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Abstract

Human action recognition is the process of automatically identifying and classifying

human actions in a video sequence. It involves analyzing the motion and appearance

of humans in the video and recognizing the action they are performing. Human actions

can be represented using various data modalities, such as RGB videos, skeleton graphs,

depth sequences and heat maps. In recent years, skeleton-based action recognition

has drawn a lot of attention in the area of computer vision. To extract skeletal

data, pose estimation algorithms are used on action videos to track the key joints

involved in the action. These joints are connected with edges representing the bones

involved in the action, thus forming a graph structure of the human action. Skeleton

data is lightweight as compared to video data, and is more robust against changes in

appearance, lighting conditions, background clutter and camera viewpoints. Among

existing methods, Graph Convolutional Networks (GCNs) have achieved exceptional

results as they are highly efficient in feature extraction from non-euclidean or irregular

data. However, most existing GCN-based methods are computationally expensive

and have inflexible receptive fields, due to which their expressiveness is limited. As a

result, focus has shifted towards building lightweight architectures which require fewer

parameters. One such method is Shift-GCN [1], which uses shift graph operations that

are both lightweight and increase the flexibility of receptive fields in both spatial and

temporal dimensions. However, although this method captures non-local and distant

spatial relationships in a lightweight and more efficient manner, it does not perform

well on fine-grained actions that have subtle differences and require capturing graph

connection information.

In this thesis, we propose a Feature-enhanced shift graph convolutional network

(FES-GCN) which utilizes graph connectivity knowledge and combines it with the

input feature, thus generating a richer and more abundant feature map before per-

forming shift operation. The shift module is lightweight as compared to a regular con-

volution operation and provides more flexible spatial-temporal receptive fields. We

meticulously analyze our proposed method, perform exhaustive ablation studies on
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each module and also compare its performance with various state-of-the-art action

recognition models. Our proposed model has shown the ability to improve the accu-

racy of human action recognition task on three benchmark skeleton datasets, while

requiring a computational cost less than most state-of-the-art approaches.

Keywords: Skeleton-based Action Recognition, Graph Convolutional Network

(GCN), Shift-GCN, FES-GCN, Enhanced Feature Representation.
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Chapter 1

Introduction

Human action recognition is a time-series classification task, which aims to un-

derstand human behaviour and assign a label to each action. Action recognition has

been extensively researched in recent years, as it finds application in many tasks, such

as intelligent security, healthcare, video surveillance, virtual reality, self-driving cars,

etc. Human actions can be represented using various data modalities, such as RGB

videos, skeleton graphs, depth sequences, heat maps, and so on. Among them, video-

based and skeleton-based action recognition are the most common methods. However,

action recognition using videos [5], [6] is a challenging task, usually due to the high

dimension and complexity of the RGB video data, presence of cluttered backgrounds,

variations in illumination and so on. In recent years, Skeleton-based action recogni-

tion [1],[7],[8],[9],[2],[10],[11],[12] has become one of the mainstream methods due to

its adaptability to dynamic circumstances and robustness against complicated back-

grounds. Skeleton data is lightweight and contains only the 2D or 3D coordinates of

the key joints involved in the action, thus providing highly abstract and compact infor-

mation that is free from environmental noises (lighting, background clutter, clothing),

allowing the model to focus on the robust features of the action.
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1.1 Background

Early deep learning-based models [13],[14],[15],[16],[17],[18],[19] treated human

joints as a set of independent features and organized them manually into feature vec-

tor representations, or pseudo-images, which were then trained using RNNs or CNNs

to predict action recognition scores. However, restructuring the skeleton graph into

a grid results in loss of inherent structural features and correlations between human

joints which reveal information about the human body topology. The skeleton is natu-

rally structured as a non-Euclidean graph, with the joints as vertices, and the natural

connections between them (bones) as edges. Recently, Graph Convolutional Networks

(GCN) which generalize convolution from images to graphs, have achieved remarkable

results by exploring the graph nature of the skeleton data for both spatial and tempo-

ral domains. For skeleton-based action recognition tasks, Yan et al. [4] first proposed

Spatial Temporal Graph Convolutional Network (ST-GCN) to model skeleton data by

building a spatial-temporal graph based on the natural connectivity of joints in the

human body, and adding temporal edge between the same joints in consecutive action

frames. However, they only take into account the neighboring nodes’ information dur-

ing feature aggregation and ignore the distant relationships between non-neighboring

nodes. For various actions, distant joints are often related and they might contain

useful information for predicting the action. For example, while clapping, the rela-

tionship between the joints of the two hands is important, although they are distant.

Li et al. [20] addressed this problem by proposing a Spatio-Temporal Graph Rout-

ing (STGR) model, which learns relationships between distant joints in an adaptive

manner. STGR learns the connectivity relationship among distant joints by using

subgroup clusters. Peng et al. [21] proposed a GCN model based on Neural Architec-

ture Search (GCN-NAS), which replaces the fixed graph with a dynamic graph and

increases the receptive field size for every node, using higher order approximation of

Chebyshev polynomials. GCN-NAS uses automatic neural searching to reduce manual

efforts in designing the optimal network structure. Shi et al. [22] replaced the fixed

graph with an adaptive graph and proposed a two-stream adaptive GCN (2s-AGCN),
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which uses two different types of graph to learn the correlations between the different

keypoints in the human body. One is a global graph, which is an adjacency matrix

representing the graph structure of the human body, and another is individual graph,

which is specific to each convolutional layer and is learnt from the supplied data. The

authors also introduced a two-stream strategy in which they exploit the bone informa-

tion along with the joint information. The same authors improved the model in [7] by

introducing spatial, temporal and channel attention modules and using a multi-stream

architecture which exploits the joint, bone and their motion information as well. Di-

rected Graph Neural Network (DGNN) [23] uses a Directed Acyclic Graph (DAG) as

input instead of an undirected one, which is better at modeling dependencies between

joints and bones.

1.2 Motivation

ST-GCN [4] is one of the earliest works on modeling skeleton data using GCN.

Several works [7], [8], [9], [10], [12], [20], [22], [23], [24] have followed the design and

backbone of ST-GCN, which have developed better modules, increasing recognition

accuracy. However, these models have very high computational complexities, which

increase further on adding incremental modules and multi-stream fusion strategy. An-

other drawback is the limited receptive field of convolution operation in most of these

architectures. As discussed in Section 1.1, state-of-the-art GCN models either use

adaptive modules or dynamic graph structures to enhance the receptive field of each

node. However, this further adds to the training time and the computational com-

plexity of the model. For example, DGNN [23] costs more than 100 GFLOPs (Giga

Floating Point Operations) for one action sample. Hence, current focus has shifted

towards building more lightweight architectures which require fewer parameters. One

such architecture is Shift-GCN [1], which replaces the regular 2D convolution operator

with a shift convolution operator [3]. This operation has two advantages: firstly, shift

convolution is lightweight, and has much less computational complexity as compared

to a regular 2D convolution. Secondly, shift convolution makes the receptive field

3



of each node cover the entire skeleton graph, instead of just the neighboring nodes.

Hence, the receptive field of Shift-GCN is more flexible than other state-of-the-art

GCN models. However, Shift-GCN does not take into consideration the connection

information of the input skeleton due to which it is less effective in distinguishing

structurally similar actions having subtle differences. The adjacency matrix captures

the structural information of the human body and the connection information of the

joints, which allows us to model the spatial and temporal relations between the joints.

This information is important for recognizing actions based on how the joints move and

interact with each other. Shift-GCN does not utilize the graph connectivity knowledge

due to which it does not give optimal performance.

In this thesis, we propose a feature-enhanced shift graph convolutional network

which uses both graph connection information and shift modules for an Enhanced

Feature Representation and lightweight feature extraction (FES-GCN). We follow the

work in the baseline Shift-GCN [1] to increase the flexibility of both spatial and tem-

poral receptive fields. However, we utilize the connection information between skeletal

joints and perform shift convolution on a more abundant and enhanced feature map

having a larger number of channels. Following ST-GCN [4], we employ a spatial

configuration partitioning of the input graph into three subsets. For each subset, we

construct its respective adjacency matrix and combine it with the input feature vector.

We perform a pointwise convolution on all three subsets and concatenate them into

a single intermediate feature vector with more information, which is then passed into

the shift modules. The enhanced expressiveness of the input graph, followed by the

lightweightedness and flexibility of the shift module result in an architecture which

shows a competitive performance on being compared with state-of-the-art methods,

while having a lower computational complexity than most existing approaches.

1.3 Objectives

In this thesis, we aim to achieve the following objectives:

(i) To develop a Shift-based GCN with an Enhanced Feature Representation for
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skeleton-based human action recognition, that combines the skeletal connectivity

information along with the input feature vector to generate a more detailed and

enhanced feature map.

(ii) To perform spatial and temporal shift-based convolutions on the enhanced fea-

ture map to ensure a lightweight feature extraction and a more flexible spatial-

temporal receptive field.

(iii) To explore the effectiveness of the proposed model by performing exhaustive

ablation studies on each module and comparing its performance with existing

state-of-the-art methods.

1.4 Thesis Contributions

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

Contribution I:

We propose a Feature-enhanced shift graph convolutional network (FES-GCN)

and apply it on classifying various skeleton-based human actions. Our model cap-

tures fine-grained graph connection information of the skeleton feature, yielding better

recognition accuracy, while being computationally cheaper than most state-of-the-art

models. Our model is based on the work in Shift-GCN [1]. However, unlike Shift-

GCN, we combine the graph structure with the coordinate information to build a

more abundant and enhanced feature map, before performing shift operation.

Contribution II: Although Shift-GCN provides a more flexible receptive field, it

discards the graph knowledge and only takes into account the coordinate information

of the skeleton. Hence we combine both coordinate information and connectivity

information of the joints for an enhanced feature representation. The adjacency matrix

of the skeletal graph provides information on how the graph vertices are connected

with each other. To construct the skeletal graph, we follow ST-GCN [4] and perform

a spatial configuration partitioning on the input graph. We divide the neighborhood
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of each vertex into three subsets, following which we combine the adjacency matrix of

each subset with the input feature vector to build a more enhanced feature map, before

it undergoes shift convolution. However, we proceed with a fixed graph structure

instead of a dynamic graph due to two reasons: (a) introducing adaptive modules

to generate dynamic graphs with respect to each layer result in increased complexity

of the model, hence we utilize a simple framework for combining the connectivity

information with the feature vector. (b) To enable a global feature sharing across

all nodes, spatial-temporal shift modules are a better option as they enable non-local

and adaptive feature shifting across channels. However, combining the coordinate and

connection information further improves the performance of shift operation, due to

enhanced feature representation.

Contribution III:

We have verified the effectiveness of our proposed model by training and testing

it on three widely used skeleton datasets, NTU-RGB+D 60 [25], Northwestern-UCLA

[26] and Kinetics Skeleton 400 [27]. We have performed exhaustive ablation experi-

ments to verify the necessity and effectiveness of each module. We have also compared

the performance of our proposed model with various state-of-the-art models to estab-

lish the competitive performance of our proposed model.

1.5 Organization of the Thesis

This thesis is organized into six chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

This chapter describes the background knowledge of clustering, the motivation of

our work, and the contribution of this thesis.

Chapter 2 (Literature Survey)

This chapter discusses the literature on GCNs, Skeleton-based action recognition

and shift convolutions. Here, we also discuss the various graph partitioning strategies,

performance measures used in our thesis and finally the datasets used and data pre-

6



processing.

Chapter 3 (A Feature-Enhanced, Shift-based GCN for Skeleton-based Ac-

tivity Recognition)

This chapter discusses both the spatial and the temporal units of our proposed

model with illustrative diagrams.

Chapter 4 (Block and Network architecture of FES-GCN )

This chapter discusses the overall architecture of one Graph Convolutional Block,

the network architecture of one stream, and finally the overall architecture of the full

model.

Chapter 5 (Experiments and Results )

In this chapter, we discuss the experiments and ablation studies performed on our

model using three datasets. We also compare the performance of our model with other

state-of-the-art models to establish the efficiency of our model.

Chapter 6 (Conclusion and Future work)

In this chapter, we conclude the work in our thesis and discuss the future directions

of our research.
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Chapter 2

Literature Survey

This chapter discusses the various foundational concepts required to know in order

to proceed to the architectural details of our proposed model, FES-GCN. Section 2.1

discusses the basics of Graph Convolutional Networks (GCNs). Section 2.2 explores

the application of GCNs in Action recognition using Skeleton data. Further, we discuss

briefly how Shift Convolutions work in Section 2.3. Section 2.4 discusses the various

skeleton graph partitioning strategies. Section 2.5 discusses the various performance

measures we have used in our research. Finally, Section 2.6 describes the datasets

used in our experiments and also the data preprocessing done for our model.

2.1 Graph Convolutional Networks (GCN)

Deep Learning frameworks such as CNNs and RNNs have proven to be highly ef-

fective in handling regularly-structured or Euclidean data, such as images and videos,

as shown in Fig. 2.1 A. However, most of the real-world data have irregular or non-

Euclidean graph structure as shown in Fig. 2.1 B, such as social networks, protein

interaction networks, citation networks, World Wide Web, and so on. For such types

of data, it is difficult to generate accurate results using CNN or RNN-based models.

The issue of handling non-uniform data has led to the recent advancements in Graph

Neural Networks (GNN) [28]. GNNs are categorized into three main types: (a) Recur-

rent GNN (RecGNN), (b) Convolutional Graph Neural Network (ConvGNN) and (c)

8



Figure 2.1: A - Euclidean or Regular structured data as found in images and videos.
B - Non-Euclidean structured data as found in graphs.
Figure ref. [2].

Graph Autoencoders. The framework which we use for predicting action labels is a

Convolutional Graph Neural Network, more popularly known as Graph Convolutional

Network (GCN). Graph Convolutional Networks (GCNs) are a class of neural net-

works that can handle graph-structured data, providing a robust modeling framework

for non-Euclidean data and find use in many areas such as social networks, cita-

tion networks, recommendation systems, traffic predictions, molecular analysis, and

so on. GCNs can effectively capture the nodal information and dependencies between

nodes in a graph. GCNs are of two types - Spectral and Spatial. Spectral methods

[29],[30],[31] use eigen values of the graph Laplacian matrix to construct filters. These

methods use graph Fourier transformation to perform convolution in the frequency

domain, which does not require extracting locally connected regions at each convolu-

tion step. However, the process of Eigen decomposition is computationally expensive

for large graphs. The other method is the Spatial method [2], [4], where convolutional

filters or kernels are used directly to process the nodes and their neighboring nodes.

The spatial GCN follows an approach similar to traditional CNNs, but it enables the

generalization of convolution from image to graph data which is irregularly shaped.
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The details of Spectral and Spatial GCNs are provided in the following subsections.

2.1.1 Spectral GCN

Spectral-based GCNs use spectral filters or kernels based on the Laplacian of the

graphs to construct network models. Spectral GCN performs convolution in the fre-

quency domain, using a graph Fourier Transformation. This does not require extract-

ing information from locally connected regions at each step. To understand spectral

graph convolutions, let us consider a simple, connected and undirected graph G(V,E)

having n vertices andm edges. Let A be the adjacency matrix denoting the connection

information of the nodes in the graph, D be the diagonal degree matrix where di denote

the degree of node i of graph G. Finally, letX ∈ Rn×d be the input feature vector. The

normalized graph Laplacian matrix L is defined as: L = In −D−1/2AD−1/2 = UΛUT ,

where Λ denotes the diagonal matrix of eigenvalues and U is the Fourier transform

matrix. We compute spectral graph convolution over an input signal x ∈ Rn using a

filter fθ, where θ ∈ Rn denotes filter parameters. Then the spectral graph convolutions

can be formulated as:

Y = fθ(L) ∗ x = Ufθ(Λ)U
T ∗ x (2.1)

However,the decomposition of graph Laplacian into its eigenvalues is a computation-

ally costly process, requiring O(n2) time. To avoid eigen decomposition, Defferrard et

al. [31] follow a Kth order approximation of fθ(Λ) in terms of Chebyshev polynomials

Tr(Λ) as shown in equation 2.2:

fθ(Λ) ≈
K−1∑
r=0

θrTr(Λ̃) (2.2)

This reduces the computational complexity from O(n2) to O(K|E|). Mainstream

GCN models use first order approximation of Chebyshev polynomials to reduce com-

putation time, thus, not involving higher order connections and limiting the feature

representation capability of the model.
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2.1.2 Spatial-Temporal GCN

A Spatial-temporal graph convolutional network [1],[7],[8],[22],

[12],[10],[4],[23],[24],[32] is designed to handle data that has both spatial and

temporal components, such as video or motion capture data. The main aim is to

learn hidden patterns and extract features from spatial-temporal graphs, which is

crucial in a range of applications, from predicting traffic speeds to anticipating driver

maneuvers, recognizing human actions, and many more. By integrating spatial and

temporal information, spatial-temporal GCNs can capture both types of dependencies

simultaneously in an action. We design a spatial-temporal GCN model to perform

accurate classification of human actions.

Similar to conventional CNNs, spatial GCNs aggregate neighborhood information

during convolution process for each node. Spectral graph convolutions take a lot of

time while operating on larger graphs, which can be reduced by using spatial graph

convolutions. Spatial GCNs follow a sequence of feature aggregation, followed by a

non-linear activation such as ReLU or Tanh. Another advantage of Spatial GCNs is

that they facilitate weight sharing across all layers. Consider an input feature vector

X and adjacency matrix A, the output feature at each layer Y is computed as:

Y = σ(WD̃−1/2ÃD̃−1/2X) (2.3)

Here, σ is an activation function, W is the weight matrix, Ã = A + In is adjacency

matrix added with self loops and D̃ is the diagonal degree matrix of Ã.

For extracting temporal features, most GCN models apply a standard Kt × 1

convolution on the intermediate feature map, since every action time frame has 2

neighbors. Here, Kt refers to the kernel size of temporal convolution, typically set to

9.
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2.2 Application of GCNs in Skeleton-based Activ-

ity Recognition

Activity recognition using skeleton data differs from RGB video-based recognition

as it prioritizes body movements over frame sequences. Also, the method is lightweight

and is free from environmental noises (e.g. background clutter, lighting conditions,

clothing). Extensive research has been done on Skeleton-based activity recognition in

the past few years. Primitive methods used manually-generated features to model the

human body, such as Lie group [33] and Rank Pooling [5]. However, these methods can

be computationally expensive and can require specialized mathematical knowledge to

implement and interpret. Additionally, they are not suitable for all types of action

recognition tasks and may require modifications or extensions for different types of

data or motion.

With the advent of deep learning models, CNNs and RNNs are widely used as

the mainstream methods for various applications. RNN-based methods [13],[14],[15]

model the skeleton data into vector representations, CNN-based methods [16], [17],

[18], [19] employ hand-crafted transformation rules which represent the skeleton data

in the form of pseudo-images. Such methods tend to rearrange the skeleton data from

a non-Euclidean into a grid-like structure, due to which it is difficult to preserve the

topology structure. This results in a loss of information between joints. Therefore, the

current focus has shifted to GCNs since they can operate on non-euclidean data such

as graphs. Skeleton data is constructed into graphs and GCNs are used to extract

features from connected vertices.

Work in [4] is one of the earliest known works on GCN which directly models the

skeletal data into a graph, thus eliminating the requirement of designing handcrafted

features and achieving better performance than the previous methods. Shi et al. [22]

use a two-stream adaptive model which utilizes second order bone information besides

joint information. The same authors improve the model in [7] by introducing attention

modules along with the adaptive layer and using four streams namely: joints, bones

and their respective motion streams. Another approach is Directed Graph Neural
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Network (DGNN) [23], which uses a Directed Acyclic Graph (DAG) to represent

the skeletal information, portraying the inherent kinematic dependencies between the

joints and their connections in the natural structure of the human body.

However, most of the state-of-the-art GCN models are computationally expensive

and memory-intensive. Shift-GCN [1] replaces the computationally expensive 2D con-

volution operation with lightweight feature shift operations followed by lightweight

pointwise convolutions in both spatial and temporal domains, which gives a com-

petitive result against state-of-the-art GCNs, requiring 10 times less computational

complexity. However, it discards the graph knowledge and connection information

of the input skeleton sequence due to which it does not give optimal performance on

fine-grained actions. Hence, we propose to integrate coordinate information and graph

connectivity information for a better performance in classifying fine-grained actions.

2.3 ShiftNet

In CNNs, the convolution operation is used to extract features from input images

or videos by applying a set of learnable filters over the input pixels. However, convo-

lutional operations can be computationally expensive and memory-intensive and with

increase of network depth, the amount of calculation and parameters of the convo-

lution become difficult to control. ShiftNet [3, 34, 35] is a computationally efficient

substitute for standard 2D convolutional operations within CNNs. ShiftNet is a deep

neural network architecture that uses shift operations instead of standard convolu-

tion operations. A shift operation involves adjusting the channels of the input feature

vector in different directions. This operation is directly followed by a pointwise convo-

lution which exchanges information across various channels. Such an implementation

enables aggregation of neighborhood information in a computationally cheaper way

[1]. Wu et al. [3] proposed the use of a combination of shift and pointwise convolution

instead of a 2D spatial convolution. They replaced the 3x3 convolution of ResNet

with shift modules and obtained improved accuracy on CIFAR-10 and CIFAR-100

with 60% fewer parameters.
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Consider a spatial convolution whose input is a tensor F of size F ∈ RDF×DF×M

as shown in Fig. 2.2 A. Let DF be the width and height of the tensor and M be the

input channel size. The kernel of a spatial convolution is a tensor K of dimensions

K ∈ RDK×DK×M×N , where N is the number of filters and DK is the kernel size. For

simplicity, we assume the stride to be 1 and identical spatial dimensions for input

and output. For a regular spatial convolution, the number of parameters required

is M × N × D2
K and the computational cost in FLOPS (Floating Point Operations

Per Second) is M ×N ×D2
K ×D2

F . Larger the kernel size Dk, higher the number of

parameters and computational cost, as they grow quadratically.

A shift convolution consists of two operations: (a) Adjusting feature channels

in different directions, (b) Pointwise convolution operation to enable communication

between various feature maps. The computation cost of a shift convolution is D2
F ×

M ×N FLOPS, much lower than that of a regular convolution operation, since DK =

1. Shift convolution also has a highly flexible receptive field which it can enlarge by

simply increasing the shift distance, rather than relying on larger kernels and complex

models.

Figure 2.2: A - Regular convolution operation, B - Shift operation followed by point-
wise convolution. Here, DF is height and width of input tensor, M is input channel
size, DK is kernel size, N is output channel size. Figure ref. [3]
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Figure 2.3: Partitioning strategies [4]: A - Uni-labeling, B - Distance Partitioning,
C - Spatial Configuration Partitioning. ”X” denotes the center of gravity and 0,1,2
denote the subset number.

2.4 Skeleton Graph Partitioning Strategies

Unlike images or videos, convolution operation on graphs is a more challenging

task, since the nodes do not have a fixed neighborhood. In case of images and videos,

it is easier to define the weight function as the neighborhood of each pixel has a fixed

spatial order. In case of graphs, there is no such implicit order. Hence, it becomes

necessary to partition the neighboring vertices into a fixed number of subsets K. We

require a mapping function l(vi), which maps the neighbors of a vertex into one of the

subsets in the range 0,1,..., K − 1. The commonly used partition strategies are:

1. Uni-labeling: This is the simplest partitioning strategy which creates one sub-

set constituting the whole neighborhood of the vertex, including the vertex vi

itself. For uni-labeling, we have K = 1 and l(vj) = 0, i, j ∈ |V |. The drawback

of this strategy is that it requires computing the inner product of the weight

matrix and the average feature vector of the whole neighborhood, which results

in losing of local distinct features.

2. Distance partitioning: Another partitioning technique is to divide the neigh-
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borhood according to distance d(vi, vj) from root vertex vi. This divides the

entire first order neighborhood of a vertex vi into 2 subsets, hence K = 2 and

l(vj) = 0, 1, i, j ∈ |V |. For the root vertex itself, d(vi, vj) = 0, hence it gets par-

titioned into subset 0. For the other neighboring vertices, d(vi, vj) = 1, hence

they fall into subset 1.

3. Spatial configuration partitioning: Yan et. al [4] adopt a strategy to di-

vide the neighborhood of a vertex vi into 3 subsets: (a) The root vertex itself

(b) Centripetal subset, consisting of neighboring nodes closer to the center of

gravity of skeleton than the root, (c) Centrifugal subset, consisting of neighbor-

ing nodes farther from the center of gravity of skeleton than the root. Here,

K = 3 and l(vj) = 0, 1, 2, i, j ∈ |V |. Following [4], we adopt a spatial configura-

tion partitioning technique to partition the neighborhood of every vertex into 3

subsets.

2.5 Performance measures used

Top-1 Accuracy: Top-1 accuracy is the conventional accuracy used as a performance

metric. It measures the percentage of correctly classified samples with respect to the

total number of samples used for generating predictions. Top-1 accuracy will consider

a prediction correct if and only if the class with the highest prediction probability

matches with the truth label.

Example:

True label Predicted label Result

Cat Cat ✓

Dog Giraffe ✗

Dog Dog ✓

Monkey Horse ✗

Horse Horse ✓
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In the above example, the model correctly predicts 3 out of 5 inputs. Hence, the

top-1 accuracy is 60%.

Top-5 accuracy: Top-N accuracy considers the top N predicted labels having

the highest probabilities. If one of the top N predictions matches with the true

label, the prediction is classified as correct. For evaluating the Kinetics-Skeleton [27]

dataset, we report both the top-1 and top-5 accuracies.

Example:

True label Top 5 Predicted labels Result

Cat Cat, Dog, Monkey, Horse, Swan ✓

Dog Giraffe, Dog, Cat, Lion, Horse ✓

Dog Cat, Giraffe, Swan, Lion, Horse ✗

Monkey Horse, Monkey, Swan, Cat, Dog ✓

Horse Cat, Swan, Dog, Giraffe, Horse ✓

In the above example, there are 4 out of 5 inputs for which the true label is present

in the top 5 predictions. Hence, the top-5 accuracy is 80%.

FLOPs: FLOPs stands for Floating Point Operations. In deep learning, FLOPs refer

to the number of floating point operations required for one sample input in a single

forward pass. Higher the FLOPs, slower the model, and hence longer the training

time. FLOPs describe how much calculation is required to pass data through the

model network.

To compute the number of FLOPs, we assume sliding window convolution and

that the non-linearity function requires no computation cost. For a kernel or filter,

we have,

FLOPs = 2WH(K2Cin + 1)Cout (2.4)

Where W and H are height and width of input feature map, Cin is the number of

input channels, Cout is the number of output channels and K is the kernel size. For
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fully connected layers, FLOPs are computed as:

FLOPs = (2I − 1)O (2.5)

Where I = number of input neurons, O = number of output neurons.

2.6 Datasets and Data Preprocessing

Subsection 2.6.1 discusses the three widely used datasets used in this thesis

throughout our experimentation, and Subsection 2.6.2 discusses the data preprocessing

required to implement the multi-stream architecture.

2.6.1 Datasets Used

We have trained and evaluated our model on three benchmark datasets, which are

described as follows.

1. NTU RGB+D 60 [25] is a large-scale dataset of indoor actions that is widely

used in the recognition of human actions. It contains 56,880 action sequences

which are performed by 40 actors and are classified into 60 categories.Three cam-

eras are used to capture each action at constant height by varying the horizontal

angles to -45°, 0° and 45°. Kinect depth sensors are used to locate the 3D joint

locations in each action frame. Each video contains not more than 2 subjects,

and there are 25 joints for each subject in the action sequence. The joints are de-

noted by three-dimensional coordinates. The authors of this dataset recommend

two benchmarks: 1) Cross-Subject (X-sub), where the dataset is divided into a

training set of 40,320 videos and a validation set of 16,560 videos. Here, the

training data comes from 20 subjects and validation data comes from the other

20 subjects. The other benchmark is 2) Cross-View (X-view), where the train-

ing data contains 37,920 videos captured by cameras 2 and 3, and the validation

data contains 18,960 videos captured by camera 1. Following the convention in

[25], we report the top-1 accuracy on these two benchmarks.
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2. Northwestern-UCLA [26] is a dataset which is captured by 3 Kinect cameras

simultaneously from multiple viewpoints. It contains 1494 videos categorised

into 10 action classes. We follow the convention in [26] and use the videos of the

first and second cameras as training data and the third camera as testing data.

3. Kinetics-400 Skeleton is a large-scale dataset obtained from the Kinetics-

400 [27] dataset, which contains human action video clips taken from YouTube

videos. Authors in [4] estimate the 2D coordinates of 18 joints and their pre-

diction confidence using the OpenPose toolbox [36] which is publicly available.

They have released this dataset named Kinetics Skeleton, which we use for eval-

uating our model. Kinetics Skeleton contains 240,436 skeleton sequences for

training and 19,796 skeleton sequences for testing over 400 action classes. We

follow the evaluation method in [4] while training the model, and report the top

1 and top 5 accuracies obtained on the validation set.

2.6.2 Data Preprocessing

Earlier approaches [4] used only the 2D or 3D joint coordinates as the feature

vector. This is known as the first order skeletal information, which lacks the necessary

level of detail to accurately capture the dynamic changes in human skeletal structure

during certain actions. Hence, we employ a four-stream architecture in accordance

with MS-AAGCN [7], where the four data modalities are: joints, bones and their

respective motion streams.

In any action, besides the joints, the bones also play a significant role, and thus

represent second-order information in skeleton data. The bone data consists of length

and direction of bones which typically provide more information regarding the action

and enables distinguishing similar actions. For example, in actions like standing up

and sitting down, the coordinates of knee joint do not change significantly, while

there is a more visible and obvious movement between the connected bones. Hence,

adding bone information enables the model to recognize complex action patterns more

efficiently. We construct the bone vectors in accordance with the natural connections
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between the human body joints. Each bone vector starts from a source joint and

ends at a target joint. Given a source vertex p with coordinates (xp, yp, zp) and its

neighboring target vertex q with coordinates (xq, yq, zq), the bone vector is computed

as an edge from source joint to target joint, ep,q = (xq − xp, yq − yp, zq − zp).

Additionally, there are actions which are similarly performed such as sitting down

and standing up, for which we need to model the temporal evolution of consecutive

frames. Hence, adding motion information of joints and bones to the feature vector

enables the model to distinguish between actions that appear spatially similar. For

example, consider a joint vertex pt = (xp,t, yp,t, zp,t) in time frame t and the same joint

pt+1 = (xp,t+1, yp,t+1, zp,t+1) in time frame t+ 1, the movement between the two joints

is denoted as mp,t,t+1 = (xp,t+1 − xp,t, yp,t+1 − yp,t, zp,t+1 − zp,t). The model takes in

four data modalities as inputs, and each modality is processed in a separate stream.

In order to ensure a fair comparison, we adopt a strategy of weighted summation as

in [7] to fuse the softmax scores of all four modalities, to generate the final prediction

score and infer the action label.
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Chapter 3

A Feature-Enhanced Shift Graph

Convolutional Network for Skeleton-based

Action Recognition

In this thesis, we propose a feature-enhanced shift graph convolutional network

(FES-GCN) for skeleton-based human action recognition, which performs spatial and

temporal shift graph operations on a feature map consisting of both the coordinate

information and joint connectivity information. Our model is based on the architec-

ture of Shift GCN [1] for a lightweight feature extraction and increased flexibility of

spatial-temporal receptive fields. Although Shift-GCN is lightweight, it does not take

into account the graph connectivity information, due to which it gives suboptimal

performance on fine-grained actions having subtle details. By combining the coordi-

nate and connectivity information, we construct a more detailed and enhanced feature

vector, which is then passed into spatial and temporal shift modules for feature ex-

traction. Fig. 3.1 is an outline showing the modules in a block in FES-GCN. The

detailed architecture of each module is discussed in Sections 3.1 and 3.2.

21



Figure 3.1: An outline of our proposed model FES-GCN. The spatial and temporal
GCN units, denoted by SGCN and TGCN are present serially in every block to study
the spatio-temporal characteristics of the action sample. fin is the input feature map
and A is the graph adjacency matrix.

3.1 Graph Construction and Spatial Graph Con-

volutional Unit

We propose to combine both the coordinate information and the graph connec-

tivity information before performing shift operation, as both types of information are

required for a more detailed representation of the body features while performing an

action. We construct a spatial-temporal graph which informs how the vertices of the

graph are connected with each other. ST-GCN [4] models a graph that is equipped

with information extending along spatial-temporal dimensions. Fig. 3.2 A diagram-

matically represents the structure of a skeleton graph representing the joints and their

natural connections. The corresponding joints across two action frames are linked by

temporal edges, forming a temporal graph. A vanilla spatial convolution operation

with respect to a vertex vi is expressed as follows:

fspatial(vi) =
∑
vj∈Bi

1

Zij

fin(vj).w(li(vj)) (3.1)

Here fin and fspatial are the input and output feature maps respectively and vj denotes
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Figure 3.2: A - Spatial-temporal skeleton graph structure showing two frames of action.
Black lines denote the connections between joints in one frame, red lines denote the
temporal connections between corresponding joints across two consecutive frames.
B - Spatial configuration partitioning with respect to the vertex marked in blue. X
denotes the center of gravity, the vertex marked in red denotes the centripetal subset,
the vertex marked in green denotes the centrifugal subset.

neighborhood of vertex vi. Bi represents the sampling area of neighborhood for vertex

vi . We set the sampling area as the one-hop neighborhood of target vertex vi. Weight

function w provides a weight matrix for the given input. It is important to note that

convolution operation on graph data is trickier than that on images, as every pixel

in an input image contains a fixed number of neighbors but each node in a skeleton

graph has variable number of neighbors. Hence, we are required to partition the

neighborhood set of each vertex into a fixed number of subsets. We have discussed the

commonly used partitioning strategies in Section 2.4. For our model, we adopt the

spatial configuration partitioning as this strategy leads to a better modeling capability.

Fig. 3.2 B illustrates the partitioning technique, where we partition the sampling area

Bi into three subsets: Si1,Si2 and Si3. Si1 contains the target vertex vi itself, Si2 is the
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centripetal subset containing vertices which are at a lesser distance from the center

of gravity than the target vertex, Si3 is the centrifugal subset containing vertices at

a larger distance from the center of gravity than the target vertex. li is a mapping

function which maps each neighboring vertex vj into its corresponding subset. Zij

denotes the cardinality of Sik that balances the contribution of each subset.

The Spatial Graph Convolutional unit has two parts: Spatial Convolution module

and Spatial Shift module. The details of each module are discussed in the following

subsections.

Figure 3.3: Spatial Graph Convolutional unit. fin = input feature map, A = graph
adjacency matrix where A[0], A[1] and A[2] correspond to each subset [4], f = inter-
mediate feature map.

3.1.1 Spatial Convolution Module

Unlike Shift-GCN [1], we propose to utilize the graph connectivity knowledge

for better feature representation and extraction. We partition the input graph

into three subsets in accordance with ST-GCN [4]. For each partition, we mul-
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tiply the corresponding adjacency matrix with the input feature map, which is a

tensor fin ∈ RCin×T×N , where Cin , T and N are the input channel size, number

of action frames and number of nodes in the graph respectively. Spatial convo-

lution is implemented by transforming Equation 3.1 into Equation 3.2 as shown below:

fspatial(vi) =
Kv∑
k

Wk(finAk) (3.2)

Here, Kv is set as 3 denoting the number of subsets, Wk is the weight matrix associated

with each pointwise convolution and Ak is the normalized adjacency matrix for each

subset.

3.1.2 Spatial Shift Module

Spatial Shift operation shifts the features of neighboring nodes into the current

node. Following the work in Shift-GCN [1] and employ an adaptive non-local shift

operation on the intermediate feature map, which makes every node obtain the in-

formation of every other node. However, in FES-GCN, the shift module receives a

more enhanced feature map, which results from a spatial convolution on a combina-

tion of coordinate information and connectivity information. The advantage of the

spatial shift operation is, it expands every node’s receptive field, thus enabling each

node to gather information from all other nodes in the graph, thereby enhancing the

model’s ability to capture global dependencies. For an input feature F ∈ RN×C , the

shifting distance of the ith feature is calculated as imodN . This operation assumes

equal importance of connections between every pair of nodes in the graph. However,

the strength of the connections vary according to which joints are more involved for

a given action. To address this issue, an adaptive learnable mask is incorporated into

the shift operation, which allows the network to assign different weights to different

pairs of nodes based on their importance in the action recognition task. This helps

in better capturing of relevant information from the input skeleton graph. The mask

is formulated as tanh(M) + 1 where M is a tensor initialized with zeros. We per-

form two shift operations, Shift-in, which involves upward shifting of feature channels,
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and Shift-out, which involves downward shifting of feature channels. The two shift

operations are separated by a pointwise convolutional operation.

3.1.3 Architecture of Spatial GCN (SGCN)

The entire architecture of the Spatial unit is illustrated in Fig. 3.3. It is composed

of a Spatial Convolution unit, followed by a Shift-in operation, a pointwise convolution

and a Shift-out unit. A residual connection is added for preserving gradients during

backpropagation. The intermediate feature map is then passed into the Temporal

Graph Convolutional Unit, which is described in Section 3.2.

3.2 Temporal Graph Convolutional Unit

The temporal GCN (TGCN) models the temporal evolution of the action and

occurs after the SGCN. Earlier works [7],[12], [22], [4], [23] used a simple Kt × 1

convolution over the temporal feature map, where Kt is generally set to 9. The reason

of using a classical convolution operation is, the number of neighbors of a vertex in

the temporal dimension is always fixed as 2. The operation however, has various

drawbacks: (a) Since the receptive field is set manually, it may result in inadequate

generalization of model while classifying actions of varying durations. (b) Different

layers may require different size of receptive fields. Setting a rigid kernel size limits the

models capability to model the temporal aspect of actions. (c) Finally, a large kernel

results in a higher computation costs. Hence, we adopt the method of using adaptive

temporal shift instead, in accordance with the baseline Shift-GCN [1], as this method

adjusts the size of receptive fields adaptively, increasing the flexibility of the model.

The details of adaptive temporal shift module are described below in subsection 3.2.1.

3.2.1 Temporal Shift Module

The temporal graph convolutional unit applies the same temporal adaptive shift

convolution as described in the baseline [1]. Let the input feature be f and output
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feature be fout, where f ∈ RN×T×C and fout ∈ RN×T×C′
. Each channel is tempo-

rally associated with an adaptive shift parameter Pi, i = 1, 2, ...., C. In this case, the

constraint is relaxed from integers to real numbers The adaptive temporal shift is

computed as shown below in Equation (3.3):

F ′
(v,i,t) = (1− β)F(v,i,floor(t+Pi)) + βF(v,i,floor(t+Pi)+1) (3.3)

Here, β = Pi−floor(Pi). Since this operation is differentiable, it can be trained using

backpropagation. Similar to spatial shift module, here too we perform a temporal

Shift-in operation, a pointwise convolution and a temporal Shift-out operation.

Algorithm 3.1 shows the sequence of operations in FES-GCN. In the next chapter,

we discuss in details the overall architecture of FES-GCN.

Algorithm 3.1 Algorithm of FES-GCN

Input: Input feature fin of dimensions Cin × T × N , Graph Adjacency Matrix A of

dimensions N ×N

Output: Output feature fout
1: c, t, n = fin.size()

2: y = null

3: for i in range Kv do ▷ Spatial conv

4: A1 = A[i]

5: A2 = fin.view(c× t, n)

6: z = pointwise conv((A2× A1).view(c, t, n))

7: y = z + y ▷ Concatenation

8: end for

9: y = ReLU(batch norm(y))

10: y = spatial shift in(y) ∗ (tanh(Feature Mask) + 1) ▷ Spatial Shift

11: y = pointwise conv(y)

12: y = spatial shift out(y)

13: y = ReLU(batch norm(y))

14: y = temp shift in(y) ▷ Temporal Shift

15: y = ReLU(pointwise conv(y))

16: fout = temp shift out(y)

17: fout = batch norm(fout)

18: return fout
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3.3 Summary

In chapter 3, we introduce our proposed model. FES-GCN. We at first discuss the

outline of FES-GCN with a diagrammatical representation, followed by the construc-

tion of skeletal graph and the spatial graph convolutional unit. The spatial graph

convolutional unit consists of the spatial convolution module and the spatial shift

module. This is followed by the temporal modeling using the temporal shift module.

The final output undergoes a batch processing before being passed into the next block.

We finally explain the model workflow using Algorithm 3.1.
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Chapter 4

Block and Network Architecture of

FES-GCN

Chapter 3 presented an outline of our proposed model and discussed the architec-

ture of the spatial and temporal units present in a block. In this chapter, we discuss

in details the network architecture of FES-GCN consisting of a series of such blocks.

Section 4.1 discusses the architecture of one block which contains the spatial and tem-

poral modules. Section 4.2 discusses the network architecture of one stream. Section

4.3 finally discusses the architecture of the full model consisting of four streams.

4.1 Structure of one Graph Convolutional Block

(GCB)

The structure of one Graph Convolutional Block (GCB) is shown in Fig. 4.1-A.

Every GCB consists of a spatial unit and a temporal unit in sequence, denoted by

SGCN and TGCN respectively. Both the spatial and temporal units are followed by

batch normalization and ReLU activation layers respectively. Batch Normalization

layer normalizes the input before it enters into the next layer. This helps to stabilize

the network during training. For activation, we use ReLU as it does not activate all

neurons at the same time. For positive inputs, the output is linear and for negative

inputs, the output is zero. Since it activates only a certain number of neurons, ReLU
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Figure 4.1: A - Basic architecture of one Graph Convolution Block [4] where the spa-
tial and temporal units are denoted as SGCN and TGCN respectively, B - Network
architecture of one stream consisting of 10 Blocks, B1 to B10. BN is Batch Normal-
ization and GAP is Global Average Pooling.

is computationally more efficient as compared to other activations such as sigmoid

and tanh. Deep neural networks are often prone to vanishing gradient problem [37],

hence we have added a residual connection [38] in every block as it eases training in

very deep neural networks by enabling the gradient propagation to all layers.
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Table 4.1: Table illustrating the number of input channels, output channels and stride
in each block

Block Input channels Output Channels Stride

B1 3 64 1
B2 64 64 1
B3 64 64 1
B4 64 64 1
B5 64 128 2
B6 128 128 1
B7 128 128 1
B8 128 256 2
B9 256 256 1
B10 256 256 1

4.2 Network Architecture of one Stream

FES-GCN follows a four-stream structure as discussed in Section 2. Here, we

discuss the network architecture of a single stream as illustrated in Fig. 4.1 B, which

follows the backbone structure of ST-GCN [4]. It constitutes a linear arrangement of 10

basic Graph Convolutional Blocks, labelled B1 to B10. Table 4.1 displays the number

of input channels, output channels and stride of each block. Temporal dimension is

halved at blocks B5 and B8 using strided temporal convolution. After block B10, a

global average pooling layer (GAP) is included to diminish the spatial dimensions of

the feature. A softmax classifier is present at the end to predict the scores for each

action label. All four streams follow the identical network architecture.

4.3 Full Architecture of FES-GCN

The overall architecture of FES-GCN is a multi-stream framework, consisting of

four streams. MS-AAGCN [7] introduced a four-stream architecture which utilizes

four data modalities: joints, bones and their respective motion data. FES-GCN fol-

lows a four-stream architecture as well and the preprocessing of input data into four

modalities is discussed in Section 2.6.2. The full pipeline of the model is illustrated
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Figure 4.2: Outline of FES-GCN. The input data is processed into four types of
data modalities namely, joint data, bone data and their respective motion data. The
ultimate prediction is generated by combining each stream’s action score by weighted
summation

in Fig. 4.2. Each data modality is passed as input into the network, whose structure

is identical for every stream. The ultimate prediction is generated by combining each

stream’s action score by weighted summation. The multi-stream fusion strategy has

been adopted in various architectures [1], [7], [8], [10] hence, we too adopt the same

strategy to ensure a fair comparison. The overall computational complexity of the

model is the sum of GFLOPs required for each stream.
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4.4 Summary

To summarize Chapter 4, we have discussed the block and network architecture of

FES-GCN. One Graph Convolutional Block (GCB) consists of a spatial and a temporal

unit in sequence, denoted by SGCN and TGCN respectively. This is followed by a

batch normalization and ReLU layers. The network architecture of a single stream

consists of 10 GCBs in sequence, with the number of output channels as follows: 64, 64,

64, 64, 128, 128, 128, 256, 256, 256. Finally, we have explained with a diagrammatic

representation the full architecture of FES-GCN consisting of four parallel streams of

the four data modalities. The final action score is a result of the weighted summation

of each stream’s individual action score. Chapter 5 dives into the experimentations

and ablation studies conducted on FES-GCN and the comparitive results in details.
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Chapter 5

Experiments and Results

This chapter presents the experimentations we have conducted to assess our

model’s performance, and the results observed. We have used three commonly used

datasets to assess the performance of our proposed model and compare it with other

methods. The datasets used are NTU RGB+D 60 [25], Northwestern UCLA [26] and

Kinetics-400 Skeleton [27] which have been discussed extensively in Chapter 2 Section

2.6. We have further examined our proposed model’s effectiveness through ablation

studies conducted on each module.

5.1 Experimental Settings

In this section, we discuss the baseline models on which the architecture of FES-

GCN is based. We also reveal the implementation details and requirements for carrying

out the experiments.

5.1.1 Baseline Models

For the network architecture of the model, we have chosen ST-GCN [4] as the

backbone, since the baseline and other state-of-the-art methods too follow the same

network architecture. This ensures a fair comparison of our model’s accuracy with

other methods. The architecture of ST-GCN follows a sequence of 10 spatio-temporal

graph convolutional blocks. Each block contains a regular spatial convolution opera-
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tion and a regular 9 × 1 temporal convolution operation. However, ST-GCN follows

a fixed graph structure with fixed receptive fields. In order to enhance the flexibility

of the model, we have used Shift-GCN [1] as the baseline. Since the performance

of Shift-GCN is limited by complete discard of graph knowledge, we have added a

spatial convolution module where we have combined the coordinate features and the

connection information for a more detailed and enhanced feature map. This ensures

a more accurate classification of fine-grained actions having subtle differences in body

postures.

5.1.2 Implementation Details

We have used PyTorch framework to conduct all our experiments and three

NVIDIA Tesla V100 SXM2 GPUs of capacity 32 GB each for training and evaluating

our model. Number of epochs for training is 140. The learning rate is initially taken

as 0.1 and gets divided by 10 during the 60th, 80th and 100th epochs. The optimizer

used is SGD (Stochastic Gradient Descent) and Nesterov momentum is taken as 0.9.

For NTU RGB+D, we have used a batch of 64 action sequences, 16 for NW-UCLA

and 256 for Kinetics-Skeleton.

5.2 Ablation Studies

We have assessed the effectiveness of each module in our proposed model through

a set of ablation studies.

1. Spatial Convolutional Module: As stated in Section 3.1.1, we utilize the

graph connectivity information along with the coordinate information by per-

forming a spatial pointwise convolution on the product of feature vector with

each subset, and finally concatenating the resultant tensors before performing

shift operation. Combining the skeletal connectivity information along with the

input feature enables the model to capture the intricate structural details of

the skeleton and the connection information among joints, which results in an
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enhanced feature representation and improvement in accuracy. We test the ef-

fectiveness of utilizing graph connection information on NTU-RGB+D 60 and

Northwestern-UCLA, and report the results in Table 5.1. On both the datasets,

we observe an improvement in accuracy when we combine the baseline with a

spatial convolutional unit.

Table 5.1: Accuracies reported on NTU-60 and NW UCLA datasets for one stream
input, with and without spatial convolution and graph connection information

Without spatial With spatial
convolution (1-stream) convolution (1-stream)

Dataset Accuracy (%) Dataset Accuracy(%)

NTU-60 X-Sub 87.8 NTU-60 X-Sub 88.1

NTU-60 X-View 95.1 NTU-60 X-View 95.3

NW-UCLA 92.5 NW-UCLA 93.2

2. Shift Module: Cheng et al. [1] have introduced the concept of feature shift-

ing to learn the spatial relationship between distant nodes in a lightweight and

flexible manner. We incorporate spatial and temporal Shift modules for the

same reason. However, we perform the spatial shift operation on a larger num-

ber of features which are enhanced using spatial convolutional module. Table

5.2 shows a comparison between the accuracies reported with and without spa-

tial shift unit, using NTU-RGB+D 60 and Northwestern-UCLA. Since the shift

operation increases the adaptability of each node’s receptive field, FES-GCN

reports a higher accuracy on the benchmark datasets in presence of shift mod-

ule as compared to the model with only spatial convolutional unit. In absence

of spatial shift, the accuracy reduces to 86.2% and 93.8% on NTU-RGB+D 60

cross-subject and cross-view benchmarks respectively, compared to 88.1% and

95.3% on the same using spatial shift. Similarly, the accuracy reduces to 89.6%

for Northwestern-UCLA dataset in absence of spatial shift module.

3. Multi-stream architecture: We have tested our proposed model on four
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Table 5.2: Accuracies reported on NTU-60 and NW UCLA datasets for one stream
input, with and without spatial shift unit

Without spatial With spatial
shift (1-stream) shift (1-stream)

Dataset Accuracy (%) Dataset Accuracy (%)

NTU-60 X-Sub 86.2 NTU-60 X-Sub 88.1

NTU-60 X-View 93.8 NTU-60 X-View 95.3

NW-UCLA 89.6 NW-UCLA 93.2

Table 5.3: Accuracy and GFLOPs obtained for 1-stream, 2-stream and 4-stream ar-
chitectures respectively on the three benchmark datasets

Data NTU 60 NW-UCLA Kinetics
Modality X-Sub X-View Skeleton

Top 1 Top 1 GFLOPs Top 1 GFLOPs Top 1 Top 5 GFLOPs
(%) (%) (%) (%) (%)

Joint 88.1 95.3 6.0 93.2 0.4 36.0 59.1 4.3

Bone 88.3 94.9 6.0 92.5 0.4 35.1 57.9 4.3

Joint-M 86.0 94.0 6.0 92.9 0.4 32.2 55.9 4.3

Bone-M 86.7 93.8 6.0 90.0 0.4 31.9 54.2 4.3

2-s (J+B) 89.2 96.0 12.0 95.2 0.8 37.7 60.6 8.6

4-s 91.2 96.7 24.0 95.7 1.6 38.6 61.6 17.2

data modalities the results are reported on all three datasets for the individ-

ual streams, joint+bone stream and joint+bone+ their motion streams in Table

5.3. Combining the data modalities brings considerable improvement in perfor-

mance. The multi-stream results on all datasets outperform the single-stream

results. However, the increased number of streams also contributes to the com-

plexity of the model, which we plan to address in our future work by reducing

it. The joint and bone motion modalities typically exhibit lower performance

compared to the joint and bone modalities. However, combining them into a

multi-stream architecture still brings improvement in performance. We follow
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the procedure in MS-AAGCN [7] and generate the final score as a weighted

summation of individual action scores.

5.3 Comparison with Baseline

We evaluate our model’s performance on individual action classes and compare

it with the baseline Shift-GCN on NTU-60 cross-subject and Northwestern-UCLA

datasets.

Since NTU has too many action classes, we present the comparative results for

only the first 10 action classes in Fig 5.1. Except for two actions which are ”Brushing

teeth” and ”Throw”, our proposed architecture generates better predictions for the

first 10 actions.

Figure 5.1: Classwise accuracies of first 10 action classes of NTU using baseline model
and our proposed model

Fig. 5.2 A and B display the confusion matrices on the joint stream using Shift-

GCN and FES-GCN respectively for Northwestern-UCLA dataset. From the confusion

matrices, we can observe that except for two classes, which are “Pick up with one

hand” and “Stand up”, our proposed architecture gives an better prediction accuracy

for majority individual action classes. This shows that using skeletal connectivity

knowledge enables the model to capture subtle differences in body postures, which
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results in a better recognition accuracy of fine-grained actions as compared to the

baseline model.

Figure 5.2: Confusion matrices generated by A - Baseline Shift-GCN, B - Proposed
model FES-GCN

5.4 Comparison with State-of-the-art Models

We assess the performance of FES-GCN by conducting experiments on the NTU

60, Northwestern-UCLA, and Kinetics-Skeleton datasets, and comparing our model’s

performance with other state-of-the-art approaches. We show the comparitive results

in 5.4,5.5 and 5.6 respectively. The computational results indicate that FES-GCN

outperforms the majority of state-of-the-art methods, while requiring lesser GFLOPs

than most of the existing approaches.

From Table 5.4 and Table 5.5, we observe that FES-GCN is behind CTR-GCN [8] in

terms of accuracy. CTR-GCN learns the topology of each channel in a refined manner,

thus showing a powerful correlation capability. However, the operation requires a

higher computation cost of 32 GFLOPs on NTU 60 and 3.8 GFLOPs on NW-UCLA
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Table 5.4: Comparison with State-of-the-art methods on the Northwestern UCLA
skeleton dataset

Method Year Accuracy (%) GFLOPs

Lie Group [33] 2014 74.2 -
Actionlet 2013 76.0 -
Ensemble [39]
HBRNN [13] 2015 78.5 -
Ensemble 2017 89.2 -
TS-LSTM [40]
Shift-GCN (4s) [1] 2020 94.6 0.7
CTR-GCN (4s) [8] 2021 96.5 3.8
GSTLN (4s) [41] 2023 94.8 -

Ours (FES-GCN) 2023
1-stream 93.2 0.4
2-stream 95.2 0.8
4-stream 95.7 1.6

while our model requires 24 GFLOPs and 1.6 GFLOPs for the same.

Table 5.6 shows the comparison between accuracies obtained by FES-GCN and

other state-of-the-art methods using the Kinetics-Skeleton dataset. Note that the

Kinetics dataset, unlike NTU and NW-UCLA, has not been made under controlled

laboratory settings and viewpoints. The dataset has been collected from around

400,000 YouTube videos and has 400 action classes, which makes classification

task on this dataset quite challenging. Hence, we report both the Top-1 and the

Top-5 accuracies on this dataset. On Kinetics-skeleton dataset, our model gives

a competitive performance by reporting Top-1 and Top-5 accuracies of 38.6% and

61.6% respectively. It is significantly ahead of the backbone ST-GCN and is slightly

behind 2M-STGCN [10] in top-1 accuracy.

In summary, this chapter discusses the effectiveness of each module of FES-

GCN through ablation studies and presents the experimental results and comparisons

with other methods using three benchmark datasets. The next chapter summarizes

and concludes our thesis.
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Table 5.5: Comparison with State-of-the-art methods on the NTU RGB+D 60 skeleton
dataset

Method Year X-sub X-view GFLOPs
Top-1 (%) Top-1 (%)

Lie Group [33] 2014 50.1 52.1 -
HBRNN [13] 2015 59.1 64.0 -
Deep LSTM [25] 2016 60.7 67.3 -
Synthesized CNN[17] 2017 80.0 87.2 -
ST-GCN (1s) [4] 2018 81.5 88.3 -
DPRL [11] 2018 83.5 89.8 -
AS-GCN (2s) [24] 2019 86.8 94.2 27.0
AGCN (2s) [22] 2019 88.5 95.1 35.8
DGNN (4s) [23] 2019 89.9 96.1 126.8
AAGCN (4s) [7] 2020 90.0 96.2 74.8
Shift-GCN (4s) [1] 2020 90.7 96.5 10.0
CTR-GCN (4s) [8] 2021 92.4 96.8 32.0
GAT (1s) [9] 2022 89.0 95.2 -
AWD-GCN (2s) [32] 2023 89.9 96.1 50.12
2M-STGCN [10] 2023 90.8 96.2 -

Ours (FES-GCN) 2023
1-stream 88.1 95.4 6.0
2-stream 89.2 96.0 12.0
4-stream 91.2 96.7 24.0

Table 5.6: Comparison with State-of-the-art methods on the Kinetics skeleton dataset

Method Year Top-1 (%) Top-5 (%)

Deep LSTM [25] 2016 16.4 35.3
ST-GCN (1s) [4] 2018 30.7 52.8
AGCN (2s) [22] 2019 36.1 58.7
DGNN (2s) [23] 2019 36.9 59.6
AAGCN (4s) [7] 2020 37.8 61.0
GAT (1s) [9] 2022 35.9 58.9
AWD-GCN (2s) [32] 2023 37.2 61.0
2M-STGCN [10] 2023 39.0 61.6

Ours (FES-GCN) 2023
1-stream 36.0 59.1
2-stream 37.7 60.6
4-stream 38.6 61.6
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Chapter 6

Conclusion and Future Work

Human action recognition is one of the most actively researched areas of deep

learning, which aims to understand human behaviour and assign a label to each ac-

tion. Among the various data modalities used to portray human actions, skeleton data

is widely used due to its lightweight nature and robustness against changes in lighting

and background. In this thesis, we have proposed a Feature-enhanced shift graph con-

volutional network (FES-GCN) for skeleton-based human action recognition, which

combines skeletal connectivity information with the coordinate information, generat-

ing a more enhanced and abundant feature map. The baseline Shift GCN provides a

more flexible and lightweight GCN framework as compared to various state-of-the-art

GCN models. However, it only utilizes the coordinate information and discards the

connection information between the key points involved in the action. This results in

a moderate performance while classifying similar actions with subtle differences that

require extracting fine-grained features. Hence, our research aims at modifying the

baseline architecture so that it utilizes both the graph information and coordinate in-

formation to generate a more enhanced feature map. Performing shift operation on a

more detailed feature map results in better recognition of fine-grained motion features

and a more accurate classification of actions. We utilize a multi-stream architecture

as in any action not only joint, but bone and the motion information too play a key

role in identifying underlying patterns in the action sample. The network architecture

is the same for all the streams. We summarize the network architecture of FES-GCN
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through the following points:

1. The network architecture consists of 10 blocks, followed by a Global Average

Pooling layer and a softmax layer to predict action score.

2. Each block consists of a spatial unit (SGCN) and a temporal unit (TGCN)

connected serially.

3. The spatial unit (SGCN) consists of a spatial graph convolution followed by a

spatial shift operation. Spatial graph convolutional unit combines and aggre-

gates the coordinate features and the connection information between the graph

coordinates. Spatial shift operation is non-local by nature, which means that

it aggregates the features of both neighboring and non-neighboring nodes into

each node through shift operation.

4. The temporal unit (TGCN) consists of an adaptive temporal shift operation

which diversifies the temporal receptive field of each action frame in an adaptive

manner, and provides more flexibility than a conventional 9 × 1 fixed kernel

generally used in GCN architectures [7, 12, 4, 22, 23].

We have trained and evaluated our proposed model on three benchmark datasets:

NTU RGB+D 60 [25], Northwestern-UCLA [26] and Kinetics-Skeleton [27]. The de-

tails of each dataset have been discussed in Section 2.6.1. The following are the results

obtained on each dataset for a four-stream architecture:

1. On NTU 60, FES-GCN reports a cross-subject accuracy of 91.2% and a cross-

view accuracy of 96.7% and requires 24.0 GFLOPs computation cost.

2. On Northwestern-UCLA, FES-GCN reports an accuracy of 95.7% while requiring

1.6 GFLOPs computation cost.

3. On Kinetics dataset, our model reports a top-1 accuracy of 38.6% and a top-5

accuracy of 61.6%.
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Based on the comparative results in tables 5.4, 5.5 and 5.6, we can conclude that

FES-GCN gives a competitive performance and reports high accuracy values while

requiring lesser GFLOPs than most approaches.

To summarize, this thesis is a study on skeleton-based human action recognition

using a feature-enhanced shift graph convolutional network (FES-GCN). This the-

sis has investigated an approach to enhance the performance of a lightweight GCN

framework Shift-GCN, such that it utilizes graph knowledge along with coordinate

information for improved accuracy in classifying diverse actions. Our model delivers a

competitive accuracy as compared to various state-of-the-art methods, while requiring

lesser GFLOPs then most of the approaches. Some approaches [8], [10] are slightly

ahead in terms of accuracy, however these methods involve higher computation costs

and have relatively more complex frameworks. FES-GCN delivers a comparatively

lighter framework that can efficiently extract fine-grained features and correctly clas-

sify actions with similar poses and body movements.

In the future, we intend to come up with a lighter framework for generating the

enhanced feature map so that the overall complexity reduces significantly. Specifically,

we aim to come up with a more lightweight approach to combine the coordinate

information with the graph connectivity information, while maintaining similar levels

of performance.
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