
Detection and Mitigation of Cyber
Attacks in Smart Grid Networks

MS (Research) Thesis

By

Nisha Kumari Barsha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2024

Detection and Mitigation of Cyber
Attacks in Smart Grid Networks

A THESIS

submitted to the

INDIAN INSTITUTE OF TECHNOLOGY INDORE

in fulfillment of the requirements for

the award of the degree

of

Master of Science (Research)

by

Nisha Kumari Barsha

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

May 2024

INDIAN INSTITUTE OF TECHNOLOGY INDORE

CANDIDATE’S DECLARATION

I hereby certify that the work which is being presented in the thesis entitled “Detection

and Mitigation of Cyber Attacks in Smart Grid Networks” in the fulfillment of the require-

ments for the award of the degree of MASTER OF SCIENCE (RESEARCH) and submitted

in the DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING, Indian Institute

of Technology Indore, is an authentic record of my own work carried out during the time

period from August 2022 to May 2024 under the supervision of Prof. Neminath Hubballi,

Professor, Indian Institute of Technology Indore, India.

The matter presented in this thesis has not been submitted by me for the award of any

other degree of this or any other institute.

Signature of the Student with Date

(Nisha Kumari Barsha)

This is to certify that the above statement made by the candidate is correct to the best of

my knowledge.

Signature of Thesis Supervisor 1

with Date

(Prof. Neminath Hubballi)

Nisha Kumari Barsha has successfully given her MS (Research) Oral Examination held

on

22-May-2024

Nisha Barsha
Stamp

Signature of Chairperson, OEB Signature of External Examiner Signature of Thesis Supervisor

#1

Date: Date: Date:

Signature of PSPC Member #1 Signature of PSPC Member #2

Date: Date:

Signature of Convener, DPGC Signature of Head of Department

Date: Date:

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my gratitude to people who in one or

the other way contributed by making this time as learnable, enjoyable, and bearable as

possible. At first, I would like to thank my supervisor Prof. Neminath Hubballi,

who was a constant source of inspiration during my work. With his constant guid-

ance and research directions, this research work has been completed. His continuous

support and encouragement has motivated me to remain streamlined in my research

work. I am also grateful to Dr. Ranveer Singh, HOD of Computer Science for all

his help and support.

I am thankful to Dr. Bodhisatwa Mazumdar and Prof. Trapti Jain, my

research progress committee members for taking out some valuable time to evaluate

my progress all these years. Their valuable comments and suggestions helped me to

improve my work at various stages.

My sincere acknowledgement and respect to Prof. Suhas S. Joshi, Director,

Indian Institute of Technology Indore for providing me the opportunity to explore my

research capabilities at Indian Institute of Technology Indore.

I would like to express my heartfelt respect to my parents, my friends, and my

elder brother for the love, care, and support they have provided to me throughout my

life.

Nisha Kumari Barsha

To you as a reader

ABSTRACT

Smart grid networks use Supervisory Control and Data Acquisition (SCADA) sys-

tems for managing the grid network. These are critical infrastructure meeting energy

demands of consumers. SCADA systems collect measurement data from different

places of the grid network to make safety-critical control decisions. However, these

networks use TCP/IP networks for transmitting such data and this has exposed them

to cyber attacks, necessitating effective detection mechanisms. This thesis presents a

three-fold contribution to enhancing the security of smart grids.

In the first contribution, a comprehensive approach is taken to identify and ad-

dress cyber threats in smart grid networks. Three broad classes of anomalies, namely

single message anomaly, message sequencing anomaly, and time based anomaly, are

introduced. We show that several cyber attacks in smart grid networks can be de-

tected by identifying these three types of anomalies. A novel state transition machine

model, Deterministic Counting Timed Automata (DCTA) is proposed to identify

these anomalies. DCTA formalizes constraints on message attributes, event timing, and

counter values associated with states, showcasing its efficacy in detecting cyber attacks.

Experimental validation with a publicly available dataset establishes the capability of

DCTA and its benchmarking against a recent method from the literature.

The second contribution addresses specific security threats to smart grid infrastruc-

ture, focusing on flooding and bruteforce attacks. We model the Modbus communica-

tion messages used in SCADA systems as a probability distribution representing nor-

mal communication. Subsequently, we compare the probability distribution of a test

interval with the base distribution using Hellinger distance metric to detect anoma-

lies. Experimental evaluations using two publicly available datasets demonstrate the

method’s effectiveness in detecting flooding and bruteforce attacks, highlighting its

potential for enhancing the security of smart grid networks.

In the third contribution, we study two types of attacks known as malformed and

message sequencing attacks. In response, a method using first-order logic statements

is introduced for the detection of variants of malformed messages. Furthermore, a

i

filtering mechanism using the Extended Berkeley Packet Filter (eBPF) is proposed to

identify and mitigate the impact of malformed and sequencing attacks. Experimental

results demonstrate the effectiveness and robustness of this filtering approach against

diverse attack variants and intensities.

Collectively, these contributions provide a holistic approach for strengthening the

security of smart grid networks by identifying, formalizing, and mitigating various cy-

ber threats. The methodologies introduced in these works contribute to the ongoing

efforts to develop advanced and adaptive security mechanisms for critical infrastruc-

ture.

ii

List of Publications

Journals

1. N.K. Barsha and N. Hubballi, “Anomaly Detection in SCADA Systems: A

State Transition Model”, IEEE Transactions on Network and Service Manage-

ment, 2024 (Accepted).

Conferences

1. N. Hubballi and N.K. Barsha, “Mitigating Resource Depletion and Message

Sequencing Attacks in SCADA Systems”, 38th International Conference on Ad-

vanced Information Networking and Applications (AINA), pp. 37-47, 2024.

2. N.K. Barsha and N. Hubballi, “Detecting Cyber Attacks in Smart-Grid Net-

works with Probability Distribution Comparison”, 24th IEEE Consumer Com-

munications & Networking Conference (CCNC), pp. 648-649, 2024.

3. N.K. Barsha and N. Hubballi, “Network Flow based Cyber Attack Detection

in Smart-Grid Networks”, PhD Forum 18th International Conference on Infor-

mation Systems Security (ICISS) 2022.

iii

Contents

Abstract i

List of Publications iii

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Motivation . 2

1.2 Thesis Contributions . 4

1.3 Organization of the Thesis . 6

2 Literature Survey 7

2.1 Machine Learning-based Models . 9

2.1.1 Classification . 10

2.1.2 Clustering . 11

2.1.3 Deep Learning . 12

2.2 State Transition Models . 13

2.3 Other Methods . 15

3 SCADA Anomaly Detection: A State Transition Modeling 19

3.1 Introduction . 19

3.2 Related Work . 21

3.3 Proposed Anomaly Detector . 21

iv

3.3.1 IEC 60870-5-104 Communication Background 22

3.3.2 Attack Vectors . 23

3.3.3 State Transition Model based Detection 26

3.3.4 State Transition Models for Different Attacks 28

3.4 Experiments and Evaluation . 34

3.4.1 Evaluation . 34

3.4.2 Sensitivity Analysis . 41

3.5 Conclusion . 43

4 Detecting Flooding and Bruteforce Attacks in Smart Grid Networks

with Probability Distribution Comparison 45

4.1 Introduction . 45

4.2 Related Work . 46

4.3 Proposed Detection Method . 47

4.3.1 Design Rationale . 47

4.3.2 Anomaly Detector . 49

4.4 Experiments . 54

4.4.1 Dataset Details . 54

4.4.2 Evaluation . 55

4.4.3 Sensitivity Analysis . 58

4.5 Conclusion . 61

5 Mitigating Resource Depletion and Message Sequencing Attacks in

SCADA Systems 63

5.1 Introduction . 63

5.2 Related Work . 64

5.3 Proposed Method . 65

5.3.1 Background . 65

5.3.2 Malformed and Message Sequencing Attacks 67

5.3.3 Mitigating Attack . 73

5.4 Experiments and Evaluation . 76

v

5.5 Conclusion . 81

6 Conclusion and Future Work 82

6.1 Thesis Contributions . 83

6.1.1 Anomaly Detection in SCADA Systems: A State Transition

Modeling . 83

6.1.2 Detecting Cyber Attacks in Smart Grid Networks with Proba-

bility Distribution Comparison 84

6.1.3 Mitigating Resource Depletion and Message Sequencing Attacks

in SCADA Systems . 84

6.2 Future Work . 85

vi

List of Figures

2.1 Attack Detection in SCADA Systems 9

3.1 APDU Message Format . 22

3.2 Working of Proposed Detection Method 26

3.3 DCTA for Detecting Connection-loss Attack 29

3.4 DCTA for Detecting DoS Attack . 29

3.5 DCTA for Detecting Injection/Rogue Device Attack (Single Message

Anomaly) . 30

3.6 DCTA for Detecting Sequence based Injection Attack and Rogue Devices 30

3.7 DCTA for Detecting for Scanning Attack 32

3.8 DCTA for Detecting Switching Attack 33

3.9 Detection Performance Variation with Different Thresholds 42

4.1 Modbus Query and Response Message Correlation 48

4.2 Probability Distribution Comparison for Dataset-1 52

4.3 Probability Distribution Comparison (Dataset-I) 53

4.4 Probability Distribution Comparison (Dataset-2) 53

4.5 Hellinger Distance v/s Detection Performance for Dataset-1 59

4.6 Hellinger Distance v/s Detection Performance for Dataset-2 60

4.7 Time Window v/s Detection Performance for Dataset-1 60

4.8 Time Window v/s Detection Performance for Dataset-2 61

5.1 Modbus Messaging over TCP/IP . 66

5.2 Grid Network Communication Architecture 68

vii

5.3 Packet Structure of Normal and Malformed Modbus Message 69

5.4 Proposed Packet Filtering with eBPF 74

5.5 eBPF-based Filtering of Packets at NIC 75

5.6 Testbed Setup . 76

5.7 Number of Messages v/s CPU Utilization 77

5.8 CPU Utilization with eBPF Filtering for Different Attacks using IEC-104 78

5.9 CPU Utilization with eBPF Filtering for Different Attacks using Modbus 79

5.10 Packets Processed in Message Sequencing Attack 80

viii

List of Tables

3.1 DCTA Transitions of Figure 3.5 for Injection/Rogue Device Attack (Sin-

gle Message Anomaly) Detection . 30

3.2 DCTA Transitions of Figure 3.6 for Sequence based Injection Attack and

Rogue Devices Detection . 31

3.3 DCTA Transitions of Figure 3.7 for Horizontal Scanning Detection 32

3.4 DCTA Transitions of Figure 3.7 for Vertical Scanning Detection 32

3.5 DCTA Transitions of Figure 3.8 for Switching Attack Detection 33

3.6 Overview of Dataset . 35

3.7 Golden Threshold Values . 38

3.8 Detection Performance Comparison of DCTA with Prior Works on Grand

Dataset . 38

3.9 Detection Performance Comparison of DCTA with Prior Works on Indi-

vidual Attack Types . 39

3.10 Detection Performance of HMLP [1] . 40

3.11 Detection Ability Comparison of DCTA 41

4.1 Dataset-1 Details . 55

4.2 Dataset-2 Details . 55

4.3 Training & Testing Data Duration(CIC Modbus Dataset 2023) 56

4.4 Training & Testing Data Duration . 57

4.5 Parameters for Dataset-1 . 58

4.6 Parameters for Dataset-2 . 58

4.7 Detection Performance . 58

ix

Chapter 1

Introduction

Industrial Control Systems (ICS) play a crucial role in overseeing and managing

critical infrastructure such as electric grids, water distribution networks, and chemical

plants. Typically, Supervisory Control and Data Acquisition (SCADA) systems are

used as part of ICS to monitor and control these infrastructures. For e.g., in wa-

ter distribution networks, SCADA has completely revolutionized the management of

water resources by providing real-time monitoring and control capabilities. By collect-

ing data from sensors installed across pipes, treatment plants, and reservoirs, SCADA

helps operators in optimizing pumping schedules and flow rates, thereby enhancing re-

source utilization. Additionally, this information also helps the operator to detect pipe

leakage and helps in regulating the water pressure to meet the demand. Thus, SCADA

helps in enhancing the capability and reliability of water distribution networks. On

the other hand, SCADA serves as a control hub for the smart grid networks. It allows

operators to keep a close eye on how electricity flows in real time. By collecting mea-

surement information from sensors deployed in the grid network, it gives insights into

parameters like voltage, power, and status of equipment/device. Operators can make

better decisions with this data like changing the route of power supply to balance

the load. SCADA can also remotely manage devices, thus enabling a steady supply

of power. In crisp, SCADA systems facilitate the transfer of measurement data to a

central control center where control decisions are made.

Communication protocols are essential to facilitate these data transfers and com-

1

mand exchanges. These protocols serve as a bridge through which information flows

and commands are executed within the smart grid network. There are both proprietary

and open design protocols available to facilitate these communications. Proprietary

protocols are vendor specific and offer optimized performance but lack the feature of

interoperability, whereas open source protocols have interoperability features and are

preferred more because of the transparency. Application protocols like Modbus [2]

and IEC 60870-5-104 [3] were earlier proprietary but now their design is made public

and standardized. These protocols have gained popularity for communication within

these systems. However, these protocols lack sufficient security measures, especially as

SCADA networks (traditionally isolated) are now being integrated with the internet

and these messages are being sent over TCP/IP making them vulnerable to cyber

attacks. Incidents like the STUXNET attack [4] on the Iranian Nuclear Plant and the

Ukrainian Grid network [5] underscore the severity of such vulnerabilities.

While traditional protection methods involve the installation of firewalls and intru-

sion detection systems, they may not be specifically tailored for safeguarding SCADA

system communications. Moreover, challenges exist in monitoring internal commu-

nications due to the typical placement of these security measures at the network

perimeter. The risk of cyber attacks initiated through compromised devices within

the SCADA infrastructure calls for a focus on monitoring application layer communi-

cations for anomaly detection.

The rest of this chapter is organized as follows. The motivation behind our work is

described in Section 1.1 and also highlights the objectives of our work. In Section 1.2

we summarize the thesis contributions. Outline of the rest of the thesis is described

in Section 1.3.

1.1 Motivation

Smart grid security is crucial for ensuring the reliability as well as stability of mod-

ern power systems. However, smart grids are susceptible to cyber attacks due to the

use of TCP/IP networks over which SCADA communications happen. Attackers may

2

modify or steal sensitive information such as energy consumption patterns, customer

bills and details, etc. They can even hamper the critical components of the smart grid

devices. Hence, it is really crucial to detect these attacks in order to ensure the safety

of smart grid.

Our main motivation is to enhance the security of smart grids by detecting and

mitigating cyber attacks. We acknowledge the inherent threats that are introduced

by the use of TCP/IP networks in smart grids. The existing techniques proposed

for attack detection and mitigation mainly include machine learning models, state

transition models, and other techniques like behaviour based models, signature based

models, etc. Machine learning models entirely depend on the quality and quantity

of data that is being used for training. Thus, it makes them inefficient due to the

limited availability of real-time data. Available state transition models are not able

to categorize attacks into different categories based on their nature. In addition to

this, they fail to detect DoS attacks. Thus, we propose a mechanism to overcome

the limitations of these available techniques. We also note that in the case of DoS

attacks, the volume of data received is very high, and detection models built using

state transition models may not be efficient in tracking them. Owing to this there is

a need for a detection method which is computationally efficient to handle volumes

of packets received. This helps in speeding up the detection process. Further, we

notice that all messages are being sent to the control center where processing is done.

A motivated adversary can impact this control center by sending random packets

(illegal/malformed packets) with an objective of depleting its resources. Attackers

craft malicious packets in order to waste system resources, which we term as resource

depletion attack. We set mitigating such attacks as another objective for our work.

In this thesis, we mainly deal with techniques to detect and mitigate cyber attacks

at the application layer in smart grid networks. For this, we propose various models.

Previous works [6, 7] have shown that analyzing flow level details of SCADA commu-

nications is a reliable method to detect attacks. Several works [7, 8, 9, 10] proposed

attack detection methods based on state transition models owing to the periodic na-

ture of communication in SCADA systems. Such models can flag unusual patterns

3

by identifying sequences and patterns of messages. However, these models have their

own drawback which includes the inability to detect DoS attacks and categorization

of attacks. There are a number of ways for detecting DoS attacks in conventional

networks but it has not been explored much in smart grid setup. The traditional

methods to safeguard include the use of firewalls. However, these firewalls themselves

are susceptible to attacks. Also, the packet filtering mechanism is not reliable unless

the packet content is thoroughly examined. Various detection mechanisms [9, 11] have

been introduced to address this issue. However, this mechanism works as an applica-

tion, its monitoring code executes in user space and utilizes the resources for context

switch in between user and kernel space. To overcome these limitations present in

the existing techniques, we made three major contributions which are highlighted in

Section 1.2. Drawing motivation from this, we set the following as our objectives for

the work.

1. To detect and categorize different cyber attacks at the application layer in smart

grid networks.

2. To design a lightweight method for detecting flooding based DoS attacks in smart

grid networks.

3. To mitigate resource depletion attacks in smart grid networks.

To achieve these objectives, we make three contributions as outlined in Section 1.2.

1.2 Thesis Contributions

A brief overview of our research contributions is provided below, and more details

are available in the later chapters.

I State Transition Modelling for Cyber Attack Detection: While acknowl-

edging the limitations of existing state transition based models, we design a new

state transition machine based model to detect and categorize different cyber attacks.

We categorized attacks into three anomaly types, namely, single message anomaly,

4

message sequencing anomaly, and time based anomaly. Identifying these anomalies

helps in detecting different cyber attacks. Our proposed state transition machine

model can identify these anomaly types in SCADA (Supervisory Control and Data

Acquisition) communications. This state transition model has been constructed using

the extended network flow records originating from SCADA communications in smart

grid networks. To evaluate the performance of our proposed model, we used a publicly

available dataset and benchmarked its performance against the prior works.

II Attack Detection Using Probability Distribution Comparison: In our sec-

ond contribution, we propose a lightweight method for detecting flooding attacks and

bruteforce attacks. This detection method is motivated by the fact that SCADA com-

munications are highly periodic and synchronized in nature. Hence, we utilized this

property to detect attacks. We describe a probability distribution based comparison

method for detecting the attacks. Here we generate a baseline probability distribu-

tion using different messages of Modbus communications. Subsequently, we compare

a distribution generated from a known test interval with the distribution generated

earlier to detect anomalies in communication patterns. We evaluated the performance

of our lightweight model via experiments conducted on publicly available datasets for

flooding and bruteforce attacks targeting smart grid networks.

III Mitigating Resource Depletion Attack in Smart grid: In our last contri-

bution, we focused on mitigating the resource depletion attack generated using mal-

formed packets. Traditional methods of protecting SCADA systems, such as deploying

firewalls, have limitations as they rely on software solutions which are vulnerable to

attacks and may not thoroughly inspect packet content. Here we want to filter mal-

formed packets from utilizing any sort of resources. To address this, we designed a

method for offloading the filtering task to network interface cards. Our study identi-

fies various malformed attacks on protocols like IEC-104 and Modbus and proposes a

method to detect them using proposed First Order Logic Predicate statements which

are generated using the protocol specifications. By shifting the screening and filtering

of these malformed packets to programmable network interface cards, we aim to reduce

system resource overhead while ensuring robust security measures against attacks.

5

1.3 Organization of the Thesis

This thesis is organized into six chapters. A summary of each chapter is provided

below:

Chapter 1 (Introduction)

In this chapter, we provide a concise summary of our research, including the back-

ground necessary for understanding our work, the motivation for our work, the unique

contributions of our thesis, and the overall organization of the subsequent sections.

Chapter 2 (Literature Survey)

In this chapter, we discuss the related work on cyber attack detection and mit-

igation in smart grid networks. All the major techniques used for this purpose are

explained in detail.

Chapter 3 (SCADA Anomaly Detection: A State Transition Modeling)

In this chapter, we present our first contribution: State Transition Modelling for

cyber attack detection. Preceding this, we introduce three generic anomaly types and

demonstrate how all existing cyber attacks can be categorized within this framework.

Chapter 4 (Detecting Flooding and Bruteforce Attacks in Smart Grid Net-

works with Probability Distribution Comparison)

In this chapter, we introduce a lightweight probabilistic distribution-based tech-

nique for detecting flooding and bruteforce attacks.

Chapter 5 (Mitigating Resource Depletion and Message Sequencing At-

tacks in SCADA Systems)

In this chapter, we propose an eBPF-based filtering technique to mitigate resource

depletion attacks mounted against smart grid control center.

Chapter 6 (Conclusion and Future work)

In this chapter, we summarize and conclude the work in our thesis and discuss the

future directions in the area.

6

Chapter 2

Literature Survey

As mentioned in Chapter 1, Supervisory Control and Data Acquisition (SCADA)

systems play a crucial role in smart grid networks by facilitating the transmission of

measurement data from various sensory nodes to control centers. This data is then

used to make important decisions regarding the operation and management of the

grid, including safety-critical control decisions. Traditionally, SCADA systems relied

on proprietary communication protocols and networks, which provided a certain level

of security as they were isolated. However, modern grids exchange messages over

TCP/IP networks for improved connectivity and interoperability. Hence, they have

become vulnerable to cyber attacks. Given the critical nature of smart grid infras-

tructure, the security of SCADA systems is of utmost importance. To enhance the

security of the smart grid, it is important to create systems capable of detecting and

mitigating potential cyber attacks that could target the grid infrastructure. Designing

appropriate detection and mitigation techniques requires an understanding of various

threat vectors. In the literature, there is a good coverage of different types of cyber

attacks that pose a threat to SCADA systems in smart grid networks. Attacks like

connection-loss, which disrupts the communication between devices and control cen-

ters; DoS attack, which overwhelms systems with traffic to make them unresponsive;

scanning attack, which looks for vulnerabilities in networked devices; injection attacks

like OS injection and SQL injection, exploiting vulnerabilities in system inputs to exe-

cute unauthorized commands or access data, etc. have been covered. However, this is

7

not an exhaustive list of possible attacks. For a complete taxonomy of various attacks,

the reader is referred to [12].

Grids are critical infrastructure and millions of users depend on them for their

energy security. Thus, it is important to safeguard these networks from cyber attacks.

There are both detection and mitigation techniques proposed for the safety of these

networks. We review the existing literature on detecting and mitigating cyber attacks

in smart grid networks. Existing works related to the security of these systems fall

into the following two categories.

(i) Studying Attack Vectors: Several prior works [13, 14, 15] cover cyber attacks

against grid and SCADA systems and associated protocols. Most studied attacks in-

clude false data injections [15] and denial of service attacks [16]. False data injection

attacks generate false measurement data and have it sent to the control center to

mislead the state estimation or assessment. On the other hand, DoS attacks prevent

the normal operation of either the control center or measurement units/clients from

performing its operations. We study a different class of attacks that target the com-

putational resources of the control center. Such attacks are studied in other domains

like web servers [17] using which the server resources are depleted.

(ii) Detecting the Attacks: These methods develop techniques to detect differ-

ent types of attacks. There are several machine learning algorithms [18, 19], state

transition modeling approaches [9, 20, 7] and commercial IDS solutions [21] available

for this purpose. Many of these techniques rely on Deep Packet Inspection (DPI) [22]

for detecting these attacks. However, these methods detect conventional attacks like

scanning, injection, connection-loss, etc. Lin et al. [23] adopted Bro [24] (now called

zeek) intrusion detection system (IDS) for SCADA networks. Bro being a signature

based IDS; detects attacks by matching signatures. The authors also propose to filter

malformed messages in SCADA systems. However, their study is limited to a limited

number of attribute types and that to of only DNP3 protocol. Further, Bro rules were

manually written for detection. As our work mainly focuses on detecting and miti-

gating different attacks in the SCADA systems, we provide an elaborate discussion on

the various detection methods subsequently.

8

We organize the prior works for attack detection into three groups, i.e. Machine

Learning-based Models, State Transition Models, and Other Methods like Signature-

based intrusion detection systems, Statistical Methods, etc. as shown in Figure 2.1.

These three categories of work are elaborated in the next three sections.

Figure 2.1: Attack Detection in SCADA Systems

2.1 Machine Learning-based Models

Extensive research has been done on the use of machine learning (ML) based models

for cyber attack detection in SCADA networks. These models are trained using good

quality data that comprises of readings from Remote Terminal Units (RTUs) and data

collected from networks, which includes detailed information at the flow and packet

levels. For feature selection for training purposes, a complete range of parameters is

explored, ranging from electrical attributes like voltage, current, angle, and phase val-

ues to network-centric features like traffic volume, source and destination IP addresses,

and even packet payload content. To detect attacks, different classification algorithms

such as decision trees, random forests, and support vector machines are used. The

major drawback for these machine learning models lies in the limited availability of

real world data that is needed for the training of these models. A major concern with

these detection methods is of false positives. Machine learning models tend to gener-

9

ate a large number of false positives. Also, the interoperability of machine learning

models is not straightforward, and mostly its operations are opaque and may not give

a structured representation of the system’s behavior and attack patterns. Major ML

techniques include Classification, Clustering, and Deep Learning techniques. In the

following subsections, we elaborate these machine learning techniques describing how

they are used for attack detection in smart grid networks.

2.1.1 Classification

Classification methods in machine learning are one of the crucial techniques for

attack detection in SCADA systems. It uses both normal scenario as well as at-

tack scenario data for training purposes. These methods include a wide range of

techniques such as Decision Tree [25], Random Forest [25, 18], and Support Vector

Machines [25, 18, 26], which are trained on features extracted from sensor data, con-

trol commands, and network traffic logs. Decision tree and random forest algorithms

construct a tree with attributes of training data with leaf nodes indicating the labels.

Support vector machine decide a decision boundary around the samples separating

both normal and attack cases. Leandros et al. [27] propose a method based on One-

Class Support Vector Machine (OCSVM) for intrusion detection in SCADA. Their

work uses a central OCSVM and multiple OCSVMs are automatically generated for

each significant traffic source in the system. Also, it uses social metric analysis, ag-

gregation techniques, a voting mechanism, and K-means clustering to categorize final

alerts. In a separate work, Simon et al. [28] analyze industrial operation network data

using machine learning and time series-based anomaly detection algorithms to detect

attacks. SVM and Random Forests are used for attack detection, with Random Forest

showing slightly better performance than SVM. Xiangwu et al. [29] propose a fault

detection algorithm, which is developed using a multi-layer neural network (MNN)

and random forest (RF) based on SCADA data. The MNN detects faults early by

analyzing reconstruction errors, while RF accurately identifies fault types. Vivek et al.

[30] introduce an Intelligent Remedial Action Scheme (IRAS) designed to detect cyber

attacks from physical disturbances in smart grids. They propose a decision tree-based

10

anomaly detection method using voltage and current phasor values to differentiate

between normal power line faults and malicious tripping attacks on physical relays to

enhance systems efficiency and reliability.

These models are trained on diverse feature sets derived from Remote Terminal

Unit (RTU) and Phasor Measurement Unit (PMU) data, having measurements such

as current, voltage, as well as attributes extracted from network packets. Such features

provide an overview of grid behavior. After training and evaluation, these classifica-

tion models are used for real-time monitoring. A trained model looks for anomalous

behavior to detect attacks. With regular upgradation and refinement, these methods

help to maintain the security and reliability of the smart grid despite of evolving cyber

security challenges.

2.1.2 Clustering

Clustering in machine learning is a technique where a set of data points are grouped

into clusters based on their similarities. Clusters are formed by maximizing intra-

cluster similarity and minimizing inter-cluster similarity. Clustering techniques use a

variety of algorithms to differentiate between data samples with similarities and differ-

ences. Islam et al. [31] proposed a cluster-based parallel-ensemble method for attack

detection, which aims for both high robustness against evasion attacks and accurate

theft detection. This method operates on two levels of defense, i.e. clustering and

ensemble. Clustering helps reduce regularization and enhance robustness by group-

ing similar patterns together, whereas an ensemble of diverse decision models helps

to improve robustness against transferability issues. The combination of both these

techniques helps in identifying instances of theft with minimized false positives.

To detect cyber attacks in SCADA, various clustering algorithms like K-means clus-

tering [32, 26] and Density-Based Spatial Clustering of Applications with Noise (DB-

SCAN) [33] have been used. The K-means clustering algorithm works by dividing the

dataset into several groups via repetitive phase-wise partitioning. Each data point is

assigned to the cluster with the nearest centroid and this process continues until con-

vergence is achieved. On the other hand, DBSCAN operates by expanding the size of

11

clusters by merging nearby and similar data points into cohesive groups. Here, attacks

are often identified as outliers or as small clusters within the data distribution. These

may represent a deviation from expected patterns, indicating a potential malicious

activity. However, this approach is still prone to generating false alarms, as certain

legitimate communications or behaviors can also be classified as outliers or anomalies

by the algorithm. This draws attention to the need for careful interpretation of results

to differentiate between actual threats and misclassified threats.

2.1.3 Deep Learning

Recent studies [34, 35] have utilized deep learning, specifically convolutional neural

networks (CNNs), to identify cyber threats in SCADA systems. These models auto-

mate feature extraction from data but operate as “black boxes”, lacking transparency

in how they choose features and assess performance. This lack of transparency poses

challenges in understanding how the models make decisions, making them less reliable.

Without insight into which features the model uses and how they impact predictions,

it’s hard to assess reliability and applicability. Additionally, the absence of detailed

information on feature selection and performance evaluation hampers reproducibility

and comparison across studies.

In a recent work of Sayawu et al. [36], authors proposed a specialized Geneti-

cally Seeded Flora Transformer Neural Network (GSFTNN) algorithm for intrusion

detection by analyzing operational pattern anomalies. They used the Washington

University St. Louis Industrial IoT 2018 (WUSTL-IIOT-2018) dataset [37] for the ex-

periment and evaluation purpose. This dataset has data pertaining to various attacks,

including port scanning, address scanning, device identification, aggressive model de-

vice, and exploit device attacks. David et al. [38] proposed a novel deep learning

based framework for attack detection in smart grid, using unsupervised feature learn-

ing. This approach automatically identifies crucial patterns for attack detection in

transmission SCADA systems, reducing dependence on explicit system models and

human expertise. On the similar lines, Ahmad et al. [39] proposed a deep learning

approach for constructing a robust and adaptable Intrusion Detection System (IDS),

12

utilizing a multi-layer perceptron and binary-based architecture. This implementa-

tion demonstrates efficiency in detecting intrusion as well as offers flexibility to detect

variety of threats. Additionally, Sasanka et al. [40] developed a dataset and utilized

deep learning techniques like Stacked Auto-Encoders (SAE) and Deep Belief Networks

(DBN) for feature extraction, followed by classification using Support Vector Machine

(SVM) and Softmax Regression (SMR).

While there are a significant number of Machine Learning and Deep Learning mod-

els for attack detection in SCADA systems, these methods call for a comprehensive

and representative dataset during the training phase [18]. However, these methods

are prone to generating false alarms, which can hamper the overall effectiveness of

the security system [25]. To address these challenges, Suaboot et al. [41] suggest

leveraging ensemble-based techniques like Voting and Boosting to enhance accuracy.

Additionally, they also propose integrating automated detection with rule-based so-

lutions, offering flexibility in identifying unknown malicious incidents. On the other

hand, Hadir et al. [1] demonstrate that machine learning algorithms are vulnerable

to adversarial attacks, resulting in a significant drop in accuracy. In response, they

introduce a hierarchical multi-layer perceptron (HMLP) and use defensive distillation

to enhance the model’s resilience against such attacks. In summary, machine learning

methods require good quality data and can sometimes trigger false alarms. Thus,

researchers are exploring techniques like rule-based solutions to improve accuracy and

flexibility. However, adversaries can exploit vulnerabilities in machine learning models,

leading to reduced accuracy. To counter this, techniques such as hierarchical multi-

layer perceptrons and defensive distillation are being used to make the models more

robust against attacks.

2.2 State Transition Models

State transition modeling involves representing the behaviors of a smart grid sys-

tem as a series of states and transitions between them. These states can represent

different operational conditions or specific error situations that may occur in SCADA

13

systems. By modeling the system behavior, it is possible to detect anomalies or un-

usual patterns in the system’s behavior. One approach to anomaly detection using

state transition model involves identifying sequences of actions that have not been ob-

served before or that are rare based on their probability. For example, if a sequence of

operations are seen that deviates significantly from a known typical behavior, it may

indicate a potential security threat or malfunction in the system. Steven et al. [8] were

among the first to apply this method to Modbus communications, creating a State

Transition Model (STM) to detect anomalies. Authors have utilized the improved

uniformity and stability of control systems concerning their structure, communica-

tion, and setup to implement a lightweight model based intrusion detection system.

Similarly, Goldenberg and Wool [9] introduced a model-based intrusion detection sys-

tem tailored for Modbus/TCP networks commonly used in SCADA systems. Their

method identifies that Modbus traffic between human-machine interfaces (HMIs) and

programmable logic controllers (PLCs) follows a highly predictable pattern. The sys-

tem utilizes deterministic finite automata (DFA) to model each HMI-PLC channel

uniquely, automatically constructing DFAs from around 100 captured messages. This

approach enables deep inspection of Modbus/TCP packets, offering a detailed traffic

model for effective intrusion detection. However, Caselli et al. [10] found that not

all Modbus communications follow predictable cyclic patterns, as assumed by previ-

ous works. Hence, they instead modeled Modbus communication as a Discrete Time

Markov Chain (DTMC), which allows for more flexibility in capturing diverse com-

munication behaviors. To address challenges such as burst traffic patterns observed in

SACDA systems [42], researchers have developed specialized models like burst DFA

(Deterministic Finite Automaton) to capture these behaviors accurately. Fabio et al.

[43] present a novel technique aimed at identifying and mitigating attacks targeted

at SCADA systems. The method utilizes a model checking approach, which involves

converting time-series logs retrieved from SCADA systems into a structured network

of timed automata. Through the application of timed temporal logic, the behavior

exhibited by a SCADA system during an attack scenario is precisely described and

analyzed. This method offers a systematic and formalized means of understanding

14

the dynamics of SCADA systems under attack, facilitating more effective detection

and response strategies. Moreover, Matoušek et al. [7] introduced a method to model

Industrial Control Systems (ICS) communications using their probability or frequency

values within automata structures. They employed two types of automata: Determin-

istic Probabilistic Automata (DPA) and Prefix Tree automata. The traffic between

two devices is also analyzed as conversations. In their approach, each conversation

is represented as a string along with its corresponding frequency or probability of

occurrence. Prefix Tree automata assign frequency values to transitions, indicating

how frequently a particular conversation appears in training sequences. The Aler-

gia learning algorithm is utilized to generate Deterministic Probabilistic Automata

(DPA), which assigns probability values to transitions. These probabilities are cal-

culated by dividing individual transition frequency values by the overall frequency of

all outgoing transitions and the frequency of state acceptance. Thus, each transition

probability contributes to the probability of a string. Moreover, Alergia optimizes the

DPA by merging states to reduce its size. This method provides a formal yet accessible

framework for modeling ICS communications, facilitating more effective analysis and

understanding of system behavior.

The majority of the state transition models discussed primarily concentrate on cap-

turing the sequential pattern of messages exchanged between components. Conse-

quently, these models may overlook various anomalies, including timing irregularities

and disruptions in connections, as they do not account for temporal aspects or broader

contextual meanings beyond message order.

2.3 Other Methods

There are also other approaches for securing smart grid networks against cyber

threats. One commonly used method is signature-based intrusion detection systems

[44]. These systems rely on predefined rules or signatures to identify known attacks.

Essentially, they match observed network activity against a database of known attack

patterns. On the other hand, behavior-based models [45] take a different approach.

15

Instead of relying on predefined signatures, these models focus on detecting anomalies

by comparing current behavior to established patterns of normal behavior. Any devi-

ations from these patterns are flagged as potential threats. Statistical methods play

a crucial role in detecting anomalies as well. For instance, control charts [46] monitor

system behavior for deviations from expected norms. These charts establish control

limits based on historical data and raise alerts when observed behavior falls outside

these limits. Ivana et al. [47] demonstrate the effectiveness of statistical modeling

in identifying anomalies that arise from irregular transmissions, device/link failures,

and cyber attacks such as packet injection, scanning, or denial of service (DoS). It

outlines the automatic creation of a statistical model from a training dataset, present-

ing two distinct profiles: a master-oriented profile for one-to-many communication

and a peer-to-peer profile describing traffic between two ICS devices. The proposed

method can easily be integrated into an intrusion detection system (IDS) or anomaly

detection (AD) module. Regression analysis examines relationships between different

variables in the system. Regression analysis can uncover potential security threats

by identifying patterns that do not comply with expected communication patterns.

Bhattacharjee et al. [48] present two methods to undermine anomaly-based attack

detectors in smart metering infrastructure and compare their effectiveness. Using the

L1 norm instead of the L2 norm for threshold learning provides some defense against

fast gradient value inspired adversarial data poisoning(FGAV) due to induced gradi-

ent shattering. Experimental results demonstrate a lesser impact of poisoning attacks

with the L1 norm. Additionally, the paper introduces threshold learning for anomaly

detection using robust loss functions under quantile and unweighted regression. The

evaluation shows that the Cauchy loss function performs better for impact robustness

than Huber loss. Moreover, quantile weighted regression outperforms regular regres-

sion when considering the expected time between false alarms. Another approach

involves time-series analysis [49, 50]. This method analyzes data patterns over time

to identify anomalies. Sudden changes or irregularities in these patterns may indicate

malicious activity. Numerous anomaly detection systems rely on the cyclic nature

of polling mechanisms within SCADA systems. However, the usability of anomaly

16

detection systems centered around non-polling traffic or spontaneous events remains

largely unexplored. To address this gap, Yin et al. [50] introduce a new method

for modeling the timing characteristics of spontaneous events within an IEC-60870-5-

104 network and utilize this model for anomaly detection. The system’s effectiveness

is evaluated using a real-time dataset obtained from a power utility, which includes

injected timing effects from two attack scenarios. One scenario involves persistent mal-

functioning in field devices, leading to consistent timing anomalies, while the other

scenario involves intermittent anomalies caused by malware on field devices, which

is considered stealthy. The results indicate promising detection accuracy and timing

performance for scenarios with persistent anomalies. However, for scenarios with in-

termittent anomalies, the effectiveness of the approach is demonstrated primarily in

instances of low-volume traffic or attacks lasting over one hour.

Akashdeep et al. [51] address the vulnerability of Industrial Control Systems (ICS)

to cyber attacks due to increased networking and automation. They introduce a

novel approach using process analytics to detect attacks in ICS infrastructure. The

study compares this method with traditional signature-based detection techniques. A

pattern recognition algorithm named “Capturing-the-Invisible (CTI)” is proposed to

uncover hidden processes in ICS device logs, enabling real-time detection of Behavior-

based attacks. A recent work [52] proposes to model the sensor/actuator driven com-

munication which is not initiated by the control center to identify Advanced Persistent

Threats (APTs) and malware infections. By employing Multivariate Correlation, this

approach identifies anomalies in communication patterns, helping to safeguard smart

grid networks against sophisticated cyber attacks.

In summary, the pool of techniques for securing smart grid networks against cyber

threats offers a variety of approaches, each with its own strengths and limitations.

Signature-based intrusion detection systems offer a reliable means of identifying known

attacks by matching observed network activity against a database of predefined rules

or signatures. On the other hand, behavior-based models focus on detecting anoma-

lies by comparing current behavior to established patterns of normal behavior, offer-

ing adaptability to emerging threats but requiring robust baseline data. Statistical

17

methods, such as control charts and regression analysis, provide valuable insights into

system behavior deviations, yet they may have issues with the complexity of real-time

anomalies and evolving attack strategies. Time-series analysis offers promise in iden-

tifying irregularities over time, but its effectiveness varies depending on the nature of

the anomalies and the volume of traffic.

18

Chapter 3

SCADA Anomaly Detection: A

State Transition Modeling

3.1 Introduction

Industrial Control Systems (ICS) are used for managing smart grid SCADA infras-

tructure. These systems collect measurement data and export it for decision making

at a central control center. Various proprietary protocols [53, 54] have been devel-

oped for transmitting these measurements to the control unit/master. Modbus [2]

and IEC 60870-5-104 protocol [3] are among the most popular choices for commu-

nication protocols due to their standardized designs. However, these protocols lack

security measures, especially considering that SCADA networks were traditionally

isolated from the internet. Off late SCADA systems are being integrated into the

internet via TCP/IP communication. Due to this, they have become vulnerable to

cyber attacks [55, 56]. Incidents like the cyber attack on the Ukrainian Grid network

[5] highlight the potential consequences of such vulnerabilities. Traditional methods

of protecting critical infrastructure often involve the installation of firewalls and in-

trusion detection systems. However, these approaches are not specifically designed to

safeguard SCADA system communications. Additionally, monitoring internal com-

munications can be challenging as these systems are typically deployed at the network

perimeter. Further, cyber attacks can originate from compromised devices within the

19

SCADA infrastructure through malware or other means. Therefore, it is crucial to

analyze SCADA communications at the application layer to detect anomalies or cy-

ber attacks effectively. Previous research [6, 7] has demonstrated the effectiveness of

monitoring network flow level information of SCADA communications for detecting

attacks. Owing to the periodic nature of communication in SCADA systems, several

attack detection models [7, 8, 9, 10] described state transition machine based detec-

tion systems. While these models can identify unusual message sequences, they may

not detect all variants of attacks, such as Denial of Service (DoS) attacks initiated by

sending excessive legitimate messages. Additionally, these methods often utilize com-

plementary approaches, such as generating probability distributions from individual

state transition machines, to detect specific attack types. Motivated by the success of

state transition models and flow level information monitoring, we design a new state

transition model for detecting different types of anomalies and hence cyber attacks

in smart grid networks. This model not only identifies unusual event sequences but

also incorporates different types of constraints, including timing, the number of events

of a particular type, and application message values within a single state transition

machine. This enhanced approach improves the chances of detecting attacks, reduces

false alarms, and minimizes overhead significantly. In specific our contributions in this

chapter are the following.

• We categorize three types of anomalies and demonstrate that various cyber at-

tacks can be identified by detecting these anomaly types.

• We introduce a novel state transition machine model, Deterministic Counting

Timed Automata (DCTA), that can effectively detect the three identified anomaly

types present in SCADA communications.

• Utilizing extended network flow records, we develop these DCTAs to detect a

range of anomalies.

• We assess the performance of DCTA using publicly available datasets and con-

duct a comparative analysis with previous studies.

20

We organize the rest of the chapters as follows. In Section 3.2, we discuss previous re-

search regarding the detection of cyber attacks in smart grid networks. In Section 3.3,

we propose our method for detecting anomalies using state transition machines. We

provide the evaluation findings in Section 3.4. Finally, we conclude this chapter in

Section 3.5.

3.2 Related Work

The existing literature for detecting these attacks deals with three main ap-

proaches. Machine learning based models utilize algorithms such as decision trees

[25], random forests [25], and support vector machines [18] for anomaly detection,

but suffer from the need for extensive training data and false alarms. State Transi-

tion Models [9] represent smart grid operations as states and transitions, detecting

anomalies based on uncommon sequences of moves, although they may overlook tim-

ing anomalies. Other Methods include signature-based intrusion detection systems

[44], behavior-based models [45], statistical techniques [46, 48] like control charts and

regression analysis, and time-series analysis, each with its strengths in identifying

deviations from normal behavior. Recent advancements focus on modeling sensor

driven communication to detect APTs and malware infections. Overall, while these

approaches offer diverse strategies for cyber attack detection in SCADA networks,

each has its own set of advantages and limitations.

3.3 Proposed Anomaly Detector

In this section, we describe the proposed state transition model Deterministic

Counting Timed Automata (DCTA) which detects cyber attacks using network flow

records of IEC 60870-5-104 communication. Hence we begin by providing a brief

overview of the IEC 60870-5-104 communication protocol, and details of the different

attack vectors considered. Subsequently, we formally define the DCTA and also show

the state transition models designed for detecting these attacks.

21

3.3.1 IEC 60870-5-104 Communication Background

IEC 60870-5-104 protocol stack is a standard developed by the International Elec-

trotechnical Commission (IEC) for telecontrol of equipment/system over TCP/IP1.

The standard defines a message format in the form of an Application Protocol Data

Unit (APDU) and these messages are used for communication between the master sta-

tion (SCADA master) and the remote devices (slaves). APDU is made up of a manda-

tory Application Protocol Control Information (APCI) or an APCI with Application

Service Data Unit (ASDU) as shown in Figure 3.1. The control information that is

Figure 3.1: APDU Message Format

added to the payload data is referred to as APCI. It consists of functions like start,

stop, test, reset, and data transfer which enables session establishment, termination,

reliable data transmission, and link integrity checks in the protocol. ASDU consists of

data identifier field and data itself. Data identifier field includes ASDUTY PE, Num-

ber of Information Objects pNUMIXq within APDU, Cause of Transmission pCoT q,

Originator Address (ORG) i.e. sender address, and ASDU address field (ADDR).

1More details in [3]

22

ASDUTY PE represents the type of information being transmitted within an ASDU.

CoT provides information about the purpose or event that triggered the transmission,

allowing the recipient to understand the context or significance of the message. Data

is made up of one or more information objects. IOA represents the address of informa-

tion objects present inside the ASDU. It helps to identify the particular data within

a defined station. The values set in the fields of APDU, number of APDU messages,

and their order can help identify anomalies. For e.g., if there is a series of messages

received with ASDUTY PE 46 and CoT values 6, 7, and 10 by a device, it is possibly

an indicator of a switching attack (details in the next subsection).

3.3.2 Attack Vectors

There are several cyber attacks that can be launched against the SCADA

infrastructure. These attacks can manifest from different layers of SCADA systems

like application interfaces, web interfaces, implementation bugs, etc [57]. However,

these cyber attacks are applicable to conventional networks as well and are well

studied. We consider a few major cyber attacks which are exclusive to smart grid

networks and study their behavioral observations. We also identify three network

anomaly types 2. Identifying these anomalies help in detecting the attacks.

i) Connection-loss: This is an adverse situation in which a network’s connection

is lost due to external interruptions which include node capture, physical issues like

damaged network cables, etc. As SCADA communications are periodic in nature,

such interruptions result in missing communications or in general missing flows which

is a pattern of failed data transmission from the controller/master to the Remote

Terminal Units (RTUs) and the other way around.

ii) Denial of Service: In this attack, an attacker overwhelms the master by sending

a large number of messages. This keeps the master busy and may even bring it down

disturbing the legitimate communications with the master. Indications of a DoS

attack in smart grids include the unresponsiveness of controller/master or RTUs,

2There are other types of anomalies that can be seen in SCADA systems. For e.g., measurement

anomalies [58].

23

significant degradation in system performance, and a sudden increase in network

traffic or requests.

iii) Injection Attack: In this attack an adversary sends spurious mes-

sages/communication to the master/controller possibly using a new device or

compromising an existing device in the network. These messages can be of two types

(a) Attributes of messages having illegitimate values: Here attributes take values out

of their permitted ranges. For e.g., attribute CoT can take values 6, 7, 8, 9, 10, 44,

45, 46, and 47 when attribute ASDUTY PE has values in the range 45-51. If the

CoT attribute takes the value 5 when ASDUTY PE is 46, it is illegitimate.

(b) Attributes having legitimate values; but their sequence and numbers are illegiti-

mate: Here all the attributes take legitimate values but their sequencing in a limited

span of time can create illegitimate actions.

Indications of an injection attack in smart grids include unexpected or unauthorized

commands sent to RTUs, abnormal control actions or system behavior, and anomalies

in data readings or sensor outputs.

iv) Rogue Devices: Rogue devices are unauthorized devices that send illegitimate

messages to the master as in the case of an injection attack. However, the only

difference is; these messages may be sent by known devices in the injection attack.

Indications of rogue device communications include the execution of unauthorized

commands, abnormal system behavior, and anomalies in data readings.

v) Scanning Attack: In this case, an attacker scans the SCADA network for poten-

tial machines/devices to communicate. Horizontal scanning and vertical scanning are

two types of scanning techniques. Indications of horizontal scanning attack include an

increased volume of network traffic, attempts to identify and connect to devices, and

a surge in unauthorized connection requests. Indications of vertical scanning attack

include attempts to connect to different Information Object Addresses (IOA) within

a device. Every such object within a device is assigned an address and by sending a

probe to that address, an attacker is finding if that address is active or in use. Both

horizontal and vertical scanning techniques will be probing to either identify devices

and addresses valid and also possibly vulnerabilities in communication protocols or

24

device configuration.

vi) Switching Attack: In this case, an attacker sends a series of messages with

specified ASDUTY PE and CoT values to the target that causes the device to

turn on and off. Unauthorized changes in the control settings, abnormal switching

operations or patterns, and discrepancies between commanded and actual switching

states are indications of switching attack.

It is worth noting that, the above list of cyber attacks is not exhaustive. However,

these and many other potential cyber attacks fall into one of the following three types

of anomalies.

(i) Single Message Anomaly: These anomalies are a consequence of illegal/changed

values of attributes in a single message. The APDU message can have attributes set to

values that are invalid. Some of the rogue communications, and injection attacks fall

under this category as they involve messages being sent from unknown/illegitimate

sources.

(ii) Message Sequencing Anomaly: These anomalies are caused by message

sequencing that are not seen before. For e.g., the master and RTU communications

carry messages with specific values set. Every response message should be preceded

by a query message. Moreover, there should be a correspondence between the query

and response which are usually matched with attribute values. Switching attack falls

under this category where messages are sent with toggling mode of operation with a

sequence between them.

(iii) Time based Anomaly: These anomalies are caused by the repeated appear-

ance of a large number of messages over a period of time. These messages may

possibly have legitimate values set for their attributes. However, their sheer number

which is otherwise not seen or absence of these messages indicates an anomaly. DoS

attacks fall under this category when the messages sent have legitimate values.

25

3.3.3 State Transition Model based Detection

Our detection model uses extended network flows for detecting different attacks in

the smart grid networks. Corresponding to every attack, there is a state transition

machine as shown in Figure 3.2. Network flows are generated from packets (collected

from switch/router through which these packets pass through) with additional details

as required for detection. Such flows are given as input to all the machines and all

of these machines process the flow if it is relevant and take appropriate transitions

depending on their current state and transition constraints. An attack is detected if

any of these machines move to a state representing an attack.

Figure 3.2: Working of Proposed Detection Method

In order to detect the above cyber attacks, we propose a new state transition model.

This model uses network communication flows as input and performs state changes

to detect the attacks. This new state transition machine, we name as Deterministic

Counting Timed Automata (DCTA).

26

The machine is formally denoted as seven tuple

M=(Q, Σ, C, T , δ, q0, F) where

Q A finite set of states

q0 P Q An initial state

Σ A finite set of input symbols corresponding to different messages exchanged

in the SCADA system with mi P Σ ={ai1, ai2, ¨ ¨ ¨ , aik } are the attributes

of mi

C A finite set of counter variables

T A finite set of clock variables

δ Is a transition function

F A subset of states pF Ď Qq which are final states

Each transition δi P δ
3 is a nine tuple

xqi, qj ,mi, ϕpmiq, ϕptiq, ϕpciq, Resetptjq, Incpcjq, Logpmiqy with the elements representing

qi P Q Current State

qj P Q Next State

mi Input Symbol

ci P C Counter value at the state qi

ϕpmiq Boolean conjunction of constraints on the attributes of message mi

ϕptiq Timing constraint on the timer at qi

ϕpciq Counter constraint, where ci is the counter at qi

Resetptjq A function which resets the time variable tj P T at state qj

Incpcjq Is a function that maps the current state of the counter at qj to a new value

Logpmiq Is a function that logs the necessary attributes from message mi.

A value of ‘´’ in a transition signifies that the corresponding value or constraint is not

applicable to this transition. For example, a transition (q1, q2,m1, LEN P r1, 10s, t1 ă

3, c1 ą 3, t2 Ð 0, c2 Ð 1,´) indicates a transition from state q1 to q2 upon arrival of

a message m1 and following constraints are met

1) one of the attributes namely length is having a value between 1 and 10,

2) message is received in less than 3 units since the last transition to q1 and clock reset

3Not a total function. However the transitions are deterministic.

27

timing,

3) counter value at q1 is greater than 3 when the transition takes place,

4) counter at state q2 i.e. c2 is initialized to 1 and a ‘´’ at the end indicates nothing

from this message m1 is logged for subsequent usage/reference.

DCTA has few states marked as anomaly indicators or final states. Progression to

these states through a sequence of moves indicates identified anomalies in the system.

These sequence of moves are of the form pqo,m1, qiq, pqi,m2, qjq, ¨ ¨ ¨ , pqn´1,mn, qnq with

qn P F (to the anomaly state) also define the language accepted by the respective DCTA.

3.3.4 State Transition Models for Different Attacks

Using the state transition model presented previously, we design specific machines

for detecting different attacks.

Connection-loss Attack: As mentioned earlier, communication in SCADA systems

is usually periodic in nature with master querying the RTU and other measurement

units for readings at regular intervals. Thus, a series of such missing flows indicates

connection-loss and this needs to be traced through the state transition machine for

detecting the attack. In order to detect this attack, we design a STM as a time based

anomaly detector. The STM is initialized afresh for every W units of time and it

keeps track of number of missing communication flows with the help of a counter

within that W time period. Suppose, on an average after every x seconds one flow

is received, state transition machine keeps checking after every x seconds (taking into

account random network delays) if there is a flow or not. The STM for detecting this

attack is a three state machine as shown in Figure 3.3. State q1 is the initial state

and q2 is the state where counting is done. The machine stays in state q1 if there

is a message mi (through a network flow) observed as expected; otherwise it takes

a transition to q2, increments missing flow/communication counter at q2 and returns

back to q1
4. The transitions from q1 to q1 and q1 to q2 are having timing constraints to

indicate respective time delays. It moves to state q3 if the counter value at q2 exceeds

4This is an instantaneous transition without any delay.

28

a threshold which is indicated as a constraint on the transition from q2 to q3.

q1 q2 q3

m,´, t ď ∆,´, tÐ 0,´,´

´,´,´, c2 ą λ1,´, c3 Ð c3 ` 1,´´,´, t ą ∆,´,´, c2 Ð c2 ` 1,´

´,´,´,´, tÐ 0,´,´

Figure 3.3: DCTA for Detecting Connection-loss Attack

DoS Attack: DoS attack results in a surge of messages/flows from an adversary.

We design a time based anomaly detector with two states as shown in Figure 3.4 to

detect this attack. The STM is initialized afresh for every W units of time and it

keeps track of number of incoming flows within that W time period. If the number of

such messages increase beyond a threshold value, the STM declares attack. The state

q1 keeps track of number of flows within W time period by incrementing a counter if

there is a message mi observed as expected. It moves to state q2 if the counter value

at q1 exceeds a threshold which is indicated as constraint c1 ě λ2 on the transition

from q1 to q2.

q1 q2

m,´, t ď ∆,´, tÐ 0, c1 Ð c1 ` 1,´

´,´,´, c1 ą λ2,´, c2 Ð c2 ` 1,´

Figure 3.4: DCTA for Detecting DoS Attack

Injection Attack and Rogue Devices: We observe that the actions in injection

and rogue device communications are similar where some unauthorized communica-

tion or unexpected messages are transferred to the master. The only difference is that

29

these messages may originate from a legitimate device in the injection attack and from

an illegitimate device in the rouge communication. Hence, we have common STMs for

detecting these two attacks.

(a) APDU messages having illegal values can be detected with appropriate constraints

placed on the message attributes. The STM for detecting these illegal value combi-

nations are shown in Figure 3.5 which is a two state STM with a single transition δ1

having constraints on message attributes as shown in Table 3.1.

q1 q2
δ1

Figure 3.5: DCTA for Detecting Injection/Rogue Device Attack (Single Message

Anomaly)

Table 3.1: DCTA Transitions of Figure 3.5 for Injection/Rogue Device Attack (Single

Message Anomaly) Detection

Transition Current State Next State Input Symbol ϕpmq ϕptq ϕpcq Reset(t) Inc(c) Log(m)

δ1 q1 q2 m (APDU)

srcPort, dstPort R r0, 65535s||

LEN R r0, 255s||FMT R t0x0, 0x1, 0x3u||

ASDUTY PE R r1, 135s||NUMIX R r0, 127s||

CoT R r1, 47s||ADDR R r1, 65535s||

IOA R r0, 65535s||

pASDUTY PE “ 35&& „ pCoT “ 3||CoT “ 5qq...

- - - - -

For e.g., DCTA has a constraint that the length of APDU (LEN) should be within

the range 0-255 on this transition from q1 to q2. It is easy to see that this STM can

detect single message anomaly type5.

q1 q2

δ1

δ2

Figure 3.6: DCTA for Detecting Sequence based Injection Attack and Rogue Devices

5As there are many combinations of values, we show a few representative constraints here and

omit the rest of the details for the sake of brevity.

30

(b) Second category of anomalies can be detected by looking at the sequence of mes-

sages over a very short period of time. Hence, we design a sequence based anomaly

detector (STM) with appropriate constraints on transitions as shown in Figure 3.6.

The transitions in this STM have constraints on the message type, their values,

timing, etc. as shown in Table 3.2. Here, STM keeps track of legitimate devices as well

as values of different attributes of messages by logging these using function Logpmq.

Table 3.2: DCTA Transitions of Figure 3.6 for Sequence based Injection Attack and

Rogue Devices Detection

Transition
Current
State

Next
State

Input
Symbol ϕpmq ϕptq ϕpcq Reset(t) Inc(c) Log(m)

δ1 q1 q1 m (APDU)

srcIP, dstIP P Logpmq &&

„ ptASDUTY PE “ 45 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 47 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 48 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 49 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 50 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 51 && CoT “ t6, 7uu P Logpmq||q

- - - - Log(m)

δ2 q1 q2 m (APDU)

srcIP, dstIP R Logpmq||

tASDUTY PE “ 45 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 47 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 48 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 49 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 50 && CoT “ t6, 7uu P Logpmq||

tASDUTY PE “ 51 && CoT “ t6, 7uu P Logpmq||

- - - - -

Message constraint imposed on transitions δ1 and δ2 is a collection of constraints on

various attributes of a message. A control command ASDUTY PE takes values 45, 47,

48, 49, 50, and 51 except for the double point control command (ASDUTY PE=46)

which is used to switch on/off a device. Moreover, these messages should come from a

legitimate device (known IP address). Thus, the message constraint imposed on tran-

sition δ1 denotes that only legitimate device IP addresses should be used. In addition

to this, no such message should appear in which the control command activation and

confirmation are happening sequentially within a limited amount of time. Similarly,

the constraint on transition δ2 denotes that if control command activation and con-

firmation are done sequentially within a limited amount of time then it represents an

anomaly. Whenever devices apart from the legitimate ones try to communicate; then

it gets classified as a rogue device.

Scanning Attack: In the case of a scanning attack, the attacker sends specific mes-

31

sages to scan the network to find active devices. If any device is active, then the scan

yields a response in the form of test frame confirmation. In order to detect this attack,

we designed a STM as a time based anomaly detector with two states as shown in

Figure 3.7.

q1 q2

δ1

δ2

Figure 3.7: DCTA for Detecting for Scanning Attack

Table 3.3: DCTA Transitions of Figure 3.7 for Horizontal Scanning Detection

Transition Current State Next State Input Symbol ϕpmq ϕptq ϕpcq Reset(t) Inc(c) Log(m)

δ1 q1 q1 m (APDU) dstIP R Logpmq t ď ∆ - tÐ 0 c1 Ð c1 ` 1 Log(m)

δ2 q1 q2 m (APDU) - - c1 ą λ3 - c2 Ð c2 ` 1 -

Table 3.4: DCTA Transitions of Figure 3.7 for Vertical Scanning Detection

Transition Current State Next State Input Symbol ϕpmq ϕptq ϕpcq Reset(t) Inc(c) Log(m)

δ1 q1 q1 m (APDU) IOA R Logpmq t ď ∆ - tÐ 0 c1 Ð c1 ` 1 Log(m)

δ2 q1 q2 m (APDU) - - c1 ą λ3 - c2 Ð c2 ` 1 -

The STM is initialized afresh for every W units of time and it keeps track of the

number of messages sent to different devices or different objects within a device. If

the number of such messages increases beyond a threshold value, the STM detects an

attack 6. The state q1 keeps track of the number of such messages sent for scanning

within W time period by incrementing a counter if there is a message mi observed

such that it is addressed to a different device (different IP address in case of a hori-

zontal scanning) or different objects (different Information Object Addresses) within

a device (vertical scanning). IP addresses of devices that received messages and also

the Information Object Addresses of objects within a device are tracked by logging the

details using function Logpmq. It moves to state q2 if the counter value at q1 exceeds

6It will keep track of only either of these two

32

a threshold which is indicated as constraint c1 ě λ3 on the transition from q1 to q2.

The transitions corresponding to this STM are shown in Table 3.3 and 3.4.

Switching Attack: In switching attack, an attacker sends multiple messages with

ASDUTY PE value 46 and changes the CoT values to 6, 7, and 10. Thus, detecting

this attack requires analyzing a sequence of messages for these changes. In order to

capture these changes, we designed a STM as a time based anomaly detector with two

states as shown in Figure 3.8. The transition from the state q1 to q1 keeps track of dif-

ferent attribute values (CoT and ASDUTY PE extracted from messages) by logging

them using function Logpmq. It moves to state q2 if the earlier logged values (within

a short window period) contain CoT value 6, 7, 10 and ASDUTY PE value 46, as

it indicates acceptance of switching command immediately which can bypass normal

control system logic and can override established protection schemes. The transitions

corresponding to this STM are shown in Table 3.5.

q1 q2

δ1

δ2

Figure 3.8: DCTA for Detecting Switching Attack

Table 3.5: DCTA Transitions of Figure 3.8 for Switching Attack Detection

Transition Current State Next State Input Symbol ϕpmq ϕptq ϕpcq Reset(t) Inc(c) Log(m)

δ1 q1 q1 m (APDU) - t ď ∆ - tÐ 0 - Log(m)

δ2 q1 q2 m (APDU) tASDUTY PE “ 46 && CoT “ t6, 7, 10uu P Logpmq - - - - -

Attack Detection with DCTAs an Example: Consider that a fresh window starts at

w1 and lasts upto w2. All the packets collected from a router/switch in this period are

used to construct flows with necessary additions. Lets assume an attacker with a valid

IP address is trying to perform scanning attack by sending legitimate packets but with

different IOA values to check for an active victim. It sends IEC-104 packets featuring

an Information Object Address (IOA) denoted as x1. Flow generation will generate

a flow corresponding to this which will eventually fed to all DCTAs. In response, all

33

DCTAs governing distinct security aspects react concurrently. The DCTA of connection-

loss attack reverts to its initial state (q1 to q1), recognizing the presence of the incoming

packet. Similarly, the DCTA monitoring rogue and injection activities maintain its

initial state, as the packet is validated as legitimate (IP address is valid). The Denial

of Service (DoS) DCTA increments its counter, acknowledging the presence of a fresh

packet. The DCTA, designed for detecting scanning activities, logs the IOA value if the

value is absent in the log file otherwise it increments its counter only. The Switching

DCTA, checking for specific CoT and ASDUTY PE values remains in the initial state as

there are no values corresponding to this in the flow/packet. In the event of receiving

a sequence of packets with diverse IOA values (prior to this packet/flow which are

logged previously), the scanning DCTA may transition to a state indicating an attack if

the counter surpasses a predefined threshold. Subsequently, at the end of each window

period, a reset occurs across all DCTAs, ensuring a clean slate (including clearing logged

values) for subsequent monitoring and analysis.

3.4 Experiments and Evaluation

In this section, we provide the details of experiments done to evaluate the detection

performance of DCTA based anomaly detectors. We provide the details of evaluation

results and sensitivity analysis in the following two subsections.

3.4.1 Evaluation

Here we present the details of the dataset used, STM implementation details, com-

parison with prior works, evaluation metrics and evaluation results respectively.

Dataset: For our experiments and evaluation, we used a publicly available dataset

[59], namely but-iec104-i collected from a smart grid testbed at Brno University of

Technology. This dataset is a processed collection of network flow records (in csv for-

mat) of IEC-104 communications. These flow records are extended IPFIX flows with

a few custom fields added which indicate the type of IEC messages that appeared in

the corresponding flow. These flows are collected from a network device that observes

34

the network traffic and generates IPFIX records and exported to a flow collector. Sub-

sequently, these flows are processed and annotated after custom field additions. The

records include fields like timestamps, IP addresses, port numbers of communicating

devices, and also a few header details taken from IEC-104 messages, etc. The dataset

consists of normal communication and also six types of cyber attacks generated at

different time intervals. Table 3.6 shows the details of this dataset.

Table 3.6: Overview of Dataset

Type Duration Flow Count

Normal-traffic 67 hours 55 minutes 58,930

Connection-loss 67 hours 55 minutes 57,863

DoS-attack 67 hours 55 minutes 58,932

Injection-attack 67 hours 55 minutes 58,930

Rogue-device 67 hours 55 minutes 58,893

Scanning-attack 67 hours 55 minutes 58,927

Switching-attack 67 hours 55 minutes 59,002

The dataset consists of seven files each of a duration of 67 hours and 55 minutes.

One of them is of normal communication and the other six correspond to an attack

type. The table also shows the number of flow records in each of these files.

Implementation: We implemented DCTAs for detecting different anomalies/attacks

in Python programming language. STMs have two main components namely states

and transitions. In our implementation, we represented all the states with variables,

and the current state is remembered by storing the state name in a separate variable.

Transitions of a DCTA are implemented through a function named transition() which

takes the current state and different constraints as input. We enlisted the different

constraints (message attribute, timing, and counter values) that cause the transition

from one state to another. For every state, we defined all of the possible transitions

and the corresponding next state of the machine. In the function transition(),

we implemented logic to evaluate the different constraints with if-then-else ladder to

35

make an appropriate state change in STM. For every state, all the transitions from

that state are attempted to check if a move is possible. At the end of every transition,

the current state value is updated. It is also possible that the current state is same as

the previous state as some of the STMs have self loops.

Comparison with Prior Work: We compare the performance of our proposed DCTA

based anomaly detector with two recent works namely of Matoušek et al. [7] which

described two different types of STMs to detect anomalies and also with the work of

Hadir et al. [1] which uses a machine learning algorithm for detecting different attacks.

First one identifies two types of anomalies.

1) Single Conversation Reasoning- Using an STM constructed from the sequence of

messages, it identifies transitions which were never seen before (i.e. the traces from

which the STM is generated). Such transitions are detected as anomalies.

2) Comparing the Probability Distributions- All conversation sequences (message se-

quences in the trace) are used to generate DPA/Prefix Tree type STMs and sub-

sequently these STMs are used to derive frequency values of individual transitions.

These transition frequency values are represented as probability distributions indicat-

ing the likelihood of a particular transition. Subsequently, the probability distributions

of five minute window periods from the training and testing intervals are compared

with Euclidean distance. If the distance is high, then an attack is detected.

On the other hand, Hadir et al. [1] use hierarchical multilayered perceptron based ML

algorithm to improve detection performance. The HMLP architecture has two layers:

the first classifies the test data as benign or malicious, while the second identifies

attack types. This approach enhances detection rates by isolating attack samples

during training, reducing data imbalance effects. For training the HMLP model, all

the data of dataset [59], including attacks and benign samples were merged together,

with unified attack labels for binary classification. After training, robustness against

different attacks is evaluated to measure model resilience.

Implementation for both the methods [7] and [1] are available and results reported

here are based on their implementation.

Evaluation Metrics: We evaluate the performance of the proposed DCTA

36

based anomaly detector with five parameters namely Detection Rate (DR),

False Positive Rate (FP), Accuracy (Acc), F1 score (F1) and Matthews

Correlation Coefficient (MCC). Equations 3.1 to 3.6 show the details of specific

calculations for each metric.

Detection Rate “ Recall “
TP

TP` FN
(3.1)

False Positive Rate “
FP

FP` TN
(3.2)

Accuracy “
TP` TN

TP` TN` FP` FN
(3.3)

Precision “
TP

TP` FP
(3.4)

F1 Score “
2ˆ Precisionˆ Recall

Precision` Recall
(3.5)

MCC “
TPˆ TN´ FPˆ FN

a

pTP` FPq ˆ pTP` FNq ˆ pTN` FPq ˆ pTN` FNq
(3.6)

In these equations, True Positive (TP) represents instances where attacks are cor-

rectly detected as attacks, False Negative (FN) denotes instances where attacks are

incorrectly classified as benign, True Negative (TN) signifies instances where benign

activities are correctly identified as such, and False Positive (FP) indicates instances

where benign activities are incorrectly flagged as attacks.

Further, it is worth noting that we use few thresholds as constraints for transitions of

DCTA. Few of these transitions lead to states representing attacks/anomalies. The pa-

rameters and corresponding threshold values are shown in Table 3.7 which we denote

as golden thresholds.

Results: We present the results of the evaluation in two parts.

(i) Grand Experiment: Here we assess the performance on the combined dataset

where all seven files (one normal and six attack types) are merged. For those attack

types that are time based anomalies, we used a window time of five minutes. Entire

dataset was given as input to both DCTA based STMs, also the two STMs of [7] and

to the Hierarchical Multilayer Perceptron (HMLP) method to evaluate the perfor-

mance. Table 3.8. shows the results of this experiment with different metrics. We

37

Table 3.7: Golden Threshold Values

Parameter Threshold

λ1 30

λ2 45

λ3 27

∆ 8

can notice that DCTA exhibits far better performance with 100% detection rate, nearly

100% accuracy, and F1 scores while both the methods of prior work have performed

comparatively poorly. The low detection rate of Prefix Tree and DPA based learning

methods is due to their inability in detecting certain attack types (details in the next

part).

Table 3.8: Detection Performance Comparison of DCTA with Prior Works on Grand

Dataset

Technique Testing Intervals DR FP Acc F1

DCTA 5705 100% 0.017% 99.98% 99.29%

DPA 5705 47.14% 0% 99.35% 64.08%

Prefix Tree 5705 47.14% 0% 99.35% 64.08%

HMLP 5705 100% 0.6% 99.4% 94.92%

(ii) Individual Experiment: In the second part, we performed an evaluation with

individual attack types combined with normal communication flows and compared it

with only [7] as this is STM based model. Thus there are six files each having 1630

intervals of five minutes duration. The objective of this evaluation is to assess how

good the detection is for different attacks. For this experiment also we used the same

golden threshold values shown in Table 3.7. Table 3.9 shows the results obtained with

DCTA, DPA, and Prefix Tree models. The table shows the confusion matrices for

each experiment along with the detection rate, false positive rate, accuracy, and F1

score, and MCC values. It is worth noting from Table 3.9 that the DPA and Prefix

38

Table 3.9: Detection Performance Comparison of DCTA with Prior Works on Individual

Attack Types

Technique Testing Intervals Confusion matrix DR FP Acc F1 MCC

DCTA 1630

Normal Connection-loss

100% 0% 100% 100% 1Normal 1616 0

Connection-loss 0 14

DCTA 1630

Normal DoS

100% 0% 100% 100% 1Normal 1595 0

DoS 0 35

DCTA 1630

Normal Scanning

100% 0% 100% 100% 1Normal 1623 0

Scanning 0 7

DCTA 1630

Normal Switching

100% 0.061% 99.94% 80% 0.82Normal 1627 1

Switching 0 2

DCTA 1630

Normal Injection

100% 0% 100% 100% 1Normal 1624 0

Injection 0 6

DCTA 1630

Normal Rogue

100% 0% 100% 100% 1Normal 1624 0

Rogue 0 6

Alergia 1630

Normal Connection-loss

85.71% 0% 99.87% 92.30% 0.92Normal 1616 0

Connection-loss 2 12

Alergia 1630

Normal DoS

0% 0% 97.85% 0% 1Normal 1595 0

DoS 35 0

Alergia 1630

Normal Scanning

100% 0% 100% 100% 1Normal 1623 0

Scanning 0 7

Alergia 1630

Normal Switching

100% 100% 100% 1Normal 1628 0

Switching 0 2

Alergia 1630

Normal Injection

100% 0% 100% 100% 1Normal 1624 0

Injection 0 6

Alergia 1630

Normal Rogue

100% 0% 100% 100% 1Normal 1624 0

Rogue 0 6

Prefix Tree 1630

Normal Connection-loss

85.71% 0% 99.87% 92.30% 0.92Normal 1616 0

Connection-loss 2 12

Prefix Tree 1630

Normal DoS

0% 0% 97.85% 0% 0%Normal 1595 0

DoS 35 0

Prefix Tree 1630

Normal Scanning

100% 0% 100% 100% 1Normal 1623 0

Scanning 0 7

Prefix Tree 1630

Normal Switching

100% 0% 100% 100% 1Normal 1628 0

Switching 0 2

Prefix Tree 1630

Normal Injection

100% 0% 100% 100% 1Normal 1624 0

Injection 0 6

Prefix Tree 1630

Normal Rogue

100% 0% 100% 100% 1Normal 1624 0

Rogue 0 6

39

Tree based models were unable to detect DoS attack as the messages sent during

DoS attack are also legitimate ones. The probability/frequency of these transitions

are well within the limit and hence are not detectable. However, DCTA is able to

detect all those attacks by keeping track of number of continuous messages sent,

their order, timing, and comparison with previous message attribute values as defined

in their respective transitions. Further, DCTA based detection does not classify one

attack type as other one. However, HMLP [1] based detection has this issue as shown

in Table 3.10. We can notice from the table that several attacks of one type are

being detected as other type. However, this does not alter the overall detection rate

as long as it is detected as attack. Based on the considered cyber attacks, we also

tabulate the detection ability of different STM based detection methods. Table 3.11

shows this comparison. In the table, Single refers to single conversation reasoning

while DistrPrefix Tree and DistrDPA represent the probability distribution based

anomaly detectors as defined in [7]. We can notice that DCTA is able to detect all

the attack types while the STMs of [7] fail to detect a few attack types. In contrast,

our proposed anomaly categorization aims to be comprehensive and can potentially

detect different types of attacks.

Table 3.10: Detection Performance of HMLP [1]

Benign Connection-loss DoS Switching Scanning Rogue Injection

Benign 199814 0 278 650 0 350

Connection-loss 0 3033 0 0 0 0 0

DoS 0 0 1243 0 118 0 79

Switching 0 0 0 1511 0 0 0

Scanning 0 0 7 0 3006 0 0

Rogue 0 2 0 0 0 1562 0

Injection 0 0 0 0 0 0 1517

40

Table 3.11: Detection Ability Comparison of DCTA

Anomaly DCTA Single DistrPrefix Tree DistrDPA

Connection-loss Attack ✓ ✗ ✓ ✓

DoS Attack ✓ ✗ ✗ ✗

Scanning Attack ✓ ✓ ✓ ✓

Switching Attack ✓ ✓ ✓ ✓

Rogue Device Attack ✓ ✓ ✓ ✓

Injection Attack ✓ ✓ ✓ ✓

3.4.2 Sensitivity Analysis

It is worth noting that, several transitions of the proposed DCTA models use thresh-

olds for counter values at different states and also timing constraints. Thus, the de-

tection performance will depend on these threshold values. In order to assess the

performance variance with these threshold values, we perform the sensitivity analysis

of two parameters namely counter values and timing constraints.

There are three attack types namely connection-loss, DoS, and scanning whose DCTAs

have constraints on counter values namely λ1, λ2, λ3 as shown earlier. Thus we assess

the performance variation of respective DCTAs to variations in these thresholds using

grand dataset. For this evaluation, we only varied one parameter value (λi) and kept

all other parameters as in the grand experiment evaluation discussed above. The de-

tails of performance variation for different attacks are as below.

Connection-loss: The DCTA of connection-loss detection has λ1 as a constraint on

the transition from q2 to q3. The golden value of λ1 is 30 which yielded 100% detection

and 0% false positives. We varied the value of λ1 in step size of 10 from 0 to 60. Figure

3.9a shows the performance variation in detection rate and false positive rates of this

experiment. We can observe from the figure that for a threshold value around 20, false

positives are completely reduced to 0% and the detection rate is maintained at 100%

till the threshold value crosses 30. Hence a value in this range for λ1 will yield better

performance.

41

10 20 30 40 50 60
λ₁

0

20

40

60

80

100

Ra
te Detection Rate

False Positive Rate

a Detection Performance Across λ1 Values

0 10 20 30 40 50 60
λ₂

0

20

40

60

80

100

Ra
te Detection Rate

False Positive Rate

b Detection Performance Across λ2 Values

10 20 30 40 50 60
λ₃

0

20

40

60

80

100

Ra
te Detection Rate

False Positive Rate

c Detection Performance Across λ3 Values

8 16 24 32
Δ

0

20

40

60

80

100

Ra
te Detection Rate

False Positive Rate

d Detection Performance Across ∆ Values

Figure 3.9: Detection Performance Variation with Different Thresholds

42

Denial of Service: The DCTA designed for detecting DoS attack has a counter

threshold λ2 on the transition from state q1 to q2 whose golden value is 45. Similar to

the previous case, here also we varied the value of λ2 in step size of 10 from 0 to 60.

Figure 3.9b displays the change in detection rate and false positive rate with respect

to change in the value of λ2. We can notice from this figure that the detection rate

is 100% until the threshold crosses 45 and beyond which it falls. Further, the false

positive rates fall to 0% for a value beyond 10.

Scanning: The DCTA of scanning attack has a threshold λ3 on the transition between

q1 and q2 whose golden threshold is 27. Similar to the above two cases, we varied

this value in step size of 10 and calculated the detection rate and false positive rates.

Figure 3.9c shows the variation in these values. We can notice that the detection

rate is 100% till this threshold crosses 27 and the false positive rate falls to 0% to a

threshold value beyond 5.

(ii) Timing Values: Several transitions of different DCTAs have timing constraints

∆. Timing constraint control when a transition is enabled. Smaller values may trigger

transitions prematurely; while too large values can delay both transition and anomaly

detection. In order to assess the performance variation of detection, we performed an

evaluation by varying the ∆ values in step size of 8. Figure 3.9d shows the variation

in detection rate and false positive rates for the connection-loss attack7 on the grand

dataset. It can be observed from the figure that too small values of ∆ generate a large

number of false positives (due to premature transitions), while large values reduce

false positives but may decrease detection performance.

3.5 Conclusion

Smart grid is a critical infrastructure and it uses ICT for exchanging safety critical

information and hence is vulnerable to different cyber attacks. In this chapter, we

presented three types of generic anomaly types namely single message based, message

sequence based, and time based anomalies that help in detecting these attacks. In

7Similar results were obtained for other DCTA’s and we do not show them here for space constraints.

43

order to detect these anomalies (attacks), we described a new state transition based

model DCTA which takes extended network flow records as input and makes permitted

transitions. The DCTA transitions have different types of constraints that help verify

several attribute values, sequence, timing, number of messages, etc. to detect attacks.

We evaluated the performance of our proposed approach on a publicly available dataset

and benchmarked its performance against the prior works to show that it can detect

different types of attacks with a very good detection rate of 100% in the best case. It

can also detect attack types which are not detected by other STM based detectors.

Further, the anomaly types presented provide a guideline or template for creating

DCTAs for new attack types.

DCTA based detection shares a common limitation with other STM based methods

which is the requirement of a specific STM for every attack type. In addition, our work

and evaluation at present is limited to only application layer attacks and as such deals

with only IEC-104 protocol. However, it will be useful to consider other protocols like

Modbus, DNP, etc., and explore if similar models can be developed. Further, other

attack types like layer4, layer3, and layer2 of TCP/IP stack can also be combined for

evaluation as they will also have an impact on the smart grid operation.

44

Chapter 4

Detecting Flooding and Bruteforce

Attacks in Smart Grid Networks

with Probability Distribution

Comparison

4.1 Introduction

In the previous chapter, we presented a state transition model to detect different

cyber attacks in smart grid networks. However, probability distribution based meth-

ods offer scalability, adaptability, reduced memory needs, and faster processing, for

detecting attacks compared to state transition machines particularly those involving

sudden surges in packets. We observe that normal communication in a smart grid

maintains a balance between query and response messages. In Modbus communica-

tion, every query has a response. We utilized this observation to detect flooding and

bruteforce attacks by identifying deviations in this message sequence. In this chapter,

we propose a lightweight method based on probability distribution comparison to de-

tect flooding and bruteforce attacks. We make the following meaningful contributions

in this chapter.

45

• We utilize a technique to create probability distributions by analyzing various

messages within Modbus communications.

• We compare the probability distribution derived from normal communications

with that of a testing interval to detect irregularities in communication patterns.

• We conduct experiments using two publicly accessible datasets to identify flood-

ing and bruteforce attacks directed at smart grid networks.

The remaining chapter is organized as follows. In Section 4.2, we quickly review

the prior works related to cyber attack detection in smart grid networks particularly

using Modbus communication. In Section 4.3, we provide the details of the proposed

anomaly detector for detecting anomalies in smart grid networks. We present the

evaluation results in Section 4.4. Finally, the chapter is concluded in Section 4.5.

4.2 Related Work

Various methods have been employed for cyber attack detection in smart grid and

SCADA systems. These methods can be categorized into three main types. Firstly,

machine learning techniques [27, 26] utilize features derived from measurement values

obtained from Remote Terminal Units (RTUs) or network packet/flow details. These

features are fed into classification or clustering algorithms such as decision trees, ran-

dom forests, support vector machines, and deep learning models to identify different

types of attacks. Secondly, state transition modeling [42, 43] involves representing the

normal operation and anomalies in communications happening in the grid using state

transition machines. This approach detects anomalies by observing unobserved mes-

sages or differences in message sequences, utilizing models like Deterministic Finite

Automata, Discrete Time Markov Chains, and probabilistic models. However, these

models may fail to detect some stealthy attacks. Finally, other methods for anomaly

detection include statistical analysis [47], time series analysis [50], and behavior-based

models [45]. These approaches monitor various metrics, analyze data over time, and

learn the normal behavior of the SCADA system to detect deviations indicative of

46

attacks. While effective for detecting novel attacks, these methods may require sub-

stantial training data. Overall, these diverse approaches contribute to enhancing the

security of smart grid and SCADA systems against cyber threats.

4.3 Proposed Detection Method

In this section, we present an anomaly detection technique that involves comparing

two probability distributions to identify potential attacks. We start by providing a

design rationale for this approach and then provide details of how the anomaly detector

works.

4.3.1 Design Rationale

Our method for detecting anomalies is based on the predictable and synchronized

nature of Modbus communications. In Modbus systems, which use a master-slave

setup, each response from a remote terminal unit (RTU) is usually preceded by a

query message from the master device. This means that, under typical conditions,

the quantity of queries is approximately equivalent to the quantity of responses, and

they occur in sync. In Figure 4.1a., we present a graph showing the number of queries

and responses gathered from a dataset of smart grid communications (referred to as

Dataset-1, explained in Section 4.4.1). This dataset covers a span of 5 hours, divided

into 60 intervals of five minutes each, representing typical communication activity in

the smart grid system. Upon examining the graph, we notice that although there

are slightly more response messages than query messages, they follow a synchronized

pattern. Whenever there’s an increase in the number of queries, there’s also a corre-

sponding increase in responses, and vice versa. This synchronized behavior reflects the

usual flow of communication in Modbus systems within smart grid setups. However,

this balance is disrupted during attacks. In Figure 4.1b., we illustrate a period where

the smart grid system faces a query flooding attack. During this attack, there is a

sudden increase in the number of queries sent to the system. But, despite the surge

in queries, there’s a notable absence of corresponding response messages, indicating

47

0 20 40 60
Interval

0

50

100

150

200

250

300

Nu
m
be

r o
f P

ac
ke
ts

Query
Response

a Normal (Dataset-1)

0 20 40 60
Interval

0

1000

2000

3000

4000

Nu
m
be

r o
f P

ac
ke
ts

Query
Response

b Query Flooding Attack (Dataset-1)

0 20 40 60
Interval

0

1000

2000

3000

4000

Nu
m
be

r o
f P

ac
ke
ts

Query
Response

c Bruteforce Attack (Dataset-1)

Figure 4.1: Modbus Query and Response Message Correlation

48

a disruption in the normal communication flow. Similarly, Figure 4.1c shows another

scenario where the smart grid system encounters a bruteforce attack. Here, we observe

a significant rise in the number of queries directed at the system, but no corresponding

increase in response messages. This discrepancy suggests that the system is flooded by

a lot of queries, possibly signaling malicious attempts to breach its security. These ob-

servations emphasize the importance of monitoring communication patterns in smart

grid systems to detect and address potential cyber threats. By identifying deviations

from normal behavior, such as those caused by query flooding or bruteforce attacks,

numerous steps can be taken to protect the smart grid infrastructure from potential

harm. After analyzing the information gathered in prior research [9], we utilize this

observed behavior to develop an anomaly detector tailored to recognize flooding and

bruteforce attacks within Modbus communications.

4.3.2 Anomaly Detector

We visualize the exchange of queries and responses in smart grid SCADA networks

by creating a probability distribution that reflects the occurrence of each message type.

This distribution, derived from typical Modbus communication patterns, serves as our

reference point. When we examine communication during testing, we compare it to

this baseline profile. We do this by analyzing how different the actual distribution is

from the expected one. By calculating the distance or dissimilarity between the two

distributions, we can detect any irregularities or deviations from the baseline profile,

helping us identify potential anomalies such as flooding or bruteforce attacks.

Let’s consider two probability distributions, represented as X “ X1, X2, ¨ ¨ ¨ , XN and

Y “ Y1, Y2, ¨ ¨ ¨ , YN , each consisting of N components. Here, each Xi and Yi rep-

resents the probability value associated with a particular event, making X and Y

N-dimensional vectors. The vector X is constructed using probability values derived

from normal Modbus communication, serving as our reference. On the other hand,

the vector Y is built from a testing period, reflecting actual communication behavior

during that interval. To measure the dissimilarity between X and Y , we employ a

distance metric. Various metrics are available for this purpose, but we opt for the

49

Hellinger distance, denoted by Equation 4.1, due to its theoretical properties, which

make it particularly suitable for our purposes.

dH “

˜

1

2

N
ÿ

i“1

´

a

Xi ´
a

Yi

¯2

¸
1
2

(4.1)

Following are a few properties of Hellinger distance which makes it a better choice for

comparing two distributions.

• Lightweight Computation: The Hellinger distance offers a lightweight computa-

tion advantage over metrics like the Mahalanobis distance. Unlike the Maha-

lanobis distance, which requires complex calculations such as matrix inverse or

covariance, computing the Hellinger distance between two probability distribu-

tions is simpler and less computationally intensive. This makes it a more efficient

option for models aiming to detect and address flooding and bruteforce attacks.

• Natural Lower and Upper Bounds: It is important to highlight that the

Hellinger distance, denoted as dH , always falls within the range of 0 to 1. In

this scale, 0 indicates perfect similarity between the probability distributions

X and Y , while 1 represents the maximum dissimilarity between them. This

means that the Hellinger distance inherently possesses natural lower and upper

bounds, unlike other distance measurement methods. This characteristic makes

it unique and useful for assessing the degree of similarity or dissimilarity

between two distributions.

• Yielding Finite Distance Value: Unlike the Kullback-Leibler Divergence, which

requires specific dependencies between the probability distributions X and Y ,

the Hellinger distance does not have such restrictions. Specifically, the Hellinger

distance remains defined regardless of whether certain probabilities in Y become

zero. For instance, during a flooding attack, probabilities of certain events may

drop to zero (Query event drops to zero while response flooding attack and Re-

sponse event drops to zero while query flooding attack), leading to undefined

50

values in the Kullback-Leibler Divergence. However, the Hellinger distance pro-

vides a finite value within the range of 0 to 1, making it a more suitable measure

in such scenarios.

The Hellinger distance metric provides distance values within the range of 0 to 1

and offers a straightforward computation process. In our scenario, we represent the

vectors as X “ ProbQue, P robRes and Y “ ProbQue, P robRes. Here, X is derived from

a training period, and Y is obtained from a testing interval.

During the training phase, we collect samples over a duration of t intervals. From these

samples, we generate a training profile (distribution X) using the formulas presented

in Equation 4.2 and Equation 4.3. In these equations, RCi and RSi represent the

counts of requests (queries) and responses in the ith interval respectively. This process

allows us to establish a baseline distribution based on the training data, which serves

as a reference for comparison during subsequent testing intervals.

ProbQue “ X1 “

řt
i“1RCi

řt
i“1RCi `

řt
i“1RSi

(4.2)

ProbRes “ X2 “

řt
i“1RSi

řt
i“1RCi `

řt
i“1RSi

(4.3)

ProbQue “ Y1 “
RCi

RCi `RSi

(4.4)

ProbRes “ Y2 “
RSi

RCi `RSi

(4.5)

Likewise, the distribution Y is formed from a testing interval using the formulas pre-

sented in Equation 4.4 and Equation 4.5. The key distinction here lies in the utilization

of query and response counts from that specific interval or duration. In crisp, we cre-

ate Y based on the query and response data observed during the testing period. This

enables us to construct a distribution representative of the communication patterns

during the testing phase, facilitating comparison with the training profile X.

Figure 4.2 illustrates probability distributions derived from training and testing

samples during normal operation, specifically in the context of Modbus communica-

tion. In Figure 4.2a, we observe the distribution generated from average values of

51

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

a Probability Distribution of Normal

Training Interval

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

b Probability Distribution Normal Test-

ing Interval

Figure 4.2: Probability Distribution Comparison for Dataset-1

the training dataset collected over a period of 146.62 hours (as described in Dataset-

1, detailed in Section 4.4.1). This distribution serves as a representation of typical

communication behavior during normal operation. On the other hand, Figure 4.2b

displays the distribution generated from a testing interval characterized by normal

communication patterns. These distributions provide insights into the typical com-

munication dynamics observed in the system under normal circumstances. Conversely,

Figure 4.3 presents a comparison of probability distributions during normal commu-

nication with distributions generated from intervals associated with query flooding

attacks and bruteforce attacks. Here, Figure 4.3a depicts the same profile as in Figure

4.2a, representing the training dataset. In contrast, Figure 4.3b and Figure 4.3c illus-

trate the probability distributions observed during testing intervals corresponding to

a flooding attack and a brute force attack, respectively.

Figure 4.4a shows the distribution graph of the baseline profile generated from the

normal communication of Dataset-2 (More information about Dataset-2 can be found

in Section 4.4.1). As observed previously both query and response messages appear

in almost equal numbers and hence their probabilities are also similar. Figure 4.4b

shows the distribution graph generated from the flooding attack data of Dataset-2.

Upon examining these sample distributions, we can conclude that they closely resem-

ble each other during normal operation. However, their balance is visibly disrupted

52

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

a Normal Profile

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

b Flooding Attack Profile

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

c Brute force Attack Profile

Figure 4.3: Probability Distribution Comparison (Dataset-I)

under attack conditions. This disruption is evident in the form of notable deviations

from the expected communication patterns, highlighting the effectiveness of the pro-

posed anomaly detection approach in identifying and distinguishing between normal

operation and attack scenarios.

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

a Training Profile

Query Response
Events

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of
 E
ve

nt
 O
cc
ur
re
nc

e Query Probability
Response Probability

b Flooding Attack Profile

Figure 4.4: Probability Distribution Comparison (Dataset-2)

53

4.4 Experiments

In this section, we provide a detailed explanation of the experiments conducted

to validate the proposed anomaly detector. The following three subsections offer

information on the datasets utilized for the experiments, the results obtained, and a

sensitivity analysis for various parameters, respectively.

4.4.1 Dataset Details

For our analysis, we conducted experiments using two datasets: the CIC Modbus

Dataset 2023 [60] and the Cyber-Security Modbus ICS Dataset [61]. In the subsequent

discussion, we refer to these datasets as Dataset-1 and Dataset-2, respectively.

(i) Dataset-1: The CIC Modbus Dataset 2023 [60] originates from a simulated en-

vironment carefully constructed by researchers at the University of New Brunswick.

This simulated setup utilizes Docker containers to emulate the functionalities of In-

telligent Electronic Devices (IEDs) and SCADA Human Machine Interfaces (HMIs)

found in an energy distribution substation network. To simulate the behavior of these

components, Python scripts were developed to replicate the logic of IEDs and HMIs.

This dataset is publicly available and consists of labeled pcap files containing a range

of communications, from benign to malicious. The malicious communications include

various attack types such as reconnaissance, query flooding, stacking Modbus frames,

bruteforce write, etc., following the MITRE ICS ATTACK techniques [62] providing

essential insights. Table 4.1 presents key details about the dataset, including the du-

ration covered by both attack instances and normal captures. This dataset serves as a

valuable resource for researchers and practitioners, offering a realistic understanding of

cyber-physical systems and helping in the development of effective defense strategies

against potential threats

(ii) Dataset-2: The Cyber-Security Modbus ICS Dataset [61] originates from

the University of Coimbra, where a testbed was developed to mimic a Cyber-Physical

System (CPS) process managed by a SCADA system. Within this simulated network,

the Modbus protocol was used for communication between different components of

54

Table 4.1: Dataset-1 Details

File Name Event Capture Duration

compromised-scada Attack 169.92 hours

scada-hmi Benign 194.62 hours

Table 4.2: Dataset-2 Details

File Name Event Capture Duration

Captures1 Normal Communication 7.5 hours

Captures1 Flooding Attack 155 hours

Captures2 Flooding Attack 29.5 hours

Captures3 Flooding Attack 29.5 hours

the SCADA system. This dataset comprises three units: Captures1, Captures2, and

Captures3. These units contain traces captured during both normal operations and

various attack scenarios. The traces are stored in the pcap file format, ensuring

compatibility with widely-used tools such as tcpdump [63] and Wireshark [64]. Table

4.2 offers comprehensive details about this dataset, including the duration covered by

both attack instances and normal captures. This dataset serves as a valuable asset for

researchers and practitioners, providing valuable insights into the workings of cyber-

physical systems and facilitating the development of robust defense strategies against

potential threats.

4.4.2 Evaluation

We carefully processed the pcap files from both datasets to extract query and

response statistics across various intervals. This involved filtering Modbus packets us-

ing Wireshark filters and then extracting packet details into CSV files. Following this,

Python scripts were used to analyze these CSV files and generate detailed statistics

on queries and responses. To establish a reliable baseline profile for normal Mod-

bus SCADA communication, we utilized labeled pcaps containing instances of normal

55

communication. The corresponding CSV files were also used to ensure accuracy in

generating the profile of normal communication. Additionally, we documented the

specifics of training and testing intervals, along with other important details for both

datasets.

(i) Dataset-1: The CIC Modbus Dataset 2023 contains a comprehensive record to-

taling 364.54 hours of data, encompassing both normal operations and instances of

attacks, as depicted in Table 4.1. To facilitate our experimental procedures, we divided

the 194.62 hours of normal data into two distinct segments. Of these, one segment,

spanning 146.62 hours, was set aside for generating the foundational baseline profile

representing normal behavior. The remaining 48 hours of normal capture, alongside

the entirety of the 169.92 hours dedicated to attack scenarios, were reserved for testing

purposes.

Table 4.3: Training & Testing Data Duration(CIC Modbus Dataset 2023)

Data Duration Intervals

Normal Training Trace 146.62 hours 1760

Normal Testing Trace 48 hours 576

Attack Testing Trace 169.92 hours
Normal 1183

Attack 857

The division of data is detailed in Table 4.3, which provides insights into the number

of intervals, each lasting five minutes, allocated for different categories. It’s notewor-

thy that files labeled with attacks indicate specific timeframes during which attacks

were initiated. Consequently, the actual duration of attacks spans multiple discrete

time periods. We carefully identified and annotated these intervals to signify attack

occurrences, while the rest were designated as normal intervals. Hence, the total num-

ber of normal intervals designated for testing comprises a combination of those found

56

within the attack trace files and the 48 hours of normal capture from the initial seg-

ment. These details, of the division and utilization of intervals for various purposes

are presented in Table 4.3.

(ii) Dataset-2: The Cyber-Security Modbus ICS Dataset encompasses a total dura-

tion of 221.5 hours across all three captures combined. Following a similar approach

to Dataset-1, we divided these traces into three segments, as outlined in Table 4.4.

Table 4.4: Training & Testing Data Duration

Data Duration Intervals

Normal Training Trace 6 hours 180

Normal Testing Trace 1.5 hours 45

Attack Testing Trace 214 hours
Normal 3848

Attack 2572

However, unlike the previous dataset, we opted for a time duration of 2 minutes

for each interval, which yielded the most optimal results (further details on sensitivity

analysis are provided in the next subsection). For training purposes, a total of 180

intervals were utilized to generate the baseline profile, representing normal behavior.

Subsequently, a larger set comprising 6465 intervals was allocated for testing purposes.

This division ensured a comprehensive assessment of the anomaly detector’s perfor-

mance across a diverse range of scenarios. These details concerning the segmentation

and utilization of intervals for training and testing purposes are elaborated in Table

4.4, providing a clear understanding of the experimental setup for Dataset-2.

We assessed the effectiveness of our detection method using four key metrics: De-

tection Rate, False Positive Rate, Accuracy, and F1 Score whose details are mentioned

in Chapter 3.

In our evaluation, we established specific threshold values for the Hellinger dis-

tance and window periods (∆), as outlined in Table 4.5 and Table 4.6 for Dataset-1

57

Table 4.5: Parameters for Dataset-1

Parameter Threshold Value

distance 0.48

∆ 5

Table 4.6: Parameters for Dataset-2

Parameter Threshold Value

distance 0.25

∆ 2

and Dataset-2, respectively. With these parameters in place, we proceeded to assess

the detection performance of our method. The results of this evaluation are presented

in Table 4.7, showcasing the performance achieved for both datasets. We observed

that our detection method performed well for both datasets, demonstrating promising

results. However, it’s important to note that the performance achieved depends on

the chosen parameter values to some extent. In the subsequent subsection, we delve

into a detailed examination of how the method’s performance varies with these pa-

rameter values. This analysis allows us to gain deeper insights into the behavior and

effectiveness of our detection approach across different configurations.

Table 4.7: Detection Performance

Dataset DR FP A F1

Dataset-1 100% 0% 100% 100%

Dataset-2 100% 0% 100% 100%

4.4.3 Sensitivity Analysis

It’s important to highlight that we incorporated threshold values during the cal-

culation of the Hellinger distance between probability distributions. Additionally, the

58

window time also influences the detection performance. Therefore, we conducted a

comprehensive analysis to examine how the performance of our detection methods

varies concerning these values for both datasets. This analysis is done to understand

the impact of threshold values and window time on the effectiveness of our detection

approach. By systematically studying their influence on detection performance, we

gain valuable insights into the optimal configuration of parameters for achieving the

most accurate and reliable results. This analysis is crucial for fine-tuning our method

and enhancing its effectiveness in detecting anomalies within the datasets.

(i) Hellinger Distance Threshold: In this analysis, we conducted a sensitivity assess-

ment by varying the distance threshold values incrementally by 0.2. We evaluated

both the detection rate and false positive rates across different threshold values.

0.0 0.2 0.4 0.6 0.8 1.0
Hellinger Distance

0

20

40

60

80

100

Ra
te

Detection Rate
False Positive Rate

Figure 4.5: Hellinger Distance v/s Detection Performance for Dataset-1

Figures 4.5 and 4.6 depict the performance variation for Dataset-1 and Dataset-2,

respectively. Notably, for threshold values up to 0.55, both datasets exhibited a nearly

100% detection rate with an acceptable rate of false positives.

This observation indicates the robustness of our method in accurately detecting

anomalies while maintaining a low false positive rate within this threshold range.

It highlights the effectiveness of our approach in effectively distinguishing between

normal and anomalous behavior across different datasets. Such insights are crucial for

59

0.0 0.2 0.4 0.6 0.8 1.0
Hellinger Distance

0

20

40

60

80

100

Ra
te

Detection Rate
False Positive Rate

Figure 4.6: Hellinger Distance v/s Detection Performance for Dataset-2

optimizing the parameters of our detection method to achieve optimal performance in

real-world scenarios.

(ii) TimeWindow: Similar to our previous analysis, we conducted a sensitivity analysis

by varying the time window period. For Dataset-1, we varied the window period in

5 10 15 20 25
Δ

0

20

40

60

80

100

Ra
te

Detection Rate
False Positive Rate

Figure 4.7: Time Window v/s Detection Performance for Dataset-1

increments of five minutes, while for Dataset-2, we used increments of two minutes.

Figures 4.7 and 4.8 illustrate the performance variation for Dataset-1 and Dataset-

60

2, respectively. Notably, in Figure 4.7, Dataset-1 demonstrates optimal performance

only for a window period of 5 minutes. Deviations from this window size result in

decreased detection rates, while the false positive rates remain relatively stable.

Conversely, for Dataset-2, we observe a slight decline in detection rates for larger

window values, while the false positives remain stable. This deviation is attributed to

variations in the duration of attacks launched. In Dataset-1, attacks span relatively

short durations, making them detectable with window sizes closer to the attack du-

ration. Conversely, attacks in Dataset-2 persist for longer periods, resulting in nearly

constant performance across smaller time intervals. This highlights the importance

of selecting an appropriate time window to reflect real-world attack durations accu-

rately. However, smaller time durations may still aid in detecting longer duration

attacks, emphasizing the need for careful consideration in parameter selection to op-

timize detection capabilities.

2 4 6 8
Δ

0

20

40

60

80

100

Ra
te Detection Rate

False Positive Rate

Figure 4.8: Time Window v/s Detection Performance for Dataset-2

4.5 Conclusion

Smart grid networks serve as crucial infrastructure supporting millions of users for

their energy requirements. These networks leverage Information and Communication

61

Technology (ICT) to interconnect sensory infrastructure with control centers, facili-

tating decision-making processes. However, given the well-documented cybersecurity

vulnerabilities associated with TCP/IP, smart grid communication inherits these se-

curity challenges. In our study, we introduce a lightweight anomaly detection model

tailored to identify two significant cybersecurity threats within smart grid networks.

Our approach involves generating probability distributions based on known normal

communication patterns within the smart grid network. To identify potential attacks,

our detector assesses the distance between a baseline profile and a profile generated

from a test interval.

Notably, our proposed approach stands out for its lightweight nature, requiring min-

imal computational resources for effective operation. Through evaluation of our pro-

posed approach on publicly available datasets, we demonstrate the effectiveness of our

anomaly detector in accurately detecting these threats. This research contributes to

enhancing the security posture of smart grid networks, safeguarding critical infras-

tructure against cyber threats.

62

Chapter 5

Mitigating Resource Depletion and

Message Sequencing Attacks in

SCADA Systems

5.1 Introduction

In Chapters 3 and 4, we introduced cyber attack detection methods in SCADA

systems using state transition modeling and probability distribution techniques, re-

spectively. Now, in this chapter, we shift our focus to mitigating attacks, particularly

dealing with malformed message attacks. The traditional approach for protecting

SCADA systems involves deploying firewalls to filter packets from known attackers

and unknown sources. However, this method has limitations. Firewalls are often im-

plemented as software solutions, which can themselves be vulnerable to attacks. Addi-

tionally, filtering may not be reliable unless it inspects the content of packets. Various

attack detection methods have been proposed, but they typically run as applications,

resulting in overhead from bringing packets through kernel space. To address this,

we propose offloading the filtering operation to the network interface card. In this

direction, we make the following contributions in this chapter.

• We study different types of malformed attacks that can be generated by manip-

63

ulating the application layer messages of IEC-104 and Modbus.

• We propose a method to identify all malformed messages using formal constructs

generated from protocol specification.

• We study the impact of malformed packet attacks on the system resources ad-

vocating the need for mitigation techniques.

• We suggest a method to transfer the screening and filtering of malformed packets

to programmable network interface cards, resulting in substantial savings in

system resources.

The remaining chapter is organized as follows. In Section 5.2, we quickly review

the prior works related to cyber attack mitigation in smart grid networks particularly

using IEC-104 and Modbus communication. In Section 5.3, we provide the details of

the proposed mitigation technique. We present the evaluation results in Section 5.4.

Finally, the chapter is concluded in Section 5.5.

5.2 Related Work

Existing works related to the security of Industrial Control Systems (ICS) can

be categorized into two parts. Firstly, there are works related to attack vectors

[13, 14, 15]. Commonly studied attacks include false data injections [15] and de-

nial of service attacks [16], which disrupt normal operations either by misleading data

or by overwhelming computational resources. A lot of attention has been given to

these conventional attacks, but we study a different class of attacks that target the

computational resources of the control center. Similar attacks are studied in other

domains like web servers [17]. Secondly, there are works related to attack detection.

There are several machine learning algorithms [18, 19], state transition modeling ap-

proaches [9, 20, 7] and commercial intrusion detection system solutions [21] available

for this purpose. Many of these techniques rely on Deep Packet Inspection (DPI) [22]

for detecting these attacks. However, these methods detect conventional attacks like

64

scanning, injection, connection-loss, etc. For instance, Lin et al. [23] adopted Bro [24]

(now called zeek) intrusion detection system for SCADA networks. They also propose

to filter malformed messages in SCADA systems. However, their study is limited to

a limited number of attribute types and to only the DNP3 protocol. Further, Bro

rules were manually written for detection. Unlike this, we describe a systematic way

to identify all types of malformed messages.

5.3 Proposed Method

In this section, we cover different types of malformed and message sequence attacks,

their detection method, and mitigation techniques.

5.3.1 Background

We begin by giving a background of the two application layer protocols that are

commonly used in SCADA communications and eBPF.

5.3.1.1 Communication protocols

Our proposed method focuses on enhancing the security of smart grid systems by

detecting potential cyber threats. Using the widely used communication protocols like

IEC-104 and Modbus within the SCADA environment. Here, we simulate realistic at-

tack scenarios and evaluate the effectiveness of our detection mechanisms. Thus, we

begin with a background of these two communication protocols. Here’s an overview

of both:

IEC-104: The IEC 60870-5-104 protocol stack, established by the International Elec-

trotechnical Commission (IEC), serves for the telecontrol of equipment/systems over

TCP/IP. This protocol details are provided in Subsection 3.3.1 of Chapter 3.

Modbus: Modbus over TCP/IP is a widely used industrial communication protocol,

leveraging TCP/IP networks for seamless device interaction. The message structure

of a Modbus communication is shown in Figure 5.1. Key characteristics of Modbus

over TCP/IP encompass reliable message delivery through encapsulation, IP-based

65

Figure 5.1: Modbus Messaging over TCP/IP

addressing, a diverse range of function codes for control and monitoring purposes, and

support for different data types. The message frame consists of various fields, including

the Transaction Identifier (TID) for transaction identification, the Protocol Identifier

(PID) specifying Modbus over TCP/IP, the Length field indicating remaining bytes,

the Unit Identifier (UID) identifying remote devices, the Function Code defining op-

eration types (such as read or write), and the Data Field containing function-specific

information. The Function Code dictates the action type in Modbus messages, while

the Data Field carries information structured based on the function code. The Proto-

col Identifier field designates the Modbus message protocol within the TCP/IP stack,

ensuring proper communication routing. The Transaction Identifier ensures pairing in

request-response communication, while the Length field specifies the total bytes in the

Modbus Application Protocol (MBAP) header, unit identifier, and data. Lastly, the

Unit Identifier aids in routing between Modbus serial and TCP/IP networks within

the system. These components collectively facilitate efficient and standardized com-

munication in industrial environments.

5.3.1.2 eBPF

Extended Berkeley Packet Filter (eBPF) extends the traditional Berkeley Packet

Filter (BPF) by allowing for more complex and customizable packet processing within

the kernel. This flexibility enables a wide range of applications, including network

monitoring, security enforcement, and performance tuning. By leveraging eBPF, de-

velopers can efficiently implement advanced networking features without the need for

kernel modifications, thereby maintaining system stability and security. Addition-

ally, eBPF’s integration with programmable network interface cards (NICs) further

66

enhances performance by offloading processing tasks to hardware, reducing CPU over-

head and latency. This combination of flexibility, safety, and performance makes eBPF

a crucial technology for modern Linux-based networking environments.

5.3.2 Malformed and Message Sequencing Attacks

In this section, we discuss how an attacker can generate malformed and message se-

quencing attacks taking a reference grid architecture. A typical grid consists of power

generation sources placed at one end and customers residing at the other, as shown in

Figure 5.2. The link between the two ends is the control center, which is responsible

for forecasting the demand and supply as well as identifying network vulnerabilities.

The control center receives a large volume of measurement data from various points

across the grid network, providing crucial insights into the state of the system. This

data is essential for accurately assessing the balance between power generation and

consumption, identifying potential anomalies or faults, and managing timely inter-

ventions to maintain grid stability and reliability. However, this reliance on external

data sources also makes the control center vulnerable to malicious manipulation. An

adversary could exploit vulnerabilities within the communication channels or the data

itself to inject false or misleading information into the system. By tampering with

the integrity of the measurement data, the adversary could distort the control center’s

perception of the grid’s state, leading to erroneous decisions and potentially harmful

consequences. These attacks are well covered in literature and also by the methods

described in the previous two chapters.

In this chapter, we focus on an attack that can target the control center by depleting

its resources and disrupting the orderly flow of communication between the control

center and grid components. By manipulating the sequence in which messages are

received or processed, the adversary could introduce delays, reorder commands, or even

replay outdated information, undermining the efficiency and reliability of the control

system. Thus, safeguarding the integrity and authenticity of the data transmitted

to the control center, as well as ensuring the resilience of communication channels

against sequencing attacks is important for securing industrial control systems against

67

malicious exploitation.

Figure 5.2: Grid Network Communication Architecture

5.3.2.1 Malformed Messages and Detection

In the depicted grid architecture (Figure 5.2), we show a potential attack scenario

wherein an adversary aims to overwhelm the control center with a large volume of

malformed messages. An adversary generates malformed packets by setting different

values in the packets. These packets, though appearing benign on the surface, have

two distinct types of harmful consequences:

(i) Misinterpretation of Status and Execution of Undesirable Actions:

Some of these messages might confuse the control center into taking action otherwise

it should not. The control center might misunderstand the status of the SCADA

system and end up taking certain actions.

(ii) Server Resource Depletion: Even if these messages are not triggering any

action, they still take up space and time on the server. With a large set of messages

coming in, the server can get overwhelmed, making it harder for it to handle other

real tasks.

These messages, capable of disrupting the system, are crafted with relative ease

using readily available packet generation tools or through minimal programming

efforts. Their impact extends beyond mere disruption, potentially compromising

68

the reliability, integrity, and overall functionality of the grid setup. Therefore, it

is imperative for system defenders to devise robust countermeasures to detect and

mitigate these attacks. Following is a non-exhaustive list of such malformed message

cases and also its implications.

Modbus Malformed Messages

(i) Protocol Identifier Field Error: The value is set to 0x0000 for smooth

communication within the network. If any other value is used, the message is termed

malformed, which means it is incompatible with the expected format or structure.

This deviation introduces a risk of communication errors and may confuse devices

in the network. Thus, using standard protocol identifier value 0x0000, we ensure

clear and reliable communication, minimizing the potential for errors and enhancing

overall network efficiency and effectiveness. Figure 5.3a shows the normal Modbus

message that uses the standard protocol identifier value, while Figure 5.3b shows the

malformed Modbus message with an incorrect protocol identifier value.

a Normal Modbus Message

b Malformed Modbus Message

Figure 5.3: Packet Structure of Normal and Malformed Modbus Message

(ii) Incompatible Value Message: This type of attack occurs when conflicting

values are inserted into the message. For instance, using an unconventional Protocol

Identifier produces an incompatible value message. Similarly, setting the function

code for a query as ‘x’ where ‘x&0x80 ““ 1’ denotes an exception range, creates

a clash in the function code values, resulting in an incompatible message. Such

69

inconsistencies disrupt smooth communication and data exchange within SCADA

systems, potentially causing operational issues.

IEC-104 Malformed Messages

(i) Wrong Start Character: In IEC-104, the start character is fixed 0x68. Using

alternative values can result in an invalid character being detected or treated as the

start character is absent, leading to packet synchronization problems.

(ii) Incompatible ASDUTYPE and CoT Values: Such deviations can significantly

impact the correct execution of commands within SCADA systems. For example,

when the ASDUTYPE is designated as 2, only specific Cause of Transmission (CoT)

values, such as 3, 5, 11, and 12, are termed valid. Any deviation from these predefined

combinations, such as employing an incompatible CoT value like 8, can lead to

commands being misinterpreted. This misinterpretation has the potential to disrupt

the seamless functioning of the system. Considering there are 127 ASDUTYPE

variations, each with its own unique set of valid CoT values, the sheer number of

potential combinations increases the complexity and susceptibility to errors within

the system.

(iii) Incompatible Length and Number of Objects Fields: Such messages result

in packet parsing and interpretation errors due to deviations between the mentioned

number and the actual data available within the Application Protocol Data Unit

(APDU). This mismatch confuses the parsing process, leading to errors in interpreting

the message contents. Consequently, the system may fail to correctly interpret the

messages, potentially compromising its functionality.

(iv) Incorrect Test Bit Setting (T Bit): This particular bit is designated solely

for testing purposes. However, toggling its state, whether setting or unsetting it, can

result in misinterpretations. Such misinterpretations may occur when test messages

are erroneously identified as operational commands or conversely, when operational

commands are mistaken for test messages. This confusion can lead to unintended

consequences, potentially disrupting normal system operations or affecting the

integrity of test results. Therefore, caution must be exercised when manipulating this

bit to avoid any misunderstandings or operational errors.

70

(v) Mismatch in P/N Bit Setting: This particular field acts as an indicator

determining whether an execution has succeeded or failed. However, if there is a dis-

crepancy in the Positive/Negative (P/N) bit—where P/N equals 0 or 1—it can lead to

erroneous conclusions regarding the outcome of command execution. Such inaccura-

cies can significantly affect the reliability and precision of the grid system. It’s crucial

to maintain consistency in interpreting the P/N bit to ensure an accurate assessment

of command execution results and uphold the integrity of the grid system’s operations.

The examples of malformed messages or packets discussed earlier can generally

be categorized into two types: (i) those with illegal settings and (ii) violations of

dependent attribute values. In response to this, we present a common method for

identifying such messages. We utilize a framework based on first-order logic to

express constraints in accordance with the specification. This approach enables us

to systematically detect all variations of malformed packets by defining logical rules

that capture the specific conditions leading to packet irregularities. By using this

method, we can effectively identify and address potential issues within the network,

enhancing its overall reliability and performance.

We view Modbus and IEC-104 packets as a message M , consisting of attributes

a1, a2, ¨ ¨ ¨ , an, where each ai P M . These attributes come from a well-defined domain

Di with every Di corresponding to ai. We identify two types of malformed messages

through constructed logic statements as follows.

(i) Identifying illegal settings: Let Lpaiq indicate whether attribute ai takes value

from its domain Di, where true means it does and false means it doesn’t, then a

message M is malformed if there’s at least one attribute ai that breaks its domain

rule. In simpler terms, if any attribute ai in the message M picks a value it shouldn’t,

then the message is malformed. This idea can be expressed with the logical statement

Dai␣Lpaiq, which says that there is at least one such attribute ai in the message. For

instance, if a SCADA system receives a packet with an Information Object Address

(IOA) of 65537 in the IEC-104 protocol, it falls outside the typical range of IOAs,

71

which is restricted to 65535. This packet would be considered anomalous or erroneous

as it exceeds the permitted range of IOAs.

(ii) Dependent attribute violations: Suppose we have two attributes ai and aj in

a message M . Attribute ai has a domain Di with some values x1, x2, ..., xm, and

attribute aj has a domain Dj with values y1, y2, ..., yk. We call ai the primary attribute

and aj the dependent attribute because the value of aj depends on the value of ai. If

ai takes a value xi, then the dependent attribute aj can only take a subset of values

from its domain, let’s call it D
1

j. To represent these dependencies logically, we first

identify such pairs of attributes (ai, aj) from the protocol specifications. Then, we

expand the attribute set and partition the domain set. This means that we create new

attributes based on ai and its possible values, and each new attribute ait corresponds

to a subset of the domain Di. These subsets may overlap, but they represent the

different possibilities for ai and consequently for the dependent attribute aj.

ai ={ai1, ai2, ¨ ¨ ¨ , aip} and Di = {Di1, Di2, ¨ ¨ ¨ , Dip} with ait corresponding to Dit for

1 ď t ď p.

aj ={aj1, aj2, ¨ ¨ ¨ , ajp} and Dj = {Dj1, Dj2, ¨ ¨ ¨ , Djp} with ajt corresponding to Djt

for 1 ď t ď p.

If Lpaitq is true, it means that the attribute ai takes one of the values from the set

Dit. In this case, the attribute ajt should also take values from its own domain Djt.

We can express this constraint as a logical statement: “There doesn’t exist a pair of

attributes (ait, ajt) for which both Lpaitq and Lpajtq are false.” This statement ensures

that if ait takes a valid value, then ajt must also take a valid value, maintaining

the dependency between them. For instance, if a SCADA system receives a packet

having ASDUTYPE as 4 and CoT as 2, then this represents an anomaly due to the

incompatible value of ASDUTYPE and CoT. The ASDUTYPE 4 is only compatible

with CoT values 3, 5, 11, and 12.

5.3.2.2 Message Sequencing Attacks

In this scenario, attackers manipulate the sequence of messages sent to the control

center intentionally to disrupt its stability. By adjusting attributes such as CoT and

72

ASDUTYPE within IEC-104 messages, attackers can trigger unwanted actions, like

turning a target device on and off repeatedly [7]. What makes these attacks par-

ticularly challenging to detect is that the attribute values being used are technically

legitimate. However, it’s the specific combination and sequence of these values that

lead to adverse effects. To effectively counter these sequencing attacks, a different ap-

proach is necessary compared to traditional attack detection methods. Instead of sim-

ply flagging individual messages as malicious, the focus shifts to identifying patterns

or sequences of messages that, when combined, result in disruptive behaviour. This

requires a more sophisticated detection mechanism capable of analyzing the broader

context and sequence of message interactions to identify potential threats.

Let’s consider a sequence of messages, M1,M2, ¨ ¨ ¨ ,Mn, received within a time period

W . Each message, Mi, contains a set of attribute values: Mi “ a1, a2, ¨ ¨ ¨ , am, where

1 ď i ď n and 1 ď t ď m. To keep track of these attribute values over time, we log

them in auxiliary storage along with their corresponding timestamps. This logging

process can be denoted as LogpWqq “ pt1,M1q, pt2,M2q, pt3,M3q, ¨ ¨ ¨ , ptn,Mnq for the

qth window period. Essentially, for each window period, we keep a record of when

messages were received and what attribute values they contained. To detect potential

attacks, we look through these logs during each window period. By examining the at-

tribute values, we can spot any patterns that might indicate the presence of an attack.

This checking process allows us to monitor how the attribute values change over time

and catch any unusual or suspicious patterns that could signal malicious behaviour.

5.3.3 Mitigating Attack

We introduce a novel attack mitigation technique that uses filtering mechanisms at

the operating system (OS) kernel or Network Interface Card (NIC) of the server located

at the control center. This technique involves examining incoming packets, specifically

those that are adhering to the IEC-104 and Modbus protocols, to ensure they are well-

formed and contain legally permissible combinations of values. To implement this

packet filtering mechanism, we leverage the Extended Berkeley Packet Filter (eBPF).

eBPF enables the execution of custom code within the Linux kernel by attaching

73

programs to kernel hooks. These hooks can be triggered by various events, such as

system calls or the arrival of new packets. Importantly, eBPF programs can also be

offloaded to programmable network interface cards, as depicted in Figure 5.4. The

versatility of eBPF allows developers to create and execute custom programs in the

kernel space without the need to modify the kernel itself. These programs are typically

written in a restricted subset of the C programming language and undergo verification

by the eBPF verifier to ensure the safety of execution. This verification process aims

to prevent any adverse effects, such as kernel crashes, thereby maintaining the stability

and reliability of the system.

Figure 5.4: Proposed Packet Filtering with eBPF

We propose utilizing the capabilities of eBPF to implement a validation code for

checking incoming Modbus and IEC-104 messages. As mentioned previously, this ap-

proach offers two potential scenarios: executing the code within the kernel space or

offloading it to a network interface card (NIC). When running in the kernel space,

the validation code can enhance performance by reducing context switch events and

minimizing data copy operations between kernel and user space buffers. Conversely,

if offloaded to a hardware NIC, packets can bypass the kernel altogether and be sent

directly to the user space application, further optimizing performance. Technologies

like XDP [65] facilitate this offloading of eBPF programs to Smart NICs. The eBPF

74

code conducts a two-step validation process. Firstly, it identifies whether the packet

corresponds to the Modbus or IEC-104 protocol by examining header details and des-

tination port numbers. Subsequently, the code executes a series of rules derived from

the logic statements outlined in Section 5.3.2, aiming to detect malformed message

attacks. To facilitate this detection and filtering process, the eBPF code utilizes the

maps feature provided by eBPF. This feature enables the storage of timestamped mes-

sages along with their attribute values, facilitating the identification and filtration of

sequencing attacks. Overall, our approach leverages eBPF’s capabilities to efficiently

validate incoming messages and safeguard against various forms of cyber threats.

Figure 5.5: eBPF-based Filtering of Packets at NIC

The eBPF screening program functions by actively searching for specific patterns

and combinations of attribute values in real time within incoming packets. It operates

with the aim of identifying well-formed packets and filtering out any that do not meet

the predefined criteria. This process occurs instantaneously and seamlessly, ensuring

that only valid packets are forwarded directly to the user space application for further

processing thus saving system resources at the control center. Figure 5.5 illustrates this

process, highlighting the efficiency and effectiveness of the eBPF program in real-time

packet screening.

75

Figure 5.6: Testbed Setup

5.4 Experiments and Evaluation

In this section, we test the attack detection and protection methods we came up

with. We establish a controlled test environment mirroring real-world conditions to

assess their efficiency. Through careful examination, we explore the consequences of

malformed messages and find out about their potential risks to the system. Further-

more, we demonstrate the effectiveness of eBPF-based filtering in preventing various

attacks. Our findings promise the robustness and reliability of our methods in safe-

guarding the system’s integrity.

(i) Testbed Setup: To comprehensively understand the implications of malformed

message attacks and efficiently implement filtering methods to counter them, we es-

tablished a testbed comprising eight computers, each with a specific role as shown

in Figure 5.6. One computer served as the control center and master device, while

another acted as a legitimate client, engaging in communication tasks with the mas-

ter. Both the master and client functionalities were simulated using Python programs,

generating Modbus and IEC-104 messages to mimic real-world communication proto-

cols. These messages included queries and responses, containing hypothetical readings

of parameters like voltage, current, and angle values. The remaining computers in the

testbed were designated for generating various malformed and sequenced messages

76

aimed at the server. Leveraging the Scapy library, these machines crafted custom

messages tailored to simulate different attack scenarios. By carefully controlling the

structure and sequencing of messages, we could effectively evaluate the system’s re-

silience to different types of threats. This testbed provided a controlled environment

for assessing the efficacy of our proposed filtering methods in detecting and mitigating

attacks, all while upholding the formal standards of our evaluation process.

(ii) Malformed Message Implication: In the beginning of our experiments, we

delve into the implications of malformed messages on the server, as highlighted in

Sections 5.1 and 5.3.2. These messages strain server resources, consuming processing

power to handle them. To assess this impact, we focus on CPU utilization on the

server under different conditions.

a CPU Utilization with and without Attack b CPU Utilization with Varying Message In-

tensity

Figure 5.7: Number of Messages v/s CPU Utilization

In our study setup, a single legitimate client consistently sends measurements to the

control center or server at a rate of 200 messages per minute. Meanwhile, seven ma-

licious clients collectively bombard the server with malformed messages at a rate of

2000 messages per minute. We compare CPU utilization both with and without the

presence of the attack, illustrating the results in Figure 5.7a. Furthermore, we explore

how varying the intensity of the attack affects CPU utilization. By incrementally in-

creasing the number of malformed packets sent per minute—from 500 to 2500 in steps

of 500, we observe changes in CPU utilization. Figure 5.7b illustrates this variation

77

against the intensity of the attack. Our findings reveal a notable increase in CPU

utilization as the volume of malformed messages escalates. This shows the strain on

server resources caused by such attacks, highlighting the importance of effective miti-

gation strategies.

(iii) Filtering Malformed Messages: Here, we provide details of our imple-

mentation of eBPF-based filtering and explain how it safeguards server resources,

as outlined in Section 5.3.2. Leveraging the logical representation from our earlier

discussion, we define key attributes and their corresponding partitions. These repre-

sentations are translated into if-then-else rules within the eBPF C code, facilitating

effective filtering. Additionally, the eBPF code necessitates a user-space program for

direct interaction. To enable this interaction, we extend the server program to com-

municate with the eBPF program loaded at the NIC. The maps feature available in

eBPF is utilized to store the domains of the attributes, ensuring efficient processing

of incoming messages.

a 500 Packets Per Minute b 2000 Packets Per Minute

Figure 5.8: CPU Utilization with eBPF Filtering for Different Attacks using IEC-104

To evaluate the efficiency of our eBPF-based filtering approach, we conducted as-

sessments by generating malformed messages at varying rates, ranging from 500 to

2500. Figure 5.7b showcases the corresponding CPU utilization on the server, with

and without filtering enabled. As observed, the CPU utilization increases sharply with

the intensity of the attack when filtering is not applied. However, with filtering en-

abled, all malformed messages are promptly dropped, preventing their processing by

78

the user-space server program. This results in a consistent CPU utilization of approx-

imately 16%, highlighting the effectiveness of eBPF-based filtering in mitigating the

impact of attacks on server resources. In addition to the overall CPU utilization, we

further analyze the impact of individual attack cases on server resources. Figures 5.8a

and 5.8b illustrate these insights for attack intensities of 500 and 2000, respectively,

focusing on the IEC-104 protocol. In these figures, “NoF” represents CPU utilization

without filtering, serving as a baseline, while “A1” to “A5” denote different attack

scenarios. Each attack scenario represents a distinct type of malformed message. For

instance, “A1” involves incompatible length and object fields, “A2” pertains to incor-

rect test bit settings, “A3” corresponds to P/N setting mismatches, “A4” comprises

wrong start characters, and ”A5” involves incompatible ASDUTYPE and CoT values.

The bars in the graphs depict CPU utilization when an attack of the specified intensity

is generated, with the corresponding messages being filtered by eBPF. Notably, the

nearly consistent CPU utilization across different attack types suggests that the fil-

tering mechanism is specific to the specific characteristics of each attack. This implies

a robust and versatile defense strategy, capable of effectively mitigating various types

of attacks without noticeable change in resource consumption.

a 500 Packets Per Minute b 2000 Packets Per Minute

Figure 5.9: CPU Utilization with eBPF Filtering for Different Attacks using Modbus

Similarly, Figure 5.9 presents CPU utilization for the Modbus protocol, considering

two attack scenarios: “A1” featuring a protocol identifier error and “A2” involving

incompatible value messages. Analogous observations apply here, reinforcing the re-

79

silience and scalability of the filtering technique across different protocols and attack

scenarios. In essence, these studies underscore the robustness and efficacy of the fil-

tering technique, demonstrating its ability to efficiently handle diverse attack types

while maintaining consistent CPU utilization levels.

(iv) Filtering Message Sequencing Attack Messages: In this study, we ex-

plore a sequencing attack example and develop an eBPF code to detect and filter

messages associated with this attack. The attack scenario involves a single adversary

toggling the machine state by manipulating ASDUTYPE and CoT values in a specific

sequence. Specifically, the ASDUTYPE is set to 46, followed by changes in CoT values

to 6, 7, and 10 sequentially. To detect this attack, we utilize timestamp and message

attribute values as described in Section 5.3.2.2. To evaluate the effectiveness of our

filtering approach, we conduct two sets of experiments, each lasting 30 minutes.

Figure 5.10: Packets Processed in Message Sequencing Attack

In the first set, we observe network traffic without any filtering, while in the second set,

we implement filtering. During these experiments, the toggling attack is generated for

6 minutes, starting at the 14th-minute mark. Our eBPF code is designed to filter all

messages originating from the adversary once the attack is detected. Figure 5.10 illus-

80

trates the number of messages processed by the control center under both scenarios.

We observe a significant reduction in the number of processed messages when filtering

is enabled, except during the initial period when the attack is first detected. This

indicates the effectiveness of our filtering mechanism in mitigating the impact of the

sequencing attack by filtering out malicious messages. Overall, our findings highlight

the efficacy of eBPF-based filtering in enhancing system resilience against sequencing

attacks while minimizing unnecessary processing overhead.

5.5 Conclusion

In our work, we focused on the security of SCADA communication systems used in

electric grid networks, which are vulnerable to cyber attacks due to their reliance on

conventional TCP/IP networks. We specifically investigated two types of attacks: re-

source depletion attacks and message sequencing attacks. Resource depletion attacks

involve an adversary sending a large volume of malformed messages to exhaust system

resources. This can disrupt normal operations by overwhelming the system’s capacity

to process these messages efficiently. On the other hand, message sequencing attacks

involve the adversary sending messages in a specific sequence to disrupt the orderly

functioning of the SCADA system.

To address these threats, we developed a method to detect malformed messages using

rules generated from first-order logic statements. These rules help identify anomalies

in message structures, indicating potential attacks. Additionally, we proposed a mit-

igation strategy involving the use of the Extended Berkeley Packet Filter (eBPF) to

filter out malformed messages before they reach critical components of the SCADA

system. Through simulation-based studies, we demonstrated the effectiveness and ro-

bustness of our approach in mitigating various forms and intensities of attacks. Our

findings highlight the efficiency of filtering techniques in safeguarding SCADA systems

against cyber threats, highlighting the importance of security measures in ensuring the

reliability and integrity of critical infrastructure networks.

81

Chapter 6

Conclusion and Future Work

In this chapter, we summarize the attack detection and mitigation techniques pre-

sented in the thesis and highlight the possibility of future work in this area. The goal

of our work was to secure smart grids by proposing attack detection and mitigation

techniques. Hence, to spot the vulnerability areas, our main focus was on understand-

ing various communication protocols used in smart grids and how attacker uses these

vulnerabilities to launch the attack. Some of the popular communication protocols

used in smart grids are IEC-104, Modbus, etc.

We first motivated our thesis by stating State Transition Machines can be an effective

way to detect attacks in smart grids. We addressed the limitations of the existing

STM based techniques for attack detection. Subsequently, we proposed a lightweight

technique which is a probability distribution comparison based technique for flood-

ing attack detection. Using probability distribution comparison can be more effective

when dealing with attacks including huge redundant traffic because it offers faster

processing and lesser memory usage. After that, we shifted our focus to mitigating

attacks, specifically resource depletion attacks and message sequencing attacks. To

achieve this, we explored the topic of eBPF and its application. Then, developed an

eBPF-based attack mitigation technique.

82

6.1 Thesis Contributions

In this section, we summarize the attack detection and mitigation techniques de-

scribed in this thesis. First two contributions describe attack detection techniques

and third contribution presents an attack mitigation technique based on eBPF. These

three contributions are summarized in the subsequent three subsections.

6.1.1 Anomaly Detection in SCADA Systems: A State Tran-

sition Modeling

Our first contribution of the thesis is a state transition modeling based technique

for cyber attack detection in smart grid networks. For this, we first distinguished

cyber attacks into three generic anomaly types, i.e. single message based, message

sequence based, and time based anomalies. Then, we show that identifying these

anomalies can help in detecting several other cyber attacks. We proposed a new

state transition based model Deterministic Counting Timed Automata DCTA to detect

these anomalies, which is constructed using extended network flow records. These

DCTAs make permitted transitions based on several constraints, such as constraints on

message attributes, timing constraints, and counting constraints. These constraints

help to verify several attribute values, sequence, timing, number of messages, etc., to

detect anomalies. Also, during transition several attribute values are logged as and

when needed. Packets along with additional details for attack detection are used for

network flow generation. These flows are given as input to all these DCTAs running in

parallel and if the flow is relevant, then they process it and take appropriate transition

depending upon their current state and transition constraints. If any of the DCTAs

move to a state representing the attack state then the attack is detected. We used a

publicly available dataset to evaluate the performance of our proposed approach. Our

approach was successfully able to detect different attack types with a detection rate

of 100% in the best case. We also did sensitivity analysis in order to come up with

the most accurate golden threshold for the various parameters used. Thereafter, we

compared it against the prior works to show its efficacy. Our approach outperformed

83

the existing techniques. DCTA was able to detect even those attacks which were not

detected by existing STMs. In addition, the attack categorization which we did by

introducing three anomaly types helps in providing a template for creating DCTAs for

new attack types.

6.1.2 Detecting Cyber Attacks in Smart Grid Networks with

Probability Distribution Comparison

Our first attack detection method summarized in the previous subsection turns

out to be a heavy model when dealing with flooding attacks due to huge memory

requirements and time spent while making transition decisions. To avoid this, in our

second contribution, we proposed a lightweight technique based on the probability

distribution method to detect two important cyber security threats in smart grid

networks namely flooding attack and bruteforce attack. The known communication

in smart grid networks is used to generate probability distribution for our anomaly

detector. The number of query and response messages maintains a balance in normal

scenarios in smart grids when the Modbus communication protocol is used. We took

motivation from this and proposed an attack detection method. The proposed method

builds a profile for normal behavior and then uses it as a baseline to detect attacks.

Now, we generate probability distribution for the testing interval and then we compare

it against the baseline profile using a distance metric. In our case, we use Hellinger

distance because of its lightweight computation, natural lower and upper bounds,

and finite distance value produced as output. If the computed distance crosses a

pre-specified threshold then it is categorized as an attack. We performed sensitivity

analysis to set these threshold values. We performed an evaluation on two of the

publicly available datasets to show their efficacy in the detection.

6.1.3 Mitigating Resource Depletion and Message Sequenc-

ing Attacks in SCADA Systems

The previous work summarized attack detection techniques. However, in this sub-

section, we are going to summarize our third contribution which is an attack mitigation

84

technique for resource depletion attack and message sequencing attack. In the case

of a resource depletion attack, an attacker floods the control center with malformed

messages to drain its resources. On the other hand, in a message sequencing attack,

an adversary sends a sequence of messages to disturb the operations of the SCADA

system. We studied the impact of these malformed messages on the server resources.

Thereafter, we described a method to identify such malformed messages using rules

generated with first-order logic statements. These rules are constructed using the

formal description of the communication protocols. We also proposed an attack mit-

igation method by filtering malformed messages using the Extended Berkeley Packet

Filter (eBPF). For writing this eBPF code, we translated the rules of our proposed

first-order logic. Our simulation based study showed that such filtering is effective and

robust against variants of attacks and also the intensity of attacks.

6.2 Future Work

Our work on attack detection and mitigation in smart grid networks can be ex-

tended in many ways. Following are the few possible extensions:-

• Exploring other communication protocols: Our study is limited to only Modbus

and IEC-104 message types. Although these are two popularly used protocols,

there are number of other protocols proposed for SCADA applications. For e.g.,

DNP3 is another protocol that is used in SCADA networks. These protocols

and their communication can be explored, and appropriate detection methods

can be proposed.

• Exploring attacks at different OSI layers: In this thesis, we have focused purely

on application layer protocols and their implications on the SCADA networks.

As these protocols operate over TCP/IP networks, one can study the effect of

multiplexed attacks on the SCADA systems.

• Mitigating Other Attacks: Our study has considered mitigating only two types

of attacks namely resource depletion and message sequencing attacks. However,

85

this can be extended with techniques for mitigating other types of attacks as

well.

86

Bibliography

[1] H. Teryak, A. Albaseer, M. Abdallah, S. Al-Kuwari, and M. Qaraqe, “Double-

edged defense: Thwarting cyber attacks and adversarial machine learning in iec

60870-5-104 smart grids,” IEEE Open Journal of the Industrial Electronics Soci-

ety, vol. 4, pp. 629–642, 2023.

[2] ModbusProtocol, “Modbus tools.” [Online]. Available: https://www.

modbustools.com/modbus.html

[3] P. Matoušek, “Description and analysis of iec 104 protocol,” Faculty of Informa-

tion Technology, Brno University o Technology, Tech. Rep, 2017.

[4] M. Baezner and P. Robin, “Stuxnet,” ETH Zurich, Tech. Rep., 2017.

[5] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber attack on the

ukrainian power grid,” Techncal Report, SANS, Tech. Rep., March 2016.

[6] S. V. B. Rakas, M. D. Stojanović, and J. D. Marković-Petrović, “A review of

research work on network-based scada intrusion detection systems,” IEEE Access,

vol. 8, pp. 93 083–93 108, 2020.

[7] P. Matoušek, V. Havlena, and L. Hoĺık, “Efficient modelling of ics communication

for anomaly detection using probabilistic automata,” in 2021 IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM), 2021, pp. 81–89.

[8] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes, “Us-

ing model-based intrusion detection for scada networks,” in Proceedings of the

SCADA security scientific symposium, vol. 46, 2007, pp. 1–12.

87

[9] N. Goldenberg and A. Wool, “Accurate modeling of modbus/tcp for intrusion

detection in scada systems,” international journal of critical infrastructure pro-

tection, vol. 6, no. 2, pp. 63–75, 2013.

[10] M. Caselli, E. Zambon, and F. Kargl, “Sequence-aware intrusion detection in

industrial control systems,” in CPSS ’15: Proceedings of the 1st ACM Workshop

on Cyber-Physical System Security, 2015, pp. 13–24.

[11] A. C.-F. Chan and J. Zhou, “Non-intrusive protection for legacy scada systems,”

IEEE Communications Magazine, vol. 61, no. 6, pp. 36–42, 2023.

[12] M. Alanazi, A. Mahmood, and M. J. M. Chowdhury, “Scada vulnerabilities and

attacks: A review of the state-of-the-art and open issues,” Computers & security,

vol. 125, p. 103028, 2023.

[13] C. Beasley, X. Zhong, J. Deng, R. Brooks, and G. K. Venayagamoorthy, “A survey

of electric power synchrophasor network cyber security,” IEEE PES Innovative

Smart Grid Technologies Conference Europe, pp. 1–5, 2014.

[14] I. E. Evangeliou, “Vulnerabilities of the modbus protocol,” Ph.D. dissertation,

University of Piraeus, Greece, 2018.

[15] S. Aoufi, A. Derhab, and M. Guerroumi, “Survey of false data injection in smart

power grid: Attacks, countermeasures and challenges,” Journal of Information

Security and Applications, vol. 54, 2020.

[16] B. Zhu, A. Joseph, and S. Sastry, “A taxonomy of cyber attacks on scada sys-

tems,” in CPSCom: Proceedings of the 4th IEEE International Conference on

Cyber, Physical and Social Computing, 2010, pp. 380–388.

[17] N. Tripathi and N. Hubballi, “Application layer denial-of-service attacks and

defense mechanisms: A survey,” ACM Computing Surveys, vol. 54, no. 4, pp.

1–30, 2021.

88

[18] B. Phillips, E. Gamess, and S. Krishnaprasad, “An evaluation of machine

learning-based anomaly detection in a scada system using the modbus proto-

col,” in ASM-SE’20: Proceedings of the 2020 ACM Southeast Conference, 2020,

pp. 188–196.

[19] M. Anwar, L. Lundberg, and A. Borg, “Improving anomaly detection in scada

network communication with attribute extension,” Energy Informatics, vol. 5,

no. 1, pp. 1–22, 2022.

[20] A. Kleinmann and A. Wool, “Automatic construction of statechart- based

anomaly detection models for multi-treaded industrial control systems,” ACM

Transactions on Intelligent System Technology, vol. 8, no. 4, pp. 1–21, 2017.

[21] “StationGuard,” https://www.omicronenergy.com/en/solution/intrusion-

detection-system-ids-for-the-power-grid/z#.

[22] O. N. Nyasore, P. Zavarsky, B. Swar, R. Naiyeju, and S. Dabra, “Deep packet

inspection in industrial automation control system to mitigate attacks exploiting

modbus/tcp vulnerabilities,” in 2020 IEEE International Conference on Intelli-

gent Data and Security (IDS), 2020, pp. 241–245.

[23] H. Lin, A. Slagell, C. Di Martino, Z. Kalbarczyk, and R. K. Iyer, “Adapting bro

into scada: Building a specification-based intrusion detection system for the dnp3

protocol,” in Proceedings of the Eighth Annual Cyber Security and Information

Intelligence Research Workshop, 2013, pp. 1–4.

[24] Z. IDS, “https://old.zeek.org/manual/2.5.5/broids/index.html.”

[25] J. M. Beaver, R. C. Borges-Hink, and M. A. Buckner, “An evaluation of ma-

chine learning methods to detect malicious scada communications,” in ICMLA’13:

Proceedings of the 12th international conference on machine learning and appli-

cations, 2013, pp. 54–59.

[26] S. D. Anton, S. Kanoor, D. Fraunholz, and H. D. Schotten, “Evaluation of ma-

chine learning-based anomaly detection algorithms on an industrial modbus/tcp

89

data set,” in ARES’18: Proceedings of the 13th International Conference on

Availability, Reliability and Security, 2018, pp. 1–10.

[27] L. A. Maglaras, J. Jiang, and T. Cruz, “Integrated ocsvm mechanism for intrusion

detection in scada systems,” Electronics Letters, vol. 50, no. 25, pp. 1935–1936,

2014.

[28] S. D. D. Anton, S. Sinha, and H. D. Schotten, “Anomaly-based intrusion detection

in industrial data with svm and random forests,” in 2019 International conference

on software, telecommunications and computer networks (SoftCOM). IEEE,

2019, pp. 1–6.

[29] X. Yan, Y. Jin, Y. Xu, and R. Li, “Wind turbine generator fault detection based

on multi-layer neural network and random forest algorithm,” in 2019 IEEE Inno-

vative Smart Grid Technologies-Asia (ISGT Asia). IEEE, 2019, pp. 4132–4136.

[30] V. K. Singh and M. Govindarasu, “Decision tree based anomaly detection for

remedial action scheme in smart grid using pmu data,” in 2018 IEEE Power &

Energy Society General Meeting (PESGM). IEEE, 2018, pp. 1–5.

[31] I. Elgarhy, M. M. Badr, M. Mahmoud, M. M. Fouda, M. Alsabaan, and H. A.

Kholidy, “Clustering and ensemble based approach for securing electricity theft

detectors against evasion attacks,” IEEE Access, 2023.

[32] I. Kiss, B. Genge, P. Haller, and G. Sebestyén, “Data clustering-based anomaly

detection in industrial control systems,” in ICCP’14: Proceedings of IEEE 10th

International Conference on Intelligent Computer Communication and Process-

ing, 2014, pp. 275–281.

[33] A. Almalawi, A. Fahad, Z. Tari, A. Alamri, R. AlGhamdi, and A. Y. Zomaya,

“An efficient data-driven clustering technique to detect attacks in scada systems,”

IEEE Transactions on Information Forensics and Security, vol. 11, no. 5, pp.

893–906, 2016.

90

[34] H. Yang, L. Cheng, and M. C. Chuah, “Deep-learning-based network intrusion

detection for scada systems,” in 2019 IEEE Conference on Communications and

Network Security (CNS), 2019, pp. 1–7.

[35] G. Fenza, M. Gallo, and V. Loia, “Drift-aware methodology for anomaly detection

in smart grid,” IEEE Access, vol. 7, pp. 9645–9657, 2019.

[36] S. Y. Diaba, T. Anafo, L. A. Tetteh, M. A. Oyibo, A. A. Alola, M. Shafie-Khah,

and M. Elmusrati, “Scada securing system using deep learning to prevent cyber

infiltration,” Neural Networks, vol. 165, pp. 321–332, 2023.

[37] L. A. C. Ahakonye, C. I. Nwakanma, J.-M. Lee, and D.-S. Kim, “Agnostic ch-

dt technique for scada network high-dimensional data-aware intrusion detection

system,” IEEE Internet of Things Journal, vol. 10, no. 12, pp. 10 344–10 356,

2023.

[38] D. Wilson, Y. Tang, J. Yan, and Z. Lu, “Deep learning-aided cyber-attack de-

tection in power transmission systems,” in 2018 IEEE Power & Energy Society

General Meeting (PESGM). IEEE, 2018, pp. 1–5.

[39] A. Hijazi, A. El Safadi, and J.-M. Flaus, “A deep learning approach for intrusion

detection system in industry network.” in BDCSIntell, 2018, pp. 55–62.

[40] S. Potluri and C. Diedrich, “Deep learning based efficient anomaly detection

for securing process control systems against injection attacks,” in 2019 IEEE

15th International Conference on Automation Science and Engineering (CASE).

IEEE, 2019, pp. 854–860.

[41] J. Suaboot, A. Fahad, Z. Tari, J. Grundy, A. N. Mahmood, A. Almalawi, A. Y.

Zomaya, and K. Drira, “A taxonomy of supervised learning for idss in scada

environments,” ACM Computing Surveys, vol. 53, no. 2, 2020.

[42] C. Markman, A. Wool, and A. A. Cardenas, “A new burst-dfa model for scada

anomaly detection,” in CPS ’17: Proceedings of the 2017 Workshop on Cyber-

Physical Systems Security and PrivaCy, 2017, p. 1–12.

91

[43] F. Martinelli, F. Mercaldo, A. Santone, C. Tavolato-Wötzl, and P. Tavolato,

“Timed automata networks for scada attacks real-time mitigation,” 2019.

[44] R. Udd, M. Asplund, S. Nadjm-Tehrani, M. Kazemtabrizi, and M. Ekstedt, “Ex-

ploiting bro for intrusion detection in a scada system,” in CPSS ’16: Proceed-

ings of the 2nd ACM International Workshop on Cyber-Physical System Security,

2016, pp. 44–51.

[45] S. Zhanwei and L. Zenghui, “Abnormal detection method of industrial control

system based on behavior model,” Computers & Security, vol. 84, pp. 166–178,

2019.

[46] L. Chen and X. Wang, “Quickest attack detection in smart grid based on sequen-

tial monte carlo filtering,” IET Smart Grid, vol. 3, no. 5, pp. 686–696, 2020.

[47] I. Burgetová, P. Matoušek, and O. Ryšavỳ, “Anomaly detection of ics communica-

tion using statistical models,” in 2021 17th International Conference on Network

and Service Management (CNSM). IEEE, 2021, pp. 166–172.

[48] S. Bhattacharjee, M. J. Islam, and S. Abedzadeh, “Robust anomaly based attack

detection in smart grids under data poisoning attacks,” in Proceedings of the 8th

ACM on Cyber-Physical System Security Workshop, 2022, pp. 3–14.

[49] C.-Y. Lin, S. Nadjm-Tehrani, and M. Asplund, “Timing-based anomaly detec-

tion in scada networks,” in CRITIS’17: Proceedings of the 12th International

Conference Critical Information Infrastructures Security, 2018, pp. 48–59.

[50] C.-Y. Lin and S. Nadjm-Tehrani, “Timing patterns and correlations in spon-

taneous scada traffic for anomaly detection.” in RAID’19: Proceedings of 22nd

International Symposium on Research in Attacks, Intrusions and Defenses, 2019,

pp. 73–88.

[51] A. Bhardwaj, F. Al-Turjman, M. Kumar, T. Stephan, and L. Mostarda,

“Capturing-the-invisible (cti): Behavior-based attacks recognition in iot-oriented

industrial control systems,” IEEE access, vol. 8, pp. 104 956–104 966, 2020.

92

[52] C.-Y. Lin and S. Nadjm-Tehrani, “Protocol study and anomaly detection for

server-driven traffic in scada networks,” International Journal of Critical Infras-

tructure Protection, vol. 42, p. 100612, 2023.

[53] A. Sidhik, “Different types of scada protocols,” 2023. [Online]. Available:

https://forumautomation.com/t/different-types-of-scada-protocols/4194

[54] R. Mattioli and K. Moulinos, “Communication network interde-

pendencies in smart-grids,” Techncal Report, Tech. Rep. [Online].

Available: https://www.enisa.europa.eu/publications/communication-network-

interdependencies-in-smart-grids

[55] J. Klick, S. Lau, D. Marzin, J.-O. Malchow, and V. Roth, “Modeling modbus

tcp for intrusion detection,” in Blackhat’15: 2015 Blackhat Conference, 2015, pp.

1–9.

[56] R. Spenneberg, M. Brüggemann, and H. Schwartke, “Plc-blaster: A worm living

solely in the plc,” in BlackhatAsia’16: 2016 Blackhat in Aisa Conference, 2016,

pp. 1–16.

[57] M. Alanazi, A. Mahmood, and M. J. M. Chowdhury, “Scada vulnerabilities and

attacks: A review of the state-of-the-art and open issues,” Computers & Security,

vol. 125, no. C, 2023.

[58] P. M. Laso, D. Brosset, and J. Puentes, “Analysis of quality measurements to

categorize anomalies in sensor systems,” in 2017 Computing Conference, 2017,

pp. 1330–1338.

[59] “ICS Dataset for Smart-Grid Anomaly Detection, https://ieee-

dataport.org/documents/ics-dataset-smart-grid-anomaly-detection#files (ac-

cessed on 09-aug-2023).”

[60] K. Boakye-Boateng, A. A. Ghorbani, and A. H. Lashkari, “Cic modbus dataset

2023,” 2023. [Online]. Available: https://www.unb.ca/cic/datasets/modbus-

2023.html

93

[61] I. Frazão, P. Abreu, T. Cruz, H. Araújo, and P. Simões, “Cyber-security modbus

ics dataset,” 2019. [Online]. Available: https://dx.doi.org/10.21227/pjff-1a03

[62] O. Alexander, M. Belisle, and J. Steele, “Mitre att&ck for industrial control

systems: Design and philosophy,” The MITRE Corporation: Bedford, MA, USA,

vol. 29, 2020.

[63] V. Jacobson, S. McCanne, and M. Vetterli, The TCPDump Manual, Lawrence

Berkeley Laboratory, University of California, Berkeley, 1989. [Online]. Available:

https://www.tcpdump.org/tcpdump man.html

[64] U. Lamping and E. Warnicke, “Wireshark user’s guide,” Interface, vol. 4, no. 6,

p. 1, 2004.

[65] T. H. Jørgensen, J. D. Brouer, D. Borkmann, J. Fastabend, T. Herbert, D. Ahern,

and D. Miller, “The express data path: Fast programmable packet processing in

the operating system kernel,” in CoNEXT ’18: Proceedings of the 14th Interna-

tional Conference on Emerging Networking Experiments and Technologies, 2018,

pp. 54–66.

94

