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Abstract 

Prediction of severe weather events such as Tropical Cyclones (TCs) has always been 

challenging for climate researchers. A disastrous cyclone striking in the coastal region 

causes serious hazards to human life and economic losses. Intensity predictions are 

difficult because of the complicated physical mechanisms of TC dynamics and the way 

they interact with upper-ocean and atmospheric circulation. This research gives 

importance to estimating TC intensity to identify different categories of cyclones.  

We attempted to predict TC intensity using Convolutional Neural Networks (CNNs) by 

proposing a simple and robust architecture for TC intensity estimation. The results 

yielded better performance than the state-of-the-art techniques with reduced 

computation time. In addition, we presented a visualisation portal in a production 

system that displays Deep Learning (DL) output and contextual information for end 

users. CNN model is trained and tested with classified cyclone data for cyclone 

identification. The model comprises a binary classifier, a multiclass classifier, a 

YOLOv3 based cyclone detector and a regression module. The model is tuned for the 

North Indian Ocean (NIO) region with binary classification accuracy of 98.4% 

(±0.003), multiclass classification accuracy of 63.83% (±1.3), and Root Mean Square 

Error (RMSE) of 16.2 (±0.9) knots. 

Another major problem is Rapid Intensification (RI) classification of TCs, which is 

difficult to forecast accurately in a timely manner. The research also proposes a 

Machine Learning (ML) based classification framework for RI predictions that utilizes 

Support Vector Machines (SVM) in conjunction with the Synthetic Minority Over-

Sampling Technique (SMOTE) to handle class imbalance. The proposed framework has 

the potential to be a useful tool for forecasters to issue timely warnings and prepare for 

the impacts of RI events.  

 

Keywords: Convolutional Neural Network, Tropical Cyclone, Object Detection, 

Machine Learning, Deep Learning, North Indian Ocean, Intensity Estimation, Rapid 

Intensification 
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Chapter 1 

Introduction 

TC is the generic term for a low-pressure system over tropical or subtropical 

waters, with organisation (i.e., thunderstorm activity) and winds at low levels 

circulating either anti-clockwise (Northern Hemisphere) or clockwise 

(Southern Hemisphere). The whole storm system may be five to six miles 

high and 300 to 400 miles wide, although sometimes it can be even bigger. 

TC, also known as hurricanes, typhoons, or cyclones depending on the 

region, are powerful and destructive weather phenomena that have captured 

the attention of scientists and the public alike. As our understanding of 

climate change deepens, evidence suggests that these TCs are influenced by 

the changing climate [1].  

Recognizing this connection is crucial in addressing the challenges posed by 

these storms and mitigating their impact on human lives and the 

environment. 

Climate change has the potential to affect TC in several ways. One of the 

primary concerns is the increase in sea surface temperatures due to global 

warming. Warmer ocean waters provide the necessary fuel for TCs to 

intensify rapidly, leading to stronger and more destructive storms. 

Additionally, climate change can influence atmospheric circulation patterns, 

which can impact the formation, track, and intensity of these storms. 

Accurate prediction of TC is essential for managing their potential risks and 

reducing their impact. Advancements in meteorological science and 

technology have significantly improved our ability to forecast these storms, 

enabling timely evacuation, resource allocation, and emergency response. By 

accurately predicting the track and intensity of a TC, authorities can issue 

appropriate warnings and implement evacuation measures, potentially saving 

countless lives. 

Furthermore, improved prediction capabilities empower policymakers to 

make informed decisions regarding climate change mitigation and adaptation 

strategies. By understanding the potential risks associated with TC in a 

changing climate, policymakers can develop resilient infrastructure, 
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implement effective land-use planning, and design appropriate disaster 

response and recovery mechanisms. Accurate predictions also assist in 

optimizing resource allocation, aiding in the preparation and distribution of 

relief supplies, and reducing the economic and social impact of these storms. 

To enhance TC prediction, ongoing research and investment in 

meteorological science are essential. This includes improving Numerical 

Weather Prediction (NWP) models, enhancing observational networks, and 

developing more advanced satellite technologies. By combining these efforts 

with a comprehensive understanding of the relationship between TC and 

climate, we can better anticipate, prepare for, and mitigate the impacts of 

these powerful storms. 

In summary, the interplay between TC and climate change underscores the 

importance of accurate prediction in addressing the associated challenges. By 

leveraging improved forecasting capabilities, we can save lives, protect 

infrastructure, and develop effective strategies to mitigate and adapt to the 

impacts of TCs. A comprehensive approach that combines scientific 

research, technological advancements, and informed policymaking is vital in 

building resilience and safeguarding communities against the forces of nature 

in a changing climate. 

1.1 Motivation 
The NIO region, including the Arabian Sea (~24%) and Bay of Bengal 

(~76%) accounts for approximately 6% of the global TCs. With a staggering 

number of 1942 disasters recorded over the past 50 years, these natural 

phenomena have caused over 1408 billion dollars in economic losses. 

Tragically, these cyclones have resulted in the loss of 800,000 lives, 

equivalent to an alarming average of 43 deaths every day. Among the 

countries most affected by tropical cyclones, Bangladesh stands out as the 

hardest hit. The impact on this South Asian nation has been severe. The daily 

damages amount to a staggering 78 million dollars  

(https://public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-

disaster-risk-reduction/tropical-cyclones). 

https://public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-disaster-risk-reduction/tropical-cyclones
https://public.wmo.int/en/our-mandate/focus-areas/natural-hazards-and-disaster-risk-reduction/tropical-cyclones
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The coastal region is the most affected by storm surge, which leads to 

colossal damage [2]. If analysts can accurately estimate TC intensity, it can 

prove to be a deciding factor in the amount of loss. Creating faster and more 

reliable estimates of storms may therefore lead to better decision-making. 

Improving TC prediction remains an important task for meteorologists due to 

the severe impact they can have on human life, properties, and economies. 

The immense toll these cyclones take on human lives and livelihoods as 

shown in Fig. 1.1 serves as a reminder of the urgent need to prioritize 

disaster preparedness, mitigation, and resilience measures to protect 

vulnerable communities from such catastrophic events.  
Accurate predictions of TC forecasting will provide actionable information  

on TC hazards to mitigate damages and loss of life. There is growing interest 

in applying AI and ML techniques to improve the accuracy of operational 

meteorological tasks, including estimating hurricane wind speed. 

1.2 Research Gap 

TC is classified based on Maximum Sustained Wind (MSW) speed, which is 

measured within the Radius of Maximum Wind from the cyclone centre. 

MSW measurements were taken from land stations, ships, and aircraft. The 

majority of the lifecycle of a TC takes place on the open ocean, and 

measurements can be taken only after landfall. This leads to sparse and 

 
Figure 1.1: Ruins of Tacloban in the Philippines after the passage of 

Typhoon Haiyan in November 2013. (Source: Encyclopedia of the 

Environment) 
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regional data. In large spans of ocean or remote areas of land surface, in situ 

observations are difficult; hence, data from satellite observations are the 

primary source of TC information. A solution could be the use of high 

temporal frequency satellite images, which have global coverage and provide 

continuous necessary information for intensity estimation.  

There are many difficulties in TC forecasts, including understanding of the 

physical mechanisms and complex interactions with ocean and surrounding 

atmosphere environments. ML can provide new ways to improve accuracy 

and efficiency of TC prediction [3]. 

Cyclone’s evolution depends on the altitude and time, which leads to 

difficulty in modelling. At present, national forecasts are done by consensus 

methods combining different dynamical models. Statistical forecasting 

models perform poorly regarding dynamical models even though the 

database of past hurricanes is constantly growing. A fixed region of water 

body has some limitations. First, the tracked storm must stay in the region, 

but the storms often cross oceans, forcing the selection of an extensive 

region, even if memory issues constrain it. Second, learning local phenomena 

on a large scale and non-centred images can be difficult. Upper ocean 

feedback has important effects on TCs, but few operational numerical 

forecast models take it into consideration, which reduces the performance of 

the models. However, human intervention in analysing the similarity in cloud 

patterns means the technique is still not perfect. Researchers are relying on 

computers to detect similarity in images. State-of-the-art satellite image-

based intensity estimation needs to lower noise between neighbouring 

prediction values and reduce the Root Mean Square Error (RMSE). 

Air-sea interaction and other processes in the TC core are highly non-linear, 

suggesting that non-linear methods can improve statistically based intensity 

forecast models [4].  

Because of the complexity and randomness of weather factors, 

meteorologists and forecasters have found it difficult to predict weather 

events using computational models. The availability and volume of data, as 

well as the computational time required, depend on the complexity of the 

variables. Observations from weather stations, satellites, and weather 

balloons are used to source the data, which is then used by NWP models. 
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However, these models have limitations, particularly when forecasting over 

longer periods, as the interpolation of large volumes of data takes more 

computational time. As the number of processes increases, the modelling 

time for forecasting also increases. The problem lies in the existing 

techniques used in estimating cyclone intensities and the need to categorise 

them to comprehend and mitigate the economic losses and human lives. 

DL and ML techniques are successful in Computer Vision, Natural Language 

Processing, pattern recognition, object detection, etc., but their application to 

TC intensity prediction is in its nascent stage. A TC dataset using automated 

algorithms from satellite images can reduce these issues. Hence, ML/DL 

techniques could extract features from satellite images just like researchers 

determine cloud patterns, which are related to TC intensity ranges. ML/DL 

can use these features further as predictors to estimate TC intensity.  

1.3 Objectives 

The broader aim is to estimate the TC intensity in the NIO region, and 

forecast the intensity using satellite data. Exploratory data analysis and 

visualisation of cyclones in NIO basin are also done to understand the 

cyclonic activity in the concerned region. 

The major contributions of the proposed study are: 

● Development of an improved DL model for estimating the intensity 

and classification of the storm using the infrared satellite imagery 

dataset, primarily over the NIO region. 

● Development of an explainable ML approach to detect RI events in 

the lifecycle of TC. 

1.4 Thesis Contribution 

The widespread use of image recognition and object detection techniques 

with higher accuracy has prompted us to explore the use of these methods on 

satellite images for estimating TC intensity and detecting RI events. We 

developed an efficient CNN model that reduces estimation time and 

increases prediction accuracy. This research presents a CNN architecture 

designed specifically for TC intensity estimation over the NIO region and a 
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ML technique for classification of RI events over different regions. A 

pipeline has been created that classifies the cyclone image into five different 

classes, giving predicted intensity of the cyclone and a bounding box of the 

cyclone’s location on the image as well. Interpretation of the models was 

also attempted so that the important features can be identified. 

1.7 Organization of the Thesis 

Chapter 1 presents Motivation, Research Gap, Objectives and Thesis 

contribution. 

Chapter 2 presents Literature Review. 

Chapter 3 presents Dataset description for the present research. 

Chapter 4 discusses various ML and DL algorithms and frameworks used in 

the research. 

Chapter 5 presents the Methodology and Results of the proposed DL 

framework for cyclone detection, classification, and intensity estimation. 

Chapter 6 presents the Methodology and results of ML models for RI events 

classification over different basins. 

Chapter 7 discusses Limitations, Conclusion and Future Scope. 
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Chapter 2 

Literature Review 

TCs are essential features of the Earth’s atmosphere, as they transfer heat and 

energy between the equator and the cooler regions nearer the poles. It is of 

utmost importance to forecast TC in advance and take measures to prevent 

devastating effects. Determining an accurate TC intensity value will help to 

provide early warning. 

Any TC that develops within the NIO region between 100°E and 45°E is 

monitored by the Indian Meteorological Department (IMD) New Delhi. The 

cyclone is classified based on the intensity; Table 2.1 shows the Saffir-

Simpson Hurricane Wind Scale which acts as a standard for defining wind 

speed ranges. An average of 90 tropical cyclones (TCs) form annually over 

the tropical ocean waters [5]. TC causes significant socio-economic damage 

to human life and assets, and the damage is directly correlated with the 

intensity of the cyclone [6].  

 

2.1 Cyclone Classification, Regression and Detection 

TC intensity forecasts can be divided into three different categories: (1) 

Dynamical models, also known as Physics based models, (2) Statistical 

models, and (3) Statistical-Dynamical models, a combination of dynamical 

model with statistics. TC analysts and forecasters have long been using the 

Table 2.1: TROPICAL CYCLONE INTENSITY SCALE 

Cyclone Category Sustained Wind Speed 

Range (knots) 

Depression 17-27 

Deep Depression 28-33 

Cyclonic Storm 34-47 

Severe Cyclonic Storm 48-63 

Very Severe Cyclonic Storm 64-89 

Extremely Severe Cyclonic Storm 90-119 

Super Cyclonic Storm ≥120 
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Dvorak technique as a standard tool for estimating TC intensity from satellite 

imagery. Another method uses enhanced infrared to quantitatively estimate 

the intensity of a tropical system. Based on the cloud patterns in satellite 

imagery, it shows a sign of cyclogenesis before the storm reaches tropical 

storm intensity. Based on these patterns, a series of rules and careful 

analysis, a forecast is made. 

Intensity estimation of TC from satellite images assumes that similar 

intensities have similar patterns, there are hidden correlations between TC 

images. The method is to define cloud patterns, construct image features and 

analyse their similarity to other images [7].  

The deviation angle variation technique uses infrared images and the 

variance is used to estimate the intensity values. The constraint being the 

centre of TC images should be visibly marked which makes it difficult to 

tune parameters across multiple regions [8]. 

Dvorak technique estimated the intensity via human interpretation of the 

cyclone shape when direct measurements were not available. Techniques 

vary depending on the length and curvature of the storm bands and the 

intensity is estimated by relating between the features. Some satellites 

provide images of temperature, clouds, water vapour, and precipitation which 

can be indirectly used for estimating TC intensity [9]. 

While the spatial patterns in infrared satellite imagery strongly relate to TC 

intensity, researchers found that parts of the Dvorak technique are subjective, 

leading to two different intensity estimates, decreasing the efficiency of the 

process [10].  

Advanced Dvorak Technique uses passive microwave data from aircraft to 

estimate the intensity, but the performance was worse for weaker storms 

[11].  

Statistical models are also, found to perform poorly in handling complex and 

nonlinear relationships between TC related predictors [12].  

As in-situ measurements over large spans of ocean or remote areas of land 

surface are difficult, data from satellite observations are also used as the 

alternate primary source of TC information. Satellites measure temperature, 

clouds, water vapor, and precipitation through active or passive mode and 

can be indirectly used for estimating TC intensity [13].  
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Intensity predictions are particularly very challenging due to the complicated 

physical mechanisms in TC dynamics and the way they interact with upper 

ocean and atmospheric circulation [14]. 

In recent times, ML and DL models were also attempted to predict the 

cyclone intensity. [15] has applied neural networks for this purpose to the 

cyclones over Western North Pacific and [16] on the North Indian Ocean 

cyclones. An ensemble base CNN classifier on outgoing longwave radiation 

for classifying TC is done in [17]. Four state-of-the-art U-net models were 

developed in [18] for the detection of regions of interest for cyclones. There 

are attempts to estimate TC intensity from satellite data by using CNN in 

recent times [19].  

[20] introduces a dynamic competitive neural network classifier for 

predicting the maximum potential intensity of TC using a 10-year dataset of 

Western North Pacific cyclones and monthly Mean Sea Surface 

Temperature. The model incorporates attribute selection and a Binary 

Trigger to optimize network training. The experiments conducted 

demonstrate the promising performance of the proposed model, highlighting 

its potential for accurate and efficient maximum potential intensity 

prediction. 

Presently, data is sourced from varied types of observations and act as a 

boundary condition for the NWP models. A drawback of the NWP model is 

that as the prediction period increases, the computation time increases to 

handle the interpolation of large amounts of data, and the errors continue to 

accumulate until new observations are made. Further, upper ocean feedback 

has important effects on TCs, but at present, only a few operational 

numerical forecast models take it into consideration [21]. 

[22] compared intensity estimates of TC in the NIO by the Joint Typhoon 

Warning Center (JTWC) and the Regional Specialized Meteorological 

Centre New Delhi (RSMCND), highlighting differences in intensity 

estimation based on cyclone intensity, intensity trend, and translation speed. 

Results show that JTWC estimates are generally higher than RSMCND 

estimates, with Mean Absolute Differences (MAD) and Root Mean Square 

Differences (RMSD) of 9.7 knots and 13.3 knots respectively. Location 

estimation differences and standard deviations are also quantified. The study 
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emphasizes the need for a robust objective method to ensure uniformity in 

intensity estimates across agencies, aiding operational forecasters in better 

monitoring and post-storm analysis. 

[23] proposed a CNN approach for estimating TC intensity without the need 

for explicit feature extraction. Transfer learning experiments using a VGG19 

model pre-trained on ImageNet were conducted on grayscale infrared images 

of TCs from geostationary satellites in the Western North Pacific region. The 

retrained model achieved comparable performance to existing feature-based 

approaches, with a RMSE of 13.23 knots. Additionally, the model learned 

generic TC features that were previously identified as important indicators of 

TC intensity. 

[24] presents a novel ML based method for estimating the intensity or 

maximum sustained wind speed of TC using infrared satellite imagery. The 

approach utilizes support vector regression and statistical features that 

capture the uniformity of temperature bands within a hurricane. The 

proposed method achieves a low prediction error (approximately 10 knots) 

and performs comparably to SATCON consensus, demonstrating its potential 

for accurate intensity prediction. The scheme is also analysed in relation to 

errors in hurricane centre annotation and aircraft reconnaissance data. 

The research conducted by [25], focuses on utilizing deep CNN for the task 

of estimating typhoon intensity. The study was conducted in collaboration 

with the Shanghai Typhoon Institute of the China Meteorological 

Administration. To conduct their analysis, the researchers utilized data from 

the Northwest Pacific region, specifically sourced from the website of the 

Earth Observation Research Center operated by the Japan Aerospace 

Exploration Agency. The proposed deep CNN achieved significant accuracy 

in its predictions, with a top-1 classification accuracy of 81.4% and a top-2 

classification accuracy of 93.3%. These results demonstrate the effectiveness 

of the algorithm in accurately estimating the intensity of typhoons. 

[26] proposes a two-branch CNN model (TCIENet) to estimate TC intensity 

using infrared and water vapor images in the northwest Pacific basin. The 

model achieves the best performance with an overall RMSE of 5.13 m/s and 

mean absolute error (MAE) of 4.03 m/s when using input images of size 

60x60 pixels. The correlation between rainfall intensity and estimation errors 
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suggests that the TCIENet model performs best for tropical storms and super 

typhoons but shows degraded performance for moderate intensities and 

tropical depressions. 

In the study by [27], a modified CNN was employed for the task of cyclone 

detection and classification. The researchers utilized KALPANA-I satellite 

images obtained from the Meteorological and Oceanographic Satellite Data 

Archival Centre (MOSDAC) operated by the IMD. The proposed algorithm 

achieved a remarkable accuracy of 97% in distinguishing between storm and 

non-storm images. Moreover, it achieved a 45% accuracy in multiclass 

classification, encompassing the identification of cyclone eye. The cyclone 

detection aspect of the algorithm exhibited a confidence level of 84%. 

Therefore, the research addressed the challenges of classifying storm and 

non-storm images, detecting cyclone eyes, and achieving multiclass 

classification in the context of satellite imagery, demonstrating promising 

results. 

[28] introduces a deep-learning-based diagnostic model for accurately 

estimating TC intensity using infrared satellite imagery. The model achieves 

a RMSE of 13.24 knots, providing an objective estimate of intensity. 

Additionally, the article presents a visualization portal that displays the deep 

learning output and contextual information, making it user-friendly and 

innovative in the field of TC analysis. 

[29] used ML algorithms (XGBoost and Decision Tree) to estimate TC grade 

and Maximum Sustained Wind (MSW). With an accuracy of 88% for 

cyclone grade and a RMSE of 2.3 for MSW, the models demonstrate 

promising results, improving to an average accuracy of 98.84% for higher 

grade categories. 

[30] focused on the classification of TC intensity using a cloud intensity 

classification technique based on feature extraction and pattern recognition. 

The research utilizes images of ten cyclones from 2013 to 2018 over the Bay 

of Bengal and Arabian Sea basins. By employing ML classifiers, including 

Random Forest, the proposed method achieves an accuracy of 86.66% for 

intensity classification. Additionally, the RMSE for estimating MSW speed 

with the Random Forest classifier is found to be 9.84 knots, demonstrating 

the feasibility of the approach for intensity classification from infrared 
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images of TC. Most of these early works were carried over the Atlantic 

basin, and there is a serious dearth of satisfactory models over the North 

Indian Ocean (NIO) region. The major reason for limited performance of the 

DL models in this region is due to limited amounts of past data and complex 

tropical/equatorial weather phenomena. 

[31] study explored the use of simple and computationally inexpensive ML 

models to enhance MSW estimates of TCs using Advanced Dvorak 

Technique (ADT) retrieved features from satellite imagery. The models are 

trained and validated using ADT TC analysis parameters and best track 

datasets from 2005 to 2016 globally. The proposed model, named “artificial 

intelligence (AI) enhanced ADT (AiDT)”, demonstrates significant 

improvement over ADT, achieving a global RMSE of 7.7 to 8.2 knots for the 

2017-2018 datasets and showing a 30% to 23% reduction in error compared 

to ADT. 

[32] introduced a DL based Multilayer Perceptron (MLP) model for 

predicting TC intensity. The model surpasses other statistical-dynamical 

models and achieves comparable results to the HWFI model in operational 

and real-time forecasting scenarios. Additionally, a lightweight MLP coupled 

with a synthetic TC track model generates realistic TC intensity distribution, 

making it a promising approach for operational and climate study purposes. 

[33] examined the efficiency of ML classifiers in predicting the intensity of 

TCs in the NIO using best track data. The classifiers, including Naive Bayes, 

Logistic regression, MLP, Sequential minimal optimization, C4.5 decision 

tree, Random Trees, and Random forests, were compared based on correctly 

classified instances. The results demonstrate high classification accuracy of 

97─99% with ML classifiers, highlighting their potential for improving TC 

intensity prediction in a computationally efficient manner. 

2.3 Rapid Intensification 

RI was defined by [34] as events of rapid increase in maximum sustained 

surface wind speed by at least 30 knots (approximately 35 miles per hour) 

over a 24-hour period. 
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Deeper understanding and improvement in RI detection has been the top 

priority of the global agencies including National Hurricane Center (NHC) 

[35].  

There are several factors that can contribute to RI in a TC. These include 

warm ocean waters, high levels of moisture in the atmosphere, low vertical 

wind shear (i.e., the difference in wind speed and direction at different 

heights in the atmosphere), and a well-defined low-level circulation. RI can 

be particularly dangerous, as it can result in a storm reaching major hurricane 

or typhoon status with little warning. This can leave communities vulnerable 

and unprepared, and can result in devastating impacts such as high winds, 

storm surge, and heavy rainfall. As a result, predicting and monitoring RI is a 

key area of focus for TC forecasting and emergency management efforts. 

RI is difficult to forecast, and seasons with higher number of RI cases have 

larger annual average forecast errors. Researchers have explored the role of 

ocean characteristics, inner-core processes, and environmental interactions in 

TC intensity change [36]. However, most studies have focused on only one 

of the above areas, leaving many questions unanswered about the precise 

physical mechanisms responsible for RI.  

Researchers have been exploring various techniques to improve RI 

prediction, including statistical models, ML and DL methods [37].  

[38] study contributes to the existing literature by utilizing an unsupervised 

learning approach to quantify the distinguishability between rapid 

intensification (RI) and non-RI environments for Atlantic Ocean tropical 

cyclones (TCs) from 2004 to 2016. By combining principal component 

analysis with k-means cluster analysis on TC-centered Global Forecast 

System analysis (GFSA) grids, consisting of various environmental 

variables, the study demonstrates improved separability compared to 

operational RI forecast predictors for multiple RI definitions. The findings 

highlight the importance of mid- and upper-level relative humidity in 

identifying short-term RI onset and weaker absolute vorticity in long-term, 

higher-magnitude RI. Additionally, the study identifies other valuable 

predictors, such as optimal thermodynamic RI ingredients along the TC's 

mean trajectory, suggesting their potential use in RI prediction. Traditional 

statistical analysis techniques have been used to find the associations 
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between rapidly intensifying TCs and their environmental properties, but 

they are limited in their ability to capture the complex interactions between 

multiple non-linear factors for example, air-sea interaction. 

In recent years, ML-based approaches have shown some promising results. 

Some works utilized SVM for the classification of RI cases [39]. 

[40] introduced an automatic knowledge discovery framework to identify 

spatiotemporal precursors to RI from TC environmental fields. The 

framework involves composite analysis of RI and non-RI fields, clustering to 

detect homogeneous regions around cyclone centers, statistical analysis to 

determine candidate precursors, and comparison with existing predictors. 

Applying the framework to factors such as zonal wind, relative humidity, and 

vertical shear, the automatically discovered precursors demonstrate 

comparable or superior capability for estimating the probability of RI 

compared to manually labeled predictors in existing schemes like the 

Statistical Hurricane Intensity Prediction Scheme (SHIPS). The study used 

Long Short-Term Memory (LSTM) networks to predict RI of TCs.  

[41] utilized MLP models to forecast the intensity of tropical cyclones in the 

Atlantic and eastern Pacific regions. They used environmental predictors, 

which were derived from numerical model forecast data or from the 

statistical-dynamical SHIPS database.  

More recently, [42] found that a CNN approach is more skilful at predicting 

RI than the current operational RI models. The study introduced "I-RI," a 

probabilistic model based on a CNN, to predict rapid intensification (RI) in 

North Atlantic and eastern North Pacific TCs. The model's RI probability 

output is compared to two operational RI guidance methods—empirical and 

deterministic—for different lead times. The results indicate that in North 

Atlantic TCs, I-RI exhibits higher skill in predicting RI over 12- and 24-hour 

lead times compared to the operational RI guidance. In eastern North Pacific 

TCs, I-RI outperforms the empirical guidance but falls short of the 

deterministic guidance at all thresholds. However, for TCs north of 15°N, 

where deterministic skill is lower, I-RI demonstrates superior performance 

over more than half of the RI thresholds compared to the deterministic 

operational guidance. Additionally, the study emphasizes the value of 

utilizing two-dimensional structures within TC satellite imagery and their 



 

26 

evolution, as captured by the convolutional neural network, as effective 

indicators of RI over 12-24 hours, surpassing existing scalar assessments 

based on satellite brightness temperature. 

[43] introduced a novel method for analyzing the potential for RI change in 

TC using satellite observations of precipitation obtained from microwave 

radiometers. The approach involves condensing environmental and vortex 

information using a low wavenumber representation of a Rain Index (RaIn) 

derived from passive microwave observations. A DL, multilayer neural 

network (NN) is trained using rain and wind changes over the next 24 hours. 

The resulting NN demonstrates excellent performance in identifying RI, 

defined as a hurricane wind speed increase of over 30 knots within a 24-hour 

period. Analysis of the NN structure provides valuable insights into the 

physics of TCs and offers potential improvements for model forecasting. 

Furthermore, the research highlights the influence of environmental 

conditions up to 1050 km from the TC center, impacting RI through 

processes such as absolute angular momentum inflow, wind shear 

stabilization, and the steering of upper tropospheric outflow jets. These 

findings can be leveraged to develop a real-time RI discriminant for 

operational applications. 

[44] employed a sophisticated AI system, their study significantly advances 

RI prediction performance compared to previous efforts. With approximately 

21-50% improvement in Probability of Detection (POD) while reducing the 

False Alarm Rate (FAR), it surpasses the capabilities of existing studies. 

Moreover, the study uncovers essential SHIPS variables that have been 

overlooked in previous research by utilizing variable importance scores. 

These results establish a solid baseline for future endeavours in RI 

prediction, providing a framework for the identification of new predictors 

using more intricate AI techniques. The study emphasizes the necessity of 

comprehensively exploring and harnessing the complete SHIPS database, 

shedding light on its untapped potential for further advancements in TC RI 

prediction studies. 

[45] introduced a CNN, which is applied to ECMWF ERA-Interim reanalysis 

data to identify new features relevant to RI. The study expands the existing 

AI system to incorporate large-scale environmental conditions, refining 
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features such as specific humidity, vorticity, horizontal wind, and ozone that 

aid RI prediction. By combining these new features with SHIPS database 

inputs, the RI prediction performance is significantly improved, enhancing 

Kappa, POD, and FAR metrics by 43%, 23%, and 30% respectively 

compared to a modern classification model using only SHIPS inputs. This 

literature review highlights the potential of deep learning techniques in 

extracting informative features for improved RI prediction in TCs. 

[46] study reveals a linear correlation between TC's 24-hour subsequent 

intensity change (DV24) and deviations in satellite observations of inner-

core precipitation, ice water content, and outflow temperature from threshold 

values specific to neutral TCs with consistent intensity. These threshold 

values exhibit a linear relationship with TC intensity. By incorporating 

machine learning techniques and combining inner-core precipitation with 

predictors used by the National Hurricane Center (NHC) for probabilistic RI 

forecast guidance, the proposed model surpasses the NHC operational RI 

consensus. During 2009-2014 in the Atlantic basin, the model achieves a 

Peirce Skill Score improvement of 37%, 12%, and 138% for DV24 ≥ 25, 30, 

and 35 knots, respectively. The probability of detection also increases by 

40%, 60%, and 200% compared to the operational RI consensus, while 

maintaining only a minimal increase in the false alarm ratio of 4%, 7%, and 

6%. This literature review underscores the efficacy of incorporating machine 

learning methods and inner-core precipitation observations to enhance RI 

prediction accuracy in TCs. 

[47] examined deterministic and probabilistic intensity models used by the 

National Hurricane Center (NHC) to assess RI forecast progress. 

Historically, deterministic models showed limited RI utility, but since 2015, 

dynamical models have demonstrated better performance for the Atlantic, 

while statistical models excel for the eastern North Pacific. Probabilistic RI 

guidance has shown modest skill since its introduction in 2001, with the 

DTOPS tool currently being the most effective among NHC's probabilistic 

models. The Hurricane Forecast Improvement Program has introduced a new 

RI metric to measure programmatic progress, revealing a ~20-25% 

improvement in RI forecasts since the baseline period of 2015-2017. This 
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literature review highlights the ongoing efforts to enhance RI forecasting 

capabilities for TCs. 

[48] study presents an automatic and objective method utilizing deep residual 

network (ResNet) and long short-term memory (LSTM) models to identify 

the RI trend in typhoons based on satellite images from 2005 to 2018 in the 

Northwest Pacific and South China Sea. The method incorporates typhoon 

lifecycle indication and demonstrates effective forecasting and identification 

of RI trends. Application of the method to operational typhoon satellite cloud 

images in 2019 shows its capability to capture sudden changes in typhoon 

intensity, achieving a threat score of 0.24 in independent sample estimation. 

[49] study investigates the influence of tropical cyclone (TC)–trough 

interactions on TC intensity changes, focusing on rapid intensification (RI). 

Through the use of ML techniques and clustering algorithms, upper-

tropospheric troughs involved in TC–trough interactions were classified into 

three distinct clusters. Composite analyses of RI and non-RI TCs were 

conducted, examining the upper-tropospheric potential vorticity structure, 

TC convective structure, and TC environment. The findings indicate that RI 

episodes are associated with shorter zonal wavelengths and greater 

displacements of upper-tropospheric troughs compared to non-RI episodes. 

RI occurrences were more frequent when an upper-tropospheric cutoff low 

was located approximately 500-1000 km southwest of the TC. RI was also 

linked to environments with reduced ventilation of the TC warm core by 

low-entropy air. While potential trough-induced forcing for convection did 

not show a strong relationship with RI, RI episodes exhibited heightened 

convective activity within the TC inner core as observed by satellite imagery. 
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Chapter 3 

Dataset 

Fig. 3.1 shows the cyclonic regions of the world; wherein the cyclones are 

termed hurricanes in America or typhoons in Japan, our interest of study is 

North Indian Oceanic region, preferably from 40E to 100E and 10S to 30N 

which is shown in Fig. 3.2. The cyclones in the Northern Hemisphere move 

 

Figure 3.2: NIO region of study (Source: CIMSS Tropical Cyclone 

Archive) 

 

Figure 3.1: Different cyclonic regions of the world (Source: Britannica) 
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upwards towards the poles and cyclones in the Sothern Hemisphere move 

downwards towards the poles. 

3.1 Cyclone Intensity Data 

Best Track Data as shown in Fig. 3.3 represents the “best” location (storm 

track) estimates for TCs throughout the lifetime of the storm, but also the 

intensity (central pressure and wind speed) estimates at each point along the 

track. Because these storms are complex and highly dynamic and 

observations are limited and subject to uncertainty, scientists need to conduct 

post-event analysis of all available data to ensure that each storm is 

appropriately represented in the best track data set. Best track data has a wide 

range of applications across disciplines. It contains information like basin of 

origin, name of the cyclone, date (DD/MM/YYYY), time (UTC), latitude, 

longitude, tropical cyclone number, estimated central pressure, maximum 

sustained surface wind, pressure. Best track data is available on the RSMC 

website 

(https://rsmcnewdelhi.imd.gov.in/report.php?internal_menu=MzM=). 

3.2 Cyclone Image Data 

 
Figure 3.3: Snapshot of Best Track Data taken from RSMC New Delhi 

https://rsmcnewdelhi.imd.gov.in/report.php?internal_menu=MzM=
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CIMSS TC image database as shown in Fig. 3.4 contains images of all the 

locations of the world. Long wave infrared images of NIO are taken from 

CIMSS Tropical Data Archive captured by Meteosat-5/7/8 for the period 

2000-2022. The images which match the RSMC New Delhi best track data of 

the NIO region are filtered. Each image contains the name of the satellite 

(e.g., Meteosat-8), the type of the image (Infrared), time, date. The temporal 

resolution is 3 hours or 6 hours. The images have a 10km spatial resolution. 

This removes the un-complying and noisy characteristics and improves the 

efficiency of the model.  Table 3.1 shows the list of cyclones with their 

names and year of occurrence from the year 2000 to 2022 which have been 

analysed.  

3.3 SHIPS Model Data 

 

Figure 3.4: Screenshot of webpage from CIMSS Tropical Cyclone 

Archive 
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The Statistical Hurricane Intensity Prediction Scheme (SHIPS) was 

developed in response to the limited objective guidance for intensity 

prediction at the NHC. John Kaplan and Mark DeMaria from the Hurricane 

Research Division initiated the project after recognizing the need for 

improved intensity forecasting during Hurricane Joan in 1988. Building upon 

previous statistical intensity forecasting efforts, the SHIPS model integrates 

predictors from climatology, persistence, the atmosphere, and ocean to 

estimate changes in TC MSW. The first real-time runs of SHIPS began in 

1990, initially providing forecasts up to 48 hours. Over the years, the model 

has undergone advancements, transitioning from a “statistical-synoptic” to a 

“statistical-dynamical” approach by incorporating predictors from 

atmospheric forecast models in addition to analyses. Despite showing skill 

compared to climatology and persistence forecasts, SHIPS has faced 

challenges in accurately predicting rapidly intensifying cyclones. To address 

this, the rapid intensity index (RII) was developed to estimate the probability 

of RI within the next 24 hours. SHIPS provides intensity forecasts for the 

Atlantic, eastern and central North Pacific, while a similar model called the 

Statistical Typhoon Intensity Prediction Scheme (STIPS) was developed for 

other regions. SHIPS and STIPS employ linear regression techniques, with 

the Logistic Growth Equation Model (LGEM) offering an alternative by 

utilizing a nonlinear differential equation to forecast intensity changes, 

accounting for time variations in predictors and overcoming some limitations 

of the linear assumptions in SHIPS. SHIPS developmental data is publicly 

available at the RAMMB website 

(http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/index.asp). 

3.4 General Characteristics of TC over NIO basin 

Fig 3.5 shows the frequency of cyclones which shows two periods in a year 

when cyclone occurs, Mar-Apr and the other in Aug-Oct. The Best Track 

data was used to analyse this trend. Fig. 3.6(a) shows the Probability Density 

of cyclones passing through certain latitudes in the NIO region, it peaks 

around 14° N; (b) shows the probability density of cyclones passing through 

certain longitude in the NIO region, there are two peaks, one in Arabian Sea 

http://rammb.cira.colostate.edu/research/tropical_cyclones/ships/index.asp
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and other in Bay of Bengal; (c) shows the Probability Density of cyclones 

with respect to Maximum Wind Speed. It shows that the cyclones are 

generally of low intensities with the peak between 20 to 40 knots. There are 

two cyclonic seasons in NIO, one around Mar-Apr and the other around 

Aug-Nov.  

 

 

 

 

Figure 3.5: Monthly frequency count showing two different cyclonic 

seasons in NIO. 
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Figure 3.6: (a) Probability Density vs Latitude, (b)Probability Density 

vs Longitude, (c)Probability Density vs Maximum Wind Speed 
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Table 3.1: LIST OF CYCLONE NAME WITH THEIR YEAR OF 

OCCURRENCE 

Year Cyclone Number 

2000 04B 

2001 01A 

2003 01B, 03B 

2004 01A, 05A (Agni), 01B 

2005 06B (Fanoos), 05B (Baaz) 

2006 02B (Mala) 

2007 02A (Gonu), 06B (Sidr) 

2008 01B (Nargis), 04B (Rashmi), 05B (Khai-Muk), 06B 

(Nisha) 

2009 01B (Bijli), 02B (Aila), 05B (Ward) 

2010 01B (Laila), 02A (Bandu), 03A (Phet), 04B (Giri), 05B 

(Jal) 

2011 03A (Keila), 06B (Thane) 

2012 02B (Nilam), 01A (Murjan) 

2013 01B (Mahasen), 02B (Phailin), 04B (Helen), 05B (Lehar), 

06B (Madi) 

2014 01B, 02A, 03B (Hudhud), 04A (Nilofar), 05B 

2015 01A (Ashobaa), 02B (Komen), 03A, 04A (Chapala), 05A 

(Megh) 

2016 01B (Roanu), 02A, 03B (Kyant), 04B (Nada), 05B 

(Vardah) 

2017 01B (Maarutha), 02B (Mora), 03B (Ockhi), 04B 

2018 01A (Sagar), 02A (Mekunu), 04B (Daye), 05A (Luban), 

06B (Titli), 07B (Gaja), 08B (Phethai) 

2019 01B (Fani), 02A (Vayu), 03A (Hikaa), 04A (Kyaar), 05A 

(Maha), 06A (Pawan), 07A 

2020 01B (Amphan), 02A (Nisarga), 03A (Gati), 04B (Nivar), 

05B (Burevi) 

2021 01A (Tauktae), 02B (Yaas), 03B (Gulab), 03A (Shaheen) 

2022 01B, 02B (Asani) 
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Chapter 4 

Overview of selected ML and DL Techniques 

This section provides concise definitions and explanations of key terms, 

concepts, and acronyms used throughout the study. It serves as a reference 

guide, ensuring a shared understanding and effective communication for 

readers. The techniques discussed in this chapter are not the exhaustive set of 

all the techniques used, but it gives a fair idea about some of them. 

4.1 Deep Learning Techniques 

4.1.1 Convolutional Neural Network 

A CNN is a DL algorithm which can take in an input image, assign 

importance (learnable weights and biases) to various aspects/objects in the 

image and be able to differentiate one from the other. The pre-processing 

required in a CNN is much lower as compared to other classification 

algorithms. CNN has the ability to learn filters/characteristics. The 

architecture of a CNN is analogous to that of the connectivity pattern of 

neurons in the Human Brain and was inspired by the organisation of the 

Visual Cortex. Different convolution operations are used to learn the weights 

of convolution filters, which take the input and generate the feature maps and 

apply ReLU for non-linearity. The non-linearity in the network is captured 

by the ReLU activation function. The pooling layer reduces spatial size. To 

minimise the amount of parameters and generate more abstract features, max 

pooling techniques are applied. 

CNN work on convolution and pooling operations. The convolution 

operation is a mathematical function that is useful in identifying the feature 

map. A feature map is a set of key portions of an image. Pooling operation is 

used for dimensionality reduction of the image. The filter is applied to the 

input image and identifies the image features such as shape, eye. When the 

filter is applied to the first 3 × 3 part of an input image, the features are 

equivalent or higher to the threshold value. The filter slides through the 
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image horizontally and vertically and keeps on updating the features of the 

image. Each convolution layer finalises the feature vector based on activation 

functions like ReLU, Sigmoid, Tanh and Leaky ReLU. While training the 

network, the optimizer adjusts each neuron's weights to reduce each epoch's 

loss. The last layer comprises a fully connected layer that consists of a final 

feature vector. Adam optimization technique is for computing the adaptive 

learning rate for each parameter. It is also observed that this technique works 

well in tuning the learning rate. 

The layers are ordered as follows: input layer, convolution layer with 

activation function, pooling layer, and lastly fully connected layers. To 

obtain a tiny amount of translational invariance at each level, max pooling or 

average pooling is applied to the output of convolution processes. 

Regularisation techniques are employed to reduce data overfitting, while 

dropouts are used to randomly change the network design. In Keras, Adam is 

most typically employed as an optimizer. Dropout lengthens the training 

convergence time, whereas batch normalisation speeds up convergence and 

improves model training efficiency.  

4.1.2 Multilayer Perceptron 

MLP is a fundamental type of feedforward Artificial Neural Network (ANN) 

widely used in ML. With its multiple layers of interconnected nodes or 

neurons, MLP is capable of learning complex patterns and making 

predictions. Each neuron in an MLP performs a weighted sum of its inputs, 

followed by the application of an activation function, which introduces non-

linearity to the model. MLPs employ a forward propagation algorithm, where 

data flows through the network from the input layer, through the hidden 

layers, and finally to the output layer. The hidden layers allow the MLP to 

learn and extract higher-level representations of the input data, enabling it to 

solve problems such as classification, regression, and pattern recognition. 

MLPs have been successfully applied in various domains, including image 

and speech recognition, natural language processing, and financial 

forecasting. They serve as a foundational model in neural network 

architectures and continue to be a versatile tool in the field of ML. 
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4.2 Object Detection Techniques 

4.2.1 YOLOv3 

YOLOv3 (You Only Look Once, Version 3) is a state-of-the-art, real-time 

object detection algorithm that identifies specific objects in videos, live 

feeds, or images. YOLO uses features learned by Darknet to detect an object. 

Darknet has 53 convolutional layers with consecutive 3x3 and 1x1 

convolution layers followed by a skip connection to help the activations 

propagate through deeper layers without gradient diminishing. The 

methodology for detecting and locating an object is to split the image into 

various segments and supply each segment to model. To eliminate time and 

cost for computing, the You Only Look Once (YOLO) algorithm is 

preferred. It was proposed to deal with the problems in object recognition 

models at that time. YOLO takes an image as input and resizes it to 448x448 

by keeping the aspect ratio the same and performing padding. The image is 

then passed on the CNN network. This model has 24 convolution layers, 4 

max-pooling layers followed by 2 fully connected layers. For the reduction 

of the number of layers, we use 1x1 convolution that is followed by 3x3 

convolution. This architecture uses Leaky ReLU as its activation function in 

the whole architecture except the layer where it uses linear activation 

function. Fig. 4.1 shows the architecture diagram of YOLOv3. Non-

Maximum Suppression (NMS) is a technique used in numerous computer 

vision tasks. It is a class of algorithms to select one entity (e.g., bounding 

boxes) out of many overlapping entities. Most object detection algorithms 

use NMS to whittle down many detected bounding boxes to only a few. 

Thousands of windows (anchors) of various sizes and shapes are generated. 

These windows supposedly contain only one object, and a classifier is used 

to obtain a probability/score for each class. Once the detector outputs a large 

number of bounding boxes, it is necessary to filter out the best ones. Darknet 

is mainly for object detection, and have different architecture, features than 

other DL frameworks. It is faster than many other Neural network 

architectures. YOLO object detection utilises Darknet in background, and the 

Darknet repository is cloned. Cloning basically means you want to get a local 
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copy of the code present in the repository. After cloning you can then do 

whatever changes you like in the code and then you can pull the changes 

back to the repository. LabelImg is a graphical image XML files annotation 

tool. Annotations are saved as in YOLOv3 format. The file format used in 

this research is YOLO. The generated .txt file has the class name and the four 

coordinates. 

4.2.2 YOLOv5 

YOLOv5 is an advanced object detection algorithm that has gained 

significant popularity in the field of computer vision. Developed as an 

evolution of the YOLO (You Only Look Once) series, YOLOv5 represents a 

more streamlined and efficient approach to real-time object detection. It 

combines the advantages of high accuracy and remarkable speed, making it a 

preferred choice for various applications such as autonomous driving, 

surveillance systems, and robotics. YOLOv5 introduces several architectural 

improvements, including a lightweight backbone network, a feature fusion 

module, and a more robust training pipeline. These enhancements enable 

YOLOv5 to achieve impressive detection performance on a wide range of 

object classes while maintaining real-time inference speeds. With its ease of 

use, superior accuracy, and remarkable efficiency, YOLOv5 continues to 

push the boundaries of object detection capabilities, empowering researchers 

 

Figure 4.1: Architecture diagram of YOLOv3 
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and developers to tackle complex computer vision tasks with greater 

precision and speed. 

4.2.3 Mask R-CNN 

Mask R-CNN (Mask Region-based Convolutional Neural Network) is a 

state-of-the-art deep learning architecture designed for instance segmentation 

tasks. Mask R-CNN builds upon the Faster R-CNN framework by extending 

it to also generate pixel-level masks for each object instance detected. By 

integrating a branch for semantic segmentation with the existing object 

detection capabilities, Mask R-CNN achieves precise localization and 

accurate pixel-level segmentation of objects in an image. This architecture 

has been widely adopted for a variety of computer vision applications, 

including object recognition, image segmentation, and instance-level image 

understanding. Its ability to simultaneously detect and segment objects 

makes Mask R-CNN a powerful tool in computer vision research and has 

significantly advanced the field of instance segmentation. 

4.3 Machine Learning Techniques 

4.3.1 Support Vector Machine 

Support Vector Machine (SVM) is a powerful supervised ML algorithm used 

for classification and regression tasks. SVMs are particularly effective in 

dealing with complex, high-dimensional datasets. The key principle behind 

SVM is to find an optimal hyperplane that best separates the data points 

belonging to different classes. This hyperplane is chosen to maximize the 

margin between the classes, allowing for better generalization and improved 

performance on unseen data. SVMs can handle both linearly separable and 

non-linearly separable datasets by using different types of kernels, such as 

linear, polynomial, or radial basis function (RBF) kernels. Additionally, 

SVMs are robust against overfitting and can handle noisy data effectively. 

Due to their versatility and solid theoretical foundation, SVMs have found 

applications in various domains, including image recognition, text 

categorization, and bioinformatics. 
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4.3.2 Long Short-Term Memory 

LSTM is a type of Recurrent Neural Network (RNN) architecture that excels 

at capturing and modelling sequential data. LSTM addresses the vanishing 

gradient problem of traditional RNNs by incorporating memory cells and 

gating mechanisms. The key feature of LSTM is its ability to selectively 

remember and forget information over long sequences, making it effective 

for tasks such as natural language processing, speech recognition, and time 

series analysis. With its recurrent connections and internal memory, LSTM 

can capture both short-term dependencies and long-term dependencies in 

data, enabling it to effectively model temporal dynamics. The LSTM 

architecture has become a fundamental building block in deep learning, 

empowering researchers and practitioners to tackle complex sequential tasks 

with improved accuracy and robustness. 

4.4 Class Balancing Techniques 

4.4.1 SMOTE 

Imbalance data is a case where the classification dataset class has a skewed 

proportion. An imbalance class creates a bias where the ML model tends to 

predict the majority class.  

SMOTE, which stands for Synthetic Minority Over-sampling Technique, is a 

widely used data augmentation method in the field of ML and imbalanced 

classification tasks. SMOTE addresses the issue of class imbalance by 

generating synthetic minority class samples to balance the dataset. It works 

by randomly selecting a minority class sample and finding its nearest 

neighbors. Synthetic samples are then created by interpolating between the 

selected sample and its neighbors. This technique helps to overcome the bias 

towards the majority class and enhances the performance of classifiers by 

providing more representative training data. SMOTE has been proven to be 

effective in various domains and continues to be a valuable tool in handling 

imbalanced datasets. 

SMOTE is an oversampling technique where the synthetic samples are 

generated for the minority class. This algorithm helps to overcome the 



 

42 

overfitting problem posed by random oversampling. It focuses on the feature 

space to generate new instances with the help of interpolation between the 

positive instances that lie together. SMOTE is used to synthesize data where 

the features are continuous and a classification problem. SMOTE works by 

utilizing a k-nearest neighbour algorithm to create synthetic data. SMOTE 

first starts by choosing random data from the minority class, then k-nearest 

neighbours from the data are set. Synthetic data would then be made between 

the random data and the randomly selected k-nearest neighbour. 

4.4.2 Data Augmentation 

Data augmentation is a common technique used in DL to artificially increase 

the size of a training dataset by applying various transformations to the 

existing data samples. By introducing modified versions of the original data, 

data augmentation helps to enhance the generalization capability of deep 

learning models. The transformations can include geometric changes such as 

rotation, scaling, and translation, as well as alterations in colour, contrast, or 

noise levels. This technique allows the model to learn from a wider range of 

variations and variations that are likely to occur in real-world scenarios. By 

augmenting the data, the model becomes more robust, reducing the risk of 

overfitting and improving its ability to accurately classify or predict on 

unseen data. Data augmentation is particularly valuable when the available 

dataset is limited, as it effectively expands the dataset and enables more 

diverse and representative training samples. 

4.5 Explainable ML Techniques 

4.5.1 SHAP 

SHAP (SHapley Additive exPlanations) is a Python library that provides a 

unified framework for interpreting the output of ML models. It is based on 

the concept of Shapley values from cooperative game theory, which allows 

us to assign a value to each feature in a model's prediction. SHAPely Python, 

as the name suggests, refers to the Python implementation of SHAP. This 

powerful library enables users to understand the impact of individual features 
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on model predictions, providing insights into the model's decision-making 

process. By using SHAP, analysts and data scientists can gain a deeper 

understanding of complex ML models and communicate their findings 

effectively. With its comprehensive set of tools and intuitive API, SHAPely 

Python has become a popular choice for explainable AI and interpretability 

tasks in various domains. SHAP values consider the interaction between 

features and provide a unified measure of feature importance that is 

consistent across different feature sets. The mean absolute SHAP value for a 

feature represents the average magnitude of the impact of that feature on the 

model's output. 

4.5.2 LIME 

LIME (Local Interpretable Model-agnostic Explanations) is a technique used 

to interpret the predictions of ML models and provide explanations for their 

decisions in a local context. It aims to address the black-box nature of many 

complex ML models by generating locally faithful and human-interpretable 

explanations. LIME works by perturbing the input data and observing how 

the model's predictions change. It then constructs a simpler, interpretable 

"local" model around the perturbed instances to approximate the behaviour 

of the original model. This local model can be easily understood by humans 

and used to explain the reasons behind the model's predictions. LIME is a 

powerful tool for increasing transparency and trust in ML systems, enabling 

users to understand and validate the decisions made by these models. 

4.6 Hyperparameter Tuning 

4.6.1 Grid Search CV 

Grid Search CV (Cross-Validation) is an algorithm used for hyperparameter 

tuning in ML models. Hyperparameters are model parameters that are set 

before the learning process begins, and they control the behaviour and 

performance of the model. Grid Search CV automates the process of 

systematically searching through a predefined set of hyperparameters to find 

the optimal combination that yields the best model performance. 
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The algorithm works by exhaustively evaluating all possible combinations of 

hyperparameter values within a given grid or search space. It performs a 

cross-validation evaluation for each combination of hyperparameters to 

estimate the model's performance on unseen data. Cross-validation helps to 

mitigate the risk of overfitting and provides a more robust assessment of the 

model's generalization ability. 

Grid Search CV is typically implemented using nested loops. The outer loop 

iterates over each hyperparameter, while the inner loop performs cross-

validation to evaluate the model. The algorithm compares the performance 

metrics (such as accuracy, precision, or mean squared error) across different 

hyperparameter combinations and selects the combination that achieves the 

best performance. 

4.7 Evaluation Metrics 

To evaluate models, the metrics used are Mean Absolute Error (MAE), Mean 

Squared Error (MSE), and RMSE. The equations for the same are 

                                           𝑀𝐴𝐸 =  
1

𝑁
∑ (𝑥𝑝̅̅ ̅ − 𝑥𝑖)𝑁

𝑖=1    4.1 

                                         𝑀𝑆𝐸 =  
1

𝑁
∑ (𝑥𝑝̅̅ ̅ − 𝑥𝑖)

2𝑁
𝑖=1    4.2 

                                      𝑅𝑀𝑆𝐸 =  √
1

𝑁
∑ (𝑥𝑝̅̅ ̅ − 𝑥𝑖)2𝑁

𝑖=1    4.3 

𝑥𝑝̅̅ ̅ is the predicted intensity value, 𝑥𝑖 is the actual intensity value, N denotes 

the number of samples. 

Accuracy measures the proportion of correctly classified samples out of the 

total number of samples. It provides an overall assessment of the model's 

performance but may not be suitable for imbalanced datasets. 

Precision is the measure of a positive predicted value and is defined as  

                                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
   4.4 

Recall or True Positive Rate is defined as 

                      𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
        4.5 
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True Positive (TP) is the outcome where the model correctly predicts the 

positive class. False Positive (FP) is the outcome where the model incorrectly 

predicts the positive class. 

F1 score is the harmonic mean of precision and recall and is defined as 

                                    𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2∗(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  4.6 

Receiver Operating Characteristic (ROC) curve and Area Under the Curve 

(AUC) measure the trade-off between true positive rate and false positive 

rate at different classification thresholds. They provide insights into the 

model's performance across different decision boundaries. 

Probability of Detection (POD), also known as the true positive rate or hit 

rate, measures the effectiveness of a detection system in correctly identifying 

the presence of a target or signal when it is actually present. It quantifies the 

proportion of positive instances that are correctly detected. Mathematically, 

the probability of detection (PD) can be expressed as: 

𝑃𝑂𝐷 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
         4.7 

where TP represents the number of true positives (correct detections) and FN 

represents the number of false negatives (missed detections). PD ranges from 

0 to 1, where a value of 1 indicates perfect detection performance. 

False Alarm Rate (FAR), also known as the False Positive Rate, measures 

the rate at which the detection system incorrectly identifies the presence of a 

target or signal when it is not actually present. It quantifies the proportion of 

negative instances that are incorrectly classified as positive. Mathematically, 

the false alarm rate (FAR) can be expressed as: 

𝐹𝐴𝑅 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                  4.8 

where FP represents the number of false positives (incorrect alarms) and TN 

represents the number of true negatives (correct rejections). FAR ranges 

from 0 to 1, where a value of 0 indicates perfect performance (no false 

alarms). 

Mean Average Precision (mAP) is commonly used in object detection tasks, 

including the YOLO algorithm. It quantifies the accuracy of the model by 

considering both precision and recall. The mAP is calculated by averaging 
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the average precision (AP) scores across multiple object categories. The 

formula for calculating AP involves computing the precision-recall curve, 

where precision is plotted against different levels of recall. The area under 

this curve represents the AP score. By averaging the AP scores across all 

categories, the mAP provides a comprehensive measure of the overall 

detection performance of the YOLOv5 model.  
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Chapter 5 

DL Framework for Cyclone Intensity 

Estimation  

This chapter is based on the manuscript titled “An End-to-End Deep 

Learning Framework for Cyclone Intensity Estimation in North Indian Ocean 

Region using Satellite Imagery” submitted to Journal of the Indian Society of 

Remote Sensing. The chapter focuses on the dataset used for multiclass 

classification, regression analysis and detection which includes infrared 

images taken from the Meteosat-8 satellite spanning from 2000 to 2022. The 

images are processed through cropping, grayscale conversion, and noise 

reduction techniques to improve cyclone classification. The chapter describes 

the methodology involving CNN, data augmentation, and model evaluation 

using binary classification, multiclass classification, and intensity prediction. 

It highlights the effectiveness of the proposed model in simultaneously 

detecting cyclonic regions, classifying cyclones into multiple classes, and 

predicting their intensity. The performance of the model is compared to 

existing studies, showcasing its superior classification capabilities. The 

chapter concludes with a case study of a specific cyclone, demonstrating the 

accuracy of the model’s intensity prediction. 

5.1 Dataset 

For multiclass classification and regression analysis, the images were taken 

from 2000 to 2022. Fig. 5.1 (a) shows the image with no cyclone and (b) 

shows image with a cyclone. Both are infrared images taken from Meteosat-8 

satellite in January, 2019 and November, 2017, respectively. Image spans 

from 10 E to 110 E and 30 S to 25 N. Fig. 5.1(b) shows a cyclonic region in 

the Arabian Sea at the south tip of India. For binary cyclone classification, 

image data of January 2019, 2020 and 2021 are used for class category ‘no’, 

keeping in mind that no cyclone occurs during that time. For class category 

‘yes’, the higher intensity images (intensity ≥ 40 knots) from multiclass 

classification dataset are used. Number of images used in class ‘without 
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cyclones’ is 708 and ‘with cyclones’ is 942. The non-cyclonic images do not 

have cloud patches. 

5.2 Data Processing 

The images of cyclones in NIO are first cropped to an average dimension of 

310 x 310 manually (average aspect ratio is maintained at 1) as shown in Fig. 

5.2. The cyclone eye is not in the centre, which makes the model more 

robust, as the region contains non-cyclonic parts as well. Cropping speeds up 

the data augmentation and model training process by preserving all of the 

rain bands and cloud cover of cyclones. 

The reduction of image size is done only to reduce the processing time.  The 

images are then converted into grayscale. The images are pre-processed such 

          

 

Figure 5.1: (a)No Cyclone and (b) Cyclone 

(b) 

(a) 
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that all the pixels below 128 threshold value were converted to 0 to reduce 

noise from the images and improve cyclone classification.  

Table 5.1 shows the data split of images for different models. Actual 1884 

images are divided into 5 different classes with their corresponding wind 

speeds as shown in Table 5.2 for multiclass classification. Very high cyclone 

intensity (≥120) images are not used in regression problem as the number of 

samples are very low (15 samples only). 

5.3 Methodology 

All the CNN models are fed with 310x310 image size. Data Augmentation 

by rotation range of 10 degrees has been used to increase the number of 

samples for training as shown in Fig. 5.3. Data Augmentation was done only 

on the training dataset. Fig. 5.4 (a) shows the raw sample image before pre-

processing, (b) Depression and (c) Very Severe Cyclone, and (d) shows an 

image with no cyclone. Since we have very limited dataset, the images have 

been split into training, validation and test dataset in the ratio 0.7:0.15:0.15 

maintaining the ratios of different cyclones. In our proposed model Adam 

optimizer has yielded best results. Aspect ratio is kept approximately 1 so 

that it doesn’t stretch or resize the cyclonic images.  

 

Figure 5.2: Sample image files showing aspect ratio 
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However, it should be noted that as the cyclone images in few hours doesn’t 

change much, there is always a possibility of leakage of the data between 

training and testing samples. To avoid this, the evaluation is also carried 

separately with a testing dataset of 2020-22 while keeping 2000-19 as 

training dataset. This, however, doesn’t guarantee the proper representation 

of all the cyclone classes.  

Here, four different models are evaluated as shown in Fig. 5.5. As already 

mentioned, it involves four different steps: first, the input image is given to a 

binary classifier, second, the cyclone is detected and cropped using pre-

trained weights on YOLOv3 architecture, third the image is given to a 

multiclass-classifier and fourth, an intensity predictor estimates the intensity 

of the image.  

 
Figure 5.3: Augmented Data Sample Multiclass Classification 
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CNN is a network architecture for deep learning which learns directly from 

data, eliminating the need for manual feature extraction. Early stopping, 

Dropouts, Kernel Regularizers and Learning rate scheduler was used to 

prevent overfitting the model. Table 5.3 shows the tuned hyperparameters 

used for different classifiers for the proposed model. Table 5.5 shows the 

proposed CNN model used for binary, multiclass and regression analysis. 

 

 

 
Figure 5.4: (a) Raw image from CIMSS dataset (b) Depression and (c) 

Very Severe Cyclone, and (d) shows an image with no cyclone 

 (a) 

(b) (c) 

(d) 
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Table 5.1: DATA SPLIT 

 Binary 

Classification 

Multiclass 

Classification 

Regression 

Training 1154 1316 1308 

Validation 247 280 348 

Testing 249 288 281 

Total 1650 1884 1869 

 

 
Figure 5.5: Flowchart of the implemented pipeline 
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Training for cyclone detection by YOLOv3 is done by annotating images 

with the cyclonic regions with a bounding box and the text files containing 

the class and coordinates of the bounding box in YOLO format. A custom 

weights file is generated using transfer learning with Darknet weights to train 

on our custom dataset. Our dataset had only one target, i.e., cyclones. Non 

maximum suppression is set to 0.3 to filter the best bounding box out of 

many overlapping boxes. Minimum probability to eliminate weak predictions 

is 0.3. The predicted bounding box size varies depending on the size of the 

cyclone. Table 5.7 shows the comparative study of the existing cyclone 

prediction models in the NIO region with the proposed model. 

 

Table 5.3 HYPERPARAMETER TUNING FOR DIFFERENT ML 

MODELS  

 Binary 

Classifier 

Multiclass 

classifier 

Regression 

Epochs 30 50 40 

Optimiser Adam Adam Adam 

Loss function Binary Cross-

entropy 

Categorical 

Cross-entropy 

Mean Squared 

Error (MSE) 

Initial 

Learning rate 

0.001 0.0001 0.001 

Training 

/Validation/Tes

ting batch size 

2/1/1 2/1/1 2/1/1 

 

Table 5.2: CATEGORY OF CYCLONES (MULTICLASS 

CLASSIFICATION) 

Category Wind speed Actual Images 

Depression (D) 20-25 knots 352 

Deep Depression (DD) 30-35 knots 534 

Cyclonic Storm (CS) 40-50 knots 396 

Severe Cyclonic Storm (SCS) 55-65 knots 257 

Very Severe Cyclonic Storm 

(VSCS) 

70+ knots 305 
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5.4 Results 

Compared to existing studies, our proposed pipeline simultaneously detects 

the cyclonic region, classifies and predicts the intensity. The models were 

evaluated separately since most of the mis-classifications are found to be 

within single class difference and hence, the intensity value may be a better 

representation of the capabilities of the DL model. The proposed model is 

able to classify cyclones in five different classes as compared to most of the 

existing studies which classify only in one or two classes. The false positive 

rate is 0.007% for binary classification. Table 5.6 shows the multiclass 

testing dataset metrics for individual classes. It can be seen that the model 

performs best for Very Severe Cyclonic Storm and worst for Cyclonic storm. 

The well-defined structure in VSCS may be the reason for the high 

Table 5.4: PROPOSED CNN MODEL 

Layer Filters/Dropout 

value/Units/Output 

Shape 

Kernel 

size/ Pool 

size 

Activation 

Convolution 32 (308, 308, 32) 3,3 ReLU 

Max Pooling (154, 154, 32) 2,2  

Dropout 0.4   

Convolution 64 (152, 152, 64) 3,3 ReLU 

Max Pooling (76, 76, 64) 2,2  

Dropout 0.4   

Convolution 128 (74, 74, 128) 3,3 ReLU 

Max Pooling (37, 37, 128) 2,2  

Dropout 0.4   

Convolution 128 (35, 35, 128) 3,3 ReLU 

Max Pooling (17, 17, 128) 2,2  

Dropout 0.4   

Flatten    

Dropout 0.4   

Dense 512  ReLU 

Dropout 0.4   

Dense 1(BC)a (R)a, 5 

(MC)a 

 Sigmoid 

(BC)a, 

SoftMax 

(MC)a, 

Linear(R)a 

aTerms - BC: Binary Classification; MC: Multiclass Classification; R: 

Regression 
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performance. Fig 5.6 shows the feature maps of the first layer of CNN. It 

shows the learning pattern. The purpose of feature maps is to identify 

meaningful features in the input data, such as edges, corners, or texture 

patterns. These features are then used to classify or identify the input image. 

A case study of a specific cyclone ‘ASANI’ from the year 2022 (Timestamp: 

2022-05-07, 12:00 hours) has been done. The pipeline predicted the intensity 

of the cyclone is 33 knots (Actual: 30 knots). The cyclonic region is also 

detected correctly. Fig 5.7 shows the multiple detections from YOLOv5 

architecture. Fig 5.8 shows the detected cyclonic region from YOLOv3. 

Predefined CNN architectures provide general architectural 

recommendations for deep learning practitioners to handle wide variety of 

problems and develop newer and data specific architectures when the 

training dataset is limited. Hence, these approaches were also tested with the 

same dataset.  

It is to be noted that Advanced Dvorak Technique (ADT) has shown much 

better RMSE than the present model. It is, however, also to be noted that the 

performance of all the previous studies using Deep Learning techniques as 

well the pre-defined architectures evaluated in this work performed poor than 

the ADT. This is one of the major drawbacks of the Deep learning models as 

the performance directly depends on the number of training data available. 

As NIO region has very small dataset at present, the performance may 

improve once more data is made available. Another reason for high RMSE is  

that the best track intensity estimation from IMD is only available with 5 

knots resolution.  

Feature maps provide insight into the internal representations for input in the 

CNN layers of the model. Another important observation from Table 5.8 is 

that the evaluation of all the DL models based on data-wise split shows 

higher accuracy than the year-wise split. As this data-wise split results were 

only available from previous published works in this domain, we keep these 

statistics as well for comparison. However, one should be careful in 

interpreting this result since data similar to training images may be present in 

testing samples as the cyclone images doesn’t always change fast. Table 5.6 

shows the final results of the proposed model compared to other predefined 

models.  
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Table 5.5: EVALUATION METRICS FOR MULTICLASS 

CLASSIFICATION MODEL, EVALUATED ON DIFFERENT 

CATEGORIES OF CYCLONIC ACTIVITIES 

Category Precision Recall F1-score 

D (20-25) 0.70 0.64 0.67 

DD (30-35) 0.62 0.72 0.67 

CS (40-50) 0.54 0.55 0.54 

SevereCS (55-65) 0.59 0.59 0.59 

VSCS (70+) 0.76 0.60 0.67 

 

 

 
Figure 5.7: Multiple cyclone detections using YOLOv5 model. Two 

images detected cyclones, with the top image highlighting “CS” and the 

bottom image highlighting “DD”. 

 

 
Figure 5.6: (a) shows original image and (b) shows the feature maps of 

the first layer of CNN. 
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Table 5.6: COMPARISON OF DIFFERENT MODELS ACROSS 

DIFFERENT TASKS. THE REPORTED VALUES ARE THE MEAN ± 

STANDARD DEVIATION OF FIVE INDEPENDENT RUNS. 

Model Multiclass 

Classification 

Accuracy (%) 

Binary 

Classification 

Accuracy (%) 

Regression RMSE 

(knots) 

Proposed 

Model 

63.83 ± 1.3 

[31.2 ± 0.78] 

98.4 ± 0.003 16.2 ± 0.9 [26.69 ± 

0.88] 

VGG-16 39.83 ± 0.86 

[30.3 ± 1.04] 

96.7 ± 0.007 19.79 ± 0.21 [20.67 

± 0.03] 

Inception

v3 

51.51 ± 1.29 

[36.1 ±5.65] 

97.5 ± 0.01 12.4 ± 0.29 [17.28 ± 

0.53] 

Xception

Net 

40.19 ± 1.07 

[30.9 ± 1.78] 

97.9 ± 0.0024 22.52 ± 0.8 [21.32 ± 

1.43] 

ResNet 28.81 ± 0.005 

[28.4 ± 0] 

98.3 ± 0.0015 13.88 ± 0.28 [22.35 

± 0.47] 

* Values in [] are based on Year-wise split (Training: 2000-2019, Testing: 

2020-2022) 

    

    

Figure 5.8: Original image (left), Detected cyclonic regions (right) 
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Chapter 6 

ML Approach for Rapid Intensification 

Prediction  

This chapter is based on “An Explainable Machine Learning Approach for 

Predicting Rapid Intensification in Tropical Cyclones” submitted to Weather 

and Forecasting (WAF) journal. The work describes the use of SHIPS 

database which contains various weather, ocean, and climatological features 

related to TC. The research focuses on predicting RI events, which are 

defined as significant increase in the strength of TC over a short period. The 

data from different oceanic basins were used, and a Leave One Year Out 

(LOYO) approach was employed for training and testing the models, except 

for the Indian basin, where a different approach was used due to absence of 

RI events in 2017. The dataset was imbalanced, with a small number of RI 

cases compared to non-RI cases. To address this, class balancing based on 

SMOTE was carried out for the training dataset. The study employed SVM 

for classification and random forest algorithm to rank the importance of 

features. The optimal set of features was determined based on skill scores 

such as the POD, FAR, and F1 score. The result showed that certain SHIPS 

features were important across different basins, and the overall performance 

of the proposed model was most promising for the Atlantic basin. The study 

also highlights the challenges of imbalanced data and importance of selecting 

the appropriate set of features for accurate predictions. 

6.1 Methodology 

In the original SHIPS dataset, each row indicates a TC record and there are 

around 500 weather, ocean, and climatological features. Some features in the 

SHIPS dataset are time-dependent and are available in the original dataset in 

6-hour intervals up to 120 hours from the reporting time. There exist records 

from different oceanic basins in the SHIPS data. This study analysed four 

oceanic basins: Atlantic, Indian, Western North Pacific, and Eastern North 

Pacific with a primary focus on the Atlantic and Indian basins. 
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For the present study, the data from all the available years (1982-2017) was 

used except for the last year as the training data and the final year data as 

testing data. For example, for the Atlantic basin, the data from 1982 to 2016 

is the training data and 2017 data is the testing data. This is commonly 

referred to as the LOYO approach and is employed primarily to surpass the 

sample-size limitation. For the Indian basin however, LOYO was not used as 

there were no RI events in the year 2017. Thus, records from 2015 to 2017 

were instead utilized for testing purposes. All TC records were then labelled 

as non-RI or RI based on the definition of RI. This essentially turned the 

problem into a binary classification problem.  

To tackle the issue of classification of RI events, different SVM were 

developed for each basin. The SHIPS dataset is highly imbalanced with 

respect to RI and non-RI (UNRI) cases. For example, the Atlantic basin 

which includes a total of 10710 records comprises 10134 UNRI and only 576 

RI cases (about 5.6% of the total instances). The SMOTE was employed for 

the training data to handle such class imbalance [50]. The optimal SVM 

parameters and sampling strategy (ratio of the majority and minority class) 

for each basin was determined by the GridsearchCV algorithm and are 

shown in Table 6.1. The true positives (TP), true negatives (TN), false 

positives (FP) and false negatives are computed from the classification 

results of each basin. Based on these values, the POD and FAR are then 

evaluated which are commonly used metrics for binary classification 

problems.  

In problems relating to meteorological forecasts, certain skill scores are 

generally calculated for the verification and assessment of the quality of 

forecast. These metrics can be calculated directly from the confusion matrix 

of the resulting classification output. Thus, the Peirce Skill Score (PSS), 

Gilbert Skill Score (GSS), and Heidke Skill Score (HSS) were calculated to 

assess the performance of the models. The PSS is calculated as the difference 

of POD and Probability of False Detections (POFD) which tells what 

fraction of the observed UNRI events were incorrectly forecast as RI. The 

GSS is a statistical measure which compares the skill of a forecast to a 

reference forecast that is based on a climatological average. The HSS is 
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related to GSS and measures the accuracy of the forecast relative to a random 

chance or a randomly selected forecast. 

 

6.2 Feature Selection 

The data pre-processed files used in this study were taken from [32]. They 

retained mostly time-dependent SHIPS features and based on linear 

regression experiments, found that using 24-h features instead of 0-24-h 

averaged features resulted in models with smaller predictive errors. The 

distance to the nearest landmass (DTL) missing values were interpolated 

utilizing the track location projection and the remaining missing values were 

filled by using the mean value of the reanalysis. They retained a total of 121 

SHIPS features with a total sample size of 56,223 taken from reanalysis data 

from 1982 to 2017 of all the basins. To standardize the features, the 

reanalysis data mean was removed and the data was divided by the reanalysis 

data standard deviation for each feature.  

There was a total of 121 features in the data files to start with. As an attempt 

to reduce the feature set size to a more reasonable one, the random forest 

algorithm was used which ranks the features according to their importance. 

Instead of truncating the number of features from 121 to any random smaller 

number, separate SVM models were evaluated by adding one feature in each 

model. The subsequent features were then added based on the random forest 

Table 6.1: SVM PARAMETERS FOR EACH BASIN. THE TABLE 

LISTS THE SVM CONFIGURATION USED FOR DIFFERENT 

BASINS, DETAILING THE TRAINING AND TEST BASINS, THE 

KERNEL TYPE, GAMMA, COST, AND SMOTE RATIO FOR BOTH 

RARE AND UNREPRESENTED INSTANCES. 

Train 

basin 

Test basin Kernel Gamma Cost RI and UNRI 

SMOTE ratio 

Atlantic AL (2017) RBF 0.002 15 1:4 

Indian IO (2015-

2017) 

RBF 0.005 15 1:1 

Western 

North 

Pacific 

WP (2017) RBF 0.001 5 1:4 

Eastern 

North 

Pacific 

EP (2017) RBF 0.001 5 7:20 
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ranking. So, the first model had only one feature with the highest rank and 

each subsequent model had the next important feature added to the preceding 

ones. The final model had all the 121 features. This way, it became easier to 

see what number of features corresponded to the optimal set of skill scores. 

The list of features used for the respective basin is given in Table 6.2. The 

feature selection is based on random forest ranking and the features are 

arranged in descending order of importance score.   

The POD and FAR plotted against the number of features for the Atlantic 

and Indian basin are shown in Fig 6.1. The F1 score which is defined as the 

harmonic mean of precision and recall scores is a fair metric to assess the 

model performance. Therefore, the optimal least number of features were 

determined based on the F1 score and are shown for Atlantic and Indian 

basins in Fig 6.2. Based on the POD, FAR and F1 score plots, there were a 

total of 22, 10, 13, and 36 features retained for the Atlantic, Indian, Western 

 

Figure 6.1: POD and FAR for (a) Atlantic and (b) Indian basin with 

increasing number of features. 

 

Figure 6.2: F1 scores for (a) Atlantic and (b) Indian basin with increasing 

number of features. The plots depict how the F1 score, a measure of a 

model’s accuracy that considers both precision and recall, varies with the 

number of features used in the model for each basin. 
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North Pacific, and Eastern North Pacific basins, respectively. From the set of 

features retained for each basin, it was analysed that certain SHIPS features 

were common among all basins despite the number of features retained 

varied from 10 up to 36 features. The common features identified were 

DTL_t24, DELV-12, SHGC_t24, vs0, and TWXC_t24. These are described 

as the distance to the major landmass, 24-hour TC intensity change, 

generalized 850 – 200 hPa shear magnitude vs time with vortex removed 

(and averaged from 0 to 500 km relative to 850 hPa vortex centre), initial 

maximum 1-minute sustained wind at 10m, and maximum 850 hPa 

symmetric tangential wind at 850 hPa from NCEP analysis, respectively. 

Thus, it may be concluded that these features are the most important to the 

present study and could perhaps be helpful in future RI studies.   

6.3 ML Framework Results 

For RI detection, the SVMs for each basin were tested on the last one year of 

TC records. The Indian basin, was tested on data from the years 2015 to 

2017. This was done both ways by using all the 121 initial feature sets and 

the optimal feature set for respective basins. The results of both the cases are 

summarised in Table 6.3. A comparison of the results in both cases i.e., 

predictions with optimal number of features and with all the features  
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Table 6.2: LIST OF ALL FEATURES USED FOR DIFFERENT 

BASINS 

Atlantic Indian 
Western North 

Pacific 

Eastern North 

Pacific 

vs0 vs0 DELV-12 DELV-12 

DTL_t24 DTL_t24 vs0 vs0 

DELV-12 DELV-12 COHC_t24 ENEG_t24 

CFLX_t24 MTPW_v18 DTL_t24 DTL_t24 

SHGC_t24 SHGC_t24 TLON_t24 CFLX_t24 

SHDC_t24 COHC_t24 TWXC_t24 VVAC_t24 

TWXC_t24 SHDC_t24 VMPI_t24 TWXC_t24 

TWAC_t24 TWXC_t24 CSST_t24 SHGC_t24 

V500_t24 V300_t24 V500_t24 SHDC_t24 

TLON_t24 CFLX_t24 CD20_t24 IR00_v5 

CD20_t24  SHGC_t24 VMPI_t24 

VMPI_t24  TWAC_t24 ENSS_t24 

IR00_v3  RSST_t24 U200_t24 

V000_t24   TWAC_t24 

TLAT_t24   SHRG_t24 

CD26_t24   TLAT_t24 

VVAC_t24   SHRD_t24 

SHRG_t24   PSLV_v6 

EPOS_t24   V300_t24 

MTPW_v3   U20C_t24 

COHC_t24   RSST_t24 

V300_t24   VMFX_t24 

   D200_t24 

   PSLV_v8 

   CD26_t24 

   V850_t24 

   V500_t24 

   V000_t24 

   E000_t24 

   PSLV_v5 

   PSLV_v16 

   TLON_t24 

   MTPW_v11 

   CD20_t24 

   Z850_t24 
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suggested that the results in the latter case were better for the Western North 

pacific and Indian basins. There was a 34.3% improvement (increment) in 

POD and a 6.4% reduction in FAR for the Western North Pacific basin. The 

same for the Indian basin was a 12.5% loss in POD but a 14.7% reduction in 

FAR. For the Atlantic and Eastern North Pacific basins however, it was 

favourable to retain the optimal least features. The POD for the Atlantic 

basin came out to be 0.61 with a FAR of 0.35 with reduced feature set used. 

The POD and FAR for the same basin was 0.52 and 0.26, respectively with 

all the 121 features. This indicated a 19.2% improvement in POD and a 

25.7% reduction in FAR, whereas, there was a 7.5% improvement in POD 

and a 1.9% reduction in FAR for the Eastern North Pacific basin.  

Overall, the results for the Atlantic basin were the most promising, followed 

by the Indian basin which showed a POD of 0.70 and FAR of 0.58. This was 

also reflected by the higher F1 score and HSS of these basins as compared 

with the rest. The POD and FAR are conflicting metrics and therefore, other 

skill scores made it possible to assess the performance better. It is also worth 

mentioning that the testing data for the Indian basin was very small even 

though the LOYO approach was not employed. There were 231 TC records 

out of which there were only 10 cases of RI in total. Thus, the performance 

metrics for the Indian basin showed a greater degree of imbalance. This can 

Table 6.3: RI DETECTION RESULTS OF SVMS USING THE LEAST 

NUMBER OF OPTIMAL FEATURES (LEFT ENTRIES IN EACH 

COLUMN) AND ALL THE 121 FEATURES (RIGHT ENTRIES IN 

EACH COLUMN) FOR EACH BASIN.  

Basin Hits POD FAR 

ATL 44(27) 44(23) 0.61 0.52 0.35 0.26 

IND 10(8) 10(7) 0.80 0.70 0.65 0.46 

WPAC 34(12) 34(16) 0.35 0.47 0.62 0.58 

EPAC 28(17) 28(15) 0.57 0.53 0.51 0.50 

 

Basin F1 PSS GSS HSS 

ATL 0.63 0.61 0.572 0.500 0.412 0.404 0.584 0.575 

IND 0.48 0.61 0.732 0.672 0.291 0.416 0.451 0.588 

WPAC 0.36 0.44 0.305 0.416 0.186 0.242 0.314 0.389 

EPAC 0.52 0.52 0.516 0.486 0.313 0.308 0.477 0.471 

*Numbers in () indicate the correctly detected number of RI cases. 
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be seen when only best 10 features were used, the FAR was quite high at 

0.65 which dropped to 0.46 when 121 features were used.  

6.4 Model Interpretation 

To gain deeper insights into the working of ML models, interpretability of 

ML models is becoming increasingly important. It is helpful to identify the 

factors that influence the predictions and see the underlying patterns and 

relationships in the data. There are several techniques commonly used for 

model explanation and interpretation, including feature importance, partial 

dependence plots, SHapley Additive exPlanations (SHAP) values, 

permutation importance, contribution plots, etc. For the present study, three 

techniques for this purpose were employed: ROC AUC curve, SHAP value 

feature importance, and SHAP dependence plot. The AUC for the Atlantic 

basin was 0.943 and 0.940 for the Indian basin as shown in Fig 6.3. This 

indicated that the model did well in identifying RI cases and minimizing 

false alarms for both basins.  

 

 

Figure 6.3: The ROC AUC curve of model predictions for both Atlantic 

and Indian basins. The ROC curves compare the performance of the 

model in predicting outcomes for the two basins. The blue line 

represents the ROC curve for the Atlantic basin. 
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The SHAP dependence plots for the features that have the highest and the 

lowest mean absolute SHAP value as per Fig 6.4 are displayed in Fig 6.5. It 

was found that the feature COHC_t24 had the highest SHAP interaction with 

the feature ‘TWXC_t24’ in Atlantic basin. ‘SHGC_t24’ and ‘vs0’ were the 

features with the highest and lowest mean absolute SHAP value, 

respectively, for the Indian basin. The respective features with the most 

SHAP interaction for these features were ‘V300_t24’ and ‘DTL_t24’. The 

SHAP values of ‘TWXC_t24’ are linearly correlated with the value of 

‘TWXC_t24’ implying that increasing ‘TWXC_t24’ has a positive impact on 

the model’s predictions. ‘TLON_t24’ has a non-linear and highly complex 

relation with its SHAP values. The ‘TLON_t24’ values have significant 

impact on model’s predictions but its relationship with the predictions is not 

straight forward. Increasing ‘SHGC_t24’ decreases its SHAP values almost 

linearly up to some value. vs0 has non-linear correlation with its SHAP 

 

Figure 6.4: Feature importance based on mean absolute SHAP values 

(average impact on the predicted cyclone intensity, dvs24) of each feature 

for (a) Atlantic and (b) Indian basin. 
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values.       

6.5 Comparison with existing models 

The results of the present work were compared with some of the previous 

works in this area. The results for the Atlantic basin when optimal features 

were retained in the present work, showed a 7% improvement in POD and a 

61.1% decrease in FAR. They also used the SHIPS database for the Atlantic 

basin in their study. In comparison to their model with hyperparameter 

tuning, the present work achieved a 48.7% improvement in POD and a 

43.5% reduction in FAR. The comparison is summarised in Fig 6.6. 

 

 

 

Fig. 6.5. SHAP dependence plots for Atlantic (top) and Indian 

basin (bottom) for the feature with highest (a and c) and lowest (b and 

d) mean absolute SHAP value among the optimal feature set. The 

color of the dot represents the value of feature that has the highest 

SHAP interaction with the plotted feature.  
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Figure 6.6: Comparison of the Atlantic basin results of present work with 

previous works in terms of POD and FAR. 
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Chapter 7 

Discussion 

TC intensity prediction models can help planners, decision-makers, and 

inhabitants in coastal regions for emergency preparedness. These models can 

also help the government departments to develop appropriate strategy for 

disaster management and mitigation measures. 

The study aimed at classifying the NIO cyclones and predict their intensity 

based on the images. It also aimed at predicting RI events in TCs using ML 

approaches. It demonstrated the potential of DL and ML in tackling problems 

related to weather and climate. 

Applying a DL technique to a TC could help meteorologists provide more 

accurate medium-term forecasts and issue timely warnings to communities in 

the path of these potentially deadly storms. Although NWP models are good 

and getting better, they are far from perfect. Each prediction may account for 

a slight variation in the many variables of the weather, such as energy from 

the ocean and clouds. TCs are generally more difficult to predict because 

their environment changes many times throughout their lifetime. If we look 

at the current models, they're imperfect because NWP can't see every 

molecule of water that it would need and every piece of energy from the sun, 

and we also know that how we represent some of that information is 

imperfect. But, when we are facing a hurricane, it’s important to know what 

type of storm we're going to get and when we're going to get it. The models 

can be deployed on online servers and can be used from anywhere in the 

world for quick response and analysis. 

7.1 Limitation of the present study 

One disadvantage of using categories in TC intensity estimation is that 

values near the boundary value of each category can have a significant 

impact on the results. Additionally, the scarcity of training and independent 

testing data for higher intensity TCs limit the conclusiveness of the findings. 

Furthermore, the proposed model solely relies on the infrared images of 

cyclones to estimate the TC intensity, neglecting valuable information from 
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other channels. The infrared and visible channels are two of the most 

frequently used bands and these provide information about the structure and 

location of atmospheric systems. The thermal infrared band (8 µm -16 µm) is 

available during both day and night. It measures radiation emitted from the 

top of the clouds. But the visible channels (0.35 µm – 0.7 µm) measures the 

scattered and reflected solar radiation from the top of the clouds. Thus, this 

data is not available during the night. Information about the atmospheric 

systems in the lower levels of the atmosphere cannot be provided by these 

channels because they are often covered by clouds. A TC revolves through 

irregular shapes at early phases of their development. When direct quantities 

of environmental variables such as temperature and pressure are not 

available, the detection of typical circular and curved patterns from remotely 

sensed data is a possible method to conclude the creation and development of 

TC. It is, however, also to be noted that the DL model performance is yet to 

surpass the ADT for regression analysis.  

The study also highlights the significance of careful interpretation of the 

results obtained from data-wise split in DL/ML approach.  Based on the 

study, the application of DL to TC intensity analysis shows tremendous 

promise for further development with more advanced methodologies and 

expanded training datasets. Detailed analysis of a particular storm to 

understand model performance with storm structural changes during rapid 

intensification is another future work that could be studied.  These 

endeavours will contribute to the refinement and advancement of TC 

intensity estimation models in the future. 

For RI classification, the refined SHIPS data is available only from 1982-

2017. The dataset is highly imbalanced which makes the predictions very 

difficult. The model is not tested on a global scale yet. The model only 

provides forecast for a 24-hour period, which relies heavily on persistence. 

However, NHC and JTWC aim to extend intensity forecasts to 5-7 days. This 

necessitates applying the ML method beyond 24 hours to assess its 

operational usefulness. Additionally, longer-range forecasts depend more on 

time-dependent predictors, requiring a re-evaluation of using time-averaging 

versus single forecast time values, as done in the current ML model. 
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7.2 Conclusion 

In the present thesis, two problems related to TC has been tackled using ML 

and DL approaches. For the first work, a DL framework has been developed 

to estimate and classify TC from 10 km spatial resolution Meteosat satellite 

images over NIO regions for the period 2000-2022. The NIO region has very 

less dataset compared to other regions, however, is one of the important areas 

of cyclone genesis. Here we developed an architecture to detect, classify and 

predict the intensity of the cyclones. Here, for the first time, we tried to 

categorise the NIO cyclones in five groups. The architecture is statistically 

evaluated based on a data set spanning 2000-2022, both year-wise and data-

wise. The performance of the architecture is found to be better or comparable 

to other existing studies using both evaluation method. It is to be noted that 

most of the existing DL/ML based studies either used less data set for 

performance evaluation or developed for fewer cyclone classes. 

7.3 Future Scope 

Based on the study, the application of DL on TC intensity analysis holds 

tremendous promise for further development with more advanced 

methodologies and expanded training datasets. Detailed analysis of a 

particular storm to understand model performance with storm structural 

changes during rapid intensification is another future work that could be 

studied. 

Overall, this study's findings can also contribute to improving the prediction 

and preparation for RI events of TCs, which can have significant impacts on 

regions prone to such weather phenomena. Further research can explore 

other ML algorithms, more advanced feature selection methods, and 

robustness tests to improve the framework's performance. The research has 

also generated annotated dataset with cyclone location. The codes and results 

are publicly available at 

https://github.com/manishmawatwal/Cyclone  

 

  

https://github.com/manishmawatwal/Cyclone
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APPENDIX 1 

Code segment and configuration changes in YOLOv3 

‘Make’ is command which executes your ‘makefile’, it is a build script to 

create/tune the necessary things like environment/folders/... etc. Fig A1 

shows the screenshot of the ‘make’ file. Fig A2 shows the changed 

configuration of the ‘make’ file. After this, we will download the make file, 

to make some changes. 

 

Figure A1: 'Make' file screenshot 

 

Figure A2: Changed configuration of 'Make' file 

The ‘Make’ file is replaced on the original location in Google drive. We will 

then separate the files into test and train (2:8). We will use transfer learning 

with ‘darknet53.conv.74’ weights. We will use this to train on our custom 

dataset. We will make changes in the configuration file of ‘yolov3.cfg’. Our 

dataset had only one class, i.e., cyclone. Since we had were small number of 

images to train, we will decrease the batch size. We will decrease the 
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‘max_batches’ (number of iterations for yolo training) size to 2000 (No of 

classes x 2000), ‘steps’ will be reduced according to the ‘max_batches’ size, 

20% below to 20% above. Fig A3 shows the changes that has to be made in 

the ‘yolov3.cfg’ file to train custom dataset of cyclone images. We will make 

changes to three ‘yolo’ layers and the preceding ‘conv’ layer. 

 

Figure A3: Changes in the ‘yolov3.cfg’ file 

APPENDIX 2 

Streamlit is an open-source app framework in Python language. It helps us 

create web apps for data science and ML. It is compatible with major python 

libraries such as scikit-learn, Keras, PyTorch, NumPy, pandas, Matplotlib 

etc. Heroku is a container-based cloud Platform as a Service (PaaS), to 

deploy, manage, and scale modern apps. Fig. A4 shows a screenshot of the 

local server deployment of Image Classification web app. One of the unique 

features of Streamlit is its ability to instantly update the app as users make 

changes to the code. This enables users to quickly iterate and test their code, 

allowing for a more efficient development process. 

Overall, Streamlit is a powerful tool for data scientists and developers who 

want to create powerful and interactive web apps quickly and easily, with 

support for a wide range of data science and ML libraries. 
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 APPENDIX 3 

Table A1. COMPLETE LIST OF ALL 121 ENGINEERED FEATURES 

USED IN THE 24-H INTENSITY MODEL FOR RI PREDICTION. 

Predictors Long Name 

vs0  Initial maximum 1-min sustained wind speed at 10 m (kt) 

PSLV_v2 Pressure of the centre of mass (hPa) of the layer where storm 

motion best matches environmental flow. 

PSLV_v3 The observed zonal storm motion component (ms-1 x 10) 

PSLV_v4 The observed meridional storm motion component (m s-1 x 

10) 

PSLV_v5 As in PSLV_v2, but for the 1000–100-hPa mass weighted 

deep layer environmental wind (m s-1 x 10) 

PSLV_v6 As in PSLV_v3, but for the 1000–100-hPa mass weighted 

deep layer environmental wind (m s-1 x 10) 

PSLV_v7 As in PSLV_v2, but for the optimally weighted deep layer 

mean flow (m s-1 x 10) 

PSLV_v8 As in PSLV_v3, but for the optimally weighted deep layer 

mean flow (m s-1 x 10) 

 
Figure A4: Streamlit (python library) app deployment of proposed model 
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PSLV_v9 The parameter alpha that controls the constraint on the 

weights from being not too ‘‘far’’ from the deep layer mean 

weights (nondimensional x 100) 

PSLV_v10 The optimal vertical weights for p = 100 hPa 

(nondimensional x 1000) 

PSLV_v11 The optimal vertical weights for p = 150 hPa 

(nondimensional x 1000) 

PSLV_v12 The optimal vertical weights for p = 200 hPa 

(nondimensional x 1000) 

PSLV_v13 The optimal vertical weights for p = 250 hPa 

(nondimensional x 1000) 

PSLV_v14 The optimal vertical weights for p = 300 hPa 

(nondimensional x 1000) 

PSLV_v15 The optimal vertical weights for p = 400 hPa 

(nondimensional x 1000) 

PSLV_v16 The optimal vertical weights for p = 500 hPa 

(nondimensional x 1000) 

PSLV_v17 The optimal vertical weights for p = 700 hPa 

(nondimensional x 1000) 

PSLV_v18 The optimal vertical weights for p = 850 hPa 

(nondimensional x 1000) 

PSLV_v19 The optimal vertical weights for p = 1000 hPa 

(nondimensional x 1000) 

MTPW_v2 0–200-km average total precipitable water (TPW) at t = 0 

from the GFS analysis (mm x 10) 

MTPW_v3 0–200-km TPW standard deviation (mm x 10) 

MTPW_v4 200–400-km average TPW (mm x 10) 

MTPW_v5 200–400-km TPW standard deviation (mm x 10) 

MTPW_v6 400–600-km average TPW (mm x 10) 

MTPW_v7 400–600-km TPW standard deviation (mm x 10) 

MTPW_v8 600–800-km average TPW (mm x 10) 

MTPW_v9 600–800-km TPW standard deviation (mm x 10) 

MTPW_v10 800–1000-km average TPW (mm x 10) 

MTPW_v11 800–1000-km TPW standard deviation (mm x 10) 

MTPW_v12 0–400-km average TPW (mm x 10) 

MTPW_v13 0–400-km TPW standard deviation (mm x 10) 

MTPW_v14 0–600-km average TPW (mm x 10) 

MTPW_v15 0–600-km TPW standard deviation (mm x 10) 

MTPW_v16 0–800-km average TPW (mm x 10) 

MTPW_v17 0–800-km TPW standard deviation (mm x 10) 

MTPW_v18 0–1000-km average TPW (mm x 10) 

MTPW_v19 0–1000-km TPW standard deviation (mm x 10) 

MTPW_v20 Percent TPW less than 45 mm, r 5 0–500 km in 908 

azimuthal quadrants centred on up-shear direction 
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MTPW_v21 0–500-km averaged TPW (mm 3 10) in 908 up-shear 

quadrant 

MTPW_v22 0–500-km average TPW (mm x 10) 

IR00_v2 Time (hhmm) of the GOES image 

IR00_v3 Average GOES channel-4 brightness temperature (BT) (C x 

10), r = 0–200 km 

IR00_v4 Std dev of GOES BT (C x 10), r = 0–200 km 

IR00_v5 Average GOES channel 4 brightness temperature (BT) (C x 

10), r = 100–300 km 

IR00_v6 Std dev of GOES BT (C x 10), r = 100–300 km 

IR00_v7 Percent area r = 50–200 km of GOES channel 4 BT< -10 C 

IR00_v8 Percent area r = 50–200 km of GOES channel 4 BT < - 20C 

IR00_v9 Percent area r 5 50–200 km of GOES channel 4 BT <- 30C 

IR00_v10 Percent area r 5 50–200 km of GOES channel 4 BT<- 40C 

IR00_v11 Percent area r 5 50–200 km of GOES channel 4 BT<- 50C 

IR00_v12 Percent area r 5 50–200 km of GOES channel 4 BT<- 60C 

IR00_v13 Max BT from 0- to 30-km radius (°C x 10)  

IR00_v14 Avg BT from 0- to 30-km radius (°C x 10)  

IR00_v15 Radius of max BT (km) 

IR00_v16  Minimum GOES brightness temperature from 20- to 120-km 

radius (C x 10) 

IR00_v17 Avg BT from 20- to 120-km radius (°C x 10) 

IR00_v18 Radius of min BT (km) 

IR00_v19 Variables No. 1 need for storm size estimation 

IR00_v20 Variables No. 2 need for storm size estimation 

IR00_v21 Variables No. 3 need for storm size estimation 

CSST_24 Climatological SST (°C x 10) 

CD20_24 Climatological depth (m) of 20°C isotherm from 2005 to 

2010 NCODA analyses 

CD26_24 As for CD20, but for the 26°C isotherm 

COHC_24 As above, but for ocean heat content (kJ cm⁻²) 

DTL_124 Distance to nearest major landmass (km) 

RSST_24 Reynolds SST (°C x 10) 

U200_t24 200-hPa zonal wind (kt x 10) (r = 200-800 km) 

U20C_t24 As in U200_124, but for r = 0-500 km 

V20C_t24 As in U20C_124, but for the v component of the wind 

E000_t24 1000-hPa theta_e (r = 200-800 km) vs time (K x 10) 

EPOS_t24 The average theta_e difference between a parcel lifted from 

the surface and its environment (200-800-km average) vs 

time (°C x 10) 
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ENEG_t24 As in EPOS, but only negative differences are included. The 

minus sign is not included. 

EPSS_t24 As in EPOS, but the parcel theta_e is compared with the 

saturated theta_e of the environment 

ENSS_t24 As in ENEG, but the parcel theta_e is compared with the 

saturated theta_e of the environment 

RHILO_t24 850-700-hPa relative humidity (%) vs time (200-800 km) 

RHMD_t24 As in RHILO, but for 700-500 hPa 

RHHI_t24 As in RHILO, but for 500-300 hPa 

Z850_t24 850-hPa vorticity (ξ x 10⁵) vs time (r = 0-1000 km) 

D200_t24 200-hPa divergence vs time (r = 0-1000 km) 

REFC_t24 Relative eddy momentum flux convergence (m s⁻¹ day⁻¹, 

100-600-km avg) 

PEFC_t24 Planetary eddy momentum flux convergence (m s⁻¹ day⁻¹, 

100-600-km avg) 

T000_t24 1000-hPa temperature (°C x 10) (200-800-km average) 

R000_t24 1000-hPa relative humidity (200-800-km average) 

Z000_t24 1000-hPa height deviation (m) from the U.S. standard 

atmosphere 

TLAT_t24 Latitude of 850-hPa vortex center in NCEP analysis (°N x 

10) 

TLON_t24 Longitude of 850-hPa vortex center in NCEP analysis (°W x 

10) 

TWAC_t24 0-600-km average symmetric tangential wind at 850 hPa 

from NCEP analysis (m s⁻¹ x 10) 

TWMX_t24 Maximum 850-hPa symmetric tangential wind at 850 hPa 

from NCEP analysis (m s⁻¹ x 10) 

G150_t24 Temperature perturbation at 150 hPa due to the symmetric 

vortex calculated from the radial thermal wind. Averaged 

from r = 200 to 800 km centered on input lat/lon (not always 

the model/analysis vortex position). (°C x 10) 

G200_t24 As in G150, but at 200 hPa 

G250_t24 As in G150, but at 250 hPa 

W000_t24 The tangential wind (m s⁻¹ x 10) azimuthally averaged at r = 

500 km from (TLAT, TLON). If TLAT, LON are not 

available, (LAT, LON) are used. 

V850_t24 As in W000, but at 850 hPa 

V500_t24 As in W000, but at 500 hPa 

V300_t24 As in W000, but at 300 hPa 

TGRD_t24 The magnitude of the temperature gradient between 850 and 

700 hPa averaged from 0 to 500 km estimated from the 

geostrophic thermal wind (°C m⁻¹ x 10⁷) 

TADV_t24 The temperature advection between 850 and 700 hPa 

averaged from 0 to 500 km from the geostrophic thermal 

wind (°C s⁻¹ x 10⁴) 
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PENC_t24 Azimuthally averaged surface pressure at outer edge of 

vortex [(hPa - 1000) x 10] 

SHRD_t24 850-200-hPa shear magnitude (kt x 10) vs time (200-800 

km) 

SHTD_t24 Heading of above shear vector. Westerly shear has a value of 

SHRS_t24 850-500-hPa shear magnitude (kt x 10) 

SHTS_t24 Heading of above shear vector 

SHRG_t24 Generalized 850–200-hPa shear magnitude (kt x 10) vs time 

(takes into account all levels from 1000 to 100 hPa) 

SHDC_t24 As in SHRD, but with vortex removed and averaged from 0 

to 500 km relative to 850-hPa vortex center 

SDDC_t24 Heading (°) of above shear vector. Westerly shear has a 

value of 90° 

SHGC_t24 As in SHRG, but with vortex removed and averaged from 0 

to 500 km relative to 850-hPa vortex center 

DIVC_t24 As in D200, but centered at 850-hPa vortex location 

T150_t24 200–800-km area average 150-hPa temperature (°C x 10) 

T200_t24 As above, but for 200-hPa temperature (°C x 10) 

T250_t24 As above, but for 250-hPa temperature (°C x 10) 

PENV_t24 200–800-km average surface pressure [(hPa - 1000) x 10] 

VMPI_t24 Maximum potential intensity from K. Emanuel equation (kt) 

VVAV_t24 Average (0–15 km) vertical velocity (m s⁻¹ x 100) of a parcel 

lifted from the surface where entrainment, the ice phase, and 

the condensate weight are accounted for. Note: Moisture and 

temperature biases between the operational and reanalysis 

files make this variable inconsistent in the 2001–07 sample, 

compared to 2000 and before. 

VMFX_t24 As in VVAV, but a density-weighted vertical average 

VVAC_t24 As in VVAV, but with soundings from 0 to 500 km with 

GFS vortex removed 

HE07_t24 Storm motion relative helicity (m² s⁻²) x 10 for p = 1000–

700 hPa, r = 200–800 km 

HE05_t24 As in HE07, but for p = 1000–500 hPa 

O500_t24 Pressure vertical velocity (hPa day⁻¹) at 500 hPa, averaged 

from r = 0 to 1000 km 

O700_t24 As in O500, but at 700 hPa 

CFLX_t24 Dry air predictor based on the difference in surface moisture 

flux between air with the observed (GFS) RH value, and 

with RH of air mixed from 500 hPa to the surface 

DELV-12 Last 12-h intensity change (kt) 

 

APPENDIX 4 

The results of the imbalanced dataset were initially not included due to their 

underwhelming performance. After thorough consideration and analysis, it 
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was determined that the inclusion of these results would not contribute 

meaningful insights or enhance the discussion. 

The results of the imbalanced dataset are as below: For 20 best Random 

Forest Atlantic Features 

 

Metrics  Values (unbalanced dataset) Values (balanced dataset using 

SMOTE) 

POD 0.033 0.662 

FAR 0.785 0.819 

HSS 0.046 0.216 

 


