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Abstract

Clustering species of the same plant into di↵erent groups is an important step in

developing new species of the concerned plant. Phenotypic (or Physical) characteristics

of plant species are commonly used to perform clustering. Hierarchical Clustering

(HC) is popularly used for this task, and this algorithm su↵ers from low accuracy

and high computational complexity. In one of the recent works [1], the authors used

the standard Spectral Clustering (SC) algorithm to improve the clustering accuracy.

Further, they used Pivotal Sampling, a probabilistic algorithm, to reduce the cost of

clustering. They demonstrated the e�cacy of their algorithm on soybean species.

Use of the standard SC algorithm is not ideal. Based upon spectral graph theory

and the involved Cheeger’s inequality, we propose a novel base “a” SC instead. We

further improve our algorithm by integrating the technique of local scaling (instead of

global one) as proposed in [2]. We perform experiments on 1865 rice species. Using

eigenvalue analysis, we argue that both our algorithms should lead to a better cluster-

ing. We further demonstrate that the standard SC is 49.86% better than HC while our

base “a” SC and base “a” locally scaled SC are 64.93% and 66.33% better than HC,

respectively. We also demonstrate that our latter clustering algorithm is better than

another popular clustering technique of Gaussian Mixture Model (22.05% better).

In the Pivotal Sampling algorithm, the most crucial aspect is computing the in-

clusion probability of every unit. In the earlier application of this sampling to plant

phenotypic data, this probability was taken to be inversely proportional to the de-

viation (sum of di↵erence between specie’s characteristic values from their respective

base values). Earlier, a maximum function was used to find the base values that did

not capture the problem behaviour well. We now propose use of a median function

that is more intuitive. Again, we perform experiments on 1865 rice species. Using a

statistical analysis, we show that this choice leads to better sampling. We also demon-

strate that a median function works better in not just Pivotal Sampling but another

popular probabilistic sampling (Poisson Sampling), and that Pivotal is slightly better

than Poisson. Finally, we demonstrate that the standard SC with maximum based



Pivotal Sampling is about 50.10% better than HC while our base “a” locally scaled

SC with median based Pivotal Sampling is 61.24% better than HC.
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Chapter 1

Introduction

Phenotypic characteristics (or physical characteristics) of plant species are often

used in clustering them into separate categories [3, 4]. This is done so that plant

species from di↵erent categories (or diverse plant species) could be selectively chosen

for developing new species having better characteristics [5] (or called breeding).

Hierarchical Clustering (HC) is one of the most commonly used clustering algo-

rithms in this domain [6]. This algorithm su↵ers from low accuracy issues and is also

computationally expensive. In one of the recent works [1], authors used the standard

Spectral Clustering (SC), which is considered to be one of the most accurate clustering

algorithms. Since SC, like HC, is computationally costly, authors sampled the plant

species before clustering. Pivotal sampling, which is probability based, was used due

to its high accuracy and low cost (requires a single pass through the data). Pivotal

sampling has the added advantage of maintaining independence from the data’s order

or location. The authors demonstrated the usefulness of their algorithm on soybean

species.

The standard SC can be improved further. In this algorithm, one of the crucial

step is building the similarity matrix. If dp1p2 denotes the distance between two units

p1 and p2, then the element Wp1p2 of the similarity matrix W should be inversely

proportional to dp1p2 (because larger the distance between two units, smaller should

be the similarity between them). In the earlier work [1], authors had taken Wp1p2 to be

the most commonly used choice of e�
dp1p2
2�2 , where � defines the decay of the distance.
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Based upon spectral graph theory, specifically the Cheeger’s inequality, in this work

we propose a base “a” exponential function instead of a natural exponential.

Having a global decay factor (�) as above is not ideal. In our implementation,

we use the concept of local scaling ([2]), which according to the theory works better.

That is, Wp1p2 is taken as a
� dp1p2

�p1�p2 , where �p1 and �p2 are computed via a K-nearest

neighbour (KNN) search.

We show the benefit of the above two algorithms with experiments on 1865 rice

species. We initially justify both the above choices with an eigenvalue analysis. Next

we show that the standard SC is about 49.86% better than HC while our base “a” SC

and base “a” locally scaled SC are 64.93% and 66.33% better than HC, respectively.

We also demonstrate that our latter clustering algorithm gives better results than

another popular clustering technique of Gaussian Mixture Model (22.05% better).

Computing inclusion probabilities of units in the Pivotal Sampling algorithm is an

important step. To compute these probabilities for plant data, the notion of deviation

was introduced in [1]. If (j)i represents the value of the jth characteristic for the ith

specie, the total deviation for the ith specie is given by

devi =
mX

j=1

(base((j)i=1,...,n)� (j)i), (1.1)

wherem denotes the total number of the characteristics and the base function captures

the representative value of the jth characteristic over all the species (n). Since a specie

with a lower deviation is more likely to represent the entire population, the inclusion

probability of a specie was taken to be inversely proportional to this deviation. In the

earlier work [1], authors had taken base to be the maximum function. In this work,

we propose the use of a median function instead, which is more intuitive.

We again perform experiments on 1865 rice species. Initially, we support our

above choice via a statistical analysis. Next, we show that use of the median function

is better not just in Pivotal Sampling but also in another competitive probabilistic

algorithm (Poisson Sampling). Further, we demonstrate that overall Pivotal works

better than Poisson. Finally, we show that the standard SC with maximum based

2



Pivotal sampling is about 50.10% better than HC while our base “a” locally scaled

SC with median based Pivotal Sampling is 61.24% better than HC.

Next, we discuss relevant past work done in clustering of rice species using pheno-

typic data. We do not plan to be exhaustive.

1.1 Literature Survey

[7] employed the Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA), which is a type of Hierarchical Clustering. The paper investigated clustering

patterns of 10 species of Thai indigenous upland rice using phenotypic traits. Cluster

analysis resulted in three distinct groups. This highlighted the potential for utilizing

traits such as flag leaf length, harvest index, total dry weight, total grain weight, and

filled grains in obtaining higher grain yield.

[8] used UPGMA-based dendrogram analysis, also a type of Hierarchical Cluster-

ing. The paper investigated the clustering of 114 rice species of North East India

using phenotypic traits. The species were clustered into seven groups. Grouping of

rice species was done on 15 traits which include root length, shoot length, fresh root

length, dry root length, root volume, root angle, peripheri root, etc. This was used

for the assessment of genetic variation in rice breeding programmes.

[9] employed Neighbor-joining tree analysis, which is a type of Hierarchical Clus-

tering. In this paper, the authors clustered 15 red rice varieties in Bangladesh using

phenotypic traits. The species were clustered into five groups (I, II, III, IV, V). A

total of 15 traits, e.g., culm diameter, plant height, panicle length, five panicle weight,

filled grains per panicle, etc. were used for the detection of economically desired traits

for future molecular breeding programmes.

[10] used UPGMA for Clustering. The paper investigated the clustering of 41

rice species cultivated by Indian farmers using phenotypic traits. The species were

clustered into four groups. The phenotypic traits, such as the number of grains per

panicle, thousand-grain weight, and the measurements of length and breadth for both

whole and milled grains, were used in breeding programs.

3



All the above works have two major drawbacks. First, they used Hierarchical

Clustering, which is not very accurate and computationally expensive. Second, they

experimented on small datasets (a few tens to a few hundreds of species).

We overcome both these drawbacks here. As mentioned in the introduction, we

use Spectral Clustering (old from [1] and new), which is known to be highly accurate.

To o↵set the high computational cost we use sampling (old from [1] and new). Also,

we experiment with about 2, 000 species of rice.

The rest of the manuscript has three more chapter. Chapter 1 presents both our

old and new Spectral Clustering. In Chapter 2, we discuss Pivotal Sampling and its

new application. Finally, Chapter 4, provides conclusion and future work.

4



Chapter 2

Clustering on Phenotypic Data

In this chapter, we explore clustering methods for phenotypic data of rice species,

with focus on Spectral Clustering. In Section 2.1, we discuss the standard Spectral

Clustering algorithm along with the distance measures commonly used in it. Section

2.2 introduces a novel modification to the standard Spectral Clustering, which involves

using a base “a” exponential function, instead of the natural exponential function, to

build the similarity matrix. We theoretically justify this choice as well. In Section

2.3, we combine our above novelty with another improvement of local scaling in the

Spectral Clustering algorithm. Section 2.4 describes the data, discusses its normaliza-

tion, and provides eigenvalue analysis to support our novel algorithm. In Section 2.5,

we first compute the ideal number of clusters. Second, we give results for variants of

Spectral Clustering and the current standard Hierarchical Clustering. Here we show

that our proposed base “a” locally scaled Spectral Clustering works better. Finally,

and third, we give results for another popular clustering algorithm (Gaussian Mixture

Model) and show that our proposed algorithm is the best. Section 2.6 provides the

conclusion of the chapter.

2.1 Standard Spectral Clustering

Spectral Clustering is one of the most popular modern clustering algorithms. It is

simple to implement and can be solved e�ciently by standard linear algebra software.

5



Given a set of points S = {p1, p2, ..., pn} in Rm that we want to cluster into k subsets,

the algorithm consists of below steps [11].

• Form a similarity matrix A such that

Aij = e

✓
�

dpipj
2�2

◆

, (2.1)

with i, j 2 {1, ..., n} and Aii = 0. Here, dpipj denotes the distance between two

points pi and pj and � defines the decay of the distance.

• Construct the Laplacian matrix

L = I �D� 1
2AD� 1

2 , (2.2)

where D is a diagonal matrix whose (i, i) element is the sum of the elements of

A’s ith row.

• Let e1, e2 .., ek be the first k eigenvectors of L. Then, form the matrix X =

[e1, e2...., ek] by stacking the eigenvectors as columns of this matrix.

• Form Y by normalizing X’s rows to unit length.

• Cluster Y using the k�Means clustering.

The earlier work that we extend here [1] used this standard Spectral Clustering.

There are many ways to the distance between points pi and pj in (2.1), i.e., dpipj .

Some common ones are Euclidean, Squared-Euclidean, and Correlation, and are given

below.

• Euclidean: It represents the straight-line distance between two points in Eu-

clidean space, and is calculated as follows:

dij =

vuut
mX

l=1

(pl
i
� pl

j
)2, (2.3)

where pl
i
is (�l)i and pl

j
is (�l)j.

6



• Squared-Euclidean: It is the square of the Euclidean distance, and is given as

follows:

dij =
mX

l=1

(pl
i
� pl

j
)2, (2.4)

with pl
i
and pl

j
are defined as above.

• Correlation: It captures the correlation between two non-zero vectors, and is

expressed as follows:

dij = 1� (pi � p̄i)t(pj � p̄j)p
(pi � p̄i)t(pi � p̄i)

p
(pj � p̄j)t(pj � p̄j)

, (2.5)

where p̄i and p̄j represent the means of vectors pi and pj, respectively, multiplied

by a vector of ones, and the t indicates the transpose operation.

2.2 Base “a” Spectral Clustering

Spectral Clustering is based upon spectral graph theory. To derive our new algo-

rithm, we first revisit few concepts from this domain. We form a graph from the given

data as follows [12]: (a) use data points as vertices and, (b) connect each point with

the remaining points with an edge having weight equal to the corresponding element

of similarity matrix A.

Definition 2.2.1 (Conductance [13]). Given a graph G = (V,E) with V partitioned

into S and S, the conductance of S is defined as

�(S) =
|E(S, S)|
V ol(S)

, (2.6)

where numerator is the fraction of edges in cut(S, S) and denominator is the sum of

vertices in S. The conductance of G is defined as

�(G) = min
vol(S) vol(V )

2

(�(S)), (2.7)

or the smallest conductance among all sets with at most half of the total volume.

7



Theorem 2.2.1 (Cheeger’s Inequality [13]). For any graph G,

�2

2
 �(G) 

p
2�2, (2.8)

where �2 is the 2nd smallest eigenvalue of L given by (2.2).

From the above theorem, we infer that �(G) is close to zero (or G can be grouped

into 2 clusters) if and only if �2 is close to zero. Note that �1 is always zero. This

characterization carries over to higher multiplicities as well. G can be grouped into k

clusters if and only if there are k eigenvalues close to zero [14].

We propose using a base “a” exponential function instead of the natural exponen-

tial function in (2.1) of the standard spectral clustering algorithm. That is,

Aij = a

✓
�

dpipj
2�2

◆

, (2.9)

where “a” > “e”. This results in Aij of (2.9) being smaller than Aij of (2.1).

Theorem 2.2.2. The elements of non-normalized Laplacian matrix L = D � A get

smaller in absolute sense when we use (2.9) instead of (2.1), with “a” > “e”, to build

A. Here, D is the diagonal matrix whose (i, i) element is the sum of ith row of A.

Further, this leads to reduction in upper bound of eigenvalues of L.

Proof. The first part of the Theorem is obvious. Since elements of A get smaller with

the proposed change of base, the elements of D also get smaller (D is formed via

elements of A). Thus, elements of D � A or L get smaller in the absolute sense. For

the second part of the proof, we use the fact that the spectral radius of the matrix is

bounded above by its norm or ⇢(L)  ||L||.

Conjecture 2.2.3. The above theorem holds true when we change the non-normalized

Laplacian matrix L = D�A with the normalized Laplacian matrix L = I�D� 1
2AD� 1

2 .

We are unable to prove this theoretically. However, this holds true experimentally.

We demonstrate in the Analysis section later in this paper that the change of the base

as discussed in the above conjecture leads to a reduction in the eigenvalues of L. Thus,

8



from the Cheegers’s Inequality (2.8), we infer that we should get a better clustering

when we use base “a” exponential function instead of the natural exponential function

in building the similarity matrix. This is supported by experiments in the Results

section.

2.3 Base “a” Locally Scaled Spectral Clustering

Next, to further improve our clustering, we depart from the conventional practice

of utilizing a global scaling factor (�) in (2.9). Instead, we adopt the concept of a

local scaling factor specific to each data point, as proposed by [2]. Now, the similarity

between the two points is defined as

Aij = a

✓
�

dpipj
�i�j

◆

. (2.10)

The determination of the local scale �i involves analyzing the local statistics within

the neighborhood of a given point. We employ a simple yet e↵ective approach for scale

selection. That is,

�i = dpipK , (2.11)

where pK is the Kth neighbor of pi. The selection of K is independent of the scale and

based upon the data dimensionality.

In the Analysis section, we show that this choice of similarity function leads to

further reduction in eigenvalues of L (more than just use of base “a” exponential

function). Thus, again by Cheegers’s Inequality (2.8), this choice of the similarity

function should lead to better clustering than both the natural exponential function

and base “a” exponential function clustering. This is again supported by experiments

in the Results section.

9



2.4 Analysis

Few settings of our algorithms from previous sections are as follows: (a) The best

value of “a” (the base of the exponential function used to build the similarity matrix)

for us turns to be “30”. (b) The most fitting value of K (neighbor of a point in local

scaling) comes to 180.

Below, in Section 2.4.1 we describe the rice data. Section 2.4.2 discusses the

normalization of data. Finally, in Section 2.4.3 we do eigenvalue analysis to justify

the use of base “30” as well as local scaling in Spectral Clustering.

2.4.1 Data Description

Our algorithm can be applied to any plant data, however, in this work, we do

experiments on the rice data. This data is taken from The International Rice Infor-

mation System (IRIS) (www.iris.irri.org)- a platform for meta-analysis of rice crop

plant data [15]. It consists of 12 phenotypic (or physical) characteristics of 1865 rice

species. A snapshot of this data is given in the Table 2.1.

Sr. No. Cudicle Cultural Cuneiform Grain Grain Grain
Repro Repro Repro Length Width Weight

-duction -duction -duction per
100 Seed

1 5 147 16 8.7 3.1 2.9
2 6 150 27 7.1 3.3 2.1
– – – – – – –

1875 3 56 16 7.7 3.4 2.8

Sr. No. HDG Lightness Leaf Leaf Plant Post Stem
80HEAD of Color Length Width Harvest Height

Traits
1 102 25 72 1.1 29 54
2 123 20 73 1.5 27 45
– – – – – – –

1875 69 10 31 1 16 23

Table 2.1: Phenotypic data of rice plant.

10



2.4.2 Normalization

Let us consider a dataset consisting of n species with m distinct characteristics.

We begin by normalizing the characteristics as follows [1]:

(�j)i =
(xj)i �min(xj)

max(xj)�min(xj)
. (2.12)

Here,(�j)i and (xj)i are the normalized and the actual value of the jth characteristic

for the ith specie, respectively. Next, we represent each specie as

pi =

2

6666664

(�1)i

(�2)i
...

(�m)i

3

7777775
,

for i = 1, 2, .., n.

2.4.3 Eigenvalue Analysis

Table 2.2 illustrates the first 30 smallest eigenvalues of the Laplacian matrix ob-

tained from similarity matrix built using natural exponential function, base “30” ex-

ponential function, and base “30” & locally scaled exponential function. Additionally,

Figure 2.1 plots these eigenvalues.

This table and figure validates our Conjecture 2.2.3. That is, the eigenvalues

associated with base “30” exponential function are closer to zero as compared to the

eigenvalues associated with the natural exponential function. Thus, as mentioned

earlier, using Cheegers’s Inequality (2.8) base “30” exponential function should result

in better clustering than the natural exponential function based clustering. This turns

to be true experimentally, which we demonstrate in the results section.

Second, we further observe that, as claimed in Section 2.3, eigenvalues correspond-

ing to base “30” & locally scaled exponential function are more closer zero than the

11



Figure 2.1: First 30 eigenvalues obtained using natural exponential function, base “30”
exponential function, and base “30” & locally scaled exponential function for building
the similarity matrix.

prior two function choices. Thus, again by using Cheegers’s Inequality (2.8), this

function should give the best clustering. This turns to be true experimentally as well,

which we again demonstrate in the results section.

2.5 Results

In this results section, we perform three kinds of experiments. In Section 2.5.1,

we determine the ideal number of clusters. Section 2.5.2 gives the results of variants

of Spectral Clustering and current standard Hierarchical clustering, and also demon-

strates that our proposed algorithm (base “30” locally scaled Spectral Clustering)

works better. Finally, in Section 2.5.3, we experiment with another popular clustering

algorithm (Gaussian Mixture Model), and show that our proposed algorithm is the

best.
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Sr. No. 1 2 3 4 5 6 7 8 9
Base (e) Fun 0.0000 0.6653 0.8397 0.8677 0.9038 0.9159 0.9235 0.9402 0.9472

Base (30) Fun 0.0000 0.4272 0.6642 0.7078 0.7134 0.8025 0.8151 0.8261 0.8441

Base (30) locally scaled Fun 0.0000 0.2677 0.5005 0.5357 0.5615 0.6706 0.7008 0.7085 0.7162

Sr. No. 10 11 ... 25 26 27 28 29 30
Base (e) Fun 0.9538 0.9606 ... 0.9916 0.9918 0.9926 0.9929 0.9934 0.9936

Base (30) Fun 0.8468 0.8761 ... 0.9420 0.9439 0.9457 0.9468 0.9501 0.9506

Base (30) locally scaled Fun 0.7323 0.7777 ... 0.8794 0.8820 0.8862 0.8933 0.8942 0.8977

Table 2.2: Small eigenvalues of Laplacian matrices obtained using di↵erent similarity
matrices.

2.5.1 Ideal Number of Clusters

Determining the ideal number of clusters is always a dataset specific task, and

we have many methods to approximate this number. A commonly used method is

the Eigen-Gap heuristic [11] tailored for Spectral Clustering. This heuristic says that

given �i’s as the eigenvalues of the Laplacian matrix, k is the ideal number of clusters

when the eigenvalues �1, �2, .., �k have small magnitude while �k+1 has comparatively

much higher magnitude.

As mentioned earlier, Figure 2.1 displays the 30 smallest eigenvalues derived from

the Laplacian matrix obtained using similarity matrix built using three functions from

the previous section. While the eigenvalues of natural exponential function show a

jump at eigenvalues numbered 1 and 2, the eigenvalues of both base “30” exponential

function and base “30” locally scaled exponential function show a jump at eigenvalues

numbered 1, 2, 5 and 10. Plant biologists are typically interested in more number of

clusters, and hence, we choose 5, 10, 15, and 20 as the ideal number of clusters for our

experimentation.
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Old Base New Old SC Base “30” New SC
Clusters Distance SC “30” SC SC HC Vs SC Vs Vs

HC % HC % HC %
Euclidean 0.1249 0.1235 0.1258 0.07

5 SqEuclidean 0.215 0.2214 0.2242 0.1349 28.88 33.8 34.15
Correlation 0.2200 0.2284 0.2290 0.1707
Euclidean 0.0952 0.1103 0.1113 0.0662

10 SqEuclidean 0.1592 0.1952 0.2002 0.1079 35.64 51.55 55.43
Correlation 0.1747 0.1913 0.1987 0.1288
Euclidean 0.0841 0.0981 0.0946 0.026

15 SqEuclidean 0.1342 0.1714 0.1725 0.0677 51.55 71.23 72.33
Correlation 0.1517 0.1693 0.1719 0.1001
Euclidean 0.0784 0.0881 0.0874 0.0128

20 SqEuclidean 0.1109 0.1569 0.1587 0.0432 83.35 103.15 103.40
Correlation 0.1454 0.1611 0.1613 0.0793

Average percentage gain 49.86 64.93 66.33

Table 2.3: Silhouette values of di↵erent clustering algorithms.

2.5.2 Comparison of variants of Spectral Clustering with Hi-

erarchical Clustering

Here, we compare four clusterings. First is the standard Spectral Clustering as

described in Section 2.1 (also natural exponential function based Spectral Clustering),

and used in [1]. We refer to this as Old SC. Second is our proposed base “30” expo-

nential function based Spectral Clustering as elaborated in Section 2.2. We call this

the Base “30” SC. Third is, again our proposed, base “30” locally scaled exponential

function based Spectral Clustering as descibed in Section 2.3. We call this New SC.

Finally, the fourth is Hierarchical Clustering, which is mentioned in the literature. We

refer to this as HC.

The results of this comparison are given in Table 2.3. Here, the first column

denotes the number of the clusters that are chosen based upon the previous analysis.

The second column contains the distance metrics used to build the similarity matrix in

the clustering algorithms. Columns three through six list the silhouette values of the

respective algorithms. Best values in a cell are highlighted in bold. Finally, columns

seven through nine give the percentage gain of Old SC, Base “30” SC, and New SC
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over HC, respectively. The best values are used to compute this gain.

We conclude that most improvement in clustering quality is obtained when we

move from Old SC to Base “30” SC (49.86% to 64.93% gain over HC). Further, New

SC leads to a little bit more improvement (64.93% to 66.33% gain over HC). To sum

up, New SC works the best.

2.5.3 Results using another Popular Clustering

In this section, we present results of another popular clustering. Table 2.4 presents

the silhouette values for Gaussian Mixture Model (GMM) Clustering. Here, we cluster

the data by considering four cases, namely when the covariance matrix is full and

has shared covariance (Type 1), the covariance matrix is diagonal and has shared

covariance (Type 2), the covariance matrix is full and has unshared covariance (Type

3), and the covariance matrix is diagonal and has unshared covariance (Type 4).

Comparing the results of this clustering with our New SC from Table 2.3, we find that

our proposed algorithm works the best (22.05% better).

Clustering
Clusters No.

5 10 15 20

Type 1 0.1855 0.1445 0.1098 0.1014
GMM Clustering Type 2 0.2096 0.1573 0.1220 0.1351

Type 3 0.1906 0.1023 0.0867 0.0669
Type 4 0.1673 0.1386 0.1304 0.0607

Table 2.4: Silhouette values for GMM clustering.

2.6 Conclusion

In this chapter, we focused on clustering rice species using their phenotypic char-

acteristics. Initially, we discussed the standard Spectral Clustering algorithm. Then,

we proposed our novel base “30” Spectral Clustering. Next, we combined our novelty

of base “30” with an existing technique of local scaling in the Spectral Clustering algo-

rithm. Further, we discussed the rice data, normalized it, and performed an eigenvalue

analysis to justify our novel algorithm.
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Finally, we performed experiments. Here, we first computed the ideal number

of clusters. Second, we compared the proposed variants of the Spectral Clustering

algorithm with the current standard Hierarchical Clustering. Here, we showed that

our base “30” locally scaled Spectral Clustering works better. Finally, and third,

we gave results for another popular clustering (GMM), and demonstrated that our

proposed algorithm is the best.
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Chapter 3

Sampled Clustering on Phenotypic Data

In this chapter, we explore sampling to reduce the complexity of clustering. In

Section 3.1, we discuss Pivotal Sampling, which is an unequal probabilistic sampling

algorithm. Section 3.2 discusses the application of this sampling to phenotypic data

and introduces novel modifications in computing the inclusion probability employed

in sampling (deviation from the median provides better results in comparison to the

deviation from the maximum). Next, in Section 3.3, we perform analysis to support

our novelty. Here, we also experiment with another popular sampling algorithm; Pois-

son Sampling. We first show median based approach works better in case of Poisson

Sampling as well, and second, we show that Pivotal is slightly better than Poisson.

Further, Section 3.4 compares variants of Sampled Spectral Clustering with Hierar-

chical Clustering demonstrating that our novel algorithm (base “30” locally scaled

Spectral Clustering with median based Pivotal Sampling) works the best. Further, we

end this chapter with a summary in Section 3.5.

3.1 Pivotal Sampling

Pivotal Sampling [16] is an e↵ective non-uniform probabilistic sampling technique

without replacement, which employs a fixed sample size. Consider a finite population

U with a size of n, where each unit is uniquely labeled i = 1, 2, ..., n. A sample S,

a subset of U , can have a size determined either randomly (N(S)) or fixed (N). An
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integral aspect of this unequal probability sampling technique involves acquiring the

inclusion probabilities for all units in the population, denoted as ⇡i with i = 1, 2, ...,

n. This technique involves sequentially scanning of the population, wherein at each

iteration there is a duel between two units, i and j, with inclusion probabilities of ⇡i

and ⇡j, respectively, to get selected or rejected from the sample.

• Selection step: If (⇡i + ⇡j � 1), then one of the units will be selected (i.e.,

sampled).

• Rejection step: If (⇡i+⇡j < 1), then one of the units will be rejected (i.e., not

sampled).

In the Selection step, we set one of the probabilities to 1 while in the Rejection,

we set one of the probabilities to 0. By repeating this process, we get our sample of

the desired size. Since there is for a single pass or scan of the data, the method’s

computational complexity is O(n).

3.2 Application

In our earlier work, the probabilities in the pivotal sampling algorithm were taken

as a function of variations in the characteristics of the plant species. Plant height,

number of pods per plant, days to pod initiation, seed yield per plant, etc., are some

characteristics examples. Specifically, this probability for the ith specie was taken to

be inversely proportional to

devi =
mX

j=1

((max(�j)i=1,..,n)� (�j)i), (3.1)

where devi denotes the deviation for the ith specie, max(�j)i=1,..,n denotes the maxi-

mum value of the jth characteristic over all the species, and (�j)i denotes the value of

jth characteristic for the ith specie.

This method of computing deviation implies that the higher the characteristic

values of a specie, the higher its probability. Thus, the higher chance that it would

18



be selected in the sample (and would represent all the species). However, species with

higher characteristic values representing all species is not ideal. Take ‘days to pod

initiation’ characteristic for example. Here, it could be that most species take less

number of days to pod initiation. Hence, having a specie that takes more number of

days for pod initiation, to represent all would be inaccurate.

Hence, we propose the use of the median function instead of the maximum function

in (3.1). That is,

devi =
mX

j=1

((median(�j)i=1..,n)� (�j)i). (3.2)

This would ensure that the samples consist of species with characteristic values closer

to the median values. Thus, such sampled species would represent all the species

better. We support our this choice by performing statistical analysis as well as exper-

iments.

The final inclusion probability of ith specie is obtained by normalizing as follows

[1]:

⇡i = N
1

deviP
n

i=1
1

devi

. (3.3)

We then iteratively apply the selection and rejection steps of the pivotal sampling

technique in order to obtain a sample of size N .

Next, we perform earlier discussed clustering techniques on the sampled data of

size N . Since the total data is of size n (with n > N), there is a need to reverse map

the remaining n�N data points to the required cluster. For this, we define the notion

of average similarity, which between the non-clustered specie p̃ and the cluster Ck is

given as

AS(Ck, p̃) =
1

#(Ck)

X

y2Ck

a

✓
�

dp̃y
�p̃�y

◆

. (3.4)

Here, #(Ck) represents the number of species in cluster Ck. We compute the average

similarity of p̃ with all the k clusters and assign it to the cluster with which p̃ has the

maximum similarity.
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3.3 Analysis

In order to assess the quality of the obtained samples, we employ the estimation of

the following metrics: the Population Total (PT) estimator and the Horvitz-Thompson

(HT) estimator. We define the PT estimator for a specific characteristic as the summa-

tion of all the values associated with that characteristic. That is, for a characteristic

j, it is computed as

(YPT )j =
UX

i=1

(�j)i, (3.5)

where U is the set of all species (or #(U)=n) and (�j)i is the value of the jth

characteristic for the ith specie.

The HT estimator is defined as follows:

(YHT )j =
SX

i=1

(�j)i
⇡i

, (3.6)

where S is the set of samples (or #(S)=N), (�j)i is defined as above, and ⇡i denotes

inclusion probability of ith specie. The sampling is better when the values of the HT

estimators are closer to the PT estimators. The size of the sample N taken is 500.

Table 3.1 lists the PT estimators, HT estimators when using the maximum function

in (3.1), and HT estimators when using the median function in (3.1) for all the 12

characteristics. The first thing we observe from the table is that the PT estimators

are close to both the sets of HT estimators, and hence, both the samplings are good.

Second, we also observe that the PT estimators are closer to the HT estimators when

using the median function than the HT estimators when using the maximum function.

To better demonstrate the second observation, we plot the di↵erence between the

PT and the HT estimators (when using both the maximum function and the median

function) for all characteristics in Figure 3.1. We can notice from this figure that the

median function leads to a smaller di↵erence in 9 of the 12 characteristics as compared

to the maximum function. Thus, median based sampling is better.

Here, we also compare with another popular sampling, i.e. Poisson Sampling.
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Characteristics PT HT (Max) HT (Median)
estimators estimators estimators

1 9.037800e+03 9.099514e+03 9.032072e+03
2 2.121750e+05 2.113126e+05 2.103986e+05
3 3.057500e+04 3.120878e+04 3.089743e+04
4 1.614470e+04 1.619068e+04 1.612586e+04
5 5.661400e+03 5.625295e+03 5.652058e+03
6 4.630100e+03 4.599130e+03 4.538882e+03
7 1.865000e+05 1.885044e+05 1.852332e+05
8 3.343930e+04 3.508258e+04 3.456751e+04
9 1.024092e+05 1.034117e+05 1.026595e+05
10 2.569800e+03 2.552394e+03 2.562038e+03
11 4.660790e+04 4.639347e+04 4.629499e+04
12 7.214200e+04 7.184603e+04 7.227474e+04

Table 3.1: PT and HT estimators with Pivotal Sampling.

Figure 3.1: Di↵erence between PT and HT estimators when pivotal sampled with
maximum function and median function.
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Again, Table 3.2 lists the PT estimators, HT estimators when using the maximum

function in (3.1), and HT estimators when using the median function in (3.1) for all the

12 characteristics. We plot the di↵erence between the PT and the HT estimators (when

using both the maximum function and the median function) for all characteristics in

Figure 3.2. From both the table and figure we can see that median function leads to a

smaller di↵erence in all the 12 characteristics as compared to the maximum function.

Thus, median based sampling is again better.

If we compare the best of Pivotal Sampling (median based) with the best of Poisson

Sampling (median based), we find that the Pivotal is slightly better. Hence, we use

this sampling for our experiments in the next section.

Characteristics PT HT (Max) HT (Median)
estimators estimators estimators

1 9.037800e+03 8.475070e+03 8.775710e+03
2 2.121750e+05 1.963557e+05 2.099071e+05
3 3.057500e+04 2.918635e+04 2.991180e+04
4 1.614470e+04 1.521900e+04 1.613994e+04
5 5.661400e+03 5.307340e+03 5.659630e+03
6 4.630100e+03 4.399400e+03 4.636690e+03
7 1.865000e+05 1.768083e+05 1.852229e+05
8 3.343930e+04 3.242312e+04 3.382171e+04
9 1.024092e+05 9.535065e+04 1.007785e+05
10 2.569800e+03 2.427490e+03 2.552710e+03
11 4.660790e+04 4.329817e+04 4.599378e+04
12 7.214200e+04 6.767168e+04 7.234891e+04

Table 3.2: PT and HT estimators with Poisson Sampling.

3.4 Results

Here, we compare three algorithms. First, is the standard Spectral Clustering

(natural exponential Spectral Clustering) along with the maximum function based

Pivotal Sampling as used in [1]. We refer to this as Old Sampled SC. Second is the

base “30” locally scaled Spectral Clustering along with the median function based

Pivotal Sampling (our novel algorithm). We call this New Sampled SC. Finally, the
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Figure 3.2: Di↵erence between PT and HT estimators when poisson sampled with
maximum function and median function.

third is the Hierarchical Clustering. We refer to this as HC. The most fitting value of

K (neighbor of a point in local scaling) comes to be 400.

The results for this are given in Table 3.3. Here, the first column denotes the

number of the clusters. The second column contains the distance metrics used to

build the similarity matrix in the clustering algorithms. Columns three, four, and five

list the silhouette values of the three algorithms mentioned in the above paragraph.

Columns six and seven give the respective gain. As evident, the Old Sampled SC gives

50.10% gain over HC while our New Sampled SC improves this gain to 61.24%. Thus,

our new algorithm is substantially better than the current best and also computational

cheaper.

3.5 Summary

This chapter also dealt with the clustering of rice phenotypic data but after sam-

pling of data to reduce the complexity of clustering. Initially, we discussed Pivotal

Sampling. Then, we discussed the novel application of Pivotal Sampling to rice data.

The novelty involved using a more intuitive function (median instead of a maximum)
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Old New HC Old New
Clusters Distance Sampled SC Sampled SC Sampled SC Sampled SC

Vs HC % Vs HC %
Euclidean 0.1218 0.127 0.07

5 SqEuclidean 0.2111 0.2233 0.1349 33.33 38.08
Correlation 0.2276 0.2357 0.1707
Euclidean 0.0851 0.1043 0.0662

10 SqEuclidean 0.1602 0.1943 0.1079 32.76 53.26
Correlation 0.171 0.1974 0.1288
Euclidean 0.0815 0.0858 0.026

15 SqEuclidean 0.1348 0.1586 0.0677 57.14 62.94
Correlation 0.1573 0.1631 0.1001
Euclidean 0.0751 0.0774 0.0128

20 SqEuclidean 0.1115 0.1367 0.0432 77.18 90.67
Correlation 0.1405 0.1512 0.0793

Average percentage gain 50.10 61.24

Table 3.3: Silhouette values of variants of Sampled Spectral Clustering and Hierarchi-
cal Clustering

in computing the inclusion probabilities. We supported this design choice via statis-

tical measures. Next, we demonstrated that this choice of median is better in not

just Pivotal Sampling but in Poisson Sampling as well. We also showed that Pivotal

Sampling works slightly better than Poisson Sampling.

Further, experimentally we demonstrated that our novel algorithm (base “30” lo-

cally scaled Spectral Clustering with median based sampling) is better than old natural

exponential Spectral Clustering with maximum based sampling. We also showed that

our new algorithm is substantially better than the currently prevalent Hierarchical

Clustering and also cheaper than it.
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Chapter 4

Conclusion and Future Work

Phenotypic data of plants is commonly used to group species into di↵erent cate-

gories, which is further used in breeding programs. Hierarchical Clustering (HC) is a

common algorithm that is used for implementing such groupings. Since this algorithm

is not very accurate and expensive as well, recently authors in [1] proposed the use

of the standard Spectral Clustering (SC) to improve accuracy and Pivotal Sampling

to reduce the complexity. They demonstrated the usefulness of their algorithm via

experiments on the soybean plant.

In this work, we proposed a novel base “30” locally scaled SC that improved the

standard SC. We performed experiments on 1865 rice species. Initially, an eigenvalue

analysis justified the use of this new algorithm. Next, we demonstrated that our

base “30” locally scaled SC led to larger improvement over HC (66.33%) as compared

the improvement of standard SC over HC (49.86%). We also showed that our new

algorithm worked better than another commonly used clustering of GMM (22.05%

better).

Further, we proposed a better application of Pivotal Sampling to plant phenotypic

data. Earlier, a maximum function was used to compute the inclusion probabilities

in Pivotal Sampling, which was not intuitive. Instead, we proposed the use of a

median function that worked better. We performed experiments on 1865 rice species.

Initially, we performed a statistical analysis that justified our choice on not just Pivotal

Sampling but also on another popular probabilistic sampling (Poisson). Next, we
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showed that Pivotal Sampling performed better than Poisson Sampling. Finally, we

demonstrated that our base “30” locally scaled SC with median Pivotal sampling gave

61.24% improvement over HC, which is substantially better than the standard SC with

maximum Pivotal Sampling’s 50.10% improvement over HC.

There are multiple future work directions here. First, in one of the seminal works

[17], the authors have listed su�ciency conditions for SC to work well. It would be

very useful to translate those conditions to plant data. Second, it would be useful

to experiment with other accurate clusterings and samplings (e.g., see [18]). Third,

although phenotypic characteristics are useful for clustering, genetic data of plant

species carries more information. In our earlier work [19], we had explored the possi-

bility of using genetic data for clustering, however, reduced data was used there. It

would be interesting to experiment with the full data exhaustively.
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