CH

Index). The experimental results reveal that the proposed MOB-IC performed

well in comparison to other state-of-the-art methods.

8.2 Future Research Directions

Although there has been notable advancement in feature selection, scalable feature

extraction, and incremental clustering for analyzing plant genome data, there are still

other intriguing future avenues to investigate, as follows:

(i) Novel feature Selection approaches for unlabeled genome data:

The developed hybrid feature selection approach based on ant colony optimiza-

tion incorporates one filter measure and one wrapper measure. In forthcoming

research, we could explore the inclusion of additional filter measures or the uti-

lization of multiple filter measures simultaneously [166], aiming to explore the

complex feature interaction to enhance the robustness and e↵ectiveness of the

feature selection process.

(ii) Novel GPU based alignment-free feature extraction approaches:

The Developed feature extraction approaches extract features based on the ar-

rangement of nucleotides or based on the chemical properties of nucleotides.

However, this work can be extended by incorporating some feature extraction

criteria such as the most repeated pattern (MRP) count and the palindrome

count, as well as some features based on the amino acid composition, i.e., amino

acid count, their atomic composition, and their molecular weight, can be used to
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enhance the performance of the proposed feature extraction method. In addition,

the graphics processing unit (GPU)-based cuda programming [167] could be used

to make the processed approach faster for the supercomputing infrastructure and

able to handle petabytes of data.

(iii) Multi-objective based incremental clustering using Apache Spark:

The developed multi-objective based incremental clustering runs on a standalone

machine. In future, this approach can be parallelized in distributed systems by

using Apache Spark framework to reduce the time required to calculate individual

objective functions when processing data with bigger input chunk sizes.
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