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ABSTRACT

The spectrum sensing component that implements the function of auto-

matic modulation classification (AMC) has always been a major impediment

in the design of cognitive radios . This barrier can be overcome with the

transition to software-defined radios (SDRs), followed by the introduction of

field-programmable gate arrays (FPGAs) and deep learning (DL). However,

in current implementation frameworks, the design of DL models is still sep-

arated from synthesised FPGA designs. As a result, the design process is

complex and time-consuming.This thesis goal is to find the implementation

framework for implementing deep learning inference models within signal

processing chains on FPGAs.The goal of this framework is to achieving high

throughput, low latency, and a small FPGA resource footprint that allows

for scaling to larger DL models. This thesis presents a ResNet-based model

for Automatic Modulation Classification. Initially, a model to identify only

a single modulation type was implemented, and it was later developed to

identify multiple modulation types contained in the same RF frame(mixed-

signal modulation classification). while dealing with the real time appli-

cations Latency and throughput are the crucial factors,so we benchmarked

both the single-signal and mixed-signal models on CPU (Central processing

unit), GPU (Graphics processing unit), and Xilinx ZCU104 FPGA (Field

programmable gate array) to test the time taken to generate predictions.

From the benchmarking results, It has been demonstrated that the perfor-

mance of FPGA surpasses that of CPU and GPU.
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Chapter 1

Introduction

Automatic recognition of the modulation type of a signal that has been de-

tected is a crucial aspect of intelligent receiver design, with numerous appli-

cations in both civilian and military contexts. Modulation classification is

an essential function for managing and monitoring communication systems,

enabling the resolution of technical challenges such as spectrum awareness,

interference mitigation, and adaptive transmissions. In order to address these

challenges, it is necessary to accurately identify and classify the modulation

type of the detected signal. With the development of advanced machine

learning techniques and algorithms, modulation classification has become an

increasingly sophisticated field of research, leading to improved performance

and more efficient use of communication resources. Therefore, the accurate

and efficient classification of modulation type is a critical component in the

design of intelligent receivers, with significant implications for a wide range

of communication systems and applications. Automatic modulation classi-

fication has numerous applications in both civilian and military contexts.

One of the most significant applications of modulation classification is in
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the management and monitoring of communication systems. By accurately

identifying and classifying the modulation format of detected signals, modu-

lation classification enables spectrum awareness and adaptive transmissions,

which are critical for efficient use of communication resources. This, in turn,

leads to improved performance, greater reliability, and higher efficiency in

communication systems. In addition, modulation classification is essential

for interference avoidance, enabling communication systems to operate more

effectively in complex and dynamic environments.

Another important application of modulation classification is in the area

of electronic warfare. Military communication systems operate in highly con-

tested environments, where adversaries may attempt to disrupt, jam or inter-

cept transmissions. Automatic modulation classification is a key component

of modern electronic warfare systems, enabling rapid and accurate identifi-

cation of signals in complex and dynamic environments, and facilitating the

deployment of countermeasures to mitigate or neutralize any threats.

In addition to these applications, modulation classification has numer-

ous civilian applications, including in wireless communication systems, radar

systems, and satellite communication systems. For example, in wireless com-

munication systems, modulation classification is essential for managing and

monitoring the radio spectrum, identifying interference sources, and adapting

transmission parameters to optimize system performance. In radar systems,

modulation classification is used for target identification, discrimination, and

tracking, enabling more precise and effective radar operations. In satellite

communication systems, modulation classification is critical for optimizing

bandwidth utilization and ensuring reliable communication links.

Overall, automatic modulation classification has a wide range of applica-
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tions, from managing and monitoring communication systems to supporting

electronic warfare and enhancing the performance of wireless, radar, and

satellite communication systems. The development of advanced machine

learning techniques and algorithms has enabled significant progress in the

field of modulation classification, leading to more sophisticated and effective

approaches for accurately identifying and classifying the modulation format

of detected signals.

With the rise of Software Defined Radio (SDR), the task of Automatic

Modulation Recognition (AMR) has become an essential component of in-

telligent communication systems. In particular, SDR allows for the use of

general-purpose hardware to carry out the functions of radio frequency com-

munication, which has led to an increase in the need for AMR. Additionally,

Cognitive Radio (CR) also relies on AMR for spectrum sensing.

Recent advancements in Deep Learning (DL) have led to the development

of new and powerful tools that are capable of addressing problems in AMR.

As a result, many researchers are now incorporating DL models into AMR.

These models are capable of handling complex signal processing tasks and

can identify modulation formats with high accuracy.

The incorporation of DL models into AMR has also led to improvements

in the efficiency and speed of the process. The use of DL models can signifi-

cantly reduce the time required for AMR, making it possible to process large

amounts of data in real-time. This has made AMR more practical for many

applications, particularly in time-sensitive environments.

Moreover, DL models can be used in combination with traditional signal

processing methods to further improve the accuracy and efficiency of AMR.
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This hybrid approach can effectively leverage the strengths of both methods

to achieve better performance in challenging environments.

Overall, the integration of DL models into AMR has opened up new av-

enues for research and development in this field. The combination of DL

models with traditional signal processing methods has enabled the develop-

ment of more accurate and efficient AMR systems, which have numerous

applications in both civilian and military contexts.

In the modern era, machine learning (ML) and deep learning (DL) tech-

niques have become increasingly popular and useful in a wide range of fields,

including computer vision, healthcare, robotics, and communication systems.

Unlike traditional ML algorithms, DL networks can learn from unstructured

data without any guidance from expert engineers. This is because DL net-

works operate like the human brain, processing data and creating patterns

that can be used for decision-making without any human supervision. As

a result, DL networks have become indispensable tool for solving complex

problems in various fields. With the continuous advancements in DL tech-

nology, researchers are exploring new ways to improve the performance of

DL networks and make them more versatile and efficient.

Although deep learning technology has become increasingly popular in

radio systems, its practical application remains a challenge. Radio systems

typically use Application Specific Integrated Circuits (ASICs) or Field Pro-

grammable Gate Arrays (FPGAs) for signal processing, while most deep

learning models require CPU or GPU platforms which are not suitable for

digital signal processing due to their sequential nature or high power con-

sumption. Thus, integrating deep learning models on FPGA platforms can

potentially enhance their operability in the signal processing chain of a soft-
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ware defined radio (SDR). The purpose of this study is to investigate the

feasibility of integrated deep learning models on FPGA platforms, and to

enable future research on the use of RF deep learning in communication

systems.
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Chapter 2

Background

2.1 Automatic Modulation classification

Automatic Modulation Classification (AMC) is the process of identifying the

modulation type of a received signal. In other words, it is the process of

determining whether the signal is modulated using Amplitude Modulation

(AM), Frequency Modulation (FM), or other digital modulation types such

as Phase Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM).

AMC is a crucial task in many communication systems, including military

and civilian applications, where it is necessary to identify the signal modu-

lation type for monitoring, management, and control.

In the field of communication systems, there are two types of modula-

tion: analog and digital modulation. Analog modulation is a technique used

to modulate a continuous wave (carrier) signal with an analog message sig-

nal, such as voice or music. On the other hand, digital modulation is a

technique where a digital message signal is modulated onto a carrier wave.
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Digital modulation types include Amplitude Shift Keying (ASK), Frequency

Shift Keying (FSK), Phase Shift Keying (PSK), and Quadrature Amplitude

Modulation (QAM).

2.2 Mixed signal Modulation Classification

As the demand for wireless communication continues to increase, the avail-

able spectrum resources are becoming more limited. This has led to the

need for more efficient use of the spectrum through the use of mixed-signal

modulation[8]. Mixed signal modulation involves the transmission of mul-

tiple signals on a single RF frame, which makes the automatic modulation

classification of these signals a crucial task[9][10].

The emergence of effective mixed signal automatic modulation classifica-

tion technology is of great significance as it enables us to efficiently detect

and classify multiple signals on a single RF frame. This technique is useful

in many applications such as wireless sensor networks, cognitive radio, and

satellite communication systems.

In Conclusion, The applications of AMC are widespread, and it plays a

crucial role in many communication systems. In military applications, AMC

is used to identify the type of modulation used by the enemy, which can pro-

vide valuable intelligence. In civilian applications, AMC is used for spectrum

awareness, adaptive transmissions, and interference avoidance. For example,

in a wireless communication system, AMC can be used to adaptively select

the best modulation type to transmit data in a changing radio environment.
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2.3 Deep Learning for automatic Modulation

Classification

Machine learning (ML) and deep learning (DL) are two different methods

of data analysis used in various fields[2][3]. ML involves extracting features

from raw data and using those features in a classifier to make predictions.

Modulation classification prediction, for instance, involves statistical prop-

erties like moment and cumulants, and instantaneous properties like signal

power. However, extracting features can be challenging in some cases.

On the other hand, DL combines feature extraction and classification

into one model. This approach makes DL more effective in cases where it

is difficult to identify the features in advance. For modulation classification,

DL has proven to be a better option than ML because it can extract features

autonomously and make accurate predictions based on those features.

In the case of modulation classification, DL models can be trained on

large datasets of modulation types and features, allowing them to identify and

classify new signals accurately. DL models can also adapt to new modulation

types, making them more versatile than traditional ML models. As a result,

DL has become a popular choice for modulation classification in recent years.

2.4 Convolutional Neural Network

Convolutional neural networks (CNNs) have become a popular tool for au-

tomatic modulation classification (AMC) due to their ability to effectively

extract features from complex signal data.Convolutional neural networks
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(CNNs) are a type of deep neural network that have proven to be effec-

tive in handling complex signal data. They are made up of convolution,

pooling, and dense layers, and have become increasingly popular in many

fields, including computer vision, natural language processing, and signal

processing.Convolutional Neural Networks (CNNs) rely on the conventional

artificial neuron model and aim to enhance model performance and precision.

Their pipelined feed-forward execution flow is highly parallelizable, enabling

them to optimize performance and accuracy.

In the context of automatic modulation classification (AMC), the goal is

to use a CNN to accurately identify the modulation scheme used to encode

information in a received signal. The CNN is trained on raw I/Q data, which

is the in-phase and quadrature components of the signal. This raw data is

fed into the CNN, which learns to extract useful features from it through its

convolution and pooling layers.

Convolutional Neural Network (CNN), which comprises two main com-

ponents: the feature extraction part and the classification part. The feature

extraction is accomplished through the use of convolution layers, which per-

form a series of convolutions on the input data to extract relevant features.

On the other hand, the classification part is generally achieved through one

or multiple fully connected layers.

It is worth mentioning that although fully connected networks are also

capable of extracting features from the input, the separation between the

feature extraction and classification parts is more evident in a CNN. The

convolution layers enable the network to learn distinctive spatial patterns

and relationships within the input data, which is particularly useful in tasks

such as image recognition.
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In a CNN, the output of each convolution layer serves as the input to the

subsequent layer, leading to a hierarchical feature representation of the input

data. This hierarchical representation allows the network to capture increas-

ingly complex and abstract features in the deeper layers, which ultimately

leads to better classification performance.

After the convolutional layers, the network may include additional lay-

ers such as pooling layers and activation layers. Pooling layers reduce the

dimensionality of the feature maps by summarizing local information, while

activation layers introduce non-linearity to the network, enabling it to model

complex relationships between the input data and the desired output.

In this context, we are utilizing Convolutional Neural Networks (CNNs)

for modulation classification. CNNs have been found to be a popular choice

for this task, likely due to their ability to learn and extract features from

complex input data, such as radio frequency signals. Additionally, CNNs

may be easier to train than other types of neural networks, as they can be

trained in a highly parallelizable manner and can learn from small amounts

of labeled data. CNNs have shown promising results in modulation classi-

fication, achieving high accuracy rates in various scenarios, including noisy

and fading channels.

2.5 Residual Network (ResNet) :

Residual Network (ResNet) is a popular deep learning model widely used

for computer vision tasks. It is a type of Convolutional Neural Network

(CNN) architecture designed to accommodate a large number of convolu-

tional layers[11].
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During the training process of neural networks, which involves backprop-

agation and gradient descent, the gradient is used to update the weights in

order to minimize the loss function. With too many layers, the gradient can

become increasingly small through repeated multiplications, eventually be-

coming too insignificant to effectively update the weights. This phenomenon

is known as the ”vanishing gradient” problem, and it can lead to saturation

or degradation in performance as more layers are added to the network.

ResNet presents an innovative solution to tackle the vanishing gradient

problem by employing ”skip connections”. In ResNet, multiple identity map-

pings, which are essentially convolutional layers that initially do not alter

the input, are stacked together, and these layers are skipped, allowing the

activations from the previous layer to be reused. This approach accelerates

the initial training process by effectively compressing the network into fewer

layers.

As the network is further trained, all layers are expanded, and the residual

parts of the network, referred to as residual blocks, are allowed to explore

more diverse features of the input image. Typically, ResNet models skip two

or three layers at a time, with nonlinearity and batch normalization applied in

between, to maintain the network’s ability to learn complex representations

while mitigating the vanishing gradient issue. This strategy has been shown

to improve the training dynamics and performance of deep neural networks

like ResNet.

Residual Block : A residual block is a fundamental component of the

ResNet architecture, a type of Convolutional Neural Network (CNN). It is

composed of multiple convolutional layers and introduces skip connections,

also known as shortcut connections, that allow the activations from the previ-
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ous layer to bypass intermediate convolutional layers and directly contribute

to the output of the residual block. This skip connection helps to mitigate

the vanishing gradient problem, which can occur when training deep neural

networks, by facilitating the flow of gradients during backpropagation.

Typically, a residual block includes batch normalization and nonlinear-

ity (such as ReLU) applied after each convolutional layer to enhance the

network’s learning capacity. The combination of skip connections, batch

normalization, and nonlinearity in the residual block enables the successful

training of deep neural networks, allowing for the construction of ResNet

models with a large number of layers. This architecture has been proven to

achieve state-of-the-art performance in various computer vision tasks, such

as image classification, object detection, and semantic segmentation, due

to its ability to effectively address the challenges associated with vanishing

gradients.

12



Chapter 3

FPGA-based acceleration of

Deep Learning algorithms.

3.1 Field Programmable Gate array(FPGA)

A Field Programmable Gate Array (FPGA) is a programmable integrated

circuit that can be customized to perform specific digital logic functions.

Although ASICs typically outperform FPGAs in terms of power consumption

and throughput, the development of FPGAs is more cost-effective and faster

due to their reprogrammable nature.

The modern FPGA is composed of two primary elements: fine-grained

programmable logic blocks, which typically consist of adaptive logic modules

(ALMs), and coarse-grained functional logic components, including memory

blocks, digital signal processing (DSP) blocks, communication blocks, and

soft-core processors.
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The use of ALMs in the fine-grained programmable logic blocks allows for

high levels of flexibility and customization, enabling the FPGA to be adapted

to a wide range of applications. Meanwhile, the coarse-grained functional

logic components provide specialized hardware support for specific tasks,

such as efficient memory access and signal processing.

FPGAs offer several advantages over traditional processors, including

high performance, low latency, and low power consumption[6][7], making

them ideal for applications such as digital signal processing, image process-

ing, and machine learning acceleration. Additionally, the programmable na-

ture of FPGAs allows for rapid prototyping and iterative design, enabling

developers to quickly test and refine their designs.

Figure 3.1 shows the architecture of FPGA . The architecture of an FPGA

typically includes three main types of modules: I/O blocks or pads, switch

matrix/interconnection wires, and configurable logic blocks (CLBs). The

basic architecture of an FPGA consists of two-dimensional arrays of logic

blocks, with a user-configurable means of interconnecting these blocks.

I/O blocks provide input/output connections for the FPGA and allow it

to interface with external devices. The switch matrix or interconnection wires

provide a means of connecting the logic blocks to one another and to the I/O

blocks, enabling the creation of custom logic functions. Configurable logic

blocks (CLBs) are the building blocks of the FPGA and can be configured

to perform a wide range of logic functions.

Configurable Logic Blocks (CLBs) are an essential part of the FPGA

architecture, consisting of a MUX (Multiplexer), a D flip flop, and a Look

Up Table (LUT). The LUT is responsible for implementing combinational
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Figure 3.1: Architecture of FPGA[14]

logical functions, while the MUX is used for selection logic and the D flip

flop stores the output of the LUT.

The basic building block of an FPGA is the Look Up Table (LUT) based

function generator, which can have varying numbers of inputs ranging from 3,

4, 6, and even 8, depending on the specific FPGA design. Recent advances in

FPGA technology have led to the development of adaptive LUTs, which can

provide two outputs per single LUT by implementing two function generators

within the same block.

CLBs are highly configurable, allowing users to customize the logic func-

tions they perform by reprogramming the LUTs and MUXes. The adapt-

ability and versatility of CLBs make them well-suited for a wide range of

applications, including digital signal processing, cryptography, and machine
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learning.

3.2 Hardware Comparison for Artificial Intel-

ligence: FPGAs vs. GPUs vs. ASICs

Latency : FPGAs have a lower latency compared to CPUs and GPUs as

they run on ”bare metal” without an operating system, allowing for faster

processing times. This makes them ideal for real-time AI applications. Both

logic transistors and software programs can execute instructions, resulting

in faster processing times[4][5]. ASICs and FPGAs are particularly useful in

scenarios that require lower latencies.

Power Consumption : FPGAs excel over GPUs and CPUs in appli-

cations with limited power availability. Since they operate on ”bare metal,”

they require less power consumption, making them a more efficient choice

for such scenarios.

Flexibility : In comparison to ASICs, FPGAs offer superior flexibility

and are becoming more competitive in terms of pricing. They are partic-

ularly beneficial for AI applications that evolve and change rapidly, where

neural networks require frequent adjustments and retraining. FPGAs can

be reprogrammed for design changes in a matter of hours to weeks, whereas

ASICs have a longer production cycle time of 12-18 months. As a result,

FPGAs are preferred for applications that require maximum flexibility and

adaptability.

FPGAs offer a greater degree of programming flexibility compared to

GPUs, allowing for the addition of new steps or outputs without changing the
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GPU architecture itself. For example, if additional cleaning steps are required

for the bottling process, an FPGA can be programmed to include them, while

a GPU would require physical changes to accommodate such alterations.

Furthermore, FPGAs offer greater flexibility beyond AI applications, such

as adding networking or post-processing capabilities. In contrast, GPUs are

more limited in their flexibility and can only perform one task at a time.

Additionally, FPGAs can be reprogrammed to perform completely different

functions without requiring the development of a new chip or waiting for an

18-month production cycle as is the case with ASICs. The ability of FPGAs

to quickly adapt to changing requirements is a significant advantage over

GPUs and ASICs.

Parallel Computing : The parallel computing used in DNNs can intro-

duce complexities and computational hardware imbalances if irregular par-

allelisms occur. FPGAs are better than GPUs for applications with custom

data types or irregular parallelism. Both GPUs and FPGAs can process

in parallel, but FPGAs are more efficient in parallel processing, performing

several steps at each cycle, whereas GPUs can only do one row at a time.

FPGAs are faster, more flexible, and efficient than GPUs.

Conclusion : AI is a new and exciting field that can help solve problems,

and improve efficiency. FPGAs are a type of technology that can help with

AI because they are flexible, powerful, and can be easily adapted to new

applications. Although they used to be hard to program, there are now tools

that make it easier to use FPGAs in AI.
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3.3 VITIS AI

The use of FPGAs to speed up deep learning algorithms is becoming popular

among both academics and the industry. Various methods and frameworks

are available for implementing deep learning models on an FPGA.

The Vitis AI platform is a complete solution for developing AI models on

AMD devices, boards, and Alveo data center acceleration cards. It includes

optimized DPU cores, AI models, libraries, tools, and examples for edge and

data center AI. Its goal is to make AI acceleration efficient and easy to use

on AMD FPGAs and SoCs.

VITIS AI provides assistance for common frameworks and the newest

models used in deep learning, including CNNs, RNNs, and NLPs. It includes

tools for optimizing and quantizing models for better accuracy and efficiency.

Users can easily compile and deploy custom models using high-level APIs.

Additionally, VITIS AI offers highly configurable DPU cores that can be

tailored to specific requirements for throughput, latency, and power in both

cloud and edge computing applications.

When it comes to accelerating deep learning, there are two primary FPGA

architectures: streaming and computation unit. In streaming architecture,

data samples are processed through the neural network in a continuous

”stream”, and the accelerator is tailored to the specific network being used.

This means that if a different network is to be run, the accelerator must be

reconfigured to accommodate it. On the other hand, the computation unit

architecture executes instructions and creates an accelerator that can be used

across different networks, as long as they can be translated into compatible

instructions. This architecture offers more flexibility and is generally eas-
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ier to maintain and adapt to different network models.Vitis AI is based on

Computation unit architecture. Figure 3.2 from ref.[13] shows the VITIS AI

structure.

Figure 3.2: Vitis AI development environment[13]

Main Parts of VITIS AI :

1. Model Zoo : The AI Model Zoo is a collection of pre-built deep

learning models from well-known frameworks like Pytorch, Tensorflow,

Tensorflow 2, and Caffe. It is accessible to everyone and provides op-

timized models that can be retrained and used on AMD platforms for

faster execution, improved performance, and production.

2. Optimizer : The AI optimizer technology can compress models up

to 50 times, with minimal impact on accuracy. This deep compression

technology can significantly enhance the performance of AI inference.
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3. Optimizer : The process of inspecting custom operators, quantiz-

ing, calibrating, fine-tuning, and converting floating-point models into

fixed-point models is completed to improve computing efficiency and

speed by reducing memory bandwidth usage.

4. Compiler : The mapping of the AI model to a highly efficient in-

struction set and data flow is carried out by the AI compiler, which

also applies sophisticated optimizations like layer fusion and instruction

scheduling.

5. Profiler: Programmers can use the performance profiler to conduct

a comprehensive analysis of the efficiency and resource utilization of

their AI inference implementation.

6. Library : The Vitis AI Library comprises a collection of advanced

libraries and APIs designed to optimize AI inference using DPU cores.

Leveraging the Vitis AI Runtime (VART) with uniform APIs, it of-

fers simple-to-use interfaces that enable hassle-free deployment of AI

models on AMD platforms.

7. Deep-Learning Processor Unit (DPU) : The DPU is a special-

ized computing architecture that is capable of adapting to the rapidly

evolving AI algorithms of CNNs, RNNs, and NLPs. It offers excep-

tional performance and is compatible with leading-edge technologies

found on Zynq™ SoCs, Zynq UltraScale+™ MPSoCs, Alveo data cen-

ter accelerator cards, and Versal ACAPs.
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3.4 Deep-Learning Processor Unit (DPU)

A DPU consists of components that are present in the Xilinx programmable

logic fabric, such as BlockRAM, DSP, UltraRAM, LUTs, and Flip-Flops[15].

Alternatively, it can be developed as a set of microcoded functions that

are deployed on the AI Engine architecture, or ”AI Engine.” For certain

applications, the DPU may comprise programmable logic and AI Engine

array resources.

Vitis AI offers both the DPU IP and the essential tools for deploying

neural networks on Xilinx targets, regardless of whether the neural networks

are standard or custom.

3.5 Zynq® Ultrascale+™ MPSOC ZCU104

With the ZCU104 Evaluation Kit, designers can quickly begin creating em-

bedded vision applications, including but not limited to Advanced Driver

Assisted Systems (ADAS), machine vision, medical imaging, drones, Aug-

mented reality(AR), and surveillance.

The board comes equipped with a quad-core ARM Cortex-A53 processor,

a dual-core ARM Cortex-R5 real-time processor, a Mali-400 MP2 graphics

processing unit, and an FPGA that can be programmed using the Vivado

software suite. Additionally, it has several peripheral devices, including USB

3.0 ports, Gigabit Ethernet, HDMI, DisplayPort, and an SD card slot.

The ZCU104 board has gained popularity among developers, researchers,

and engineers interested in designing and prototyping high-performance ap-
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plications. Figure 3.3 shows the Zynq UltraScale+ XCZU7EV-2FFVC1156

MPSoC.

Figure 3.3: Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC
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Chapter 4

Experimental Results

Modulation classification is an important task in wireless communication

systems, which involves identifying the modulation scheme of a given signal.

Deep learning has shown great potential in addressing this problem, and

Convolutional Neural Networks (CNNs) have emerged as a powerful tool for

modulation classification. In this study, we developed a ResNet-based CNN

model for modulation classification, and used the VITIS AI tool for inference

on FPGA to improve the performance.

FPGAs are specialized hardware devices that can provide significant ac-

celeration for deep learning inference, and have been shown to outperform

CPUs and GPUs in many cases. By deploying our ResNet-based CNN model

on FPGA, we aimed to achieve higher inference throughput and lower latency

than on traditional CPU and GPU platforms.

To evaluate the performance of our model, we conducted benchmarking

experiments on a range of platforms, including CPU, GPU, and FPGA. We
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measured the inference time and throughput for each platform, and compared

the results to determine the relative performance of each platform.

To achieve this goal, we followed a series of steps

1. Data Collection : In this study, for the single signal AMC Model,

we used the Deepsig 2018 Dataset which was generated in [1], which

comprises a variety of digital and analog modulation types, including

OOK, 4ask, 8ask, bpsk, qpsk, 8psk, 16psk, 32psk, 16apsk, 32apsk,

64apsk, 128apsk, 16QAM, 32QAM, 64QAM, 128QAM, 256QAM, am-

ssb-wc, am-ssb-sc, am-dsb-wc, am-dsb-sc, fm, gmsk, and oqpsk. This

dataset contains both synthetic simulated channel effects and over-the-

air recordings, providing a diverse range of signal characteristics.

Each of the 2,555,904 data inputs in this dataset comprises complex (I

Q) data that is 1024 samples long. The dataset provides 26 different

Signal-to-Noise Ratio (SNR) values for each signal type, ranging from

-20 dB to 18 dB. For each signal and SNR combination, there are 4096

instances, and each instance always has a length of 1024 samples.

Using this dataset allowed us to train and evaluate our ResNet-based

CNN model on a diverse range of modulation types and signal char-

acteristics. The inclusion of both simulated and real-world recordings

provides a more realistic representation of the challenges faced in wire-

less communication systems.

For the mixed signal AMCModel, A subset of the original Deepsig 2018

dataset was extracted to create a smaller dataset. The new dataset

was analyzed with respect to three fundamental signals, namely OOK,

Four-ASK, and QPSK. These signals were subsequently combined to
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generate a new dataset that consists of six signals: OOk, FOUR_ASK,

QPSK, OOK+FOUR_ASK, OOK+QPSK, FOUR_ASK+QPSK.

2. ResNet Model:In our research, we used a ResNet-based model that

drew inspiration from the work of [1]. Our model was trained on the

Deepsig RadioML 2018.01A dataset, a widely used benchmark dataset

for radio signal modulation classification. The architecture of our

model comprised of four ResNet stacks, each consisting of two ResNet

blocks followed by a max pooling layer.The ResNet model for single

signal modulation classification is shown in Table 4.1 .

The ResNet blocks in our model incorporate skip connections, which

allow for the efficient training of deep neural networks by mitigating

the vanishing gradient problem. The skip connections enable the gra-

dient to flow more easily during backpropagation, promoting better

convergence and enhancing the overall performance of the model.

Furthermore, the inclusion of max pooling layers after each ResNet

block helps in down-sampling the feature maps, allowing the model to

capture both local and global contextual information from the input

signals. This facilitates the extraction of relevant features for accurate

signal modulation classification.

By leveraging the strengths of the ResNet architecture, the Deepsig

RadioML 2018.01A dataset, and our specific model configuration with

multiple ResNet blocks and max pooling layers, we aimed to achieve

superior performance in radio signal modulation classification.

For our mixed-signal classification task, we employed the ResNet model

that was originally developed and used for single signal classification.

This choice was motivated by the success of the ResNet architecture in
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Table 4.1: ResNet Based Model -
Single signal AMC
Layer Output Shape Parameters
InputLayer 1024,1,2 0
Conv2D 1024,1,32 352
BatchNorm 1024,1,32 128
Activation 1024,1,32 0

4*ResNetBlocks
Conv2D 64,1,32 5152
BatchNorm 64,1,32 128
Activation 64,1,32 0
Reshape 8,8,32 0
GlobAvgPool 32 0
Dense 256 8448
Dropout 256 0
Dense 128 32896
Dropout 128 0
Dense 22 2838
SoftMax 22 0
Total Params 139158
Trainable Params 137750
Non Trainable 1408

various signal processing tasks and its proven effectiveness in capturing

deep feature representations. For mixed signal modulation classifica-

tion, Using the original Deepsig RadioML 2018.01A DATASET, we

created a dataset for Mixed-signal modulation classification. In this

case, we evaluated and mixed three signals: OOK, FOUR-ASK, and

QPSK.

mixed-signall automatic modulation classification technology is of great

significance as it enables us to efficiently detect and classify multiple
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signals on a single RF frame. The ResNet model for mixed-signal

modulation classification is shown in Table 4.2 .

Table 4.2: ResNet Based Model -
Mixed Signal AMC
Layer Output Shape Parameters
InputLayer 1024,1,2 0
Conv2D 1024,1,32 352
BatchNorm 1024,1,32 128
Activation 1024,1,32 0

4*ResNetBlocks
Conv2D 64,1,32 5152
BatchNorm 64,1,32 128
Activation 64,1,32 0
Reshape 8,8,32 0
GlobAvgPool 32 0
Dense 256 8448
Dropout 256 0
Dense 128 32896
Dropout 128 0
Dense 6 774
SoftMax 6 0
Total Params 137094
Trainable Params 135686
Non Trainable 1408

3. Train the Model:Firstly, The Keras model needs to be trained. Once

the training is completed, the next step is to import the model into

Viti’s AI tools.

4. Evaluate the model : When evaluating a floating point model, ac-

curacy is influenced by the Signal-to-Noise Ratio (SNR), where lower

SNR values tend to result in lower accuracy, while higher SNR values
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tend to yield higher accuracy. It’s important to consider the impact

of SNR on model performance, as it can affect the model’s ability to

accurately process and interpret data. Additionally, SNR is a criti-

cal factor in determining the quality of the input data, and a higher

SNR can lead to more reliable and accurate model predictions. Figure

4.1shows the SNR vs Accuracy plot for the floating point model.

Figure 4.1: SNR vs Accuracy plot for the floating point model

5. Quantize the model: Vitis AI quantizer quantizes the 32-bit floating

point model into INT8 model, After quantizing from a 32 bit model to

an 8 bit model, accuracy decreased by only 5 percentage. Figure 4.2

shows the SNR vs Accuracy plot for the INT8 model.

We are removing AM-SSB-WC and AM=SSB-Sc from our dataset to
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Figure 4.2: Accuracy vs SNR plot for INT8 Model

increase accuracy after quantizing; otherwise, more accuracy loss will

occur.

6. Finetune the Model : Fine-tuning is the process of retraining the

quantized model on the original dataset to restore some of the lost

accuracies.After the fine-tuning process, we achieved a significant im-

provement in accuracy, with an increase of 6% compared to the initial

performance.

7. Compile model for Deep Learning processing unit (DPU) :

Vitis-AI reads the quantized model and generates an instruction set

for the Xilinx DPU.
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8. Deploy the model on ZCU104 MPSOC : finally deploy the gen-

erated files on the ZCU104 MPSOC.

4.1 ResNet model Deployment on ZCU104 -

Results :

Single signal Modulation Classification results: Latency and through-

put are critical parameters that can significantly impact the overall perfor-

mance of a network or system. In simple terms, latency represents the time

taken for a data packet to travel from the source to the destination, whereas

throughput indicates the amount of data that can be transmitted over the

network during a specific period.

After training the model, we used the Vitis AI quantizer to convert it from

floating-point to fixed-point representation. Subsequently, we compiled the

model using the Vitis AI compiler, which optimized it for FPGA deployment.

This process transforms the quantized model into instructions suitable for the

Deep Learning Processing Unit (DPU), resulting in a compiled .xmodel file

ready for deployment on the DPU

For deployment on the FPGA, we first loaded the DPU bitstream onto the

FPGA. Next, we loaded the model onto the DPU using the Vitis AI runtime,

which provides runtime library APIs to execute the compiled model on Xilinx

devices. We then ran the model on the MPSoC, which sends data to the DPU

for inference and handles the results.

We utilized a Python script to perform classification and assess its per-

formance. To test the model, we tested with 4000 RF frames and ran these
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frames on 4 threads, parallelizing the computation to enhance processing

speed. classification of all 4000RF frames was completed in approximately

2.537 seconds. This test resulted in a frame rate of 1576.54 frames per sec-

ond, which demonstrates the ability of the ZCU104 board to process a high

volume of data efficiently.

We utilized a Python script to perform Accuracy, we fed 998 RF frames

to test the accuracy, with the accuracy test it is clear that the accuracy is

increasing with the SNR, at lower SNR accuracy is very low and at higher

SNR, accuracy is high, below 0db SNR, accuracy is very low, after 0 dB

SNR, Accuracy increased, and at +10db accuracy reached to its maximum

value. Figure 4.2 shows the accuracy vs SNR plot for the 8-bit model after

quantization in the Vitis Ai quantizer.

To improve the accuracies lost while quantizing, we finetuned the model

and we were able to recover the accuracy by 6%, we implemented the fine-

tuned model on ZCU104, We tested with 4000 RF frames, and ran these

frames on 4 threads, parallelizing the computation to enhance processing

speed.4000 Rf frames that included various modulation schemes and different

Signal-to-Noise Ratio (SNR) values. the classification of all 4000RF frames

was completed in approximately 2.468 seconds. This test resulted in a frame

rate of 1620.68 frames per second.

Mixed-signal modulation classification results : A subset of the

original Deepsig 2018 dataset was extracted to create a smaller dataset. The

new dataset was analyzed with respect to three fundamental signals, namely

OOK, Four-ASK, and QPSK. These signals were subsequently combined to

generate a new dataset that consists of six signals: OOK, FOUR_ASK,

QPSK, OOK+FOUR_ASK, OOK+QPSK,FOUR_ASK+QPSK.
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In order to evaluate the performance of the mixed-signal modulation clas-

sification model on ZCU104, we tested with 4000 RF frames from the gen-

erated mixed signal dataset that included six different signals with mixed

signal modulation types with different Signal-to-Noise Ratio (SNR) values.

We ran these frames on 4 threads, parallelizing the computation to enhance

processing speed. the classification of all 4000RF frames was completed in

approximately 2.535 seconds. This test resulted in a frame rate of 1577.55

frames per second, which demonstrates the ability of the ZCU104 board to

process a high volume of data efficiently.

Additionally, the Accuracy for the mixed-signal AMC model was also

tested on the ZCU104 FPGA board by feeding the 998 RF frames, with

that it is clear that the accuracy is increasing with the SNR, at lower SNR

accuracy is very low and at higher SNR, accuracy is high. Figure 4.3 shows

the Accuracy Vs SNR plot for the 8-bit mixed signal AMC Model.

4.1.1 Benchmarking Results :

Benchmarking is a process of comparing the performance of a system or de-

vice against standard reference points or other similar systems. It involves

measuring the speed, accuracy, and efficiency of a system when performing a

particular task or executing a specific workload. The objective of benchmark-

ing is to identify the strengths and weaknesses of a system and to evaluate

how it compares to other systems in terms of performance. This type of

analysis can be used to optimize system performance, identify areas for im-

provement, and make informed decisions when selecting hardware or software

solutions for a particular application. Here we are performing benchmarking
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Figure 4.3: Accuracy vs SNR Plot for Mixed-signal AMC

tests on central processing unit (CPU), graphics processing unit (GPU), and

field-programmable gate array (FPGA).

To compare the performance of the ResNet model on different processing

systems, we employed the following hardware configurations as shown in

Table 4.3.

Benchmarking Results of single signal AMC : We executed the

predictions for the single signal AMC model with 1000 Rf frames on various

processing systems, We evaluated and compared the execution time of pre-

dictions on different processing systems, including CPU, GPU, and FPGA

as shown in Table 4.4.
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Table 4.3: List of devices used
Device Configuration
Intel i7 12800H 14 core, 2.40 GHz
NVIDIA RTX A2000 GPU 8GB
ZCU104 4-core ARM A-53, 33.33 MHz
AMD 7401P 48 core, 1.2 GHz
Quadro P2200 5GB

Table 4.4: Benchmarking Results
of single signal AMC
Device Time
Intel i7 14 Core 2.38s
NVIDIA A2000 8GB GPU 3.34s
AMD 48 Core 1.06s
Quadro P2200 GPU 1.31s
ZCU104 0.617s

After testing on 1000 RF frames, it is evident from Table 4.4 that the

performance of FPGA exceeds that of CPU and GPU. Figure 4.4 shows the

benchmarking results for single signal AMC.

Benchmarking Results of Mixed-signal AMC: We executed the

predictions for the mixed-signal AMC model with 1000 Rf frames on various

processing systems, We evaluated and compared the execution time of pre-

dictions on different processing systems, including CPU, GPU, and FPGA

as shown in Table 4.5.

After testing on 1000 RF frames, it is evident from Table 4.5 that the

performance of FPGA exceeds that of CPU and GPU. Figure 4.5 shows the

benchmarking results for mixed-signal AMC.
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Figure 4.4: Benchmarking results for single signal AMC

Table 4.5: Benchmarking Results
of Mixed-signal AMC
Device Time
Intel i7 14 Core 2.32s
NVIDIA A2000 8GB GPU 3.08s
ZCU104 0.634s

Figure 4.5: Benchmarking results for mixed signal AMC
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Chapter 5

Conclusion for Thesis Stage 1

Automatic Modulation Classification (AMC) is the process of identifying the

modulation type of a received signal.AMC is a crucial task in many com-

munication systems, including military and civilian applications, where it

is necessary to identify the signal modulation type for monitoring, manage-

ment, and control.As the demand for wireless communication continues to

increase, the available spectrum resources are becoming more limited. This

has led to the need for more efficient use of the spectrum through the use

of mixed-signal modulation. Mixed signal modulation involves the transmis-

sion of multiple signals on a single RF frame, which makes the automatic

modulation classification of these signals a crucial task.

machine learning (ML) and deep learning (DL) techniques have become

increasingly popular and useful in a wide range of fields, including computer

vision, healthcare, robotics, and communication systems.Unlike traditional

ML algorithms, DL networks can learn from unstructured data without any

guidance from expert engineers. This is because DL networks operate like
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the human brain, processing data and creating patterns that can be used for

decision-making without any human supervision. Dl gives the advantage of

automatic feature extraction over ML .As a result, DL networks have become

an indispensable tool for solving complex problems in various fields.So here

we are using Dl model for AMC.

In this context, we are utilizing Convolutional Neural Networks (CNNs)

for modulation classification. CNNs have been found to be a popular choice

for this task, likely due to their ability to learn and extract features from

complex input data, such as radio frequency signals. Additionally, CNNs

may be easier to train than other types of neural networks, as they can be

trained in a highly parallelizable manner and can learn from small amounts

of labeled data. CNNs have shown promising results in modulation classi-

fication, achieving high accuracy rates in various scenarios, including noisy

and fading channels. Here we are using ResNet for AMC, Residual Network

(ResNet) is a popular deep learning model widely used for computer vision

tasks. It is a type of Convolutional Neural Network (CNN) architecture

designed to accommodate a large number of convolutional layers.

Deep learning models often require CPU or GPU platforms, which are

not ideal for digital signal processing due to their sequential nature and

high power consumption. By integrating deep learning models onto FPGA

platforms, we can enhance their operability in the signal processing chain of

software-defined radios (SDRs) and improve their speed. FPGAs are flexible,

powerful, and easily adaptable to new applications, making them an excellent

choice for AI. Though they used to be difficult to program, modern tools have

made it easier to use FPGAs in AI.

Here we are utilizing VITIS AI tool to implement the ResNet model on
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ZCU104. The Vitis AI platform is a complete solution for developing AI

models on AMD devices, boards, and Alveo data center acceleration cards.

It includes optimized DPU cores, AI models, libraries, tools, and examples

for edge and data center AI.

In this study, for the single signal AMC Model, we used the Deepsig 2018

Dataset , which comprises a variety of digital and analog modulation types

.Each of the 2,555,904 data inputs in this dataset comprises complex (I Q)

data that is 1024 samples long. The dataset provides 26 different Signal-to-

Noise Ratio (SNR) values for each signal type, ranging from -20 dB to 18

dB.

In order to evaluate the performance of single-signal AMC, we feed 4000

RF samples that included various modulation schemes and different Signal-

to-Noise Ratio (SNR) values. the classification of all 4000RF frames was

completed in approximately 2.537 seconds. This test resulted in a frame rate

of 1576.54 frames per second, which demonstrates the ability of the ZCU104

board to process a high volume of data efficiently.

For the mixed signal AMC Model, A subset of the original Deepsig 2018

dataset was extracted to create a smaller dataset. The new dataset was

analyzed with respect to three fundamental signals, namely OOK, Four-

ASK, and QPSK. These signals were subsequently combined to generate

a new dataset that consists of six signals: OOK, FOUR_ASK, QPSK,

OOK+FOUR_ASK, OOK+QPSK, FOUR_ASK+QPSK.

In order to evaluate the performance of the mixed-signal modulation clas-

sification model on ZCU104, we feed 4000 RF frames that included six differ-

ent signals with mixed signal modulation types with different Signal-to-Noise
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Ratio (SNR) values. the classification of all 4000RF samples was completed

in approximately 2.535 seconds. This test resulted in a frame rate of 1577.55

frames per second, which demonstrates the ability of the ZCU104 board to

process a high volume of data efficiently.

To improve the accuracies lost while quantizing, we finetuned the model

and we were able to recover the accuracy by 6%, we implemented the fine-

tuned model on ZCU104,we feed 4000 RF frames that included various mod-

ulation schemes and different Signal-to-Noise Ratio (SNR) values. the classi-

fication of all 4000RF frames was completed in approximately 2.468 seconds.

This test resulted in a frame rate of 1620.68 frames per second.

Additionally, the Accuracy for both single-signal and mixed-signal AMC

models was also tested on the ZCU104 FPGA board by feeding the 1000RF

frames, with that it is clear that the accuracy is increasing with the SNR, at

lower SNR accuracy is very low and at higher SNR, accuracy is high.

Finally, we benchmarked both the single-signal and mixed-signal models

on CPU,GPU, and FPGA to test the time taken to generate predictions.

From the benchmarking results, It has been demonstrated that the perfor-

mance of FPGA surpasses that of CPU and GPU.
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Chapter 6

Thesis stage 2

Hardware acceleration for Online 3D Bin
Packing
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Chapter 7

Abstract

The task of packing incoming parcels, usually in the form of rigid cuboids,

onto a conveyor and fitting them into a larger container for transportation is

known as online 3D bin packing, and it is a complex real-time combinatorial

optimization problem.

Bin packing problems have been widely studied in computer science, as

they have practical applications in the logistics, shipping, and storage indus-

tries. The aim is to optimize the use of space and reduce shipping costs by

efficiently packing items into containers.

Online 3D bin packing is particularly challenging because it involves mak-

ing decisions in real-time, as new parcels are continuously arriving on the

conveyor. Reinforcement learning algorithms can be employed to optimize

the packing process and improve the efficiency of packing. However, these

algorithms require significant computational power and can be slow in real-

time settings.
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FPGA technology has been proposed as a potential solution to improve

the performance of reinforcement learning algorithms for online 3D bin pack-

ing. By utilizing FPGA hardware, the algorithms can be accelerated, re-

sulting in faster decision-making and better optimization of the packing

process[19].

I aim to carry out distributive training for the bin packing problem on

the CPU and then evaluate the performance by comparing its execution

time with that of the FPGA, as presented in [19]. This comparative analysis

would help in identifying the potential benefits of using FPGA technology as

a hardware accelerator for the given problem. Additionally, it would enable

us to explore the differences in the efficiency and speed of the algorithm

between the two platforms, thereby providing insights into their comparative

performance.
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Chapter 8

Introduction

The concept of 3D bin packing revolves around optimizing the arrangement of

boxes or parcels within larger containers, known as Long Distance Containers

(LDCs), in order to make the most efficient use of available space. This

involves carefully considering the size and shape of both the items being

packed and the LDCs themselves, as well as any constraints or requirements

related to the packing process. The ultimate goal is to minimize wasted space

and maximize the number of items that can be packed within each LDC, thus

reducing shipping costs and improving overall efficiency.

Online automated 3D bin packing refers to a dynamic scenario where a

robot must assess and place each box in real time. This differs from offline bin

packing, where the properties of the entire set of boxes are predetermined.

The online nature of this scenario presents several challenges such as the need

for fast and accurate decision-making, real-time tracking, and the ability to

adapt to unforeseen obstacles.

One of the main advantages of online automated 3D bin packing is its
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flexibility. The robot can adjust the packing strategy based on the properties

of each box as it is presented, optimizing the use of available space and

minimizing waste. This dynamic approach can result in more efficient use of

resources and higher productivity.

However, the real-time nature of online automated 3D bin packing also

poses several technical challenges. The robot must be able to accurately

perceive the dimensions and orientation of each box, as well as the available

space in the bin. It must also be able to quickly generate and evaluate

possible packing configurations in order to make optimal decisions.

Traditionally, the 3D bin packing problem has been tackled using cus-

tomized heuristics[16][17]. These techniques involve assessing the suitability

of various packing locations for individual boxes by employing a predeter-

mined combination of features and selecting the highest-scoring location for

loading. In some cases, the proposed positions are refined by applying ad-

ditional rules such as extreme-point or interior-point characteristics. Since

positions are evaluated one box at a time, these heuristics can be utilized for

both offline (all boxes available in advance) and online (boxes arriving in a

stream) problems.

However, the main issue with heuristic approaches is the significant amount

of design effort required to achieve high-quality solutions, as well as the need

for manual tuning of parameters for different size distributions. Moreover,

these methods may not always guarantee optimal solutions, and they do not

take advantage of the latest advancements in machine learning and optimiza-

tion techniques.

To overcome these limitations, alternative methods such as meta-heuristics

and formal optimization have been explored. Meta-heuristics are general-
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purpose algorithms that can be applied to a wide range of optimization

problems, including bin packing. These techniques are based on the iter-

ative refinement of candidate solutions and can provide high-quality results,

but they may struggle with scalability in large-scale problems, especially in

online settings.

Formal optimization, on the other hand, involves mathematically mod-

eling the problem and using advanced optimization techniques to find the

optimal solution. These methods can be computationally intensive but can

provide optimal solutions for large and complex problems. However, they

may require significant domain expertise and computational resources, mak-

ing them challenging to implement in real-world applications.

Overall, the selection of the appropriate method for solving the 3D bin

packing problem depends on the specific requirements of the application,

including the size of the problem, the available computational resources, and

the desired level of solution optimality. As the field of optimization continues

to evolve, it is likely that more advanced and efficient methods will emerge

for addressing this challenging problem.

Recently, several studies have investigated the potential of using deep re-

inforcement learning (Deep RL) to address the Online 3D Bin Packing prob-

lem. The general approach of these algorithms involves iteratively training

a neural network using a combination of reinforcement learning and deep

learning techniques.

The basic workflow of these algorithms is as follows: first, the neural

network is initialized with random parameters and then interacts with the

environment by selecting actions and receiving rewards. The actions corre-

spond to selecting a box to place and the location to place it in the bin. The
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rewards are based on a score that reflects the quality of the current packing

configuration. The network uses this feedback to update its parameters, with

the goal of maximizing the cumulative reward over the course of the packing

process.

One advantage of Deep RL methods is that they can learn to make deci-

sions based on complex and high-dimensional input data, such as the shape

and size of each box and the current state of the bin. Additionally, they can

adapt their strategies based on the properties of the boxes that are encoun-

tered during the packing process.

However, one potential limitation of these methods is the amount of train-

ing data required to obtain accurate and effective packing policies. Collecting

this data can be challenging in real-world scenarios, and it may not always

be possible to simulate all possible combinations of box shapes and sizes.

Despite these challenges, Deep RL approaches hold promise for improv-

ing the efficiency and effectiveness of online 3D bin packing in a range of

practical applications. Ongoing research in this area is likely to yield even

more sophisticated and efficient algorithms in the future.

The bin packing problem can be solved using value-based reinforcement

learning algorithms, such as DQN, which can generate satisfactory results

within reasonable computation times.In[18] a generalized reinforcement learn-

ing algorithm for online 3D bin-packing is implemented.

The utilization of FPGA technology as a hardware accelerator to re-

duce the inference time of the DQN algorithm, along with its pre and post-

processing steps, was suggested in reference [19]. The implementation of

this approach resulted in improved efficiency of the algorithm and enabled
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it to explore the complete search space within the given time constraints, as

discussed in reference [19].
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Chapter 9

RL based Online 3D bin

packing:

Several recent research studies have suggested employing deep reinforcement

learning (Deep RL) to tackle the problem of Online 3D Bin Packing [18].

The general process of these algorithms involves the following steps:

1. identifying suitable positions based on specific criteria

2. creating bin states for the selected positions, either as images or pro-

cessed features

3. assessing the shortlisted inputs in a batch using a Deep RL approach

such as DQN

4. selecting the option with the highest anticipated reward and repeating

the process.
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To reduce the overall training time and reduce computation time during

inference, the initial stage of the algorithm utilizes heuristics similar to those

mentioned previously to narrow down the search space. However, this can

result in suboptimal solutions. The first two steps in the process involve a

significant amount of iterative computation for the search and pre-processing

functions. In the third step, a deep learning model is employed to perform

inference on a large batch of inputs.

9.1 Algorithm :

The algorithm comprises of five distinct steps: State and Environment, Feasi-

bility Mask, Feature Generation, DQN Batch Inference, and Box Placement.

state and Environment: In the context of bin packing, the objects

that need to be packed are referred to as Long Distance Containers (LDCs),

and the environment in which they are packed is an LDC with dimensions

of Length (L) = 80cm, Breadth (B) = 45cm, and Height (H) = 45cm. To

represent the state of bin packing, a top-down view of the LDC is taken, which

is represented by a rectangular grid or a 2D array of dimensions (80x45).

Each cell in the grid represents a unit area and the value of the cell increases

by the height of each box placed on it. When a box is placed on the grid, its

top-left corner is placed at a specific coordinate on the grid.

Feasibility Mask :To create a feasibility mask, the process involves

examining every coordinate within the LDC (45 x 80 = 3600), and selecting

only those that are feasible. Since the purpose of this acceleration technique

is to examine as many positions as possible, this stage performs the essential
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checks to ensure that a box can be placed physically at a given coordinate.

To qualify for the next step, coordinate must pass two tests, and only those

that meet these criteria will be included in the shortlist.

The first test is a Dimension Eligibility Check, which involves comparing

the size of the box to the LDC boundaries to ensure it fits within them when

placed at the specific coordinate. The second test is a Surface Eligibility

Check, which evaluates the stability of the surface where the box might be

placed if the particular coordinate is chosen. This test involves multiple

conditional checks to verify that the surface is smooth or has an acceptable

level of unevenness. Feature Generation stage: a set of three features is

created for a specific potential coordinate (i,j) and a given box (l,b,h). Each

feature represents a different aspect of the state of the LDC if the particular

coordinate is chosen.

One of the three features generated in the Feature Generation stage is

the LDC State (I1(i,j)), which is a flattened and normalized version of the

LDC array projection when the box is placed at the (i,j) coordinate. The

length of this feature is 3600, corresponding to the 45x80 dimensions of the

LDC array.

Another feature generated in the Feature Generation stage is the Border

State (I2(i,j)), which is an array containing all the LDC cell values (heights)

along the perimeter of the box if it is placed at the (i,j) coordinate. The

maximum length of this feature is 254, corresponding to the perimeter of the

largest possible box (80 + 80 + 45 + 45 + 4).

The third feature generated in the Feature Generation stage is the Ag-

gregate State (I3(i,j)), which is an array of length 9. It comprises of several
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parameters that are crucial for efficient packing, such as the flatness of the

surface, the proximity of the box with adjacent boxes on all sides, and other

similar factors.

DQN Batch inference :

In the DQN Batch Inference step, the three input vectors generated in

the previous Feature Generation step are fed into a feed-forward network.

This network comprises of 7 dense layers, as illustrated in Figure 9.1[19], and

is used to compute a Q-value for each of the potential coordinates.

Figure 9.1: DQN architecture [19]

In each of the 7 dense layers in the feed-forward network, an input vector

(Input) is multiplied with a weight matrix (Weight). The resulting product

is added to a bias vector (Bias), and the resulting sum is then passed through

the Tanh activation function (Eqn 1). The weight and bias values used in

the layers are 32-bit floating point numbers.

In the Python implementation of the Bin-Packing algorithm, instead of

performing a single inference at a time, this step is carried out in batches.

This means that the input features for all feasible coordinates are combined

and sent as a batch through the DQN to generate the corresponding Q-values.
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Once all the feasible coordinates have been evaluated and their respective

Q-values generated, the coordinate with the highest Q-value is selected as the

optimal location for placing the box. The heights of the corresponding cells

in the LDC grid are then upgraded accordingly. Moreover, a list containing

the coordinates of corners (as indicated by Feature 3) is updated each time

a new box is placed.

9.2 FPGA acceleration for Bin Packing Prob-

lem

Von Neumann architecture, which is used in CPU implementations, has limi-

tations in optimizing the operations involved in bin packing because it cannot

fully leverage parallel processing. In contrast, spatial architectures such as

FPGA are more effective in utilizing pipelining and parallelism to speed up

these operations.

The goal of [19] is to enhance the efficiency of an online 3D bin packing

algorithm proposed in [18], using RL, while minimizing the impact on latency.

This is achieved by attempting to accelerate the algorithm.

The bpp algorithm involves operations that require processing multiple

elements of the LDC, which is a data structure resembling a matrix. On a

CPU, these operations (performed to place a single box) can create a bot-

tleneck in bin packing since they take longer than the DQN itself. Each

dense layer of the DQN involves a vector matrix multiplication, which is an

operation that can be optimized by an FPGA. The conditional complexity

of the LDC operations may lead to divergent thread execution on a GPU,
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resulting in low efficiency. Therefore, FPGA was considered to be a more

suitable option for attempting to accelerate the algorithm.to accelerate the

RL algorithm on FPGA we are using a tool called VITIS HLS.

9.3 VITIS HLS Tool :

Vitis HLS (High-Level Synthesis) is a tool developed by Xilinx that allows

designers to use high-level languages such as C, C++, and SystemC to de-

scribe hardware functionality. The tool automatically generates RTL (Reg-

ister Transfer Language) code from the high-level description, which can be

synthesized into FPGA or ASIC hardware.

Vitis HLS provides designers with a way to efficiently implement complex

algorithms and functions in hardware without having to manually write RTL

code. This significantly reduces the development time for hardware and

allows for faster iteration and design exploration. Moreover, it enables the

designer to optimize the design for specific hardware platforms, resulting in

more efficient and better-performing hardware designs.

Overall, Vitis HLS provides an efficient way to design and implement

custom hardware solutions using high-level languages and is widely used in

the FPGA and ASIC design industry.

To accelerate the bpp algorithm using an FPGA, Here we are using a

High-Level Synthesis tool[19]. This tool utilizes functions written in high-

level languages like C and C++ to generate synthesizable RTL (Register

Transfer Language) code, which can then be implemented onto the FPGA.

By doing so, it provides the designer with control over the resources and
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implementation methods employed. This level of control allows for the im-

plementation of the entire bin-packing algorithm as a continuous process,

rather than just accelerating the DQN. This approach can result in a sig-

nificant reduction in the time it takes to complete the bin packing process,

leading to a more efficient implementation.

9.4 Alveo U280 Data Center Accelerator Card

Our future plan is to deploy the model on the Alveo U280 Data Center

Accelerator Card[19].

The AMD Alveo U280 Data Center accelerator card is a cutting-edge so-

lution designed to meet the ever-evolving needs of modern data centers. It is

built on the advanced AMD 16nm UltraScale+ architecture and boasts 8GB

of HBM2 memory with a bandwidth of 460 GB/s. This configuration enables

the Alveo U280 to deliver exceptional performance and adaptable accelera-

tion for compute-intensive, memory-bound applications such as analytics,

machine learning inference, and database operations.

Moreover, the Alveo U280 accelerator card is equipped with PCI Express

4.0 support, which leverages the latest server interconnect infrastructure to

deliver high-bandwidth connectivity with host processors.

One of the most significant advantages of the Alveo accelerator cards

is their adaptability to changing acceleration requirements and algorithm

standards. They can accelerate any workload without requiring hardware

changes, thus reducing the overall cost of ownership for data center operators.
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These production Alveo U280 Data Center Accelerator cards are readily

available for volume deployment in data centers or for application develop-

ment and prototyping. The U280 active cards come with a USB connector

that facilitates development tasks for engineers and software developers.

Overall, the Alveo U280 Data Center Accelerator card is an excellent

choice for businesses looking to improve their data center performance, reduce

costs, and stay ahead of the rapidly changing technological landscape.

9.5 Acceleration of Bin packing on FPGA

Due to the lack of Python support in Vitis HLS, it was necessary to reprogram

the original algorithm using C programming language and basic libraries.

In a research paper[19], the bin packing algorithm is implemented on an

alveo U280 Data center accelerator card mounted on a 56-core CPU with

hyperthreading, and 256 GB memory was used to deploy the Bin packing

problem. Upon evaluating all 256 boxes from the dataset, the maximum

and average values indicate the maximum and average duration required to

evaluate a single box. The average duration required to evaluate a single

box is 0.014sec. The maximum duration required to evaluate a single box is

0.145 sec.
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9.6 Distributive Training of RL-Based Bin Pack-

ing Algorithm on CPU

The complete dataset was partitioned into 1 bin data files, and the primary

objective is to parallelize the episodes across different CPUs to optimize

performance. The main goal is to compare the results of the distributed

training on CPU with the FPGA implementation results. The focus is on

evaluating the effectiveness of the distributed training approach in improving

performance compared to the FPGA implementation.

To achieve this, the episodes are being executed in parallel across multiple

CPUs, leveraging their collective computational power. This parallelization

strategy aims to expedite the learning process, enhance exploration capa-

bilities, and potentially yield improved policy convergence for the RL-based

bin-packing algorithm.

The intention behind comparing the distributed training results on the

CPU with the FPGA implementation is to assess the relative performance

and efficiency of these two approaches. By conducting this comparison, it

becomes possible to analyze the trade-offs, advantages, and limitations of

each implementation method in the context of the bin-packing problem.

Overall, the research aims to provide insights into the efficacy and poten-

tial benefits of distributed training on CPUs compared to FPGA implemen-

tations, contributing to the advancement of efficient and scalable solutions

for solving the bin packing problem.
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Chapter 10

Conclusion for Stage 2 :

Online 3D bin packing is a complex combinatorial optimization problem that

involves packing incoming parcels in real time onto a conveyor and fitting

them into a larger container for transportation. It requires constant decision-

making as new parcels continuously arrive on the conveyor. Reinforcement

learning algorithms such as DQN can be used to optimize the packing process.

paper [19] proposed FPGA technology as a hardware accelerator to reduce the

inference time of the DQN algorithm and its pre- and post-processing steps.

My main goal is distributive training of this bin-packing problem on the CPU,

To achieve this, the episodes are being executed in parallel across multiple

CPUs.The intention behind comparing the distributed training results on the

CPU with the FPGA implementation is to assess the relative performance

and efficiency of these two approaches. By conducting this comparison, it

becomes possible to analyze the trade-offs, advantages, and limitations of

each implementation method in the context of the bin-packing problem.
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